
 
 
 
 

Western Australian School of Mines 
 
 

Department of Mining Engineering and Surveying 
 
 
 
 
 
 
 
 
 

Near-Field Blast Vibration Monitoring and Analysis for 
Prediction of Blast Damage in Sublevel Open Stoping 

 
 
 
 
 

Kelly Gene Fleetwood 
 
 
 
 
 
 
 
 
 
 
 

This thesis is presented for the Degree of 
Doctor of Philosophy 

of 
Curtin University of Technology 

 
 
 
 
 

December 2010 
 



i

Declaration�
�
�

�
�
To the best of my knowledge and belief this thesis contains no material previously 

published by any other person except where due acknowledgment has been made. 

This thesis contains no material which has been accepted for the award of any other 

degree or diploma in any university. 

Signed:……………………………………………………..

Date: ……………………………………………………… 23 November, 2010 



ii 
 

ABSTRACT 
 
The work presented in this thesis investigates near-field blast vibration monitoring, 

analysis, interpretation and blast damage prediction in sublevel open stoping 

geometries. As part of the investigation, seven stopes at two Australian sublevel open 

stoping mines were used as case studies. The seven stopes represented significant 

ranges in stope shapes, sizes, geotechnical concerns, extraction sequences, stress 

conditions, blasting geometries and rock mass properties.  

 

The blast damage investigations at the two mine sites had three main components. 

The first component was rock mass characterisation, which was performed using 

static intact rock testing results, discontinuity mapping, mining-induced static stress 

modelling and geophysical wave propagation approaches. The rock mass 

characterisation techniques identified localised and large-scale variations in rock 

mass properties and wave propagation behaviours in relation to specified monitoring 

orientations and mining areas. The other components of the blast damage 

investigations were blast vibration monitoring and analysis of production blasting in 

the seven stopes and stope performance assessments. 

 

The mine-based data collection period for the case studies lasted from January, 2006 

to February, 2008. A key element of the data collection program was near-field blast 

vibration monitoring of production blasts within the seven study stopes. The 

instrumentation program consisted of 41 tri-axial accelerometers and geophone 

sondes, installed at distances from 4m to 16m from the stope perimeters. A total of 

59 production firings were monitored over the course of the blast vibration 

monitoring program. The monitoring program resulted in a data set of over 5000 

single-hole blast vibration waveforms, representing two different blasthole diameters 

(89mm and 102mm), six different explosive formulations and a wide range in charge 

weights, source to sensor distances, blasthole orientations and blasting geometries. 

 

The data collected in the blast vibration monitoring program were used to compare 

various near-field charge weight scaling relationships such as Scaled Distance and 

Holmberg-Persson prediction models. The results of these analyses identified that no 

single charge weight scaling model could dependably predict the measured near-field 
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peak amplitudes for complex blasting geometries. Therefore, the general form of the 

charge weight scaling relationship was adopted in conjunction with nonlinear multi-

variable estimation techniques to analyse the data collected in the study stopes and to 

perform forward vibration predictions for the case studies.  

 

Observed variations in the recorded near-field waveforms identified that 

instantaneous peak amplitude such as peak particle velocity (PPV) did not accurately 

describe the characteristics of a large portion of the data. This was due to significant 

variations in frequency spectra, variable distributions of energy throughout the wave 

durations and coupling of wave types (e.g. P- and S-wave coupling). The wave 

properties that have been proposed to more accurately characterise complex near-

field vibrations are the total wave energy density (EDW-tot), stored strain energy 

density (EDW-SS) and the wave-induced mean normal dynamic strain (�W-MN). These 

wave properties consider the activity of the blast-induce wave at a point in the rock 

mass over the entire duration instead of the instantaneous amplitude.   

 

A new analytical approach has been proposed to predict blast-induced rock mass 

damage using rock mass characterisation data, blast vibration monitoring results and 

rock fracture criteria. The two-component approach separately predicts the extent of 

blast-induced damage through fresh fracturing of intact rock and the extent from 

discontinuity extension. Two separate damage criteria are proposed for the intact 

rock portion of the rock mass based on tensile and compressive fracture strain energy 

densities and compressive and tensile fracture strains. The single criterion for 

extension of existing discontinuities is based on the required fracture energy density 

to activate all macro-fractures in a unit volume of the rock mass.  

 

The proposed energy-based criteria for intact rock fracture and extension of 

discontinuities integrate strain rate effects in relation to material strength. The strain-

based criterion for intact rock fracture integrates the existing mining-induced static 

strain magnitudes. These factors have not been explicitly considered in existing 

empirical or analytical blast damage prediction models. The proposed blast damage 

prediction approach has been applied to two stopes during the two mine site case 

studies. 
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CHAPTER 1 : INTRODUCTION 

Blasting-related rock mass damage in underground mining or tunnelling can 

negatively affect the mining process by contributing to small or large-scale rock 

mass instabilities. Blast damage can manifest as either primary damage such as 

excavation overbreak and stope dilution or secondary effects related to blasting-

induced rock fall or mobilisation of large-scale discontinuities. These types of 

damage can negatively influence both the localised and regional stability of an 

underground operation, and lead to increased mining costs from ground support 

rehabilitation, damage to mine infrastructure, damage to mine equipment and injury 

of personnel. 

 

In traditional excavation design approaches, blasting-related rock mass damage is not 

explicitly considered or quantified based on blast design parameters or rock mass 

characteristics. Approaches to predict or assess blasting damage have therefore been 

performed independently, using a range of empirical, analytical or mathematical 

models. Of the models published in the literature over the last 40 years, the most 

prevalent have been those related to qualitative damage assessment from direct or 

indirect observations, quantitative prediction based on measured or predicted 

vibration amplitudes, analytical prediction using strain or energy-based damage 

criteria and numerical modelling of the damage process. The most notable limitations 

of these models for blast damage prediction or assessment include a lack of 

consideration for the rock mass properties, a lack of standardised near-field blast 

vibration monitoring techniques, insufficient blast vibration analysis techniques for 

near-field vibration data and no treatment for the influence of underground voids or 

induced static stresses on blasting vibrations or damage. Investigation of these 

limitations has formed the basis of the blast vibration monitoring and blast damage 

assessment techniques developed throughout this thesis.  

 

It is important to note that in the published literature, no standard definition exists for 

the term “blast-induced damage” as applied to mining or geotechnical engineering. 

Researchers in the past have proposed definitions for or identified blast damage by 

degradation of the material elastic modulus (e.g. Grady and Kipp, 1980; Yang et al., 

1996; Liu and Katsabanis, 1997), observable fresh fracturing, overbreak or rock fall 
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(e.g. LeBlanc et al., 1995; Villaescusa et al., 1997; Liu et al., 2000; Keller and 

Kramer, 2000), or changes in the rock mechanical, seismic or hydraulic properties 

(e.g. Holmberg and Persson, 1978; Spathis et al., 1985; Pusch, 1989; Brinkmann, 

1990; Pusch and Stanfors, 1992; Ouchterlony et al., 1993; Cardarelli et al., 2003; 

Kilebrant et al., 2009; Ouchterlony et al., 2009). The definition of blast-induced 

damage adopted in this thesis is degradation of the load-bearing capabilities of a rock 

mass as a result of an increase in the intensity of fracturing. The increased fracture 

intensity can be associated with fresh fracturing, or dilation or extension of existing 

fractures or discontinuities. The degree of strength degradation in the damage-

affected zone does not necessarily indicate a loss of immediate rock mass integrity, 

but would be expected to influence the long-term stability of the rock mass over time 

or with additional loading.    

 

The terms “near-field” and “far-field” vibrations are used prevalently in published 

research in reference to distance ranges from a blasting event, but no standard 

definition exists. Various published definitions are based on multiples of the charge 

length or blast dimensions (e.g. Andrieux and Heilig, 1994; Yang and Scovira, 

2007), absolute distance from a single hole or multiple-hole blast (e.g. Yang et al., 

1993), a combination of the charge weight and distance (e.g. Ambraseys and 

Hendron, 1968), or frequency-related properties (e.g. Spathis, 2006). The amplitude 

and frequency characteristics of blast-induced waves are dependent on both the 

intensity of the wave source (charge weight) and the distance over which the wave 

has propagated. For this reason, four different source and distance-related monitoring 

ranges have been proposed in this thesis. The four monitoring ranges, discussed in 

detail in Chapter 4, are “extreme near-field”, “near-field”, “intermediate-field” and 

“far-field”. The proposed ranges are based on specific values of square root Scaled 

Distance (SDSQRT), which combines charge weight and distance into a single scaling 

term. The proposed near-field zone for monitoring is defined by the SDSQRT value 

between 0.5 and 2.0 m/kg0.5. Far-field conditions would be expected for SDSQRT 

values in excess of 10 m/kg0.5. 

 

The recommended procedures for the design and implementation of near-field blast 

vibration monitoring systems and data collection, processing, analysis, and 

interpretation presented in this thesis are based on an extensive blast vibration 
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monitoring program performed by the author. This program took place from January, 

2006 to February, 2008 and involved near-field and intermediate-field blast vibration 

monitoring of production blasts in seven sublevel open stopes at two underground 

mines in Australia. The data set generated in the program represents one of the most 

extensive near-field underground vibration monitoring data sets in the world in terms 

of data quality, quantity and represented blasting conditions. In excess of 5000 single 

blasthole wave traces were identified out of over 10000 monitored production 

blastholes.  

 

The extensive data set generated during the blast vibration monitoring program is not 

provided in its entirety in this thesis due to the great expense and effort of both the 

author and the project sponsors to collect it over the course of the program. Portions 

of the data that have been used for blast vibration analysis in the mine site case 

studies have been included in graphical form and a sample data set is included in 

Appendix 1. Additional data analysis results are in Appendix 9 and Appendix 10, 

including 180 individual regressions of the collected data. Access to the data by 

external researchers for further analysis can be negotiated with the sponsoring mine 

sites or the author based on collaborative research agreements. 

 

1.1 Objectives of the Thesis 

One of the objectives of this thesis is to critically review the practices of near-field 

blast vibration monitoring used in published studies and attempt to provide 

suggestions to more accurately measure near-field blasting vibrations. The elements 

of consideration to ensure accurate near-field blast vibration monitoring include:  

• Proper selection of transducer types, dynamic ranges and configurations 

• Adequate volumetric coverage of transducers to represent orientation-specific 

blast vibration attenuation characteristics 

• Data acquisition system specifications (e.g. sampling rate, resolution, input 

sensitivity) 

• Waveform post-processing  
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Once blast vibration data have been collected with high accuracy and processed to 

represent the transducer-appropriate amplitude and frequency ranges, analysis of the 

data must be performed to link the measured vibration characteristics with blasting 

parameters. These analyses allow prediction of the vibration values that may be 

expected at other locations within the mine or resulting from distance or charge 

variations. Another objective of this thesis is to review the existing models of blast 

vibration analysis and prediction and apply them to the near-field data sets collected 

at the Kanowna Belle Gold Mine and the BHP Billiton Cannington Mine. The 

accuracies of prediction of measured wave amplitudes, calculated energies and 

strains using existing charge weight scaling models have been assessed. A modified 

analysis approach has been discussed using multi-variable nonlinear estimation 

techniques applied to the general charge weight scaling formula to improve 

prediction accuracies as indicated by the coefficients of correlation. 

 

The rock mass characteristics, mining geometries, blasting conditions and stress 

regimes at each mine site included in the author’s blast vibration monitoring program 

were notably different from one another. This allowed assessment of the effects of 

many different conditions on blasting vibrations. The localised and large-scale 

differences indicated in the blast vibration analyses and rock mass characterisations 

provided a great deal of information on the influence of blasting on stope 

performance under highly variable geologic and geotechnical rock mass conditions. 

 

The final objective of the research project was to develop a more accurate approach 

for predicting blast-induced damage to confined rock masses under the influence of 

mining-induced static stresses. No previous model for prediction of blast-induced 

damage has considered realistic damage mechanisms under the influence of static 

stresses common in underground mines. The influence of the stress magnitudes and 

orientations would be expected to affect the behaviour of blasting vibrations and the 

combined static and dynamic loading conditions experienced in a rock mass in the 

vicinity of blasting events. 
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1.2 Outline of Thesis Contents 

The chapters of this thesis have attempted to discuss the blasting process and the 

influence of blast waves on a rock mass by reviewing published literature on the 

subjects of wave propagation, blast vibration monitoring and analysis, explosive-

induced breakage and blast-induced damage. Along with published works, data 

collected during the near-field blast vibration monitoring program have been applied 

to various models of blast vibration analysis and damage prediction to evaluate the 

relevance and efficacy of the prediction of vibration behaviour.  

 

The structure adopted in this thesis attempts to aid future researchers in conducting 

near-field blast vibration monitoring, analysis and interpretation programs. The ideas 

discussed in the earlier chapters form the basis by which the proposed blast damage 

prediction approaches are developed in Chapter 6 and applied to the site 

investigations in Chapters 7 and 8. The proposed approaches aim to improve the 

accuracy of prediction and mechanistic representations of blast-induced damage in 

the underground environment. Limitations of existing blast vibration analysis 

approaches and blast damage prediction models have also been discussed.  

 

1.2.1 Chapter 2: Explosively-Driven Rock Breakage 

Chapter 2 provides an overview of the published concepts of explosive breakage of 

rock and brittle materials. The concepts related to strain-wave breakage mechanisms 

versus gas penetration breakage processes are discussed (e.g. Duvall and Petkof, 

1958; Field and Ladegaard-Pederson, 1971; Kutter and Fairhurst, 1971; Langefors 

and Kihlström, 1978; McHugh, 1983; Yu and Vongpaisal, 1996). Due to the 

dynamic nature of blasting vibrations when loading a rock mass, the dynamic 

properties of the intact rock portions of the rock mass are also discussed. 

 

1.2.2 Chapter 3: Interaction of Blast Waves with Existing Discontinuities 

Chapter 3 is dedicated to investigating the interaction of blast-induced vibrations 

with existing discontinuity networks within a rock mass. The influence of rock mass 

fracturing on the attenuation of stress waves represents a critical field of study when 
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interpreting the results of blast vibration analysis. Therefore, published works 

pertaining to numerical, laboratory and field investigations of wave attenuation 

related to discontinuities have been reviewed (e.g. Devine et al., 1965; Morland, 

1974; Kjartansson, 1979; Hudson, 1981; Crampin, 1984; King et al., 1986; Pyrak-

Nolte et al., 1990; Singh and Narendrula, 2004). 

 

The orientations of particle motions measured during the author’s blast vibration 

monitoring program are discussed along with the introduction of a method of 

predicting discontinuity loading conditions from blasting vibrations. This method of 

assessment has not been previously found in published literature. To further 

investigate the influence of discontinuity orientation on wave attenuation, two-

dimensional elastic wave propagation simulations using the software Wave2000 Plus 

have been carried out. The results of the simulations further support the previously 

reviewed research, and helped to form strategies for interpreting the results of blast 

vibration analyses. 

 

1.2.3 Chapter 4: Near-Field Blast Vibration Monitoring and Data 

Processing 

Very few recommendations have been made in past investigations for the design and 

implementation of near-field blast vibration monitoring programs. The differences 

between transducer types and responses have been characterised in the past (e.g. 

Andrieux and Heilig, 1994 and Andrieux, 1996), as well as some assessments of the 

required monitoring specifications of specific charge and distance configurations 

(e.g. Yang et al., 1993). Transducer types, monitoring configurations and coupling 

conditions in the published literature are highly variable, and in most cases are not 

adequately described. This lack of standardised monitoring greatly limits the ability 

to compare the results of different monitoring programs. 

 

The selection of near-field transducer types, configurations, coupling systems and 

installation procedures can influence the quality of recorded near-field blast vibration 

data. Chapter 4 provides unambiguous definitions for four proposed monitoring 

ranges from far-field to extreme near-field and recommendations for the design and 

implementation of near-field blast vibration monitoring systems.  
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1.2.4 Chapter 5: Blast Vibration Analysis and Interpretation 

After blast vibration data have been recorded and processed, analysis and 

interpretation of the data in relation to blasting parameters and rock mass 

characteristics should be performed. Through five decades of blast vibration 

investigations, two charge weight scaling relationships have dominated the process 

of near-field vibration analysis and interpretation. These two relationships are the 

Scaled Distance approach and the Holmberg-Persson prediction model, both of 

which attempt to predict peak vibration amplitudes based on the inputs charge weight 

and distance. Numerous researchers have utilised these two models to investigate 

near-field vibration modelling and prediction (e.g. Ambraseys and Hendron, 1968; 

Olson et al., 1972; Holmberg and Persson, 1979; Yu and Vongpaisal, 1996; 

Villaescusa et al., 1997; Heilig, 2002). The input variables for either of the dominant 

prediction models differ based on the suggested factors contributing to the peak 

vibration amplitude. Chapter 5 reviews and compares the various charge weight 

scaling models as well as other alternate models of peak vibration prediction and 

applies these models to data collected as part of the blast vibration monitoring 

program.  

 

Determination of accurate source to sensor distances is critical to the accuracy of 

vibration analysis and prediction equations. The effect of distance selection on the 

accuracy of near-field blast vibration prediction has not been adequately represented 

in the published literature. This effect is investigated in Chapter 5, along with a 

proposed model for calculating void-affected distances where the wave field is 

influenced by underground voids. The method of distance calculation proposed by 

the author is referred to as Void and Initiation Corrected Distance (VICD). An 

additional investigation into the effects of mining voids on propagating wave fields 

was performed using two-dimensional elastic wave simulations. These results aided 

in interpreting the effects of wave diffraction and void-interrupted wave fields on 

recorded seismograms. 

   

Blast vibration analysis and prediction models have typically used two-dimensional, 

log-log, linear regression techniques to determine the curve fits describing amplitude 

attenuation equations. An alternate regression approach has been proposed using 
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three-dimensional multi-variable nonlinear estimation to improve the accuracy of 

data fitting of measured vibration data. This approach uses the advanced statistical 

software package Statistica 8.0 and the general form of the charge weight scaling 

equation. 

 

1.2.5 Chapter 6: Proposed Energy and Strain-Based Blast Damage Criteria 

Chapter 6 and associated Appendix 8 briefly discuss methods of measuring, 

indicating or predicting rock mass damage from static or dynamic loading. These 

methods include direct and indirect observation methods (e.g. Li, 1993; LeBlanc et 

al., 1995; Paventi et al., 1996; Germain and Hadjigeorgiou, 1997; Singh, 2001), 

geophysical methods (e.g. Spathis et al., 1985; Friedel et al., 1995; Malmgren et al., 

2007), deformation measurements (e.g. Li, 1993; Villaescusa et al., 1997), testing of 

extracted rock samples (e.g. Holmberg and Persson, 1978; Brinkmann, 1990; 

Ouchterlony et al., 1993) and amplitude or strain-based empirical and analytical 

damage prediction models (e.g. Holmberg and Persson, 1978; LeBlanc et al., 1995; 

Zhang and Chang, 1999; Keller and Kramer, 2000). 

 

Chapter 6 also discusses the use of blast wave energy values such as the total wave 

energy density and stored strain energy density as defining wave quantities instead of 

single instantaneous peak amplitudes. Calculations of wave energies require rock 

mass properties such as the P-wave velocity and rock density. Therefore, variations 

in rock mass properties can be better represented in the modelled wave quantity. In 

addition, a method is proposed to calculate the cumulative mean normal dynamic 

strain within a blast wave from the stored strain energy density. The strain 

calculation approach requires additional dynamic rock mass properties, thus allowing 

for more rock mass-specific vibration relationships to be identified.  

 

Both the stored strain energy density and mean normal dynamic strain are used to 

define several proposed rock mass damage criteria. These criteria treat a rock mass 

as two individual components; intact rock and discontinuities. Separate criteria are 

proposed to predict damage to each of the two components based on energy or strain-

related fracture conditions. The strain-based criteria for compressive and tensile 

damage to intact rock include a treatment for inclusion of the mining-induced static 
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stresses and strains. This type of treatment of underground blast damage prediction 

under the influence of static stresses does not exist in past empirical or semi-

analytical models. 

 

1.2.6 Chapter 7: Case Study - Barrick Gold Corp. Kanowna Belle Gold Mine 

Using the methods of blast vibration analysis and rock mass assessment discussed 

and developed in the previous chapters, Chapter 7 presents the case study results 

from three stopes at the Kanowna Belle Gold Mine (KBGM) in Western Australia. 

The three stopes studied at KBGM were mined in the deepest active part of the mine 

at the time of the study, at approximately 950m below the surface. At this depth, the 

virgin and mining-induced static stresses were significant, as indicated by the 

seismically-active nature of the rock mass. The work performed at KBGM was 

designed to investigate the effects of high static stresses and large-scale faults on the 

performance of the rock mass near stope boundaries. 

 

During the blast vibration monitoring and stope assessment program in the D block 

of KBGM, a total of 12 tri-axial transducers were installed. Between the three 

monitored stopes, 27 production firings were recorded resulting in a data set of 1333 

vibration data points. Each data point represented a discrete, identifiable waveform 

generated by a single blasthole and recorded on an individual transducer. The 

number of identifiable, single charge contributions represented approximately half of 

the total number of detonating charges in the 27 firings due to apparent charge 

interactions, misfires or excessive waveform shielding by voids.  The combined data 

set was analysed using the nonlinear estimation tools discussed in Chapter 5; data 

subsets based on individual stopes and orientations were also analysed.  

 

Traditional geotechnical investigation tools such as intact rock testing, discontinuity 

mapping and static stress modelling were used to characterise the rock mass 

surrounding the three monitored stopes. Additional characterisations were performed 

using geophysical approaches based on the properties of the recorded blast waves. 

These approaches included stress wave velocity measurements and peak amplitude-

frequency analyses. The relationships between blast vibration attenuation equations 

were also used to assess the rock mass conditions. Stope performance assessments 
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were also performed by comparing the post-extraction void surveys with the stope 

design wireframes. 

  

The data collected for stope dB10-38T were used to perform blast damage 

predictions using both existing prediction models and the proposed rock mass 

damage criteria discussed in Chapter 6. The results of the prediction using the 

proposed approach clearly indicated the influence of the existing static compressive 

strains on the predicted tensile damage envelope from a single blasthole located at 

the perimeter of the stope. 

 

1.2.7 Chapter 8:  Case Study - BHP Billiton Cannington Mine 

The characterisation and assessment techniques described in Chapter 7 were also 

applied to four stopes at the BHP Billiton Cannington Mine in Queensland, 

Australia. The four stopes were located in two different mining areas, representing 

different rock mass conditions, stope sizes and blasting geometries. The two mining 

areas are referred to as the North Zone and R4. In the rock mass surrounding the four 

stopes, a total of 28 tri-axial accelerometer and geophone sondes were installed to 

monitor 32 production blasts. A total of 3750 data points were identified out of a 

possible 8180 fired charges during blast monitoring at the Cannington Mine over the 

course of the 18 month program. The results of blast-induced damage prediction for 

North Zone stope 24jC6HL are detailed and discussed.  

 

1.2.8 Chapter 9: Conclusions 

The observed characteristics of over 5000 single-hole, near-field and intermediate-

field blast vibration waveforms have led to proposed approaches for collection, 

analysis and interpretation of near-field blast vibration data. Chapter 9 details the 

original contributions by the author related to the collection, processing and analysis 

of vibration data and integration of rock mass characterisation and stope assessment 

approaches. Limitations of the research project are discussed, as well as proposed 

future work and applications of the research findings in the mining industry.  
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CHAPTER 2 : EXPLOSIVELY-DRIVEN ROCK 

BREAKAGE 

2.1 Introduction 

The first step in characterising blast-induced rock mass damage is to investigate the 

explosion process and attempt to understand the mechanisms that contribute to 

explosively-driven rock breakage. Many physical mechanisms and theories have 

been proposed to explain the complex process of dynamic damage of brittle materials 

from explosive loading. Of the available models, those related to breakage from 

strain wave loading and penetration of high-pressure detonation products dominates 

the literature. Chapter 2 is dedicated to reviewing the process of explosive energy 

release resulting in breakage of rock and the dynamic properties of a rock mass that 

influence the extent and degree of fracturing.    

 

2.2 General Description of the Explosive Fracture Process 

The processes involved in explosive detonation and propagation have been studied 

for over six decades. The types of explosive applications discussed in the body of 

literature include rock breakage for mining and tunnelling, geophysical exploration, 

in situ perforation for gas and oil extraction and solution mining, chamber blasting 

for oil or radioactive waste storage and nuclear testing. Although the exact 

mechanisms that control explosive rock breakage are not completely understood, the 

general processes and physical phenomena can be separated into several identifiable 

phases. The generally accepted phases of rock breakage from explosive loading 

include (after Kutter and Fairhurst, 1971 and others): 

1) Initiation of explosive detonation and propagation of the detonation front 

along the explosive charge. 

2) Rapid production of extremely high temperature and high pressure gases 

immediately behind the detonation front. 



Chapter 2. Explosively-Driven Rock Breakage 12 
 

3) Rapid expansion of the explosive cavity from shock wave loading and 

confined initial detonation gases that crush and pulverise the rock 

adjacent to the borehole or cavity wall. 

4) Permanent plastic deformation of material outside the crushed zone  

5) Radial crack generation and extension of cracks from the crushed zone 

boundary due to high tangential stresses and the tensile tail of the initial 

compression wave. 

6) Rapid pressure drop within the explosion cavity leading to circumferential 

fractures from rapid unloading. 

7) Confined residual gas pressure penetrating fractures leading to dilation 

and further fracture extension. 

8) Additional fracturing or fracture extension from tensile reflected P-waves 

and direct or reflected shear waves.  

 

To graphically represent stages 1-8 of the breakage process, Figure 2.1 shows the 

zones of induced damage and the characteristic damage mechanism(s). 

 

 

Figure 2.1. Illustration of the detonation process and rock breakage zones behind the 

detonation front. 
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2.3 Definition of Breakage Zones Surrounding an Explosive 

Charge 

The rock mass surrounding an explosive detonation can be categorised into four 

zones of response based on the severity of damage and the assumed material loading 

mechanism. The four zones are traditionally referred to as the crushed zone, the 

plastic zone, the elasto-plastic zone and the elastic zone. The degree of material 

strength degradation in each zone ranges from completely disintegrated (crushed 

zone) to intact but lightly or moderately fractured (elastic zone). The response of 

each zone to additional stress loading depends on the degree of fracturing and the 

interconnectivity of fractures. 

 

Many factors influence the extent and degree of damage from the detonation of an 

explosive charge. These include explosive properties such as the detonation pressure 

and velocity of detonation, coupling of the explosive product to the borehole and 

rock mass properties such as rock strength and elastic deformation constants.  Past 

research has attempted to characterise the zones of damage around simple and 

complex charging geometries using small-scale to field-scale investigations (e.g. 

Kutter and Fairhurst, 1971; Siskind and Fumanti, 1974; Wilson and Holloway, 1987; 

Djordjevic, 1999; Olsson et al., 2002). These investigations have attempted to 

develop general theories of material breakage or fragment distribution resulting from 

explosive detonation based on the explosive product or material properties. More 

information on these studies is provided in Appendix 3. 

 

Detonation of modern commercial explosives can generate borehole pressures up to 

several gigapascals (Cunningham, 2006). Measurements of strain waves or pressures 

generated at the borehole wall for fully-coupled explosives do not exist in the 

literature to confirm this value due to a lack of transducers capable of withstanding 

the extremely high pressures and temperatures. The inability to measure the material 

response in the crushed and plastic zones has required the use of mathematical or 

numerical modelling and scaled blasting tests to estimate the extent of these zones. 
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2.3.1 Prediction of the Extent of Crushing 

Esen et al. (2003) provided a good overview of past empirical-mathematical models 

for predicting the radius of crushing based on explosive properties, borehole radius, 

and material properties. This overview included past work performed by 

Szuladzinski (1993) and Djordjevic (1999), along with a new approximation of the 

extent of the crushed zone based on an experimental program and numerical 

modelling of the detonation process. For first approximations of the radius of the 

crushed zone (rc), Equations 2.1 to 2.3 were published by Esen et al. (2003). 
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Where  r0 = blasthole radius (mm) 

  �0 = explosive density (g/mm3) 

  Qef = effective explosive energy (Nmm/g) 

  F’c = rock confined dynamic compressive strength (8 times �c: MPa) 

  T = rock tensile strength (Pa) 

  Pb = borehole pressure (Pa) 

  �c = rock unconfined compressive strength (Pa) 

  K = rock stiffness (Pa)   

 

Based on the results of Equations 2.1 to 2.3, a large range in crushed zones can be 

estimated based on the explosive type, borehole radius and rock properties. Figure 

2.2 illustrates the variance between the models based on rc versus r0 for a single 

blasting case using water-resistant ANFO in basalt over a range in borehole 

diameters. 
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Figure 2.2. Value of rc versus r0 for different models using various borehole 

diameters in basalt blasted with water-resistant ANFO (after Esen et al., 2003).  

 

For the range of common open stoping blasthole diameters of 64 to 102mm (r0 = 32 

to 51mm), the radius of the crushed zone would be estimated to be approximately 

two to four times the borehole radius according to the models in Figure 2.2. The 

result would be a radius of approximately 100-200mm of disintegrated material 

around the fully-coupled borehole. Langefors and Kihlström (1978) proposed a zone 

of crushing of approximately equal to or slightly less than the radius of the charge for 

a 40mm diameter blasthole common to tunnel blasting. According to the models of 

Szuladzinski (1993) and Djordjevic (1999), the ratio of rc to r0 does not change 

significantly with borehole diameter for the same explosive type in the same rock 

mass. This value ranges between 2 and 3.5. 

 

It would be unlikely that a significant volume of material from the crushed zone 

would remain self-supporting and therefore would not be expected to influence the 

overall stability and geotechnical behaviour of an excavation. The crushed volume 

would be considered to be expected overbreak. The geotechnical performance of a 

blasted excavation would more likely be controlled by the fractured zone outside the 

crushed and plastic zones. The residual rock mass strength may be adequate to self-

support against immediate gravity-driven rock block failure, but offer little resistance 

to continued loading. For this reason, the characteristics and extent of the remaining 

fractured zone is critical to the behaviour of blasted excavations in rock.   
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2.3.2 Prediction of the Radial Fracture Zone 

Energy is expended in disintegration of the crushed zone and permanent deformation 

of rock in the plastic zone as the initial shock wave travels away from a blasthole 

wall. The high degree of attenuation in this region reduces the energy in the wave to 

a point where the wave-induced compressive stresses become less than the 

compressive failure strength of the rock. The material response to wave loading after 

this point is assumed to be elasto-plastic in nature. Further attenuation of wave 

energy leads to elastic behaviour of the material in response to wave loading. For 

elastic material response, the rock mass no longer permanently deforms under wave-

induced displacement and behaves more as a quasi-brittle, elastic material. The 

distance at which the transition from plastic to elastic behaviour occurs has been 

identified in past works as the dimension of the equivalent cavity (Sharpe, 1942; 

Kutter and Fairhurst, 1971), or the transition from compressive to tensile fracture 

initiation. 

 

2.3.2.1 Stress Wave-Driven Tensile Cracking in the Elastic Zone 

Early mathematical wave models suggested that the initial compression wave from 

an explosive detonation imparts both compressive stresses in the direction of 

propagation and tangential stresses acting normal to the propagating wave front. The 

action of the combined compressive and tangential stresses at the wave front load the 

carrier material in bi-axial tension coupled with uni-axial compression (Favreau, 

1969). Additionally, a tensile tail was proposed to exist immediately following the 

initial compressive front as a result of material unloading. Observations of explosive-

induced waves in photo-elastic materials led Rossmanith et al. (1997) to identify the 

tensile tail developing approximately 3 borehole radii away from an explosive 

charge. This tensile tail was found to be a maximum at approximately 4-5 borehole 

radii from the source. 

 

2.3.2.2 Experimental Determination of the Extent of Radial Fracture Zones 

Many researchers have carried out experimental investigations in brittle materials to 

investigate the extent of fracturing around an explosive charge. One of the defining 

early works on the effect of strain-driven crack formation was that of Kutter and 
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Fairhurst (1971). Through laboratory testing of small-scale samples of plexiglass and 

rock, Kutter and Fairhurst (1971) concluded that the approximate zone of cracking 

around a pressurised blasthole was 6 times the radius of the equivalent cavity or 

crushed zone. Initial fractures subjected to additional pressurisation such as the 

quasi-static residual borehole pressure, were extended to approximately 9 times the 

cavity radius. Through approximation of the equivalent cavity (3 times the borehole 

radius), the total fracture radius was 12 times the borehole radius. 

  

Additional investigations of the formation of the radial fracture zone both with and 

without the influence of quasi-static gas pressures were conducted by various 

researchers on a range of materials including glass, Plexiglas, cement, concrete, and 

rock. Some of these investigations were published by Field and Ladegaard-Pederson 

(1971), Bradley and Kobayashi (1971), Bergmann et al. (1973), Siskind and Fumanti 

(1974), McHugh (1983), Wilson and Holloway (1987), Daehnke et al. (1996), 

Olsson et al. (2002) and Singh and Narendrula (2004). Additional information on 

these investigations is provided in Appendix 3. It is important to note that fracture 

patterns created in scaled models with free surfaces can be influenced by wave 

reflections and thus may not accurately represent the confined conditions under 

actual blasting geometries.      

 

The creation of new fractures in the radial cracking zone has been generally accepted 

as being a product of the shock wave and initial radial and tangential tensile stresses. 

But, as the level of energy in the initial wave is reduced further and the quasi-static 

borehole pressures become active, fracture extension in the outer elastic damage 

zone can occur. This fracture extension process is not well understood and has been 

the subject of debate for several decades. 

 

2.3.3 Fracture Extension Zone 

The outermost damage region surrounding an explosive charge is the zone of radial 

fracture extension. One characteristic of this region is the propagation of a fewer 

number of fractures than those contained within the radial cracking zone. 

Proportionally longer fracture lengths are typically experienced at a regular angular 

distribution. For the general case of no applied boundary stresses, the angular 
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distribution of the elongated cracks is approximately 45-120 degrees. Scaled blasting 

tests have confirmed this distribution of fractures, identifying between three and ten 

propagating cracks in the outer region of the fractured elastic zone (e.g. Kutter and 

Fairhurst, 1971; Field and Ladegaard-Pederson, 1971; McHugh, 1983; Olsson et al., 

2002). Figure 2.3 shows the fracture pattern resulting from detonation of 17mm 

decoupled charges in 38mm holes in granite. 

 

 
Figure 2.3. Distribution of elongated radial cracks from 17mm Gurit charges in 

38mm holes in a granite block (Olsson et al., 2002). 

 

Kutter and Fairhurst (1971) suggested Equation 2.4 for determination of the 

extension of fractures from direct tangential tensile strain effects. 
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Where  �l = fracture extension (in) 

  t’max = rise time for tangential tensile peak strain (s) 

  a = radius of equivalent cavity (in) 

  v = material Poisson’s ratio 

 

For a material with v = 0.26, Equation 2.4 predicts crack elongation of 2.5 times the 

cavity radius, or approximately 8-9 times the borehole radius. Siskind and Fumanti 

(1974) suggested a radius of fracture extension reaching between 8 and 14 times the 

borehole radius based on the results of measurements of fracturing in granite from 

blasting of 165mm blastholes.   
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2.4 Strain Wave versus Gas Penetration Fracture Models 

The main mechanism of fracturing in blasting remains a subject of debate, even after 

several decades of research on the subject. In general, there are two main 

mechanisms considered plausible for extension of fractures outside the zone of 

immediate strain-wave tensile fracture. These two mechanisms are gas penetration 

and reflected tensile wave superposition. In reality, both mechanisms should 

contribute to fracture extension, but to what degree is highly dependent on the 

geometry of the blast and the proximity to free surfaces.  

 

2.4.1 Direct and Reflected Tensile Strain 

The strain wave theory of fracture formation and extension relies on the dominance 

of the strain wave in forming the in situ fracture pattern around an explosive charge. 

Once the fractures are formed, the delayed action of gas penetration only serves to 

dilate the existing fractures and dislocate the pre-formed fragments. Tests performed 

by various researchers have illustrated little difference between the fracture patterns 

and extents of cracking around charges blasted in either unlined or steel tube-lined 

holes (e.g. Brinkmann, 1990). The steel hole liners isolated the cracks from 

pressurisation by the detonation gases. 

 

Under a special geometry where a charge is near a free surface, as in most mining-

related blasting applications, the extent of fracturing of the burden material can be 

explained by the reflection of the initial compressive stress wave from the free face. 

This reflection results in a tensile wave travelling back towards the existing radial 

fractures, which loads the fracture tips with potentially large tensile stresses. The 

secondary tensile loading of arrested or propagating fractures can lead to further 

fracture extension towards the free surface. Researchers such as Duvall and Petkof 

(1958), Field and Ladegaard-Pederson (1971) and Yu and Vongpaisal (1996) 

attributed burden breakout and face spalling to these reflected tensile effects. 

 

2.4.1.1 Arguments for Strain-Based Fracture Extension Theories 

Strain-dominated breakage theories simplify the physical and mathematical models 

developed to simulate the explosive process by neglecting the extremely complex 
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role of gas penetration. Arguments in favour of the strain-based breakage models 

contend that the effects of confining stresses and compaction of pulverised material 

from the crushed zone do not allow adequate crack pressurization to occur. These 

factors would significantly limit the effect of fracture extension through pressure-

driven dilation at the propagating crack tip. 

 

In the underground environment, it has been proposed that confining stresses inhibit 

the dilation of fractures by gas penetration. It is believed that this confinement 

restricts gas penetration to such a degree that it has no significant influence in 

underground blast damage outside the zone immediately around the charge (Heilig, 

2002). McHugh (1983) noted that gas penetration appeared to cause significant 

fracture extension compared with stress-wave effects under zero confining stresses. 

A moderate confining stress was found to decrease gas-driven fracture extension. 

 

To justify the theory that fractures could propagate under the effect of stress waves in 

the absence of gas penetration, Wilson and Holloway (1987) observed that the 

fracture dilation front trailed the propagating fracture front by a significant distance. 

This finding could lead to the conclusion that fractures can form and propagate 

without the dilation required for gas penetration. In addition, it has been proposed 

that the pulverised material immediately around the borehole wall in the crushed 

zone will invade the fracture mouths and inhibit gas penetration. This was supported 

by the work of Kutter and Fairhurst (1971). In light of these arguments, it is 

recognised from the work of other researchers that a purely strain-driven fracture 

propagation model would lead to gross simplification of explosive breakage. These 

results are reflected in the gas penetration theory of fracture propagation. 

 

2.4.2 Gas Penetration Theory of Fracture Extension 

The second main theory of fracture propagation from blasting is the theory of high-

pressure gas penetration. The fundamental theory is that the high-pressure and high-

temperature detonation products enter the mouths of existing fractures, causing 

internal pressurisation. The dilatory response of the pressurised crack mouth 

increases the stress concentrations at the fracture tip, leading to crack propagation. 

Some of the proponents of gas-driven fracture propagation as the dominant breakage 
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mechanism include Langefors and Kihlström (1978), McHugh (1983), Forsyth 

(1993), Daehnke et al. (1996) and Cho et al. (2004). 

 

One of the most highly referenced works on gas penetration fracture extension is that 

of McHugh (1983), who investigated the role of dynamic gas loading on fracture 

propagation using computer models and two small-scale experiments with Plexiglas 

cylinders. McHugh (1983) was the first to suggest the use of a dynamic pressure 

function in a numerical model instead of quasi-static cavity pressures reported in 

earlier works (Kutter and Fairhurst, 1971 and Porter and Fairhurst, 1971). McHugh 

suggested that gas-driven fracture extension increased fracture lengths by 10-100 

times over extension from tensile stresses alone. This was determined from 

mathematical modelling under a condition of zero confining stresses. McHugh 

(1983) also proposed that fracture extension resulting from gas penetration with an 

external hydrostatic stress of 6.9MPa was between three and 25 times longer than 

that for tensile stress alone. McHugh (1983) proposed Equation 2.5 to calculate the 

final crack length in metres (C) under zero confining pressure. 
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Where  Pi, Vi = initial pressure and volume (MPa, m3) 

  n = number of cracks 

  w = crack width (m) 

  � = ratio of the specific heats of the gas 

  KIa = fracture arrest toughness (MPa�m, assumed to be equal to KIc) 

 

For an applied confining stress (�), the stress intensity at the fracture tips can be 

adjusted according to Equation 2.6. 
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Where   Pc = internal crack pressure (MPa) 

  KI = modified fracture toughness (MPa�m) 

 

Daehnke et al. (1996) developed a model using a complex hydro- and thermo-

dynamic code to numerically investigate the gas pressure profile acting along the 

length of a fracture. The results indicated that a pressure gradient existed within the 

fracture and the pressure approached zero at the crack tip (Figure 2.4). This model 

overcame the assumption of a constant pressure along the crack adopted in the model 

by McHugh (1983).  

 

 
Figure 2.4. Pressure profile within a fracture of 65mm length under the action of 

penetrating detonation gases (after Daehnke et al., 1996). 

 

Cho et al. (2004) reached the same conclusion as Daehnke et al. (1996) regarding the 

significance of the gas loading phase through numerical analysis of dynamic fracture 

formation. According to the principles of fracture mechanics, as crack lengths are 

increased the stress required to reinitiate and propagate the crack is greatly reduced. 
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If the initial pressure and crack dilation at the fracture mouth are adequate, the 

pressure distribution along the crack will be high enough to extend the fracture.  

 

One fact that seems to support the role of gas pressure in fracture creation or 

extension is the distribution of energy released from an explosive product in the 

shock and gas phases. According to theoretical models of energy partitioning and 

analysis of blast vibrations, the amount of explosive energy contained within stress 

waves propagating from an explosive charge used for rock breakage or excess 

seismic energy is between 2 and 25% of the total energy (Kutter and Fairhurst, 1971; 

Field and Ladegaard-Pederson, 1971; Brinkmann, 1990; Hamdi et al., 2001; 

Sanchidrián et al., 2007). The percentage is a function of the explosive type, coupling 

and material properties.  

 

Based on the low percentage of total explosive energy contributing to the formation 

of seismic waves, it could be theorised that a large portion of the energy is expended 

in formation of gaseous products as well as heat, sound, and other forms of energy. 

The work of Forsyth (1993) discussed a blasting condition where an explosive 

charging pattern of higher shock energy reduced rock mass damage through 

reduction in gas penetration, highlighting the effect of gas penetration of fracture 

extension and breakage in a poor quality rock mass.   

 

2.4.3 Combination of Strain and Gas Penetration Models 

In reality, both tensile strain and gas penetration will contribute to fracture extension 

from an explosive charge (Singh, 1999). The combined effect will be most 

pronounced in the immediate proximity of the blasthole. At larger distances where 

extension of existing discontinuities would be expected to dominate rock mass 

damage and stability, strain effects have been considered to be the most critical 

fracturing mechanism. Due to the activity of confining stresses and the geometries 

considered in the presented blast damage studies, the effect of gas-dominated 

fracture extension is not explicitly considered in the development of blast damage 

models discussed in Chapter 6. 
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To date, no damage prediction approach has been developed with the capacity to 

accurately model the effects of gas penetration coupled with strain–driven fracturing 

due to the complex nature of thermodynamic fluid flow under dynamic and quasi-

static pressures. Numerical modelling has attempted to obtain a solution for the 

pressurisation of blasting fractures (e.g. Minchinton and Lynch, 1996; Potyondy et 

al., 1996; Rossmanith et al., 1997; Furtney et al., 2009) and empirical relationships 

have been developed from scaled model and field blasting studies (for example, 

Kutter and Fairhurst, 1971 and McHugh, 1983). In spite of the research focus, the 

level of understanding of the role of explosion gases in addition to strain wave-driven 

fracture is still limited. One of the major gaps in the research is an investigation into 

the effects of realistic confining stresses encountered in the underground 

environment on gas penetration into fractures. 

 

2.5 Description of Waves Generated by Explosive Detonation 

The ability to predict the types of waves emitted during explosive detonation and the 

behaviour of those waves once propagating have been areas of extensive research for 

almost two centuries. The initial work by Navier and Poisson in the 1820’s identified 

the transmission of transverse waves through elastic materials and in the 1880’s 

surface waves were identified by Rayleigh (Kolsky, 1953). 

 

2.5.1 Wave Types Generated by an Explosive Source 

Since the discovery of body waves and surface waves in the 19th century, many 

models attempting to predict the response of a material to wave loading have been 

developed based on the engineering principles of pressure, force, displacement, stress 

and strain. For several decades, focus has been placed on the waves generated by 

buried explosives charges due to their use in geophysical exploration and rock 

breakage.  

 

It is generally accepted that the types of waves generated by an explosive source are 

highly dependent on the charge geometry and proximity to free surfaces. Under most 

circumstances in mining, charges of confined cylindrical geometry are detonated 

near free faces as determined by the rock breakage capacity of the charge size and 
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explosive type. The types of body waves generated by confined explosive charges 

are of two fundamental types. These are Primary (longitudinal, P-) body waves and 

Secondary (distortional, S-) body waves. After body waves interact with free 

surfaces, a third type of wave is created referred to as a surface wave. Several types 

of surface waves can result; namely, Rayleigh waves and Love waves.  

 

The transmission of energy within different wave types is a function of the particle 

motion in relation to the direction of wave propagation. By definition, longitudinal 

waves induce compression and dilation in the direction of wave propagation and 

shear waves induce displacements normal to the direction of propagation. Surface 

waves exhibit displacements similar to body waves, but displacements occur in both 

the direction of wave propagation and normal to the free surface.  

 

2.5.1.1 Properties of Blast-Generated Body Waves 

Waves propagating through a rock mass from an explosive source can be described 

by general wave parameters such as the wave frequency, period and wavelength. 

Several properties of the transmission material are also important to the propagation 

of a wave. For example, the elastic properties and density of the carrier medium 

influence the wave propagation velocities and the development of energies and 

strains within the wave.  

 

Both the properties of the wave and the material are important in characterising the 

displacements and strains applied to a material by a wave. Some general elastic wave 

properties that will be utilised in defining and analysing wave behaviours can be 

calculated using Equations 2.7 to 2.10 (Kolsky, 1953 and Graff, 1975). 
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Where  f = wave frequency (Hz) 

  T = wave period of oscillation (s) 

  � = wavelength (m) 

  Vp = longitudinal wave velocity (m/s) 

  Vs = distortional wave velocity (m/s) 

  k = material bulk modulus (Pa) 

  � = material rigidity modulus (Pa) 

  � = material density (kg/m3) 

 

2.5.1.2 Distribution of Wave Types: P-, S-, and Rayleigh Waves 

Wave fields observed near blasting events can often be complex in nature and 

represent a combination of P-waves, S-waves and surface waves. Therefore, 

estimation of the energy content within each wave type can aid in predicting the 

damage-potential and relative amplitudes of the waves within a recorded waveform.   

 

Miller and Pursey (1955) investigated the distribution of source energy in wave types 

generated by a non-explosive oscillating compression seismic source in half space. 

Equations 2.11 to 2.14 summarise the breakdown of theoretical wave energy or work 

performed by each wave type as a result of the source. In the original work, no units 

were specified for the equations, but it has been assumed that consistent units would 

be required to reach accepted units of work or energy. 
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Where  WC = Power (energy) radiated in the compression wave 

  WSh = Power radiated in the shear wave 

  WSu = Power radiated in the surface (Rayleigh) wave 

  	 = frequency of vibration 

  a = area of the circular plate source 

  P0 = initial stress factor related to the input source 

  � = density of the medium 

  VC = compression wave velocity of the material 

 

The results of the calculation yields a wave energy distribution listed in Table 2.1. 

 

Table 2.1.  Distribution of energy between wave types from a compression wave 

source on the ground surface. 

Wave Type Percent of total Energy (%) 

Compression (P-Wave) 7 

Distortional (Shear) 26 

Surface Wave (Rayleigh) 67 

 

Woods (1968) graphically illustrated this distribution of energy using Figure 2.5. 
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Figure 2.5. Distribution of wave energy in wave types from a normal force applied 

near the surface (Woods, 1968). 

 

The work of Miller and Pursey (1955) and Woods (1968) can be adapted to a fully 

confined explosive charge in an underground geometry by assuming that the 

Rayleigh wave component has not developed and only consider the body P and S-

waves generated by the source acting normal to a borehole wall. The distribution 

between P- and S-waves for the remaining energy would be 21% and 79%, 

respectively. Heelan (1953) discussed the energy distribution between P-waves and 

S-waves, proposing a split of approximately 40% within the P-wave and 60% within 

the SV-wave (vertically-oriented shear wave). White and Sengbush (1963) and 

Geyer and Martner (1969) also observed large amplitude shear waves at various 

angles to the borehole axis up to 10 times the amplitude of the P-wave.  

 

2.6 Response of a Rock Mass to Blast-Induced Dynamic 

Loading 

One of the greatest challenges in rock mechanics is accurately and adequately 

defining the response of a rock mass to mining-induced loads. It is well understood 

that most rock masses encountered in mining behave characteristically as an 

anisotropic, non-homogeneous, non-linear material due to variations in strength, 

deformation modulus and discontinuities of various scales and conditions. A rock 

mass must be viewed as a constituent material composed of discrete components, 

where the characteristic behaviours of each component influence the overall response 

to static and dynamic loading.  
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For mining-scale problems, the two main components of a rock mass are intact rock 

and existing or freshly formed discontinuities (Jaeger and Cook, 1979). The intact 

rock component can be further subdivided to consider the influence of micro-crack 

density and distribution or mineralogical structure on the behaviour of the pre-

existing rock blocks. Discontinuities within the rock mass can be characterised based 

on scale (persistence), orientation, repeatability (spacing) and condition. The 

properties of a discontinuity which contribute to the condition or the behaviour under 

mining loads include the aperture, roughness, infill and degree of saturation. 

 

Sections 2.6.1 and 2.6.2 attempt to identify some of the intact rock properties that are 

important when assessing or predicting rock mass behaviour under dynamic loading 

conditions. Chapter 3 further outlines the affects of in situ discontinuities on wave 

propagation and vibration amplitudes. These two components, when considered both 

explicitly and as a combined system, provide a better understanding of the behaviour 

of an integrated rock mass under blast wave loading. 

  

2.6.1 Dynamic Intact Rock Properties 

As a wave propagates through a rock mass, dynamic displacements are experienced 

at points along the wave front at a rate proportional to the wave frequency and the 

intensity of the wave. The works of past researchers (e.g. Kumar, 1968; Perkins et 

al., 1970; Grady and Lipkin, 1980; Olsson, 1991; Zhao et al., 1999) have identified 

distinct differences between rock properties measured through static, quasi-static and 

dynamic methods. In general, the strength and elastic modulus (Young’s Modulus) of 

a material increases as the stress or strain rate of loading increases.   

 

2.6.1.1 Dynamic Rock Strength 

A vast majority of rock testing for mining and tunnelling applications is performed 

under quasi-static loading conditions. The standard loading rate during quasi-static 

testing is generally on the order of 10-5 strain per second. To investigate the dynamic 

behaviour of a brittle material, dynamic material testing from low to high dynamic 

strain rates (100 strain/s to 105 strain/s) can be achieved by high velocity hydraulic or 

pneumatic machines or impact loading methods such as flyer plates, gas guns or Split 
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Hopkinson Pressure Bar apparatus (Meyers, 1994). Dynamic material strength 

testing typically suffers several limitations when attempting to represent large-scale 

in situ dynamic material properties. These limitations are not exclusive to dynamic 

testing, as similar effects have been observed for quasi-static testing (Jaegar and 

Cook, 1969). Due to the methods available for dynamic strength testing, a higher 

degree of sample size bias may be introduced. Common methods of dynamic 

material testing such as the Split Hopkinson Pressure Bar apparatus requires the use 

of small samples approximately 25% of the standard size of samples used in quasi-

static testing.  

 

Numerous laboratory studies have been conducted to investigate the effect of loading 

rate on the compressive strength of rock materials at different temperatures and 

confining stresses (e.g. Kumar, 1968; Perkins et al., 1970; Lindholm et al., 1974; 

Grady and Lipkin, 1980; Olsson, 1991; Li et al., 1999; Zhao et al., 1999; Ray et al., 

1999; Mohanty and Prasad, 2001; Xia et al., 2008). These dynamic compressive 

strength testing programs have illustrated the influence of strain rate on the 

compressive yield strength of rock specimens. Loading rates ranging from quasi-

static (10-5 strain/s) to high-order dynamic (103 strain/s) applied to various rock types 

have yielded values of dynamic strength increase factors. These values, expressed as 

the ratio of dynamic compressive strength to static compressive strength can range 

from 1.8 (Perkins et al., 1970) to 5 (Olsson, 1991), depending on the rock type. The 

general relationship between rock compressive strength and strain rate is a gradual 

increase in strength up to a critical point corresponding with a strain rate of 100 to 

102 strain/s, after which the strength increases dramatically with increased strain rate 

(Figure 2.6). 
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Figure 2.6. Effect of strain rate on compressive strength in ash-fall tuff (after Olsson, 

1991).  

 

Other investigations of dynamic strength have yielded additional general 

relationships between material compressive strength and strain rate. The results have 

indicated that the material compressive failure stress (�C) was proportional to the 

cube root of the strain rate (Grady and Lipkin, 1980 and Olsson, 1991), an 

exponential relationship (Perkins et al., 1970) or a cubic exponential (Grote et al., 

2001), amongst others. An exponential relationship between material strength and 

strain rate will be discussed further in Chapter 6.  

 

In the zone of tensile fracture extension, strain wave-induced loading can reach strain 

rates of 103-104 strain/s (Chitombo et al., 1999 and Lindholm et al., 1974). At these 

strain rates, the dynamic tensile rock strength would be expected to increase well 

above the static tensile strength. Testing results have confirmed increases in dynamic 

tensile strengths with increased loading rates for concrete and rock specimens. These 

investigations have identified dramatic increases in dynamic tensile strength 

occurring at a characteristic point of strain rate sensitivity, similar to the dynamic 

compressive strength results (e.g. Birkimer, 1970; Bažant et al., 1993; Zhang et al., 

2000; Klepaczko and Brara, 2001; Cho et al., 2003; Wu et al., 2005; Zhu, 2007). 
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Klepaczko and Brara (2001) and Cho et al. (2003) published comprehensive curves 

of the dynamic tensile behaviour of rock and concrete under various strain rates from 

quasi-static to dynamic.  Wu et al. (2005) reported findings similar to Klepaczko and 

Brara (2001) at strain rates between 1.0 and 2.0 strain/s. The results of the three 

testing programs are illustrated in Figure 2.7. 

 

 
Figure 2.7. Dynamic tensile spall strength of concrete and rock as presented by 

several researchers (after Klepaczko and Brara, 2001, Cho et al., 2003, and Wu et al., 

2005). 

 

Based on the results in Figure 2.7, the intersection point between the highly strain 

rate-dependent zone and the largely independent zone is between 10-2 and 101 

strain/s depending on the rock type. Few studies have been performed for tensile 

behaviour in the region of transition due to a lack of intermediate loading-rate 

apparatus. As such, the quasi-dynamic behaviour of materials at intermediate loading 

rates is not well documented. Laboratory tests performed by Lambert and Ross 

(2000) on notched-cavity concrete specimens studied the effect of intermediate strain 

rates from approximately 100 to 101 strain/s. Over the tested strain rates, the increase 

in tensile fracture strength was approximately a factor of 3 over the quasi-static 

tensile strength.    
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2.6.1.2 Dynamic Elastic Constants 

The dynamic elastic Young’s Modulus (Edyn) of a rock sample or rock mass 

measured through ultrasonic wave propagation methods can be on the order of 80% 

higher than the static Young’s Modulus (Est) determined through quasi-static testing 

(Hendron, 1968). Eissa and Kazi (1988) found an increase in Edyn of 40% to 100% 

over Est for a range in rock types. Van Heerden (1987) observed a general decrease 

in dynamic Poisson’s Ratio (vdyn) versus the static value (vst) from quasi-static 

testing, although the relationship was not as consistent as that for Edyn versus Est. 

Additional factors contribute to the difference between the elastic constants 

determined from laboratory testing of intact rock samples and an in situ rock mass. 

These factors are related to the degree of fracturing, saturation and the magnitudes 

and orientations of confining stresses. 

 

It is arguable that just as dynamic rock strength influences blast vibration-induced 

damage, dynamic elastic constants will also influence the degree and extent of 

explosive damage through influence of the stress-strain relationship. In the blast 

damage investigations discussed in this thesis, values for in situ Edyn have been 

calculated from the stress-wave velocity data obtained as part of the blast vibration 

monitoring program (Chapters 7 and 8). Edyn was then used in subsequent 

calculations of energy and strain to assess the potential for blast-induced damage.  

 

Values of Poisson’s Ratio (v) and rock density (�) in the two case studies conducted 

as part of this thesis were provided from static intact rock testing. Values for vdyn 

were not available due to the inability to identify shear wave velocities from the 

recorded waveforms. Using the static values for v and � and the measured Vp, Edyn 

was calculated using Equation 2.15 (Ambraseys and Hendron, 1968). 
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Where  v = Poisson’s Ratio (static) 

  Vp = P-wave velocity (m/s) 

  � = material density (kg/m3) 
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2.6.2 Calculation of Strain Rate     

In the literature, there does not appear to be a standardised approach to calculate 

values of strain rate from blasting measurements. This is due to the fact that most 

blast damage investigations do not explicitly consider the effect of strain rate on rock 

mass damage potential. The single published approach that has been proposed for use 

in calculating the strain rate from blasting seismograms was published by Yang et al. 

(1994) and again by Yang and Scovira (2007). According to this work, the strain rate 

(ε� ) from dynamic wave loading is a function of the measured particle acceleration 

and the material P-wave velocity. This approach is based on elastic strain theory and 

plane wave assumptions such that the strain rate in the direction of wave travel can 

be calculated using Equation 2.16. 
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Such that the maximum strain rate ( maxε� ) is given by: 
 

pV
PPAmax

max =ε�
        

(2.17) 

 

Where   PPAmax = measured maximum particle acceleration (m/s2) 

  Vp = measured or assumed P-wave velocity of the seismic wave (m/s) 

 

Although the plane wave assumption greatly simplifies the interpretation of the 

complex wave fields in the near-field of a blast, Equation 2.17 has been used in 

forward estimations of strain rate due to the explicit numeric solution. Approaches 

for estimating the strain rate using other wave properties such as the wave number or 

frequency generally lack an explicit solution due to the complex frequency spectra of 

blast waves.  
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2.7 Discussion and Conclusions 

The process of explosive breakage of rock is very complex. Three main theories are 

well represented in the literature: strain wave-driven breakage, gas-penetration-

driven breakage, and a combination of both. The models used to describe each type 

of breakage have been developed from observation of explosive fracturing in scaled 

testing and numerical modelling.  

 

The dynamic response of a material to high strain-rate loading typically results in 

increases in strength and elastic response. Therefore, blast damage models should 

consider the dynamic properties of a rock mass. The dynamic material properties 

described in this chapter have been discussed further in Chapter 6, and integrated 

into the rock mass characterisations and blast damage predictions performed in 

Chapters 7 and 8. The models developed and applied in Chapters 6, 7 and 8 consider 

only the effects of strain-wave loading as applied to the elastic zone, where fracture 

extension or rock mass damage may be largely attributed to tensile and shear 

mechanisms. 
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CHAPTER 3 : INTERACTION OF BLAST WAVES WITH 

EXISTING DISCONTINUITIES  

3.1 Introduction 

Chapter 2 was dedicated to investigating the blasting process and gaining a level of 

understanding of the influence of stress waves on the intact rock portion of a rock 

mass. Chapter 3 approaches the subject of interaction of blasting waves with existing 

discontinuities through examination of both the direction of maximum particle 

motion in relation to discontinuity planes and wave attenuation. Numerical wave 

propagation simulations have also been performed to investigate the attenuation of 

elastic waves under the influence of discontinuities of varying orientations. 

 

3.2 Discontinuity Loading Conditions from Blast Waves 

In general, fractures or discontinuities can be extended through three modes of 

loading. These modes are Mode I (tensile dilatational loading), Mode II (shear 

loading) and mixed mode loading (Modes I and II together). In the present study, 

only pure Mode I and pure Mode II loading have been considered. It is beyond the 

scope of this thesis to conduct an in-depth fracture mechanics investigation, although 

some consideration has been given to the likely loading mechanisms and potential 

damage to existing discontinuities from stress wave loading. 

 

Discontinuities can be preferentially loaded by strain waves in normal dilation or 

shear based on the characteristics of the wave and the orientation of the discontinuity 

in relation to the wave propagation direction. The direction of maximum particle 

displacement associated with a strain wave can therefore influence different 

discontinuity sets in different ways with regards to loading and damage mechanisms. 

Attenuation of propagating blast waves is also influenced by existing discontinuities.  

 

The first step in determining the effects of measured vibrations on existing 

discontinuities is to record the in situ discontinuity orientations and distributions 

through mapping. Different methods of discontinuity mapping include spot mapping, 

line mapping, window mapping and logging of extracted core samples (Brady and 
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Brown, 2004). The results of a mapping program can then be used to statistically 

model the discontinuity networks contained within the rock mass or be represented 

graphically (e.g. Terzaghi, 1965; Stagg and Zienkiewicz, 1968; Priest and Hudson, 

1976; Jaeger and Cook, 1979; Villaescusa, 1991; Villaescusa and Brown, 1992, 

Hadjigeorgiou et al., 1995).  

 

3.2.1 Determination of Discontinuity Loading Characteristics by Blast 

Waves 

As a blast wave propagates through a rock mass, the oscillatory nature of the particle 

displacements induced by the wave will create differential loading at a point of 

interest over time. The displacement field at a single moment in time will be multi-

dimensional in nature due to the different wave components, and can be reliably 

measured using dynamic motion transducers. The equipment and methods of blast 

wave measurement will be discussed further in Chapter 4.  

 

The vector sum particle motion of wave activity can be determined through simple 

vector mathematics using the multiple components of measured vibration at a point 

in time. The resulting measured particle motion can therefore be defined by a vector 

length (amplitude) and direction based on the measured amplitudes and orientations 

of the transducer axes. It is important to highlight that the value of three-dimensional 

motion is a vector quantity. In a majority of blast vibration studies, the results of 

single or multi-axial measurements are treated as simple scalar quantities (i.e. generic 

value of peak particle velocity).  

 

The components of the vector sum particle motion at any time t are supplied from the 

individual axial measurements. Basic vector mathematics can then be used to 

calculate the magnitude of the resultant vector, referred to as the vector sum particle 

motion. In addition to the vector magnitude, the angles between the measurement 

axes and the vector sum direction can be determined from the direction cosines. The 

time domain vector sum particle motion (VS(t)) is calculated using Equation 3.1. 
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( ) ( ) ( )222 tVtTtR)t(VS ++=      (3. 1) 

 

Where  R(t) = radial component of the recorded time domain waveform 

  T(t) = transverse component of the recorded time domain waveform 

  V(t) = vertical component of the recorded time domain waveform 

 

3.2.2 Using Vector Sum Particle Motions to Assess Wave Loading 

Conditions 

The vector sum direction represents a vector normal to the plane containing all three 

components for nonzero values on all three axes (Figure 3.1). For the case of one or 

more of the instantaneous component measurements being equal to zero, the vector 

sum lies in the plane containing the individual components. 

 

 
Figure 3.1. Vector sum motion and the plane of individual component intersection 

used to define discontinuity loading conditions. 
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The normal vector VS(t) shown in Figure 3.1 defines the direction of the 

instantaneous aggregate particle motion, and therefore can be viewed as a direction 

of maximum loading of the rock mass in relation to a point at the axis of the 

recording transducer. Where the actual orientations of the transducer components are 

known due to controlled installation practices, the vector direction of maximum 

particle motion can be transferred to mine-grid coordinates or translated into a 

direction relative to the propagation direction of the wave. This practice allows 

comparisons to be made between directions of maximum loading and the orientations 

of existing discontinuities indicated through mapping.   

 

3.2.3 Observed Loading Orientations from Measured Blasting Vibrations 

Analysis of waveforms collected as part of the author’s blast vibration monitoring 

program has indicated dominant shear wave activity in the near field of blasting 

events. Analyses of individual components identified peak vector motion directions 

roughly perpendicular to the wave propagation direction in many cases. This 

orientation of particle motion would be expected to produce dominant shear-type 

loading normal to the axis of wave propagation. For propagation directions 

approximately normal to existing discontinuity planes, significant shear loading 

would be expected. Discontinuity planes parallel with the direction of propagation 

would be loaded preferentially in either normal compression or dilation depending on 

the rotation of the peak motion direction in relation to the discontinuities. Figure 3.2 

illustrates the vector directions of the peak vector sum particle velocities for a set of 

blastholes monitored in Stope 24jC6HL at the BHP Cannington Mine. The resulting 

measured vector sum directions have been oriented in relation to the wave 

propagation direction.  
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Figure 3.2. Plot of orthogonal components of the peak vector sum particle velocity as 

calculated from the vibration records in the North Wall of BHP Cannington Stope 

24jC6HL 200mLv winze firing #7.     

 

In Figure 3.2, the lines from the central point to each vibration vector sum represent 

the vector sum particle velocity direction. The information in Figure 3.2 is similar to 

polarisation analysis used in seismic analysis of earthquakes.  

 

To assess the loading conditions on pre-existing discontinuity sets as a function of 

the observed peak amplitude orientations, the peak vector motion directions can be 

plotted on discontinuity distribution plots. Figure 3.3 illustrates a horizontal plane 

rosette plot of existing discontinuity strike directions compared with the direction of 

wave propagation and the plane normal to the wave propagation direction. The plane 

normal to the wave propagation direction would be expected to contain a majority of 

the peak vector directions as illustrated in Figure 3.2.  
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Figure 3.3.  Horizontal plane rosette plot of discontinuity strike distribution and the 

trace of the vertical plane containing the peak vibration directional vectors for a wave 

propagating north from stope 24jC6HL at the Cannington Mine. 

 

According to the model in Figure 3.3, any discontinuity sets of strike direction 

East/West at steep dip angles would be expected to experience peak shear-type 

loading from the indicated wave propagation direction. A joint plane parallel with the 

direction of propagation (striking North/South) would be expected to experience 

maximum loading in a combination of joint-normal dilation and shear based on the 

angle of the peak vector direction in relation to the joint plane.  

 

The analysis method shown in Figure 3.3 can be extended to all orientations of wave 

propagation around a blasting event to identify the zones and mechanisms of 

discontinuity loading that may be experienced within a rock mass. The resulting 

model could therefore predict the existing discontinuity sets likely to experience the 

maximum normal or shear-type loading based on the direction of wave propagation. 

Figure 3.4 illustrates the directions of wave propagation resulting in peak dilatational 

and shear loading on a major discontinuity set at approximate strike of 15 degrees 

North of East and dipping steeply (yellow plane rosette). The blue arrows represent 

the directions of peak motion expected within the plane normal to the wave 

propagation direction, resulting in shear loading (left) and normal loading (right). 



Chapter 3. Interaction of Blast Waves with Existing Discontinuities 43 
 

 
Figure 3.4. Loading conditions on prominent discontinuity set and directions of wave 

propagation supplying maximum shear (left) or normal (right) loading. 

 

The interpretation of the concept in Figure 3.4 would be that waves propagating in a 

direction normal to the plane of the identified major discontinuity set would produce 

maximum motions in a direction of relative shear displacement (Mode II), whereas 

the same wave propagating along a direction parallel with the joint plane may 

produce motions of either dilation (Mode I) or shear (Mode II). Likely, the loading 

conditions for the parallel propagation orientation would be mixed mode. The 

variation in loading mechanisms based on the direction of wave propagation 

represents a very complex condition when considering the likely damage to existing 

discontinuities through either Mode I or Mode II loading.  

 

The zones of peak shear loading around stope 24jC6HL at the BHP Cannington Mine 

have been identified for two mapped discontinuity sets using the analysis method 

shown in Figures 3.3 and 3.4. Figure 3.5 illustrates a plan view of stope 24jC6HL 

and the wave propagation orientations where maximum blast-induced shear loading 

would be expected for two identified discontinuity sets (shown in the rosette plot). 
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Figure 3.5. Plan view of stope 24jC6HL and the orientations of maximum 

discontinuity shear loading from blast-induced waves as suggested by the 

propagation-normal maximum shear loading direction. 

 

3.3 Effect of Wavelength and Discontinuity Dimension 

Blast-induced wave loading of discontinuities does not necessarily result in damage 

under unfavourable loading directions. The wavelength of the displacement wave can 

influence the degree of interaction with individual discontinuities or existing rock 

blocks. Wavelengths much greater in scale than the in situ discontinuity length or 

rock block dimensions would be expected to induce minimal fracture surface 

excitation due to the relatively low rate of differential deformation. 

 

Micro fractures of average dimension of 1-5 millimetres (typical “Griffith” cracks) 

would require wavelengths of a comparable dimension to excite the entire fracture 

surface at an adequate rate to cause damage with the passage of each wave cycle. 

The required frequency of the displacement wave would therefore be of the order 0.5 

– 1.0 MHz. The displacement waves recorded in the elastic zone (5-50m from the 

explosive charge) at both study sites were typically between 50 and 1000Hz. 

Velocity waveforms were between 250 and 2500Hz and acceleration waves were 
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between 1000 and 10,000Hz. Based on the frequency values of the recorded 

displacement waves, discontinuities of less than 5m length in the elastic wave 

propagation zone would have been unlikely to be fully activated over the fracture 

face. Table 3.1 lists the characteristic displacement wave frequencies and 

discontinuity trace lengths likely to experience activation based on the wavelength of 

a blast wave of P-wave velocity of 5000 m/s and a shear wave velocity of 2800 m/s. 

 

Table 3.1. Comparison of linear discontinuity dimension and critical frequency of 

excitation based on similar wavelength to discontinuity dimension. 

Discontinuity Trace Length Critical P-Wave 
Frequency        

(kHz) 

Critical S-Wave 
Frequency        

(kHz) 

100mm-500mm (discrete macro-fracture) > 10.0 - 50.0 > 6.0 - 30.0 

500mm-1m > 5.0 - 10.0 > 3.0 - 6.0 

1m-5m (persistent discontinuity set) > 1.0 - 5.0 > 0.60 – 3.0 

5m-50m (large discontinuity/ local fault) > 0.10- 1.0 > 0.06 - 0.60 

>50m (large-scale fault) > 0.10 > 0.06 

            

As implied by Table 3.1, large-scale discontinuities and faults are expected to be 

excited by a wider range of blast-induced vibration frequencies, whereas smaller 

discontinuities require higher frequencies generally experienced very close to 

blastholes. Some fracture response would be expected to occur from loading by 

longer wavelengths, but the degree of excitation has not been well documented in 

available research. 

 

3.4 Models of Wave Attenuation and Discontinuities 

Several processes can occur which modify the amplitudes, frequency spectra and 

wave types of propagating waves during interaction with in situ discontinuities. 

These processes are reflection, refraction and diffraction. Reflection, refraction and 

diffraction depend on the angle of incidence of the wave front relative to the fracture 

plane, the frequency spectra of the wave and the size and condition of the 

discontinuity (Achenbach, 1973). Of these processes, reflection and refraction are 
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closely related to the material and discontinuity properties. Diffraction is largely 

related to the scale and geometry of the interaction. 

 

The degree to which a wave front is altered while propagating through a rock mass is 

a function of both the rock mass and the wave properties. The critical parameters of 

the rock mass include the intact rock properties as well as the discontinuity size, 

orientation, spacing, and condition (e.g. aperture, roughness and infill). The wave 

properties of interest include the wave type, energy content, frequency and direction 

of propagation in respect to discontinuity planes. Geophysical wave propagation 

research has studied the interaction of waves and discontinuities for many years (e.g. 

Morland, 1974; Kjartansson, 1979; Hudson, 1981; Crampin, 1984; Schoenberg and 

Douma, 1988; Peacock and Hudson, 1990). A number of these models are discussed 

further in Appendix 2. 

 

3.4.1 Laboratory and Field Investigations of Fracture Effects on Wave 

Attenuation 

The effects of fractures on wave velocity and attenuation in laboratory-scale and 

field-scale studies are generally well documented in the geophysics literature (e.g. 

Hudson, 1981; Pyrak-Nolte et al., 1990; Hayles et al., 1999; Butt, 2001). 

Investigations were also performed in mining research to examine the effects of pre-

splits, natural discontinuities, jointed rock masses or blasting damage on wave 

characteristics. Some studies of mining-related applications of wave attenuation 

includes the works of Devine et al. (1965), King et al. (1986), LeBlanc et al. (1995), 

Martino and Chandler (2004) and Singh and Narendrula (2004). 

 

The influence of a single large-scale fracture on wave propagation in Lithonia granite 

was investigated by Devine et al. (1965). The aim was to assess changes in peak 

vibration amplitudes measured at common points prior to and after formation of a 

continuous pre-split (Figure 3.6). 
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Figure 3.6. Fracture created by pre-splitting in Lithonia granite (Devine et al., 1965) 

 
Devine et al. (1965) concluded that no significant changes in wave velocity or 

amplitude were indicated from the data. The absence of change in the wave velocity 

would suggest that the presplit was either discontinuous or not of sufficient dilation 

to noticeably influence the wave behaviour. The results of the study illustrated the 

importance of the fracture condition and orientation of the wave front relative to the 

fracture surface to the propagation or reflection of the wave. 

 

High-frequency cross-hole seismic surveys and laboratory pulse tests were conducted 

by King et al. (1986) to measure the P- and S-wave velocities and seismic quality 

factors for a strongly jointed, columnar basaltic rock mass. The rock mass in the field 

trial was composed of regular vertical columnar formations ranging in width of 150-

360mm, dipping at 70 to 90 degrees dissected by frequent, low angle discontinuous 

cross jointing. A cross-hole borehole pattern was drilled in a diamond formation of 

3m cross dimensions such that horizontal, vertical and diagonal surveys could be 

performed. Acoustic measurements were made every 150mm in the first 1.5m of the 

borehole to indicate the extent of blasting damage, and at 1m intervals for the 

remaining 9.5m of borehole. The results of the field tests identified strong P- and 

SH-wave velocity anisotropy between the vertical and horizontal directions due to 

the interaction with the in situ jointing. Calculated Q (seismic quality) values using 

the spectral-ratios technique identified significant attenuation differences between 

the vertical and horizontal directions (Figure 3.7).  
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Figure 3.7. Normalised P-wave Q values for vertical and horizontal directions based 

on distance from the excavation face (left) and normalised attenuation values 1/Q for 

vertical and horizontal directions (right) (after King et al., 1986). 

 

Figure 3.7 illustrates the difference between the amplitude attenuation rates based on 

the in situ jointing. In the horizontal direction, the 3m spacing between the holes 

would suggest interaction of the waves with between 8 and 20 fractures based on the 

columnar thickness. The linear decrease in the vertical attenuation has been 

attributed to the induced vertical stress around the face of the excavation. Therefore, 

the attenuation values outside this area of influence (approximately 1 excavation 

diameter) could be considered to be the virgin rock mass attenuation. The attenuation 

factor for horizontal direction P-waves was assumed to be approximately 0.2.     

 

Pyrak-Nolte et al. (1990) conducted a series of laboratory experiments to investigate 

the effects of saturation, fracture stiffness and confining stress on the wave 

transmission properties across a single natural fracture. The results of the laboratory 

step-loading tests revealed a change in attenuation, wave velocity and frequency 

spectra for the three different fracture properties and loading conditions. The models 

with the highest fracture stiffness and axial loading displayed almost no loss of 

energy, emulating the properties of the intact rock tests. The least stiff fracture 

condition experienced significant amplitude loss and shift of the transmitted 

frequency spectra as observed in Figure 3.8.   
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Figure 3.8. Comparison of amplitude and frequency spectra for intact and fractured 

samples of varying fracture stiffness under axial loads (Pyrak-Nolte et al., 1990). 

 
The measurements performed by Pyrak-Nolte et al. (1990) are very valuable due to 

the ratio of the wavelength of the input P- and S-waves to the discontinuity 

dimension (i.e. 0.13-0.19mm:1mm). Through similarity of wave behaviour on 

different scales, the ratio of interaction of 0.19:1 would represent a P-wave frequency 

of approximately 5200Hz interacting with a 5m discontinuity. These conditions are 

realistic for near-field interaction of blasting waves with large discontinuities. 

 

Small-scale concrete blasting models with simulated joints were used by Singh and 

Narendrula (2004) to study the effect of joint orientation on transmitted vibrations. 

Similar to the results predicted by mathematical models, the highest attenuation was 

experienced for wave incidence of 45 degrees. The peak amplitude was 

approximately 40% of that measured over the same distance in unjointed material. 

 

3.5 Numerical Simulation of Attenuation in Jointed Material 

Numerical simulation was performed by the author to investigate the effect of joint 

properties and orientation on the transmission of stress waves through an infinite, 

heterogeneous and elastic material. The 2-D wave propagation program Wave2000 

Plus® developed by CyberLogic was used to model the effects of parallel 

discontinuities on vibration amplitudes measured on an array of transducers. 
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Wave2000 Plus® was developed to simulate small-scale ultrasonic testing of 

engineering designs. The program operates by solving the full-field 2-D elastic wave 

equations using a finite difference numerical modelling platform. The basic inputs of 

the program include material properties, material and void shapes and dimensions, 

boundary conditions, source characteristics and receiver locations and types. The 

program is capable of modelling multiple linear displacement or pressure function 

source configurations including longitudinal and shear components of specified input 

frequencies and durations. As the main functionality of the program is a simulation 

tool for assessment of small objects, scaling of physical dimensions of the model was 

required to represent true mining geometries. The model parameters were adjusted to 

1/1000 (1m = 1mm) scale to capture realistic mining-scale geometries.  

 

3.5.1 Simulated Wave Attenuation under Normal Incidence 

The initial model to investigate the effect of parallel fractures on amplitude 

attenuation included a set of four discrete parallel discontinuities added to a host 

linear-elastic homogeneous rock-like material. Five receivers were located on a 

specified orientation to record the bi-axial in-plane particle velocity fields. Receivers 

1-4 were positioned at the midpoint between each discrete discontinuity of 2.5m 

spacing. One control receiver (5) was positioned in an unaffected direction, 2.5m 

behind the source. The model is shown in Figure 3.9. 

 

 
Figure 3.9. Plan view of Wave2000 Plus® simulation geometry for normal P-wave 

incidence using an array of transducers between equally-spaced discontinuities. 
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3.5.2 Material Properties Used in the Simulation 

The material properties for both the host rock and any inclusion required by the 

software were the material density and Lame’s constants � and �. These properties 

along with elastic material equations were used by the program to calculate the P- 

and S-wave velocities and wave-field particle displacements. The material properties 

of both the intact host material and the discontinuities used in the first simulation are 

listed in Table 3.2. 

 

Table 3.2. Material properties used in the Wave2000® Plus model in Figure 3.12. 

Property Host Rock Discontinuity 

Material density 2700 kg/m3 1500 kg/m3 

� 61 GPa 50 GPa 

� 25 GPa 10 GPa 

 

The material properties of the intact rock have been assumed to be representative of a 

competent granite or quartzite material common to some underground mining rock 

masses. The fill material properties within the 100mm thick discontinuities were 

assumed to be similar to that of a chlorite-type infill with high normal stiffness (�) 

and moderate shear stiffness (�). 

 

3.5.3 Modelled Seismic Source Parameters 

The wave source chosen for the initial model was an exponentially-decaying sine 

wave from a finite linear source of relative length of 1m. The first simulation used 

only a normal compression source without a direct shear component. This type of 

source would simulate normal incident P-wave activity only. After performing a trial 

simulation with a shear source component, the generated wave-field became too 

complex to perform the required analyses. Additionally, the behaviour of the shear 

waves would be expected to be similar to the P-waves close to the source due to a 

lack of uncoupling over short distances (maximum 10m).  
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3.5.4 Simulation Results 

The wave simulation time (10�s equivalent) was selected to allow the propagating 

waves to reach the extents of the model. The in-plane particle velocity values were 

recorded at each transducer over the course of the simulation to compare the 

resulting 2-D waveforms. Figure 3.10 shows the results of the simulated wave field 

near model completion along with labels of the different direct and reflected waves. 

 

 
Figure 3.10. Plan view of Wave2000 Plus® simulation near model completion.   

 

The incident shear waves observed in Figure 3.10 were a result of angular effects of 

the linear longitudinal wave source. Although no direct shear waves were specified 

for the source, shear-type particle motions were observed in the in-plane waveforms 

due to tangential stresses at the wave front and conversion of P-waves into S-waves 

at the discontinuity interfaces at acute incident angles.  

 

3.5.5 Analysis of Simulation Results 

The effect of the discontinuity set on wave attenuation was determined by comparing 

the waveforms at each receiver. The compared values were the vector sum peak 

particle velocity and the wave propagation velocity. The resulting peak particle 

velocity amplitudes were plotted against the distance between each transducer and 

the source such that an attenuation curve could be fitted to the data. The attenuation 
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curve for the discontinuity-affected peak amplitude was compared with the results of 

an unjointed control model. Comparison of the jointed and unjointed attenuation 

curves is illustrated in Figure 3.11. 

 

 
Figure 3.11. Comparison of amplitude attenuation curves for unjointed and normal 

incident jointed models. 

 

Figure 3.11 clearly demonstrates that the amplitude attenuation over distance was 

higher for the normal-incident jointed model than for the unjointed control model. In 

addition to amplitude attenuation, the wave velocity from the source to each receiver 

progressively decreased due to the delay in stress transfer across the lower-stiffness 

discontinuities. The attenuation slope of the unjointed model was approximately        

-0.67, which was close to that expected for a spherical charge, whereas the slope of 

the jointed normal incident model was -0.88. This result would indicate increased 

attenuation due to the parallel jointing. 

 

3.5.6 Investigation of the Effect of Incidence Angle on Attenuation 

Waves of normal incidence should exhibit the lowest attenuation based on the 

expected elastic reflection and transmission coefficients. This excludes the case of 90 

degree incidence, which is equivalent to the unjointed geometry. To investigate the 

effect of incident angle on amplitude attenuation, alternate simulations were 
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performed for 30 degree incidence and 45 degree incidence. The initial 2.5m joint 

spacing was retained, but the receiver spacing was changed to maintain the mid-joint 

locations along the array direction. The attenuation slopes for 30 and 45 degree 

incidence with the same material and joint fill properties as the normal incidence 

model are listed in Table 3.3. 

 

Table 3.3. P-wave amplitude attenuation slopes for simulated 30 and 45 degree 

incidence. 

Angle of Incidence Attenuation Slope 

30 degrees -0.88 

45 degrees -0.91 

 

The results of the analysis indicated that little difference was observed between the 

attenuation slope for normal and 30 degree incidence. A significant increase in the 

attenuation was observed for 45 degree incidence. The model of wave transmission 

and reflection published by Rossmanith (2006) suggests that the attenuation rate 

would increase until a critical incident angle was reached at approximately 70 

degrees (Appendix 2). Due to the time required to set up, run and analyse the output 

data of each simulation, no further models were completed to determine the critical 

incident angle.  

 

Acute and obtuse angles of incidence resulted in wave fields which were more 

complex than those for normal incidence. As predicted by elastic wave theories, any 

angle other than normal incidence would result in both transmitted and reflected P- 

and S-waves from an incident P-wave. These types of wave conversions were 

observed in the simulated waveforms at each transducer location. The complex 

waveforms observed for the simple case of two-dimensional elastic waves in simply 

jointed media highlighted the extreme difficulty in interpreting the three-dimensional 

waveforms recorded in actual complex jointing conditions. Figure 3.12 illustrates the 

two-dimensional elastic wave-field generated for 45 degree incidence. 
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Figure 3.12. Simulated wave-field generated in the 45 degree incident parallel 

jointed model. 

 

3.5.7 Simulated Effects of Infill Material Properties on Amplitude 

Attenuation 

The effect of discontinuity thickness and infill material properties on attenuation 

were investigated further using simulations with reduced discontinuity aperture and 

increased infill material density and stiffness. The new infill density and normal and 

shear moduli were 90% of the intact rock to simulate a closed or healed fracture 

under the influence of a high confining stress. The joint thickness was reduced to 

10mm. The results of the simulation indicated that the amplitude attenuation for the 

healed fracture, normal incidence case was similar to the unjointed control 

attenuation. Similar results were observed in laboratory testing of fractured 

specimens under high confining stresses by Pyrak-Nolte et al. (1990). 

 

Simulations were also performed for a single large-scale discontinuity with degraded 

density and modulus values (30% of intact rock) to simulate a fault or shear zone. 

The observed attenuation rates increased significantly due to the considerable degree 

of wave reflection at the rock-fault interface. Similar results were observed by the 

author during blast monitoring in a fault-affected area at the Kanowna Bell Gold 

Mine (Fleetwood, 2010). 
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3.6 Discussion and Conclusions 

The overall effect of in situ discontinuities on wave propagation has been 

demonstrated by many researchers using mathematical treatments of anisotropic 

compliance matrices, advanced material models of stress, strain or displacement 

across discrete discontinuities, laboratory studies of fractured media, numerical 

modelling and field seismic measurements. Simplistic treatments for rock mass 

parameters have been adopted in the field of blast engineering and blast vibration 

management, assuming ideally-elastic wave propagation and uniform attenuations. 

  

Chapter 3 has been dedicated to the analysis of dynamic loading of discontinuities 

resulting from blasting waves and the attenuation of waves in fractured media. Near-

field waveforms collected during the author’s blast monitoring program have 

identified that maximum particle motions typically occur normal to the direction of 

wave propagation due to the activity of shear waves. Careful consideration of 

transducer orientations during installation, and determination of the direction of 

maximum particle motion resulting from multi-axial blast vibration monitoring 

allowed vector analyses to be performed. The vector direction of maximum particle 

motion determined at the peak particle displacement or velocity aided in identifying 

discontinuity loading conditions. This approach was based on the relationship 

between the joint plane orientation and the probable peak vector motion directions. A 

novel technique to determine discontinuity loading has been proposed. This 

technique has not been previously observed in the published literature.  

 

Existing models of wave attenuation were reviewed and elastic wave propagation 

modelling was performed. The wave propagation simulations were completed with 

varying discontinuity characteristics to observe the effect of orientation and infill 

properties on two-dimensional amplitude attenuation. The results of the simulations 

led to better understanding of the influence of discrete discontinuities and 

discontinuity sets on the attenuation behaviour of modelled near-field blasting 

vibrations. 
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CHAPTER 4 : NEAR-FIELD BLAST VIBRATION 

MONITORING AND DATA PROCESSING 

4.1 Introduction 

Blast-induced wave fields can be measured using transducers that react to the applied 

particle motions. Selection of the transducer type, dynamic range and frequency 

response greatly influences the accuracy with which blast-generated vibrations can 

be measured. In addition, the specifications of the data acquisition system can affect 

the quality and accuracy of blast vibration measurements.  

 

Blast monitoring requirements change dramatically according to rock mass 

characteristics, blasting parameters and distance from a blasting event. Definitions 

for different monitoring ranges have been proposed in this chapter, along with 

recommendations for the selection of transducers and data acquisition equipment. 

Digital signal processing is also briefly discussed. Additional information on 

transducer and data acquisition system specifications, transducer configurations and 

the thesis blast monitoring program is provided in Appendix 4.    

 

4.2 Description of Requirements for Near-field Blast Vibration 

Monitoring 

Prior to selection of the components of a blast vibration monitoring system, 

definition of the distance range over which the blasting will be monitored is required. 

Blast parameters and the distance from a blast will influence the amplitude and 

frequency characteristics of the generated wave-field, thus contributing to the 

required monitoring equipment specifications. Distance ranges from blasting events 

have generally been defined in the literature by two general categories; near-field and 

far-field vibration behaviour.   

 

4.2.1 Definition of Distance Ranges for Blast Monitoring 

The first step in any blast vibration monitoring program should be to estimate the 

likely amplitude and frequency characteristics of the measured blast-induced waves 
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based on the distance range over which vibration data are required to be collected. 

For regulatory vibration monitoring (far-field compliance monitoring), placement of 

transducers at or near neighbouring structures at large distances from blasting events 

is common. Compliance monitoring typically requires lower sampling rates and 

amplitude measurement capacities when compared with near-field blast monitoring, 

where the amplitudes and frequencies could be several orders of magnitude higher 

than far-field vibrations. 

 

The transition from near-field to far-field monitoring is not well defined in the 

published literature. The near-field range has been defined in the past by multiples of 

the length of explosive charge (e.g. Andrieux and Heilig, 1994 and Andrieux, 1996), 

distance from the blast (e.g. Yang et al., 1993; Brady and Brown, 2004), relative size 

of the blast dimensions with respect to distance (e.g. Yang and Scovira, 2007), 

Scaled Distance value (e.g. Ambaseys and Hendron, 1968) or frequency domain 

characteristics (Spathis, 2006). The properties of the expected blast-induced waves 

provide a good indication of the required instrumentation specifications, and should 

be considered as an integral part of the definition of distance monitoring regions.  

 

Four distinct monitoring regions have been proposed by the author based on 

observations of the waveforms collected during the thesis blast vibration monitoring 

program and the dependence of amplitude and frequency on both distance and source 

energy. The proposed regions are defined by multiples of an integrated value of 

charge weight and distance, known as the square root Scaled Distance (SDSQRT). 

SDSQRT is calculated by dividing distance from a source by the square root of the 

maximum single charge weight. The suggested instrumentation requirements and 

expected peak amplitude and frequency characteristics in the four defined ranges are 

listed in Table 4.1. The definitions are based on monitoring of confined body waves 

by fully-encapsulated transducers in a competent rock mass. The range in blasthole 

diameters and charge weights considered in the proposed monitoring ranges are 

typical of sublevel open stoping (76 – 102mm and 10-150kg of explosives 

respectively). 
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Table 4.1. Suggested definitions of blast monitoring regions. 

Distance Region Maximum 
Expected PPV 

(mm/s) 

Expected 
Frequency  

(Hz) 

Scaled Distance 
(m/kg0.5) 

Extreme near-field 2500-10,000 4000-20,000 Hz SDSQRT � 0.5 

Near-field 1000-2500 1000 – 4000 Hz 0.5 < SDSQRT < 2.0 

Intermediate-field 200-1000 250 - 1000 Hz 2.1 < SDSQRT <10.0 

Far-field < 200 < 250 Hz SDSQRT > 10.1 

  

As observed in Table 4.1, the instrumentation requirements would be significantly 

different for each monitoring zone based on the expected vibration characteristics. 

Therefore, the selection of transducers, data acquisition equipment and sampling 

rates would significantly impact on the quality and interpretation of blast monitoring 

results as a function of the monitoring region. Table 4.2 outlines the recommended 

transducer types and sampling rates for each monitoring range based on the results of 

the blast vibration monitoring study conducted as part of this thesis. The 

recommended sampling rates are based on the premise that the sampling required to 

accurately represent the waveform should be at least two times the expected 

frequency. 

 

Table 4.2. Recommended transducer types, dynamic ranges and sampling rates for 

monitoring of blasting vibrations in different distance ranges. 

Region Recommended 
Transducer 

Type 

Recommended 
Amplitude Range 

Recommended 
Sampling Rate 

(kHz) 

Extreme Near-field Accelerometer 1,000g - 10,000g 10 – 50 

Near-field Accelerometer 500g – 1,000g 4 -10 

Intermediate-field Geophone 1,000 mm/s 2 – 4 

Far-field Geophone 500 mm/s 1 – 2 

 

Despite extensive research, few publications have been found that outline monitoring 

requirements for expected vibration amplitude, frequency and data sampling in the 

near-field of an explosive charge. Yang et al. (1993) derived expected acceleration 
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waveform characteristics for monitoring the near-field vibrations from a single 18kg 

charge of Magnafrac 100. This work proposed a particle acceleration range of 9000 

to 500,000 m/s2 (917 - 51,000g), particle velocity of 200 to 3000 mm/s and 

frequency of 1 to 50 kHz at distances of 2m to 15m from the charge. In comparison 

to the recommendations in Tables 4.1 and 4.2, the distances and charge weight 

represented by Yang et al. (1993) correspond to square root scaled distances of 0.5-

3.5 m/kg0.5, with fair agreement between the two predictions of acceleration and 

frequency.  

 

4.3 Blast Vibration Monitoring System Selected for the 

Kanowna Belle and Cannington Case Studies 

The transducers and data acquisition systems selected for the blast vibration 

monitoring program conducted as part of the PhD research were based on the 

characteristics discussed in Tables 4.1 and 4.2 and further discussed in Appendix 4. 

In addition to the required technical specifications, transducer cost was of significant 

concern in the author’s blast monitoring program due to the non-recoverable method 

of coupling and the short stope turnover times. On only one occasion were 

transducers able to be reused to monitor two adjacent stopes in the same mining 

block. These transducers were located in a pillar between two adjacent stopes in the 

R4 block at the BHP Cannington Mine. In all other study stopes, a single production 

period was monitored and then the transducers were decommissioned and 

consequently mined out later in the stoping sequence. 

 

4.3.1 Selection of Accelerometers for the Thesis Blast Monitoring 

Program 

The accelerometers selected for the initial monitoring program conducted at the 

Barrick Kanowna Belle Gold Mine were PCB 356A02, 500g, pre-fabricated tri-axial 

accelerometer units. The expected amplitudes at the distances of transducer 

installation were not expected to exceed 500g according to previous blast monitoring 

at KBGM (Heilig, 2002). During field data collection period, failure of transducer 

attenuation circuitry within the junction box resulted in regular saturation of the 500g 

units at high vibration amplitudes. Initially, nine 500g units were purchased for near-
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field vibration monitoring. After the saturations experienced in the first monitored 

stope, the minimum offset distance for subsequent stopes was increased by 1 to 2 

metres (from 5m to 6-7m) to reduce the probability of saturating the accelerometers 

and compromising the lower amplitude portions of recorded waveforms. The 

saturations experienced in the stopes at KBGM led to upgrading of the 

accelerometers selected for the blast monitoring program at the Cannington Mine. 

The new accelerometer model selected was the PCB 356A01, 1000g accelerometer. 

 

4.3.2 Selection of Geophones for the Thesis Blast Monitoring Program 

Due to the large cost of the accelerometer sondes relative to suitable geophone types 

(approximately 3 times more expensive), a mixture of transducers was selected for 

the blast vibration monitoring program at the two mine sites. The multiple-transducer 

array and multiple array configurations within a single stope was intended to 

characterise the vibration responses of the rock mass along several orientations over 

near-field and intermediate-field distances. The dual or triple-transducer array layout 

allowed use of high frequency geophone sondes at some monitoring locations in 

place of accelerometers due to the expected reduction of frequency and amplitude 

with distance. 

 

From previous experience and review of past research, the geophone model selected 

for use in intermediate-field blast monitoring was the OYO Geospace 101LT (long 

travel) 14Hz, 900� high-frequency geophone. This particular geophone was selected 

due to good signal-to-noise ratio, extended linear frequency response and high 

dynamic amplitude range. The extended frequency-voltage response graph of the 

OYO 101LT is illustrated in Figure 4.1. 
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Figure 4.1. OYO 101LT 14Hz high-frequency geophone extended linear frequency 

response (after Andrieux and Heilig, 1994). 

 

4.3.3 Control of Transducer Orientation in the Thesis Blast Vibration 

Monitoring Program 

Very few detailed descriptions of blast monitoring programs are published in the 

literature, especially in regards to measures taken to control the orientation of fully-

encapsulated tri-axial transducers. In the author’s blast vibration monitoring 

program, significant effort was invested in controlling and maintaining the installed 

transducer orientations prior to hole grouting. This was achieved using continuously-

coupled orientation control pipes attached to each transducer during in-hole 

deployment.  

 

To allow adequate coupling between sensor strings and the associated borehole over 

the entire encapsulated length, 25mm diameter grout migration holes were drilled in 

the orientation pipes every 200-500mm. The migration holes would allow grout to 

flow freely between the interior and exterior of the pipes and reduce the likelihood of 

decoupling due to grout shrinkage. Both ends of each 4m orientation pipe were 

marked with axial lines to transfer the in-hole transducer orientation marks to the 

collars of the instrumentation holes (Figure 4.2).  
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Figure 4.2. Prepared transducer orientation control pipes. 

 

To simplify the installation procedure at the mine site, orientation pipes of the same 

diameter as the potted transducer were used. This allowed direct coupling of the 

transducer to the orientation string and provided a stiff coupling between the collar of 

the hole and the in-hole transducer. The stiff coupling allowed adjustment of the in-

hole transducer orientation prior to grout curing, and provided good support of the 

transducer in up-holes. As part of the pre-installation preparation process, coupling 

pipes were bundled and cut to match the desired installation depth of each 

transducer. In all cases, multiple 4m pipes were required to form the orientation 

string, as the minimum installation depth was approximately 12m. Figure 4.3 shows 

the continuous coupling of orientation pipes during installation of transducers in the 

hangingwall and footwall of KBGM stope dB10-38T. 

 

    
Figure 4.3. Installation of tri-axial transducers in the hangingwall (left) and footwall 

(right) of Kanowna Belle Gold Mine stope dB10-38T. 
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4.3.4 Design of the Locations of Near-Field Blast Vibration Transducers in 

the Thesis Blast Vibration Monitoring Program 

The process of determining suitable near-field blast vibration monitoring locations 

should take into account equipment, operational, geometric and geotechnical factors. 

The process of instrumentation layout design can take a considerable amount of time 

prior to blast monitoring and relies heavily on the experience of the designer and 

familiarity with the drilling equipment and the mining environment.  

 

The design methodology adopted for the blast vibration monitoring program 

conducted as part of this thesis required a minimum period of 1 month of design and 

installation time prior to stope production. Back analysis of neighbouring stope 

overbreak was performed during this month, as well as reviews of stope accesses, 

mining sequence and scheduling. These factors ultimately influenced the locations of 

transducers due to constraints on the available positions of drillhole collars and 

possible drilling orientations of instrumentation holes. Some considerations for the 

design of transducer locations used during the thesis blast vibration monitoring 

program are summarised below. 

 

Monitoring Equipment Considerations 

• Amplitude and frequency capabilities of transducers 

• Maximum cable lengths 

• Cable routing from transducers to collection equipment 

• Identified monitoring orientations or features of interest (e.g. nearby 

infrastructure or geologic features) 

Operational Considerations 

• Drilling capabilities (i.e. accuracy and hole length) 

• Rotation and dump capabilities of drilling equipment 

• Available grouting equipment 

• In-stope and nearby production activities (e.g. drilling, loading, blasting)  

• Nearby mine services (i.e. power/air/water) 
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Geometric Considerations 

• Available development from which to drill holes (access) 

• Adjacent open voids or fill masses 

Geotechnical Considerations 

• Expected stope performance 

• Areas of “no entry” for stope filling, seismicity or rock fall risk 

 

One of the main objectives of the thesis monitoring program was to characterise the 

blast-induced vibrations in multiple wave propagation orientations. The multiple-

orientation approach was adopted to investigate vibration attenuations and blast-

induced damage potential to different walls of instrumented study stopes. 

Transducers were therefore located in multiple stope walls to allow comparisons of 

measured vibrations based on geometric or geologic variability. Where transducer 

stocks were available, dual and triple-transducer arrays were installed in the rock 

mass perpendicular to each wall of the monitored study stopes. These arrays were 

cement grouted into boreholes at the horizontal and vertical stope mid-spans between 

stope production levels. Details of the instrumentation layouts for each study stope 

are discussed in the Chapter 7 and 8 case studies. 

 

4.3.5 Thesis Instrumentation Strategy 

The instrumentation layouts used in the blast vibration monitoring program were 

comprehensive in relation to orientation-specific measurement, number of 

transducers and density of coverage. The most densely instrumented stope contained 

14 tri-axial transducers and the least contained four, with exception to the first test 

stope in the monitoring program which had a single array of two transducers. The 

dense transducer coverage allowed for better understanding of the influences of 

geometry, geology and stress conditions on blast vibration attenuations. A secondary 

benefit of the multiple transducer array strategy was the ability to perform 

geophysical analyses of the rock mass around the study stopes. These analyses will 

be discussed in depth in Chapters 7 and 8. The instrumentation summary for each of 

the monitored stopes in the blast monitoring program is listed in Table 4.3.  
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Table 4.3. Total Installed Instrumentation used in the blast vibration study. 

Mine Site Stope Mining 
Levels 

Tri-axial 
Accelerometers 

Tri-axial 
Geophone Sondes 

KBGM dA12-35 1 1 1 

KBGM dB10-38B 1 2 2 

KBGM dB10-38T 1 3 3 

Cannington NZ 22gC6HL 1 1 3 

Cannington NZ 24jC6HL 3 6 8 

Cannington R4 52h09HL 1 3 3 

Cannington R4 52h04HL 1 2 3 

Total   18 23 

 

4.4 Waveform Processing of the Thesis Blast Vibration Data   

The waveforms that were recorded during the blast vibration monitoring program 

were processed using the Instantel Blastware 8.0 software. This software contains 

functions for performing signal filtering, waveform integration, differentiation and 

scaling and FFT analysis. A series of steps were utilised to process the recorded 

waveforms such that the most accurate representation of the actual vibration field 

could be determined for use in analysis. The steps included in waveform post-

processing were: 

• Removal of constant DC voltage offsets from the waveform 

• Initial high pass or band-pass filtering 

• Integration or differentiation to obtain velocity or acceleration waveforms 

• Secondary filtering of remnant frequencies 

• Scaling into appropriate velocity or acceleration units (mm/s or m/s2) 

• Minimum amplitude filtering to remove background sampling noise 

• Calculation of vector sum waveforms 

• Selection of wave arrival times using design firing times 

• Determination of peak amplitudes and energy calculations    
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Selection of filtering windows for each individual waveform utilised FFT analyses. 

FFT modelling of passive and active phases of each waveform was performed to 

identify artificial (electronics and sampling-related) and actual frequencies contained 

within the recorded blast waves. These values were then compared with the linear 

and extended response ranges for the associated transducers to select frequency 

filtering windows.  

 

For the geophone signals, removal of both low and high frequencies was necessary 

due to the limited linear response range. Band pass filtering outside window 

frequencies of 2Hz and 1-2 kHz was performed to remove artificial frequency 

content or resonance effects. The signals were then differentiated to obtain 

acceleration waveforms for comparison with accelerometer data. The process of 

digital signal differentiation is not significantly sensitive to remnant frequencies, and 

therefore secondary signal conditioning after differentiation was not required. 

  

Integration of recorded accelerometer waveforms to obtain velocity waveforms was 

considerably sensitive to low-frequency components. High pass filtering of low 

frequency components was therefore required to maintain the integrity of the 

waveform integration. No low pass filtering was required as the upper end of the 

accelerometer response spectrum was above the Nyquist frequency of the data 

acquisition system. The high pass frequency chosen for accelerometer waveform 

processing in most cases was between 28Hz and 128Hz. No significant energy 

content was indicated below 128Hz by FFT analysis in most accelerometer 

waveforms and therefore no significant loss of true frequency spectra was expected. 

After signal integration, secondary filtering was required to remove residual low-

frequency remnants and restore the waveform to the zero DC offset. 

 

All measured and mathematically-derived waveform files were passed through 

filtering macros developed by the author to perform threshold amplitude filtering and 

to calculate time-domain vector sum waveforms. The filtered waveforms were then 

imported into another custom processing tool to determine the single-hole peak 

amplitudes and calculate the areas under the squared vector sum particle velocity 

waveforms. These values were used to calculate the peak instantaneous energy 

densities and total energy densities based on the wave arrival times. The wave arrival 
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times were determined through manual selection of points of first break from the 

original unfiltered waveforms. 

 

4.5 Discussion and Conclusions 

The process of near-field blast vibration monitoring includes several key 

considerations that will ultimately affect the accuracy of, and the appropriate uses 

for, the collected data. These considerations include transducer and equipment 

selection, blast monitoring instrumentation design geometries and digital signal 

processing of the collected waveforms. In the published literature, the only factor 

that has been adequately outlined and discussed is the general selection of transducer 

types based on the characteristics of each transducer response. The issues related to 

near-field blast monitoring that have been largely ignored in previously published 

works include: 

• Required transducer specifications 

• Component configuration (uni-axial, bi-axial or tri-axial) 

• Number and location of blast monitoring transducers 

• Coupling of transducers for near-field blast vibration monitoring 

• Specifications of data acquisition systems 

• Post-processing of recorded signals 

 

The information presented in Chapter 4 and Appendix 4 has attempted to address all 

of the previously-mentioned considerations to standardise the process of near-field 

blast vibration monitoring. Careful consideration of transducer type, location, 

orientation, density of coverage and installation practices have enabled the author to 

generate a database of high-quality near-field and intermediate-field blast vibration 

results to be used in subsequent analyses. 
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CHAPTER 5 : BLAST VIBRATION ANALYSIS AND 

INTERPRETATION 

5.1 Introduction 

Near-field blast vibration monitoring, as discussed in Chapter 4, provides valuable 

information on the waves produced by the detonation of explosive charges. Blast 

vibration analysis techniques typically result in characterisation of blast vibration 

attenuations or development of models to predict peak vibration amplitudes from 

known charge parameters. Analysis and interpretation of recorded waveforms with 

respect to charge parameters, blasting geometries and rock mass conditions provide 

the next step to investigate the potential for blast-induced rock mass damage.  

 

Chapter 5 is dedicated to the review of existing blast vibration analysis and 

prediction models with particular emphasis on charge-weight scaling relationships 

such as Scaled Distance and Holmberg-Persson techniques. An alternate nonlinear, 

multi-variable statistical estimation approach is also discussed for use in near-field 

vibration analysis to improve predictive capabilities based on collected data. The 

results of a number of traditional peak amplitude prediction approaches are compared 

using collected near-field vibration data.  

 

The effects of distance and charge parameters on blast vibration amplitude prediction 

accuracy are discussed. For the specialty case of underground blast vibration analysis 

in the presence of existing and developing stope voids, a new method of distance 

determination has been proposed. This method takes into account the influence of the 

void on the wave travel path from an explosive charge to a monitoring point. 

Numerical wave simulation has also been used to investigate the theoretical effects 

of an existing stope void on the wave-field produced by a confined charge. 

  

5.2 Three-Dimensional Distances for Blast Vibration Scaling 

and Prediction in Ring Drilling Applications 

Arguably the most important variable in any near-field blast vibration prediction 

model is precise determination of the distance between a charge and a monitoring 
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location. Of the possible charge geometries used in blasting, those associated with 

ring drilling for sublevel open stoping represent the highest degree of variability in 

blasthole geometries due to drilling access limitations. These variations in blasthole 

orientations and lengths within ring patterns present many challenges to the 

determination of charge to transducer distances for use in near-field vibration 

modelling. 

 

Information on source to sensor distance determination in near-field prediction 

models is scarce in the literature. Within the published charge weight scaling models, 

no specific distance has been mentioned as the most appropriate for use in near-field 

vibration prediction. Therefore, no standardised approach exists for determining peak 

amplitude prediction distances when considering complex blasthole geometries. In 

simple parallel-blasthole patterns typical of open pit blasting, any standardised 

distance would be expected to provide similar regression results due to the consistent 

angles between the charge axis and the monitoring point. For charges varying in 

orientation by 360 degrees with respect to a fixed monitoring location, changes in 

propagation angle and detonation direction can lead to large variations in measured 

amplitudes.  

 

5.2.1 Ring Drilling in Sublevel Open Stoping and Calculation of Source to 

Sensor Distances 

The angles and distances between single explosive column charges and a monitoring 

point vary significantly in ring blasting applications. With changes in distance and 

orientation, there is considerable variability in wave characteristics such as travel 

time, wave type decoupling and changes of wave phase and wave type. Further 

complications are introduced in the presence of existing and forming stope voids, 

where the actual wave travel distance through intact rock can be several times greater 

than the straight-line geometric distance. No existing blast vibration prediction 

approach considers this effect. 

 

For the most simplistic case of an uninterrupted wave path through intact rock, 

determination of the most appropriate near-field charge to sensor distance for use in 

near-field blast vibration analysis and prediction is still not straightforward. In the 
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case of void-unaffected monitoring geometries, three distances from an explosive 

charge to a given monitoring point have been considered by the author. These three 

distances were:  

•  Toe distance (DT) - distance from the explosive column point of initiation 

(charge toe) to the monitoring point 

•  Midpoint distance (DM) - distance from the column midpoint to the 

monitoring point 

•  Collar distance (DC) - distance from the column collar to the monitoring point 

 

The three distances for each explosive charge were compared with one another to 

determine the minimum distance (Dmin) between the explosive column and the 

monitoring point. Figure 5.1 illustrates three ring-drilled blastholes and charge 

configurations common to sublevel open stoping with the distances DT, DM, DC and 

Dmin shown between each explosive charge and a monitoring location.  

 

 
Figure 5.1. Effect of blasthole orientation on the defining distances possible for use 

in blast vibration prediction models.  

 

For all three explosive charges in Figure 5.1, large variations between the three 

distances are observed based on the blasthole orientations and positions of the 
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explosive charges in relation to the monitoring point. The relative differences 

between these distances would be expected to influence the results of a near-field 

vibration prediction model.  

 

5.2.2 Calculation of Geometric Distance (DG) 

Drillhole design files and charging plans for all monitored blasts were obtained from 

the sponsoring mines during the author’s blast vibration monitoring program. These 

files allowed each explosive charge to be modelled using a series of charge collar 

and toe point coordinates. The midpoint coordinates were then calculated between 

the collar and toe of each explosive charge. Using the toe, collar and midpoint 

coordinates for each explosive charge, the geometric distance (DG) was calculated 

from each charge point to each transducer location around a monitored stope using 

Equation 5.1. The geometric distance (DG) refers to the distance from any charge 

point to a transducer along an uninterrupted wave path. 

 

( ) ( ) ( )222
MSMSMSG ZZYYXXD −+−+−=     (5. 1) 

 

Where  XS, YS, ZS = coordinates of toe, collar or midpoint of the charge 

  XM, YM, ZM = coordinates of vibration monitoring point 

 

The different charge to sensor distances calculated using Equation 5.1 were applied 

in various blast vibration prediction models discussed in Section 5.3 to investigate 

the influence of charge geometry on vibration amplitude prediction accuracy. The 

most suitable distance for use in analysis of collected data and forward prediction 

was determined based on the highest model correlations after comparing analyses 

using DC, DM, DT and Dmin. The majority of analyses identified that the midpoint 

distance (DM) yielded the highest linear regression correlation values. Therefore, DM 

was the distance chosen for use in all remaining blast vibration analyses and 

predictions under void-unaffected geometries.   
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5.3 Charge Weight Scaling Relationships for Prediction of 

Peak Particle Velocity Amplitudes 

In the fields of mining, tunnelling and blast engineering, models for prediction of 

peak vibration amplitudes and distance-related attenuations have remained largely 

unchanged for over 50 years. Based on the early work performed by the United 

States Bureau of Mines (USBM) in the 1950s and the Swedish Detonics Research 

Foundation (SveBeFo) in the 1970s, standard far-field and near-field vibration 

prediction models have been written into blasting regulations in many countries 

around the world.  

 

Two basic data fitting relationships have been used in a large percentage of blast 

vibration analyses of near-field monitoring results. These two approaches include 

various forms of charge weight scaling, in particular the Scaled Distance models, and 

the Holmberg-Persson (H-P) scaling model.  Both the charge weight scaling and H-P 

approaches identify curve fitting relationships based on measured data and a basic 

assumption of the wave type (cylindrical or spherical waves). These approaches do 

not represent the mechanistic properties or propagation characteristics of the blast-

induces waves.  Sections 5.3.1 to 5.3.8 discuss the development of various charge 

weight scaling relationships and the H-P approach. Alternate scaling relationships 

that attempt to represent some of the physical phenomena related to wave formation 

and propagation are also discussed and compared using data collected in the blast 

vibration monitoring program conducted by the author. 

 

5.3.1 Charge Weight Scaling as Defined by Square Root Scaled Distance 

and Cube Root Scaled Distance 

The ability to predict vibrations produced by the detonation of explosives became a 

focus of research from the late 1930s as equipment became available to reliably 

measure dynamic ground vibrations. Prior to the invention of modern geophones and 

accelerometers to measure blasting vibrations, mathematical models of wave 

propagation were relied upon to predict ground motions from explosive charges.  
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New technologies developed to measure the dynamic response of rock to blast 

loading allowed data to be collected and analysed to observe actual wave behaviours 

from explosive sources over varying distances. These observations led to the 

development of empirical models of wave attenuation and charge weight scaling 

based on both measured data and theoretical wave propagation models. 

Investigations performed by the USBM (e.g. Blair and Duvall, 1954; Atchison and 

Tournay, 1959; Atchison and Roth, 1960; Nicholls and Hooker, 1961; Duvall et al., 

1962) formed the basis of modern charge weight scaling relationships; most notably 

the square root and cube root Scaled Distance models. A general form of charge 

weight scaling developed for prediction of peak particle velocity (PPV) was 

suggested by Duvall et al (1962) based on the maximum charge weight (W) and 

distance (D). The general charge weight scaling form is show in Equation 5.2.        

 
nb DWKPPV −××=         (5. 2) 

 

Where   PPV =  predicted peak particle velocity (mm/s or in/s) 

D = distance from explosive source to point of interest (m or ft)  

W = instantaneous charge weight (kg or lb) 

K, b, and n = site-specific constants defined by regression 

 

Two popular versions of chare weight scaling that have been applied to the analysis 

or prediction of PPV based on charge weight and distance are square root Scaled 

Distance (SDSQRT) and cube root Scaled Distance (SDCubRT). These two models 

assume specific attenuation characteristics based on cylindrical or spherical waves, 

respectively. The peak amplitude attenuation factors applied in the two forms of 

Scaled Distance were assumed to be proportional to either D1/2 (cylindrical wave, 

square root scaling) or D1/3 (spherical wave, cube root scaling) based on the assumed 

source parameters. The equations for predicting PPV as a function of square root or 

cube root Scaled Distance are listed in Equations 5.3 and 5.4. 
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Or  
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(5. 4) 

 

Where  K, 
 = dimensionless regression constants 

 

Of the two Scaled Distance charge weight scaling approaches, past researchers have 

not formed a consensus as to the most applicable for use in near-field vibration 

prediction. Various researchers have attempted to validate cube root scaling as the 

most appropriate for use in near-field blast vibration analysis (e.g. Ambraseys and 

Hendron, 1968 and Olson et al., 1972). Additional researchers have attempted to 

validate square root scaling behaviour, including Ouchterlony et al. (1993), Yu and 

Vongpaisal (1996), Peterson (2001) and Singh and Narendrula (2004).   

 

5.3.2 Examples of Published Near-field Scaled Distance Vibration 

Prediction Equations 

Blast vibration analyses published by various authors have yielded site-specific 

vibration amplitude prediction equations defined by different charge weight scaling 

relationships (e.g. Olson et al., 1972, Holmberg, 1977; Ouchterlony et al, 1993; 

Peterson, 2001). The published equations were based on the general charge weight 

scaling relationship or Scaled Distance approaches listed in Equations 5.2 to 5.4. 

Table 5.1 lists a number of charge weight scaling-based prediction equations for PPV 

as published by various authors. 
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Table 5.1. Charge weight scaling PPV (mm/s) prediction equations from the 

published literature based on W (kg) and D (m) for a variety of blasting conditions. 

Researcher Prediction Equation Blast Type and 
Rock Type 

Olson et al., 1972 PPV = 2150 (D/W 1/3)-2.04 U/G tunnelling- 
granite 

Ambraseys and Hendron, 1968 
(reviewed by Yu, 1980)  

PPV = 11455 (D/W 1/3)-2.8 U/G chamber-
granite/LS/SS 

Lundborg et al., 1978 (reviewed 
by Holmberg and Persson, 1979) 

PPV = 730 (W 0.66/D1.54) N/A 

Holmberg, 1977 (reviewed by 
Holmberg and Persson, 1979) 

PPV = 1686 (W 0.71/D1.78) N/A 

Yu, 1980 PPV = 800 (D/W 1/3)-1.3 U/G chamber-
granite/LS/SS 

Ouchterlony et al., 1993 PPV = 698 (D/W 1/2)-0.74 U/G tunnelling-
granite 

Yu and Vongpaisal, 1996 PPV = 600 (D/W 1/2)-1.05 U/G stope blasts-
rhyolite 

Peterson, 2001 PPV = 229 (D/W 1/2)-1.02 Open Pit- diorite 

Singh and Narendrula, 2004 PPV = 1077 (D/W 1/2)-1.6 U/G drifting-“hard 
rock” 

 

From the attenuation equations in Table 5.1, it can be observed that the regression 

constants are largely site specific and based uniquely on specific rock mass and 

blasting parameters. The wide range in the regression constants demonstrates the 

variation in vibration behaviours in different rock masses and blasting conditions. To 

compare the effects of specific blasting conditions on the predicted PPV over a range 

in Scaled Distances, four of the PPV prediction equations from Table 5.2 have been 

plotted in a graph of PPV versus square root Scaled Distance (Figure 5.2). 
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Figure 5.2. PPV prediction curves of various authors based on vibration data. 

 

Site specific effects represented by the PPV prediction curves in Figure 5.2 clearly 

contribute to the large variations in vibration behaviours. For example, at the Scaled 

Distance of 10 m/kg0.5, the variation in the predicted PPV between the various 

models was up to 500%. Therefore, application of one site-specific equation to 

different blasting conditions or rock mass properties could result in large errors in 

peak vibration amplitude predictions.  

 

5.3.3 Alternate Forms of Standard Charge Weight Scaling - Corrections for 

Charge Length and Use of Linear Charge Density 

Research conducted in Sweden in the 1970s established that Scaled Distance models 

generally over-predicted vibration values measured in the near-field of a blast. This 

over-prediction occurred as a result of the entire charge column being treated as an 

instantaneous point source, where the entire charge weight was considered in 

prediction of the peak amplitude. In the far-field of blasting events, instantaneous 

detonation or point source assumptions are acceptable due to the relatively short 

length of the charge in relation to the distance from the blast to a monitoring point. In 

the near-field, charge lengths similar to monitoring distances introduce delay effects 

related to the velocity of detonation of the explosive and the propagation velocity of 

the stress waves. 
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Ouchterlony et al. (1993) attempted to correct for the effects of charge length in the 

standard Scaled Distance approach for near-field monitoring conditions. This 

correction used the assumption that the peak vibration value closely corresponded 

with the minimum distance from a charge column to the monitoring point. Prediction 

of the maximum expected vibration therefore used a modified form of the Scaled 

Distance equation integrated over the charge length. The integration approach 

proposed by Ouchterlony et al. (1993) was similar to the Holmberg-Persson model to 

be discussed in Section 5.3.4. The new form of the Scaled Distance equation, 

corrected for charge length as suggested by Ouchterlony et al. (1993) was: 
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Where  R = distance from charge to monitoring point (m) 

Q = charge weight (kg) 

H = charge length (m) 

 

Therefore, 

 

( ) β−⋅= yOuchterlonSDAVmax                  (5. 6) 

 

Where  Vmax = maximum PPV (mm/s) 

  A, 
 = regression constants 
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Another version of charge weight scaling was proposed by Redpath and Ricketts 

(1987). This method predicted peak amplitude as a function of distance and the linear 

charge concentration, l, instead of the entire charge weight, W. The proposed scaling 

model was based on vibration data collected at the Logan Wash Mine using a wide 

range of charge weights and blasthole diameters. The relationship between PPV and 

charge concentration proposed by Redpath and Ricketts (1987) is listed in Equations 

5.7 and 5.8. 

 

l
RSD l =

        
           (5. 7) 

 
And 
 

α

�
�
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�
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�=
l

RKPPV
       

           (5. 8) 

 
Where  R = distance (ft, m) 

  l = linear charge concentration (lb/ft, kg/m) 

  K, 	 =  regression constants 

 

The use of linear charge concentration to predict peak ground vibrations as proposed 

by Redpath and Ricketts (1987) was not a new concept. Holmberg and Persson 

(1979) were the first to propose an equation for prediction of near-field vibrations 

based on the linear charge concentration. This approach was developed due to 

observation of chronic over-prediction of vibration amplitudes in the near-field of 

blastholes by the standard Scaled Distance equations. 

 

5.3.4 Holmberg- Persson Near-Field Prediction Model 

In the 1950s and 1960s, mathematical models were being developed that represented 

the wave fields generated by long explosive columns using stacked incremental 

charges (e.g. Jordan, 1962 and Plewman and Starfield, 1965). This approach was 

adopted in an attempt to investigate the effect of explosive velocity of detonation on 

the predicted near-field vibrations. The incremental charge methodology was 
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adopted in a model proposed by Holmberg and Persson (1979) to address the 

observed over-prediction of near-field vibration values using Scaled Distance.  

 

The fundamental geometry of the Holmberg-Persson (H-P) model represents a long, 

cylindrical charge as a string of stacked elemental charges of charge weight l (linear 

charge concentration). The peak amplitude at a point in a rock mass could therefore 

be predicted by integrating the general form of the charge weight scaling equation 

(Equation 5.2) with respect to the position of an elemental charge (dx) along the 

charge column (Holmberg and Persson, 1979). Details of the geometry represented 

by the model and other specific characteristics can be found in Appendix 5. 

Prediction of PPV using the H-P model is listed in Equation 5.9. 
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(5. 9) 

 

Where   l = linear charge concentration (kg/m) 

  H = charge length (m) 

K, 	, 
 = regression constants (K = 700, 	 = 0.7, 
=1.5 suggested) 

 

Just as variations in the regression constants of the charge weight scaling equations 

in Table 5.1 were identified by various researchers, variations in the regression 

constants for H-P models also exist based on published literature. The original 

recommendations by Holmberg and Persson (1979) of K = 700, 	 = 0.7 and 
 = 1.5 

were for competent Swedish granites and typical Swedish tunnel blasting conditions. 

Variations in blasting geometries and rock properties would therefore lead to changes 

in the regression constants from recorded site-specific vibration data. Some examples 

of published regression constants resulting from the H-P analysis of collected data 

are listed in Table 5.2. 
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Table 5.2. Holmberg-Persson peak amplitude prediction regression constants 

published in past literature. 

Researcher K � � 

Holmberg and Persson (1979) 700 0.7 1.5 

Villaescusa et al. (1997) 456 1.12 2.24 

Villaescusa et al. (1997) 515 0.69 1.38 

Scott (1998) 329 0.81 1.62 

Peterson (2001) 1650 0.79 1.58 

Heilig (2002) 790 0.7 1.4 

 

5.3.5 Critical Evaluation of the Holmberg-Persson Model 

Researchers in the past have criticised the H-P model due to basic errors in the 

mathematical derivation of the integral and subsequent summation forms of the 

equation (for instance, Blair and Minchinton, 1996 and Lu and Hustrulid, 2003). 

Other limitations that have been identified with the H-P model are the assumption of 

instantaneous detonation and neglect of directional effects, explosive and rock mass 

properties and shear wave-affected wave fields. In spite of the limitations, the H-P 

model has been used by many researchers as an analytical blast vibration prediction 

tool for near-field geometries (e.g. Holmberg and Persson, 1979; Villaescusa et al., 

1997; Scott, 1998; Peterson, 2001; Heilig, 2002). 

 

The H-P model has attempted to provide a more accurate treatment for near-field 

charge geometries, but in some situations has failed to deliver better correlations 

from measured data when compared with Scaled Distance approaches. Peterson 

(2001) noted this relationship during analysis of near-field data in open pit 

monitoring (Figure 5.3), where no improvement in prediction accuracy was observed 

using the H-P model. Based on the lack of improved prediction accuracy, Peterson 

(2001) selected square root Scaled Distance modelling for characterisation of 

measured near-field blast vibrations.  
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Figure 5.3. Graphs of Square Root Scaled Distance and Holmberg-Persson blast 

vibration prediction using the same data set (Peterson, 2001). 

 

As observed in Figure 5.3, identical correlation values were observed by Peterson 

(2001) for production blasting conditions when comparing square root Scaled 

Distance and the H-P model results. Higher correlation values were observed for the 

wall control blasts using Scaled Distance when compared with H-P, leading to 

greater accuracy of vibration prediction. 

 

Data collected as part of the blast vibration monitoring program conducted for this 

thesis has resulted in similar conditions to those observed by Peterson (2001) where 

H-P charge weight scaling failed to provide superior data set correlation. In a 

majority of data sets analysed using traditional charge weight scaling approaches, 

cube root Scaled Distance provided the most accurate predictions of measured 

values. When compared with square root Scaled Distance, H-P scaling provided 

some small improvement in correlation coefficients for some data sets, whereas in 

other data sets the correlation value was lower.  

 

Under conditions of highly variable blasthole geometries, as experienced in ring 

blasting in open stoping, a relationship between the calculated Scaled Distance and 

the Holmberg charge weight scaling term (a) (see Appendix 5) was observed. The 

relationship between the two scaling factors was a power function. Figure 5.4 shows 

plots of the Holmberg term (a) versus the square and cube root Scaled Distances 

calculated at a single monitoring location using all design charges in an actual mass 

blast design at the BHP Cannington Mine.  
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Figure 5.4. Plot of Holmberg Term (a) versus the square root and cube root Scaled 

Distance for all charges in a stope firing mass blast design. 

 

The data points shown in Figure 5.4 represent actual stope production blasting 

patterns at the BHP Cannington Mine and cover a range of charge weights, distances 

and blasthole geometries. The near-perfect power curve relationships between the 

Holmberg term and both Scaled Distance terms expose the lack of actual complexity 

considered in the geometric treatment of charges by the H-P model. It is therefore 

expected that no mechanistic advantage would be gained through use of the H-P 

approach when compared with other charge-weight scaling relationships for complex 

ring blasting geometries. 

  

5.3.6 Additional Models for Prediction of PPV 

Some of the shortcomings of both Scaled Distance and the Holmberg-Persson 

models are a lack of explicit treatment of explosive and rock mass properties. These 

influencing factors along with explosive coupling, orientation effects and others are 

functionally combined in the regression constants and as such cannot be quantified 

for each blasting condition. To explicitly consider these variables, some researchers 

in the last decade have returned to first-order wave propagation principles to derive 

PPV prediction equations. These models combine charge weight scaling with 

principles of pressure and stress wave transmission. Models proposed by Lu and 

Hustrulid (2003) and Sambuelli (2009) are listed in Equations 5.10 and 5.11. 
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Where   kw,
 = regression constants 

  Kn = influence of total number of blastholes per delay 

  a = blasthole radius (m) 

  R = distance from charge (m) 
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Where  K  = site constant 

  Q = instantaneous charge weight (kg) 

  r = distance (m) 

  � = Explosive energy per kg (J/kg) 

  rh = drillhole diameter (m) 

f = wave frequency (Hz) 

  � = rock density (kg/m3) 

  c = Rayleigh or shear wave velocity (m/s) 
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Some of the identified limitations of charge weight scaling models are addressed in 

the Lu and Hustrulid (2003) and Sambuelli (2009) models through explicit 

consideration of explosive properties and rock mass characteristics. Analysis of 

surface blast monitoring results published in the studies by Lu and Hustrulid (2003) 

and Sambuelli (2009) revealed a higher degree of vibration prediction accuracy when 

compared with traditional charge weight scaling approaches. 

 

5.3.7 Comparisons of Vibration Prediction Models using Collected Data 

The reviewed charge weight scaling and prediction models have been compared 

using a sample data set collected at the BHP Cannington Mine. The objective was to 

investigate the differences in predicted peak amplitude values and model 

correlations. The results of the linear regressions for each scaling model versus the 

measured vector sum peak particle velocity (VSPPV) data are listed in Table 5.3. 

Additional information is provided in Appendix 5.  

 

Table 5.3. Comparison of VSPPV prediction models for near-field and intermediate-

field data from BHP Cannington Stope 52h04HL southeast wall transducers. 

Approach Data 
Points 

K � � Model 
R2 

SDSQRT 245 126.3  -1.22 0.46 

SDCubRT 245 404.5  -1.46 0.44 

SD�l  
(Redpath and Ricketts, 1987) 

245 562.2  -1.42 0.23 

SDOuchterlony  
(Ouchterlony et al., 1993) 

245 135.0  -1.26 0.46 

Holmberg-Persson (1979) 245 10.6 0.63 1.26 0.46 

Lu and Hustrulid (2003) 245 869.7  1.42 0.23 

Sambuelli (2009) 245 85.5   0.37 

 

Table 5.3 shows that the models taking into account scaling by incremental charge 

weight or correction for charge length (SDOuchterlony and Holmberg-Persson) provided 

linear-regression correlations approximately equal to the basic Scaled Distance 
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models. For the examined data set, the poorest correlation of charge weight scaling 

was observed for the �l model. Of interest are the results of the numerically 

simplified model of Ouchterlony et al. (1993) compared with the more complicated 

Holmberg-Persson model. Both models provided an equivalent correlation, but the 

model proposed by Ouchterlony et al. (1993) reports values in the same form as 

standard Scaled Distance and therefore in most applications would be easier to use 

than the H-P approach. Neither of the two models developed from first principles 

(Lu-Hustrulid or Sambuelli) offered any advantage for prediction of PPV for the 

analysed data set. Both the Lu-Hustrulid and Sambuelli approaches are highly 

sensitive to the values selected for the charge properties such as explosive energy and 

VOD, which can vary significantly and are nearly impossible to determine due to 

non-ideal detonation conditions. 

 

5.3.8 Significance of Explosive Type on Blast Vibration Prediction 

Holmberg and Persson (1979) suggested that different explosive types should be 

normalised to equivalent ANFO weights to accurately apply charge weight scaling 

prediction models. To investigate this, an analysis of the effect of explosive type on 

the measured peak amplitudes has been performed using the square root Scaled 

Distance model and a single data subset from the author’s blast vibration monitoring 

program.  

 

The data set selected for the analysis included three types of blasting agent used in 

the BHP Cannington stope 24jC6HL 220mLv firings. The three explosive types were 

poured ANFO, 1.0 g/cc gassed emulsion and 0.8 g/cc low-density gassed emulsion. 

The data set collected for the entire stope was subdivided by explosive type and 

individual linear regressions were performed for each of the three explosive-types. 

Individual regression results were then compared with the regression performed for 

the aggregate data set. Table 5.4 lists the linear regression constants resulting from 

the relationship between measured VSPPV and SDSQRT for the combined data set and 

the three individual explosive type data sets. 
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Table 5.4. Comparison of measured PPV and SDSQRT regression constants and 

correlations for the three different explosive types in Cannington stope 24jC6HL. 

Explosive Type Density 
(g/cc) 

Data points K � R2 

All  469 1456 -1.65 0.32 

Poured ANFO 0.85 104 1239 -1.90 0.60 

EP Emulsion 1.0 340 418 -1.70 0.31 

Low Density 
Emulsion 

0.80 25 593 -2.08 0.75 

 

The results in Table 5.4 clearly reflect the importance of the explosive type on the 

predicted peak amplitude, even under conditions of similar distance, total charge 

weight and charge configurations. The effects of normalising each explosive type to 

ANFO equivalent charge weight was investigated next in an attempt to remove the 

variations in attenuation behaviours observed in Table 5.4. Table 5.5 lists the 

regression constants for each data subset after normalising the individual charge 

weights to that of ANFO through relative weight strength (Appendix 5). 

 

Table 5.5. Comparison of measured PPV and SDSQRT regression constants and 

correlations for the three different explosives types normalised to equivalent ANFO 

charges in Cannington Stope 24jC6HL. 

Explosive Type Linear Charge 
(kg/m) 

ANFO Equivalent 
Charge        
(kg/m) 

K � R2 

Poured ANFO 5.29 5.29 1239 -1.90 0.60 

EP Emulsion 6.22 7.07 375 -1.70 0.31 

Low Density 
Emulsion 

4.98 6.63 440 -2.08 0.75 

 

By normalising the charge weights to that of the relative weight strength of ANFO, 

the slopes (
) and correlation values (R2) did not change when compared with the 

results in Table 5.5. The intercept (K) for both emulsion densities decreased, which 

would lead to reduced values of predicted PPV. None of the regression results 
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indicated effective normalisation of measured amplitudes to that of the actual ANFO 

data set. This therefore suggested that explosive properties other than weight 

strength, such as detonation pressure or velocity of detonation more significantly 

influences the vibrations produced by explosive charges of different explosive types. 

 

5.4 Multi-Variable and Nonlinear Regression Analysis for 

Vibration Prediction 

Two nonlinear regression techniques have been proposed for use in vibration data 

analysis based on the limitations of two-dimensional linear regression of measured 

peak amplitudes and a charge weight scaling terms. The proposed approaches are 

two-dimensional nonlinear regression and three-dimensional nonlinear estimation.  

 

Nonlinear estimation methods attempt to increase prediction model accuracy in two 

ways. First, the bias associated with the assumption of a normal data distribution 

required for linear regression is removed. Second, the forced assumption of 

cylindrical or spherical wave attenuation characteristics common to charge weight 

scaling is eliminated. Removing the assumptions related to charge weight scaling by 

square root or cube root factors would be expected to improve prediction accuracy 

and model correlations (Yang, 2006). 

 

5.4.1 User-Defined Multi-Variable Regression Using Advanced Statistical 

Analysis 

Simple log-log linear regression approaches used for blast vibration prediction can be 

performed relatively quickly without the aid of a computer. These methods of data 

analysis have therefore been preferred in blast vibration prediction for many years. 

Advances in statistical analysis computer programs and computing speed and power 

now allow more advanced data analysis techniques to be applied to blasting data. 

 

The advanced statistics software package Statistica 8.0 was selected to perform 

multi-variable, user-defined, nonlinear estimations of attenuation relationships in the 

author’s blast vibration data analysis. Statistica has been used for many years in 

advanced process control for manufacturing and scientific statistical analysis. In the 
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field of blast vibration analysis, Statistica or other advanced statistical packages have 

not been implemented widely in favour of two-dimensional linear regression in log-

log space. The updated capabilities of computer-aided statistical analysis allows for 

more complicated data sets to be analysed and may provide a greater degree of 

prediction accuracy when compared with outdated linear regression techniques. 

 

5.4.2 Multi-variable, Nonlinear Estimation of Charge Weight Scaling 

Vibration Prediction Equations Using Statistica 8.0 

The first step in performing nonlinear estimation was identifying the independent and 

dependent variables to be included in the iterative estimation process. To compare 

the results of multi-dimensional nonlinear estimation with existing two-dimensional 

linear regression-based techniques, identical independent and dependent variables 

were selected. The independent variables selected for use in estimation were charge 

weight (W) and distance (D) and the dependent variable was the measured or 

calculated peak particle vibration amplitude (e.g. PPV, PPA, energy or strain).  

 

The relationship specified for the nonlinear estimation between the two independent 

variables and the measured or calculated vibration amplitudes was the general charge 

weight scaling form in Equation 5.2. The general charge weight scaling form was 

selected because of the improved prediction correlations experienced through linear 

regression when compared with the Holmberg-Persson or other models early in the 

data analysis program. The general shape of the three-dimensional surface fitting the 

data was defined by the resulting estimation constants K, b and n.  

 

A number of regression parameters were available in Statistica to govern the iteration 

process during the nonlinear estimation calculations. These parameters included: 

•  Case-wise or mean substitution median replacement 

•  Levenberg-Marquardt or Gauss-Newton estimation methods 

•  Specified convergence level 

•  Specified maximum number of iterations 

•  Full post-processing analysis of variance, distribution and residuals 
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An additional output of the estimation process was a three-dimensional graph of the 

regression surface along with the regression constants and the specified regression 

equation. An example regression surface is displayed in Figure 5.5.   

 

 
Figure 5.5. Nonlinear multi-variable regression surface of Cannington Mine stope 

52h09HL data plotting charge weight, distance and measured PPV. 

 

To further investigate the behaviour of a data set in relation to the charge weight and 

distance, an additional fitting equation was applied to the multi-variable estimation. 

The modified scaling relationship was a quadratic surface, using the same input 

distance, charge weight and PPV data from the first user-defined nonlinear 

regression. The general form of the quadratic surface is given in Equation 5.12. 

 

feDdWcWDbDaWVSPPV +++++= 22      (5. 12) 

 
Where   W = charge weight (kg) 

D = distance (m) 

a-f = quadratic regression constants  
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An example of the output surface for quadratic fitting is illustrated in Figure 5.6. 

 

 

Figure 5.6. Nonlinear quadratic surface regression for BHP Cannington stope 

24jC6HL data. 

 

The quadratic surface fit introduced multiple unknown variables (a to f) and 

combined relationships between W and D with respect to the measured vibration 

amplitudes. To validate this model for use in advanced vibration prediction, these 

variables and the physical representations require further investigation. This 

investigation has not been pursued at the current time. The general quadratic form 

has only been used to gain a better understanding of the defining shape of the surface 

formed by modelling distance and charge weight independently. The quadratic 

surface analysis has indicated that the contributions of charge weight and distance to 

peak amplitude are more complex than single terms with a single scaled behaviour. 

 

5.4.3 Comparison of Results of Linear and Nonlinear Regression 

Approaches 

Nonlinear estimation techniques are highly dependent on the number of data points 

and the range in values, as there is no initial assumption of data distribution as in 

linear regression techniques. Through the nonlinear iteration process, each data point 
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equally influences the shape of the final surface. Therefore, a data set of limited 

range in either charge weights or distances can result in unrealistic regression 

constant values, especially K. This effect can also be observed in linear regression, as 

a normal distribution of data points is a background hypothesis. 

 

To validate the use of nonlinear regression techniques to increase peak amplitude 

prediction accuracy, a number of regression approaches have been applied to a 

representative data subset from the BHP Cannington 24jC6HL stope. The three 

charge weight scaling and analysis combinations were: log-log linear regression of 

PPV versus square root Scaled Distance, log-log linear regression of PPV versus 

cube root Scaled Distance and nonlinear multi-variable regression of PPV versus 

distance and charge weight using the general charge weight scaling relationship 

(Equation 5.2). The results of the regression models as applied to a given data set are 

listed in Table 5.6.  

 

Table 5.6. Comparison of regression constants for blast vibration monitoring data in 

Cannington Stope 24jC6HL 200mLv Southeast wall.   

Method K b n R value 

Linear SDSQRT 299.62 0.61 -1.22 0.71 

Linear SDCubRT 803.27 0.44 -1.32 0.70 

Nonlinear surface 144.32 0.76 -1.13 0.79 

 

The correlation values listed in Table 5.6 are the R value (coefficient of correlation) 

instead of an R2 (coefficient of determination) due to the introduction of a surface 

regression. R2 values are typically only applicable to linear regressions; therefore R 

values have been reported to directly compare the different model types. Based on 

these reported R values, the nonlinear multi-variable surface regression returned the 

highest correlation based on the measured vibration data. This trend was observed for 

nearly all data sets analysed as part of the author’s blast vibration monitoring 

program. For this reason, the nonlinear multi-variable estimation method has been 

adopted in most forward analysis and predictions of wave amplitudes.  
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5.5 Data Scatter in Vibration Analysis and Prediction due to 

Variations in Peak Amplitudes 

The confidence in predicting vibration amplitudes using a relationship defined by 

analysis of measured vibration data relies on the scatter of data points around the 

best-fit relationship. This scatter represents many different effects related to 

geological conditions, explosive types, wave types, blast geometries and introduced 

monitoring errors (Dowding, 1985). It is common in near-field vibration data sets to 

experience correlation coefficients ranging from very poor to moderate based on 

standard scientific statistic definitions.  

 

Large blast vibration data sets measured under near-field, variable geometry 

conditions can report R2 values of less than 0.5, as observed during the blast 

vibration monitoring program conducted by the author. In most scientific disciplines, 

correlation values below 0.95 would be grounds for retesting of the experiment or 

development of a better regression modelling relationship. The data scatter observed 

in blast vibration data sets can be related to many factors including geological 

effects, non-ideal explosive detonation, blast geometry effects and errors in 

designation of distance, charge weight or amplitude measurement.   

  

5.5.1 Variability in Measured Vibration Amplitudes Due to Confinement 

or Accumulated Damage 

One assumption that has been made in adapting wave propagation models to blast 

vibration prediction is that the amplitude produced by like charges at similar 

distances will be equal. In real blasting conditions this is not the case. Variations in 

non-ideal explosive behaviour, borehole coupling, explosive type, localised 

geological effects and rock mass damage can significantly influence the stress wave 

transmitted from an explosive charge into the surrounding rock.    

 

In practice, the peak vibration amplitude measured for identical charges at nearly 

identical distances can vary significantly (as observed by Yuill and Farnfield, 2001). 

Vibration data collected during the thesis blast vibration monitoring program 

confirms this observation. Variability in measured peak amplitudes was investigated 
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using the data collected from a series of 11 identically-charged blastholes fired in one 

of the study stopes. The equal charges of approximately 24kg each were fired at 

near-equal distances from a tri-axial accelerometer. Differences between each single-

hole waveform clearly indicated that no consistent or normal distribution in vector 

sum PPA existed (Figure 5.7).  

 

 
Figure 5.7. Histogram of peak vector sum acceleration measured for 11 equally-

charged blastholes at approximately equal distances from a monitoring location.          

 

The observed differences in peak amplitudes in Figure 5.7 may have been linked to 

differences in the wave frequency, distribution of energy within the wave 

components, arrival time of the shear wave, differences in blasthole confinement or 

the accumulation of damage around the blasting area leading to higher near-charge 

attenuation rates.  

 

Past researchers have argued that increased vibration amplitudes can be expected 

from charges with higher degrees of confinement or fixation (e.g. Dowding, 1985; 

Jimeno et al., 1987; Liu and Proulx, 1995; McNally, 1998). These types of 

confinement conditions can exist where there are excessive burdens leading to 

narrow breakout angles such as in highly-confined rise blasts (underground) or choke 

blasts (open pits).  
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To investigate the relationship between increased charge confinement and peak 

amplitude, the vector sum peak particle accelerations (VSPPAs) recorded at two 

equidistant monitoring locations along opposing orientations were compared. 

Breakout angles were simulated for each charge based on the surveyed hole location 

and the assumed available void from the previously-fired charges in the sequence. 

Figure 5.8 shows the assumed breakage areas and associated breakout angles for 

each blasthole within the longhole winze as a result of the surveyed blasthole 

locations and the firing sequence.  

 

 
Figure 5.8. Plan view of the simulated breakout areas and angles for winze firing 2 in 

Cannington Stope 24jC6HL 220mLv (numbers are firing order of holes).  

 

Vibration amplitudes measured at two opposing equidistant monitoring locations 

from the stope firing (North and South) were compared to observe the change in 

VSPPA versus the level of charge confinement. Figure 5.9 illustrates the measured 

VSPPA as a function of the hole firing sequence at the two monitoring locations. 

Each hole in the blast progressively encountered a higher total void volume and 

advanced breakout angle due to long delays between blastholes and a centre-out 

firing sequence. 
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Figure 5.9. Peak amplitude versus firing sequence along 2 orientations in a highly-

confined rise blast of 10 equal charges at equal distances. 

 

Under the assumption that the vibration would be greatest where the breakout angle 

is the smallest due to high confinement, the first 3 blastholes of each data set should 

have produced peak amplitudes greater than the later firing blastholes. A weak trend 

of reduction in amplitude based on firing sequence can be observed in Figure 5.9 for 

the South wall data set (black diamond markers). If the analysis were associated with 

the burden dimension, hole 10 should have resulted in the highest vibration value at 

the South Wall monitoring point. As illustrated in Figure 5.9, this was not observed. 

Additional analyses of the data have been provided in Appendix 5 that examines the 

influence of breakout angle, broken volume and powder factor on the measured peak 

amplitude.  

 

For both the North Wall data set (grey squares) and South Wall data set (black 

diamonds), anomalous measured amplitudes can be observed. These results suggest 

that both the amplitude and frequency of the measured blast waves were a result of 

interaction of many factors other than confinement such as rock mass conditions at 

the time of hole firing, charge coupling, altered explosive properties from loss of 

confinement or pre-compression, charge geometry and distance from the charge. 

Blair and Armstrong (2001) observed the no robust statistical relationship existed 

between peak measured amplitude and charge confinement in a series of open pit 
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blasts under various conditions of blasthole burden. This result led to the conclusion 

that confinement did not necessarily increase blast vibrations. Scott (1998) and 

Ulysal et al. (2007) also observed a counter-intuitive relationship, where increases in 

burden resulted in a reduction in monitored ground vibrations. Therefore, the direct 

link between confinement and peak vibration amplitude should be viewed as highly 

variable due to the additional contributing factors. 

 

It is proposed by the author that some of the variability in measured vibration 

amplitudes can be related to the degree of existing and developing rock mass damage 

around the blastholes at the time of firing. Multiple misfired holes have been 

observed for highly-confined conditions during the blast vibration monitoring 

program. The locations and sequences of misfired holes indicated heavy rock mass 

damage up to 1.5m from the confined explosive charges, causing explosive 

desensitisation or physical damage to adjacent blastholes. Models of rock breakage 

discussed in Chapter 2 have indicated that a potential radius of fracturing due to 

strain waves could occur up to 20 times the blasthole radius. For an 89mm blasthole, 

this zone of heavy damage could therefore extend to 0.89m. With the addition of gas 

penetration, the damage envelope could extend to several metres. 

 

As successive blastholes detonate in a confined blast pattern, damage would be 

expected to accumulate in the surrounding rock mass due to the repeated strain wave 

and gas penetration loading. These effects can introduce strain softening and 

accumulation of micro- and macro-fractures. The increased fracturing can lead to 

explosive decoupling effects and a loss of rock mass integrity, which both increasing 

the rate of wave attenuation near the blasthole. 

 

5.6 Additional Investigation into the Effect of Underground 

Voids on Distances Determined for Vibration Analysis 

An initial and sequentially-expanding void volume is required in open stope blasting 

to accommodate the swell of blasted material. The wave fields generated by 

detonating blastholes near the void will interact with the excavation surfaces and 

corners leading to reflection, refraction and changes of wave types. Any assumption 
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of isotropic and symmetrical wave propagation under these conditions would 

therefore be erroneous.  

 

Of the available tools for blast vibration analysis, no software or suggested charge 

weight scaling approach accounts for the presence of existing or blast-induced voids 

when determining the source to transducer distances. The common treatment used in 

past investigations would be to filter out data that appeared to have been collected 

under void-affected geometries. The effect of existing and forming excavations on 

blast vibration properties is not a well understood or documented phenomenon.  

 

An approach has been proposed by the author to more accurately represent the wave 

travel paths between blastholes and blast monitoring locations under the influence of 

voids. This methodology has been named Void and Initiation-Corrected Distance, or 

VICD. VICD comprises two different geometric and operational factors; namely, the 

pre-blast stope void and the dynamically-forming void due to the initiation sequence 

of the blastholes. Consideration of the blasthole initiation sequence is important, as 

an additional layer of blast design (initiation sequence) can be introduced to help 

control blast vibration propagation along specified orientations. 

 

5.6.1 Effect of Existing Stope Voids on Wave Travel Paths 

A characteristic geometry of wave-void interaction should be determined to describe 

the effect of voids on blast-induced wave travel paths and distances. In the stopes 

encountered in the vibration monitoring program conducted for this thesis, three 

characteristic geometries have been identified. These are referred to as Intact, 

Parallel Void and Normal Void geometries. The “Intact” classification refers to 

geometries where the direct wave path is unaffected by the stope void. “Parallel 

Void” refers to the geometry where a single wave path disruption occurs. “Normal 

Void” is the geometry where the point of interest is located on the opposite side of 

the void from the blasting event. The geometric classifications are determined by the 

relationship between the monitoring point and the planes of the blasthole rings in 

relation to pre-existing or forming stope voids. The three geometries and the 

relationship between the DG and the VICD for each case are illustrated in Figure 

5.10.  
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Figure 5.10. Plan view of VICD classifications based on the location of blast 

vibration monitoring transducers and a blasthole. 

 
The three geometries have been further characterised by the number of “bend points” 

in the wave path, or the required number of times that a ray path would be required 

to diffract for a propagating wave to reach the monitoring point. All Intact 

orientations are those in which the number of bend points is zero, meaning that the 

direct wave path has not been influenced by a void. In the Intact orientations, the 

calculated DG equals the VICD. The Intact geometry generally holds for at least half 

of the rock mass, based on the location of the vibration monitoring point and the 

blasthole with respect to the stope void (Figure 5.11). Individual blastholes can 

experience different geometric classifications with respect to a monitoring location 

based on the angle formed between the nearest excavation corner and the charge. 
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Figure 5.11. Plan view of the Intact VICD geometry based on the stope void and the 

blasthole position for a single charge (left) or multiple charges (right). 

 

5.6.2 Modelling of VICD Wave Paths 

Due to a lack of software to model realistic wave travel paths, VICD wave paths 

were constructed manually by the author. The process of VICD modelling 

considered the geometries of each blast and individual charges, blasthole firing 

sequences and assumptions of the likely paths. To construct the individual wave 

paths in a realistic way, several assumptions were made. These assumptions 

included: 

•  Source points located at the mid-column point of the explosive charge 

•  The entire burden and spacing became void at the time of charge initiation 

•  Fired charges were replaced by a node along the line to the nearest bend point  

•  Only a single minimum-distance ray-path existed (no wave splitting) 

•  No significant wave transmission existed along void and paste fill interfaces 

•  No significant loss of energy occurred along the void surface 

 

Realistically, multiple ray-paths resulting from wave splitting will exist around a 

void. Wave superposition would therefore occur upon convergence of the multiple 

wave fronts. This effect would be most apparent in the Normal Void orientation. The 

phase delays and individual travel times of each portion of the split wave-front would 

be expected to recombine in complex ways and as such cannot be represented 
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accurately in the VICD model. The current version of the VICD approach only 

considered a single wave path along the minimum wave travel distance. The complex 

interactions between combining wavefronts are beyond the scope of this thesis.    

 

The wave travel path represented in VICD distance modelling used a point-to-point 

(or node-to-node) aggregate distance. Each node within a model was identified by a 

set of mine-grid three-dimensional coordinates. The wave path was constructed using 

a series of discrete three-dimensional coordinates from the source (blasthole) to the 

monitoring point along a line of nodes. The starting point of each VICD wave path 

string was the midpoint of the explosive column. The intermediate points were nodes 

on the previously-fired blastholes and the surfaces and corners of the existing stope 

void, where the void node spacing typically varied from 0.5 to 1m along the corner 

line of the stope. In the case of a Normal Void monitoring orientation, all surfaces of 

the existing void were populated with void nodes. The final point along the VICD 

wave path was the desired transducer location. The VICD was the minimum total 

distance along the string of nodes from the explosive source to the monitoring 

location. The types of nodes used to define the aggregate wave path are illustrated in 

Figure 5.12. 

 

 
Figure 5.12. Conceptual view of different node types used to determine the VICD 

between a charge and a monitoring point with Parallel Void geometry. 
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Each of the charge nodes (as illustrated in Figure 5.12) were assigned a firing 

sequence based on the mine-issued charge plans. The process for constructing the 

wave paths for each charge on the ring started with the first firing blasthole. The 

likely wave path for the initial hole firing on the example ring (figure 5.12) is 

illustrated in Figure 5.13. 

 

 
Figure 5.13. Conceptual view of the VICD wave path for the first ring charge firing. 

 

After firing of each charge, the charge node was replaced by a fired node, which 

aided in representing the forming stope void in relation to the initiation sequence. As 

the fired charges intersected the design stope boundary, the row of void corner nodes 

were moved to the ring outline of the firing ring to represent the new post-blasted 

stope void face. Figure 5.14 demonstrates the wave travel paths after half of the ring 

intersecting the design stope boundary is detonated and the void nodes are moved to 

the fired ring void. 
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Figure 5.14. VICD of a firing blasthole after a number of holes have been fired 

forming the new stope void perimeter. 

 

Once the most probable string of nodes between a charge and a blast monitoring 

location was established for each blasthole, the VICD for each charge was calculated 

as the sum of the individual node-to-node distances using Equation 5.13: 
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(5. 13) 

 

Where  XS, YS, ZS = coordinates of a reference point in the explosive charge 

  Xi, Yi, Zi = coordinates of first intermediate void interface point 

Xi+n, Yi+n, Zi+n = coordinates of sequential void interface points 

  XM, YM, ZM = coordinates of vibration monitoring point 

 

The end product of the node-to-node process yielded a series of wave path strings 

from each blasthole to each transducer location around the seven monitored stopes 

(Figure 5.15). 
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Figure 5.15. Plan view of east wall (blue lines) and south wall (black lines) VICD 

wave paths for blasthole ring #4 in 220mLv mass blast of stope 24jC6HL. 

 

Due to the three-dimensional geometry of the open void with respect to the charge 

midpoints, several VICD wave paths in Figure 5.15 appear to pass through the stope 

void. This result is misleading in appearance, as the wave paths actually travel over 

the top of the stope and development void.  

 

5.6.3 Comparison of DG and VICD 

The difference between DG and VICD is small or negligible under certain void 

geometries such as the intact and shallow-angle parallel void classifications. In other 

monitoring geometries, the difference between DG and VICD can be substantial. To 

compare the effects of void geometry on minimum wave path distances, DG and 

VICD have been calculated for a ring of ten, 89mm diameter blastholes fired in stope 

24jC6HL at the BHP Cannington Mine. The DG and VICD source to sensor distances 

have been compared with one another along with the percent differences for the 

Parallel Void and Normal Void orientations. These results are illustrated in Figures 

5.16 and 5.17.  
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Figure 5.16. DG and VICD for a ring of blastholes along the Parallel Void orientation 

(left) and percent difference between DG and VICD for the ten holes (right). 

 

 
Figure 5.17. DG and VICD for a ring of blastholes along the Normal Void orientation 

(left) and percent difference between DG and VICD for the ten holes (right).  

 

Comparing DG with VICD, a slight increase in source to sensor distances in the 

Parallel Void monitoring position can be observed (Figure 5.16). This change would 

be unlikely to produce significant shifts in distance-based charge weight scaling of 

vibration values, although the presence of a single diffraction point could affect the 

wave field. In the Normal Void direction (Figure 5.17), significant differences in 

distance have been observed which would lead to a substantial shift in the vibration 

prediction model towards higher charge weight scaling factors. 
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5.6.4 Effect of Initiation Sequence on Wave Path 

The second consideration in modelling of VICD is the effect of blasthole initiation 

sequence within a blast on the wave path. The effect of blasthole firing sequence can 

significantly influence the results of distance modelling along affected paths, as the 

forming void creates both rock mass damage and alters the wave travel path. The 

proposed influence of initiation sequence on VICD is illustrated in Figure 5.18 for a 

common stope blasting geometry. The example in Figure 5.18 is a five-hole pattern 

(holes A-E) with ring burden of 2.5m and toe spacing of 5.0m. The firing sequence is 

noted by the numbers adjacent to the holes (#1-#5). As each hole is detonated, a void 

equivalent to one burden and spacing replaces the hole for use in wave path 

determination. Firing sequence 1 represents a common sequence of centre-opening 

and alternate firing along the ring towards the stope perimeters. Sequence 2 would be 

typically applied where there is an attempt to “smooth blast” the final wall of the 

stope or to fire sequentially away from a geologic feature of interest.  

 

 
Figure 5.18. Plan view of VICD wave paths from three of five detonating holes to a 

Parallel Void transducer for centre-out initiation (top) and sequential hole initiation 

(bottom) firing sequences. 
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Figure 5.18 illustrates the trend of either decreasing or increasing travel distances 

based on the firing sequence of the blastholes and the forming void. As the individual 

blastholes fire, the waves would be required to travel around the forming void prior 

to being recorded at the Parallel Void vibration transducer location. Table 5.7 

demonstrates the differences in wave path distances when comparing the two firing 

sequences. 

 

Table 5.7. Comparison of VICDs for firing sequences 1 and 2. 

VICD for Sequence 1 Firing 
(m) 

Mathematical 
Relationship 

VICD for Sequence 2 Firing 
(m) 

VICDA1 = 9.0 = VICDA2 = 9.0 

VICDB1 = 12.6 < VICDB2 = 14.0 

VICDC1 = 17.4 < VICDC2 = 19.0 

VICDD1 = 22.6 < VICDD2 = 24.0 

VICDE1 = 29.0 = VICDE2 = 29.0 

 

5.6.5 Effect of Wave Travel Path on Charge Weight Scaling of Peak 

Amplitude 

The influence of void-affected wave travel distance on the modelling and prediction 

of vibration amplitudes were investigated using log-scale linear regressions of cube 

root Scaled Distance and peak amplitude. Two models were compared in which the 

cube root Scaled Distance values were calculated using either DG or VICD for the 

same charges. The comparison used vibration monitoring results at a Normal Void 

accelerometer in the Southeast wall of stope 24jC6HL at the BHP Cannington Mine. 

All blast waves from the source holes were therefore required to travel around the 

stope void to the vibration monitoring locations in the opposite stope wall.  

 

The two variations of the vibration prediction model were compared by plotting the 

measured vector sum PPAs (VSPPA) against the cube root Scaled Distances 

calculated using either DG or VICD. Linear regressions were performed to determine 

the best-fit curves for each data set. The plot of both data sets is illustrated in Figure 

5.19. 
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Figure 5.19. Comparison of void-affected DG (black squares/black line) and VICD 

(grey triangles/grey line) cube root Scaled Distance models of VSPPA for the 

220mLv mass firing in BHP Cannington Stope 24jC6HL. 

    

The best-fit attenuation equations for DG and VICD-based Scaled Distance in Figure 

5.19 differ slightly in slope and significantly in intercepts and correlations. The 

improvement in the R2 value for the VICD model (0.71 versus 0.59 for the DG 

model) suggests that the use of void-corrected distance more accurately represents 

the measured vibration amplitudes as a function of cube root charge weight scaling. 

For the DG model, the peak amplitude attenuation relationship has been shifted to 

lower Scaled Distance values due to misrepresentation of the true wave travel 

distance. Lower values of vibration would therefore be predicted at all distances 

(void-related or intact) using the DG-based results.  

 

5.6.6 Comparison of Statistical Confidence of DG and VICD Models 

The two data sets represented in Figure 5.19 appear to be similar, and it is arguable 

that the scatter experienced in both data sets would negate the differences between 

the two characteristic best-fit curves. Basic statistical analysis of both data sets was 
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performed to determine the 95% and 98% upper confidence curves for comparison. 

The confidence curves were determined by adding multiples of the statistically-

derived standard errors to the best-fit intercept K value. The 95% upper confidence 

line intercept was one standard error above K and the 98% upper confidence 

intercept was K plus two standard errors. The slopes of the confidence lines were 

assumed to remain constant as defined by the best-fit lines. Table 5.8 lists the upper 

confidence log-log linear regression results for each model. 

 

Table 5.8. Log-log linear regression results for the void-affected VSPPA versus cube 

root Scaled Distance calculated using DG and VICD for the 24jC6HL mass blast.  

Model Best-fit 
Log(K) 

Log 
Standard 

Error 

Best-fit 
� 

95% 
Confidence 

Log(K) 

98% 
Confidence 

Log(K) 

VSPPA-SDDG 4.067 0.312 -2.54 4.379 4.691 

VSPPA-SDVICD 4.081 0.262 -2.42 4.343 4.605 

 

The reduced standard error for the VICD model suggests a higher degree of 

statistical confidence in predicting the measured values when compared with the 

results from the DG model. The differences between the best-fit, 95% and 98% 

confidence K values for the DG regressions when compared with the VICD values 

are significant. The best-fit regression constants listed in Table 5.8 indicate that the 

VICD model would predict higher values of VSPPA when compared with the DG 

model at higher values of SDCubRT resulting from larger travel distances. At reduced 

values of SDCubRT (< 0.75 m/kg0.33), the DG model would predict higher values of 

VSPPA.  

 

The improved correlation of the VICD model resulted in lower values of predicted 

VSPPA at reduced SDCubRT values using 95% and 98% confidence cases. For 

example, the DG model using the 95% confidence prediction of VSPPA at an 

SDCubRT value of 0.5 m/kg0.33 was 18% higher than the VICD model prediction. The 

98% confidence prediction using the DG model was 32% higher than the VICD 

results for the SDCubRT value of 0.5 m/kg0.33. These differences in predicted 
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maximum amplitudes would be expected to lead to over-prediction of zones of 

expected damage if peak amplitude blast damage models are used.  

 

5.6.7 Theoretical Investigation into the Influence of Underground Stope 

Voids on Blast Wave Attenuation 

The observed influence of existing stope voids on the measured vibrations in the 

monitored study stopes prompted a numerical investigation of void-affected wave 

propagation. The software package Wave2000 Plus® discussed in Chapter 3 was 

used to simulate the interaction of elastic waves with an existing stope void under 

geometries similar to those experienced during near-field blast monitoring at the two 

sponsor sites. Details of the modelling program and field validation of the results are 

discussed in Appendix 6. 

 

5.7 Discussion and Conclusions 

Traditional blast vibration analysis and prediction approaches based on charge 

weight scaling have been discussed and assessed using data collected during the 

author’s near-field blast vibration monitoring program. The results of various models 

used to predict peak amplitudes have been compared through linear regression to 

determine those with the highest correlations with measured vibration data. For the 

data subset investigated in this chapter, traditional charge weight scaling using 

square root and cube root Scaled Distance yielded correlation values similar to the 

more complicated scaling models proposed by Holmberg and Persson (1979) and 

Ouchterlony et al. (1993). Further comparison of values of Scaled Distance and the 

Holmberg term (a) revealed that for complex blasting geometries, no advantage 

would be gained by using the more mathematically complicated models. Approaches 

developed using fundamental wave propagation models such as the Lu-Hustrulid (Lu 

and Hustrulid, 2003) and the Sambuelli (2009) models also failed to improve 

predictive capabilities when compared with charge weight scaling approaches. 

 

The limitations of linear regression techniques using set charge weight scaling 

parameters were addressed by proposing nonlinear multi-variable analysis methods 

using the advanced statistical software package Statistica 8.0. The proposed analysis 
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technique determines the regression constants which define a three-dimensional 

regression surface without assumption set scaling factors based on the assumed 

source type. This approach was applied to prediction of peak amplitudes, energies 

and strains in Chapters 7 and 8 using the general charge weight scaling relationship.  

 

Development of a technique for determining the source to transducer distance under 

void affected geometries has been discussed. The minimum distances between 

blasthole charges and transducers determined using the VICD approach have been 

compared to the standard three-dimensional geometric distance (DG) for several 

void-affected data sets. Blast vibration analyses using cube root Scaled Distances and 

measured VSPPAs have been compared using both distance models. This analysis 

revealed that the VICD distance model improved the correlation of the best fit 

relationship and reduced the standard error. This improvement in correlation would 

be expected to lead to an increase in prediction accuracy if used in forward analysis. 

Numerical simulation of wave propagation around a stope void was also performed 

and is discussed in detail in Appendix 6. 
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CHAPTER 6 : PROPOSED ENERGY AND STRAIN-

BASED BLAST DAMAGE CRITERIA 

6.1 Introduction 

The methods used in the past for prediction of rock mass damage from blasting have 

included PPV-based empirical models such as the Swedish Tunnelling Damage 

Tables (Ouchterlony et al., 2002), laboratory or small-scale observations of 

fracturing (e.g. Kutter and Fairhurst, 1971; Shockey et al., 1974; Olsson et al., 2002), 

critical tensile plane strain models (e.g. LeBlanc et al.,1995; Heilig, 2002; Singh and 

Narendrula, 2004), failure stress/strain numerical models (e.g. Butkovich and Hearst, 

1976; Donzé et al., 1997; Katsabanis, 2001; Ma et al., 2004; Tawadrous and 

Katsabanis, 2007; Furtney et al., 2009) and continuum damage models (e.g. Grady 

and Kipp,1979; Yang et al., 1996). Despite the extensive research on the subject, a 

complete and accurate approach to predict blast-induced damage in realistic rock 

mass conditions has not yet been developed. 

 

Due to some of the limitations of existing empirical and semi-analytical blast damage 

prediction methods, a newly-proposed blast damage prediction approach developed 

by the author is discussed in this chapter. The damage prediction approach contains 

multiple components which address both near-field blast wave characterisation and 

the prediction of rock mass damage using various rock fracture criteria. The 

proposed criteria are based on energy and strain-related rock fracture principles used 

in fracture mechanics and rock mechanics. 

 

6.2 Existing Empirical, Semi-Analytical and Numerical Models 

to Predict Blast-Induced Damage 

Past researchers have used empirical, semi-analytical or numerical techniques to 

predict blast-induced rock mass damage. Results from these investigations have 

provided valuable information, but those based on empirical or semi-analytical 

damage criteria such as PPV or tensile plane strain do not accurately describe the 

complex rock mass loading conditions or blast-induced damage mechanisms for 

confined explosive charges.  
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Previously published blast-induced rock mass damage criteria have been established 

through observation of the results of laboratory, small-scale and field-scale blasting 

tests and dynamic rock breakage investigations. Some of these investigations have 

been reviewed and are discussed in Appendix 3. Some of the methods used to 

validate damage prediction models by indicating rock mass alterations have also 

been reviewed and are included in Appendix 8. 

 

6.2.1 Direct PPV-Related Rock Damage Models 

For four decades, the potential for vibration-related damage to engineered structures 

near blasting events has been assessed by peak particle velocity (PPV) criteria. Work 

conducted in Sweden in the 1970s extended this theory to rock mass damage around 

tunnels blasted in bedrock and quarry production blasts (e.g. Holmberg and Persson, 

1978 and 1979). The link between PPV and blast-induced damage was investigated 

over many blasting experiments, and PPV-related damage envelopes for different 

tunnel blasting explosive products and geometries were suggested. These standards 

were eventually included in the Swedish Tunnel Regulations (Ouchterlony et al., 

2002). Many researchers have adopted PPV as an indicator of potential rock mass 

damage, and have established vibration damage thresholds for use in blast design and 

minimisation of overbreak for tunnelling or mine development. Some suggested 

PPV-based damage thresholds are listed in Table 6.1. 

 

Table 6.1. PPV-based rock fracture criterion as published by past researchers. 

Researcher Blasting       
Conditions 

PPV Level  
(mm/s) 

Suggested 
Damage 

Holmberg and Persson 
(1978) 

Tunnelling-Swedish 
granite 

700-1000 Fresh fracture 

Page (1987) N/A 2500-3500 Rock breakage 

Zhang and Chang 
(1999) 

Crater blast- weathered 
granite 

162-194 Micro-cracking 

Rorke and Milev 
(1999) 

Simulated rock burst-  
unconfined quartzite 

650 Fracture of 
“hard rock” 
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The PPV values contributing to fresh rock fracture on different scales (micro to 

macro) in Table 6.1 cover a broad range. These published values were site specific 

for given blast configurations and did not consider other factors that could influence 

damage such as time-dependent stress-related effects, degree of ground 

reinforcement or surface support, existing geological conditions, excavation size, 

shape or orientation or existing stress-induced or blast-induced damage.  

 

6.2.2 Critical Tensile Plane Strain Damage Prediction Models 

A simple peak tensile plane strain rock mass damage criterion has been adopted by 

past researchers and applied to the prediction of blast damage based on plane wave 

assumptions (e.g. Holmberg and Persson, 1979; LeBlanc et al., 1995; Keller and 

Kramer, 2000). The assumption of plane wave conditions allows a tensile plane 

strain damage criterion to be linked with predicted or measured PPVs. The various 

published equations using the plane strain criterion have been referred to as critical 

tensile plane strain models in this thesis due to the derivation of the formula 

assuming plane strain conditions and a tensile rock fracture criterion. The critical 

tensile plane strain approach is semi-analytical and considers rock properties and 

stress-strain relationships to estimate values of PPV likely to cause tensile rock 

fracture (PPVcrit) or extension of existing fractures (PPVMin, PPVextension). The general 

derivation of the approach and published versions of the critical tensile plane strain 

equations are listed in Equations 6.1 to 6.4. 

 

Ef
VUCS

E
V

VPPV
TC

ppT
pcritTcrit

/

×
≈

×
=×= −

σ
ε

  
   

(6. 1) 

 

Where PPVcrit = critical PPV at which tensile damage occurs (m/s) 

  �T-crit = critical tensile failure strain (m/m) 

�T = rock tensile strength (Pa) 

Vp = P-wave velocity of the rock mass (m/s) 

  E = Young’s Modulus of rock (Pa) 

  UCS = quasi-static unconfined uni-axial compressive strength (MPa) 

  fC/T = ratio of UCS to �T 
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Alternate forms of Equation 6.1 have been outlined by Keller and Kramer (2000) 

based on Swedish criterion (Equation 6.2 to 6.4). 

 

E
V

PPV pC
crit ×

×
=

15
σ

          
(6. 2) 

 

Assuming that the Poisson’s Ratio is approximately 0.25 and fC/T equals 10: 
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(6. 3) 

 

And 
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ρ
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ρ
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×
×≈

×
×= 021.031.0

      
(6. 4) 

 

Where  PPVMin = minimum PPV at which fracture extension can occur (m/s) 

�DT = dynamic tensile strength of rock (15 x �C, Pa) 

  �R = density of rock (kg/m3) 

 

Some generally-proposed PPV values expected to cause different severities of rock 

mass damage ranging from rock disintegration (PPVfragmentation) to fracture extension 

(PPVextension) have been expressed by Heilig (2002) in relation to PPVcrit (Equations 

6.5 and 6.6). These values have been roughly based on strain theories of rock 

breakage. 

 

critionfragmentat PPVPPV ×= 4        (6. 5) 
 

4
crit

extension
PPVPPV =

        
(6. 6) 

 

Using the Equations listed from 6.1 to 6.6, various researchers have suggested values 

of PPVfragmentation, PPVcrit and PPVextension for prediction of rock mass damage based 

on site-specific rock properties. The results are listed in Table 6.2. 
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Table 6.2. PPVfragmentation, PPVcrit and PPVextension values published in past research. 

Researcher PPV Level  
(mm/s) 

Suggested Damage 

Forsyth (1993) 1275 Fracture of “good” rock mass 

LeBlanc et al. (1995) 
 

1450 
350 

Fresh fracture 
Fracture extension 

Keller and Kramer (2000) 
 

383 
1459 

Fracture extension 
Fresh fracture 

Heilig (2002) 
 
 

400 
1130 
4500 

Fracture extension 
Fresh fracture 
Fragmentation 

Singh and Narendrula (2004) 1500 Fresh fracture 

 

The extent of damage can be predicted by comparing the results of blast vibration 

monitoring and analysis with the various PPV values to determine the distances from 

an explosive charge where the critical PPV values are exceeded. This approach 

defines a series of axis-symmetric damage envelopes of given radius as specified by 

the severity of damage (fragmentation, fresh fracture or fracture extension). Figure 

6.1 illustrates the damage envelopes predicted by Heilig (2002) around 102mm 

diameter ANFO-charges at the Kanowna Belle Gold Mine. 

 

 
Figure 6.1. Predicted damage envelopes perpendicular to the axis of a 102mm 

diameter ANFO at the Kanowna Belle Mine (after Heilig, 2002). 
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6.2.3 Limitations of the Critical Tensile Plane Strain Model 

Application of Equations 6.1 to 6.4 to estimate critical vibration amplitudes which 

are expected to induce tensile mechanism blast damage requires careful 

consideration of the input variables. These considerations are related to the selection 

of the intact rock compressive or tensile strength, the ratio of UCS to �T, the rock 

elastic properties and the dynamic loading conditions experienced from blast waves. 

As discussed in Chapter 2, the behaviour of rock-like materials experiencing 

dynamic loading conditions differs significantly to that for quasi-static loading. 

Compressive and tensile strengths can increase by an order of magnitude due to the 

high strain rates associated with blasting-induced dynamic loading. In addition, the 

dynamic Young’s Modulus can differ significantly from the static Young’s Modulus.  

 

The strength of intact rock and discontinuities within a confined rock mass varies 

with scale effects and confining stresses. Over the scales at which high-frequency 

blast waves will load a material along the axis of propagation (i.e. the wavelength), 

scale effects can become important when compared with the characteristic static 

testing size (NQ core for example). To further complicate the determination of rock 

mass strength, the in situ strength would be expected to be less than the values 

determined from laboratory-scale testing of intact rock samples due to the influence 

of discontinuities. Rock mass tensile strength in the presence of an excavation is 

assumed to be near zero based on the weak tensile properties of most types of 

discontinuity (Brady and Brown, 2004). 

 

The original applications of blast vibration-related plane strain were to assess the 

potential for damage to walls of engineered structures as a result of far-field blast 

vibrations (Langefors and Kihlström, 1978). This approach was then extended to 

investigating breakage of burden from the reflection of compression waves at a free 

face (Holmberg and Persson, 1978). A significant theoretical and mechanistic 

dislocation has occurred when translating the original model of plane strain-related 

damage of surface structures to predicting damage around a confined blasthole.  

 

Under conditions of propagating body waves in pre-stressed media, the failure 

mechanisms proposed in the model (defined by static unconfined tensile strength and 
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tensile plane strain) are no longer feasible and therefore the terms used in the 

equation must be viewed critically. Several of the revised forms of the equation have 

attempted to consider the dynamic loading conditions through use of a dynamic 

tensile strength (�DT); but, as illustrated in Chapter 2, dynamic strength varies with 

strain rate. Additional considerations involve the dynamic elastic properties and 

wave propagation velocities of an in situ rock mass, which can differ significantly 

from values determined from laboratory testing of intact rock samples.  

 

Existing semi-analytical rock mass damage prediction models such as the critical 

tensile plane strain approach grossly simplify rock damage mechanisms and loading 

conditions. Using the tenets of rock mechanics and fracture mechanics, rock mass 

damage criteria related to rock failure strains and energies have been proposed by the 

author in Section 6.5. These approaches more accurately describe the breakage 

mechanisms under complex stress wave loading when compared with a model using 

plane strain assumptions and static rock properties. The proposed strain and energy-

based damage criteria represent a multi-tier analytical approach to individually 

predict blast damage to intact rock and existing discontinuities. The influence of 

mining-induced static stresses, commonly experienced in underground mining, are 

also considered. 

 

6.2.4 Numerical Modelling of Blast Damage Zones 

Many researchers in the past have utilised numerical models to predict blasting 

behaviour prior to physical testing or to better explain observed behaviours. The 

levels of complexity in representing the geometry, spatial relationships, materials and 

damage processes vary significantly in the published literature. Additionally, the 

applied numerical codes or modelling packages cover a wide range. As computing 

power has increased exponentially in recent years, complex representations of 

material properties and dynamic loading conditions have developed such that more 

complex systems of interaction have been investigated. Table 6.3 outlines some of 

the numerical modelling parameters used in the published literature to investigate the 

breakage process. 
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Table 6.3. Numerical modelling parameters and failure criteria used in dynamic 

breakage investigations. 

Researcher Model Modelling 
Package 

Material 
Model 

Damage Criteria 

Butkovich and 
Hearst (1976) 

1-D SOC 
(Sandia) 

Elastic-
plastic 

Distortional strain 

Kleine et al. (1990) 3-D Custom Discrete 
blocks 

Comminution 
energy 

Preece and Thorne 
(1996) 

3-D PRONTO-
3D 

Fractured 
continuum 

Volumetric strain 

Donzé et al. (1997) 2-D Discrete 
element 

Cohesive 
elastic-brittle 

Normal to shear 
strength ratio 

Keller and Kramer 
(2000) 

3-D QED Linear-elastic Tensile strain 

Katsabanis (2001) 2-D AutoDyn Mohr-
Coloumb 

Cumulative 
damage (AutoDyn) 

Ma et al. (2004) 2-D AutoDyn Plastic-elastic PPV and effective 
tensile strain 

Tawadrous and 
Katsabanis (2007) 

2-D AutoDyn Elastic-
plastic 

5 x static strength 

Yoon and Jeon 
(2009) 

2-D PFC2D Bonded 
particle 

Tensile and shear 
“bond strength” 

Onederra et al. 
(2009) 

3-D HSBM Lattice- 
particle 

Tensile “bond 
strength” 

 

6.2.5 Methods of Indicating Rock Mass Alteration to Validate Blast 

Damage Predictions 

In the published research, many methods of assessment have been used to validate or 

calibrate blast damage prediction models through indicating changes to rock mass 

properties. These methods have included direct observation (e.g. Langefors and 

Kihlström, 1978; Yu, 1980; Holmberg et al., 1984), indirect observation using 

borehole fracture logging or laser surveying of voids (e.g. LeBlanc et al., 1995; 

Germain and Hadjigeorgiou, 1997; Villaescusa et al., 1997; Liu et al., 2000; Keller 

and Kramer, 2000), geophysical characterisation methods (e.g. Spathis et al., 1985; 

Fletcher et al., 1989; Grandjean and Gourry, 1996; Zou and Wu, 2001; Cardarelli et 
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al., 2003; Serzu et al., 2004; Malmgren et al., 2007), measurements of physical 

deformation (e.g. Li, 1993; Liu and Proulx, 1995; Villaescusa et al., 1997; Scott, 

1998) rock testing of recovered core (e.g. Holmberg and Persson, 1978; Brinkmann, 

1990; Ouchterlony et al., 1993; Kilebrant et al., 2009, Ouchterlony et al., 2009) and 

measurements of the hydraulic properties of the rock mass (e.g. Pusch, 1989; Pusch 

and Stanfors, 1992; Souley et al., 2001). Details of these methods of rock mass 

damage indication or measurement are discussed in Appendix 8. 

 

6.3 Wave Energy as a Defining Wave Quantity Instead of PPV 

Semi-analytical models dedicated to the prediction of rock mass damage from 

blasting are typically related to critical PPV values or plane strains generated as a 

function of PPV. For surface waves monitored over large distances, assumptions of 

PPV or plane strain as a damage criterion may be valid due to filtering of frequency 

spectra, decoupling of wave types and the dominance of surface Rayleigh waves. 

Within the confined rock mass near blasting events, wide frequency spectra and the 

coupling of P- and S-waves generally lead to irregular distributions of energy within 

recorded waves. For complex wave conditions, an instantaneous value at one point in 

time such as peak amplitude does not appear to accurately characterise near-field 

waveforms. For this reason, wave energies and strain histories over the duration of 

wave activity become useful to more accurately represent near-field blast waves. 

 

6.3.1 Comparison of Peak Amplitude and Waveform Energy  

Several wave characteristics were observed during the author’s analysis of near-field 

waveforms that contributed to significant data scatter when employing traditional 

peak amplitude regression approaches. These characteristics were related to 

variations in wave frequency spectra and arrivals of shear wave components. One 

observed effect of these two characteristics was inconsistent peak amplitude intervals 

(the time between the wave arrival time and the vector sum peak amplitude). An 

additional characteristic of the observed near-field waveforms was the presence of 

multiple, high-amplitude sub-peak oscillations prior to or immediately following the 

peak. Instantaneous peak amplitude would likely grossly underestimate the damage-

potential of the wave under these circumstances.  
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The use of instantaneous peak amplitude as a damage criterion would suggest that 

two waves of equal peak amplitude, but significantly different energy content, 

frequency spectra and duration would be considered equal. Figure 6.2 compares two 

peak vector sum vibration waveforms of equal PPV but largely different wave 

energy content, duration, peak interval and wave shape. 

 

 
Figure 6.2. Comparison of two near-field vector sum particle velocity waveforms 

with equal VSPPV values but largely different durations, peak interval times (tpeak) 

and energy contents.     

 

In traditional blast vibration scaling approaches and blast damage prediction models 

using instantaneous peak amplitude, both waveforms pictured in Figure 6.2 would be 

weighted equally. This is despite the significant differences in frequency contents, 

durations and energy contents. These types of variations in waveforms were 

observed in a majority of the single-hole vibration traces collected during the 

author’s blast vibration monitoring program. Alternate vibration quantities rather 

than peak instantaneous amplitude were therefore considered to more effectively 
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characterise wave behaviours. The value deemed appropriate to represent the large 

range in waveform shapes and characteristics was the energy density contained 

within the entire active portion of the wave passing a point in the rock mass.  

 

6.3.2 Calculation of Wave Energy for use in Vibration Analysis 

Wave kinetic energy has been used by many researchers in the past to characterise 

seismic waves in geophysics (e.g. Howell and Budenstein, 1955; Nicholls, 1962), 

investigate the partitioning of energy within a blast (e.g. Lownds, 1991; Persson, 

1996; Hamdi et al., 2001; Sanchidrián et al., 2007) or to predict rock mass or 

structural damage (e.g. Langefors and Kihlström, 1978; Kleine et al., 1990; Li, 1993; 

Scott, 1998). In the previously mentioned models, the maximum instantaneous 

kinetic energy flux and energy density or single-period kinetic energy flux and 

energy density have been the key wave characteristics. Calculation of the peak 

instantaneous kinetic energy flux (Efi), single-period kinetic energy flux (Ef), 

instantaneous kinetic energy density (Ei) and single-period kinetic energy density 

(Ed) utilised Equations 6.7, 6.8, 6.9 and 6.10, respectively (after  Li, 1993). 

 

( ) ttVCE prfi Δ⋅⋅= 2

2
1 ρ         (6. 7) 

 

( )�
+

⋅⋅=
Tt

t
prf dttVCE

0

0

2

2
1 ρ        (6. 8) 

 

( )2

2
1 tVE ri ⋅= ρ         (6. 9) 

 

( )�
+

⋅=
Tt

t
rd dttVE

0

0

2

2
1 ρ        (6. 10) 

 

Where   �r = density of rock (kg/m3) 

  Cp = P-wave velocity (m/s) 

  t0 = arrival time of wave (s) 

  T = single period of wave (s) 

  V(t) = wave particle velocity at time t (m/s) 
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Research in dynamic rock fracture due to stress wave loading has identified that 

dynamic damage potential is highly influenced by both the intensity of loading and 

the duration over which it is applied, as discussed by Birkimer (1970). Equations 6.7 

or 6.9 for calculation of the instantaneous kinetic energy flux or kinetic energy 

density therefore fail to consider the duration of stress wave loading or the energy 

history. Such an approach can introduce gross underestimation of potential damage 

from a complex wave as discussed previously concerning the use of PPV.  

 

Single-period kinetic energy flux or density (Equations 6.8 and 6.10) introduces a 

loading duration effect over which the wave energy is applied and provides a partial 

solution for complex wave loading. As proposed by Li (1993), calculation of single-

period kinetic energy flux or density requires an estimation of the peak-contained 

wavelength. This approach has some limitation as the use of a single sine wave 

approximated wavelength cannot accurately represent the wide frequency spectra 

within a complex wave. 

 

Another argument against the use of single-period kinetic energy is that high-

frequency, near-field waveforms can experience a number of large-amplitude 

oscillations near the peak amplitude-containing oscillation. Therefore, the single 

period energy does not necessarily capture the entire damage-inducing energy of the 

wave. Armstrong (2004) proposed considering the entire wave energy passing 

through a point within a rock mass to investigate damage occurring as a result of the 

entire time history of energy. The energy contained within a propagating wave is also 

used in earthquake analysis and mine seismic analysis. This approach has been 

adopted in the author’s proposed blast vibration analysis technique through 

calculation of the total wave energy density (EDW-tot) to help predict both wave 

behaviour and damage potential. 

 

6.3.3 Total Wave Energy Density 

The decision to use the total wave energy density (EDW-tot) of single-hole waveforms 

to characterise near-field blast vibrations instead of PPV or instantaneous energy was 

based on several observations of monitored near-field waves. These observations 

included: 
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• Highly variable peak velocity times after wave arrival 

• Wide frequency spectra 

• Variable number of near-peak amplitude oscillations 

• Variable energy distribution within the peak oscillation half-period 

• Decreasing percentage of total energy content within peak oscillation versus 

peak amplitude 

 

Of the listed considerations, the percentage of energy within the peak-containing 

half-period compared with the entire wave energy provided the most compelling 

argument for use of the EDW-tot as the defining vibration quantity. The variability in 

distributed energy could have been related to the presence of high-frequency 

components within the near-field waveforms, where considerable energy was 

distributed outside of the peak amplitude oscillation. Figure 6.3 illustrates this effect 

by comparing the instantaneous energy density (Ei), calculated at the VSPPV using 

Equation 6.9, with total wave energy density (EDW-tot) within the entire waveform. 

Both values have been plotted against the measured VSPPV. 

 

 
Figure 6.3. Comparison of Ei and EDW-tot versus measured VSPPV for the BHP 

Cannington stope 24jC6HL 200mLv Northeast wall data.  
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As observed in Figure 6.3, the divergence of EDW-tot from Ei with increasing VSPPV 

indicates a change in the percentage of energy carried within the peak oscillation as a 

function of the peak amplitude. Mandal et al. (2007) also observed an irregular 

distribution of energy within the peak oscillation when compared with the total wave 

energy related to the distance of monitoring.  

 

Many of the blast monitoring studies used to develop traditional methods of vibration 

analysis have been concerned with compliance monitoring, where peak vibration 

levels rarely exceed 50mm/s. For low peak vibration amplitudes, the difference 

between total wave energy and peak instantaneous energy is negligible, but blast-

induced body waves in the near-field and extreme near-field could produce peak 

amplitudes of up to 10m/s over larger frequency spectra. At a PPV of 10m/s, the 

extrapolated EDW-tot would be over 12.5 times higher than the Ei according to the 

relationships in Figure 6.3. Therefore, divergence between Ei and EDW-tot 

extrapolated to higher values becomes more evident and the ability to characterise 

the damage potential using the instantaneous energy is further reduced. 

 

Calculation of the energy contained within a complex waveform requires several 

stages of waveform processing and a number of operations. As discussed in Chapters 

4 and 5, all waveforms collected during the blast vibration monitoring program 

required frequency filtering, mathematical derivation of velocity or acceleration 

waveforms, amplitude filtering and lastly calculation of the vector sum waveforms. 

The waveforms were then imported into a custom Excel spreadsheet to perform peak 

amplitude lookups and calculations of the cumulative areas under the squared vector 

sum velocity waveforms. The peak search and area calculation criteria were based on 

the specified hole number, dedicated arrival time of the single-hole wave packet 

determined from the waveform and a maximum wave duration. The results of 

calculations of the cumulative areas under the time-domain squared vector sum 

velocity waveforms (VSPV(t)2) are illustrated in Figure 6.4 for the two waveforms in 

Figure 6.2.  
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Figure 6.4. Comparison of VSPV(t)2 waveforms (black lines) and cumulative area 

under each waveform (red line) as an indication of the wave energy.   

 

When comparing the output of the two cumulative area calculations (indications of 

energy), it becomes clear that the single peak value of instantaneous energy or PPV 

would severely underestimate the damage potential of each wave packet. For the 

same VSPPV, the energy content in the lower waveform is almost 2.5 times greater 

when compared with the upper waveform. 

 

The mathematical function that has been employed to calculate the area under the 

squared waveform was a point-to-point trapezoidal area estimation technique. 

Equations 6.11 and 6.12 show the integral and summation forms of the trapezoidal 

area approximation approach. 
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Where  VSPV(t) = vector sum particle velocity at time t (mm/s) 

  tarrival = time of wave arrival (s) 

  t90%E-loss = time of 90% energy attenuation (s) 

 

The results of the integration process yielded a value with units of mm2/s. This unit 

does not directly represent an energy density value or match the output units of 

calculating the instantaneous kinetic energy density (Ei). EDW-tot was therefore 

determined from AW-tot using the calculation process for energy flux and subsequent 

energy density, applied over 1m2 unit areas and 1m3 unit volumes. Equation 6.13 is 

provided to calculate EDW-tot from AW-tot and the resulting units are kgm2/(s2m3) or 

J/m3.  

 

u

utotWpr
totW V

AAV
ED

⋅⋅⋅
= −

−

ρ
       (6. 13) 

 

Where  �r = rock density (kg/m3) 

  Vp = P-wave velocity (m/s) 

  AW-tot = cumulative area under VSPV2 waveform (m2/s) 

  Au = unit area (1m2) 

Vu = unit volume (1m3) 

 

A difference can be observed in the calculation of the energy content when 

comparing Equation 6.13 with Equations 6.7 to 6.10. Equations 6.7 to 6.10 have been 

applied such that only the kinetic energy is calculated. The calculation of EDW-tot in 

Equation 6.13 lacks the ½ factor for consideration of only the kinetic energy. The 

suggested approach allows for both the kinetic and stored potential energy (strain) 

components to be considered, such that the state of strain within the rock mass over 

the entire duration is assumed to be continuous.  
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6.3.4 Additional Blasting Assessments using EDW-tot 

Due to large variations in observed wave properties recorded for similarly-charged 

holes at similar distances, the true nature of energy transmission within a single 

blast-induced wave is not well understood. When the wave-fields from multiple 

holes interact, an additional level of complexity is added. Blast vibration prediction 

models based on peak instantaneous amplitude cannot effectively deal with the 

interaction of multiple waveforms in the near-field. This is due to unknown 

contributions of each interacting charge to the measured peak amplitude. Although 

there is no standard treatment for calculating combined average Scaled Distances for 

interacting holes, several methods can be used to change the weighting distribution 

of each charge. These methods include: 

•  Summation of multiple charge weights and averaging individual distances 

• Averaging individual charge weights and distances 

• Weighting of single charge weights based on relative distance 

• Deconvolution of the multiple-hole waveform into seed waves relative to hole 

firing times, assumed arrival times and attenuations 

  

Under conditions of multiple blasthole interaction, EDW-tot may provide a method for 

assessment of vibration behaviours without considering complex individual charge 

weighting equations. The calculation of EDW-tot can be applied over the entire 

waveform where multiple holes interact. The combined charge weight of the multiple 

charges could therefore be considered, along with the average distance from each of 

the charges to the monitoring point.  

 

The multiple-hole energy approach may also provide a method of indirectly 

assessing the efficiency of a blast design, geometry or initiation timing. This 

approach would examine the percentage of total input explosive energy reporting as 

excess elastic seismic energy at vibration monitoring points (Fleetwood, 2010). 
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6.3.4.1 Specific Amplitude or Energy Attenuation 

Energy carried by an elastic wave attenuates through several different mechanisms 

while propagating in a rock mass. These include dilation or slip of discontinuities 

and internal losses from inter-grain friction. The transducer configurations used in 

the author’s blast vibration monitoring program have allowed wave energies to be 

calculated over various wave travel distances and orientations. Data recorded at 

different transducers locations have allowed specific attenuations to be determined 

along defined orientations. 

 

Specific amplitude or energy attenuation assessments are performed by comparing 

the measured amplitude or calculated wave energy at one monitoring point with that 

at a second or third monitoring point on an array of transducers. Equation 6.14 is 

used to calculate the loss of energy density (EDloss) between two monitoring 

locations. 

 

21 totWtotWloss EDEDED −− −=        (6. 14) 
 

Where  EDW-tot1 = wave energy density at transducer #1 (kJ/m3) 

  EDW-tot2 = wave energy density at transducer #2 (kJ/m3) 

 

The differences in wave travel distances between the two transducers allow the 

specific amplitude or energy density attenuations per metre (Aloss/m or EDloss/m, 

respectively) to be determined. These values can be compared along multiple 

orientations to give an additional indication of the rock mass conditions along 

different wave travel pathways. Equation 6.15 is used to calculate the specific energy 

attenuation per metre (EDloss/m).   

 

12

21
/ DD

EDEDED totWtotW
mloss −

−= −−        (6. 15) 

 

Where  D1 = distance from a blasthole to transducer #1 in a given array (m) 

  D2 = distance from blasthole to transducer #2 in a given array (m) 
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To investigate the input parameters that most closely affect the energy loss per metre 

in the elastic propagation zone, different charge and geometric factors were plotted 

against the specific energy attenuation. The factor that was discovered to be most 

closely related to the energy attenuation was the input energy density at the first 

transducer in each array. Figure 6.5 demonstrates the relationship between the energy 

density loss per metre of travel and the input energy density. 

 

 
Figure 6.5. Relationship between energy attenuation per metre of travel (EDloss/m) and 

input energy density (EDW-tot1) for BHP Cannington stope 24jC6HL 200mLv 

Northeast wall data. 

 

The linear relationship between the input energy and EDloss/m observed in Figure 6.5 

indicates that higher wave energies resulting from increased charge weights or 

reduced distances experienced higher attenuation rates than lower-energy 

waveforms. This would suggest that a higher degree of induced damage or 

discontinuity activation would result from larger input energies, even after the wave 

had passed into the supposedly elastic wave propagation zone. 

 

A secondary indication from Figure 6.5 is that the attenuation rate varies with the 

energy contained within a wave and therefore does not obey set linear elastic 

attenuation laws as specified in the elastic wave theories. This change in attenuation 

could be attributed to the interaction between the wave and existing discontinuities. 

To further investigate the observed behaviour of energy attenuation, specific 
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amplitude attenuation analyses using measured VSPPVs and VSPPAs have also been 

performed. The observed attenuation behaviours of peak amplitudes closely matched 

the attenuation behaviour of energy density, although better model correlations and 

more consistent results were generally obtained amongst differing data sets using 

specific energy attenuation.  

 

The linear relationship between the EDW-tot at the first transducer and the EDloss/m in 

Figure 6.5 suggests that a further step of data normalisation can be applied to 

completely isolate the source effects. By dividing EDloss/m by the input energy, the 

rock mass attenuation rate (RMAR) could be determined independent of the 

blasthole parameters. This type of analysis can aid in determining a general anelastic 

wave attenuation relationship for a rock mass or to investigate varying attenuation 

rates along different orientations within the same rock mass. Figure 6.6 illustrates the 

results of normalising the data set in Figure 6.5 relative to the input energy (dividing 

EDloss/m by EDW-tot1) to obtain a source-independent attenuation equation based solely 

on the distance of wave travel from the source to the transducer array. 

 

 
Figure 6.6. Rock mass energy attenuation rate (RMAR) resulting from dividing 

EDloss/m by EDW-tot1 shown in Figure 6.5. 

 

The best fit attenuation equation for the data set in Figure 6.6 can be defined by two 

regression constants, KA and �, where KA is the intercept value (2.33) and � is the 
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power term (attenuation slope, -1.03). For the data sets analysed in the attenuation 

study, the values of KA ranged from approximately 0.3 to 3.5 and � ranged from -0.7 

to -1.2. The differences between the attenuation equations or Rock Mass Attenuation 

Rates (RMARs) could be used to compare the specific attenuation of energy along 

multiple orientations in the same rock mass, as illustrated in Figure 6.7. 

 

 
Figure 6.7. Comparison of RMARs for two wave propagation orientations from data 

measured in two walls of Cannington stope 24jC6HL.  

 

A general behaviour of lower attenuation rate can be observed for the Southeast wall 

of the stope when compared with the Northeast wall due to the reduced slope. The 

indicated attenuation rate provides an additional tool that can be used in conjunction 

with other geotechnical assessment methods such as discontinuity mapping, fracture 

frequency analysis or wave velocity (discussed in Chapters 7 and 8) to gain a better 

understanding of rock mass characteristics. The energy attenuation rate can also aid 

in identifying transducers that have been subject to poor coupling, erroneous output 

voltages or geological influence. An example of this effect has been observed in 

several data sets where the transducers were located near large geologic features such 

as faults or shear zones. Upon plotting of the affected data sets, the slopes of the 

attenuation curves were positive instead of negative. Using data that has been 

affected by shielding or poor coupling can adversely influence vibration prediction 

results. 
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6.3.4.2 Interpretation of the Rock Mass Attenuation Rate Curves 

It is proposed by the author that the value of � in the RMAR analysis can be related 

to the attenuation of the wave in intact rock blocks within a rock mass, otherwise 

considered the elastic attenuation rate. The observed variations in the values of � 

were small when compared with the variations between KA values. Over a number of 

data sets, the average value of � was found to be approximately -1 (linear). 

Approximately linear attenuation of normalised energy over distance has been 

observed by past researchers, allowing the simplified assumption of near-linear 

behaviour (Howell and Budenstein, 1955).  

 

Using the linear slope assumption, the energy attenuation over distance became 

highly dependent on the value of KA. No attempt has been made in the current work 

to characterise the rock mass properties defining the value of KA, but it has been 

proposed that it is linked to the fracture frequency, the condition of in-situ 

discontinuities and interaction between the wavefront and the fracture planes. 

 

6.3.5 Limitations of Energy as a Rock Mass Damage Criterion 

Some questions arise when considering the total energy of a waveform as a stope-

scale rock mass damage criterion. As explained by Langefors and Kihlström (1978) 

and observed in earthquakes, the energy content of a wave of low frequency can be 

higher than the energy contained within a wave of equal amplitude and higher 

frequency. The lower frequency wave can produce significantly higher 

displacements and consequent strains than a higher frequency wave, but low 

frequency vibrations were generally not encountered in the near-field of blasting 

events as indicated by the monitoring program. Therefore, the concept of direct 

comparisons of total wave energy as a defining wave property to investigate 

localised blast damage can be justified for the case of high-frequency, confined near-

field body waves.  

 

Rock mass failure energy (discussed in Section 6.5) is not a quantity that has been 

adequately researched and identified as appropriate for application to complex 

fracture systems. Fracture mechanics investigations of stored strain rupture energy or 

fracture energy typically utilise small, unconfined samples with an existing crack of 
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known length and shape. In some cases, the stored rupture strain energy or fracture 

energy value can be related to the fracture toughness or material strength, which 

depend on the loading rate, size of the initial crack, sample size and the thickness of 

the intact material ligament (e.g. Krech, 1974; Oh and Chung, 1989; Wu and Zhang, 

1989; Ohlsson et al., 1990). For nearly-isotropic materials such as concrete and some 

rock types, linear relationships have been observed between the material strength and 

the fracture energy (e.g. Wu and Zhang, 1989 and Vásárhelyi et al., 2000).  

Additional research is required to determine fracture energies under different 

geometries and levels of confinement for application to in situ rock mass damage 

from dynamic loading. 

 

6.4 Ground Strains from Blasting 

A common treatment for blast-induced ground strain is the assumption of plane wave 

behaviour (as outlined by Langefors and Kihlström, 1978, Holmberg and Persson, 

1978, and others). This approach was adopted in development of the critical tensile 

plane strain blast damage prediction model discussed in Section 6.2.2. The plane 

wave approach assumes that the wave field produced by an explosive charge is 

similar to the waves propagating through a slender rod created by controlled dynamic 

uni-axial impact loading. For elastic plane wave propagation through homogeneous, 

infinite media, the longitudinal strain (�r) can be calculated using the particle velocity 

(Vr) and the longitudinal wave velocity (c) as given in Equation 6.16 (Ambraseys and 

Hendron, 1968). 

 

c
Vr

r =ε
         

(6. 16) 

 

Extensions of the plane strain assumption have been applied in the past to estimate 

volumetric or peak axial strains, as observed in the critical tensile plane strain blast 

damage prediction approach. These extensions are discussed briefly in the following 

sections along with a method proposed by the author for calculating the wave-

induced mean normal dynamic strain from the stored strain energy density.   
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6.4.1 Peak Axial Strain from Complex Waveforms using Plane Strains 

Past applications of the critical tensile plane strain approach have adopted a 

simplified extension of Equation 6.16 to calculate the maximum axial strain using the 

vector sum PPV (VSPPV) from bi-axial or tri-axial monitoring and the P-wave 

velocity. The assumed wave condition is that of three orthogonal plane waves 

propagating together as a wave front. The assumed peak loading condition using this 

approach is one of axial tensile strain (�max) in the peak vector direction. Figure 6.8 

illustrates the conceptual process of calculating the maximum axial strain from tri-

axial monitoring results and the rotation of the unit volume towards the peak axial 

(maximum principle) strain. 

 

 
Figure 6.8. Rotated unit volume in relation to peak axial strain resulting from the 

vector direction of VSPPV.     

 

6.4.2 Limitations of the Assumption of Peak Axial Normal Strain from 

Concurrent Orthogonal Plane Strains 

The assumption that peak axial tensile strain occurs in the resultant PPV vector 

direction is exceedingly simplistic. This loading assumption does not consider the 

sense of the three normal dilatational strain components (compressive versus tensile) 

based on the polarity of the blast wave oscillation. Vector sum calculations 

effectively remove the polarity of the vibration trace, leading to misrepresentation of 



Chapter 6 .Proposed Energy and Strain-Based Blast Damage Criteria  137 

the true normal strain conditions. This factor is likely to be more noticeable for the 

state of strain induced by body waves within a confined rock mass.  

 

Another factor that must be considered in the calculation of normal strains from 

measured orthogonal waveforms is the effect of transducer orientation on the 

individual strain components. Variations in transducer orientations with respect to 

the charge locations would be expected to result in differences in the vibrations 

measured on the three orthogonal components. These variations would inevitably 

result in differences between the calculated axial strain magnitudes and possibly 

senses (tensile versus compressive). 

 

For unconfined conditions, such as at the surface of an excavation or at the ground 

surface, the state of poly-axial strain may be considered to be less important with 

regards to rock surface behaviour. This is due to the zero-stress boundary loading 

conditions and surface wave activity, where lateral strain components will not 

significantly affect the behaviour of the material. Within a confined rock mass or at 

locations near excavations, the state of mining-induced static strains and the sense of 

the dynamic strain components may significantly affect the material behaviour. At 

adequate distances from an excavation boundary, typical mining-induced static 

volumetric strains will be mostly compressive in nature and the magnitude and 

principal directions can vary. Near excavations or late in a mining sequence, static 

tensile strains or losses of confinement can be introduced due to stress redistribution, 

requiring lower induced dynamic tensile strains to cause damage.  

 

6.4.3 States of Normal Strain Assumed from Recorded Tri-Axial 

Waveforms 

Traditional strain-based blast damage prediction approaches typically assume applied 

tensile strains and tensile material strength criteria, regardless of the actual polarity 

of the blasting vibrations at the time of the peak amplitude. This simplistic treatment 

of strain loading conditions can lead to gross overestimation of damage, as the 

polarity of the wave components (and associated strain) at the peak vector sum 

motion can be either compressive or tensile. Observation of waveforms recorded 

during the author’s blast vibration monitoring program for a series of blastholes of 
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identical charging and similar geometries highlights this variability in polarity and 

consequent normal strain conditions.  

 

Polarity analysis has been made possible in the blast vibration monitoring program 

presented in this thesis due to close orientation control of the installed transducers. 

Particular consideration of the polarity of the components with regards to the 

directions of expected motions was also given during transducer manufacturing and 

installation. The control of component direction and installation led to the following 

relationship between particle motion and state of strain: 

• Tensile axial strain for negative component velocities  

• Compressive axial strain for positive component velocities  

 

At a single point in a rock mass at a given time, several different states of strain can 

exist based on the polarity of the blast wave components. The radial normal strain 

component �xx can be either compressive or tensile based on the wave polarity at that 

instant in time. The tangential stress and strain components from a purely elastic 

spherical or cylindrical wave-front is assumed to induce dilatory loading, allowing 

�yy and �zz to only be tensile when �xx is compressive. The complex wave-fields 

generated in the near-field of blasts do not necessarily behave as ideal spherical or 

cylindrical waves due to rotation of wave fronts from diffraction, refraction and 

reflection, conversion of wave types and dominant shear wave behaviour.  

 

The individual component particle velocity polarities observed in waveforms 

recorded by the author suggests wave loading conditions similar to that predicted by 

Favreau (1969), where individual orthogonal strain components exhibit some 

“pairing” of polarity. Component pairing assumes that when one strain component is 

compressive, the other two components will be tensile and vice-versa. The potential 

damage-inducing load on the material would therefore be a state of axial 

compression or tension with bi-axial lateral tension or compression, respectively. 

Component polarities of velocity waveforms recorded in the thesis blast vibration 

monitoring program were analysed for a series of blastholes under conditions of 

favourable transducer alignment (i.e. transducer components oriented along the 

assumed principal wave loading directions: radial, transverse and vertical). Figure 
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6.9 shows the relationship between the measured peak particle velocity component 

polarities and the associated strain conditions assuming orthogonal plane strains in 

the footwall of KBGM stope dB10-38T rise firing #4 of 11 holes. 

 

 
Figure 6.9. Comparison of peak component velocity polarities recorded for a series 

of equally-charged blastholes in KBGM Stope dB10-38T, rise firing #4 footwall 

transducer.   

 

All single-hole recorded blast waves shown in Figure 6.9 exhibited the prescribed 

behaviour of axial tension or compression coupled with bi-axial compression or 

tension. It is interesting to note that the VSPPV for 9 of the 11 blastholes occurred at 

a point of tensile radial strain. Additional analysis of the waveforms revealed that the 

VSPPVs were generally observed several milliseconds after the arrival of the wave 

and thus may have been more directly related to arrival of the radial tensile tail or 

shear waves in the tangential directions. 

 

Analysis of a large number of velocity waveforms under conditions of principally-

oriented and non-principally oriented transducers revealed a general behaviour of 

axial/bi-axial wave loading conditions. Combining this information with the theory 

of strain continuity, a general theory of blasting strain has been proposed by the 
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author where the state of wave-induced strain at any point in time could be either 

axial tension with bi-axial compression or axial compression with bi-axial tension. 

These two states of volumetric strain in the confined rock mass would inevitably 

result in damage behaviours different from those associated with simple axial peak 

tensile strain assumed in the critical tensile plane strain models. The impacts of 

wave-induced dynamic strain loading conditions become even more evident with the 

introduction of mining-induced static stresses in the rock mass. Although the explicit 

strain field resulting from interaction of blast-induced dynamic strains and mining-

induced static strains is nearly impossible to define, the influence of existing tensile 

or compressive static strains cannot be overlooked when considering material 

response to blast-induced strain loading.  

 

6.4.4 Considerations Regarding Shear Strain 

Tensor notation of the state of strain in a material under both normal and shear 

loading is (Windsor, 1987): 
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(6. 17) 

 

Where  �x, �y, �z = normal strain components 

  �xy, �xz, �yx, �yz, �zx, �zy = shear strain components 

 
In treatment of engineering materials, the tensor is assumed to be symmetric, 

requiring at least six values to accurately describe the state of strain considering both 

volumetric and shear strain. These components are the three normal strains and three 

maximum shear strains.  

 

In traditional plane strain-driven blast damage investigation, only the normal strain 

components (�x, �y, �z) are considered. Therefore, the true loading conditions in a 

rock mass are not known due to neglect of the shear strain components. For the 

assumption of pure volumetric strain, the tensor notation for blasting strain would be: 
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(6. 18) 

 

The above tensor would realistically only occur for two loading conditions. The first 

condition is where the blasting strains are purely orthogonal and composed only of 

dilatational strains where the axes of the monitoring instrumentation are oriented in 

the principal strain directions. The second situation would be where the vibrations 

are measured on stress-free boundaries along all three orthogonal directions (a free-

floating cube of rock) and the blasting strains would be applied only normal to the 

surfaces. These conditions would be unlikely in the confined rock mass near a 

blasting event. 

 

To relate the induced strain to particle velocities produced in blasting, the 

infinitesimal strain matrix in Equation 6.17 can be applied on the basis of differential 

displacements. The strain matrix takes the form of Equation 6.19 (Windsor, 1987). 
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 (6. 19) 

 

Where   z
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If the unit element is subjected to strain loading from a transient source such as a 

blast wave, displacements over time can be incorporated. From the properties of 

elastic plane waves, Yang and Scovira (2007) proposed the following conditions: 
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Combining Equations 6.19 and 6.20, the dynamic infinitesimal strain tensor proposed 

by Yang and Scovira (2007) could be estimated using Equation 6.21. 
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   (6. 21) 

 

Where  vR, vT, vV = radial, transverse and vertical velocity at the VSPPV (m/s) 

  Cp, Cs = P-wave and S-wave velocities respectively (m/s) 

 

The matrix in Equation 6.21 would apply for the case of three orthogonally-coupled 

plane waves. Although this treatment provides some relationship between measured 

velocity components and the strain tensor, expression of the shear strains as related 

to the measured volumetric strain components is over simplistic. This simplification 

may be acceptable for far-field surface wave monitoring, but the waveforms 

encountered in the near-field confined rock mass are considerably more complex. 

 

The interpretation of individual normal and shear wave components for complex 

waveforms recorded in the near-field of blasting events have not been adequately 

described in published works. Through review of mathematical wave models, there 

appears to be a general lack of understanding of normal and shear strains generated 

by elongated explosive charges in jointed rock masses. Therefore, individual normal 

and shear strains have not been explicitly identified in the blast vibration analyses 

presented in this thesis in favour of the state of volumetric strain. Neglecting the 

contribution of shear strains could lead to either under or over-estimation of the 

extent of wave-induced damage, but tensile fracture strain criteria would be expected 

to reduce the likelihood of under-prediction. 

 

Due to the perceived influence of transducer orientation effects on the represented 

axial strains and highly variable strain loading conditions and directions, the wave-

induced mean normal dynamic strain invariant (�W-MN) has been proposed by the 

author to describe the state of volumetric strain in the near-field. The proposed 
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calculation of �W-MN from recorded waveforms is based on the concepts of 

conservation of energy and strain continuity during elastic wave propagation in a 

non-dispersive medium. 

 

6.4.5 Determination of Wave-Induced Mean Normal Dynamic Strain from 

Calculated Total Wave Energy Density 

In elastic wave propagation, stored strain energy density (U) can be related to 

kinetic energy density (K) through application of the laws of conservation of energy 

(Achenbach, 1973). The general relationship between K, U and the total energy 

density (H) according to the fundamental of dynamic elasticity is presented in 

Equation 6.22 (Achenbach, 1973). 

 

H = K + U          (6. 22) 
 

The one-dimensional wave-induced stored strain energy (UL) in an isotropic, elastic 

material can be calculated by Equation 6.23 (Achenbach, 1973). 

 

UL =  ( ) ijijkkL εμεελ +2

2
1           (6. 23) 

 

Where  �L, � = Lame’s constants (Pa) 

�kk = normal strain in the ‘k’ direction for a ‘k’ propagating wave 

  �ij = shear strain in the ‘ij’ plane for a ‘k’ propagating wave 

 

The first term in Equation 6.23 is the normal strain energy density as a function of 

the axial strain (�kk) and the second term is shear strain energy density related to the 

shear strain �ij. Extension of Equation 6.23 into three dimensions to represent 

volumetric and distortional strain energy densities is proposed in Equation 6.24. 

 

UV = ( ) ( )22

2
1

ikjkijkkjjiiL εεεμεεελ +++++     (6. 24) 

 

Where  �ii, �jj, �kk = orthogonal normal strain components  

�ij, �jk, �ik = orthogonal shear strain components 
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In confined blasting conditions producing complex waves, the true principal stress 

directions from vibration-induced loading can be highly variable and as such the 

wave components cannot be successfully decoupled through analysis. The measured 

waveforms are realistically assumed to be a combination of dilatational and shear 

vibration components and the seismograms indirectly represent both volumetric and 

shear strains along the non-principal directions. As discussed previously, separation 

of normal and shear strain components has not been attempted in this thesis due to 

the complexity of the measured waveforms. For this reason, only the normal strain 

components have been considered, reducing Equation 6.24 into 6.25. 

 

 UV = ( )2

2
1

kkjjiiL εεελ ++        (6. 25) 

 

To apply Equation 6.25 to calculate volumetric strains from complex blast waves, it 

is proposed that the strain value most suitable to characterise near-field waves is the 

wave-induced mean normal strain invariant (�W-MN). Mean normal strain has been 

based on past observations of two near-field wave behaviours identified in the 

author’s blast vibration data. These two observations were: random wave component 

distributions over time and distance, and loss of individual particle motion polarities 

and magnitudes during calculation of EDW-tot. 

 

The seemingly random distribution of orthogonal component amplitudes over time, 

distance and direction of wave propagation removes any predictability of the state of 

strain or the relationship between the individual strain components over the duration 

of wave activity. All states of strain, irrespective of distribution between the 

orthogonal components, are consistent using the mean normal strain invariant. 

Energy transfer between the three orthogonal wave components or variability in 

monitoring orientations therefore would not influence the mean normal strain 

calculated from the waveforms. The definition of elastic mean normal strain (�MN) for 

static conditions is given in Equation 6.26. 
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Translating the static mean normal strain into dynamic conditions (�MN = �W-MN) and 

combining Equation 6.25 and Equation 6.26 yields Equation 6.27. 

 

UV = ( )23
2
1

MNWL −ελ         (6. 27) 

 

For the mean normal strain to be represented by Equation 6.27, the form of the three 

orthogonal strains would have to be of the same sign, such that all strains are either 

compressive or tensile. In the current work, there has been no attempt to segregate 

the effects of different strain states along each axis (compressive versus tensile), 

which would serve to reduce the mean normal stored strain. Future research will 

attempt to investigate these effects.  

 

The EDW-tot calculated from recorded waveforms has been assumed to represent the 

combined values of K and U. This allows the wave-induced mean normal dynamic 

strain (�W-MN) to be calculated by solving Equation 6.27 for �W-MN and substituting    

½ EDW-tot for UV (Equation 6.28). 

 

L
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MNW
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ε
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− =         (6. 28) 

 

Where  EDW-tot = calculated total wave energy density (J/m3) 

  �L = Lame’s constant (Pa) 

 

And 

 

( )( )νν
νλ

211 −+
⋅= E

L
        

(6. 29) 

 

Where  E = Young’s Modulus (GPa) 

  v = Poisson’s Ratio 

 
Equation 6.28 has been used for calculation of �W-MN from the waveforms collected in 

the author’s blast vibration monitoring program. The values of �W-MN would be 

expected to display attenuation behaviours similar to wave energy and to some extent 
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wave amplitude. Using the strain continuity assumption, the calculated �W-MN could 

be either compressive or tensile and has been applied in proposed intact rock damage 

prediction approach.  

 

6.5 Development of Proposed Strain and Energy-Based Blast-

Induced Rock Mass Damage Criteria 

A rock mass is composed of both intact rock and discontinuities, each of which 

influence the load-bearing capabilities under static and dynamic conditions. Blast 

damage prediction models should therefore consider criteria for both the fresh 

fracturing of intact rock and extension, dilation, or dislocation of existing 

discontinuities. The blast damage prediction approach proposed in this thesis 

considers intact rock and discontinuities explicitly and specifies separate damage 

criteria for each rock mass component. Two individual criteria are suggested for use 

in prediction of damage to intact rock; fracture strain and strain energy density. The 

criterion proposed for use in predicting blast damage to existing discontinuities is 

fracture energy in relation to the density of existing fractures within a unit volume of 

the rock mass.  

 

6.5.1 Compressive and Tensile Fracture Strain Criteria for Damage to 

Intact Rock under the Influence of Mining-Induced Static Strains 

Hooke’s Law of stress-strain transformation, along with the results of tensile and 

compressive strength and elastic constants laboratory testing, can be used to estimate 

the elastic compressive and tensile rock rupture strains (Equations 6.30 and 6.31). 

 

E
C

C
σε =           (6. 30) 

 

E
T

T
σε =

         (6. 31) 
 

Where  �C, �T = compressive and tensile failure strains (m/m) 

�C, �T = compressive and tensile failure stresses (Pa) 

E = elastic Young’s Modulus (Pa) 
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The results of UCS (�C) testing have identified compressive rupture strains on the 

order of 500-4000 microstrain based on the compressive failure strength and 

Young’s Modulus. The value of tensile failure strain for rocks under uni-axial tensile 

loading in the general case is approximately 100-200 microstrain (Windsor, 2009), 

although the number of published tensile strain measurements is extremely limited. 

Stacey (1981) published values of extensional tensile failure strains for various rock 

types from 83�� to 175��. Okubo and Fukui (1996) measured tensile failure strains 

between 250�� and 750�� in direct tensile tests of various rock types, and identified 

some degree of residual tensile strength. The large range in published compressive 

and tensile failure strains for different rock types complicates the selection of critical 

failure strain values. 

 

The value of failure strain is not expected to change significantly under dynamic 

loading conditions in the elastic wave propagation zone, although the failure strength 

(stress) changes dramatically with strain rate (up to 1 order of magnitude increase for 

dynamic loading). The change in the slope of the elastic stress-strain relationship (E) 

is affected by strain-rate effects along with the failure stress. As the failure stress and 

Young’s Modulus increase with strain rate, it is proposed that the failure strain 

remains virtually unchanged for the lower strain rates experienced in the elastic wave 

propagation zone.  

 

Grote et al. (2001) confirmed a degree of independence of failure strain from strain 

rate by publishing the complete stress-strain curves from dynamic compression 

testing of mortar over an order of magnitude in strain rates (2.9 x 102 to 1.5 x 103/s). 

Comparing the stress-strain curves at different loading rates, there was no significant 

change in peak failure strain values. Shan et al. (2000) published stress-strain curves 

for dynamic testing of granite and marble rocks using the SHPB apparatus. For the 

marble rock type, the changes in ultimate strains for various striker bar velocities 

were minimal. The relative insensitivity of the failure strain to the strain rate has 

allowed the static rupture strain to be integrated into the intact rock damage 

prediction model without consideration of dynamic strain increase factors. 

 

The presence of mining-induced and virgin static stresses within the underground 

rock mass would be expected to influence the degree and extent of blast-induced 
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damage. To determine the state of aggregate strain in a rock mass at depth as a 

function of both induced static strains and blast-induced dynamic strains, 

superposition of the two strain fields is proposed by the author. The aggregate strain 

conditions at each point in a rock mass could therefore be either tensile or 

compressive in nature, depending on the existing and applied strain magnitudes.  

 

It has been proposed in this thesis that tensile-related intact rock damage would only 

occur if the dynamic blast-induced tensile loading were to exceed the sum of the 

existing static compressive strains and the intact rock tensile rupture strain. For 

compressive-related intact rock damage, the combined static and dynamic 

compressive strains would have to exceed the intact rock compressive failure strain. 

The proposed static and dynamic strain superposition damage criteria for either 

compressive or tensile blast loading conditions are listed below. 

 
Tensile damage with compressive static strain: )static(MT)tension(MNW εεε +>−  
 

Compressive damage with compressive static strain: C)static(M)comp(MNW εεε >+−  
 

Where  �W-MN(tension) = calculated wave mean normal strain (tensile) 

  �W-MN(comp) = calculated wave mean normal strain (compressive) 

  �M(static) = induced static mean normal strain (generally compressive) 

 

The influence of the mining-induced mean normal static strain magnitudes become 

apparent when considering the relationships in the suggested damage criteria. For a 

blast-induced mean normal dynamic compressive strain, compressive damage occurs 

to the intact rock as a result of the aggregate state of compression in excess of the 

rock compressive failure strength. This mechanism of damage has been largely 

ignored in blast damage analysis outside of the immediate crushing zone around the 

explosive charge. For tensile damage to occur, the wave-induced tensile strain must 

exceed the sum of the tensile failure strain plus the existing compressive strain to 

reach a net tension within the intact rock. Therefore, higher static compressive strains 

in the rock mass may inhibit tensile-related intact rock damage, but enhance the 

extent of compressive-related damage zones.   
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Mining-induced static strains in the vicinity of underground excavations can create 

zones of tension or concentrated compression depending on the directions and 

magnitudes of the principal stresses. In rock masses having low static compressive or 

tensile strain distributions, additional tensile loading from blast waves can induce 

damage at reduced dynamic tensile strain magnitudes. For static compressive strains 

near the rupture strain of the rock, minimal additional compressive loading would be 

required to induce compressive damage. 

 

6.5.2 Failure Strain Energy Density or Dissipated Energy Density Criteria 

for Damage to Intact Rock 

The approach for prediction of intact rock damage based on the aggregate mean 

normal strain assumes that the bulk behaviour of the intact portion of a rock mass 

will be similar to intact rock samples in the laboratory. Assuming this is valid, an 

additional intact rock fracture criterion has been proposed related to the critical 

stored strain energy density or the dissipated energy density (Vásárhelyi et al., 2000). 

Analysis of stress-strain curves recorded during quasi-static compression testing or 

dynamic impact tests has allowed researchers to investigate the energy stored or 

dissipated at failure by different rock types at different loading rates (e.g. Vásárhelyi 

et al., 2000 and Li et al., 2005). Table 6.4 lists several values of dissipated or stored 

strain energy density as published by various authors. 

 

Table 6.4. Published values of stored or dissipated strain energy density resulting 

from static and dynamic compression testing. 

Researcher Rock Type Test type Dissipated Strain 
Energy Density 

(kJ/m3) 

AMC (1998) Pb-Ag-Zn ore UCS Average 204 

Vásárhelyi et al. 
(2000) 

 

Andesite I 
Andesite II 

Granite 

Creep and UCS 172 
82 
210 

Li et al. (2005) Granite Dynamic: 20-30 strain/s 200-1420 
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The values in Table 6.4 cover a large range of rock types and a moderate range of 

strain rates. Due to the limitations of recording stress-strain curves for dynamic 

loading conditions, failure energies at strain rates above 102 strain/s are not well 

represented. Additionally, stress-strain curves for tensile testing do not appear in the 

literature. For these reasons, general behaviours with regards to failure energy as 

related to observed strength must be assumed to propose values of tensile rupture 

strain energy density under dynamic loading conditions.  

 

The dynamic tensile failure strain energy density proposed in the author’s energy-

based intact rock damage criterion combines the models published by Vásárhelyi et 

al. (2000) and Li et al. (2005) along with an estimation of the tensile behaviour based 

on the ratio of tensile to compressive material strengths. According to the laboratory 

tests conducted by Vásárhelyi et al. (2000), a relationship between the critical 

dissipated strain energy for compressive loading (Lc) and the material compressive 

and tensile strengths was observed (Equations 6.32 and 6.33). 

 

CCL σ×= 17.1          (6. 32) 
 

TCL σ×= 87.11         (6. 33) 
 

Where  �C = unconfined uni-axial compressive strength (MPa) 

�T = unconfined tensile strength (Brazilian, MPa) 

 
The critical dissipated energy density criterion for tensile loading has been assumed 

by the author to be closely linked with the relationship between UCS (�C) and �T. 

The ratio of compressive to tensile strength can range from 10 to 20 and a generally 

accepted value for �C/�T is approximately one order of magnitude. For �C/�T equal to 

10, Equations 6.32 and 6.33 can be revised to calculate the tensile critical dissipated 

strain energy density (LT) as a function of �C and �T (Equations 6.34 and 6.35). 

 

CTL σ×= 12.0         (6. 34) 
 

TTL σ×= 19.1         (6. 35) 
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The relationship between stored strain energy (dissipated strain energy density) and 

loading rate has been assumed to be similar to that of ultimate rock strength and 

strain rate. This assumption allows the effects of dynamic loading to be introduced 

into the energy density intact rock damage criterion. Li et al. (2005) published a 

relationship between the energy absorbed at compressive sample failure and the 

strain rate of dynamic loading. Figure 6.10 shows this relationship in terms of the 

tensile criterion of 10% of the stored compressive strain energy, referred to as the 

Tensile Rupture Strain Energy (RSET) versus the strain rate. 

 

 
Figure 6.10. RSET versus strain rate for granite (after data of Li et al., 2005). 

 

The shape of the piecewise curve of RSET versus strain rate is similar to the curves 

noted for the relationship between tensile or compressive strength versus strain rate 

as discussed in Chapter 2. Although the slopes and the “take-off point” for the lines 

would be expected to change for different rock types, similar behaviour would be 

expected amongst competent rock types encountered in large-scale underground 

mining. The lack of data in the intermediate strain rate of 10-2 to 101 represents a gap 

in the capabilities of quasi-dynamic testing methods.  

 

An assumption has been made that the general relationship between the rock strength 

and the dynamic RSET (RSET(dynamic)) for different rock types based on the strain rate 
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would shift the curve in Figure 6.10 upwards or downwards. The amount of curve 

shift would be based on the relationships given in Equations 6.34 and 6.35 under 

conditions where LT = RSET(static) at a strain rate of 10-6 to 10-3 strain/s (quasi-static). 

 

To simplify the calculation of RSET(dynamic) based on strain rate and the static value of 

RSET, an approximate exponential curve has been fitted to the data from Figure 6.10. 

The continuous exponential function in place of the piece-wise curve allows 

continuous calculation over the full range of strain rates from static to high-order 

dynamic. Figure 6.11 displays the data set and the exponential curve that was 

applied. 

 

 
Figure 6.11. Exponential relationship between RSET(dynamic) and strain rate (ε� ).   

 

The distance from a blasting event where intact rock fracture may occur using this 

method can be predicted by comparing RSET(dynamic) at the associated strain rate with 

the wave-induced stored strain energy density (EDW-SS = ½ EDW-tot). The critical 

value of required rupture energy density can be applied to predict either tensile or 

compressive intact rock fracture over a range of strain rates as determined from blast 

monitoring results. 
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6.5.3 Damage to Discontinuities Based on Fracture Energy 

It is generally accepted that the weakest component within a rock mass is the 

network of existing discontinuities. Any stress that is applied in excess of the 

discontinuity strength will likely induce fracture dilation, sliding or extension prior to 

damage to the intact rock blocks. The behaviour of discontinuities under the 

application of static or dynamic loads can therefore control the overall response of a 

rock mass to mining. 

 

The reduced strength of discontinuities when compared with intact rock blocks has 

led to a proposed energy-based for prediction of blast damage to existing fractures. 

This approach assumes that the calculated stored strain energy density (EDW-SS) 

within a rock mass is distributed evenly over a unit volume of 1m3. All macro-

fractures contained within that unit volume are therefore assumed to be activated by 

the wave loading. For the discontinuity fracture energy damage criterion, micro-

fractures have not been explicitly considered as the assumption has been made that 

the micro-fractures are a component of the intact rock portion of the rock mass. 

 

6.5.3.1 Fracture Energy of Concrete and Rock 

Values of fracture energy for complex rock masses have not been previously 

established. Fracture energy testing, as with most material testing for rock 

mechanics, takes place on small samples in controlled laboratory loading conditions. 

The results of fracture energy testing are influenced by material properties, sample 

size, loading rate, initial crack length and the thickness of the remaining intact 

material ligament (Shah et al., 1995). Therefore, direct application of the laboratory-

measured values to large-scale rock mass fracturing conditions should be done with 

caution. A lack of large-scale fracture energy testing results therefore requires 

additional research and testing programs to obtain realistic values for in situ rock 

masses. 

 

Various researchers have performed experiments on concrete and rock samples to 

obtain values of fracture energy (e.g. Krech, 1974; Wu and Zhang, 1989; Zhang et 

al., 2000). Investigation of the fracture behaviour of concrete has yielded the 

majority of studies into fracture energy as a function of loading rate (Oh and Chung, 
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1989), material composition (Wu and Zhang, 1989) and material temperature and 

cyclic softening (Ohlsson et al., 1990). Fracture energy tests have also been 

performed on rock samples using static and dynamic testing (e.g. Krech, 1974; 

Zhang et al., 2000; Vasconcelos et al., 2008), but published values of fracture energy 

for rock are scarce in the literature. Table 6.5 lists values of fracture energy 

published in the aforementioned studies. 

 

Table 6.5. Published values of fracture energy for concrete and rock. 

Researcher Material Type Test type Fracture Energy 

Krech (1974) Barre granite Static tensile 100 J/m2 

 Sioux Quartzite  89 J/m2 

Zhang et al. (2000) Gabbro Static wedge 66.1 J/m2 

  Dynamic SHPB 1592 J/m2 

Vasconcelos et al. 
(2008) 

Granite Direct tensile 145-270 N/m 

Wu and Zhang (1989) Lightweight 
Concrete 

Static 3-point 132.48 N/m 

Oh and Chung (1989) Concrete Static 3-point ~150 N/m 

  Dynamic 3-point ~340 N/m 

Ohlsson et al. (1990) Concrete Static 3-point ~100 N/m 

Wittmann (2002) High-Strength 
Concrete 

N/A ~300 N/m 

 

The effects of dynamic loading rate on fracture energy have been observed by 

various researchers including Oh and Chung (1989). As with material strength and 

dissipated energy at rupture (RSET(dynamic)), increased loading rates result in higher 

required fracture energies. Testing of a series of concrete beams of various sizes and 

strain rates between 10-6 and 10-3 strain/s by Oh and Chung (1989) illustrated an 

increase in fracture energy of up to approximately 2.5 times. This increase from 

quasi-static to intermediate loading rates is similar to that observed for increases in 

material failure strength and rupture strain energy.  
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An approximate exponential relationship for the dynamic tensile fracture energy 

(FET(dynamic)) based on strain rate and the static tensile fracture energy (FET) is 

proposed for use in prediction of fracture activation in the newly proposed blast 

damage criterion. This relationship is theoretical based on the shape of the curve 

presented in Figure 6.11. Few test results have been published for dynamic fracture 

energy of rock and the curve in Figure 6.12 has been defined using the limited values 

in Table 6.5. More data would be required to validate the relationship between 

dynamic fracture energy and strain rate. 

 

 
Figure 6.12. Proposed exponential relationship for determination of dynamic tensile 

fracture energy (FET(dynamic)) versus strain rate for granitic rocks.  

 

6.5.3.2 Required Fracture Energy for Activation of All Fracture Surfaces in a 

Unit Volume 

Calculation of the energy required for activation of all fractures within a unit volume 

of a jointed rock mass requires values of the critical fracture energy and the fracture 

area density contained in a 1m3 block. The discontinuity model selected for 

representation of rock mass jointing can be used to determine the total fracture area 

density within a unit volume based on the number of joint sets, the joint spacing, 

joint set orientation and the predicted distribution of trace lengths (Weibull, normal, 
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etc). Based on the joint set information, the final value for the fracture area density 

(FAD) or fracture intensity in m2/m3 can be calculated. 

  

The fracture energy density (FEDcrit) required to activate all fracture faces in a unit 

volume of 1m3 and induce damage through fracture extension is calculated using 

Equation 6.36. 

 

FADFEFED )dynamic(Tcrit ⋅=        (6. 36) 
 

The unit of FEDcrit is J/m3, which corresponds with the unit of the wave-induced 

stored strain energy density (EDW-SS). The predicted damage limit for extension of 

fractures using Equation 6.36 and the values of EDW-SS can be determined by 

comparing the two values. The distance from an explosive charge where the critical 

fracture energy equals the blasting-induced stored strain energy density (where 

FEDcrit = EDW-SS) identifies the limit of predicted fracture extension.  

 

The use of FEDcrit does not explicitly consider the differences in required fracture 

energies for different dimensions of existing fracture length. Research has confirmed 

that the critical fracture energy is reduced with an increase in the initial fracture 

length (Oh and Chung, 1989). Integration of this effect has not been attempted in the 

current analytical model due to the complex relationship between the fracture energy 

and the critical dimensions of the initial crack, the cross-sectional area of the material 

containing the crack and the thickness of the remaining rock ligament between 

adjacent cracks.  

  

6.6 Implementation of the Proposed Strain and Energy-Based 

Blast Damage Criteria 

A number of steps are required to apply the concepts developed in Sections 6.3 to 6.5 

to predict rock mass damage from blasting in the presence of mining-induced static 

stresses. The steps listed consider use of the strain-based criteria for intact rock and 

the fracture energy criteria for existing discontinuities. These steps include: 
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1) Estimation or testing of intact rock strengths and rock elastic constants. 

2) Estimation or testing of the dynamic rock properties. 

3) Estimation of the intact rock static failure strain. 

4) Stress modelling to determine the mining-induced static stress and strain 

distribution at the time of blasting. 

5) Blast vibration monitoring to characterise �W-MN and EDW-SS generated by 

known explosive charges in the rock mass of interest. 

6) Selection of a suitable rock failure criterion (compressive versus tensile) 

based on the superposition of static and dynamic strains. 

7) Assessment of the equilibrium position between the required strain to 

fracture and the aggregate applied static and dynamic strain to indicate the 

limit of strain-based fracture. 

8) Rock mass discontinuity mapping to indicate the fracture area density. 

9) Estimation of the dynamic fracture energy for the rock mass required for 

fracture extension. 

10) Assessment of the equilibrium position between the required fracture 

energy density and the induced dynamic strain energy density to indicate 

the limit of dynamic fracture extension.  

 

Steps 1-10 have been applied in Chapter 7 and steps 1-7 have been applied in 

Chapter 8 to predict possible blast-induced damage occurring to the rock masses 

surrounding two example stopes at the two sponsoring mine sites. Details on the 

values of failure strains and energies selected in each case study as well as the 

modelled wave behaviours will be discussed in detail. 

 

6.7 Discussion and Conclusions 

The empirical and semi-analytical blast damage prediction models discussed in 

Section 6.2 clearly lack consideration of the state of rock mass loading from blasting 

or any explicit consideration of the material response to dynamic loading. In 

addition, no mechanism exists in these models for addressing the influence of 
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existing mining-induced static strains on the predicted blast-induced damage.  The 

approaches proposed in Chapter 6 have attempted to improve the prediction of blast-

induced damage by more realistically representing the loading mechanisms and 

conditions contributing to dynamic rock mass damage from blast-induced strains and 

energies. 

 

The main ideas which are represented in the proposed approaches which differ from 

existing semi-analytical models include: 

• Use of total wave energy density (EDW-tot) as a near-field blast vibration 

characteristic instead of instantaneous peak amplitude 

•  Calculation of wave-induced mean normal dynamic strain (�W-MN) from stored 

strain energy density (EDW-SS)  

• Secondary consideration of critical rupture strain energy required for damage 

to intact rock blocks 

• Consideration of intact rock damage modes (compressive versus tensile) 

taking into account induced static strains within the rock mass 

• Use of fracture energy density to predict extension of existing discontinuities 

 

The proposed strain-based blast damage criterion for intact rock is based only on the 

normal strains calculated from the waveforms, without accounting for the direct 

influence of shear strains. Shear loading is recognised as an additional source of 

potential blast-induced rock mass damage. The lack of shear strain consideration 

represents a limitation in the proposed approach, although shear strains are not 

considered in existing empirical or semi-analytical models either. Future research 

and improvement of the proposed approach will involve integrations of shear strains 

into the suggested damage criteria. 

 

Chapters 7 and 8 will apply the concepts developed in this chapter to predict blast 

damage around two individual stopes based on blast vibration monitoring and rock 

mass characterisations at the two sponsoring mine sites. These two study sites 

represented considerably different rock mass conditions, mining geometries and 

geotechnical concerns. 
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CHAPTER 7 : CASE STUDY- BARRICK GOLD CORP. 

KANOWNA BELLE GOLD MINE 

7.1 Introduction 

The blast damage investigation performed for this thesis was initiated in late 2005 at 

the Barrick Gold Corp. Kanowna Belle Gold Mine (KBGM). The project was 

intended to examine the influence of blast-induced damage on stope performance 

under high stress and geologically variable rock mass conditions. Underground field 

data collection and blast vibration monitoring took place at KBGM from January to 

May, 2006. Data provided by mine personnel prior to, during and after the period of 

field work included geotechnical information, stope and blast designs and post-

extraction void surveys. Data collected or analysed by the author included borehole 

deviation surveys, blast vibration monitoring, discontinuity mapping and mining-

induced static stress modelling.    

 

Rock mass characterisations and blast vibration analyses were performed for three 

study stopes located in the D block at KBGM. An extended analysis was performed 

for one of the monitored stopes. This included prediction of blast-induced rock mass 

damage under the influence of mining-induced static stresses using the proposed 

criteria discussed in Chapter 6. The extent of predicted tensile strain-based damage 

and discontinuity extension using the proposed approach has also been compared 

with predictions using the critical tensile plane strain model. 

 

7.2 Geology of the Deposit at KBGM 

The Kanowna Belle Gold Mine is owned and operated by Barrick Gold Corporation. 

The mine was acquired in 2006 from Placer Dome and is located 18km Northeast of 

Kalgoorlie in Western Australia. The KBGM gold deposit is hosted within a 

greenstone succession of the Boorara Domain of the Gindalbie Formation. Three 

mineralisation events formed the deposit through successive metamorphism and 

porphyry intrusion of the sedimentary conglomerates and volcanoclastic bodies 

associated with large-scale faulting (KBGM, 2008). The gold mined at KBGM is 

generally contained within the main feldspar porphyry orebody striking East-
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Northeast with a strike length of 500 metres. The orebody dips at approximately 50-

60 degrees to the South-Southwest with down-plunge extent of greater than 1250 

metres. The Lowes orebody, which contains 80% of the known mineralisation at 

KBGM varies in thickness from 5 to 50 metres and occurs in conjunction with two 

mine-scale faults known as the Fitzroy Fault and the Fitzroy Footwall Shear Zone 

(Villaescusa et al., 2003).  

 

7.3 Overview of the Mining Operation 

Gold has been mined from the open pit at Kanowna Belle since 1990, with 

underground production beginning in 1998. At the time of the field investigation in 

2006, the mining rate was 1.2Mt of ore per annum, producing approximately 240k oz 

of gold (Malatesta, 2006). Figure 7.1 shows a long section of KBGM, divided into 

the six mining blocks; A to E and the Troy block, classified by depth from surface. 

  

 
Figure 7.1. Long section of KBGM showing the mining blocks and the completed 

open pit (looking north). 
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The mining method utilised at KBGM is sublevel open stoping. A variety of different 

stoping sequences have been used in the past depending on the mining block. During 

the field investigation in 2006, a large percentage of the ore extraction was taking 

place in the C block and D block at depths of 500-1000m below surface. A block and 

B block were largely mined out; Troy block and E block had not yet been 

commissioned.  

 

7.3.1 Mining Sequences for Ore Blocks 

With the increase in depth from the upper horizons of A and B blocks to the lower C 

and D blocks, changes in stope dimensions, fill type and mining sequences were 

adopted to address regional stability concerns. Table 7.1 lists the primary stoping 

dimensions and sequences used in each mining block. 

 

Table 7.1. Open stoping dimensions and sequences for each block at KBGM 

(KBGM, 2008). 

Mining 
Block 

Stoping 
Configuration/Sequence 

Stope Dimensions Fill Type 

A Primary/secondary open 
stoping 

Variable Cemented 
Aggregate Fill 

B Bench stoping Variable Waste 
Rock/Pastefill 

C Primary/secondary open 
stoping and pillarless 

retreat 

20m strike x 
orebody width x 

60m high 

Pastefill 

D Pillarless retreat 15-20m strike x 20m 
wide x 30m high 

Pastefill 

E Underhand bench stoping 15m strike x 12m 
wide x 30m high 

Pastefill 

 

7.3.2 Selection of Monitored Stopes 

The blast damage investigation project was initiated at KBGM because mine 

personnel were concerned with the impact of blasting on the performance of stopes 

in the future mining conditions of the E block. For this reason, the deepest operating 



Chapter 7. Case Study- Barrick Gold Corp. Kanowna Belle Gold Mine 162 

mining block at the time (D block) was selected for blast-vibration monitoring and 

damage assessment and prediction. The mining conditions in the D block also 

allowed investigation of blasting-induced damage under high stress conditions due to 

the increase in the mining-induced static stress at depth. E block rock mass 

conditions were assumed to be more highly-stressed than D block, with a 20MPa 

increase in the virgin maximum principal stress (KBGM, 2008).   

 

Three D block stopes were selected for rock mass characterisation, blast vibration 

monitoring and post-extraction stope performance assessment. To remove some of 

the variables contributing to the performance of individual stopes, all three selected 

stopes were located along the Eastern mining front at the deepest production levels of 

D block (9350RL, 9380RL and 9410RL). The stopes selected for the KBGM case 

study were stope dA12-35 and the top and bottom lifts of the double-lift stope dB10-

38. The two lifts of stope dB10-38 were fired independently using different initiation 

systems and for monitoring purposes they were considered to be two separate stopes. 

The two lifts were named dB10-38B (bottom lift) and dB10-38T (top lift). Figure 7.2 

shows the location of the three stopes in relation to the D block central fill mass. 

 

 

Figure 7.2. Long section of D block study stopes (in blue) and central fill mass (in 

yellow) at the time of the blast damage investigation (looking north). 
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7.3.3 Stope Naming Convention at KBGM 

The stope naming convention at KBGM was such that the stoping block, panel, 

Easting stope line and extraction level were included within the name. For example, 

stope dA12-35 was located in the D block (d), A panel (A), 20120 Easting (12) and 

drawn from the 9350 RL (35). In the sections of the orebody of sufficient thickness, 

multiple stoping panels were mined from the hangingwall (A panel) to the footwall 

shear (B or C panel). Early stope naming conventions in the D block followed a 

primary (P) and secondary (S) convention. Figure 7.3 shows a plan view of the D 

block at the 9390RL with the names of some of the stopes in the mining sequence. 

The yellow shaded stopes represent A-panel stopes and blue shaded stopes are B-

panel. The central grey stope was the first primary stope of the block prior to 

adoption of the new naming convention. 

 

 

Figure 7.3. Plan view of D-block at the 9390RL showing the stope names and mining 

panels between the Fitzroy Fault and footwall shear. 

 

7.3.4 Drilling and Blasting at KGBM 

The drilling and blasting program in the D block of KBGM was typical of a slot-less 

single-lift ring-drilling sublevel open stoping configuration. Blastholes of 102mm 

diameter were drilled from a single access drive along the strike of the stope. The 

typical pattern for ring drilling was 3.0 to 4.0m ring burden with a toe spacing of 2.5 

to 3.5m, resulting in bulk powder factors of approximately 0.25 to 0.3 kg/tonne of 
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ore. Typical explosive products used in production blasting were pour-loaded ANFO, 

low-density SANFOLD 50 and 70 (0.55 and 0.7 g/cc density, respectively) and 

variable-density gassed emulsions. The standard initiation system was the Dyno 

Nobel long-period pyrotechnic shock-tube system with surface connectors to allow 

subdivision to millisecond-like timing. The Orica i-kon ™ system was also utilised 

in complex mass blasting conditions. 

 

The in-stope firing sequence selected for the D block stopes was a non-conventional 

vertically-retreating sequence with an offset central longhole retreat rise to provide 

initial void. The vertically-retreating in-stope sequence allowed for minimal vertical 

exposure of the stope walls and crown prior to paste filling. The flat-bottom stope 

design required firing of a 5m horizontal sill blast, drilled from the drawpoint 

development, prior to the initiation of rise firings. The typical firing steps within a 

single-lift stope of the D block were: 

•  Slashing of a 5m high horizontal sill at the draw level 

•  A series of 3m vertical rise firings of 2m x 2m plan area from the sill to a 6m 

temporary crown 

• Slashing of the initial 2m x 2m rise to 6.5m x 6.5m area to a 10m crown 

• Firing of two to four rings of toes to a 15m crown  

• Firing of remaining ring toes to a 20m crown 

• Mass blast of remaining holes to final void 

 
Double-lift stopes required fewer firings within the top lift due to the stope void 

below from previous extraction of the bottom lift. Some delays were experienced 

during blasting of the top lift of a double-lift stope to facilitate loading of broken ore 

to supply adequate void space for the mass firing. Single-lift stopes generally 

required 9 to 11 firings to reach full extraction, whereas the top lift of double-lift 

stopes required approximately 8 firings. Figure 7.4 illustrates the stages of firing for 

the single-lift stope dB10-38B. 
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Figure 7.4. Firing stages of stope dB10-38B looking West (1-2) and North (3-5). 
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7.4 Drillhole Deviations Surveys at KBGM 

Blasthole deviation surveys were performed in study stopes dB10-38B and dB10-

38T to acquire accurate locations of explosive charges and to investigate possible 

sources of stope overbreak. Drillhole deviation has been identified as a significant 

contributor to variability in blasting results and a major contributor to unplanned 

stope dilution in the mining industry (Hendricks et al., 1991 and Singh, 1996). 

 

The drillhole deviation surveys were performed by the author using the FlexIT 

Multishot SmartTool magnetic surveying instrument. This equipment was selected 

for purchase for the project due to ease of use, robust construction, cable-less 

operation and superior software export capabilities. Over the course of the blasthole 

surveying program conducted by the author at KBGM, almost 4kms of blasthole 

lengths were surveyed; 2750m were contained within study stopes dB10-38B and 

dB10-38T. A recording interval of 3m was selected for the downhole surveys, with 

irregular intervals near the hole toe or near breakthrough into the existing stope void.  

 

The surveying and analysis procedures adopted in the program allowed the designed 

hole collar and toe locations to be compared with those measured. These 

comparisons required that the drilled collar coordinates be surveyed for position in 

addition to the downhole deviation surveying. The general results identified errors in 

both the hole collar locations and the toe locations versus design. Collaring location 

errors were up to 600mm and total toe location errors reached 1.6m from design. 

 

One standard method of presenting drillhole deviation data is expression of the error 

in location as a percentage of the total hole length. Figure 7.5 shows the results of the 

blasthole survey program for stopes dB10-38B and dB10-38T in a histogram of the 

toe location errors as percentages of the blasthole lengths. 
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Figure 7.5. Histogram of toe location errors in surveyed blastholes as a percentage of 

the hole lengths for stopes dB10-38B and dB10-38T.  

      

The histogram results in Figure 7.5 clearly indicate a large variability in the toe 

location errors, which can be attributed to the in-hole deviation as well as set-up and 

collaring errors. Results of blasthole deviation surveys performed by the author and 

other contractors at KBGM resulted in similar deviation percentages for 102mm 

diameter blastholes (Fleetwood, 2010). Deviation surveys of 76mm diameter 

blastholes used in stope C9380 at KBGM revealed much higher deviation 

percentages (over 30%) due to malfunctioning of the drill inclinometer gauge 

(Fleetwood, 2006).  

 

The general trend of the blasthole location error is an important factor in addition to 

the magnitude of the error. Figure 7.6 illustrates the collar and toe locations of the 

surveyed blastholes compared with the design locations using bullseye graphs. 

Bullseye graphs plot the position of the actual blasthole relative to the designed 

blasthole axis, which is located in the centre of the plot. General trends in drilling 

location errors and potential effects on overbreak or fragmentation can be examined 

using bullseye graphs. 
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Figure 7.6. Bullseye graph of the surveyed versus designed hole collar (top) and toe 

(bottom) positions.   
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Analyses of the bullseye graphs reveal several trends in the orientations of drilling 

deviations in stopes dB10-38B and dB10-38T. In general, hole collar position errors 

in stope dB10-38B were concentrated within the plane of the designed rings 

(approximately North-South). One possible factor for this type of positioning error is 

related to floor elevation control between the time of drive surveying and drilling.  

 

Prior to stope drilling, the floors of drilling drives were typically cleaned up by a 

loader to remove loose material. Removal of broken rock from the floor would allow 

the drill jacks to seat more firmly and make blasthole collaring easier. Floor clean-up 

typically took place between the times of drive laser profiling (the survey that was 

used for the drillhole design process) and the actual drilling activities. A change in 

the actual elevation of the drive floor compared with the floor used in the design 

could lead to errors in collar position for non-vertical drillholes due to a change in 

the drill pivot position. Some collar position errors were also observed for stope 

dB10-38T along the ring burden direction (approximately East-West). These errors 

could have been associated with ring position laser mark-up errors, drill set-up errors 

or deliberate movement of collar locations due to collaring difficulties. 

 

The majority of surveyed blasthole toe locations fell to the North of the design 

locations within the plane of the ring, indicating possible gravity-induced effects on 

sub-horizontal or moderately-dipping blastholes. In most cases, any lateral blasthole 

deviation was contained within the stope on internal rings. Significant lateral toe 

error only occurred in one hole on a perimeter ring, resulting in the blasthole being 

located outside of the stope boundary (final ring location) by approximately 800mm. 

Other holes in the perimeter rows did not significantly deviate outside of the 

designed stope boundaries. The general trend of errors along the dip angle of the 

blasthole is illustrated in Figure 7.7 for two blasthole rings in stope dB10-38T. 
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Figure 7.7. Section view of blasthole rings 5 and 7 in dB10-38T comparing the 

designed hole locations (blue strings) with the surveyed blasthole locations at 3m in-

hole survey intervals (black strings and points).  

     

7.5 Rock Mass Characterisation of D block 

One of the defining elements of the proposed approach to blast damage investigation 

is characterisation of the rock mass prior to blasting. This characterisation is an 

attempt to better understand the geologic and geotechnical elements that contribute to 

the response of the rock mass to mining. Some of the critical rock mass parameters 

that have been identified as contributors include the intact rock strength, elastic 

properties of the intact rock, distribution and orientation of discontinuities, bulk rock 

mass parameters such as the in situ stress wave velocity and dynamic Young’s 

Modulus and mining-induced static stress redistribution. These parameters are 

believed to contribute to both the propagation of stress waves and the response of the 

rock mass to static and dynamic strains.  

 

A number of approaches were applied to characterise the rock mass at KBGM along 

the Eastern mining front of D block. The techniques included assessment of existing 

laboratory rock testing results, analysis of underground discontinuity mapping, 

mining-induced static stress modelling and analysis of geophysically-related stress 

wave characteristics indicated from the blast vibration monitoring results. 
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7.5.1 Intact Rock Testing Results 

Laboratory testing for UCS and elastic constants (Young’s Modulus and Poisson’s 

Ratio) of D block rock samples was performed for three different geologic domains 

in 2002. The three domains from which rock samples were extracted and tested were 

the footwall region, the porphyry ore zone and the hangingwall region. The testing 

results are listed in Table 7.2.  

 

Table 7.2. Intact rock testing results for KBGM D block (Li, 2002). 

Geologic 
Region 

Average density 
(kg/m3) 

Average UCS 
(MPa) 

Average Est 
(GPa) 

Average vst 

Ore 2760 (9) 113 (10) 62 (20) 0.28 (20) 

Footwall 2770 (9) 136 (11) 65 (18) 0.29 (18) 

Hangingwall 2775 (3) 156 (6) 71 (8) 0.30 (8) 
(##)- number of samples tested 

 

Table 7.2 clearly indicates significant differences between the intact rock properties 

for the three geologic domains based on the static uni-axial compressive strength 

(UCS) and rock stiffness as indicated by the static Young’s Modulus (Est). These 

differences in strength and stiffness would be expected to influence the dynamic 

response of the rock mass to blast-induced stress wave loading and influence the 

attenuation behaviour of the propagating blast-induced vibrations. As one part of a 

complex system of components, the intact rock properties only partially describe the 

rock mass. The second main component of the rock mass is the in situ 

discontinuities. Therefore, any characterisation of the rock mass must include some 

treatment to describe the orientation, persistence and distribution of discontinuities as 

indicated by core logging or mapping of exposures underground.  

 

7.5.2 Discontinuity Mapping in D block at KBGM 

Part of the geologic and geotechnical characterisation of the rock mass for use in 

stope and ground support design at KBGM is mapping of discontinuities exposed in 

the backs and walls of development drives. Personnel from KBGM and WASM have 

performed mapping of drive backs and walls within D block. This information was 
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digitised into mine design software for use in examination of dominant discontinuity 

orientations. Figure 7.8 displays the results of digitised mapping for level 9380RL. 

 

 
Figure 7.8. Plan view of digitised discontinuity mapping of 9380RL development.   

 

The digitised mapping results were plotted on a polar stereonet projection to examine 

the orientation and distribution of the mapped discontinuities. The polar distributions 

were contoured using DIPS 5.1 from Rocscience to represent the most evident 

discontinuity orientations. Figure 7.9 shows the discontinuity pole distribution 

contours for all mapped data in D block.  

 

 
Figure 7.9. Equal-area lower hemisphere stereonet plot of D block discontinuity 

mapping data. 



Chapter 7. Case Study- Barrick Gold Corp. Kanowna Belle Gold Mine 173 

The results in Figure 7.9 indicate three probable discontinuity sets, with a large 

distribution representing a steeply-dipping (80 degrees) set with an approximate dip 

direction of 245 degrees. The lack of a near-horizontal discontinuity set (appearing 

near the centre of the plot) likely reflects mapping bias due to the majority of data 

representing mapping of the backs and shoulders of the drives, where intersection of 

shallow sub-horizontal sets would be unlikely. 

 

7.5.3 Overview of the Blast Monitoring Program 

Rock testing and discontinuity mapping largely represent static characteristics of a 

rock mass. To aid in defining the dynamic characteristics of the rock mass around the 

three study stopes, geophysical approaches using the blast vibration monitoring 

results were applied. A brief summary of the transducer locations for all three stopes 

is presented in Table 7.3 to show the density of transducer coverage. Additional 

information on the transducers in each stope is provided in Sections 7.7, 7.8 and 7.9. 

 

Table 7.3. Summary of instrumentation utilised in study stopes in KBGM D block. 

Stope Wall of Stope Transducer Type Distance from 
Stope          
(m) 

dA12-35 Footwall (FW) Tri-axial 500g Accelerometer 7.0 

  Tri-axial Geophone 16.7 

dB10-38B Footwall (FW) Tri-axial 500g Accelerometer 6.5 

  Tri-axial Geophone 15.4 

 East Wall (EW) Tri-axial 500g Accelerometer 7.0 

  Tri-axial Geophone 12.2 

dB10-38T Footwall (FW) Tri-axial 500g Accelerometer 6.1 

  Tri-axial Geophone 15.1 

 East Wall (EW) Tri-axial 500g Accelerometer 6.0 

  Tri-axial Geophone 16.0 

 Hangingwall (HW) Tri-axial 500g Accelerometer 6.0 

  Tri-axial Geophone 15.0 
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7.5.4 Block-Scale Rock Mass Characterisation Using Blast Vibration Data 

The blast vibration monitoring program conducted at KBGM enabled a form of 

differential stress wave velocity tomography to be performed. Wave velocities were 

calculated using the arrival times of waves generated by production blastholes at 

each transducer on an array and the differential distance from the source to each 

transducer. Of the available production blastholes, the short charges utilised in rise 

firings provided the best seismic sources for use in determining the stress wave 

velocities within the rock mass. An additional geophysical rock mass characterisation 

method that was applied at KBGM was peak amplitude-frequency analysis. This type 

of analysis indicates rock mass conditions through comparisons of inferred wave 

frequencies at the peak amplitude.  

 

7.5.4.1 Stress Wave Velocity Calculation using Blast Monitoring Results 

Successful determination of stress wave velocities using production charges requires 

that seismic sources be repeatable, largely unaffected by voids along the wave-path 

and have a low degree of wavefront interaction. These factors enhance the ability to 

accurately identify the wave arrival times at each transducer as indicated by the first 

break of the waveform.  

 

A majority of the blastholes used in the stress wave velocity calculations in D block 

were the relatively short rise firing charges. These charges were similar in length 

(3m) and location, were fired on long-period delays and were early in the mining 

sequence such that minimal void interaction was experienced. The calculation of the 

differential stress wave velocities also required accurate three-dimensional locations 

of charges and transducers, accurate records of blasthole firing sequences based on 

design delay timing and adequate waveform sampling rates and resolutions to allow 

accurate selection of arrival times. 

 

The analysis process used to calculate stress wave velocities in this thesis was 

referred to as the differential velocity calculation method. This type of approach was 

adopted due to the unknown absolute times of charge detonations due to detonator 

scatter. The differential method therefore was based on the differences between wave 

arrival times at two separate transducers on the same array and the three-dimensional 
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differences in distances from the source toe locations to each transducer. Where 

applicable, the distances used in calculation of the stress wave velocity were the 

VICD discussed in Chapter 5.  Equation 7.1 was used to calculate the stress wave 

velocity (Vw) for each blasthole included in the assessment. 

 

12

12

−− −
−=

arivalarrival
W tt

ddV         (7. 1) 

 

Where  d1, d2 = distance from the source to transducer 1 and 2 of the array (m) 

  tarrival-1, tarrival-2 = arrival time of stress wave at transducer 1 and 2 (s) 

 

The differential velocity calculation method suffered from several limitations for 

characterisation of the bulk rock mass properties. One of these limitations was that 

only a relatively small volume of the rock mass was represented by the spacing 

between the two transducers (typically around 10m). Another limitation was that the 

use of production charges as seismic sources introduced several potential sources of 

error, as the frequency of the wave and the coupling characteristics of the source can 

affect the transmission of the waves. Additionally, the angle of each wave-path with 

respect to the transducer array varied significantly over the course of successive 

firings. The change in angle likely influenced the angle of incidence with 

discontinuities, which would be suspected to contribute to errors in the calculation. 

The last limitation was that selection of first wave arrival times at each transducer 

was difficult where waveform masking was observed from poor signal resolution. In 

spite of these limitations, the wave velocities calculated from production blasthole 

seismic sources provided valuable information for geophysical characterisation of the 

D block rock mass. This information was obtained without interruption to the 

production cycle that would be expected with dedicated seismic surveying.  

 

The individual stress wave velocities calculated from all rise firings of all three D 

block stopes are shown in Figure 7.10 along with the block-scale average value. The 

data are plotted as a function of the mean travel distance, which is the average of the 

two source charge to transducer distances. This type of plot indicates any distance-

related effects on stress wave velocity attenuation.  
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Figure 7.10. Calculated block-scale stress wave velocities for KBGM stopes dA12-

35, dB10-38B and dB10-38T plotted against the mean wave travel distance. 

 

The scatter in the in situ wave velocities in Figure 7.10 identifies possible conditions 

of velocity anisotropy. Although some scatter has been observed within the data 

subsets for each stope and individual walls of stopes, grouping within the individual 

subsets has revealed definite differences. These identified anisotropies can indicate 

variable degrees of fracturing or stress conditions. Differences in stress wave 

velocities also influence the calculated energy densities and strains developed within 

a rock mass as a result of the propagation of blast waves.  

 

7.5.4.2 Frequency Assessment of Monitored Blasting Vibrations 

Competent rock masses exhibiting a high effective stiffness would be expected to 

support vibration frequency spectra greater than weak and highly fractured rock 

masses of low effective elastic constants. Therefore, one method of assessing the 

relative conditions of a rock mass is by examining the frequency content of 

propagating seismic waves from blasting. To investigate this effect, vibration 

frequencies calculated at the peak amplitudes for all blast vibration data collected in 

D block have been examined. Figure 7.11 shows a histogram of the peak frequencies 

of all data collected as part of the blast vibration monitoring program in D block.  

 



Chapter 7. Case Study- Barrick Gold Corp. Kanowna Belle Gold Mine 177 

 
Figure 7.11. Block-scale blast vibration peak frequency distribution at KBGM. 

 

Variability in the rock mass conditions indicated by the scatter in velocity values in 

Figure 7.10 can also be observed by the lognormal distribution in peak frequency 

values in Figure 7.11. For consistent rock mass conditions around all three study 

stopes, the frequency distribution would have been expected to be a normal 

distribution with a minimal spread around the mean. 

 

7.5.4.3 Peak Amplitude-Frequency Analysis of D block Data 

A method of rock mass condition assessment referred to as peak amplitude-

frequency analysis has been proposed for use in rock mass characterisations in D 

block. Peak amplitude-frequency analysis examines the relationship between the 

peak particle acceleration (PPA) and peak particle velocity (PPV) of recorded blast 

waves to indicate rock mass conditions based on the wave frequency supporting 

characteristics. More information on the peak amplitude-frequency analysis method 

is provided in Appendix 7. 

 

Data collected for each individual monitored stope wall were compared using the 

peak amplitude-frequency approach. This comparison further investigated the 

differences in rock mass properties indicated by the stress wave velocities and rock 

testing results for the three geologic units; namely the D block hangingwall (stope 

HW), ore (stope EW) and footwall (stope FW) units. Although the peak amplitude-
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frequency analysis method cannot determine specific properties of the rock mass, the 

factors associated with the indicated conditions could be investigated using other 

geotechnical methods such as stress modelling, deformation measurement and 

discontinuity modelling. Within the proposed analysis method, the term “indicated 

stiffness” has been used to refer to the effective elastic bulk modulus of the rock 

mass. 

 

Figures 7.12 and 7.13 show the plots of vector sum peak particle velocity (VSPPV) 

versus vector sum peak particle acceleration (VSPPA) from measured D block 

vibration data. This data includes both the accelerometer and geophone 

measurements. The results for dA12-35 and dB10-38B are shown in Figure 7.12 and 

the three monitored orientations in stope dB10-38T are shown in Figure 7.13.  

 

 
Figure 7.12. Comparison of VSPPV versus VSPPA plots (log-log axes) for the 

footwall of stopes dA12-35 and dB10-38B and East wall of dB10-38B. 
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Figure 7.13. Comparison of VSPPV versus VSPPA plots (log-log axes) for the East 

wall, footwall and hangingwall of stope dB10-38T. 

 

It is proposed by the author that differences between the curves fitting the data for 

the individual geologic units indicate variations in relative rock mass stiffness as 

defined by the frequency characteristics of the peak amplitudes. Any indications of 

rock mass stiffness or condition drawn from these results have been compared with 

other methods of rock mass assessment throughout this chapter.  

 

Due to considerable scatter of data points around the best fit lines shown in Figures 

7.12 and 7.13, it is arguable whether or not the data sets differ statistically. 

Comparisons of the 95% confidence bands for each data set over the represented 

ranges do reveal significant overlap. Additional statistical analysis is required to 

investigate the differences between the individual relationships.   

 

The results in Figures 7.12 and 7.13 have been combined and compared to gain a 

more comprehensive understanding of the influence of geology on the frequency 

characteristics of the blast waves in D block. The best fit lines defined in Figures 

7.12 and 7.13 have been shown in Figure 7.14 in linear-linear axes as opposed to log 
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axes to better represent differences in curve shapes. The axes have also been shifted 

in range to allow better visual separation of the best fit curves. 

 

 
Figure 7.14. Plot of best-fit lines of VSPPV versus VSPPA for all monitoring 

orientations in the D block of KBGM. 

 

Differences in relative indicated stiffness for different rock units are implied from the 

peak amplitude-frequency analyses. Particular importance has been placed on the 

grouping of the footwall data sets for all three stopes (long-dashed lines), which 

provides some degree of validation to the method of assessment. The footwall unit 

would have been expected to experience the least amount of rock mass disturbance 

based on other assessment methods and observations of stope performance. 

 

According to the guidelines presented in Appendix 7 for interpretation of the results 

of peak amplitude-frequency analysis, an increase in general rock mass stiffness is 

proposed as the slope of the VSPPV-VSPPA line decreases. This indication is based 

on the assumption that the same PPV would result in a higher PPA at a lower slope, 

thus indicating a higher stiffness due to an increase in frequency-supporting 

characteristics of the rock mass. According to this interpretation, the East wall of 

stope dB10-38B would have been the stiffest unit, followed by the hangingwall unit 
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of stope dB10-38T. The occurrence of high stiffness for the hangingwall unit can be 

partially validated by the results of the static rock testing, where the hangingwall 

intact rock displayed the highest static Young’s Modulus. The reduced stiffness for 

the East wall of dB10-38T was believed to largely reflect the damage that is 

regularly observed in the end-walls of the stopes in D block due to stress 

redistribution and dilation of existing discontinuities (Malatesta, 2006). 

 

Care must be taken when comparing the results of stress wave velocity 

measurements with peak amplitude-frequency indications of rock mass stiffness in 

this thesis. The data used to calculate the stress wave velocities were generated 

during the initial stope rise firings. These firings took place prior to any significant 

opening of void and localised stress redistribution associated with mining of each 

study stope. Therefore, the rock mass in which the transducers were installed at the 

time of the rise firings could be considered to be completely confined. The data 

collected for the peak amplitude-frequency analyses included all stope firings and 

therefore represented various stress redistribution and rock mass confinement 

conditions. Where the results of the two analysis methods appear to disagree in 

regards to the indicated rock mass conditions, other measurement or modelling 

methods have been discussed. These include the interpretation of mining-induced 

static stress modelling and the intact rock testing results. Further research with 

controlled seismic waves would be required to investigate correlations between the 

various characterisation approaches. 

     

7.6 Blast Vibration Analysis Results of Combined D block Data 

All blast vibration data recorded in the D block has been analysed as a combined data 

set to investigate the general influence of charge weight and distance on various blast 

vibration characteristics. These characteristics include the instantaneous amplitudes 

VSPPV and VSPPA and the values based on the entire wave duration such as the 

integrated area under the squared velocity waveform (AW-tot), stored strain energy 

density (EDW-SS) and the mean normal dynamic strain (�W-MN). As described 

previously in Chapter 6, values for EDW-SS and �W-MN require calculation from the 

recorded waveforms and various intact rock and rock mass properties. 

 



Chapter 7. Case Study- Barrick Gold Corp. Kanowna Belle Gold Mine 182 

The first step in analysis of the combined D block blast vibration data set was to 

perform a traditional peak amplitude analysis using the values of VSPPV and 

VSPPA. The analysis was then extended to the duration-dependent area under the 

VSPV2 waveform (AW-tot). VSPPV, VSPPA and AW-tot do not depend on rock density, 

stress wave velocity, Young’s Modulus or any other rock property. Therefore, these 

quantities could be viewed as directly-measured blast vibration characteristics.  

 

The general charge weight scaling relationship (Equation 5.2) and the nonlinear, 

multi-variable estimation approach was used to determine the regression constants, 

K, b and n for the combined data set. Table 7.4 lists both the best-fit and 95% upper 

confidence regression constants for VSPPV, VSPPA and AW-tot along with the 

coefficient of correlation (R value). 

 

Table 7.4. Best-fit and 95% upper confidence regression constants and correlation 

coefficients from multi-variable, nonlinear estimation of the KBGM D block 

combined data set. 

Model Data 
Points 

K B n R 
Value 

Best-fit VSPPV (mm/s) 1333 4023.4 0.053 -1.407 0.34 

95% VSPPV  6600.2 0.151 -1.194  

Best-fit VSPPA (m/s2) 1333 70195.9 -0.080 -1.170 0.36 

95% VSPPA  122742.1 0.035 -1.455  

Best-fit AW-tot (mm2/s) 1333 19949.9 0.366 -2.434 0.25 

95% AW-tot  49408.2 0.602 -1.920  

 

Further rock mass data were required to calculate values of blast vibration energy 

and strain using the methods proposed in Chapter 6. As previously discussed, these 

material properties included the rock density, dynamic Young’s Modulus, Poisson’s 

Ratio and the P-wave velocity. The Young’s Modulus measured in the laboratory 

during quasi-static testing was not used to calculate Lame’s constant (Equation 6.29) 

required for estimation of the mean normal dynamic strain, �W-MN (Equation 6.28). 

The differences between the static and dynamic Young’s Modulus discussed in 

Chapter 2 and the large variability in observed orientation-dependent stress wave 
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velocities in D block suggested that the dynamic in situ Young’s Modulus would be 

required. The dynamic Young’s Modulus (Edyn) was calculated for each stope wall 

according to Equation 2.15 using the measured P-wave wave velocities and the 

quasi-static Poisson’s Ratios from laboratory core testing. The quasi-static Poisson’s 

Ratios were used to calculate Edyn due to a lack of information on the differences in 

P-wave and S-wave velocities. In addition, the actual differences between the static 

and dynamic values of Poisson’s Ratio when comparing laboratory and field 

measurements have been inconsistent (e.g. Van Heerden, 1987 and Lin and Heuze, 

1987). For this reason, the quasi-static value of Poisson’s Ratio as determined from 

laboratory rock testing has been used in all further calculations. Accurate values for 

Vp and � were more critical for the calculation of Edyn than Poisson’s Ratio, 

especially with the large variations in Vp that were observed from field data.  

 

The values of Edyn and �L were calculated from the measured rock properties and 

used in calculation of the stored strain energy density (EDW-SS) and mean normal 

dynamic strain (�W-MN). Nonlinear estimations were performed similar to those for 

VSPPV, VSPPA and AW-tot. The regression constants are listed in Table 7.5. 

 

Table 7.5. Best-fit and 95% upper confidence regression constants for stored strain 

energy density (EDW-SS) and mean normal strain �W-MN for the combined data set from 

all three stopes monitored at KBGM. 

Model Data 
Points 

K b n R 
Value 

Best-fit EDW-SS (J/m3) 1333 107180 -0.40 -2.4 0.25 

95% EDW-SS  265449 0.70 -1.90  

Best-fit �W-MN (��) 1333 530.7 0.393 -1.451 0.38 

95% �W-MN  862.85 0.497 -1.254  

 

The combined D block �W-MN data set is shown in Figures 7.15 and 7.16 along with 

the three-dimensional surfaces defined by the best-fit and 95% upper confidence 

regression constants listed in Table 7.5.  
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Figure 7.15. Best-fit surface from multi-variable nonlinear estimation of �W-MN versus 

charge weight and VICD for all KBGM D block data. 

 

 
Figure 7.16. 95% upper confidence prediction surface from multi-variable nonlinear 

estimation of �W-MN versus charge weight and VICD for all KBGM D block data. 
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The low correlation values observed in Tables 7.4 and 7.5 for all regressions of the 

combined D block data set identified characteristically different behaviours between 

data subsets based on individual stopes or orientations. Therefore, segregation of the 

data according to the individual stope, separate stope wall (monitoring orientation) 

and distance range (transducer type) was performed. This segregation of data 

typically resulted in an increase in prediction correlations. Separation of the data into 

subsets also identified differences in vibration attenuation behaviours at different 

locations and orientations within the rock mass. These differences in vibration 

behaviours highlighted the importance of monitoring blasting vibrations along 

several key orientations within the rock mass. This type of monitoring would be 

expected to provide a more accurate model for prediction of vibrations based on the 

direction of wave propagation under the influence of geology and mining-induced 

stress conditions. Single blast-vibration monitoring points of unspecified geometry 

do not effectively characterise blasting vibrations for a rock mass along all 

orientations and locations in the near-field, where discrete geological features and 

induced static stress distribution can influence vibration attenuation. 

 

All data sets collected in the three study stopes in D block were analysed with respect 

to PPV, PPA, EDW-tot and �W-MN. For individual stopes, only the results for the 

regressions of EDW-SS and �W-MN have been provided due to the damage criteria 

adopted in the proposed blast damage prediction approach. Results of the other 

regressions are included in Appendix 9. 

 

7.7 dA12-35 Individual Stope Analysis 

Stope dA12-35 was a single-lift stope on the Eastern mining front between the 

9380RL and 9350RL and was the first stope monitored at KBGM. The newly-

acquired blast vibration monitoring equipment was calibrated in dA12-35 prior to 

full-scale monitoring of dB10-38B and dB10-38T. As a test stope, limited 

instrumentation was installed to monitor blasting in dA12-35.  

 

The geotechnical rock mass characterisation performed for stope dA12-35 is 

discussed in Section 7.7.2. This characterisation included the results of discontinuity 

mapping, stress-wave velocity measurements and rock mass stiffness assessment 
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(peak amplitude-frequency analysis). A brief investigation of the blast vibration 

monitoring results is also briefly discussed along with a review of the post-extraction 

void analysis. No prediction of the extent of blast damage or stress modelling was 

performed for dA12-35. 

 

7.7.1 dA12-35 Blast Vibration Monitoring Instrumentation 

A single transducer array was installed in the footwall of stope dA12-35 after 

commissioning of the new blast vibration monitoring equipment. The first transducer 

in the array was a 500g tri-axial accelerometer, located approximately 7m from the 

perimeter of the stope at the mid-span elevation (9367RL). Due to the location of the 

footwall shear in respect to the stope boundary, the accelerometer was technically 

located within the orebody. The second transducer on the footwall array was a tri-

axial geophone sonde, located within the footwall unit 16.7m from the stope 

perimeter. The different geological units containing each transducer were accounted 

for in calculations of blasting energies and strains by using different values of rock 

density and elastic properties. A cross section of stope dA12-35 and the location of 

the footwall transducers are illustrated in Figure 7.17. 

  

 

Figure 7.17. Cross section of stope dA12-35 showing the Fitzroy Fault, footwall 

shear and the installed footwall transducer locations (looking west). 
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7.7.2 Characterisation of dA12-35 Rock Mass 

The static rock strengths and elastic properties for stope dA12-35 were identical to 

those presented in Table 7.2. The rock testing data for D block were limited in 

nature. Specific testing of extracted rock blocks or core around each study stope 

would have been required to obtain more accurate location-specific values. In the 

absence of additional testing, the results from previous testing have been used.   

 

7.7.2.1 Discontinuity Orientation Distributions from Mapping 

The database of mapping results presented in Figure 7.9 for the entirety of D block 

have been subdivided by level and Easting to obtain only the results for the 9350RL 

and 9380RL in the vicinity of the Eastern mining front. These results were used to 

determine the discontinuity distributions for stope dA12-35. The resulting stereonet 

polar plot is shown in Figure 7.18. 

  

 
Figure 7.18. Discontinuity mapping results for levels 9350RL and 9380RL in the 

vicinity of stope dA12-35. 

 

The distribution of discontinuities in Figure 7.18 closely resembles the distribution 

observed in Figure 7.9 for all D block mapping. The percentage of total mapped 

structures was higher along the dip/dip direction of 70/230, as characterised by the 

darker colours within the contours. This predominant orientation was largely 

accounted for by the splay zones near the footwall shear of close spacing (100-

250mm) as opposed to the random spacing of other discontinuity sets.  
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7.7.2.2 Stress Wave Velocities from Blast Vibration Monitoring Results 

The differential stress wave velocities for the footwall of stope dA12-35 were 

determined using the rise firing holes plus additional holes in the toe firings and sill 

blast. These charges were selected due to the short charge lengths and the relatively 

low impact of the rise void on the wave travel path. Figure 7.19 illustrates the results 

of the stress-wave calculations and the average value used in further calculations of 

seismic parameters and blast vibration analyses.  

 

 
Figure 7.19. Differential stress-wave velocities using blasthole seismic sources for 

the KBGM stope dA12-35 footwall. 

 

Edyn and �L were determined for the dA12-35 footwall rock mass using the value of 

Vp identified in Figure 7.19 (5093 m/s) and the intact rock properties (� and v) listed 

in Table 7.2. These values are listed in Table 7.6. 

  

Table 7.6. Rock mass properties for dA12-35 footwall monitoring direction. 

Wall Rock 
Density 
(kg/m3) 

Calculated Edyn 
(GPa) 

Poisson’s 
Ratio 

Wave 
Velocity 

(m/s) 

�L 
(GPa) 

Footwall Ore 2760 56 0.28 5093 28 

Footwall Unit 2770 55 0.29 5093 29 
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The calculated values of Edyn in Table 7.6 appear to contradict what might be 

expected when compared with the static testing results. As discussed in Chapter 2, 

Edyn would be expected to be higher than Est for an intact rock sample. The values of 

Edyn in Table 7.6 for the in situ rock mass are significantly lower than the values 

determined from quasi-static testing of intact rock samples. Although Edyn is 

expected to be higher than Est for intact rock, dynamic elasticity of in situ rock 

masses determined from stress wave testing is dependent on many more factors. 

These factors include static stress conditions and the degree and characteristics of in 

situ rock mass jointing. The high degree of rock mass fracturing parallel to the 

orebody at KBGM could have contributed to the lower in situ value of Edyn for the 

footwall orientation when compared with Est. A parametric study would be required 

to assess the influence of different input values on the calculated dynamic rock mass 

properties. 

 

7.7.3 Stope dA12-35 Blast Vibration Monitoring Results 

The combined D block vibration data set was segregated by individual stopes and the 

dA12-35 data were analysed using the multi-variable nonlinear estimation method. 

The regression constants for EDW-SS and �W-MN are listed in Table 7.7. Additional 

regression results are included in Appendix 9.   

 

Table 7.7. Best-fit and 95% upper confidence nonlinear estimation constants of  

EDW-SS and �W-MN for the footwall of dA12-35. 

Model Data 
Points 

K b n R 
Value 

Best-fit EDW-SS 220 430846.4 -0.573 -1.545 0.25 

95% EDW-SS 220 1879513 0.100 -0.320  

Best-fit �W-MN 220 1018.9 -0.141 -0.939 0.26 

95% �W-MN 220 2668.0 0.159 -0.356  

 

The analysis of the combined data set for the dA12-35 footwall accelerometer and 

geophone resulted in poor coefficients of correlation (R values). Consequently, there 

would be little confidence in the ability to predict the vibration values for similar 
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blasting conditions. In addition to the low R values, the negative slopes for the best-

fit b values clearly indicate an erroneous relationship between charge weight and 

energy or strain as expected from the assumed charge weight scaling. These model 

errors could be attributed to a lack in the ability of the general charge weight scaling 

relationship to describe near-field vibrations, errors in data collection or analysis, or 

physical effects of the footwall shear on the measured vibrations. 

 

In response to the low correlation values in Table 7.7, separate nonlinear estimations 

were performed for each footwall transducer data set. These analyses examined the 

effects of the two distance ranges (near-field and intermediate-field) on the 

calculated values of EDW-SS and �W-MN. The resulting correlations for each transducer 

in the array yielded much different results at each monitoring point (as shown in 

Appendix 9). Regressions of the accelerometer data provided low correlations, 

similar to the combined data set, whereas the analysis of the geophone data provided 

much higher correlation values. The results of the nonlinear estimations for the 

geophone data are listed in Table 7.8. 

 

Table 7.8. Best-fit and 95% upper confidence nonlinear estimation constants of  

EDW-SS and �W-MN for the footwall geophone data in stope dA12-35. 

Model Data Points K b n R 
Value 

Best-fit EDW-SS 110 63742.7 1.310 -3.570 0.49 

95% EDW-SS  486121 1.90 -1.40  

Best-fit �W-MN  3042.1 0.605 -2.246 0.61 

95% �W-MN  11016.6 0.780 -1.380  

 

The regression constants listed in Table 7.8 more closely follow those expected for 

the relationship between charge weight, distance and any vibration amplitude or 

intensity characteristic. The poor correlation values for the combined data set and the 

initial problems with accelerometer saturation in stope dA12-35 led to the use of only 

geophone data to represent the EDW-SS and �W-MN prediction equations for the stope. 

The 95% upper confidence prediction equations were adopted for future estimation 
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of vibrations to ensure the predicted values would not exceed an upper threshold. 

The resulting prediction relationships are shown in Equations 7.2 and 7.3.  

 

EDW-SS(95%) = 486121 (W)1.90 (D)-1.40      (7. 2) 

 

�W-MN(95%) = 11016.6 (W)0.78 (D)-1.38      (7. 3) 

 

Due to the inadequate amount of information collected for stope dA12-35, no attempt 

was made to predict the blast-induced rock mass damage using the criteria developed 

in Chapter 6.  

 

7.7.4 Post-Mining Stope Performance Assessment 

Post-extraction stope performance assessment for each study stope in D block was 

performed by comparing the post-extraction CMS survey results with the individual 

stope designs. Solids tools in SURPAC were used to evaluate the post-extraction 

CMS wireframe against the designed stope wireframe using an “outersection” 

function. The outersected wireframes represented the stope overbreak and 

underbreak (Figure 7.20). A wireframe reporting function was used to determine the 

total volumes of overbreak and underbreak from the two wireframes. Figure 7.20 

shows the result of outersection of the design and CMS wireframes. 

 

 
Figure 7.20. Overbreak volume (left) and underbreak volume (right) from comparing 

the CMS survey wireframe and the design stope wireframe for stope dA12-35.  
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The results of the volumetric analysis as well as the stope overbreak and underbreak 

expressed as percentages of the design stope volume are displayed in Table 7.9. 

 

Table 7.9. Stope overbreak and underbreak calculations resulting from outersection 

of the post-extraction CMS and the design wireframes for stope dA12-35 

Stope Performance 
Criteria 

Volume 
 (m3) 

% of Design Volume 

Total Overbreak 2231 18.4% 

Total Underbreak 1389 11.5% 

 

In addition to volumetric analyses, horizontal and vertical planes passing through the 

design and CMS wireframes were examined to determine the values of maximum 

depth of overbreak for each stope wall. An example set of horizontal and vertical 

sections are illustrated in Figures 7.21 and 7.22 showing locations of perimeter 

blastholes, charges in a blasthole ring, neighbouring fill masses and the shaded areas 

of overbreak (blue) and underbreak (red).    

 

 
Figure 7.21. Plan view of stope dA12-35 CMS and design wireframes at 9360m 

elevation showing areas of overbreak (blue), underbreak (red) and perimeter 

blastholes. 
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Figure 7.22. Cross section of stope dA12-35 CMS and design wireframes along 

blasthole ring 3 showing areas of overbreak (blue), underbreak (red) and blasthole 

charges (looking West). 

 

The maximum depth of overbreak for each stope wall was determined from analysis 

of all horizontal sections cut through the wireframes. Sections where development 

drives extended outside of the stope boundary or significantly undercut a stope wall 

were not used to determine the depth of overbreak due to the influence of the existing 

void on the rock mass performance. The values for maximum depth of overbreak for 

dA12-35 are listed in Table 7.10. 

 

Table 7.10. Maximum depth of overbreak in each wall of stope dA12-35. 

Stope Wall Maximum Depth of Overbreak     
(m) 

East Wall 0 

West Wall (pastefill) 1.8 

Footwall 4.4 

Hangingwall 7.1 

 

An additional assessment for stope dA12-35 was possible due to close monitoring of 

blasthole charging logs. This assessment identified possible sources of oversize 
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reporting to the drawpoint. As observed in Figure 7.22, an area approximately mid-

stope (gray shaded) was interpreted from blasthole breakthrough and charging logs. 

The logs identified blastholes where the depth of recorded breakthrough was 

significantly offset from the charge collars of the previous firing, thus indicating 

unblasted material. During stope production, significant oversize was experienced in 

dA12-35, with oversize blocks being largely tetrahedral in shape (Fleetwood, 2010). 

The possible source, as indicated by the charging logs, was rock mass failure along 

existing discontinuities exposed by the unconfined temporary stope crown. 

 

7.8 dB10-38B Individual Stope Analysis 

Stope dB10-38B was the second study stope selected on the East mining front of D 

block. Stope dB10-38B was the first lift (bottom) of a double lift stope located 

between the 9380RL and 9440RL, with an intermediate sublevel at the 9410RL. 

Stope dB10-38B was bordered by footwall shear to the North, the central fill mass to 

the West and the dA10-38 fill mass to the South. The in-stope firing sequence was 

that of a standard, flat-bottom single-lift stope (Figure 7.4). Figure 7.23 shows both 

dB10-38B and dB10-38T in relation to the central fill mass and the Fitzroy Fault. 

 

 
Figure 7.23. Isometric view of stope dB10-38B and dB10-38T (looking west).  
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7.8.1 dB10-38B Blast Vibration Monitoring Instrumentation 

Two arrays of transducers were installed in dB10-38B to measure blasting vibrations 

in the two intact (non-fill) walls of the stope. The two walls were referred to as the 

stope East wall (EW) and the stope footwall (FW). A plan view of the installed blast 

vibration monitoring instrumentation is shown in Figure 7.24.  

 

 
Figure 7.24. Plan view of stope design dB10-38B showing sensor locations, adjacent 

fill masses and faults at 9395RL. 

 

7.8.2 dB10-38B Rock Mass Characterisation 

The same characterisation and analysis techniques used for dA12-35 were carried out 

for dB10-38B. Similar trends were observed for the data collected for dB10-38B 

when compared with dA12-35. Significant variations in stress wave velocities, blast 

vibration attenuations and stope performance were observed for each wall of the 

stope. Table 7.11 lists the results of stress wave velocity measurements in the two 

instrumented stope walls.  
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Table 7.11. Stress wave velocities for the footwall and East wall of dB10-38B. 

Stope Wall Stress Wave Velocity                
(m/s) 

East Wall 4750 

Footwall 5000 

 

Observed differences between the wave velocities calculated for each wall of the 

stope may have been influenced by both the existing discontinuity orientation and the 

mining-induced static stress distribution around the central fill mass. A high 

frequency of steeply-dipping discontinuities was mapped striking approximately 20 

degrees west of north. This discontinuity set would have been intersected more 

frequently for the East wall wave-path than for the footwall, possibly contributing to 

the reduction in the wave velocity. The differences between the observed wave 

velocities were investigated further using peak amplitude-frequency analysis. The 

plots of VSPPV versus VSPPA for the East wall and footwall accelerometers are 

shown in Figure 7.25. 

 

 
Figure 7.25. Plot of VSPPV versus VSPPA for stope dB10-38B East wall and 

footwall accelerometers and the best-fit equations. 
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Comparing the rock mass conditions suggested by the stress wave velocities and the 

peak amplitude-frequency analyses reveals disagreement between the two 

approaches for dB10-38B. The higher relative stiffness suggested for the East wall 

by the peak amplitude-frequency analysis was not reflected in the stress wave 

velocity. Higher rock mass stiffness would be expected to have a higher relative P-

wave velocity, but frequency-supporting characteristics do not necessarily indicate a 

higher wave velocity, especially in the presence of a major zone of fracturing such as 

the footwall shear zone. 

 

It must be noted that both the differential stress wave velocity and indication of 

stiffness using peak amplitude-frequency analysis would be expected to contain 

inherent flaws. Both approaches require additional research to explicitly characterise 

the rock mass conditions associated with variations in the values. Both methods of 

analysis effectively assess conditions within a volume of rock, but can represent 

different rock mass parameters as a function of fracturing and induced stresses. 

Additional factors that must be considered when comparing the results of the two 

methods include the action of the mining-induced static stress distribution and the 

differences between the peak and maximum wave frequencies. 

  

7.8.3 dB10-38B Blast Vibration Monitoring Results 

One issue worth noting is that the East wall accelerometer vibration data were 

initially held in question due to a water-bearing discontinuity intersecting the 

instrumentation hole. Extreme difficulties were encountered during installation of the 

transducer, as dewatering of the hole was ineffective. Coupling conditions of the 

accelerometer were questionable due to the presence of water and the use of a 

thickened cement grout mixture to displace the water and achieve coupling. Analysis 

of the frequency content of recorded signals validated the coupling of the transducer.  

 

Tables 7.12 to 7.14 present the results of the calculated dynamic rock mass properties 

and the results of nonlinear estimations of the vibration data. The 95% upper 

confidence regression results (Tables 7.13 and 7.14) have been presented for both the 

cumulative data sets (accelerometer and geophone data together) and then subdivided 

into single transducers. Additional results are listed in Appendix 9.  
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Table 7.12. In situ dynamic rock mass properties as indicated for stope dB10-38B. 

Wall Rock 
Density 
(kg/m3) 

Calculated Edyn 
(GPa) 

Poisson’s 
Ratio 

Wave 
Velocity 

(m/s) 

�L 
(GPa) 

East Wall 2760 49 0.28 4750 24 

Footwall 2770 53 0.29 5000 28 

 

Table 7.13. 95% upper confidence regression results for the East wall and footwall 

data sets. 

Model Stope Wall Data 
Points

K b n Best-Fit 
R Value 

95% EDW-SS Footwall all 180 8.36 x 109 -0.298 -3.738 0.69 

95% �W-MN Footwall all 180 2.73 x 106 -0.355 -2.607 0.79 

95% EDW-SS East Wall all 175 6.54 x 105 1.126 -3.715 0.90 

95% �W-MN East Wall all 175 2414.5 0.514 -1.691 0.80 

 

Table 7.14. 95% upper confidence regression results for the dB10-38B individual 

East wall and footwall transducer data sets. 

Model Transducer Data 
Points 

K b n Best-Fit 
R Value 

95% EDW-SS FW Acc 96 6.29 x 109 -0.173 -2.975 0.65 

95% �W-MN FW Acc 96 2.25 x 106 -0.363 -2.060 0.79 

95% EDW-SS FW Geo 84 2.82 x 106 3.199 -4.330 0.83 

95% �W-MN FW Geo 84 7715.2 1.069 -1.771 0.75 

95% EDW-SS EW Acc 89 8.82 x 105 1.364 -3.846 0.93 

95% �W-MN EW Acc 89 5246.9 0.504 -1.831 0.85 

95% EDW-SS EW Geo 86 6259.5 1.567 -1.545 0.66 

95% �W-MN EW Geo 86 822.5 0.734 -1.095 0.70 

 

For all data collected in stope dB10-38B, high correlation values were observed in 

both the combined and transducer-specific nonlinear estimation results. The accuracy 
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of predicting the observed values would therefore be high. Some distinct differences 

were noted in the regression constants for each orientation and consequently for 

individual transducers in each array. A two-dimensional representation of the stope 

wall regression results at a charge weight of 100kg is shown in Figure 7.26. This 

graph illustrates the differences between the 95% upper confidence curves for 

predicted �W-MN between the two walls of the stope as listed in Table 7.13. 

 

 
Figure 7.26. Log-log plot of the 95% upper confidence prediction curves for the 

footwall and East wall of stope dB10-38B for a 100kg charge weight.  

 

The slope of the 95% upper confidence prediction curve for the footwall orientation 

is steeper than that for the East wall. This would suggest that the vibrations measured 

in the footwall experienced a higher degree of attenuation when compared with the 

East wall. In addition, a higher intercept value can be observed in Figure 7.26 for the 

footwall prediction curve. This would suggest that the transfer of explosive energy 

from the blastholes to the rock mass in the very near-field of the footwall would be 

greater due to reduced breakage or rock mass displacement effects when compared 

with the East wall. At approximately 21m from a 100kg charge, the predicted 95% 

confidence �W-MN values in both the footwall and East wall orientations would be 

equal. Beyond this distance, the �W-MN would be higher for the East wall direction. 
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7.8.4 dB10-38B Stope Performance Assessment-Maximum Depth of 

Overbreak 

The results of the overbreak assessment performed for the horizontal stope slices of 

dB10-38B are listed in Table 7.15. Due to broken stock left in the stope at the time of 

the intermediate CMS survey of dB10-38B, no assessment of the volume of 

overbreak and underbreak was performed at this stage of mining. Assessment of the 

overall stope performance based on volume of overbreak and underbreak was carried 

out using the final CMS survey (after both lifts were extracted) and presented with 

the results of dB10-38T. 

  

Table 7.15. Maximum depth of overbreak in each wall of stope dB10-38B. 

Stope Wall Maximum Depth of Overbreak     
(m) 

East Wall 3.0 

West Wall (pastefill) 2.6 

Footwall 1.0 

Hangingwall (pastefill) 1.0 

 

7.9 dB10-38T Individual Stope Analysis 

Stope dB10-38T was the top lift of a double-lift sequence, and located directly above 

stope dB10-38B. The South wall (hangingwall) of stope dB10-38T was located 

against the Fitzroy Fault and partially undercut by the dA10-38 fill mass. As an A-

panel stope, the footwall and East wall were located in ore. The West wall of the 

stope was against the central fill mass. As the top lift of a double-lift sequence, 

dB10-38T was fired into the existing void from extraction of dB10-38B.  

 

To aid in reducing ore loss against the Fitzroy Fault, the crown of dB10-38T was 

inclined to approximately vertical. The inclined crown required the use of upholes 

and special application of pumped emulsion explosives. The standard Dyno-Nobel 

LP-MS connector pyrotechnic initiation system was used for all stope firings except 

for the mass blast, in which electronic detonators were used.  
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7.9.1 dB10-38T Blast Vibration Monitoring Instrumentation 

Transducer arrays were installed in the East wall (EW), footwall (FW) and 

hangingwall (HW) of stope dB10-38T to measure blasting vibrations. A plan view of 

the installed instrumentation is shown in Figure 7.27 and Table 7.16 summarises the 

types of transducers and the offsets from the stope boundaries. 

 

 
Figure 7.27. Plan view of the installed blast vibration monitoring instrumentation, 

adjacent pastefill and major geologic features associated with stope dB10-38T. 

 

Table 7.16. Summary of blast vibration monitoring transducers around dB10-38T. 

Wall of Stope Transducer Type Distance from Stope   
(m) 

Footwall (FW) Tri-axial 500g Accelerometer 6.1 

 Tri-axial Geophone 15.1 

East Wall (EW) Tri-axial 500g Accelerometer 6.0 

 Tri-axial Geophone 16.0 

Hangingwall (HW) Tri-axial 500g Accelerometer 6.0 

 Tri-axial Geophone 15.0 
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The dense instrumentation coverage around stope dB10-38T allowed for a rigorous 

blast-induced vibration assessment to be performed. This assessment investigated the 

influence of geologic variability on measured wave properties. Transducers installed 

within the hangingwall rock unit also allowed for an investigation into the effects of 

the Fitzroy Fault on the propagation of blasting vibrations.  

 

7.9.2 dB10-38T Rock Mass Characterisation 

The rock mass characteristics of stope dB10-38T were similar to those observed for 

stopes dA12-35 and dB10-38B. For this reason, no rock testing or discontinuity 

mapping data have been discussed for the individual dB10-38T rock mass 

characterisation. The calculated stress wave velocities and peak amplitude frequency 

analyses for dB10-38T are discussed, along with an additional assessment of the 

influence of the Fitzroy Fault on the propagation of blast vibrations. The results of 

mining-induced static stress modelling around dB10-38T as a result of the mining of 

nearby stopes are also presented. 

 

7.9.2.1 dB10-38T Wave Velocities and Peak Amplitude-Frequency Analyses 

The plot of the stress wave velocities versus mean travel distance for each 

monitoring orientation is shown in Figure 7.28. 

 

 
Figure 7.28. Plot of dB10-38T East wall, footwall and hangingwall stress wave 

velocities versus the mean geometric travel distance. 
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The stress wave velocities observed in Figure 7.28 for the East wall and footwall of 

dB10-38T are higher than those observed in dB10-38B and reversed in order of 

lowest to highest. Although the in situ discontinuity orientations would have been 

expected to be similar between the two stopes, the stress conditions would have been 

significantly different due to the presence of the dB10-38B void at the time of firing 

of dB10-38T. The change in stress conditions may have contributed to the 25% 

higher wave velocity for the East wall of dB10-38T when compared with the East 

wall of dB10-38B. The contribution of different factors to the differences in the 

velocity values is not known at this time and would require additional research to 

determine. 

 

One factor that complicated the direct comparison of the velocity values for the 

footwalls of stopes dB10-38B and dB10-38T was the locations of the transducers. 

The accelerometer of the footwall array in stope dB10-38T was located in ore, on the 

stope side of the footwall shear, and the geophone was located within the footwall 

unit. This was similar to the transducers in the footwall of stope dA12-35. In stope 

dB10-38B, both footwall transducers were located in the footwall unit. According to 

the range in footwall stress wave velocities from the three stopes, the influence of the 

footwall shear was not significant. The difference of 340m/s between the lowest 

(5000m/s for dB10-38B) and the highest (5340m/s for dB10-38T) was only 

approximately 6% and well within the range of data scatter around the average 

values.     

 

An interesting output of the plot of wave velocity versus distance for the hangingwall 

unit can be observed in Figure 7.28. With an increase in mean travel distance, the 

stress wave velocity is reduced (negative slope). This effect is not apparent in the 

other data sets. Upon further investigation, the change in travel distances from the 

rise charges to the hangingwall transducers corresponded with changes in the angle 

of incidence of the blast waves with the Fitzroy Fault. A secondary analysis of the 

ray-path incidence angle (�i) in relation to the Fitzroy Fault plane normal and the 

velocity was therefore performed. The analysis results are presented in Figure 7.29 

and the graphical representation of the analysis is shown in Figure 7.30. 
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Figure 7.29. Effect of angle of incidence of the blast wave travel path with the 

Fitzroy Fault and the stress wave velocity. 

 

 
Figure 7.30. Section view of the wave travel paths and incidence angles in relation to 

the Fitzroy Fault plane normal for the six rise firings in KBGM stope dB10-38T. 

 

Figures 7.29 and 7.30 indicate that higher incident angle intersections between the 

blast wave and the vector representing the Fitzroy Fault plane normal resulted in 

larger travel distances and decreased stress wave velocities. Angles of near-normal 
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incidence for the later rise firings resulted in higher stress wave velocities. These 

results agree well with the theoretical effect of the angle of incidence on the 

attenuation of both stress wave velocity and amplitude. The practical application of 

this information at the mine site is location of seismic events where the travel path 

between the event and the triggered transducers is interrupted by the Fitzroy Fault. 

Additional effects of the Fitzroy Fault on measured vibrations have been discussed 

by the author in a report to the Kanowna Belle Mine (Fleetwood, 2010).  

   

Similar to the other two stopes in the study, a peak amplitude-frequency analysis was 

performed for the data collected in stope dB10-38T. The specific data shown in 

Figure 7.31 represents blast vibrations recorded by the East wall, footwall and 

hangingwall accelerometers.  

 

 
Figure 7.31. Plots of VSPPV versus VSPPA and best-fit lines for the East wall, 

footwall and hangingwall accelerometers around stope dB10-38T. 

 

Figure 7.31 suggests that each geologic unit around dB10-38T had a different 

indicated stiffness as implied by the curve shapes, with the hangingwall unit having 

the highest stiffness and the East wall having the lowest stiffness. The indicated rock 

mass conditions using peak amplitude-frequency analyses disagreed with the rock 
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mass conditions implied by the stress wave velocities, but there was agreement 

between the peak amplitude-frequency analyses and the measured static elastic 

constants for each unit from rock testing.  

 

Additional statistical analyses comparing the 95% confidence bands for the three 

data sets in Figure 7.31 revealed a large proportion of overlap between the East wall 

and footwall data sets and the footwall and hangingwall data sets (Figure 7.32). 

Minimal overlap between the East wall and hangingwall 95% confidence bands was 

observed, suggesting that the two data sets were likely statistically different. 

Additional statistical analysis would be required to further investigate statistical 

differences between the individual data distributions.  

 

 
Figure 7.32. Comparison of 95% confidence bands for the VSPPV versus VSPPA 

plots of the East wall, footwall and hangingwall data sets pictured in Figure 7.31. 

 
 

7.9.2.2 Linear-Elastic Mining-Induced Static Stress Modelling 

Modelling of the magnitudes and distributions of virgin and mining-induced static 

stresses provides a useful tool for geotechnical engineers performing rock mass 

characterisations and stope performance assessments. MAP3D linear-elastic stress 
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modelling is a tool regularly used at KBGM for assessing the effects of stope 

dimensions and mining sequences on the induced static stresses. MAP3D modelling 

was performed for stope dB10-38T by the author using model inputs and stope 

designs provided by KBGM personnel. The output data from the stress models were 

used in additional interpretations of stope performance and prediction of strain-

related blast-induced damage to intact rock around the stope. The material properties 

and stress field input values provided by KBGM personnel for the MAP3D stress 

model are listed in Table 7.17. 

 

Table 7.17. Input values for the MAP3D pre- and post-mining stress modelling for 

stope dB10-38T as provided by KBGM. 

Parameter Value 

Rock Young’s Modulus 62 GPa 

Poisson’s Ratio 0.270 

Elevation Datum 10360 m 

�a Constant 12 

�b Constant 5.88 

�c Constant 0 

�a Variation -0.0566 

�b Variation -0.0374 

�c Variation -0.0299 

�a Trend 117 degrees 

�a Plunge 2 degrees 

�c Trend 13 degrees 

 

The values listed in Table 7.17 can be extracted to evaluate the field stresses applied 

in the model at the depth of mining (Equations 7.4 to 7.6). 

 
�a = 0.0566 (depth) + 12 (MPa)      (7. 4) 
 
�b = 0.0374 (depth) + 5.88 (MPa)      (7. 5) 
 
�c = 0.0299 (depth) + 0 (MPa)      (7. 6) 
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Upon completion of the MAP3D model for the pre- and post-mining steps, the output 

data fields were extracted as a text file. The file contained the three-dimensional 

coordinates of each point on the specified grid and the values of �1, �2 and �3 as 

calculated by the software. The number of grid points on the horizontal model plane 

at the 9417RL above the 9410RL development was 4077. The grid data were 

imported into the software SigmaPlot 10.0 and contoured to show the distribution of 

stress magnitudes within the horizontal modelling plane. The resulting stress 

contours of �1, �2 and �3 at the 9417RL horizontal grid prior to mining of dB10-38B 

and dB10-38T are shown in Figures 7.33 to 7.35. 

 

 
Figure 7.33. Mining-induced �1 static stress distribution at the 9417RL horizontal 

grid for the dB10-38T and dB10-38B pre-mining step. 
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Figure 7.34. Mining-induced �2 static stress distribution at the 9417RL horizontal 

grid for the dB10-38T and dB10-38B pre-mining step. 

 

 
Figure 7.35. Mining-induced �3 static stress distribution at the 9417RL horizontal 

grid for the dB10-38T and dB10-38B pre-mining step. 
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The stress modelling results for the pre-mining step clearly indicate zones of stress 

concentration near existing excavation corners and a significant zone of low 

confinement (�2 and �3 close to zero) near the central fill mass. The indicated zones 

of low confinement associated with the central fill mass have been validated by field 

observations in other stopes, where significant losses of pre-drilled blastholes have 

occurred. The affected blastholes were typically in the rings against the central fill 

mass and closure due to movement along detached discontinuities was observed. The 

stress magnitudes and distributions observed in Figures 7.33 to 7.35 would be 

expected to influence the shape, extent and severity of rock mass damage with the 

addition of dynamic strains from blasting as discussed in Chapter 6. 

 

7.9.3 dB10-38T Blast Vibration Monitoring Results 

The number of discrete blasthole traces that could be identified in the mass blast 

waveforms was marginally increased compared with stopes dA12-35 or dB10-38B 

due to the use of electronic detonators. The more flexible, programmable electronic 

initiation timing prevented multiple-hole firing. The potential increase in single-hole 

firings and potential data points for the mass blast was reduced by the necessary 

cabling paths from the transducers to the data acquisition systems. The hangingwall 

and East wall transducer cables were all severed early in the mass blast due to rock 

dislocation and movement along the firing front.  

 

As a result of the D block rock mass characterisation and in-stope measurements, the 

dynamic rock mass properties used in calculation of the EDW-SS and �W-MN for stope 

dB10-38T are listed in Tables 7.18 and 7.19.  

 

Table 7.18. Stress wave velocities used to calculate EDW-SS and �W-MN values for 

dB10-38T blasting. 

Stope Wall Stress Wave Velocity                  
(m/s) 

East Wall 5940 

Footwall 5340 

Hangingwall 5200 (average at close to normal angle) 
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Table 7.19. Static and dynamic rock mass properties used in calculation of EDW-SS 

and �W-MN in stope dB10-38T blasting results. 

Stope Wall Rock Density 
(kg/m3) 

Calculated 
Edyn        

(GPa) 

Poisson’s 
Ratio 

Wave 
Velocity 

(m/s) 

�L 
(GPa) 

East Wall 2760 76 0.28 5940 38 

Footwall 2760 - 2770 62 - 60 0.28-0.29 5340 31-32 

Hangingwall 2775 56 0.30 5200 32 

 

The two different values listed for the rock density, Edyn, Poisson’s Ratio and �L for 

footwall orientation in Table 7.19 is due to the locations of the two transducers in the 

orebody (accelerometer) and in the footwall unit (geophone). The differences 

between the rock mass properties of each geologic unit would have been expected to 

influence the energies and strains developed in the propagating blast waves. 

 

Using the values listed in Table 7.19, the values of EDW-SS and �W-MN were calculated 

for each blasthole. Nonlinear multi-variable estimations of the resulting data for the 

individual stope wall data sets are listed in Table 7.20. As presented previously for 

stope dB10-38B, only the 95% upper confidence regression results are listed. The 

additional regression results are provided in Appendix 9. 

 

Table 7.20. 95% upper confidence multi-variable nonlinear estimation results for 

each wall of dB10-38T. 

Model Stope Wall Data 
Points 

K b n Best-fit 
R Value 

95% EDW-SS Footwall all 319 736.1 2.567 -1.415 0.38 

95% �W-MN Footwall all 319 36.9 1.489 -0.968 0.51 

95% EDW-SS East Wall all 220 0.185 3.415 -1.295 0.79 

95% �W-MN East Wall all 220 19.3 1.312 -0.857 0.59 

95% EDW-SS Hangingwall all 219 0.157 1.574 0.947 0.59 

95% �W-MN Hangingwall all 219 0.876 0.765 0.622 0.61 
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In general, the correlation values for the nonlinear estimations of combined data sets 

for each stope wall of dB10-38T ranged from poor (0.38) to good (0.79). The high 

variability in regression results for the combined data sets indicated that the blast 

vibration attenuation along different orientations around stope dB10-38T were not 

consistent. The effect of distance range on the regression results for dB10-38T data 

was investigated by separating the individual transducers. Table 7.21 shows the 

regression results for each transducer around stope dB10-38T. 

 

Table 7.21. 95% upper confidence multi-variable nonlinear estimation results for 

each transducer around stope dB10-38T. 

Model Stope Wall Data 
Points 

K b n Best-fit 
R Value 

95% EDW-SS FW Acc 167 736.1 2.567 -1.452 0.38 

95% �W-MN FW Acc 167 36.9 1.489 -0.968 0.52 

95% EDW-SS FW Geo 152 466.2 2.117 -1.301 0.60 

95% �W-MN FW Geo 152 397.2 0.724 -0.900 0.63 

95% EDW-SS EW Acc 45 22228.2 1.560 0.09 0.50 

95% �W-MN EW Acc 45 426.4 1.362 -0.310 0.47 

95% EDW-SS EW Geo 175 61865.8 2.320 -3.320 0.90 

95% �W-MN EW Geo 175 8935.6 1.015 -2.319 0.83 

95% EDW-SS HW Acc 112 1.854 2.596 -0.121 0.59 

95% �W-MN HW Acc 112 80.6 0.708 -0.392 0.58 

95% EDW-SS HW Geo 107 5014.1 1.703 -1.465 0.76 

95% �W-MN HW Geo 107 807.5 0.827 -1.015 0.80 

 

In some cases, segregation of the individual transducer data sets as specified by 

distance (near-field and intermediate-field) resulted in increased correlation values. 

In all cases, significant changes in the regression constants were observed for the 

data subsets and significant differences in attenuation behaviours were noted along 

each monitoring orientation. The variations between the attenuation behaviours 

based on the distance range (near-field versus intermediate-field) observed in all 

three monitored stopes suggests that the general charge weight scaling relationship 
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does a poor job of standardising the prediction of blasting vibrations under complex 

geologies or geometries. The higher correlation values observed for the intermediate-

field geophone transducers on each array would further suggest that charge weight 

scaling can reliably predict vibrations at larger distances from explosive sources, but 

is highly limited at distances closer than approximately 10m. 

 

7.9.4 Predictions of Blast-Induced Damage: Stope dB10-38T 

The process of rock mass damage prediction required several key steps when 

incorporating mining-induced static stresses and blast-induced dynamic strains. 

These steps were discussed in Chapter 6. The approach adopted in the prediction of 

blast-induced damage in this thesis involved the integration of several different 

commercially-available software packages and custom models developed by the 

author. A standardised software package or system does not exist at the current time 

for integration of stress modelling, blast design, vibration modelling, rock strength 

modelling and blast damage prediction.  

 

The existing software packages and tools developed by the author used to generate 

and integrate the information required to perform the blast damage prediction 

discussed in the following sections included: 

• Modelling of blasthole charge strings (SURPAC 6.0) 

• Three-dimensional static stress modelling (MAP3D) 

• Multi-variable nonlinear regression analysis (Statistica 8.0) 

• Blast vibration waveform processing (Instantel Blastware 8.1) 

• Blast vibration analysis and calculation of energy/strain (macros in Excel) 

• Integration of model grid values of stress/strain and rock strength (Excel) 

• Graphical contour outputs (SigmaPlot 10.0) 

 



Chapter 7. Case Study- Barrick Gold Corp. Kanowna Belle Gold Mine 214 

7.9.4.1 Estimation of the Tensile Rock Strength and Static and Dynamic 

Elastic Constants for the dB10-38T Rock Mass 

Through review of rock testing data in the WASM database from 2004 to present, no 

tensile strength testing results were available for the D block of KBGM. Other tests 

such as UCS, tri-axial compressive strength, point load and UCS with elastic 

constants were discovered. Due to the lack of tensile strength testing results, 

estimation of tensile strength values was required. The tensile strength (�T) was 

estimated by assuming a general ratio of the measured UCS to �T of approximately 

12, according to the Griffith theory of rock strength. From the results of earlier rock 

testing listed in Table 7.2 (Li, 2002), the estimated tensile strengths of the intact rock 

for the three geologic regions of the D block rock mass are listed in Table 7.22. 

 

Table 7.22. Predicted tensile rock strengths for D block geologic units. 

Geologic Region Measured UCS        
(MPa) 

Predicted �T         
(MPa) 

Ore 113 9 

Footwall 136 11 

Hangingwall 156 13 

  

The static Young’s Modulus (Est) provided from laboratory testing (Li, 2002) and the 

estimated �T and measured UCS were used to calculate the static tensile and 

compressive failure strains (�static(T) and �static(C), respectively). The resulting values of 

static compressive and tensile failure strains are listed in Table 7.23.   

 

Table 7.23. Static rock properties for the three geologic units around dB10-38T. 

Geologic Region Average Est 
(GPa) 

Predicted �static(C) 
(��) 

Predicted �static(T)    
(��) 

Ore 62 1814 151 

Footwall 65 2080 173 

Hangingwall 71 2213 184 
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The static tensile failure strains in Table 7.23 fall within the suggested tensile failure 

range of 100 to 200�� as discussed in Chapter 2. The dynamic in situ failure strains 

in compression (�dyn(C)) and tension (�dyn(T)) were then calculated using Edyn values 

from Table 7.19. The predicted dynamic failure strains are in Table 7.24. 

 

Table 7.24. Compressive and tensile dynamic failure strains for the three geologic 

units around stope dB10-38T. 

Geologic Region Calculated Edyn    
(GPa) 

Predicted �dyn(C)   
(��) 

Predicted �dyn(T)   
(��) 

Ore 76 1483 123 

Footwall 60 2255 187 

Hangingwall 56 2801 233 

 

The values of the dynamic in situ Young’s Modulus listed in Tables 7.19 and 7.24 

differ considerably from the laboratory-tested value of static Young’s Modulus of 

intact rock samples. For the East wall of the stope, the Edyn was higher than the 

laboratory obtained quasi-static value. For the footwall and hangingwall, the values 

of the dynamic in situ Young’s Modulus were lower than the static values. 

 

The dynamic failure strains presented in Table 7.24 do not explicitly consider the 

effects of strain rate based on the information presented in Chapters 2 and 6. The 

assumption has been made that strain rate significantly influences both the failure 

stress and the Young’s Modulus of a material, but that the changes in strength and 

elasticity are roughly proportional. This effect would suggest that the failure strain 

does not change significantly with strain rate. As such, strain-rate effects are 

assumed not to influence failure strain, but are considered in the energy-based 

damage criteria for assessment of fracture extension. 

 

7.9.4.2 State of Mining-Induced Static Strain at the Time of Blasting 

The stress modelling results have been used to assess the state of mining-induced 

static strain within the rock mass at the time of blasting of stope dB10-38T. This 

approach aided in determining the additional dynamic strains required to cause 

damage to the intact rock blocks within the rock mass around dB10-38T. The 
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modelling results used in the damage prediction represented the static strain 

distribution prior to excavation of either dB10-38T or dB10-38B. Modelling results 

for each discrete in-stope mining step could be applied for better accuracy in 

representing the stress and strain conditions at the time of each stope firing (e.g. 

partial stope extraction at the time of mass firing).   

 

One main assumption was required to allow the blast-induced dynamic strains to be 

superimposed upon the existing mining-induced static strains. This assumption was 

that the induced static strain at each grid point could be adequately described by the 

mean normal static strain invariant (�MN). Based on the assumption that mean normal 

strain was a legitimate descriptor of the state of mining-induced static loading, the 

�MN values at each grid point could be determined from the modelling results. A 

contour plot of �MN at the 9417RL modelling grid is shown in Figure 7.36. 

 

 
Figure 7.36. Contour plot of the mining-induced mean normal static compressive 

strain (�MN) modelling results at the 9417RL for the dB10-38T pre-mining step. 

 

The value of �MN at each grid point was used to calculate the balance of strain 

required for either compressive or tensile damage based on the damage criteria 
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outlined in Chapter 6. Significant mechanistic issues arise when attempting to 

estimate the confined compressive failure strain of rock under conditions of existing 

static compressive loading. For this reason, only the tensile failure criterion has been 

pursued in the prediction of blast-induced intact rock damage for stope dB10-38T. 

The tensile criterion would be expected to predict a greater extent of damage outside 

the stope and thus was assumed to be more critical for stope performance. 

 

7.9.4.3 Additional Tensile Strain Required for Tensile Fracture 

The tensile fracture criterion and the values of �MN from the modelling allowed the 

required tensile strain for tensile fracture to be calculated for the grid at the 9417RL. 

The required �W-MN to fracture the intact rock under the influence of the existing �MN 

at each grid point was the sum of �dyn(T) plus �MN. This value represented the dynamic 

tensile strain that would be required to overcome the existing static compressive 

strains and the tensile failure strain of the rock. A contour plot of the required 

additional tensile strain for each point on the 9417RL grid is shown in Figure 7.37. 

 

 
Figure 7.37. Contour plot of the required tensile strain for tensile fracture of intact 

rock at the 9417RL under the influence of the pre-mining static compressive strains. 
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The overwhelming influence of the existing static compressive strains on the 

required tensile strain to cause tensile fracture can be observed in Figure 7.37. In 

other models used to predict blast damage, such as the critical tensile strain model, 

no consideration for the influence of existing static stresses or strains is incorporated. 

With the influence of static compressive strains observed in underground mining 

conditions, the rock tensile strength alone does a poor job of representing a rock 

damage criterion.  

 

7.9.4.4 Calculation of Induced Dynamic Strains from Blasting 

The blast vibration monitoring and analysis program for stope dB10-38T resulted in 

equations for predicting the wave-induced mean normal dynamic strains (�W-MN) at 

points in the rock mass. These equations were used to estimate the dynamic blasting 

strains at various distances from specified charge weights. The values were used to 

create strain contours around the assumed charge location. The dynamic strain values 

were then evaluated against the required additional tensile strain values (Figure 7.37) 

to assess the likelihood of tensile fracture at points on the specified modelling grid. 

 

The prediction equations defined by the regression constants in Table 7.20 were used 

to estimate values of the blast-induced EDW-SS and �W-MN at points away from a 

charge of known explosive weight. Differences in the attenuation behaviours as 

indicated by the variable regression constants suggested that the transmission field 

around the charge would be highly irregular. These effects were associated with the 

influence of the Fitzroy Fault, the footwall shear, the dominant in situ discontinuities 

and the stress conditions. Contours of equal-strain were roughly elliptical, with the 

long axis oriented in the directions of the hangingwall and footwall. The ellipsoid 

axes elongation was approximately 3:1. Figure 7.38 illustrates the shape of the 

predicted equal-strain contours around a 100kg charge using the equations defined by 

the regression constants in Table 7.20 for each propagation orientation. 
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Figure 7.38. Contours of equal strain propagating from a 100kg charge as estimated 

from the 95% confidence regression constants for the East wall, footwall and 

hangingwall of dB10-38T (not to scale).   

 

Integration of orientation-specific attenuation equations was not possible in the 

current version of the damage prediction process due to the configuration of the grid 

calculations. The method in which strain values were calculated at each grid point 

required a single attenuation equation based on the charge weight, charge coordinates 

and distance from the charge to each point in the grid. The EDW-SS and �W-MN 

attenuation equations chosen for use in the contour predictions represented the 95% 

upper confidence equations from nonlinear estimation of the dB10-38T combined 

stope data set. The resulting equations were: 

 

EDW-SS-95% (dB10-38T) = 452.93 (W)2.50 (D)-2.03 (J/m3)    (7. 7) 

 

�W-MN-95% (dB10-38T) = 32.03 (W)1.49 (D)-1.33 (��)     (7. 8) 
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Further development of the grid calculation capabilities of the proposed approach 

would be expected to integrate variable attenuation characteristics as specified by the 

blast monitoring. This would lead to more accurate representations of irregular 

attenuation patterns and associated damage predictions.  

 

The dynamic strain field around a 100kg charge using Equation 7.8 was estimated to 

illustrate the process of superimposing �W-MN on the required strain balance to 

produce tensile fracture. The prediction equation was analysed against all grid points 

and contours of the dynamic strains were generated for a single, 100kg charge 

located at the stope perimeter. Figure 7.39 illustrates the contours of the 95% upper 

confidence predicted �W-MN at the 9417RL grid. 

 
 

 
Figure 7.39. Contours of �W-MN-95% at all 9417RL grid points using Equation 7.8 for a 

100kg charge on the perimeter of stope dB10-38T. 

 

Voids and fill masses in the original stress models were treated as areas incapable of 

sustaining mining-induced static strains or blast-induced dynamic strains. This 
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consideration slightly altered the strain field contours observed in Figure 7.39 near 

the Southern stope boundary.  

 

The next step in the prediction of tensile strain-related blast damage for stope dB10-

38T was to superimpose the dynamic strain field from the 100kg explosive charge 

(Figure 7.39) onto the required tensile strain to tensile fracture (Figure 7.37). Figure 

7.40 illustrates the theoretical view of this process, showing the zones of intersection 

of strain contours with the required tensile strains to fracture. 

 

 
Figure 7.40. Contours of �W-MN from a 100kg charge superimposed on the required 

tensile fracture strain contours for dB10-38T at the 9417RL grid. 

 

Using the values of �W-MN predicted by the attenuation equation at each grid point, 

calculations were performed to determine the difference between �W-MN and the 

required tensile strain to produce tensile fracture. The points in the grid at which the 

applied dynamic strain exceeded the required strain were assumed to be damaged by 

tensile mechanisms. Points where �W-MN was less than the required tensile strain to 

fracture was assumed to be undamaged and considered to have excess strain 
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capacity. A contour plot of the excess tensile strain capacity for the 9417RL grid is 

illustrated in Figure 7.41.  

 

 
Figure 7.41. Contours of excess strain capacity for a 100kg charge at the East wall 

perimeter of stope dB10-38T, resulting in prediction of the tensile damage zone. 

 

The red regions in Figure 7.41 represent points in the grid where the excess strain 

capacity is less than zero, indicating that the blast-induced dynamic tensile strain has 

exceeded the required tensile strain to fracture. The zones surrounding the tensile 

damage zone (lower values of excess strain capacity) could be regarded as a 

transition zone where tensile damage may be likely to occur from the detonation of 

successive charges in the blast. Outside of this region, the intact portions of the rock 

mass have been assumed to be largely uninfluenced.  

 

The predicted extent of tensile damage from a single, 100kg charge at the stope 

perimeter was approximately 15m into the rock mass beyond the East wall of the 

stope. The influence of the existing static strains can be observed, as well as the 
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change in material strengths of the separate geologic units. These are indicated by the 

non-uniform shape of the predicted damage envelope. It is important to note that the 

severity of damage has not been defined explicitly in the proposed damage prediction 

approach and that damage does not necessarily indicate a high probability of rock 

mass failure. Many factors become relevant when assessing the potential for rock 

mass failure or instability. These include the degree and scale of static and 

dynamically-induced damage, the geometry of the excavation, installation of deep 

ground support and the magnitudes and orientations of confining stresses. 

 

The fan drilling geometries and in-stope firing sequences used at KBGM results in a 

large range in charge weights located at the stope perimeters. In practice, charges of 

15 to 150kg have been observed in perimeter holes within the stopes. To investigate 

the effect of a reduced charge weight at the stope perimeter on the predicted tensile 

damage zone, the 100kg charge was replaced by a 50kg charge. The predicted limit 

of tensile fracture for the 50kg charge at the stope perimeter is shown in Figure 7.42. 

 

 
Figure 7.42. Contours of excess strain capacity for a 50kg charge at the East wall 

perimeter of stope dB10-38T, resulting in prediction of the tensile damage zone.   
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The potential blast-induced tensile damage was also predicted for a 50kg charge 

located at the dB10-38T hangingwall boundary. Figure 7.43 shows the contours of 

the excess strain capacity and predicted tensile damage zone for the 50kg charge at 

the stope hangingwall. 

 

 
Figure 7.43. Contours of excess strain capacity for a 50kg charge at the hangingwall 

perimeter of stope dB10-38T, resulting in prediction of the tensile damage zone. 

  

A significant reduction in the damage zone and transition zone can be observed when 

comparing the results of the 100kg and 50kg charge weight predictions. Additionally, 

asymmetric damage contours can be observed around each charge due to the 

influence of the mining-induced static strains as a result of the stress shadowing from 

the adjacent central fill mass.  

 

The extent of damage predicted for the hangingwall of approximately 5.5m was less 

than the 7.5m predicted for the East wall for the same charge weight. This difference 

was due to the shapes of static strain contours and the individual geologic unit 
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fracture strains. The predicted dynamic tensile fracture strain for the hangingwall 

unit was almost twice that of the ore in the East wall. The damage prediction in 

Figure 7.43 from the hole against the stope hangingwall does not explicitly consider 

the activity of the Fitzroy Fault. 

 

7.9.4.5 Prediction of Damage from Fracture Extension 

The fracture energy approach discussed in Chapter 6 was proposed as a method of 

assessing the potential for extension of existing discontinuities to establish an outer 

limit of blasting damage. The required fracture energy has been assumed to be 

influenced by the strain rate, unlike the strain-based criteria for intact rock damage. 

This consideration required an additional prediction model for strain rate, which was 

assumed to be related to the peak particle acceleration and the stress wave velocity 

(Equation 2.17). 

 

The first step in estimating the potential for fracture activation and extension was 

characterisation of the existing state of fracturing using the fracture area density 

(FAD). Although no specific fracture distribution model was developed for KBGM 

as part of this thesis, the results of the D block backs mapping program provided 

some indication of the degree of jointing in the rock mass surrounding dB10-38T. 

These mapping results identified from two to four joint sets, with an average of three 

(KBGM, 2008). Therefore, three discontinuity sets have been considered in 

calculation of the FAD for D block.  

 

Within the unit block of 1m3, three joint sets of 1m2 face area have been assumed to 

exist with an average joint spacing of 250mm. The digitised backs mapping indicated 

joint spacing of 100mm to 1m for the three discontinuity sets. Based on the 

principles of a partially-healed discontinuously-connected fracture plane, each of the 

two fracture faces of a single discontinuity have been assumed to contribute to the 

expenditure of energy through fracture activation within the unit block. This 

assumption essentially doubles the fracture area within the block.  

 

Calculation of the FAD for D block using three sets of 250mm average spacing (3.5 

fracture planes per meter) resulted in a value of 21 m2/m3. The value of 3.5 fracture 
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planes per unit length was considered to account for the random distribution of the 

250mm joint spacing; at 250mm spacing, alternating 1m3 blocks would contain 

either three or four fracture planes. The FAD of 21 m2/m3 did not consider the 

presence of additional smaller fractures.  

 

The next step in the discontinuity damage prediction was determining the dynamic 

tensile fracture energy (FET(dynamic)) for the D block rock mass. This process required 

an assumed value of the static tensile fracture energy (FET) and some method of 

estimating the required dynamic tensile fracture energy based on the strain rate.  The 

relationship proposed in Chapter 6 (Figure 6.12) was used such that: 

 

( ) ε�012.0
)( 5.1 eFEFE TdynamicT =  

 

Where   FET = static tensile fracture energy (J/m2) 

  ε� = strain rate (m/m/s) 

 

The assumed value of static fracture energy (FET) for the D block rock mass was 90 

J/m2, based on a quartzite rock type (Krech, 1974). The FET(dynamic) was then 

calculated over a range of observed strain rates. A prediction model for strain rate 

related to charge weight and distance was established by performing nonlinear 

regression of the strain rate values calculated using Equation 2.17. Equation 7.9 

represents the 95% confidence prediction equation for strain rate as related to the 

charge weight and distance according to the combined data set for all measurements 

in dB10-38T.  

 

( ) ( ) 152.2269.34
%95 10264.1 −−×= DWε�        (7. 9) 

 

Equation 7.9 allowed the strain rate to be estimated at various distances from a 

known charge weight to calculate the values of FET(dynamic).  This value was then used 

to estimate the required dynamic tensile fracture energy density (FEDcrit-dyn), 

calculated as the product of the FET(dynamic) and the FAD. FEDcrit-dyn was then 

calculated over a range of distances from a 50kg charge, along with calculation of the 

EDW-SS at the same distances. 
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The current version of the energy-based discontinuity damage prediction approach 

does not depend on the state of mining-induced stress or strain required for the 

strain-based prediction for intact rock. For this reason, an alternate plot has been 

adopted for estimation of the limit of fracture extension. The new method of 

representation compares the estimated FEDcrit-dyn with the estimated EDW-SS over 

similar distance ranges to assess the likelihood of fracture extension. Figure 7.44 

shows the predicted extent of fracture extension based on the comparison of   

FED(crit-dyn) and EDW-SS at various distances from a 50kg charge. 

 

 
Figure 7.44. Estimation of the distance from a 50kg charge where potential fracture 

extension could occur as a function of the dynamic energy density at 21 m2/m3 FAD.  

 

The red lines shown in Figure 7.44 represent the dynamic stored strain energy 

density predicted for the 50kg charge based on the 95% upper confidence prediction 

equation for all data collected in dB10-38T. The blue line represents the required 

dynamic fracture energy density, FEDcrit-dyn to activate all fracture faces in the 21 

m2/m3 FAD at the various predicted strain rates. The intersection point of the two 

lines represents the distance at which adequate energy may be contained within the 

propagating blast-induced wave to activate the contained fractures. At distances 

where the EDW-SS exceeds the FEDcrit-dyn, fracture extension would be predicted to 
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occur. In the regions of the graph where the EDW-SS is less than the FEDcrit-dyn, there 

is a low probability that fracture extension would occur for the given value of FAD.  

 

The crossing point of the two curves in Figure 7.44 indicates that fracture extension 

may occur to distance of 50.5m from the 50kg charge. According to the plot, the 

FEDcrit-dyn was largely flat outside of approximately 5m from the explosive charge as 

the strain rate was rapidly attenuated. Within 5m of the charge, fresh tensile fracture 

of the intact rock would be expected and therefore damage to discontinuities would 

not likely represent the most significant damage mechanism.  

 

To investigate the influence of the FAD on the predicted fracture extension zone, the 

original block fracture model was revised for a reduced joint spacing. The more 

highly fractured jointing condition reduced the spacing to 100mm, which increased 

the FAD to 57 m2/m3. The resulting prediction of the fracture extension zone based 

on the new FAD is shown in Figure 7.45.  

 

 
Figure 7.45. Estimation of the distance from a 50kg charge where fracture extension 

could occur as a function of the dynamic energy density at 57 m2/m3 FAD. 

 

Due to the sensitivity of the equilibrium point between the EDW-SS and the FEDcrit-dyn 

to the FAD, the new prediction of the extent of fracture extension was 30.1m.  



Chapter 7. Case Study- Barrick Gold Corp. Kanowna Belle Gold Mine 229 

7.9.4.6 Comparison of Predicted Damage Extents with Critical Tensile Plane 

Strain Model Predictions 

The extents of tensile strain-based damage and discontinuity extension predicted 

using the proposed model were compared with predictions using the critical tensile 

strain model discussed in Chapter 6 to check for any agreement between the two 

approaches. The data used to determine the 95% upper confidence PPV prediction 

equation required for the critical tensile plane strain model was identical to data used 

to determine the average attenuations of strains and energies in the proposed model. 

 

One factor that was identified during the calculations of PPVcrit was the ambiguity 

related to the selection of input values of rock strength, P-wave velocity and Young’s 

Modulus for the critical tensile plane strain approach. The various forms of the 

equation provided by different researchers allowed for a range of different rock 

strengths or ratios of compressive to tensile strengths to be selected. Additionally, the 

selection of static or dynamic Young’s Modulus has not been discussed in 

association with the various versions of the equation. To represent the different forms 

of the equation and the range in possible input values, six different calculations of 

PPVcrit were compared. These calculations included different variations of possible 

static and dynamic input parameters for the dB10-38T orebody based on rock testing 

results and measured in situ data.  

 

Two different blast vibration prediction methods were used to determine the 

distances at which the various PPVcrit values would be expected for a given charge 

weight of 100kg and 50kg. These two prediction techniques were traditional log-log 

linear regression of VSPPV versus cube root Scaled Distance and nonlinear multi-

variable estimation of PPV using the general charge weight scaling relationship. A 

total of 24 damage predictions were performed using the six versions of the critical 

tensile plane strain equations, the two charge weights (100kg and 50kg) and the two 

vibration prediction techniques. Table 7.25 shows the predicted extents of tensile 

fracture using various forms of the critical tensile plane strain equation and nonlinear 

regression of VSPPV. Additional critical tensile plane strain damage predictions are 

included in Appendix 10 for the other model inputs, charge weight and regression 

approach. 
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Table 7.25. Predicted tensile fracture radii using various forms of the critical tensile 

plane strain damage model and nonlinear regression of PPV for a 50kg charge. 

UCS 
(MPa) 

UCS/�T �T 
(MPa) 

Vp 
(m/s) 

Est 
(GPa)

Edyn 
(GPa) 

PPVcrit 
(mm/s) 

PPVcrit 
Radius  

(m) 

113* 10 11 5940** 62*  1083 4.7 

113* 12 9 5940** 62*  862 6.1 

113* 15 7.5 5940** 62*  719 7.5 

113* 10 11 5940**  76** 883 5.9 

113* 12 9 5940**  76** 703 7.7 

113* 15 7.5 5940**  76** 586 9.5 

* data determined from rock testing 

** values from field measurement/calculations by the author 
 

The results of the 24 critical tensile plane strain analyses identified values of PPVcrit 

ranging from approximately 580mm/s to 1080mm/s, depending on the combination 

of input parameters. Based on the various values of PPVcrit and the method of PPV 

prediction, fresh fracture from tensile strain loading was predicted to occur over a 

radius of between 5m and 18m around a 100kg charge, and a radius of 4m to 9.5m 

from a 50kg charge. The damage extents predicted using the author’s proposed 

model for 100kg and 50kg charges were 7.5m and 15m, respectively. These values 

fell within the range of predictions from the critical tensile plane strain models. The 

ranges over which fracture extension were predicted based on the 25% PPVcrit 

criterion (Heilig, 2002) in the critical tensile plane strain model were between 16m 

and 90m for the 100kg charge and 13m and 47m for the 50kg charge. The predicted 

extents of discontinuity extension of 50.5m and 30.1m for the two different FAD 

values using the author’s proposed approach again fell within the large prediction 

ranges using the various forms of the critical tensile strain model. 

 

The most considerable difference between the proposed model results and the critical 

tensile plane strain results was the shape of the predicted damage envelopes around 

each charge. The influence of the mining-induced static strain distribution on the 

predicted strain-based damage predictions was clearly indicated in Figures 7.43 to 
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7.45. The critical tensile plane strain model in the common forms found in Chapter 6 

are not capable of considering the influence of the state of mining-induced static 

stresses or strains on the predicted blast-induced damage.     

 

7.9.5 Stope Performance Assessment of dB10-38T 

CMS surveys of stopes dB10-38B and dB10-38T were performed from the 9410RL 

and 9440RL once the double-lift stope was completely emptied prior to backfilling. 

These two surveys were combined to obtain a post-mining void surface wireframe of 

the entire stope. The combined CMS survey was compared with the double-lift 

design wireframe and Table 7.26 lists the overbreak and underbreak reporting results. 

 

Table 7.26. Overbreak and underbreak calculations resulting from comparison of the 

post-extraction CMS and the design wireframes for dB10-38B and dB10-38T. 

Stope Performance 
Criteria 

Total Volume           
(m3) 

% of Design Volume 

Total Overbreak 7976 35.1% 

Total Underbreak 1342 5.9% 

 

A series of horizontal and vertical stope sections were analysed to determine the 

maximum depths of overbreak experienced in each wall of dB10-38T. Table 7.27 

lists the maximum depth of overbreak for each stope wall and Figures 7.46 and 7.47 

illustrate horizontal and vertical sections of the dB10-38T wireframes. 

 

Table 7.27. Maximum depth of overbreak in each wall of stope dB10-38T. 

Stope Wall Maximum Depth of Overbreak     
(m) 

East Wall 5.1 

West Wall (pastefill) 3.0 

Footwall 2.1 

Hangingwall 2.2 
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Figure 7.46. Horizontal section of dB10-38T design and CMS survey wireframes at 

9420RL showing overbreak (blue), underbreak (red), pastefill dilution (green) and 

the locations of perimeter blastholes. 

 

 
Figure 7.47. Vertical section of dB10-38T design and CMS wireframes at blasthole 

ring 5 showing overbreak (blue), underbreak (red) and the locations of blastholes. 

 

The East wall of stope dB20-38T was the most severely over broken of the observed 

walls. Due to the roughly flat shape of some of the failure surfaces represented by the 

CMS of the East wall, it was proposed that the overbreak was partially associated 

with geologic features intersecting the stope. Further analysis of the state of post-
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mining stress distribution further supported this assumption, as significant zones of 

low confining stresses were indicated in the East wall. Low confining stresses could 

have facilitated detachment of large discontinuities and subsequent fall-off into the 

stope during blasting. Figure 7.48 shows the post-mining distribution of �2 and �3, 

which would act as clamping stresses for the major discontinuities. 

 

 

 
Figure 7.48. Post-mining linear-elastic stress modelling of �2 (top) and �3 (bottom) 

showing areas of low confining stresses in the East wall of stope dB10-38T. 
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The wedge-shaped CMS surface in the East wall of dB10-38T could have indicated 

interaction of a discrete large-scale discontinuity on strike N-NE with existing 

dominant discontinuity sets striking N-NW under the presence of low confining 

stresses. An additional contributing factor could have been the activity of blast-

induced fracture propagation causing interconnection of existing discontinuities. 

Loss of confinement would have been expected to contribute to the wall failure 

regardless of the fracture mechanism by allowing unravelling of the damaged rock 

mass. This contribution again illustrated the importance of the induced static stress 

on assessment of blast damage or stope performance. 

 

7.10 Discussion and Conclusions 

The processes of rock mass characterisation, blast vibration monitoring and analysis 

and post-extraction stope assessment provided valuable tools to investigate the 

contributions of geology, mining-induced static stresses and dynamic loading from 

blasting on rock mass behaviour and stope performance at KBGM. A majority of 

blast damage investigations only focus on blasting aspects defined by blast vibration 

monitoring and largely ignore the rock mass characteristics. The contribution of 

other factors such as geology and induced static stresses are rarely included in 

investigation of blast-induced damage, and therefore existing prediction models do a 

poor job of representing the complex nature of rock mass behaviour under static and 

dynamic loading. 

 

The data collected for dB10-38B and dB10-38T clearly indicated differences in blast 

wave propagation and attenuation along various orientations. These differences were 

assumed to be associated with the geologically-complex nature of the D block rock 

mass and the influence of static stresses. The interaction between the numerous 

factors contributing to stope performance made identification of a single factor such 

as blasting damage or geologically-influenced behaviours impossible. Therefore, a 

holistic approach must be adopted to assess or predict stope performance. This 

approach should include geologic, geometric and geotechnical parameters in addition 

to rock mass damage or degradation through introduction of blast damage.  
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The predicted zones of blasting damage for stope dB10-38T specified by the 

proposed strain and energy-based models were not necessarily reflected in the stope 

performance as assessed by the post-extraction CMS surveys. Measurements of the 

actual alterations within the remaining rock mass using detailed geophysical 

approaches or observation holes were not possible at KBGM due to limitations on 

equipment and the short stope turnover times. Although the damage predictions 

could not be validated by measurements of actual rock mass fracture, the predicted 

damage zones for the 50kg charge could be viewed as realistic according to the 

observed stope overbreak in the East wall. The predicted extent of tensile strain-

based damage in the East wall using the proposed approach was approximately 7.5m, 

whereas the maximum depth of overbreak was 5.1m. Additional rock mass alteration 

or strength degradation beyond the limit of overbreak would have been expected. 
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CHAPTER 8 : CASE STUDY- BHP BILLITON CANNINGTON 

MINE 

8.1 Introduction 

Following the investigation of stope performance at the Kanowna Belle Gold Mine 

from January to May 2006, a similar project was initiated at the BHP Billiton 

Cannington Mine starting in August, 2006. The initial blasting concerns at the 

Cannington Mine were related to potential blast-related damage to mine 

infrastructure within the North Zone mining area. The second area of concern was 

the performance of stopes contained within the newly-commissioned R4 mining area.  

 

The rock mass characterisation and blast vibration monitoring program at the 

Cannington Mine took place from August, 2006 to January, 2008. Two stopes in the 

massive and competent North Zone mining area and two stopes in the highly-

fractured R4 mining area were selected for the case studies. The rock mass 

conditions, stope dimensions and geotechnical concerns for the two mine areas were 

significantly different. As part of the case study, rock mass characterisations, blast 

vibration monitoring and post-extraction void assessments were performed for the 

four stopes. A total of 29 tri-axial blast vibration monitoring transducers were 

installed and 32 stope firings were monitored resulting in a database of 3750 

individual blasthole vibration wave traces. 

 

Rock mass characterisations and blast vibration monitoring and analysis results have 

been discussed for the North Zone and R4 as mining block-scale analyses in addition 

to individual stope assessments. Block-scale analyses refer to characterisations based 

on all monitored stopes within the two represented mining areas. The extent of 

tensile strain-related blast damage under the influence of mining-induced static 

strains has also been predicted for North Zone stope 24jC6HL. This prediction has 

been compared with predictions using the critical tensile plane strain model. 
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8.2 Geology of the Cannington Mine Deposit 

The orebody at the BHP Billiton Cannington Mine is a high grade, massive, 

polymetallic deposit containing a range of siliceous and Fe-rich lithologies with 

associated non-mineralised quartzites, pegmatites, amphibolites and sillimanite-

muscovite schists.  Lead, silver, and zinc mineralisation is separated into two main 

zones by the Trepell Fault. The Southern orebody is terminated by the Hamilton 

Fault. Both faults exhibit signs of large displacements, and are characterised by 

heavy fracturing and chlorite alteration (Walters and Bailey, 1998). Figure 8.1 shows 

a plan view of the Cannington orebody at the 210mLv (mine level) and Figure 8.2 

shows a longitudinal section of the Cannington orebody at the 1900m Easting. 

 

 
Figure 8.1. Plan view of the Cannington orebody at the 210mLv mine level showing 

the zones of mineralisation and the two regional-scale faults. 
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Figure 8.2. Section view of the Cannington orebody at the 1900m Easting showing 

the zones of mineralisation and the two regional-scale faults. 

 

A number of large parallel faults striking roughly Northeast-Southwest exist in the 

main Southern orebody between the Hamilton and Trepell Faults. These parallel 

faults are regionally terminated by the Trepell and Hamilton Faults and are locally 

referred to as “bird faults”. The bird faults negatively influence the behaviour of the 

stopes in the main Southern Zone as well as the regional mine stability. A barren 

amphibolite core is an additional geologic factor that influences the shape of the 

mineable resources at Cannington. This feature is illustrated in green in Figures 8.1 

and 8.2. The structural integrity of the amphibolite core is viewed as critical to the 

long-term stability of the Cannington underground mine (Li, 2007).   

 

8.3 Overview of the Mining Operation 

The Cannington Mine, owned and operated by BHP Billiton, is located 280km 

Southeast of Mt. Isa in Northwest Queensland, Australia. Mining by sublevel open 

stoping began at the Cannington Mine in late 1996, and at the time of the stope 

assessment program the mine was producing approximately 2.1Mt per annum of Pb-

Ag-Zn ore (Streeton, 2000 and Bloss, 2005). The Cannington Mine is divided into 

two primary mining areas by the Trepell Fault. The North Zone mining area, located 
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to the north of the Trepell Fault, contains approximately 20% of the minable reserve. 

The rock mass of the North Zone is massive and highly competent. The bulk of 

mining at Cannington takes place in the Southern Zone, which contains the 

remainder of the mineable reserves. The Southern Zone is subdivided into mining 

areas based on the locations and characteristics of the individual mineralised lodes. 

The stope sizes in the North Zone typically range from 60kt to 120kt, mined over 2 

to 4 sublevels. The stope sizes in the mining areas of the Southern Zone are highly 

variable, ranging from approximately 10kt in the R4 to 150kt in the QR5 and 

Footwall Lead. The moderately shallow depth of mining (less than 600m) at 

Cannington results in low to moderate measured in situ virgin stresses (Li, 2007). 

 

The drilling and blasting program at the Cannington Mine utilises a traditional 

sublevel open stoping sequence of slot-and-slash blasting. A central longhole winze 

is developed between production levels through rise blasting of longholes, followed 

by opening of a slot the full-length or width of the stope. Rings are then slashed into 

the void to the final stope perimeter. One modification of this standard sequence has 

been adopted for mass firing of entire 20m sublevels using electronic detonators. 

This method has been referred to as vertical retreat open stoping, or VROS (Bloss, 

2005). The typical number of firings per sublevel using the VROS approach is two to 

three instead of the traditional six to ten with a pyrotechnic initiation system. This 

reduction in the number of firings with the VROS sequence is due to the ability to 

fire a flexible hole sequence, mixing long-period and millisecond electronic delays. 

The general firing sequence within a VROS stope at Cannington is: 

 

Bottom sublevel 

•  Longhole winze (LHW) firings of 4-6m heights to 6-10m crown (2-3 firings) 

•  Cut-off slot (COS) firing entire stope width to 10m crown 

•  Ring toes firing to form stope trough 

•  Mass firing of LHW, COS crowns and remainder of rings 

Intermediate sublevels 

•  LHW firing to 6m crown 

•  COS firing to 10m crown 

•  Mass firing of remaining ore on level 
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One method the Cannington Mine adopted for reducing the expected risk of blasting 

damage infrastructure in the proximity of an active stope was the use of cleaner rings 

along the stope wall adjacent to the infrastructure. This approach was expected to 

both increase the stand-off distance between the main ring toes and the mine 

infrastructure (to reduce vibrations) and help control the breakage plane of the final 

stope wall. These outcomes were hoped to be achieved by drilling an extra ring of 

blastholes parallel to the final stope wall at the stope perimeter. Cleaner ring firings 

were the final stope firing, blasted after the stope was empty to ensure maximum ring 

relief. The cleaner ring strategy was similar to the diaphragm ring approach used at 

other mines (namely Mount Isa Mines). 

 

The blasthole diameter used at Cannington at the time of the study was 89mm and 

most rings were sub-horizontal (downholes). The typical pattern used in the North 

Zone of Cannington was a toe spacing of 3.0m with a ring burden of 2.5m to 2.8m, 

resulting in powder factors of 0.15 to 0.3 kg/tonne. The blasthole ring pattern in the 

R4 mining area was a 2.4m to 3.1m toe spacing and ring burden of 1.5 to 2.2m, with 

a powder factor of approximately 0.15 kg/tonne. The explosive types used at 

Cannington included pour-loaded ANFO, pour-loaded low-density ANFO blends and 

gassed emulsions with densities of 0.8g/cc to 1.2g/cc. A past study conducted by the 

Cannington geotechnical department investigated the influence of rock strength and 

fracture frequency on fragmentation and recommended blast design powder factors 

for different mine areas (Streeton, 2000). At the time of the author’s study from 2006 

to 2008, this approach to blast design was not explicitly considered by the 

engineering department, with preference for standardised patterns.  

 

8.4 Selection of Monitored Stopes 

The stopes included in the blast vibration monitoring and stope performance 

assessment program at Cannington were contained within the North Zone and R4 

mining areas. The two stopes in the North Zone were located near the Trepell Fault 

at a depth of approximately 200m to 250m from surface. The two stopes monitored 

in the newly-initiated R4 mining area were located in the footwall of the Hamilton 

Fault, at the southern extent of the Southern Zone, at a depth of approximately 500m. 

The ore grades in the R4 are on average higher than the main Southern orebody, but 
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account for less than 3% of the minable deposit (Li, 2007). The R4 was the most 

recently activated mining area at Cannington, with stoping commencing in late 2007. 

 

Selection of the monitored stopes at the Cannington Mine was influenced by two 

factors. The first was related to the protection of mine infrastructure and the second 

was partial shutdown of Southern Zone mining sectors for ground support 

rehabilitation. Based on these two factors, stopes in the North Zone mining area and 

the R4 mining area were selected for rock mass characterisation, blast vibration 

monitoring and assessment of post-extraction performance. The two mining areas 

were geologically different based on the rock mass alteration, geotechnical 

performance concerns and the expected stress conditions. 

 

8.4.1 North Zone Stopes 22gC6HL and 24jC6HL 

Following a request by Cannington personnel, the blast vibration monitoring 

program in the North Zone was initiated in August, 2006. Concerns with blast-

induced damage to critical mine infrastructure in the vicinity of stopes 22gC6HL and 

24jC6HL prompted the near-field vibration monitoring programs. The two stopes 

monitored in the North Zone were mined sequentially as part of the chequerboard 

extraction sequence. Figure 8.3 illustrates the locations of stopes 22gC6HL and 

24jC6HL along with the adjacent paste fill masses. 

 

 
Figure 8.3. Plan view of North Zone stopes 22gC6HL and 24jC6HL in relation to the 

Trepell Fault and adjacent pastefill masses at the time of monitoring.  
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Stopes 22gC6HL and 24jC6HL were selected for blast vibration monitoring due to 

concerns related to blast damage to mine infrastructure and geologic features near the 

stopes. The main concerns during blasting of stope 22gC6HL were: 

• 5m distance between the Southwest stope wall and the Trepell Fault  

• 5m distance between the Northwest stope wall and the 4.0m diameter raise-

bored SdD0 return air rise (RAR)  

• Main access fault crossing at the 240-255mLv  

• Main underground explosives storage magazine on the 240mLv  

 

Each of these structures was considered to be susceptible to blasting-related damage. 

If damaged, these infrastructure features could have compromised the productivity or 

safety of the mining operations in the North Zone. Figure 8.4 illustrates stope 

22gC6HL and the locations of features of concern.  

 

 
Figure 8.4. Isometric view of stope 22gC6HL showing the critical mine 

infrastructure in the vicinity of the stope (looking southeast). 

 

Of the structures shown in Figure 8.4, the 240-255mLv Trepell Fault crossing was 

viewed by Cannington geotechnical personnel as the most critical with regards to the 

mine production. The Trepell Fault crossing is the main access way between the 

North Zone and South Zone via the main decline. The importance of the travel way 



Chapter 8. Case Study- BHP Billiton Cannington Mine 244 

was highlighted by the addition of sprayed concrete arches through the fault crossing 

to ensure the long-term stability of the excavation. 

 

Both stopes 22gC6HL and 24jC6HL were both located adjacent to critical ventilation 

exhaust rises. The 7m separation between the Southwest wall of 24jC6HL and the 

4.5m diameter TbC5RAR led to concerns with regards to blasting damage, similar to 

stope 22gC6HL and SdD0RAR. An additional concern for stope 24jC6HL was the 

15m distance from the trough of the stope to the 240mLv main explosives storage 

magazine. Figure 8.5 shows stope 24jC6HL and the sensitive infrastructure in the 

proximity of the stope. 

 

 
Figure 8.5. Isometric view of stope 24jC6HL showing the critical mine infrastructure 

in the vicinity of the stope (looking southwest). 

 

8.4.2 R4 Stopes 52h09HL and 52h04HL 

The stope designs and mining sequence of the newly-activated R4 mining area in the 

footwall of the Hamilton Fault was approached with extreme caution by Cannington 

personnel. Limited tonnage was planned to be mined out of the R4 and the stope size 

was dramatically reduced to approximately 10kt per stope to limit the exposure of the 

footwall of the Hamilton Fault. To assess the response of the R4 mining area to 

mining and stope blasting, two stopes were selected for monitoring and assessment. 
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The R4 mining area was also selected for assessment due to the suspended 

production in the main Southern orebody for ground support rehabilitation of the 

Southern decline and the production levels.  

 

The first two stopes in the R4 stoping sequence were 52h09HL and 52h04HL, 

located between the 500mLv and 520mLv at the lowest mining level of the R4. The 

proposed stoping sequence of the R4 was a bottom-up continuous longitudinal retreat 

with concurrent pastefill (Li, 2007). Due to the complex mineralisation in the R4, a 

barren pillar was planned between stopes 52h09HL and 52h04HL. Figure 8.6 shows 

stopes 52h09HL and 52h04HL, along with the Hamilton Fault. 

 

 
Figure 8.6. Isometric view of R4 stopes 52h09HL and 52h04HL (looking north). 

    

8.5 North Zone Block-Scale Rock Mass Characterisation and 

Blast Vibration Monitoring Results 

All data collected for stopes 22gC6HL and 24jC6HL were combined to perform 

block-scale analyses to gain a better understanding of the rock mass conditions and 

blast vibration monitoring results for the North Zone. Part of the decision to 

investigate block-scale characteristics was based on the observation of large-scale 

rock mass anisotropies revealed by the stress wave velocity measurements and peak 

amplitude-frequency analyses.  
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8.5.1 Rock Mass Characterisation of the North Zone 

The North Zone rock mass was characterised using the results of rock testing, 

geological and geotechnical discontinuity mapping, mining-induced static stress 

modelling and geophysical approaches. The discontinuity mapping data were 

collected by Cannington Mine personnel and the blast vibration, geophysical and 

rock testing data were collected by the author.  

 

8.5.1.1 Intact Rock Properties 

Intact rock testing for the upper portion of the North Zone was performed for the 

Cannington Mine in late 2008 and early 2009 (WASM, 2009a and 2009b). The 

locations from which samples were extracted for a North Zone rock testing program 

performed in the 1990s could not be confirmed from the WASM rock testing 

database. Therefore, only the results of the recent testing program have been 

considered. The largely massive and homogeneous nature of the North Zone allowed 

the rock testing results obtained for the upper portions from surface drillholes to be 

applied to stopes 22gC6HL and 24jC6HL. 

 

In addition to the limited data on rock strengths measured for the North Zone, no 

testing results were found for the intact rock elastic constants. Values for the quasi-

static Young’s Modulus (Est) and Poisson’s ratio (vst) were therefore obtained from 

earlier testing of samples from the Southern Zone (AMC, 1998). The rock strengths 

and elastic constants used for the North Zone rock mass characterisation are listed in 

Table 8.1. 

 

Table 8.1. Results of intact rock testing for the North Zone of the Cannington Mine 

(AMC, 1998; WASM, 2009a). 

Mine Area Average UCS   
(MPa) 

Average �T    
(MPa) 

Average Est   
(GPa) 

Average vst 

North Zone 209(7) 13(6) 80(7) 0.29(7) 

 

The ore grade block model at Cannington correlates closely with the density of the 

intact rock. Therefore, the average rock density values for each study stope have 
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been determined from the mine ore grade block model (Li, 2009). Accurate 

determination of the rock densities for each study stope was important to perform the 

calculations of blast-induced energies and strains. Table 8.2 lists the values of rock 

density used for the two North Zone study stopes according to the block model. 

 

Table 8.2. Rock densities supplied by the Cannington reserve model (Li, 2009). 

Stope Average Rock Density         
(kg/m3) 

22gC6HL 3765 

24jC6HL 3585 

 

8.5.1.2 North Zone Discontinuity Mapping 

A project was initiated at the Cannington Mine in 2007-2008 to digitise the 

development backs mapping sheets for the entire mine. The digital files could then 

be used to examine the mapped discontinuities on each production level to perform 

rock mass characterisations and designs of ground support and reinforcement 

schemes. Figure 8.7 shows the digitised mapping for the 180mLv and 200mLv of the 

North Zone used for the discontinuity orientation distribution shown in Figure 8.8. 

 

 
Figure 8.7. Plan view of the results of digitised drive backs mapping of the Southern 

end of North Zone on mine levels 180mLv and 200mLv.  
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Figure 8.8. Discontinuity distribution from backs mapping of the 180mLv, 200mLv 

and 220mLv in the North Zone near stopes 22gC6HL and 24jC6HL.  

 

The results in Figures 8.7 and 8.8 indicate possibly three discontinuity sets, although 

a level of mapping bias could be expected due to the mapping of primarily the backs 

of the development drives. This practice would be expected to neglect shallow-

dipping discontinuities that may have been exposed in the excavation walls, but not 

in the backs.  

 

Most of the mapped discontinuities shown in Figure 8.8 were steeply dipping, with 

the exception of one joint set at approximate dip/dip direction of 20º-40º/200º-220º. 

The mapping program included mostly excavation-scale discontinuities based on the 

observed trace lengths being greater that 5m. The mapped discontinuity spacing 

ranged from 500mm to 2m, and most discontinuities observed in the North Zone 

were tightly-healed. 

 

8.5.1.3 Mining-Induced Static Stress Modelling 

The software package MAP3D was used by the author to perform linear-elastic 

mining-induced static stress modelling for the North Zone over a number of mining 

steps. Seven modelling grids were included to represent orientations of interest. The 

grids were either vertical or horizontal and positioned on various orientations and 

positions with respect to stopes 22gC6HL and 24jC6HL. Figure 8.9 shows the 
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modelled mining steps as specified by the colour of the block and the position of 

vertical grids 1, 2 and 4 (top), and horizontal grids 3, 5, 6 and 7 (bottom) used to 

assess of the state of stress in the vicinity of stopes 22gC6HL and 24jC6HL during 

the various mining steps. 

 

 
 

 
Figure 8.9. Plan view of North Zone MAP3D model with position of vertical grids 1, 

2 and 4 (top) and isometric view of horizontal grids 3, 5, 6 and 7 (bottom) for stopes 

22gC6HL and 24jC6HL. 

 

The North Zone development and the Trepell Fault were initially included in the 

MAP3D model, but were removed prior to performing the stress modelling 

calculations for the two study stopes. These objects were removed due to errors in 
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the specified fault-slip properties and the excessive number of finite elements 

required to populate the modelled surfaces. The removal of the development and the 

fault were not expected to significantly alter the large-scale modelling results due to 

the low to the linear-elastic nature of the model and the moderate field stresses at the 

shallow mining depth. Removal of the fault and development would not be expected 

to reflect reality, as large-scale faults and existing excavations would significantly 

influence local stress magnitudes and distributions. Therefore, both the characteristic 

material model (linear-elastic homogeneous) and the inability to include all of the 

significant features represent limitations to the stress modelling results.  

 

Stress measurements performed by WASM Acoustic Emission (AE) and CSIRO 

Hollow-Inclusion Cell (HI cell) methods were reviewed as part of a geotechnical 

audit for the Cannington Mine (Villaescusa, 2004). These measurements were used 

to determine the virgin field stress magnitudes and orientations for use in numerical 

modelling at the mine site. The equations for estimation of the principal stress 

magnitudes and orientations as a result of the review are listed in Equations 8.1, 8.2 

and 8.3 (Li, 2007 after Villaescusa, 2004). 

 

�1 = 0.0601 x depth (129º/ 14º : Trend/Plunge)    (8. 1) 
 

�2 = 0.0463 x depth  (223º/08º)      (8. 2) 
 

�3 = 0.0265 x depth (359º/80º)      (8. 3) 
 

The principal stress estimation equations and other material properties provided by 

Cannington personnel were used to model the mining-induced static stresses for four 

mining steps on seven specified grids. Vertical grid 1 was the only grid that was 

designed to pass through both monitored North Zone stopes. The results of the 

mining-induced static stress modelling for grid 1 is shown in Figures 8.10 to 8.12 for 

mining step 2. Step 2 was the step prior to extraction of either stope 22gC6HL or 

24jC6HL.    
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Figure 8.10. Results of MAP3D mining-induced static stress modelling of �1 on grid 

1 at mining step 2 (looking northeast). 

 

 
Figure 8.11. Results of MAP3D mining-induced static stress modelling of �2 on grid 

1 at mining step 2 (looking northeast).  
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Figure 8.12. Results of MAP3D mining-induced static stress modelling of �3 on grid 

1 at mining step 2 (looking northeast). 

 

The stress modelling results indicated no regions of significant stress concentration 

around stopes 22gC6HL or 24jC6HL that would potentially lead to stress-related 

rock mass damage from compressive crushing. Significant areas of low stress 

concentrations were observed around the existing fill between stopes 22gC6HL and 

24jC6HL. This loss of confining stresses could contribute to rock mass damage 

through opening of fresh or existing discontinuities prior to paste filling of the mined 

stopes. The tightly-healed nature of the North Zone discontinuities would be 

expected to largely resist such relaxation effects, but similar conditions of low 

confinement in the Southern Zone would likely mobilise bird faults, leading to large-

scale rock mass failures.    

 

8.5.1.4 Stress Wave Velocities and Peak Amplitude-Frequency Analyses of 

the North Zone Rock Mass 

Geophysical techniques that were applied to the block-scale rock mass 

characterisation of the North Zone included stress wave velocity measurements and 

peak amplitude-frequency analyses of recorded blasting vibrations. These analyses 

identified several key rock mass behaviours and block-scale rock mass anisotropies. 
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This evidence conflicted with the previously-held belief that the North Zone was 

largely homogeneous in nature. The data used for the North Zone geophysical 

assessments represented a large range of monitoring orientations and blasting 

geometries. The transducer coverage for the North Zone stopes ranged from four 

transducers in 22gC6HL to 14 in stope 24jC6HL. The reduced transducer coverage 

for stope 22gC6HL was due to the location of the stope with respect to fill masses 

and the Trepell Fault and the limited stock of transducers due to the short period 

between the two mine monitoring programs. Ample lead time was available for 

restocking and upgrading of transducers prior to stope 24jC6HL. Table 8.3 lists a 

summary of the transducers installed in the two monitored stopes of the North Zone. 

 

Table 8.3. Summary of North Zone Blast Vibration Monitoring Instrumentation. 

Stope 
Name 

Firing 
Level 
(mLv) 

Wall of Stope Tri-axial Transducer 
Type 

Distance 
from Stope 

(m) 

22gC6HL 180 Northwest (NW) 500g Accelerometer 
Geophone 

5.2 
15.0 

 180 Northeast (NE) Geophone 12.1 

 240 240-255 Decline Geophone 16.4 

24jC6HL 220 Northeast (220 NE) Geophone 9.6 

 220 Southeast (220 SE) 500g Accelerometer 
Geophone 

6.6 
12.5 

 220 Southwest (220 SW) 500g Accelerometer 
Geophone 

5.0 
15.0 

 200 Northeast (200 NE) 1000g Accelerometer 
Geophone 

5.0 
10.9 

 200 Southeast (200 SE) 1000g Accelerometer 
Geophone 

4.9 
12.8 

 200 Southwest (200 SW) 1000g Accelerometer 
Geophone 

5.0 
15.0 

 180 Southeast (180 SE) Geophone 9.8 

 180 Southwest (180 SW) 1000g Accelerometer 
Geophone 

5.1 
15.1 

 



Chapter 8. Case Study- BHP Billiton Cannington Mine 254 

The instrumentation strategy for 24jC6HL enabled the differential stress wave 

velocities to be calculated using the approach described in Chapter 7. No direct 

measurements of the stress wave velocities were possible for stope 22gC6HL. This 

was due to a lack of dual-transducer arrays in the Northeast and 240-255mLv 

orientations and the splitting of the two Northwest wall transducers onto separate, 

non-synchronised data acquisition systems for cabling purposes. The velocity values 

measured in stope 24jC6HL along similar orientations were viewed as adequate for 

application to stope 22gC6HL due to other recorded wave behaviours.  

 

The VROS in-stope firing sequence applied in stope 24jC6HL limited the number of 

winze blastholes available for calculation of the stress wave velocities along different 

orientations. Fewer data points were therefore available for determination of the 

average stress wave velocities, although good grouping was observed. Figure 8.13 

shows the measured stress wave velocities for each transducer array paired to 

common data acquisition systems in stope 24jC6HL. 

 

 
Figure 8.13. Plot of the measured stress wave velocities versus the mean travel 

distance in different walls of stope 24jC6HL.  

 



Chapter 8. Case Study- BHP Billiton Cannington Mine 255 

Figure 8.13 shows a significant variation in the average stress wave velocities for 

different propagation orientations around stope 24jC6HL. Additional differences 

were observed for the different production levels. The apparent data scatter within 

the 220mLv Southeast (220mLv SE) and 220mLv Southwest (220mLv SW) data sets 

could have been attributed to the differences in angles of propagation between 

successive firings and the transducer arrays. The three rise firings of the 220mLv 

covered a vertical range of approximately 25m. The source holes used for the 

200mLv velocity calculations consisted only of a single long-hole winze firing due to 

the VROS firing sequence. For the 180mLv firings, no velocity measurements were 

available due to the splitting of common-array transducers onto separate data 

acquisition systems for cabling purposes. 

 

Of particular interest in Figure 8.13 were the data sets for the 200mLv, where 

significant differences in stress wave velocities existed between the Southeast 

(yellow triangles) and the Northeast and Southwest orientations (green exes and blue 

circles, respectively). The velocities for the Northeast and Southwest orientations 

were similar at 5150m/s and 5050m/s, whereas the velocity for the Southeast 

orientation was approximately 30% higher at 6600m/s. The dominant discontinuity 

orientations observed in Figure 8.8 partially explained the differences between the 

observations, but another geological condition was also believed to contribute. The 

lithological model provided by Cannington Mine personnel identified a change in 

rock and mineralisation types in the Southeast wall of the stope, extending to the 

Eastern extents of the North Zone. It was believed that the change in rock type and 

mineralisation type influenced the stress wave velocity. This influence is discussed 

further in Section 8.7.1.1.    

 

Peak amplitude-frequency analyses were performed to further investigate any 

orientation-specific differences within the North Zone rock mass near the two study 

stopes. After the analyses were completed for each data subset, similarities between 

some of the VSPPV-VSPPA relationships were observed for data measured along 

similar monitoring orientations in each of the two stopes. Figures 8.14 and 8.15 show 

some of the individual data subsets of similar orientation and the best-fit equations. 

The best-fit lines for all data sets in Figures 8.14 and 8.15 were then plotted together 

in Figure 8.16 to show the proposed block-scale rock mass anisotropy.  



Chapter 8. Case Study- BHP Billiton Cannington Mine 256 

 
Figure 8.14. Plots of VSPPV versus VSPPA for 24jC6HL accelerometer data in the 

Northeast/Southwest orientations. 

 

 
Figure 8.15. Plots of VSPPV versus VSPPA for 24jC6HL accelerometer data in the 

Southeast/Northwest orientation. 
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Figure 8.16. Best-fit VSPPV versus VSPPA lines shown in Figures 8.14 and 8.15 for 

North Zone blast monitoring data showing orientation-specific grouping. 

 

The results of the peak amplitude-frequency analyses for the data collected in the 

North Zone clearly indicated a level of rock mass anisotropy between the Northeast-

Southwest and Southeast-Northwest propagation orientations. This anisotropy was 

also indicated by the measured stress wave velocities. Therefore, some influence of 

the in situ discontinuities, induced static stress orientations and geology have been 

identified. This information has added to the interpretation of the North Zone rock 

mass characteristics with regard to both blast vibration propagation and the response 

of the rock mass to induced static stresses. The indicated anisotropy would be 

expected to influence both the severity and extent of blast-induced rock mass damage 

as related to the irregularity of propagating blast-induced wave fields.  

 

The stress wave velocity measurements and indicated stiffness results have been 

combined with the discontinuity mapping in an attempt to characterise the North 

Zone rock mass anisotropies. Figure 8.17 illustrates the backs mapping from Figure 

8.7 with the associated rosette plot of the mapped discontinuity strikes and the 

indicated directions of rock mass anisotropy as indicated by the stress wave 

velocities and indicated stiffness. 
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Figure 8.17. Plan view of stopes 22gC6HL and 24jC6HL with the discontinuity 

mapping results and comparisons of peak amplitude-frequency analyses and stress 

wave velocities (Vp) in the North Zone.    

 

8.5.2 Results of North Zone Block-Scale Blast Vibration Analysis 

The data collected at all monitoring locations from the 23 total firings in stopes 

22gC6HL and 24jC6HL were combined as an aggregate data set of 2362 points for 

the North Zone block-scale characterisation. The nonlinear estimation approach 

described in Chapter 5 and used in Chapter 7 was then applied to the calculated 

values of EDW-SS and �W-MN for the combined data set. The individual dynamic rock 

mass properties used in calculation of EDW-SS and �W-MN for each data set will be 

detailed in the individual stope discussions. The regression constants and correlation 

values for the best-fit and 95% upper confidence prediction surfaces are listed in 

Table 8.4.   
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Table 8.4. Best-fit and 95% upper confidence nonlinear estimation results for EDW-SS 

and �W-MN for the North Zone combined data set. 

Model Data 
Points 

K b n Best-fit 
R Value 

Best-fit EDW-SS (J/m3) 2362 13,852.56 0.737 -1.913 0.41 

95% EDW-SS 2362 28,546.70 0.943 -1.750  

Best-fit �W-MN (��) 2362 423.83 0.435 -1.335 0.58 

95% �W-MN 2362 593.05 0.510 -1.264  

 

The three-dimensional surfaces represented by the 95% upper confidence regression 

results for the EDW-SS and �W-MN for the combined North Zone data set are shown in 

Figures 8.18 and 8.19. 

 

 
Figure 8.18. 95% upper confidence surface from nonlinear regression of EDW-SS 

versus charge weight and VICD for the combined Cannington North Zone data set. 
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Figure 8.19. 95% upper confidence surface from nonlinear regression of �W-MN versus 

charge weight and VICD for Cannington North Zone data.  

 

The low correlation coefficients observed for the combined North Zone blast 

vibration data was similar to that noted in the grouped data set in D block at KBGM. 

This behaviour could be expected for the stopes of the North Zone based on the 

newly-proposed block-scale anisotropies observed from the geophysical analysis 

approaches. Individual nonlinear estimations were therefore performed for each 

stope and data subset after segregating the data into individual levels or orientations 

within each of the two North Zone stopes. These results are presented along with 

rock mass characterisations and stope performance assessments of 22gC6HL and 

24jC6HL in Sections 8.6 and 8.7, respectively. 

 

8.6 22gC6HL Blast Monitoring Instrumentation, Vibration 

Analysis Results and Stope Performance Assessment 

At the time of monitoring of stope 22gC6HL, limited blast vibration monitoring 

transducers were available due to near depletion of stocks from the monitoring 

program at KBGM. The transducers that were available were therefore installed in 
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the proximity of the infrastructure with the highest threat of blast-induced damage. A 

dual-transducer array was installed at the 1053m elevation (roughly mid-span) in the 

temporary pillar containing the SdD0RAR. A single tri-axial geophone sonde was 

placed in the Northeast wall of the stope at a similar elevation. These transducers 

were cement grouted in downholes drilled from the 180mLv. An additional 

transducer was installed near the 240-255mLv Trepell Fault crossing to monitor the 

vibrations at the decline-fault intersection. Excessive vibrations were expected at this 

location from the trough firing, which was drilled and charged from the 220mLv 

closest to the fault crossing and explosives magazine. No transducers were installed 

in the pillar against the Trepell Fault due to a lack of drilling access. Figure 8.20 

illustrates the locations of transducers for stope 22gC6HL. 

 

 
Figure 8.20. Isometric view of the 22gC6HL blast vibration monitoring transducers 

(looking southeast). 
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8.6.1 Dynamic Rock Mass Properties for Stope 22gC6HL 

Dynamic rock mass properties were required to calculate the values of EDW-SS and 

�W-MN for the blast vibration analysis for stope 22gC6HL. These values are listed in 

Table 8.5.  

  

Table 8.5. In situ dynamic rock mass properties as indicated for stope 22gC6HL. 

Wall Rock 
density 
(kg/m3) 

 Edyn  
(GPa) 

vst Wave 
Velocity 

(m/s) 

�L    
(GPa) 

Northwest 3765 90 0.29 5600 (A) 48 

Northeast 3765 78 0.29 5200 (A) 42 

240-255mLv 3765 84 0.29 5400 (A) 45 

 

The monitoring techniques used in stope 22gC6HL did not allow measurement of the 

stress wave velocities. The assumed (A) values in Table 8.5 were based on the 

measurements from similar orientations in stope 24jC6HL. The stress wave 

velocities for the Northwest and Northeast walls of 22gC6HL were assumed to be 

similar to those along the same orientations in stope 24jC6HL (5600m/s and 

5200m/s, respectively). The value chosen for the 240-255mLv orientation was an 

average value between the other two walls (5400m/s). Identification of the wave 

velocity values as measured (M) or assumed (A) has been applied to all other tables.  

 

8.6.2 22gC6HL Blast Vibration Analysis Results 

Individual nonlinear estimations were performed for the separate monitoring 

directions in stope 22gC6HL to investigate the effect of orientation on blast vibration 

attenuation. The Northeast wall data were combined with the 240-255mLv data due 

to similarities in the wave propagation orientations. The results of the nonlinear 

estimations are listed in Table 8.6. Additional regression results are included in 

Appendix 9. 
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Table 8.6. 95% upper confidence nonlinear estimation results for the 22gC6HL data 

as combined data sets for each stope wall. 

Model Stope Wall Data 
points 

K b n Best-fit 
R value 

95% EDW-SS Northwest 441 1921.11 1.447 -1.493 0.50 

95% �W-MN  441 118.09 0.813 -0.980 0.56 

95% EDW-SS Northeast-
240-255mLV 

563 1034.28 1.625 -1.849 0.67 

95% �W-MN  563 817.42 0.478 -1.311 0.76 

 

The regression constants and correlation values for individual orientations changed 

significantly when compared with the combined data set for the entire stope, 

especially for the models of �W-MN. Subdivision of the data into individual transducers 

further improved the correlation values for �W-MN to 0.77 for the Northwest wall 

accelerometer and 0.69 for the Northwest wall geophone versus 0.56 for the 

combined data set. Separation of the Northeast wall geophone and 240-255mLv 

geophone data was not deemed necessary due to the strong correlations achieved 

from the combined data set. The 95% confidence �W-MN prediction equations for each 

individual transducer were: 

 

Northwest Accelerometer:  �W-MN-95% = 21488.72 (W)0.59 (D)-2.35  (8. 4) 

 

Northwest Geophone:  �W-MN-95% = 819.73 (W)0.74 (D)-1.27  (8. 5) 

 

Northeast/240-255mLv Geophones: �W-MN-95% =  817.42 (W)0.48 (D)-1.31  (8. 6) 

 

Figure 8.21 displays the two-dimensional representation of the regression surfaces 

for �W-MN-95% for the three data sets at a constant charge weight of 50kg to 

demonstrate the differences in attenuation behaviours based on the monitoring and 

analysis results. 
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Figure 8.21. Log-log plot of 95% upper confidence �W-MN predicted for the 22gC6HL 

Northwest and Northeast wall individual transducers at a charge weight of 50kg. 

 

The results from the nonlinear regressions for each individual transducer further 

identified differences in the vibration behaviours based on distance as well as 

orientation. The general charge weight scaling relationship did not accurately 

represent combined near-field and intermediate-field data, but the similarities 

between the slopes for the Northwest and Northeast geophone data sets suggested 

that charge weight scaling could be applied confidently in the intermediate-field.  

 

It should be noted that a significant number of accelerometer saturations occurred 

during monitoring of 22gC6HL due to the 500g amplitude limit. These saturations 

took place mostly during ring firing against the Northwest stope perimeter. 

Waveform saturations limited the amount of high-amplitude near-field data that 

could be collected for the Northwest wall of 22gC6HL, leading to an incomplete 

characterisation of the blast vibrations. 

 

  



Chapter 8. Case Study- BHP Billiton Cannington Mine 265 

8.6.3 Stope Performance Assessment for 22gC6HL 

Two stope performance assessment techniques were applied to stope 22gC6HL 

during and after stope production. The two techniques were post-extraction void 

assessment from the CMS survey and visual inspections of infrastructure and 

development to record incidences of blast-induced surface damage to excavations.  

 

The inspections conducted in relation to stope 22gC6HL included the 180mLv 

development, SdD0RAR, shotcrete arches in the 240-255mLv fault crossing and the 

240mLv explosives storage magazine. In addition to the visual inspection, 

photographs were taken within the explosive magazine, SdD0RAR and development 

drives prior to and during stope production for comparison. The locations and types 

of development damage observed during stope production were recorded on a 

damage map. 

 

8.6.3.1 Visual Blast Damage Assessments in Stope 22gC6HL 

Visual assessments of excavations near stope 22gC6HL were generally performed 

one shift after each stope firing upon re-entry. This inspection schedule allowed any 

freshly-formed large fractures or fall-off from the development or RAR to be 

detected and mapped prior to disturbance by the mining cycle. Inspection of 

SdD0RAR was limited to the portions exposed by the ventilation windows located at 

the 180mLV, 200mLv and 220mLv. Prior to initiation of blasting in 22gC6HL, the 

240mLv magazine was inspected and existing cracks in the shotcrete on the walls 

and back of the magazine were photographed. In general, small cracks were observed 

in the shotcrete of the magazine prior to blasting, with some larger cracks around the 

240mLv level bulkhead.  

 

Due to the concerns of damage to the magazine during blasting, storage of high 

explosives in the area of the magazine closest to stope 22gC6HL was prohibited. 

This storage exclusion was extended to the completion of stope 24jC6HL due to 

similar concerns. Isolated incidents of minor spalling of fibre-reinforced shotcrete 

from the walls of the magazine occurred during extraction of stope 22gC6HL. These 

incidents were detected during inspection on August 21, 2006 after the mass and 

main rings firings. The predicted PPV at the recorded spalling locations was 
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approximately 40mm/s, which was well below what was expected to cause spalling 

of competent shotcrete. Figure 8.22 shows two locations of recorded fibrecrete spall 

within the 240mLv explosive magazine as a result of 22gC6HL stope firings. 

 

    
Figure 8.22. Pictures of spalled shotcrete in the 240mLv explosives magazine 

occurring with the mass blast or main rings firing of stope 22gC6HL.   

 

No damage was detected in SdD0RAR during the period of assessment of stope 

22gC6HL. Concerns had been originally raised regarding shakedown of mudstones 

and oxidised material from the upper levels of the raise near the surface. Inspections 

were performed at the bottom level of the RAR at the 220mLv to look for freshly 

fallen material after large stope firings. No new material was detected at the 220mLv 

RAR bottom as a result of fall-off. Additional visual inspections through the 

ventilation windows at the 180mLv and 200mLv did not indicate any change in 

fracturing in the leading edge of the RAR nearest 22gC6HL or any change in water 

flow as a result of increased fracturing of the pillar.  

 

In addition to visual assessment of the permanent infrastructure, the development 

drives of the 180mLv were also inspected for blast-induced fall-off following stope 

firing events. The damage areas were mapped and photographed such that the ground 
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support conditions, locations of damage and types of damage could be recorded. 

Blast-induced damage to the development in the proximity of stope 22gC6HL 

generally occurred in areas where there was no surface support or the existing 

surface support was damaged or poorly installed. Blast vibration monitoring results 

were used to predict the maximum PPV values at the locations of each mapped 

damage event. In general, damage occurred at PPV values in excess of 100 mm/s 

incident PPV values. Surface reflection amplification factors were not considered.  

 

A majority of damage observed in the 180mLv development was either discrete 

block failures or spall damage. Block failures were typically characterised by fall of 

pre-formed blocks, which were detached along geologic structure as indicated by 

oxidised failure surfaces. Spalling damage was indicated by shallow failures and 

fresh fracture surfaces. On several occasions, existing shotcrete was detached and fell 

away from the excavation either from behind damaged mesh or from on top of the 

existing mesh. Fall of shotcrete was characterised as either discrete block fall or 

spalling depending on the surface area of failure. Discrete block detachments were 

typically of the order of 20kg up to several tonnes and occurred in the absence of 

surface support. Spalling failures were generally less than 100mm in thickness and 

covered areas of 1m2 to 10m2 below the mesh grade line on the walls of development 

drives. In one observed instance, spalling occurred behind damage mesh at the drive 

shoulder. 

 

Most of the discrete block falls or spalling recorded in relation to blasting of 

22gC6HL occurred below the 1.5m mesh grade line at PPV values above 100mm/s 

with the exception of two events. Figure 8.23 shows the results of damage mapping 

on the 180mLv indicating the locations of observed damage, the indicated type of 

damage and the firing after which the damage was recorded. Figure 8.24 shows two 

recorded incidences of blast-related damage below the mesh grade line caused by 

blasting events in stope 22gC6HL. The two cases of wall damage illustrated in 

Figure 8.24 occurred at predicted PPV levels of 280mm/s (left) and 150mm/s (right). 
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Figure 8.23. Plan view of the 180mLv mapped damage occurring with each firing of 

stope 22gC6HL. 

 

    
Figure 8.24. Photographs of a block fall from 1.2m height after stope firing LHW-

COS #5 (left) and spall from floor to grade line after COS #6 firing (right) in drive 

180mLv KcDS. 
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Although most of the observed blasting-related damage to infrastructure did not pose 

significant risk to personnel or equipment, additional mine services were required to 

perform spot scaling where damage was viewed as representing a significant risk to 

charge-up personnel. The falls of material also caused frequent damage to the blast 

monitoring instrumentation cables.  

 

8.6.3.2 22gC6HL Post-Extraction Stope Performance Assessment 

The 22gC6HL design and CMS wireframes were compared using the approach 

described in Chapter 7 to assess the post-extraction stope performance. The resulting 

overbreak and underbreak volumes are listed in Table 8.7 and the maximum depths 

of overbreak for each stope wall are listed in Table 8.8.  

 

Table 8.7. Overbreak and underbreak volumes resulting from comparison of the 

post-extraction CMS and the design wireframes for North Zone stope 22gC6HL. 

Stope Performance Criteria Volume                 
(m3) 

% of Design Volume

Total Overbreak 1157 8.9 

Total Underbreak 678 5.2 

 

Table 8.8. Maximum depth of overbreak in each wall of stope 22gC6HL. 

Stope Wall Maximum Depth of Overbreak  
(m) 

Northwest 1.0 (ore) 

Northeast 1.2 (ore) 

Southeast (partial paste) 2.8 (ore) 

Southwest 1.4 (ore) 

 

In general, stope 22gC6HL performed well, with a relatively low percentage of 

overbreak and underbreak. The overbreak observed in the Southeast wall adjacent to 

a paste fill mass did not appear to breach the rock-paste interface due to the 

underbreak in the adjacent stope. All overbreak for stope 22gC6HL was therefore in 
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ore and no dilution was experienced. A single wedge-type failure was observed 

below the 180mLv development on the Southeast wall near the stope crown in 

addition to some expected undercutting of the 180mLv. The wedge failure was not 

considered in the determination of the maximum depth of overbreak due to the 

influence of the development on the block release. This type of undercutting at the 

180mLv was undesirable for the stope crown of 22gC6HL, as the stope was not 

intended to be tight filled. Paste filling was planned only to the floor elevation of the 

180mLv to reduce the preparation work for later mining of stope 18gC6HL directly 

above 22gC6HL.  

 

8.7 24jC6HL Blast Monitoring Instrumentation, Vibration 

Analysis Results and Stope Performance Assessment 

Stope 24jC6HL was mined as a multiple-lift stope from the 240mLv to the 180mLv. 

A level-based naming convention for the blast vibration monitoring transducers was 

adopted to reflect the positions of the transducers related to the level from which the 

firings were being charged. Production firings of the ore block between the 240mLv 

and 220mLv (charged from the 220mLv) have been referred to as 220mLv firings. 

The transducers installed between the 240mLv and 220mLv (at approximately the 

230mLv) to monitor these firings have been referred to as 220mLv transducers. 

Similar conventions have been applied to the transducers installed between the 

220mLv and 200mLv (200mLv firings and transducers) and the 200mLv and 

180mLv (180mLv firings and transducers). Figure 8.25 shows an isometric view of 

the transducers installed around stope 24jC6HL.  
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Figure 8.25. Isometric view of blast vibration monitoring instrumentation installed 

for the 220mLv, 200mLv and 180mLv firings in stope 24jC6HL (looking west). 

 

A total of 14 tri-axial transducers were installed in stope 24jC6HL to monitor 12 

stope firings. Only 6 tri-axial transducers could be monitored in a single firing in 

stope 24jC6HL as a function of the number of recording channels available on the 

three data acquisition units. In a number of stope firings, transducers located on 

different stope levels were monitored together to gain additional information on the 

behaviour of the blasting vibrations either above or below the firing level. This 

capability was most important for the final cleaner ring stope firing, where transducer 

arrays on the 180mLv, 200mLv and 220mLv were all monitored simultaneously. 

Table 8.9 lists the transducer types, locations and offsets from the 24jC6HL designed 

stope perimeter.  
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Table 8.9. Summary of North Zone stope 24jC6HL blast vibration monitoring 

instrumentation. 

Level 
(mLv) 

Wall of Stope Tri-axial Transducer 
Type 

Distance from 
Stope           
(m) 

220 Northeast Wall (NE) Geophone 9.6 

220 Southeast Wall (SE) 500g Accelerometer 
Geophone 

6.6 
12.5 

220 Southwest Wall (SW) 500g Accelerometer 
Geophone 

5.0 
15.0 

200 Northeast Wall (NE) 1000g Accelerometer 
Geophone 

5.0 
10.9 

200 Southeast Wall (SE) 1000g Accelerometer 
Geophone 

4.9 
12.8 

200 Southwest Wall (SW) 1000g Accelerometer 
Geophone 

5.0 
15.0 

180 Southeast Wall (SE) Geophone 9.8 

180 Southwest Wall (SW) 1000g Accelerometer 
Geophone 

5.1 
15.1 

 

8.7.1 24jC6HL Stress Wave Velocities and Specific Attenuation Analyses 

The stress wave velocities for each monitored wall of stope 24jC6HL were 

determined using the results of the blast vibration monitoring program. Table 8.10 

lists the stress wave velocity values applied to the calculations of energy and strain 

for use in the nonlinear estimations discussed in later sections.  
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Table 8.10. Measured (M) and assumed (A) stress wave velocities for the monitoring 

orientations of stope 24jC6HL.   

Stope Wall Wave Velocity            
(m/s) 

220mLv Northeast 5300 (M) 

220mLv Southeast 5600 (M) 

220mLv Southwest 5300 (A) 

200mLv Northeast 5150 (M) 

200mLv Southeast 6600 (M) 

200mLv Southwest 5050 (M) 

180mLv Southeast 5500 (A) 

180mLv Southwest 5050 (A) 

 

The clear outlier of all measured stress wave velocities for stope 24jC6HL was the 

Southeast wall of the 200mLv. The value of 6600m/s was 20-30% higher than the 

other measured values. The significant differences between the measured wave 

velocities required further investigation, as the indication of increased stiffness and 

the discontinuity orientations for the Southeast wave-path did not appear to fully 

account for the substantial increase. The expected difference in stress wave velocities 

as a function of the wave travel path relative to the discontinuity orientation was 

observed in the 220mLv sublevel. The stress wave velocity for the 220mLv 

Southeast orientation was approximately 6% higher than the Northeast orientation. 

To further investigate the velocity anomaly, the lithological and mineralisation 

models for the North Zone were reviewed as previously mentioned in Section 

8.5.1.4.    

 

8.7.1.1 Proposed Effects of Mineralisation Type on Stress Wave Velocity 

The North Zone geological models were reviewed in the vicinity of stope 24jC6HL 

to aid in determining the likely contributions of the rock and mineralisation types to 

the velocity anomaly observed for the 200mLv Southeast monitoring orientation. 

Upon review of the geological models, a significant mineralisation contact was 

identified in the Southeast wall of stope 24jC6HL. Within this contact zone, three 
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types of mineralisation were discovered from the geological interpretations. The 

three types were Broadlands (BL), Burnham (BM) and Glenholme (GH) 

mineralisation. The BL, BM and GH mineralisation represent three of the nine types 

of mineralisation in the Cannington orebody, which are classified by the ratio of 

metals, ore grade, and gangue minerals (Walters and Bailey, 1998). The 

mineralisation contacts observed in the Southeast wall of stope 24jC6HL are shown 

in Figure 8.26. 

 

 
Figure 8.26. Plan view of stope 24jC6HL and mineralisation contacts in the 

Southeast wall of the stope at the 1015m elevation. 

 

According to Walters and Bailey (1998), the BL mineralisation is associated with 

low to medium grades, whereas the BM and GH mineralisation is typically of high 

grade. The specific effect of the mineralisation type on the wave propagation 

characteristics at Cannington are not known, but the presence of the mineralised 

contacts would be expected to contribute to variations in stress wave velocities. Past 

researchers have observed the influence of mineralisation on the seismic properties 

of rocks (e.g. Rafat et al., 2001; Luo et al., 1998). Other factors that may have also 

influenced the stress wave velocities were the discontinuity orientation, density or 

condition (e.g. Maxwell and Young, 1996; Cosma et al., 2001) and the state of static 

stress (e.g. McGaughey et al., 1994; Friedel et al., 1996; Scott et al., 2004). Future 
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investigations would be required to specifically determine the influence of 

mineralisation type on stress wave propagation characteristics at Cannington. 

 

8.7.1.2 Specific Amplitude Attenuation Analysis 

The stress wave velocities and peak amplitude-frequency analyses for the North 

Zone block-scale assessment provided two methods of indicating the conditions of 

the rock mass around 24jC6HL. An additional geophysical method of rock mass 

assessment was proposed in Chapter 6, which involves comparison of the specific 

energy or amplitude attenuations measured along different monitoring orientations.  

 

Specific attenuation analysis differs from traditional blast vibration attenuation 

regression analysis by studying the loss of amplitude or energy of a blast wave 

between two monitoring points in a monitoring array. The loss of energy or peak 

amplitude per metre of propagation in the assumed elastic wave zone serves as an 

indication of the rock mass conditions independent of the explosive source 

parameters and blasting geometry. This analysis method has been applied to the data 

sets collected for the 24jC6HL 200mLv firings to investigate the differences in 

specific attenuations in different propagation orientations. Figure 8.27 displays the 

resulting plots of VSPPA loss per metre of travel versus the VSPPA measured at the 

first transducer on each array. 
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Figure 8.27. Plot of amplitude loss per metre of travel versus input amplitude for 

200mLv firings in stope 24jC6HL.  

Figure 8.27 suggests differences in the specific attenuations along different 

monitoring orientations as indicated by the differences in the slopes of the best-fit 

lines. The increased slope observed for the Northeast wall data would suggest that 

the loss of peak amplitude per metre of travel was higher for the same input 

amplitude when compared with the Southwest and Southeast walls. This finding was 

in agreement with the results of the peak amplitude-frequency analysis, where the 

Southwest wall was observed to have a slightly higher relative stiffness which would 

suggest a lower rate of attenuation.  

 

The results of the specific attenuation assessment were viewed with caution, as the 

technique was largely sensitive to the separation distance between the transducers in 

each array. The rate of amplitude loss was observed to be dependent on the 

differential distance between the transducers because of the effects of nonlinear 

attenuation over distance. This attenuation sensitivity to distance would further 

account for the higher slope of the Northeast wall data best-fit line, as the transducer 

separation was only approximately 6m compared with 8m and 10m for the other two 

transducer pairs. For similar transducer separation distances, the comparisons of 

specific attenuation would be expected to be more reliable. 
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8.7.2 Dynamic Rock Mass Properties for Stope 24jC6HL 

The dynamic rock mass properties were required to perform the calculations of   

EDW-SS and �W-MN for use in the nonlinear estimations from vibration data collected 

for stope 24jC6HL. These values are listed in Table 8.11.  

 

Table 8.11. In situ dynamic rock mass properties as indicated for stope 24jC6HL. 

Wall Rock 
Density 
(kg/m3)

Calculated 
Edyn     

(GPa) 

vst Wave 
Velocity   

(m/s) 

�L 
(GPa) 

220mLv Northeast 3585 77 0.29 5300 (M) 41 

220mLv Southeast 3585 86 0.29 5600 (M) 46 

220mLv Southwest 3585 77 0.29 5300 (A) 41 

200mLv Northeast 3585 73 0.29 5150 (M) 39 

200mLv Southeast 3585 119 0.29 6600 (M) 64 

200mLv Southwest 3585 70 0.29 5050 (M) 37 

180mLv Southeast 3585 83 0.29 5500 (A) 44 

180mLv Southwest 3585 70 0.29 5050 (A) 37 

 

8.7.3 Blast Vibration Analysis Results for 24jC6HL Data Sets 

Nonlinear estimations performed for combined 24jC6HL data were expected to be 

poorly correlated compared with those for individual data subsets due to the 

observed differences in stress wave velocities and indicated stiffness. The data was 

therefore segregated by two different criteria prior to nonlinear estimation of the 

regression constants. The first data division was segregation by individual stope wall 

orientations (Northeast, Southeast and Southwest). The second data division was by 

individual sublevels (220mLv, 200mLv and 180mLv). Either segregation approach 

would have been expected to increase correlation values over those for a combined 

data set based on observations from other stopes. Tables 8.12 and 8.13 list the 

nonlinear regression constants obtained for analyses of the data subsets segregated by 

the stope wall orientations and by stoping sublevel. Additional regression of alternate 

amplitudes, individual arrays and individual transducers are included in Appendix 9. 
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Table 8.12. 95% upper confidence nonlinear estimation results from 24jC6HL data 

as segregated by the individual stope wall orientations. 

Model Stope Wall Data 
Points

K b n Best-Fit 
R Value 

95% EDW-SS Northeast 314 5.99 x 109 -0.834 -3.078 0.75 

95% �W-MN   4.62 x 104 -0.046 -1.682 0.77 

95% EDW-SS Southeast 487 9.80 x 105 0.395 -1.762 0.42 

95% �W-MN   1682.92 0.296 -1.192 0.62 

95% EDW-SS Southwest 557 2951.59 1.627 -1.000 0.41 

95% �W-MN   227.92 0.793 -0.855 0.56 

 

Table 8.13. 95% upper confidence nonlinear estimation results from 24jC6HL data 

as segregated by each production level. 

Model Sublevel Data 
Points

K b n Best-Fit 
R Value 

95% EDW-SS 220mLv 400 2.48 x 1014 2.010 -11.350 0.74 

95% �W-MN   5671.11 0.421 -1.625 0.65 

95% EDW-SS 200mLv 758 3.98 x 104 0.847 -1.410 0.45 

95% �W-MN   361.89 0.620 -0.935 0.53 

95% EDW-SS 180mLv 155 2.56 x 107 2.143 -4.485 0.89 

95% �W-MN   2407.89 1.463 -1.967 0.80 

 

8.7.4 Response of an Unconfined Pillar to Late-Stage Blasting 

The response of the pillar containing TbC5RAR to mining and blasting of stope 

24jC6HL was one of the initial concerns during the North Zone monitoring period. 

An investigation into the pillar response attempted to assess any changes in the 

properties and wave propagation characteristics of the pillar rock mass prior to and 

after opening of the 24jC6HL stope void. The pillar confinement conditions prior to 

and after 24jC6HL production have been referred to as the closed wall condition 

(before the formation of the entire stope void) and the open wall condition (empty 

void prior to the final cleaner ring firing).  
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To perform the pillar response assessment, post-mining stress modelling and 

geophysical rock mass characterisations were used. The stope firing sequence 

allowed this type of assessment, as the final cleaner ring firing against the pillar was 

blasted after the stope was entirely emptied. The time required to empty the stope 

was adequate for stress redistribution around the stope void to occur.  

 

8.7.4.1 Post-Mining Induced Static Stress Modelling 

The MAP3D linear-elastic static stress modelling results were analysed for the 

24jC6HL post-mining step to assess the effects of the stope void on the pillar 

containing TbC5RAR. The grid that was selected for the analysis was grid 4, which 

was vertical, oriented roughly NE-SW and passed through stope 24jC6HL and 

TbC5RAR. This modelling grid was selected due to the geotechnical concern of loss 

of confinement in the temporary pillar between the Southwest stope wall and 

TbC5RAR. Figure 8.28 illustrates the results of the MAP3D mining-induced static 

stress modelling of �2 and �3 for the 24jC6HL post-extraction step at grid 4. 

 

  

Figure 8.28. Results of �2 (left) and �3 (right) mining-induced static stress modelling 

of the 24jC6HL post-mining step at vertical grid 4 (looking northwest). 
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The potential loss of confinement in the pillar containing TbC5RAR was indicated in 

the stress modelling shown in Figure 8.28. Additional cable bolts were installed in 

the pillar between the Southwest wall of stope 24jC6HL and the TbC5RAR as a 

consequence of the concern for pillar unravelling from low confinement. The loss of 

confinement within the pillar once a large portion of the stope had been mined out 

would be expected to allow dilation of the existing discontinuities.  

 

8.7.4.2 Comparison of the Confined and Unconfined Southwest Pillar 

Changes in the stress wave transmission properties of the pillar rock mass were 

indicated from differences between the vibration data collected from the final stope 

firing (cleaner rings) and previous firings. It was proposed that these changes 

indicated possible blast damage or relaxation of the pillar after the majority of the 

stope 24jC6HL was mined. The methods used to compare the closed and open wall 

pillar conditions were the stress wave velocities, peak amplitude-frequency analyses 

and specific attenuation analyses. 

 

A sharp reduction in the average stress wave velocity was observed for the cleaner 

ring firing (open wall) when compared with the closed wall measurements. The 

200mLv transducers indicated an average stress wave velocity of 4200m/s for the 

open wall pillar condition versus approximately 5050m/s for the closed wall firings. 

The difference in average wave velocities of 850m/s represented a 17% decrease.   

 

The second indication of pillar rock mass degradation was comparison of the closed 

wall and open wall peak amplitude-frequency analyses. These analyses were 

performed using the vibration data collected at each transducer pair in the pillar 

(220mLv, 200mLv and 180mLv). The closed wall analysis included the long-hole 

winze firings, cut-off slot firings and mass firings. The data set for the open wall 

analysis was a result of the cleaner rings, which were fired into the empty stope void. 

Figure 8.29 illustrates the plots of VSPPV versus VSPPA for the 200mLv open and 

closed wall analyses. 
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Figure 8.29. Comparison of the VSPPV versus VSPPA plots for the 200mLv 

accelerometer closed wall and open wall data. 

 

Figure 8.29 suggests that the stiffness of Southwest pillar was reduced at the time of 

the open wall firing when compared with the closed wall condition. This condition 

was observed for both the 180mLv and 200mLv data. No change in stiffness was 

observed through comparison of the data sets for the 220mLv.  

 

Although the difference between the indicated relative stiffness for the closed wall 

and open wall conditions was low, it was believed that the change in rock mass 

condition could indicate blasting damage or relaxation of the pillar. This relaxation 

due to low confining stresses would allow existing discontinuities or fresh fractures 

to open, thus reducing the wave velocity and frequency-supporting characteristics of 

the rock mass.   

 

Specific amplitude attenuation analyses were applied to the data sets collected in the 

Southwest wall of the stope for the closed and open wall cases. The specific 

attenuation approach was expected to support the findings of the peak amplitude-

frequency analyses. Figure 8.30 shows the results of the open and closed wall 

specific attenuation analyses. 
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Figure 8.30. Specific amplitude attenuation (VSPPA) from 200mLv data for the 

closed and open wall pillar conditions. 

 

The slightly higher rate of amplitude attenuation for the open wall data set as implied 

by the best-fit equation provided an additional indication of some change in pillar 

conditions. The increased rate of attenuation of VSPPA of approximately 25-30% for 

the open wall case was assumed to be a function of the dilation of existing 

discontinuities or fresh fracturing due to blast damage. The change in specific 

attenuation for the open and closed wall cases supported the previous assessment 

results of reduced stress wave velocity and reduction in indicated stiffness from the 

peak amplitude-frequency analysis. 

 

8.7.5 Prediction of Strain-Related Blast Damage around Stope 24jC6HL 

The large amount of blast vibration and geotechnical data collected for stope 

24jC6HL allowed a full assessment of the stope performance during and after 

extraction. As part of the rigorous assessment of stope 24jC6HL, blast-induced 

damage prediction was performed using the author’s proposed tensile strain criterion. 

The tensile strain-based blast damage prediction was performed for a horizontal grid 

plane at the 1038m elevation, between the 200mLv and 220mLv. This grid position 

has been previously defined as grid 5 in the MAP3D model (Figure 8.9).  
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8.7.5.1 Mining-Induced Static Strain Modelling for Stope 24jC6HL 

The mining-induced mean normal static compressive strains were estimated within 

the rock mass near 24jC6HL using the results of the stress modelling at grid 5 for 

mining step 3. Mining step 3 was the step prior to extraction of 24jC6HL. Figure 

8.31 shows the contour plot of the MAP3D modelled mining-induced mean normal 

static compressive strain (�MN) calculated for horizontal grid 5. 

 

 
Figure 8.31. Plan view of modelled mining-induced mean normal static compressive 

strains (�MN) at Grid 5 at the 1038m elevation. 

 

8.7.5.2 24jC6HL Rock Mass Required Tensile Failure Strains 

The next step in the blast damage prediction process was to calculate the intact rock 

failure strains for the North Zone using the laboratory static rock testing results and 

the field measurements of the dynamic rock mass properties. The calculated dynamic 

compressive (�dyn(C)) and tensile (�dyn(T)) failure strains are in Table 8.14.  

 



Chapter 8. Case Study- BHP Billiton Cannington Mine 284 

Table 8.14. Estimated rock mass compressive and tensile dynamic fracture strains for 

the rock mass around 24jC6HL. 

Stope Wall Edyn 
(GPa) 

Predicted �dyn(C) 
(��) 

�T 
(MPa) 

Predicted �dyn(T) 
(��) 

200mLv Northeast 73 2872 13 183 

200mLv Southeast 119 1749 13 112 

200mLv Southwest 70 2987 13 191 

 

Three different orientation-specific rock mass conditions have been implied from the 

dynamic rock properties in Figure 8.14. The different rock properties represented 

three regions of variable material response to blasting. This level of material 

complexity could not be considered in the current grid-based calculation approach 

for strain superposition, but a bi-material model was applied using a geometric 

filtering approach to determine tensile fracture strains at discrete points in the 

modelling grid. The two selected rock mass regions were the Northeast, defined by 

the �dyn(T) of 183�� and the Southwest with �dyn(T) of 191��. Figure 8.32 shows the 

�dyn(T) contours  at grid 5. 

  

 
Figure 8.32. Plan view of �dyn(T) contours at grid 5 around 24jC6HL. 
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The required additional blasting-induced mean normal tensile strains for tensile 

fracture were calculated using the values of �MN in Figure 8.31 and the �dyn(T) in 

Figure 8.32. The additional mean normal tensile strain (�MN(T)) to induce tensile 

fracture was the sum of �MN and �dyn(T). The contour plot of �MN(T) at grid 5 is shown 

in Figure 8.33.  

 

 
Figure 8.33. Contours of the required additional mean normal tensile strain to induce 

tensile damage (�MN(T)) at grid 5 around 24jC6HL. 

 

Due to the low mining-induced static compressive strains in the North Zone, the 

additional blast-induced mean normal tensile strains required for tensile fracture 

around 24jC6HL were less than those for the high stress conditions at KBGM. 

Although the resistance to tensile damage may be expected to be less for low to 

moderate stress conditions, an increased resistance to blasting-induced compressive 

damage would be expected. The compressive damage case has not been pursued in 

the current prediction.   
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8.7.5.3 Modelling of Blasting-Induced Strain Fields for 24jC6HL 

Three individual blastholes, located at three separate stope walls, were used to 

perform a concurrent analysis of tensile damage prediction. The concurrent 

prediction was an attempt to better represent the complex damage created by a 

multiple-hole blast. The blast damage prediction approach proposed in this thesis is 

based on single blasthole detonations, but multiple charges of adequate separation 

can be analysed concurrently. Concurrent analysis is performed by superimposing all 

single-hole strain fields on the modelling grid and selecting the maximum applied 

strain at points of overlap. The three explosive charges that were selected for the 

concurrent analysis of 24jC6HL were different charge weights, as characterised by 

the actual explosive loading within the blasthole rings of 24jC6HL (Table 8.15).  

 

Table 8.15. Charge weights for blastholes against each wall of stope 24jC6HL as 

determined by average values from the charge plans of the 200mLv mass blast. 

Hole Location Charge Weight             
(kg) 

Northwest Wall 75 

Southeast Wall 50 

Southwest Wall 75 

 

As discussed in Chapter 7, the current model did not allow variable attenuations to be 

applied to each propagation orientation as determined from the individual vibration 

data analyses. Therefore, the �W-MN-95% prediction equation obtained for the 200mLv 

combined data set (Table 8.13) was applied to each of the three blastholes of variable 

charge weight to determine the blasting-induced strain fields (Equation 8.7). 

 

�W-MN-95% = 361.89 (W)0.620 (D)-0.935      (8. 7) 

 

The single strain prediction equation (Equation 8.7) would effectively over-predict 

the strain expected along different orientations, and therefore represents a significant 

limitation of the current model. Considerable differences in dynamic strains based on 

the orientations of wave propagation have been identified throughout the monitoring 
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program. Future development work on the model would allow for variable 

attenuation equations to be used such that the strain fields can be more accurately 

represented as a function of orientation. 

 

Equation 8.7, the charge weights in Table 8.15 and the coordinates of the three 

specified blastholes were used to estimate the strain values at each grid point around 

the three charges. The maximum �W-MN value at each overlapping grid point was then 

used to determine the maximum strain values throughout the entire grid from 

detonation of the three holes. No aggregation of strain was permitted due to assumed 

differences in firing times of the three blastholes. Figure 8.34 shows the contour plot 

of the maximum �W-MN around the three charges at grid 5. 

 

 
Figure 8.34. Contour plot of maximum �W-MN around three modelled explosive 

charges at the perimeter of 24jC6HL at grid 5. 

 

The final step in predicting the zone of possible tensile damage induced by the three 

blastholes was to superimpose the induced blasting strains, �W-MN (Figure 8.34) onto 

the required additional tensile strains, �MN(T) (Figure 8.33) to determine the excess 
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strain capacity at each grid point. The grid points where the excess strain capacity 

was zero or negative was assumed to be damaged by tensile mechanisms. Points 

where the excess strain capacity was greater than zero were assumed to remain 

undamaged. Contours of the excess strain capacity are shown in Figure 8.35.  

 

 
Figure 8.35. Contour plot of the excess strain capacity after superimposing the 

induced blasting strain onto the required additional tensile strain at grid 5. 

 

The red area in Figure 8.35 represents the zones where the blast-induced mean 

normal tensile strain has exceeded the required mean normal tensile strain to cause 

tensile damage. The limit of tensile damage was therefore predicted by the leading 

edge of the zone of excessive blast-induced strain. The limit of predicted tensile 

damage in the Southwest wall was approximately 18m. The limit of predicted tensile 

damage for the Southeast wall was 15m, while the Northwest wall was 

approximately 20m and limited by the 22jD0HL fill mass.  

 

The predicted tensile damage zone fully encompassed the Southwest pillar 

containing TbC5RAR, although no visual damage was observed within the RAR. It 
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is important to note that the tensile damage prediction model did not specify the scale 

(micro- to macro-) or severity of damage, and as such could not be used to predict 

rock mass failure potential. Some degree of strength reduction would be expected 

with the additional tensile fracturing.    

 

The post-extraction CMS survey of the stope indicated an average depth of 

overbreak of approximately 1m for all stope walls. This depth of overbreak was 

common for the North Zone due to the competent nature of the rock mass. Further 

measurements, not available at the time of stope production, would have been 

required to validate the accuracy of model prediction based on the limit of subcritical 

rock mass damage.  

 

8.7.5.4 Comparison of Proposed Blast Damage Prediction Results with 

Results of Critical Tensile Plane Strain Damage Predictions 

The extent of blast-induced tensile strain damage predicted using the proposed model 

was compared with predictions using the critical tensile plane strain approach. The 

various forms of the equation for calculating PPVcrit were again utilised along with 

the different possible inputs. In total, 40 different versions of the critical tensile plane 

strain model were applied to predict the value of PPVcrit and the extent of predicted 

damage based on the different possible input variables, charge weights and the 

different orientations of propagation. Values of PPVcrit ranged from approximately 

720mm/s to 1720mm/s with associated tensile fracture radii ranging from 3.2m to 

14.1m. The extent of predicted damage using the proposed approach (average 17.5m) 

was significantly higher than those predicted using the multiple versions of the 

critical tensile plane strain model. Additional details of the damage predictions using 

the critical tensile plane strain approach are included in Appendix 10.    

 

8.7.6 Stope Performance Assessment for Stope 24jC6HL 

Visual inspections of the development and associated mine infrastructure after each 

stope firing were carried out for stope 24jC6HL in addition to post-extraction void 

analysis. Extensive excavation damage was observed within the LaDS main stope 

access drive on the 220mLv, 200mLv and 180mLv near 24jC6HL similar to the 

damage mapped for the 180mLv at the top level of 22gC6HL. The types of damage 
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observed on the three sublevels varied in type and areal coverage, as the surface 

support schemes on each sublevel were different. 

   

Different surface support schemes were used within the development of the North 

Zone based on the service life of the drive and the opinion of the production 

supervisor at the time of ground support installation. The two surface support 

schemes generally observed were steel-weld mesh to the grade line or in-cycle 

shotcrete to the grade line. In some instances, surface support was only installed on 

the drive backs shoulders, such as the 220mLv near stope 24jC6HL. Portions of the 

200mLv were meshed to the grade line and other portions were meshed only to the 

shoulders. In the 180mLv, a thin layer of shotcrete was sprayed from back to floor in 

place of mesh. As a result of the lack of mesh, heavy spall damage was observed for 

the 180mLv (Figure 8.36).  

 

 
Figure 8.36. Photograph of 20m2 of heavy spall damage of thinly shotcreted 

development on 180mLv drive LaDS after 180mLv mass firing. 

 

The 200mLv experienced some spall and block failures where mesh cover did not 

exist. Most failures in the presence of mesh to the grade line occurred below the 

surface support line. Where surface support was only installed to the drive shoulder, 



Chapter 8. Case Study- BHP Billiton Cannington Mine 291 

some falls of rock occurred from greater than 2.5m of height. These falls represented 

potential injury or fatality to mine personnel and were required to be reported by the 

mine geotechnical department as falls of ground. 

 

In many cases of discrete block failure, one or more surfaces of the detached blocks 

were oxidised. This suggested likely release along existing discontinuities. Other 

block surfaces were freshly fractured with no alteration, signifying blast-induced or 

stress-related recent block formation. Two examples of blast-related block failures in 

the 220mLv LaDS drive adjacent to stope 24jC6HL are shown in Figure 8.37. 

 

     
Figure 8.37. Block failure of 1 tonne from approximately 3.0m height after 220mLv 

firing #3 (left) and 500kg block fall after 180mLv mass blast (right) in drive 220mLv 

drive LaDS. 

 

No damage to TbC5RAR was observed throughout the blasting program in stope 

24jC6HL, although damage to the development near the RAR was recorded on 

several occasions. It was believed that the raise-bored excavation method and the 

cylindrical shape of the RAR reduced the influence of blasting vibrations. Previous 

blast damage during primary excavation, repeated vibrations from nearby stope 

firings and time-dependent degradation of the rock mass were believed to contribute 

to the occurrence of blast damage to the development near stope 24jC6HL.   
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8.7.6.1 24jC6HL Post-Extraction Stope Performance Assessment 

The total stope overbreak and underbreak volumes for 24jC6HL were determined 

through comparison of the stope design and post-extraction CMS wireframes. These 

values are listed in Table 8.16. 

 

Table 8.16. Stope overbreak and underbreak calculations resulting from comparison 

of the post-extraction CMS and design wireframes for North Zone stope 24jC6HL. 

Stope Performance Criteria Volume                 
(m3) 

% of Design Volume 

Total Overbreak 1376 7.4 

Total Underbreak 1624 8.8 

 
The multiple lifts of 24jC6HL were assessed separately for depth of overbreak, 

which offered a better understanding of the effect of drilling directions on the stope 

performance. The maximum depths of overbreak for each wall are in Table 8.17.  

 

Table 8.17. Maximum depth of overbreak in each wall of stope 24jC6HL. 

Stope Wall Maximum Depth of Overbreak     
(m) 

220mLv Northwest 1.8 

220mLv Northeast 1.4 

220mLv Southeast 0 

220mLv Southwest 0.4 

200mLv Northwest (paste) 0.6 (ore) 

200mLv Northeast 1.4 

200mLv Southeast 0.4 

200mLv Southwest 0.8 

180mLv Northwest (paste) 2.0 (ore) 

180mLv Northeast 0 

180mLv Southeast 0.4 

180mLv Southwest 0.7 
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Stope 24jC6HL performed well, with a maximum overbreak of 2.0m in the 

Northwest wall between the 180mLv and 200mLv. This overbreak occurred along 

the upper, steeply-inclined portion of the stope wall, where blastholes were drilled 

parallel to the irregular stope surface. Stope overbreak was observed against the 

adjacent paste fill mass in the Northwest wall, but no dilution occurred as significant 

underbreak was experienced in the adjacent filled stope.  

 

8.8 R4 Mining Area Rock Mass Characterisation and Blast 

Vibration Monitoring Results 

The two study stopes of the R4 have been analysed similarly to the North Zone 

stopes as part of a mining block-scale assessment approach. The results of the 

geotechnical and geophysical rock mass characterisations, blast vibration analyses 

and stope performance assessments for the two monitored stopes of the R4 mining 

area are discussed in the following sections.  

 

8.8.1 Intact Rock Properties for the R4 Mining Area 

The low percentage of the mineable reserve in the R4 (approximately 3% of the 

Cannington reserve) restricted the amount of rock testing and rock mass 

characterisation performed prior to the initiation of mining in late 2007. As a result 

of the limited pre-mining characterisation, only a single test for rock tensile strength 

and two tests of UCS were discovered for the footwall area of the 520mLv (WASM, 

2009b). No earlier testing results were found that could be associated directly with 

the R4 mining area. Table 8.18 lists the results of intact rock testing for the R4 

mining area performed on core samples recovered from the 520mLv.  

 

Table 8.18. Intact rock testing results for the R4 (WASM, 2009b and AMC, 1998). 

Mine Area Average UCS  
(MPa) 

�T           
(MPa) 

Average Est      
(GPa) 

Average vst 

R4 170(2) 10(1) 80(7) 0.29(7) 
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The values of Est and vst were assumed from the previously discussed values as 

specified by the reports on the main Southern Zone mineralisation (AMC, 1998). No 

elastic constants results were found in the most recent rock testing reports for the R4. 

 

Cannington personnel provided rock density values for the two monitored R4 stopes 

derived from the ore grade block model (Li, 2009). Although the grades within the 

R4 were higher than those of the North Zone, the rock densities were lower for 

stopes 52h09HL and 52h04HL than those of 22gC6HL and 24jC6HL. Table 8.19 

lists the rock densities as specified by the R4 block model. 

 

Table 8.19. Rock density as supplied by the reserve block model (Li, 2009). 

Stope Rock Density              
(kg/m3) 

52h09HL 3450 

52h04HL 3510 

 

The reduction in density for the R4 rock mass along with the water content would 

have been expected to affect the blast vibration attenuation behaviours when 

compared with the higher density, largely dry North Zone rock mass. 

 

8.8.2 R4 Discontinuity Mapping 

Observation of the development drives of the R4 and the geological mapping results 

suggested that the rock mass of the R4 was generally highly fractured and contained 

several block-scale faults sub-parallel to the footwall shear and Hamilton Fault 

footwall and was largely saturated. The presence of large quantities of water was 

apparent from the water flowing from boreholes in the R4 development drives and 

severe ground support corrosion. Figure 8.38 shows one of the faults intersected by 

the development of the 500mLv. 
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Figure 8.38. Picture of a gouge-type fault encountered on the 500mLv development. 

 

No digital discontinuity mapping data was available for the R4 at the time of 

monitoring due to the lack of digitising of the mapping sheets. Hard copies of level 

mapping sheets of the 500mLv and 520mLv development were therefore collected 

from the geology department to determine the discontinuity orientation distribution. 

Figure 8.39 displays the physical mapping sheets for the 500mLv and 520mLv 

development drives around stopes 52h04HL and 52h09HL. 

 

   
Figure 8.39. R4 development mapping of the 500mLv (left) and 520mLv (right) in 

the vicinity of stopes 52h09HL and 52h04HL. 
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As illustrated in Figure 8.39, a number of block-scale fault intersections and 

mineralised contacts were exposed in the 500mLv and 520mLv. These intersections 

were more prominent in the 500mLv, with some indication of the presence of the 

footwall shear zone. Figure 8.40 shows the resulting stereonet pole plot of the 

information from the backs mapping sheets. 

 

 
Figure 8.40. Discontinuity distribution from mapping of 500mLv and 520mLv in the 

vicinity of stopes 52h09HL and 52h04HL. 

 

Figure 8.40 shows a number of prominent discontinuity sets. The most dominant set 

appeared to be near-vertical and striking East-West. The second set appeared to 

correspond with the orientation of the mineralisation contacts striking roughly NW-

SE as observed in the 500mLv mapping (Figure 8.39, left). Additional random 

discontinuities were also represented.   

 

8.8.3 R4 Blast Vibration Monitoring Instrumentation 

Blast vibration monitoring in the R4 mining area began in November, 2007. Almost 

one year had passed since the final firing monitored in stope 24jC6HL in the North 

Zone. During the year break from monitoring, an additional data acquisition system 

was purchased by WASM which allowed for two additional tri-axial transducers to 

be monitored simultaneously. The total monitoring capability was then 8 tri-axial 

transducers sampled at 8192Hz simultaneously. This increase in channel capacity 
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was reflected in the number of transducers installed for monitoring the stopes of the 

R4. Figure 8.41 shows a plan view of the transducers installed for blast vibration 

monitoring of stopes 52h09HL and 52h04HL. 

  

 
Figure 8.41. Plan view of transducers installed at the 750m elevation (between the 

500mLv and 520mLv) in the R4 to monitor blasting vibrations from stopes 52h09HL 

and 52h04HL. 

 

The monitoring configurations illustrated in Figure 8.41 resulted in reduced offset 

distances between the stope boundaries to the first accelerometer in several 

transducer arrays. This reduced offset would provide valuable information on the 

extreme near-field blast vibration behaviours within the R4. Table 8.20 lists the blast 

vibration monitoring instrumentation installed around stopes 52h09HL and 52h04HL 

at approximately the 750m elevation.  
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Table 8.20. Summary of 52h09HL and 52h04HL blast vibration monitoring 

instrumentation. 

Stope 
Name 

Wall of Stope Transducer Type Distance from 
Stope           
(m) 

52h09HL Hangingwall (HW) 1000g Accelerometer 4.0 

 Footwall (FW) 1000g Accelerometer 
Geophone 

3.9 
7.8 

 Southeast (SE) 1000g Accelerometer 
Geophone 1 
Geophone 2 

4.8 
11.6 
19.3 

52h04HL Northwest (NW) 1000g Accelerometer 
Geophone 1 
Geophone 2 

20.1 
13.4 
5.7 

 Footwall (FW) 1000g Accelerometer 
Geophone 1 
Geophone 2 

6.6 
12.9 
19.4 

 Southeast (SE) 1000g Accelerometer 
Geophone 

5.0 
15.0 

 

The increased monitoring capacity allowed several triple-transducer arrays to be 

installed for 52h09HL and 52h04HL. The extra transducer on these arrays provided 

an increase in the amount of data collected in each monitoring orientation. 

Additionally, a better understanding of the distance-related blast vibration behaviours 

could be gained from the extra transducers.  

 

The permanent pillar between stopes 52h09HL and 52h04HL allowed the triple-

transducer array in the Southeast wall of 52h09HL to be re-used for the Northwest 

wall of 52h04HL. This was the only incidence of transducer re-use during the blast 

vibration monitoring program.  
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8.8.4 Stress Wave Velocities and Peak Amplitude-Frequency Analyses of 

the R4 Rock Mass 

The stress wave velocities were determined for the monitoring orientations of the R4 

based on the blast monitoring results. The velocities indicated no general condition 

of directional anisotropy in the R4, as observed in the North Zone. Table 8.21 lists 

the measured or assumed stress wave velocities for the 52h09HL and 52h04HL 

monitored directions.  

 

Table 8.21. Measured (M) or assumed (A) stress wave velocities for the monitored 

orientations around 52h09HL and 52h04HL. 

Stope Orientation Stress Wave Velocity  
(m/s) 

52h09HL Hangingwall 5175 (A) 

 Footwall 5175 (M) 

 Southeast Wall 5130 (M) 

52h04HL Footwall 5300 (M) 

 Southeast Wall 5070 (M) 

 Northwest Wall 5450 (M) 

 

The stress wave velocity measurements were largely validated based on the values 

for the pillar between the Southeast wall of stope 52h09HL and Northwest wall of 

stope 52h04HL, determined from two different data sets. The difference between the 

two average wave velocity values was approximately 6%, which did not represent a 

significant change in relation to the scatter of the points around the average. All of 

the stress wave velocities in Table 8.21 were within an approximate 7% range, and 

therefore no anisotropies could be identified. 

 

Peak amplitude-frequency analysis was applied to the blast vibration data subsets 

collected along each R4 monitoring orientation to investigate any differences in the 

directionally-variable indicated rock mass stiffness. Plots of VSPPV versus VSPPA 

for all individual R4 accelerometer data sets are illustrated in Figure 8.42. 

 



Chapter 8. Case Study- BHP Billiton Cannington Mine 300 

 
Figure 8.42. Plots of VSPPV versus VSPPA and best-fit relationships for the 

accelerometer data measured along each monitoring orientation around R4 stopes 

52h09HL and 52h04HL. 

 

The VSPPV-VSPPA relationships in Figure 8.42 indicated that the rock mass around 

stopes 52h09HL and 52h04HL was largely homogeneous with regards to the 

frequency-supporting characteristics along different orientations. This behaviour may 

have been attributed to the seemingly random fracturing of the rock mass as 

indicated by the discontinuity mapping of the 500mLv and 520mLv, the highly 

weathered ore zone or the degree of rock mass saturation.  

 

8.8.5 Results of R4 Blast Vibration Data Analyses 

The R4 blast monitoring data were analysed using the same approaches applied to 

the previous North Zone data sets to characterise the attenuations of energies and 

strains. The dynamic rock mass properties required for calculations of energies and 

strains are listed in Table 8.22.  
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Table 8.22. In situ dynamic rock mass properties for stopes 52h09HL and 52h04HL. 

Stope Wall Rock 
density 
(kg/m3) 

 Edyn  
(GPa) 

vst Wave 
Velocity 

(m/s) 

�L 
(GPa)

52h09HL Hangingwall 3450 71 0.29 5175 38 

 Footwall 3450 71 0.29 5175 38 

 Southeast 3450 69 0.29 5130 37 

52h04HL Footwall 3510 75 0.29 5300 40 

 Southeast 3510 69 0.29 5070 37 

 Northwest 3510 80 0.29 5450 43 

 

The values of rock density, Edyn, vst, wave velocity and �L listed in Table 8.22 were 

used to calculate the EDW-SS and �W-MN for all recorded data points and nonlinear 

estimations were performed to obtain the regression constants K, b and n. The first 

analysis of the R4 data was the combined data set from all transducers in 52h09HL 

and 52h04HL to characterise the block-scale blast vibration behaviour. Separate 

analyses were then performed for data subsets segregated by the instrumentation 

orientations within each individual stope. The nonlinear estimation results for the 

combined R4 data set are listed in Table 8.23.  

 

Table 8.23. Best-fit and 95% upper confidence nonlinear estimation results for   

EDW-SS and �W-MN for the R4 combined data set. 

Model Data points K b n Best-fit R 

Best-fit EDW-SS (J/m3) 1388 522.08 0.551 -1.006 0.31 

95% EDW-SS 1388 959.46 0.735 -0.819  

Best-fit �W-MN (��) 1388 34.43 0.434 -0.685 0.51 

95% �W-MN 1388 46.13 0.503 -0.607  

 

The surfaces represented by the 95% upper confidence regression constants listed in 

Table 8.23 are shown in Figures 8.43 and 8.44. 
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Figure 8.43. 95% upper confidence surface from nonlinear estimation of EDW-SS 

versus charge weight and VICD for Cannington R4 combined data. 

 

 
Figure 8.44. 95% upper confidence surface from nonlinear estimation of �W-MN versus 

charge weight and VICD for Cannington R4 combined data. 
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The general trend of reduced correlation values observed in the KBGM D block and 

Cannington North Zone data sets were also present within the combined R4 

nonlinear estimations. The data set was therefore segregated by the stope and the 

separate monitoring orientations within each stope. The resulting 95% confidence 

EDW-SS (EDW-SS-95%) and �W-MN (�W-MN-95%) nonlinear estimation results for the 

individual stope orientations are listed in Table 8.24. Additional regression results 

are included in Appendix 9. 

 

Table 8.24. Stope 52h09HL and 52h04HL nonlinear estimation results for 95% 

upper confidence EDW-SS and �W-MN as combined data sets for each stope wall. 

Stope Model Stope 
Wall 

Data 
Points 

K b n Best-
Fit R 

52h09HL EDW-SS-95% HW 101 562260 0.075 -1.308 0.52 

 �W-MN-95%    4949.14 0.072 -1.026 0.57 

 EDW-SS-95% FW 199 3274.81 0.626 -0.678 0.35 

 �W-MN-95%   145.98 0.357 -0.489 0.43 

 EDW-SS-95% SE 299 10365.57 0.968 -1.775 0.71 

 �W-MN-95%   196.34 0.603 -1.137 0.77 

52h04HL EDW-SS-95% FW 283 2419.98 1.742 -0.491 0.32 

 �W-MN-95%   8.87 1.091 -0.207 0.60 

 EDW-SS-95% SE 245 19.14 1.872 -0.619 0.55 

 �W-MN-95%   14.25 0.797 -0.410 0.63 

 EDW-SS-95% NW 261 30118.16 1.305 -1.062 0.39 

 �W-MN-95%   477.59 0.662 -0.825 0.56 

 

The nonlinear estimation results for each orientation delivered a range in K, b and n 

values and correlations, identifying some differences in orientation-specific blast 

vibration attenuation in the R4. These differences were not indicated in a significant 

way by other assessment approaches. 
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8.8.6 R4 Stope Performance Assessments 

The stopes of the R4 were designed significantly smaller than the stopes of the other 

Cannington mining areas due to regional stability concerns for the Hamilton Fault 

and the lens-shaped geometry of the R4 lode. As a function of the reduced stope size, 

any stope overbreak or underbreak was expected to represent a larger percentage of 

the total stope volume. The results of the post-mining overbreak and underbreak 

assessments for stopes 52h09HL and 52h04HL are listed in Table 8.25.   

 

Table 8.25. Stope overbreak and underbreak calculations resulting from comparison 

of the post-extraction CMS and design wireframes for 52h09HL and 52h04HL. 

Stope Performance Criteria Volume         
(m3) 

% of Design 
Volume 

52h09HL Total Overbreak 548 18.5 

 Total Underbreak 330 11.1 

52h04HL Total Overbreak 477 7.2 

 Total Underbreak 752 11.4 

 

The irregular shapes of stopes 52h09HL and 52h04HL required a combination of 

downholes drilled from the 500mLv and upholes drilled from the 520mLv to achieve 

the desired stope shapes. The large percentage of stope overbreak for stope 52h09HL 

was partially associated with the oblique drilling geometry and blasthole charging 

controls. The reduced overbreak percentage for stope 52h04HL when compared with 

52h09HL reflected a more efficient drilling design based on the stope shape. Stope 

52h04HL was mined using all upholes drilled to the stope perimeter from the 

520mLv, whereas stope 52h09HL relied on downholes drilled at an oblique angle to 

the stope hangingwall and footwall. The maximum depth of overbreak experienced 

in each stope wall is listed in Table 8.26.   
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Table 8.26. Maximum depth of overbreak in each wall of stope 52h09HL. 

Stope Stope Wall Maximum Depth of Overbreak     
(m) 

52h09HL Hangingwall 1.0 

 Footwall 3.3 

 Southeast 0.8 

 Northwest 0.6 

52h04HL Hangingwall 2.3 

 Footwall 0.7 

 Southeast 1.0 

 Northwest 1.0 

 

The excessive overbreak in the footwall of stope 52h09HL occurred near the stope 

crown. Inspection of the charging logs indicated that the long-hole winze holes had 

been overcharged in firing #3, resulting in blasting of material beyond the designed 

stope crown. The oblique angle of the blastholes intersecting the design stope 

footwall and crown therefore contributed to the resulting over-charging and 

overbreak. 

 

The overbreak profile in the hangingwall of stope 52h04HL was largely consistent 

and ranged in depth from 1m to 2.3m. The stope design in relation to the available 

drilling access on the 520mLv required toeing of blastholes into the hangingwall. 

This drilling configuration was expected to have contributed to the overbreak of the 

hangingwall, as any over-drilling of blastholes would directly influence the final 

shape. Inspections of the ore flow during stope production did not identify any fault 

material reporting to the drawpoint. Therefore, it was determined that the 5m pillar 

against the Hamilton Fault footwall remained largely intact during blasting and 

loading of 52h04HL. 
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8.9 Comparison of North Zone and R4 Blast Vibration 

Monitoring Results 

The general responses of the North Zone and R4 rock masses to blasting have been 

compared using the results of the analyses of stopes 22gC6HL, 24jC6HL, 52h09HL 

and 52h04HL. The North Zone and R4 were believed by Cannington personnel to 

vary significantly in geological characteristics and geotechnical behaviours. The 

results of the analyses for the North Zone and R4 identified several differences 

between the geophysical characteristics and blast vibration attenuation behaviours for 

each mining area. Differences between the indicated stiffness as a result of peak 

amplitude-frequency analysis were also identified. 

  

8.9.1 Comparison of Blast Vibration Attenuation Behaviours 

The blasting conditions in the North Zone and the R4 stopes were significantly 

different due to the stope sizes. These variations in the blasting parameters were 

expected to account for some differences between the observed general blast 

vibration attenuation relationships. The influence of blasting geometry was expected 

to be minimal, as the blasthole diameter, explosive types, blasting patterns and 

associated powder factors were similar for both mining areas. The total charge 

weights and monitored distances in each mining area were also similar, such that the 

vibration attenuation relationships represented similar monitoring geometries. The 

similarities between the blasting programs in each mining area suggested that the 

observed differences between the large-scale attenuation behaviours were associated 

with the rock mass characteristics.  

 

The block-scale attenuation relationships for the North Zone and R4 were compared 

at a charge weight of 50kg using the �W-MN-95% prediction equations from the analyses 

of the combined data sets. The resulting attenuation relationships of �W-MN-95% versus 

distance at a 50kg charge weight are shown on log-log axes in Figure 8.45. 



Chapter 8. Case Study- BHP Billiton Cannington Mine 307 

 
Figure 8.45. Predicted 95% upper confidence �W-MN versus distance for the North 

Zone and R4 combined data sets for a 50kg charge weight. 

 

The two attenuation relationships shown in Figure 8.45 clearly indicate significant 

differences between the rock masses of the North Zone and R4 mining areas. Some 

variation between the two rock masses would appear to be intuitive based on 

observations from mapping and visual inspection. The attenuation relationships 

presented in Figure 8.45 identify several characteristics of the rock mass response to 

blasting that would not be intuitive based on general rock mass observations. 

 

According to the attenuation relationships in Figure 8.45, the consumption of 

explosive energy in the breakage zone for the North Zone was lower than that for the 

R4. This was indicated by comparing the intercept values of the two lines. A higher 

intercept value would suggest that a greater amount of the explosive energy was 

released as excess seismic energy or strain. Loosely interpreted, this result suggested 

that the fragmentation and associated rock damage in the immediate breakage zone 

would be reduced in the North Zone compared with the R4. The lower intercept 

value for the R4 zone suggested higher explosive energy consumption within the 

stope, resulting in better fragmentation and more intense damage to the rock mass 

near the blasthole prior to seismic propagation. 
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The differences between the two slopes revealed important information about the 

rock mass properties of the two mining areas. The steeper negative slope for the 

North Zone data set indicated a higher rate of strain attenuation over distance 

compared with the R4 mining area. This result was unexpected, as the more highly 

fractured and faulted R4 rock mass would have been expected to attenuate blasting 

vibrations at a higher rate than the highly competent North Zone. The strongly 

anisotropic behaviour of the North Zone rock mass likely contributed to the higher 

rate of attenuation for the combined data set. 

 

Evaluation of the blast vibration attenuation relationships for each mining area could 

provide benefits to the drilling and blasting and geotechnical programs at 

Cannington. Understanding the consumption and attenuation of explosive and 

seismic energy within the rock masses of different mining areas can provide a useful 

design tool to maximise fragmentation and minimise blast-related rock mass damage. 

Further monitoring and analysis would be required to determine which blasting 

parameters at Cannington could contribute to an increase in the energy consumed 

near the blasthole to increase fragmentation. 

 

8.9.2 Comparison of Specific Amplitude Attenuations 

An additional comparison of the North Zone and R4 rock masses was performed 

using specific amplitude attenuation analysis results from the two mining areas. The 

specific attenuations provided characterisations of the inelastic attenuations of the 

blast vibrations outside of the breakage zones within the stopes. 

 

One of the limitations of the specific amplitude attenuation approach is the 

sensitivity of the results to the separation distances between the transducers. Due to 

this sensitivity, only the measurements recorded on transducer arrays of identical 

separation distances could be used to compare the two mining areas. This geometry 

was only present within the data sets for the 24jC6HL 200mLv Southwest wall and 

the 52h04HL Southeast wall. These two data sets had the same differential 

transducer distances and could therefore be compared to evaluate the specific 

attenuations of the two rock masses. Additionally, both data sets were located in the 

same mineralisation type and absent of significant contributions from mineralised 
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contacts or large-scale geologic features such as the footwall shear zone in the R4. 

The results of the specific amplitude attenuations are shown in Figure 8.46. 

  

 
Figure 8.46. Comparison of specific amplitude attenuations for the North Zone and 

R4 Mining areas. 

 

The higher rate of attenuation for the North Zone 24jC6HL Southwest wall 

orientation as reflected by the steeper slope of the best fit line further supported the 

blast vibration attenuation relationships observed in Figure 8.45. As a result of both 

analysis approaches, it became clear that the R4 mining area attenuated less energy 

per metre of wave propagation than the North Zone, which was largely unexpected 

based on the observable rock mass characteristics. 

 

8.10 Discussion and Conclusions 

The rock mass characterisations, blast vibration analyses and post-extraction stope 

performance assessments performed for the North Zone and R4 stopes at the 

Cannington Mine have provided substantial insight into the response of the two 

different rock masses to mining and blasting. In addition to identifying differences 

between the two rock masses with regards to explosive energy consumption and 
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attenuation, block-scale and localised rock mass differences were identified using the 

results of blast vibration monitoring and traditional geotechnical characterisation 

tools. The block-scale anisotropy within the North Zone, as indicated by several 

different assessment methods, was formerly not identified by the mine personnel. In 

addition, possible influences of mineralisation type or mineralised contacts on the 

stress wave propagation characteristics of the rock mass of the North Zone were 

identified. 

 

The strain-related blast damage prediction performed for the 200mLv of stope 

24jC6HL identified tensile strain-based damage zones of up to 20m from the stope 

boundary. This prediction was well in excess of the prediction using the critical 

tensile plane strain approach. As a result of the low to moderate mining-induced 

static stresses in the North Zone, the predicted damage extents around 24jC6HL were 

not largely influenced by the static stress distribution. Due to limitations on the 

availability of diamond core drilling equipment, no dedicated measurements of in 

situ rock mass damage were possible at the time of the Cannington monitoring 

period. For this reason, the results of visual assessment and post-extraction stope 

performance were the only available methods of damage assessment. Based on these 

results, the predicted damage zones could not be validated. 

 

One of the original concerns of Cannington geotechnical personnel was the integrity 

of the two return air rises in the vicinity of stopes 22gC6HL and 24jC6HL. Although 

no damage was observed to the SdD0RAR or TbC5RAR, some indications of rock 

mass degradation or relaxation of the temporary pillar containing TbC5RAR were 

identified. These indications were based on comparing the stress wave velocities, 

peak amplitude-frequency analyses and specific attenuations for the confined and 

unconfined pillar conditions as a result of the blast vibration monitoring program. 

Reductions in the inferred stiffness and average stress wave velocity and an increase 

in specific attenuation were observed for the unconfined pillar condition. The 

combination of the three assessment methods indicated that the rock mass within the 

pillar had degraded due to possible contributions of existing discontinuity dilation, 

loss of confinement and blast-related rock mass alteration. 
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CHAPTER 9 :  CONCLUSIONS 

The prediction or assessment of blasting-related rock mass damage should consider 

many different factors to represent the mechanisms of damage and the interaction of 

near-field blasting vibrations with rock mass components. In general, existing 

analytical models for predicting rock mass damage from blasting do not adequately 

consider the following factors: 

• The influence of rock mass properties on damage to intact rock or existing 

discontinuities 

• The influence of mining-induced static stresses/strains on rock mass loading 

conditions resulting from dynamic blasting strains 

• Accurate monitoring and representation of near-field blast vibrations 

• Orientation-related and rock mass specific blast vibration attenuation 

behaviours 

 

The methods of blast vibration monitoring, analysis and interpretation and blast 

damage prediction proposed in this thesis have attempted to address the factors listed 

above. These techniques were developed through analysis of over 5000 single-hole 

near-field and intermediate-field blast vibration waveforms recorded by the author 

over a three year blast vibration monitoring program at two Australian sublevel open 

stoping mines. The approaches proposed by the author for near-field blast vibration 

monitoring and analysis and blast damage prediction in the underground mining 

environment were necessary to address the shortcomings of existing empirical and 

semi-analytical models such as PPV damage criterion and the critical tensile plane 

strain model. 

 

9.1 Original Contributions Provided by the Research Program 

The techniques for measurement of near-field blasting vibrations used in the past 

have lacked standardised procedures for selection of transducer types, dynamic 

ranges, frequency responses, configurations and coupling mechanisms. The results 
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from highly variable methods of near-field vibration measurement have been 

published over the last 40 years. The lack of standardised near-field monitoring 

techniques has resulted in limitations in the ability to compare monitoring results 

from different blast monitoring programs. For example, a site-specific model that has 

been developed using surface-mounted uni-axial geophones to measure intermediate-

field vibrations should not be compared with a model resulting from fully-

encapsulated, tri-axial accelerometer measurements in the near-field. Underground 

near-field blast monitoring criteria and the processes for the design and 

implementation of a near-field blast monitoring program have been unambiguously 

proposed by the author in this thesis.  

 

Recorded near-field blast vibration waveforms should be post-processed to 

accurately represent the measurement capabilities of the selected transducers based 

on the amplitude range and frequency responses. Discussions on post-processing 

procedures of blasting waveforms have largely been neglected in the published 

literature. As a result, published blast vibration monitoring results should be viewed 

with a degree of uncertainty. A series of vibration waveform processing techniques 

have been discussed in this thesis, as applied to the waveforms collected during the 

author’s blast vibration monitoring program. 

 

Traditional charge weight scaling blast vibration analysis and prediction approaches 

have been used for many years to characterise the attenuations of blasting vibrations 

in the near-field of blasting events. These models do not recommend any treatments 

for the selection of source to sensor distances under complex blasthole geometries 

such as those observed in ring drilling in sublevel open stoping. Comparisons of 

different distance models by the author has identified that for the data collected at the 

two sponsor sites, the geometric distance from the charge column midpoint to the 

monitoring location provided the highest correlations of regression for void-

unaffected geometries. For those wave travel paths that were affected by an existing 

or forming stope voids, a standardised approach to determine void-affected wave 

travel distances was proposed, named the VICD method.  

 

An alternative approach for analysis of near-field blast vibrations has been proposed 

by the author based on the total wave energy density (EDW-tot) and the wave-induced 
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mean normal dynamic strain (�W-MN). These values have been proposed instead of 

instantaneous amplitudes such as PPV due to observations of variable distributions of 

energy and broad frequency spectra in recorded near-field waveforms. Additionally, 

the limitations linked with plane strain assumptions and the associated 

simplifications in the critical tensile plane strain model have been addressed based on 

the use of the mean normal dynamic strain invariant (�W-MN), related to the stored 

strain energy density (EDW-SS). 

 

Results of approximately 180 nonlinear regression analyses performed on combined 

and individual data sets using the general form of charge weight scaling have been 

presented in Appendix 9. These published regression results represented a small 

portion of thousands of individual analyses performed over the course of the three 

year data analysis period using different charge weight scaling models, wave 

characteristics, distance values and data combinations. The results in Appendix 9 

have indicated a random distribution of correlation rankings based on regression of 

PPV, PPA, EDW-tot and �W-MN data and large ranges in regression values based on the 

individual rock mass properties and monitoring orientations. Therefore, no single 

model or wave characteristic can accurately describe near-field blasting vibrations 

under complex geometries, geologies and blasting conditions. 

 

The prediction of blast damage using past empirical and semi-analytical methods has 

largely relied on values of PPV or tensile plane strains as damage criteria. Three new 

blast damage criteria have been proposed by the author, based on both energy and 

strain-related fracture properties of rock. The proposed criteria consider blast-related 

rock mass damage as a two-component process, where both the fresh fracture of 

intact rock and activation and extension of discontinuities have been addressed.  

 

Two criteria have been proposed for prediction of intact rock damage from blast 

wave loading based on either stored strain rupture energy (including the 

consideration of strain rate effects) or fracture strain. The strain rupture energy 

approach proposed by the author is unique due to the dependence on strain rate 

effects. No explicit consideration of strain rate effects is included in existing energy-

based blast damage criteria. The proposed compressive and tensile fracture strain 

criteria are novel in that they include the influence of existing mining-induced or 
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virgin static strains on the predicted blast-induced damage. The existing static and 

blast-induced dynamic strain conditions are combined in the proposed approach 

using a mean normal strain superposition approach. No existing analytical model of 

blast damage prediction published in the past has included this important factor 

encountered in underground mining. The criterion that has been proposed by the 

author for predicting extension or dilation of discontinuities is based on the fracture 

mechanics principle of fracture strain energy of pre-cracked brittle solids. 

 

The models and techniques of blast vibration collection, processing, analysis and 

interpretation presented in this thesis were developed as a result of near-field blast 

vibration monitoring at two Australian underground open stoping mines. The 

Kanowna Belle Gold Mine and the Cannington Mine represented a number of 

different rock mass characteristics, mining geometries and blasting conditions. Blast 

vibration data collected at each of the mine sites were used to perform stope 

assessments and rock mass characterisations to aid in understanding of the response 

of rock masses to blasting and the role of blast damage in stope performance. The 

results of the characterisations and assessments were unique to each individual mine 

site. 

 

9.2 Limitations of the Research Program 

Any research program that is based on the results of field measurements can 

introduce errors into the measurement process. A number of possible sources of error 

have been considered in the collection and processing of blast vibration data and the 

provided blast design and charging files from the mine sites. These possible sources 

of error included: 

• Incorrect charge quantities based on inconsistencies in drillhole diameter, 

charge toe and collar location errors or explosive densities 

• Errors in calculated charge to sensor distances based on drillhole deviation or 

misrepresentation of the VICD wave paths 
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• Errors in measured vibration values from under-sampling, inadequate 

transducer response ranges, masking of waveforms from resolution effects, 

loss of transducer coupling or human error 

• Errors introduced during waveform processing such as frequency aliasing, 

selection of frequency filtering ranges and rounding errors in calculations 

• Inaccuracies in the measured waveforms due to shielding or mounting effects 

of the installed transducers 

 

In addition to the possible sources of error in the collection and processing of data, 

several assumptions were made to allow analysis of the data and development of the 

models. These assumptions included: 

• Largely linear-elastic behaviour of the rock mass such that plastic 

deformation effects were not considered 

• The general charge weight scaling prediction model adequately represented 

near-field vibration data to allow nonlinear estimation of blasting energies 

and strains 

• Conditions of strain continuity within the rock masses such that the mining-

induced mean normal static strains and blast-induced mean normal dynamic 

strains could be superimposed  

• The average stress wave velocities for each monitored orientation adequately 

described the wave propagation characteristics 

• Rock testing data and other data obtained from the case studies sites was 

accurate 

 

The use of the mean normal dynamic blasting strains, the static and dynamic strain 

combination approach and the differential grid-based excess strain capacity 

calculations were simplistic in nature. These simplifications were required to enable 

generalisation of the complex wave behaviours observed in the near-field waveforms 

and to allow for accommodation of large and highly-variable data sets in the 

proposed analytical blast damage prediction approach. Consideration of more 
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complex interactions between the static and dynamic strains and individual strain 

components would likely necessitate the use of a numerical model instead of an 

analytical model. In addition, the true wave propagation behaviours identified 

through the blast monitoring program were not able to be represented in the current 

analytical-graphical approach. The use of a single 95% upper confidence energy 

density or strain prediction equation for all propagation directions would likely result 

in over-prediction at some locations within the rock mass. Therefore, the prediction 

of damage using the model would represent the worst-case scenario. 

 

One of the most significant limitations of the blast damage predictions performed in 

the case studies was that measurement of actual damage within the confined rock 

mass around the stopes was not performed. This limitation was a result of the lack of 

available services and equipment at the mine sites, and represented a notable 

deficiency in the research program. Although some indirect methods of rock mass 

assessment were possible through analysis of blast waves and CMS surveys of post-

extraction voids, dedicated borehole observation or cross-hole seismic assessments 

within the rock masses near the stopes were not performed. These methods would 

have allowed the actual extent of observable blast damage to be validated within the 

rock masses, away from the post-extraction void surfaces. Therefore, the blast 

damage predictions performed in Chapters 7 and 8 should be viewed as theoretical as 

the model has not been validated by dedicated damage measurements. 

 

9.3 Future Work 

The blast vibration monitoring program conducted for this thesis has created a 

significant database of near-field vibration data, but additional near-field vibration 

measurements are required to further investigate the influence of rock mass 

properties on blast vibrations. Analysis of additional waveforms along with re-

analysis of existing data are expected to reveal additional factors contributing to peak 

amplitudes, frequency spectra and energy distributions. Additional field 

measurements using methods of indicating in situ rock mass damage would aid in 

validating and modifying the blast damage prediction approach. A detailed 
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parametric study on the influence of the input variables on the calculated energies 

and strains and the predicted damage extents would also aid in validating the model. 

 

Computer programs have been being developed at WASM since the data analysis 

period, which are capable of performing vector rotations of recorded waveforms. 

These programs will allow the influence of monitoring orientations and wave type 

segregation to be assessed. These types of analyses will contribute to understanding 

of the distribution of energy between wave types in coupled near-field waves and 

allow better representation of the complex wave-induced strain fields from blasting. 

Improved understanding of wave components will also lead to development of 

approaches to more accurately determine dynamic rock mass loading conditions 

based on collected vibration data. These approaches may allow for the proposed blast 

damage prediction model to include more comprehensive rock failure criteria such as 

Hoek-Brown or Mohr-Coulomb criteria or to predict shear-based damage.  

 

9.4 Industry Applications and Relevance 

Blast vibration monitoring and analysis is generally under-utilised in the mining 

industry as a method of assessing the performance of underground blasting 

programs. Cheap and simple programs related to diagnostic monitoring can be very 

valuable to a mining operation from a safety and blast performance perspective. 

More expensive and intensive blast vibration monitoring programs such as those 

used to investigate near-field damage can provide valuable insights into the blasting 

process and the response of the rock mass to blasting practices at the mine. Careful 

design and implementation of a blast monitoring program can also provide additional 

information on the rock mass, as observed for the Kanowna Belle Gold Mine and 

Cannington Mine case studies. The rock mass characterisations and blast vibration 

analyses performed at the two sponsoring mine sites have identified otherwise 

undocumented rock mass behaviours and aided in refining blasting processes. As a 

result of the research program, a reduction in mining costs at the Cannington Mine 

was experienced through changes in blasting geometries. 

 



Chapter 9. Conclusions  318 

Successful integration of blast damage-related effects into the stope and mine design 

process can aid in predicting stope performance and blast-induced damage to nearby 

excavations. As a result, a mine site may experience reductions in stope dilution, 

localised and large-scale rock mass instabilities and rock-fall related injuries or 

fatalities. 
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A1.1 Example Waveforms Collected During the Blast Vibration 

Monitoring Program 

 

Figure A1.1. Example waveform components from KBGM dB10-38B East wall 
accelerometer: 10.8kg SANFOLD 50 charge at 18.6m distance. 
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Figure A1.2. Example waveform components from KBGM dB10-38T East wall 
accelerometer: 38.1kg SANFOLD 50 charge at 10.1m distance. 
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Figure A1.3. Example waveform components from Cannington stope 24jC6HL 
200mLv Northeast wall accelerometer: 34.7kg 1.0g/cc emulsion charge at 10.7m 
distance. 
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Figure A1.4. Example waveform components from Cannington stope 24jC6HL 
200mLv Southeast wall accelerometer: 34.7kg 1.0g/cc emulsion charge at 23.5m 
distance. 
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Figure A1.5. Example waveform components from Cannington stope 24jC6HL 
200mLv Southwest wall accelerometer: 107.5kg 0.8g/cc emulsion charge at 5.9m 
distance. 
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Figure A1.6. Example waveform components from Cannington stope 52h09HL 
hangingwall accelerometer: 50.2kg ANFO charge at 5.8m distance. 
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Figure A1.7. Example waveform components from Cannington stope 52h09HL 
hangingwall accelerometer: 43.4kg SANFOLD 50 charge at 3.9m distance. 
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A2.1 Mathematical and Analytical Models of Wave Attenuation 

and Interaction with Discontinuities 

To provide some theoretical background for the laboratory and field investigations of 
wave attenuation, a review has been completed of a number of mathematical models 
which predict wave attenuation based on interaction with existing discontinuities. 
These models include the work of Morland (1974), Hudson (1981), Crampin (1984), 
Schoenberg and Douma (1988), Pyrak-Nolte et al. (1990) and Rossmanith (2006). 
 
Morland (1974) proposed a model for describing the elastic response to wave loading 
of a single joint set of known orientation, thickness, spacing and infill characteristics 
to investigate the change in the displacement field of a seismic wave interacting with 
a crack. Under the assumption of simple shear and uni-axial compression, the shear 
and normal stiffness ratios of tractions to displacements (transmission of 
displacement across the discontinuity) were defined by Equations A2.1 and A2.2. 
 

'μ
δ
d

s ≈Λ
         (A2. 1) 

 

( )'' 3
4 μ

δ
+≈Λ kd

d
        (A2. 2) 

 
Where  �s = shear stiffness ratio 
  �d = normal stiffness ratio 
  d = joint separation 

� = joint thickness 
  �’ = shear modulus of joint infill material 
  k’ = bulk modulus of joint infill material 
 
From the combined anisotropic material compliance matrix, the effect of a single 
joint of normal orientation on the stress-strain transformation yielded Equation A2.3. 
 

γγσσε
K

GKG
K

GKG
d 33

22 3
2

11
3
1

11
−−��

�

�
��
�

�
Λ

++=−     (� = 2,3)   (A2. 3) 

 
Where   �11 = normal strain in x direction 
  G = shear modulus of the intact rock 
  K = bulk modulus of intact rock 
  �11 = normal stress in x direction 
  ��� = normal stress in y and z directions 
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The effect of the reduced joint stiffness could be observed through reduction of the 
shear modulus (G/d) paired with the normal stress term. Further derivations 
proposed by Morland (1974) provided treatments for an equivalent elastic modulus 
for a material containing multiple joint sets of known orientations and conditions. 
 
Hudson (1981) proposed attenuation factors for elastic waves propagating through 
jointed material by using the material modulus descriptions specified by Morland 
(1974). Coupling the modified material modulus with elastic wave equations, 
Hudson proposed Equation A2.4 to predict the attenuation factor (�P) of the P-wave 
due to a series of regularly spaced joints. 
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And 
 

( )sva Λ+
=

μ
μ

311U
        (A2. 5) 

 

( )dva Λ++
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μ
2333U

       (A2. 6) 
 
Where  � = angular frequency 
  
 = shear wave velocity of intact material 
  � = longitudinal wave velocity of intact material 
  � = angle of incidence to normal of joint set 
  v = density number of joints of bulk material 
  a = mean radius of joints 
  �, � = Lame’s constants of intact material 
  �s, �d = as defined in Equations A2.1 and A2.2 
 
Equation A2.4 suggests that an increase in the fracture density (reducing the fracture 
spacing) or fracture radius (scale) greatly influences the attenuation factor, reducing 
the amplitude of the wave by a higher rate over distance. The treatment by Hudson 
(1981) also took into account the angle of incidence and wave frequency, which 
helped to determine the percentage of the wave motion transmitted or reflected. 
 
The formulations proposed by Hudson (1981) for treatment of materials containing 
multiple fracture sets were found to fit well with the model proposed by Crampin 
(1984). The results of mathematical modelling revealed that wave velocities and long 
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wavelengths (20-80Hz) were insensitive to the crack radius and crack filling, but that 
the attenuation factor was sensitive to many wave and crack properties. Figure A2.1 
illustrates the calculated attenuation factors for long wavelength units passed through 
a material of constant crack density, but varying crack radii from 1 to 10m. These 
crack dimensions are considered to be representative of the discontinuities 
encountered in the mining environment. 
 

 
Figure A2.1. Maximum values of P-wave and S-wave attenuation factors for crack 
radii between 1m and 10m (dry cracks) with 40Hz and 80Hz input waves (after 
Crampin, 1984). 
 

The ratio of wavelength to discontinuity dimension represented in Figure A2.1 (1-
10m fracture radii) ranges from 1.56 to 62.5 times for a standard rock material with 
Vp = 5,000 m/s and Vs = 2,500 m/s as calculated for the 40 and 80Hz frequencies. 
This would simulate a condition where the wavelength is significantly larger than the 
discontinuity dimension, which may not be the conditions in the near-field of a blast 
where high frequency waves travel with significantly reduced wavelengths. For 
example, a 1kHz wave for the same fracture dimension range (2m-20m diameter) 
would exhibit ratios of 0.25 to 2.5 times. Therefore the assumption of a large 
wavelength would be incorrect and the attenuation factor for the high frequency, 
short wavelength elastic waves would be assumed to increase. 
 
To investigate the behaviour of large discontinuities on the elastic compliance 
matrix, Schoenberg and Douma (1988) adopted the material anisotropic compliance 
matrices specified by Hudson (1981) to compare the elastic anisotropy models of 
various researchers. Using the assumption that fractured material behaves as a 
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system of transversely anisotropic background material containing discontinuity 
systems with a discrete modified compliance, Schoenberg and Douma suggested an 
inelastic compliance matrix. This matrix accounted for the change in isotropy (�N, 
�P, �M) based on the modified fracture compliances ET (tangential) and EN 
(normal). Equations A2.7 to A2.11 illustrate the change in isotropy for a series of dry 
joints of adequate thickness such that there is zero traction in a transversely 
anisotropic material. 
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And 
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Where  �b, �b = Lame’s constants for the background material 
  �b = �b/(�b + 2�b) 
  e = crack density 
 

A2.2 Transmission Characteristics of Discontinuities 

General elastic and plastic wave theories have been used in the literature to develop 
equations for predicting the behaviour of waves interacting with material interfaces 
having different material properties. The material interface models generally 
considered for use with stress waves in geomaterials are those related to either 
welded or cohesive or semi-cohesive contacts between similar or seismically 
dissimilar materials (illustrated by Rossmanith, 2006). As a function of wave 
propagation behaviour, calculation of reflection and transmission refraction angles 



Appendix 2. Mathematical Models of Wave Attenuation  362 

relative to the incident wave are quite straight forward. These angles are related to 
the geometry of the wave path relative to the interface and the material properties, 
without a general treatment for the condition of the interface (Graff, 1975). For the 
special condition of a stress-free boundary, the entire wave is reflected in two 
different modes (i.e. P-wave and S-wave). 
 
In the case of a welded interface between two similar materials, the interface 
stiffness is assumed to be approximately equal to the virgin material and wave 
reflection is assumed to be minimal. This behaviour can be attributed to the infill 
material properties or confining stresses, as observed by Pyrak-Nolte et al. (1990). In 
this case, there is negligible attenuation. In mining rock masses, discontinuities 
displaying welded characteristics can occur due to high confining stresses or 
chemical processes leading to “healing”. The North Zone rock mass studied at the 
BHP Cannington Mine consisted of mainly healed discontinuities and therefore the 
degree of attenuation resulting from wave-fracture interaction was expected to be 
minimal.  
 
The types of fracture interfaces that are likely to exist in the perimeter of an 
excavation and alter the radiating stress waves from blasting are those of a cohesive 
or semi-cohesive nature. These discontinuities would generally have stiffness lower 
than that of the intact rock. The stiffness of an interface can be related to the 
viscosity of the infill material, saturation, level of contact between the two faces 
(roughness and asperity) and confining normal stresses (Pyrak-Nolte et al., 1990).  
 

A2.2.1 Attenuation of Blast Waves in Response to Interaction with 

Discontinuities 

Stress waves interacting with boundaries between similar materials (rock blocks or 
slabs) would be expected to result in anelastic attenuation over distance. In order to 
gain a better understanding of the effect of a single discontinuity on the attenuation 
of stress waves, Equations A2.12 to A2.15 are listed by Rossmanith (2006) 
describing the work of Rinehart (1975) for predicting the reflection and transmission 
of incident P-waves from a non-cohesive joint. 
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And 
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       (A2. 15) 
Where  RPP = ratio of stress amplitude of the reflected P1P1 wave 
  �P1P1 = normal stress of reflected P-wave (Pa) 
  �P1 = normal stress of incident P-wave (Pa) 

RSP = ratio of stress amplitude of reflected S1P1 wave  
  TSP = ratio of stress amplitude transmitted in S2P1 wave 

�S1P1 = shear stress of reflected S-wave (Pa) 
TPP = ratio of stress amplitude transmitted in P2P1 wave 
�P2P1 = normal stress in transmitted P-wave (Pa) 

  � = interface stiffness (dimensionless) 
  
 = angle between interface normal and reflected S1P1 wave (º) 
  � = angle between interface normal and incident P1 wave (º) 
  CP = P-wave velocity (m/s) 
  CS= shear wave velocity (m/s) 
 
The wave types resulting from the reflection and refraction described in Equations 
A2.12 to A2.14 are shown in Figure A2.2. 
 

 
Figure A2.2. Transmitted and reflected wave types resulting from an incident wave 
interacting with a material interface.  

 
To investigate the attenuation characteristics along a given wave path, the wave 
transmission ratios for a given material can be calculated for a range of incident 
angles using Equations A2.12 to A2.14. Although these equations only consider the 
incident P-wave and are independent of factors that influence wave transmission 
such as the wave frequency or wavelength (Graff, 1975), a basic understanding of the 
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transmission behaviour can be gained. Due to an assumption that the interface 
stiffness � represents both normal and shear stiffness, incident shear wave 
transmission characteristics are assumed to be similar to incident P waves. The 
relative amplitudes of the transmitted and reflected waves based on the angle of 
incidence are illustrated in Figure A2.3. The material wave propagation assumptions 
were CP = 5km/s, CS = 2.9km/s, 
 = arcsin[(CS sin 	)/CP] (Kolsky, 1953). 
 

  
Figure A2.3. Relative amplitude of transmitted and reflected waves from an incident 
P-wave acting at a non-cohesive interface between similar materials (left)(after 
Rossmanith, 2006) and percentage of wave amplitude transmitted and reflected from 
the non-cohesive interface for a range in incident angles (right). 
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A3.1 Dynamic Damage on the Micro-scale 

The first signs of material damage in response to static and dynamic loading are the 
formation of micro-cracks or extension of pre-existing flaws in the lattice of the rock 
material. As micro-flaws extend and coalesce, macro-fractures can form. These 
macro-fractures can further coalesce and subsequently lead to failure of the material. 
The process of micro-crack extension and coalescence is highly influenced by the 
intensity and duration of dynamic loading. A number of small-scale dynamic impact 
tests have been conducted on rock materials by various researchers to investigate this 
phenomenon.  
 
Of the published literature investigating the dynamic fracture of small rock samples, 
the work published by Shockey et al. (1974) was one of the earliest and most 
regularly referenced in subsequent research due to the thorough treatment of the 
experimental procedures. During the study, dynamic impact testing was performed 
on 53 Arkansas Novaculite samples under different loading and boundary conditions. 
The study was conducted to evaluate sample damage and post-fracture fragment 
sizes based on the intensity of dynamic impact produced by a gas gun and projectile 
striking mechanism. 
 
After the impact experiments, micro-damage evaluation was performed using 
fractographic methods. A computer wave simulation model was also developed to 
better understand the role of the strain waves contributing to sample rupture. Figure 
A3.1 illustrates the dynamic loading mechanism used in the investigations. 
 

 
Figure A3.1. High strain-rate impact testing equipment for testing of Arkansas 
Novaculite rock samples (Shockey et al., 1974). 

 
One of the main findings of the experiments conducted by Shockey et al. (1974) 
supported Griffith-Irwin fracture mechanics criterion through validation of a critical 
flaw activation dimension (c*). Any existing flaw less than the c* dimension would 
fail to activate under a given dynamic stress loading condition. This was an early 
example of the scale and time effects of flaw activation. The study also identified the 
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dependence of the fragment size and number of activated flaws on the applied strain 
rate, and suggested a value for the dynamic fracture toughness of Novaculite based 
on the largest existing flaw dimension and dynamic tensile strength. 
 

A3.1.1 Continuum Damage Based on Micro-fracture 

The observations of Shockey et al. (1974) were investigated further and confirmed 
by Grady and Kipp (1979) during experimental studies. The findings were integrated 
into mathematical and numerical continuum damage modelling based on classical 
fracture mechanics to evaluate the evolution of micro-damage. Grady and Kipp 
(1979) also suggested a link between fracture stress and strain rate following a cube-
root relationship. Further extension of the work by Grady and Kipp (1980) presented 
one of the first continuum damage mechanics models applied to the problem of blast-
related rock mass damage. The study was involved with investigating the explosive 
fracture of oil shale.  
 
The basic tenets of the continuum damage approach are to represent a rock mass as a 
homogeneous medium containing a specified distribution of penny-shaped “Griffith” 
fractures of random sizes and orientations. The activation, growth and coalescence of 
these fractures leading to material damage have been assumed to follow certain 
material behaviour properties based on fracture strength and energy-absorbing 
fracture extension parameters. 
 
Using a Weibull distribution of fractures, Grady and Kipp (1980) suggested the 
dependence of isotropic dynamic tensile damage on both the amplitude and duration 
of the input strain pulse (rate effects). Under dynamic behaviour, short, high-
amplitude loading pulses would be expected to lead to a larger number of small flaw 
activations leading to finer fragmentation. Longer, lower amplitude pulses would be 
expected to activate only large flaws and thus lead to a distribution of larger 
fragments. 
 
The application of continuum damage approaches was extended further by Yang et 
al. (1996) by specifying a different material failure mode for compressive and tensile 
mechanisms. The measure of damage was based on the reduction in elastic material 
modulus through the introduction of additional void volume (additional fractures). At 
a reduction of 22% of the original material modulus, the material was considered to 
be damaged such that the peak stress could no longer be supported in successive 
loadings. 
 
Lui and Katsabanis (1997) suggested a continuum damage model that proposed a 
value of critical strain under which no fracture activation would occur. This approach 
bounded the model to a static stress equilibrium case and therefore fracture would be 
based on a critical value of volumetric strain as the fracture criterion instead of 
fracture strength. In addition, the damaged material would respond to consequent 
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external load based on damaged-induced degraded values of Young’s Modulus (E) 
and shear modulus (G). 
 

A3.2 Small-scale Blast Simulation Models 

A large amount of information on the dynamic behaviour of rock and rock-like 
materials has been gained through laboratory impact testing of materials using gas 
guns, high displacement-rate hydraulic jacks and the Split Hopkinson Pressure Bar. 
These methods of material loading are typically repeatable and well controlled, but 
do not generate the highly variable and time-dependent dynamic stresses observed in 
rock breakage using explosives. Therefore, previous researchers have performed 
scaled blasting tests on various rock-like materials to more accurately examine the 
effect of explosive loading on the dynamic fracture process.  
 
The first important consideration for a scaled blasting test is the selection of an 
appropriate material for testing. Several material characteristics should be considered 
when attempting to model rock response to blasting. Some of these properties are:  

•  Compressive and tensile strength (static and dynamic) 

•  Elastic constants 

•  Wave transmission characteristics 

•  Material homogeneity 

•  Other physical properties (e.g. fracture toughness or fracture energy) 

 
In general, past scaled blasting studies have utilised homogeneous materials such as 
glass, Plexiglas or Homalite, semi-homogeneous materials such as cement or 
concrete or rock blocks extracted from exposed excavation surfaces. Each type of 
material faces testing constraints based on the available size, mechanical behaviour 
and scale-dependent effects. 
  

A3.2.1 Small-scale Tests in PMMA 

One attribute that was highly sought after in early explosive-fracture tests was the 
ability to observe the fracture patterns during and after the tests. Transparent 
materials such as glass and Plexiglas (otherwise known as PMMA, Polymethyl-
methacrylate and Perspex) were therefore used. Comparisons by Kutter and Fairhurst 
(1971) of the behaviour of PMMA plates and rock samples illustrated comparable 
fracture patterns formed in the two materials. The similarities justified the use of 
acrylics in subsequent blast fracture studies. An additional attribute of the transparent 
acrylics was the ability to visualise stress bands in the material through polarisation 
of light. This property led to early observation of stress wave interaction with 
fractures and material boundaries.  
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In the early 1970s, scaled blasting tests using PMMA formed the basis of the 
understanding of the explosive fracture process and the contribution of dynamic 
stress waves and gas penetration on explosive fracture. In 1971, Kutter and Fairhurst 
conducted a series of experiments to investigate the role of shock energy and fluid 
penetration on the dynamic and quasi-static fracture process of Plexiglas plates and 
rock. Many important research outcomes were presented in the work, including the 
influence of in situ stress on the dynamic fracture process. The work of Kutter and 
Fairhurst was discussed in Chapter 2.  
 
Field and Ladegaard-Pederson (1971) investigated the role of the reflected stress 
wave on the fracture process in small-scale PMMA blocks under various burdens and 
surface conditions. The basic experimental setup used in the scaled blasting tests is 
illustrated in Figure A3.2.   
 

 
Figure A3.2. Scaled blasting test setup for Perspex blocks (60mm x 60mm x 85mm) 
to investigate spallation and reflected tensile wave damage from a 1.5mm charge of 
lead azide/lead stypnate (Field and Ladegaard-Pederson, 1971).   

 
The results of the scaled blasting tests identified the influence of the reflected stress 
wave on the formation of radial fractures parallel to the free face. In addition, 
preferential extensions of single fractures were observed in directions towards the 
free face due to stress unloading at the crack tip. A series of experiments on the 
influence of the free face on the reflected wave identified diffraction and focusing of 
the reflected stress wave as a function of face shape. Tests conducted under infinite 
material matching conditions (immersion of the model in an acoustically-matched 
fluid) demonstrated a regularly-distributed fracture pattern commonly observed in 
larger models unaffected by wave reflections. 
 
Daehnke et al. (1996) conducted investigations into the discrete role of shock and gas 
penetration on fracture formation in PMMA blocks to calibrate a numerical model 
characterising explosive-driven gas flow. Two cases were examined in the block-
scale study. The first case allowed the explosively-generated gases to vent to the 
atmosphere prior to the development of the quasi-static cavity pressurisation to 
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simulate weak stemming in the blasthole. The second case sealed the explosive 
charge into the block to allow full containment of the developed gas pressure and 
facilitate gas-driven fracture extension. 
 
In the stemmed test, a regularly-spaced radial fracture pattern of 3 planar cracks was 
formed. The crack surfaces were smooth, suggesting stable fracture growth and rapid 
arrest. The confined test exhibited a very complex fracture pattern, with conical 
fractures formed at the endpoints of the explosive charge. Results of numerical 
modelling of the process revealed that at a fracture velocity of 100m/s, the fractures 
were rapidly outpaced by the stress wave. As a result, only 8% of the fracture length 
could be attributed to the direct stress wave. Therefore, the contained gas pressure 
extended the fractures an additional 92% of the final length (Daehnke et al., 1996). 
 
Rossmanith et al. (1997) extended the work conducted by Daehnke et al. (1996) by 
presenting an approach to predict fracturing and explosive-induced damage through 
the combined effect of wave propagation modelling and gas flow numerical 
modelling. The initial physical model consisted of PMMA blocks of 250mm x 
250mm x 240mm size, blasted with 3mm diameter cylindrical charges of PETN, 
66mm in length. The results of the modelling work identified the complex 
relationship required for representation of explosively-driven gas flow simulation. 
Incorporation of several disciplines such as fluid mechanics, elasticity, fracture 
mechanics and heat transfer were deemed necessary to reach a numerical solution. 
No analytical solution was found to exist for the complex loading conditions. 
 

A3.2.2    Other Materials Used in Scaled Blasting Models 

Scaled blast-induced fracture modelling in acrylic materials is generally bound by 
model size limitations due to the manufacturing process of the material and 
differences in the scale-dependent material properties when compared with rock. 
Therefore, test blasts have also been performed in cement and concrete samples to 
increase the size of the scaled model and explosive charges. The use of a larger 
model simulates the material properties and loading conditions more closely to the 
realistic blasting case. Cement and concrete generally have repeatable and adjustable 
physical properties based on the percentages of the constituents and aggregates added 
to the mixture. Therefore, a degree of material homogeneity can be gained, but with 
properties more closely related to those of rock. 
   

A3.2.2.1 Cement and Concrete Blasting Models 

Researchers in the past have conducted scaled-model explosive breakage 
experiments using concrete blocks of various engineered properties to simulate 
desired rock characteristics. Due to the great difficulty in obtaining large, intact 
samples of rock, cast concrete slabs and blocks have been used to more closely 
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replicate rock properties. Some of the advantages of using cast geoengineered 
material blocks include: 

• High degree of homogeneity 

•  Reproducible strength properties  

•  Ability to cast transducers into the block to assure good coupling 

•  Sample size and shape flexibility  

 
The results of blasting tests on cast cement and concrete samples have provided great 
insight into the fracture patterns resulting from single or multiple-hole blasts (e.g. 
Wilson and Hollaway, 1987), the role of shock and gas in explosive fracturing  and 
fragment size distribution (e.g. Singh, 1999), the effect of discontinuities on fracture 
and vibration propagation (e.g. Bhandari, 1979; Tariq and Worsey, 1996; Singh and 
Narendrula, 2004) and calibration or validation of numerical models (e.g. Iverson et 
al., 2009; Sellers et al., 2009). Figure A3.3 illustrates the use of a cement model to 
investigate blast-induced fracture patterns under the influence of horizontal jointing. 
 

 
Figure A3.3. Top view of fracture pattern in cement model with simulated horizontal 
bedding (Bhandari, 1996). 

 
Scaled blasting tests on concrete and cement blocks with controlled material 
properties have contributed significantly to the understanding of blast-induced 
fracture. Concrete models are a useful tool for understanding material behaviours 
under dynamic loading and are still utilised for calibrating high-level numerical 
models such as the HSBM code developed at the JKMRC in Queensland, Australia 
(Iverson et al., 2009; Onederra et al., 2009; Sellers et al., 2009). 
 

A3.2.2.2 Rock Blocks and Field-Scale Blasting Tests 

The next step in accurately investigating blasting-induced fracturing is scaled testing 
on rock blocks and slabs. Rock samples suitable for medium and large-scale blast 
testing should be free of dominant discontinuities and orientation-biased 
anisotropies. The rock types suitable for extraction of large, intact blocks are 
typically limited to highly homogeneous igneous or metamorphic rocks such as 
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granite or marble. Sedimentary rocks such as limestone and sandstone with thick 
bedding can also be utilised. 
 
Of the published research on scaled rock block tests, some of the notable works 
include Bergmann et al. (1973), Singh (1999) and Olsson et al. (2002). These 
investigations generally supported the observations of the behaviour of explosively-
driven fracture formation and propagation in PMMA and concrete models. The 
extent of damage and the breakage mechanisms were specific to different rock types 
blasted with more realistic charge diameters and geometries. Due to the use of rock 
blocks, investigation into anisotropy-associated breakage effects became important to 
more accurately translate the results into realistic blasting conditions. 
 
From review of the published literature, the work conducted by Bergmann et al. 
(1973) presented one of the most complete data sets that investigated the effects of 
rock type, explosive properties, burden dimension and decoupling on the transmitted 
pressure pulse and fragmentation. The research conditions were such that blasting of 
small diameter charges took place under realistic charge to burden ratios. The tests of 
Bergmann et al. (1973) revealed a significant difference in pressure attenuation and 
fragment size distribution for a series of tests on granite, limestone and sandstone. A 
series of empirical pressure and fragment prediction equations were presented for 
each rock type, contributing a great deal of information to the effect of explosive 
properties, geometry and rock type on blasting performance. The general 
experimental setup is illustrated in Figure A3.4. 
 

 
Figure A3.4. Block-scale experimental setup used by Bergmann et al. (1973) to 
investigate the effect of explosive properties and rock type on fragment size. 
 

A3.2.3   Limitations of Scaled Blasting Tests 

Care must be taken to consider the effects of experimental geometry and size when 
attempting to translate the results of scaled blasting tests into field-scale conditions. 
The influence of free faces on wave reflection and fracture propagation within model 
plates or blocks also becomes important. These factors can significantly influence 
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fracture propagation, especially when the mode of breakage is being investigated 
(stress wave versus gas penetration mechanisms). 
 

A3.2.3.1 Model Geometry and Material Properties 

To study field blasting conditions on a reduced scale, blocks of representative burden 
dimension of approximately 10-35 times the borehole diameter are recommended to 
avoid complete disintegration of the sample upon testing. If commercially 
representative explosive types are used, the issue of critical diameter adds greater 
restriction on the model size. For high explosives, borehole diameters as small as 
3mm to 6mm may be used, requiring blocks of 30mm to 210mm burden dimension 
and 60mm to 420mm length and width. For commercial blasting agents such as 
emulsions, watergels or ANFO, critical diameter values are much larger than for high 
explosives; of the order of 15-35mm. Commercial explosives would therefore require 
much larger intact blocks in order to contain the explosion.  
 
Typically, blocks of rock suitable for scaled block tests are monolithic and nearly 
homogeneous in nature such as those rock types used in dimension stone or large 
decorative construction applications. These rock types are generally free from 
persistent jointing or bedding, and contain a distribution of only fine micro-cracking. 
In full-field applications, in situ discontinuities greatly influence fragmentation and 
stress wave transmission. Under certain conditions, the pre-formed block size from 
existing discontinuities will dominate the blast-induce fragmentation. Explosive 
energy is therefore used only to dislocate the pre-existing fracture pattern. 
 

A3.2.3.2 Specific Limitations of Scaled Models 

Although small-scale blasting investigations in quasi-brittle material blocks provide 
significant insight into the breakage process, dynamic loading and geometric 
constraints should be investigated prior to prediction of full-scale behaviours. Some 
of the specific considerations of mine-scale blasting when compared with scaled 
blasting tests on isolated samples include: 

•  Ideal loading mechanisms will not reflect non-ideal energy release  

•  Bulk rock mass properties vary largely over two orders of scale magnitude 

•  Boundary conditions in mining are more complex than in scaled testing 

•  Bedding, jointing or faulting greatly influence the behaviour of rock-masses 

•  In situ and induced stresses influence rock mass fracture behaviour 

•  Borehole wall conditions are rarely regular shaped and smooth 

 
In a series of papers published by Rossmanith et al. (2005), the effects of explosive 
properties and sample shape on the explosive-generated wave field were 
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investigated. The wave modelling identified a very complex interaction between 
sample boundaries and the wave fields contributing to fracture propagation and arrest 
(Figure A3.5). Based on this work, only model conditions simulating an infinite 
boundary using momentum traps or other methods of matching acoustic impedance 
can be deemed as directly translatable to the semi-infinite field conditions. 
  

 
Figure A3.5. Section view of the complex wave-field generated at the sample 
boundaries for a continuous column charge under supersonic detonation conditions 
in a cylindrical sample (Rossmanith et al., 2005). 

 

A3.2.3.3 Effect of Borehole Liners on Wave Propagation 

Variations in the generated wave fields are of increasing importance in scaled 
blasting studies investigating the contribution of stress waves and gas penetration on 
fracturing using steel borehole liners (e.g. Brinkmann, 1990 and Singh, 1999). 
Changes in acoustic impedance at the borehole wall due to the presence of the steel 
liner modify the wave fields in the block material during and after detonation. No 
mention has been made in such studies to account for the alteration of the stress wave 
due to the lined borehole conditions. 
 

A3.3 Field Scale Damage Investigations 

Of the available published studies on blast-induced fracturing, studies conducted 
under actual field blasting conditions yield the best indication of fracture formation 
under mining geometries. Field investigations have been conducted for over 5 
decades to study the effect of explosives and rock mass properties on the extent of 
blast-induced fracture near remaining excavation surfaces (e.g. pit faces, stope walls 
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and tunnel or drive boundaries). The importance of characterising and minimising 
blast-induced damage and its impact on rock mass stability in both the underground 
and open pit environment have led to a number of valuable insights into the 
interaction between explosive charges and rock masses. 
 
Over the last 50 years, numerous blast damage studies have been conducted in both 
the open pit and underground mining geometries. Some of the available studies 
investigating damage caused by dynamic loading from blasting include Siskind et al. 
(1973), Holmberg and Persson (1978), Forsyth (1993), Li (1993), Liu and Proulx 
(1995), Villaescusa et al. (1997), Scott (1998), Keller and Kramer (2000), Olsson et 
al. (2002), Singh and Narendrula (2004) and Kilebrant et al. (2009).  
 
The geometries and blasting conditions represented in the body of work cover a 
broad range, from open pit investigations in granite quarrying (e.g. Siskind et al., 
1973 and Holmberg and Persson, 1978) to underground development rounds and 
tunnelling (e.g. Brinkmann, 1990; Forsyth, 1993; Singh and Narendrula, 2004) and 
finally underground mass mining (e.g. Scott, 1993 and Liu and Proulx, 1995). In all 
of the published works, an overall degradation of rock mass condition has been 
observed in the remaining excavation surface (and for some depth within). The 
extent of damage can range from tens of centimetres using small diameter charges 
typical of tunnelling up to tens of metres, typical of large-scale open pit mining. 
Some of the field-scale experimental setups are illustrated in Figures A3.6 to A3.8. 
 

 
Figure A3.6. Field setup for blast damage testing in a granite quarry for various 
charge diameters under stemmed and unstemmed conditions (Olsson et al., 2002). 
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Figure A3.7. Experimental setup used by Holmberg and Persson (1978) to 
investigate blast damage in relation to measured vibration. 

 

 
Figure A3.8. Underground open stoping blast damage study as illustrated by Liu and 
Proulx (1995).  

 
The cases involving investigation of damage in sublevel open stoping have been 
reviewed extensively, as these were most relevant to the author’s blast damage 
investigation. In general, the studies of production blasting in sublevel open stoping 
have revealed blasting and stress-induced damage occurring several metres beyond 
the stope perimeter (such as that found by Li, 1993 and Villaescusa et al., 1997).  
 
The blast-affected damage zones in most underground experimental studies cannot 
be separated from the stress-affected zones. Observations and measurements of 
fracturing and damage typically occur under combined loading conditions. This 
highlights the complexity of the loading conditions under which rock masses are 
damaged in the presence of in situ stresses. 
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A4.1 Transducer Types: Accelerometers 

Accelerometers are transducers that contain a piezoelectric element (typically quartz 
or ceramic crystal) which deforms under load, resulting in alignment of charged ions. 
As the piezo element is deformed through acceleration of an attached reference mass, 
an electrical output is produced that is proportional to the deformation. Several 
mechanical configurations can be utilised which allow the acceleration to be 
measured from the piezoelectric effect. Three of these configurations include 
compression, shear and flexural deformation of the piezo element. Figure A4.1 
illustrates different piezo element configurations used in accelerometers. 
 

 
Figure A4.1. Piezo element configurations in a number of different accelerometer 
functionalities (PCB Group 1999-2008). 

 
Because large mechanical motions are not required to produce the output voltage 
from the piezo elements, wide frequency and amplitude response ranges are 
measurable. Also, the lack of moving internal parts allows accelerometers to 
withstand large shock loads without sustaining physical damage. The general 
advantages and disadvantages of accelerometers used in vibration monitoring 
applications are well documented (e.g. Andrieux and Heilig, 1994). 
 
One of the main advantages of accelerometers in measurement of blasting vibrations 
is the superior linear frequency response range when compared with other transducer 
types. To accurately measure high frequency vibration events in the near-field of 
blasting where wave frequencies can reach tens of thousands of Hertz, the frequency 
response is critical. Figure A4.2 illustrates the frequency response curve for the Brüel 
and Kjaer model 4371 uni-axial accelerometer component with a dynamic range of 
6,000g (Brüel and Kjaer, 2005). 
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Figure A4.2. Frequency response curve for Brüel and Kjaer model 4371 uni-axial 
accelerometer (Brüel and Kjaer, 2005). 
 

A4.1.1 Operational Considerations for the Use of Accelerometers in Near-

Field Blast Monitoring 

Due to the electronic circuitry required to amplify and condition the voltage output of 
an accelerometer, the expected dynamic amplitude range is a critical selection factor 
to reduce the likelihood of transducer saturation. When an accelerometer is exposed 
to a vibration level in excess of the dynamic range, the conditioning circuits are 
exposed to excess voltage and must discharge to the baseline carrier voltage to 
resume normal function. As observed in the author’s blast monitoring program, this 
discharge time can lead to lost vibration signals or excessive DC offset in the 
vibration trace resulting in successive saturations or unrealistic low frequency 
content. The time required to return to the carrier voltage baseline can vary from 
several milliseconds to tens of milliseconds based on the discharge circuitry. A 
waveform collected as part of the author’s blast vibration monitoring program that 
experienced significant accelerometer saturation is shown in Figure A4.3. 
 

 
Figure A4.3. Saturation of a 500g accelerometer in the BHP Cannington Mine stope 
24jC6HL, causing distortion of the acceleration signal. 
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Some waveform post-processing approaches do exist for treatment of saturated 
accelerometer signals. Saturation of an accelerometer waveform can be marginally 
amended through use of frequency filters or amplitude offsetting to return the signal 
to the baseline axis as illustrated in Figure A4.4. This type of treatment will 
inevitably lead to an erroneous loss in frequency content or misrepresentation of the 
amplitude in the saturated portions of the waveform. Consequent mathematical 
calculation of velocity or displacement could therefore suffer due to compromised 
frequency content.  
 

 
Figure A4.4. High-pass (HP) frequency filtering of saturated accelerometer signal to 
remove saturation-related voltage offsets for a winze blast at the Cannington Mine. 

 
An additional operational constraint of accelerometers is the sensitivity to electrical 
noise from cable disturbance and physical abuse of monitoring components. In the 
event that cables are struck by rocks falling from drive surfaces, false voltage spikes 
can be generated and recorded during blasting. In some cases, these peaks can be 
identified based on the design firing times within the blast or due to the non-
oscillatory shape (sharp single spike). Where cable disturbance occurs during the 
blasting event, no effective method exists to isolate the false peak outside of manual 
deletion from the waveform.  
 

A4.1.2 Accelerometers used in Published Vibration Monitoring Studies 

In past vibration monitoring studies using accelerometers, no standard unit or design 
has been applied. Due to the specialty application of accelerometers and near-field 
blast monitoring, a number of uni-axial, bi-axial and tri-axial configurations have 
been employed. In general, all of the systems outlined in the research include a 
method of transducer encasement, coupling and cabling within boreholes for 
installation close to blasting events. Figure A4.5 shows a number of accelerometer 
configurations used in near-field blast monitoring published in the literature. 
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Figure A4.5. Uni-axial accelerometer sondes used by Yang et al., 1993 (top left) and  
Bogdanoff, 1996 (top right) and tri-axial accelerometer sondes used by Holmberg 
and Persson, 1979 (bottom left) and Sprott and Kitzinger, 1988 (bottom right). 

 

A4.2 Transducer Types: Geophones 

Geophones have been used successfully for measurement of blast-induced vibration 
for almost 6 decades. Several characteristics of geophone transducers make them 
attractive for use in blast vibration monitoring, especially in the underground 
environment. These characteristics include robust construction, low sensitivity to 
exterior sources of electrical excitation and isolation from signal distortion from 
cable disturbance.  
 
The general, mechanical operation of a geophone consists of a magnet of given mass 
attached to a stiffened spring, moving relative to a wire-wound coil. As the magnet 
moves through the coil, a voltage is induced that is proportional to the velocity of 
motion. Figure A4.6 illustrates the interior components of a geophone transducer.  
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Figure A4.6. Internal design of I-O SENSOR SM-24 Geophone (Anon, 2006).  

 
In contrast to the complicated circuitry required for signal amplification and 
conditioning of accelerometer signals, geophones require only simple data 
acquisition circuits. The robust construction of the geophone element and the 
relatively large voltage output over the useful dynamic range enables the transducer 
to experience minimal sensitivity to extraneous voltages or cable-induced noise. For 
these reasons, geophones have been the preferred choice of transducer for blast 
vibration monitoring over many distances in open pit and underground applications.  
 
The internal structure that allows a geophone to be marginally insensitive to mining-
induced disturbances also limits its use in the near-field of blasting operations. In 
general, geophones provide limited dynamic amplitude and frequency response when 
compared with accelerometers. Typically, the limited frequency response constrains 
geophone use to intermediate-field and far-field vibration monitoring.  
 
The linear frequency response range of a majority of geophone elements is limited to 
moderate frequencies between 50 and 500 Hz in contrast to accelerometers of linear 
response from 0.5 Hz to 100 kHz. In the case of small charge weights or blasting in 
competent rock masses, near-field vibration frequencies can reach tens of thousands 
of Hertz. In large hole diameters using large charge weights, the frequency of 
vibration can approach or fall below the resonant frequency of the geophone, which 
is generally between 4 and 28Hz in most commercial models. Therefore, only a 
limited frequency range can be reliably represented by a geophone, as illustrated in 
the voltage-frequency response curve shown in Figure A4.7.   
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Figure A4.7. OYO Geospace 101LT 14Hz geophone standard voltage-frequency 
response curves (OYO Geospace, 1997). 

 
An individual geophone unit is typically uni-axial in operation. Two or three separate 
units are therefore required to construct a multi-axial sonde. In most cases, geophone 
sondes are larger than accelerometer sondes based on the mechanical motion 
required to generate the output voltage. Depending upon the dynamic range and the 
resonant frequency, geophone units can vary greatly in size. Figure A4.8 illustrates 
several tri-axial geophone sondes owned by WASM for use in underground blast 
monitoring designed for mounting to the surfaces of excavations.  
 

   
Figure A4.8. WASM-owned tri-axial geophone sondes on aluminium bases for 
underground monitoring on excavation surfaces. 

 

A4.3 Integration of Multiple Transducer Types 

Amongst the published blast vibration monitoring studies, an overwhelming majority 
of projects have employed geophones in near-field, intermediate-field and far-field 
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applications. Accelerometers have been utilised in a number of studies to more 
accurately measure the vibrations in the extreme near-field or near-field regions of 
tunnel blasting, quarry blasting, underground open stoping or test blasting (e.g. 
Holmberg and Persson, 1978; Sprott and Kitzinger, 1988; Yang et al., 1993; 
Bogdanoff, 1996), but monitoring systems utilising both accelerometers and 
geophones concurrently over a range of distances are rare in the published literature. 
In most applications where transducer types are combined, the main objective is to 
compare the individual transducer outputs to assess their suitability over a range of 
monitoring distances (Heilig, 2005) or to compare measured waves to predicted 
wave properties such as acceleration, velocity and strain (Nicholls and Hooker, 
1964).  
 
Mixture of transducer types in field applications can be complicated due to the 
differing electronic and powering requirements between geophones and 
accelerometers and the variations in signal output and response. Comparisons 
performed by Heilig (2005) showed large variations between the amplitude, 
frequency and number of recorded peak vibration traces recorded by an 
accelerometer and geophone in side-by-side monitoring. The variation between the 
two transducer output signals could be associated with the differences in amplitude 
and frequency ranges and responses. 
 
Due to the complications introduced in field application and post-processing of two 
different input types, mixing of transducers is generally avoided. Intelligent design of 
the data acquisition system and strict post-processing controls can allow a blast 
monitoring system to be produced that is capable of measuring large ranges in 
amplitudes and frequencies, but at a reduced cost due to the use of geophones in 
place of accelerometers at larger distances.  
 

A4.4 Selection of the Number of Components for Blast 

Monitoring 

The initial selection of transducer type and required response characteristics depend 
on the expected amplitudes and frequency spectra generated by the blast at the point 
of monitoring. The distance range over which monitoring will be implemented is 
therefore influenced by the data requirements and the use of the data once it is 
collected. The data collected during a blast monitoring program can be used for a 
number of different purposes including regulatory compliance, blast diagnostics, 
blast vibration attenuation investigation and blast damage investigations.  
 
The desired application of the collected data strongly influences the selection of the 
number of components used to measure the vibrations at a single monitoring point. 
The most common configurations of blast vibration monitoring transducers are uni-
axial, bi-axial and tri-axial. To fully characterise blasting vibrations as a vector 
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quantity, tri-axial measurements are required. Any monitoring program that measures 
blasting vibrations using uni-axial or bi-axial configurations would therefore fail to 
fully characterise the wave field. 
 

A4.4.1 Uni-axial Transducer Blast Vibration Monitoring 

The most basic use for vibration monitoring is investigation of blasting performance 
through blast diagnostics. This type of analysis uses the arrival of seismic waves 
generated by explosive charges to indicate the time of firing of each charge or to 
compare the relative amplitude contributions between multiple charges. This 
approach is useful to diagnose issues related to misfires, sympathetic detonation, 
blasthole timing and blast geometry. Over a series of firings, chronic misfires 
indicated within a common region within multiple blasts can reveal issues with hole 
interaction or insufficient burden or spacing. Identification of misfires can also aid in 
understanding blast performance issues and help to indicate the presence of 
undetonated explosive products in the muckpile or within the remaining drillholes. 
Figure A4.9 illustrates the presence of misfired holes within a multi-hole blast. 
 

 
Figure A4.9. Blast vibration monitoring indication of blasthole misfires, BHP 
Cannington stope 22gC6HL long-hole winze firing. 

 
A number of published studies investigating blast damage or wave attenuation in the 
near-field of blasting events have utilised uni-axial transducer configurations either 
coupled within a borehole (e.g. Yang et al., 1993; Rorke and Milev, 1999) or 
mounted to the surface of an excavation (Yu and Vongpaisal, 1996). In general, this 
configuration has been employed to measure the radial component of vibration when 
fully encapsulated in a borehole or the surface-normal component when mounted to 
the surface of an excavation. Uni-axial monitoring results should not be compared 
with full-field tri-axial vibration measurements.  
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There is typically no direct relationship between a uni-axial measurement and the 
full-field wave behaviour characterised by tri-axial measurements, but full-field 
correction factors have been suggested when uni-axial measurements have been 
performed (Yu and Vongpaisal, 1996). Andrieux and Heilig (1994) performed 
analysis of uni-axial versus tri-axial blast monitoring on the surface of an excavation, 
and identified a situation where uni-axial monitoring failed to accurately represent 
the blast. In analysis of the full-field vibration (tri-axial monitoring), the single 
component monitoring orientation failed to measure the event due to a lack of 
adequate particle motion along that axis of motion.     
 

A4.4.2  Bi-axial and Tri-axial Blast Monitoring 

The next step in blast monitoring complexity is the application of bi-axial 
monitoring. This configuration consists of two uni-axial elements mounted 
perpendicularly to one another. Bi-axial monitoring can be useful when only radial 
and either transverse or vertical components are of interest. Fully-encapsulated 
installations of bi-axial transducers are generally oriented such that the radial and 
vertical components are recorded. Through analysis of waveforms collected during 
the author’s blast vibration monitoring program, no correlation has been observed 
between the separate vibration components in complex near-field blast waves. For 
this reason, tri-axial monitoring is essential to fully represent the vibration waveform 
and investigate the true wave motion (Andrieux, 1996). 
 

A4.5 Consideration on Coupling of Transducers 

Transducer-to-ground coupling mechanisms are well researched in surface blast 
monitoring. Guidelines for mechanical or chemical coupling as well as response 
spectra for different coupling mechanisms in open pit monitoring have been 
established (e.g. Grogan, 1998; Brochu and Eltschlager, 1999; Adhikari et al., 2005). 
In underground blast monitoring, such studies and guidelines do not exist. This lack 
of information is evident in the large variety of coupling mechanisms used in 
published underground vibration measurement studies, leading to a large variation in 
data quality. 
 
Of the available transducer coupling mechanisms available for underground blast 
monitoring, the most commonly used are mechanical, chemical or a combination of 
mechanical/chemical coupling. Full encapsulation of transducers within a rock mass 
delivers the most accurate vibration monitoring results (Andrieux and Heilig, 1994) 
by removing coupling resonance effects. Only fully-encapsulated coupling has been 
reviewed and recommended for use in the blast monitoring program conducted as 
part of this thesis at the Kanowna Belle Gold Mine and the Cannington Mine.   
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A4.5.1  Matching of Coupling Acoustic Impedance 

One characteristic that should be considered for underground blast vibration 
monitoring is the difference in acoustic impedance between the rock mass and the 
coupled transducer. Acoustic impedance concerns can be addressed in many systems 
by the use of aluminium coupling components, due to the close acoustic properties of 
aluminium when compared with many competent rock types. Severe mismatches in 
impedance between the rock mass and the transducer mount can result in a loss of 
transmission through the coupling from wave reflection, refraction or diffraction at 
the material interface. 
 
For fully-encapsulated transducers, densification of the chemical or cement grout 
with tungsten (Brinkmann, 1990), aluminium (Yang et al., 1993), steel, slag or other 
materials can aid in matching the acoustic impedance with the rock mass and ensure 
more accurate monitoring results. Due to the expense and logistical problems 
associated with thickened or densified cement grout mixtures, most full-
encapsulation applications use either standard Portland cement or various quick-
setting, non-shrink cement formulations.  
 
In the blast vibration monitoring program conducted in this thesis, application of 
densified cement grout mixtures was not considered feasible due to the large amount 
of cement grout required (tonnes) and the methods of mixing and delivery of the 
cement grout to the instrumentation holes. Two different types of standard cement 
grout have been used in the blast monitoring program depending on the supplier at 
each sponsor site. The two types of cement grout used for transducer encapsulation 
were standard low-heat Portland cement with batch-mixed accelerant at Kanowna 
Belle Gold Mine and special low-heat non-shrink cement with added fly-ash at the 
Cannington Mine. These cement grouts were typically mixed at water to cement 
ratios of 0.4:1 to 0.45:1 to allow adequate flowability and full hydration and strength 
development. 
 

A4.6 Data Acquisition System Requirements 

Following the selection of the type and configuration of transducers that fulfil the 
amplitude and frequency response requirements for the desired monitoring 
applications, data acquisition equipment must be selected. The acquisition system 
must be capable of adequately recording the transducer output. The main parameters 
of a data acquisition system that influence the quality of the measured vibrations 
include gain and sensitivity control, signal resolution and sampling rate, data 
buffering, writing and storage capabilities (memory) and triggering mechanisms.  
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A4.6.1  Gain, Sensitivity, Resolution and Sampling Rate 

The voltage output of a transducer is captured by an acquisition system through 
periodic sampling of the electrical signal and digitising of the data using an analog-
digital converter (ADC). The sampling and resolution characteristics of the ADC 
define the number of data points captured per unit time and the assigned vibration 
level based on a specified input sensitivity. Gain settings and transducer response 
sensitivities control the maximum amplitude range over which values will be 
digitised and the associated output value based on the input voltage. Therefore, 
accuracy of the recorded vibration waveform is defined along the time axis by the 
sampling rate and the amplitude axis by the gain, sensitivity, and resolution. 
 
Gain settings amplify or attenuate the incoming signal voltage prior to digitisation 
(Andrieux and Heilig, 1994). The relationship between gain and resolution is 
discussed below. Modern blast collection systems typically include several gain 
settings, which amplify or attenuate the signal by factors of 2, 4 or 8. Specialty 
electronics can be designed to allow a greater range in gain controls with associated 
voltage-output sensitivities such that electronically-damped transducers can be 
utilised. 
 
Properly specifying the gain settings requires some prediction of the maximum 
expected amplitude from a blasting event. If the gain setting is many times greater 
than the actual input amplitude, the quality of the signal will be poor due to a wide 
interval resolution. Conversely, if gain settings are too low (expected maximum 
amplitude lower than that encountered), the waveform will be clipped at the defined 
maximum amplitude and the true peak amplitudes will be lost as illustrated in Figure 
A4.10. 
 

 
Figure A4.10. Waveform clipped at ±200m/s2 from inadequate system gain setting. 

 
Correct representation of amplitude is controlled by the system digitising resolution, 
which in general terms is related to the precision of the measurement and defined as 
the smallest unit which can be reliably detected (Northrop, 2005). Resolution is 
linked to the maximum amplitude gain setting, and is quantified by the number of 
encoding units over the specified maximum acquisition range. The number of 
encoding units (N) is defined by the relationship: 
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N = 2 bit         (A4. 1) 
 
Where   N = number of peak amplitude divisions over the maximum gain 
  bit = number of digitising bits of the ADC 
 
Once the number of discrete intervals has been defined, the resolution of the system, 
R, can be calculated based on N and the specified range in desired maximum 
amplitude by Equation A4.2. 
 

N
AR 2=

          (A4. 2) 
 
Where   A = maximum positive or negative peak amplitude 
  N = number of encoding intervals from Equation 4.2 
 
Modern blast vibration monitoring equipment typically incorporates 8 to 12-bit 
encoding, although a number of 14, 16 or 24-bit systems have become available for 
specialty applications. Higher bit processors have not been widely used in mining 
outside of geophysical applications due to the large amount of required data storage.  
 
Under conditions of highly variable or low amplitude vibrations, some waveforms 
may be poorly represented through a combination of a large gain setting and low bit 
resolution. Amplitudes between available resolution steps are typically rounded to 
either a lower or higher amplitude level, resulting in an amplitude error. Background 
sampling noise also becomes more problematic for lower amplitude pulses at high 
gain settings and low bit resolution as the expected background noise can be on the 
order of 1-2 resolution intervals. Sources of background noise in the monitoring 
system include that from passive resistors, active circuit elements, or induced 
transmission line noise (Northrop, 2005). Heavy waveform masking can result when 
low amplitude oscillations are digitised to levels equal to the background noise as 
illustrated in Figure A4.11. 
 

 
Figure A4.11. Masking of waveform due to high gain settings and coarse resolution. 
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The sampling rate of a data acquisition system refers to the number of discrete data 
points captured from the continuous analog voltage stream per unit time. For near-
field blast monitoring using high-frequency response transducers, the acquisition 
sampling rate may be considered one of the most critical system characteristics. 
Systemic under-sampling of the transducer output can lead to errors in both 
frequency content and vibration amplitude, which will influence the accuracy of the 
recorded waveform. The effects of sampling rate on the peak vibration amplitude, 
polarity of the peak vibration and the dominant vibration frequency of a moderately 
high-frequency waveform are illustrated in Figure A4.12. The original single-hole 
radial-component waveform was measured with an accelerometer, sampled at a rate 
of 16 kHz. The number of sampling points was then reduced at set periods in order to 
represent 8 kHz, 4 kHz, and 2 kHz sampling rates.   
 

  

  
Figure A4.12. Effect of sampling rate on representation of amplitude and dominant 
frequency of a high-frequency near-field acceleration waveform for sampling rates of 
16kHz (top left), 8kHz (top right), 4kHz (bottom left) and 2kHz (bottom right) for a 
common recording time of 10ms. 

 
Figure A4.12 clearly illustrates the influence of sampling rate on the recorded 
amplitude and frequency. Over-sampling conditions at 16 kHz allowed the dominant 
waveform frequency and amplitude to be well represented, based on the number of 
data points defining the waveform. Once the sampling rate was dropped by half to 8 
kHz, the absolute peak magnitude and frequency did not change significantly, but 
several effects of under-sampling were apparent. The observed effects of the reduced 
sampling rate on the waveform were:  
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• Minor peaks were underestimated (red arrows) 

• Peak occurrence changed polarity from the positive to negative 

• The time of the peak occurrence was shifted by approximately 1ms 

 
As the sampling rate was further reduced from 8 kHz to 4 kHz, more minor peaks 
were misrepresented (blue arrows) as well as a downshift in dominant frequency of 
12%. The peak amplitude and peak time remained the same as that for 8 kHz 
sampling. Once the sampling rate was reduced to 2 kHz, the resulting waveform was 
completely distorted in both frequency and amplitude. The peak amplitude changed 
back to positive polarity and the absolute value was reduced by 28% (down to 
788m/s2 against 1088m/s2). The peak frequency was also reduced by 85%.  
 

A4.6.1.1 Impacts of Under-Sampling 

In vibration analysis approaches that only account for the absolute value or vector 
sum of a single peak particle motion (acceleration, velocity or displacement), the 
effects of inadequate sampling rate may not be as dramatic for moderate amplitude 
and frequency waveforms. In contrast, blast analysis approaches that depend on 
accurate reproductions of wave frequency content or polarity of peak values can be 
significantly influenced by under-sampling effects. One example of this effect is that 
for a radial component vibration signal, where a change in polarity of the recorded 
peak can represent a change in rock mass loading mechanism from compression to 
tension. Therefore, the polarity of the peak becomes increasingly important due to 
the marked difference in compressive and tensile rock strengths. 
 
An often overlooked value when determining the required sampling rate is the 
Nyquist frequency. The Nyquist frequency is defined as one-half of the sampling 
rate, beyond which a system can no longer adequately represent the waveform 
frequency content (Northrop, 2005). Where waveform frequency components lie 
above the Nyquist value, the distribution of energy in the higher frequency spectra 
can no longer be determined and peak amplitudes may be dramatically under-
estimated. Figure A4.13 illustrates the effect of signal under-sampling of a high-
frequency vibration event captured from an accelerometer sampled at 8192Hz. The 
distribution of wave energy above the Nyquist frequency of 4096Hz was completely 
unknown and could have decayed rapidly or continued to increase with a rising 
energy-frequency trend.   

 



Appendix 4. Additional Details of Near-Field Blast Monitoring Programs  392 

 
Figure A4.13. Fast Fourier transform (FFT) frequency-power analysis of under-
sampled single-hole waveform with unknown energy distribution in frequencies 
higher than the Nyquist frequency.  

 
Under some circumstances, a significant amount of energy does not reside in 
frequencies over the response frequency limit of the transducer or the sampling 
capacity of the system. The higher frequency representation is therefore not critical 
for further numerical derivation or integration to obtain alternate particle motion 
waveforms (Andrieux and Heilig, 1994). Where high-frequency components are not 
adequately represented due to inadequate sampling rate or transducer response, 
further mathematical derivation of the other forms of particle motion (e.g. velocity 
from acceleration through integration) can introduce further errors.  
 

A4.6.2  Data Storage Characteristics 

Adequate data storage is needed to maximise the sampling rate, event duration and 
number of events capable of being recorded prior to downloading of the memory. 
Digital data files of long-duration blasts using multiple channels and high sampling 
rates can be of significant storage size. Standard compliance monitors are typically 
not capable of adequate sampling rates or data storage capacity for use in near-field 
blast monitoring applications. Data storage capacity is an additional consideration 
when the size and transportability of a blast monitoring unit is a controlling design 
consideration. In the underground environment, data acquisition systems for blast 
monitoring should be compact, robust, easily transportable and capable of 
monitoring multiple blasts prior to memory download. 
 

A4.6.3  Data Acquisition System Triggering Mechanisms  

During blast vibration monitoring, the mechanism of triggering of the data 
acquisition system can aid in limiting data storage requirements and interpretation of 
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the collected waveforms. Correlation of a single blasthole vibration trace to a specific 
firing time is of considerable concern in complex blasts to investigate peak 
amplitudes in relation to blasting parameters. Therefore, proper time-based triggering 
control with respect to the recorded waveform zero-reference time can be important 
in interpreting blasting waveforms. Three main triggering mechanisms are available 
in modern vibration monitoring systems; namely, electric triggering, physical wire-
break triggering or transducer threshold triggering.  
 
Of the three types of triggering mechanisms, electric or wire-break triggering 
requires a physical connection between the data acquisition system and the blast 
initiation system. In the case of electric triggering, the electric firing signal from the 
blast initiating point can be used as a trigger identification voltage. This voltage 
triggers the acquisition system. Electrical triggering requires a blast initiation system 
that uses a firing line or other electrical impulse.  
 
The other triggering system that requires physical connection between the acquisition 
system and the blast is a wire-break system. In such a system, an electric loop circuit 
attached to the acquisition system is physically connected to the blast initiation point. 
At the moment the wire is either severed or short-circuited by an initiation 
detonation, the acquisition system is triggered. For systems utilising detonating cord 
tie-ins and either electric or shock-tube blast initiation, the wire-break cable can be 
connected to the detonating cord near the point of initiation. For electronic blasting 
systems, the wire-break is connected to an extra initiator programmed to fire at zero 
delay or a specified delay prior to the first firing detonator in the blast.   
 
The third type of triggering is a first-arrival transducer threshold trigger. Threshold 
triggering activates the acquisition system at a specified transducer output voltage. 
Threshold triggering does not require physical connection to the firing line or the 
blast, but selection of an appropriate triggering threshold can be complicated. The 
triggering amplitude should be selected such that the background environmental or 
electrical noise is not sufficient to trigger the system. False triggers prior to a blasting 
event can result in expenditure of the available memory or early triggering during a 
blasting event. In operations where wireless communication blast initiation systems 
are employed, firing of blasts in the vicinity of the monitored blast can cause early 
triggering. Threshold triggering also suffers from any effect of first blasthole misfire 
or under-performance of the explosive charge. In the case that the first firing 
blasthole fails to initiate or produces vibration insufficient to trigger the system, the 
relative timeline for the subsequent waveform becomes shifted in time to the first 
arrival above the threshold (generally the second firing blasthole). Interpretation of 
the waveform therefore becomes complicated. Based on the influence that the wave 
travel time has on the event trigger, multiple data acquisition systems in various 
locations using event triggers can generally not be synchronised. 
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A4.7 Manufacturing of Tri-axial Blast Vibration Monitoring 

Transducers for the Thesis Blast Monitoring Program 

To maximise the accuracy of the data collected in the blast vibration monitoring 
program, tri-axial transducers were deemed necessary to characterise the near-field 
wave characteristics. Tri-axial transducer sondes contain three, orthogonal uni-axial 
elements. The basic uni-axial accelerometer and geophone elements used in 
construction of the tri-axial sondes employed in the thesis blast vibration monitoring 
program are illustrated in Figures A4.14.  
 

    
Figure A4.14. Uni-axial PCB 356A02 500g accelerometer component (left) (PCB, 
2004) and OYO 101LT 14 Hz uni-axial geophone component (right). 

 
To construct a tri-axial geophone sonde, three uni-axial elements were attached to an 
aluminium spine to orient each component in a right-handed orthogonal system 
(Figure A4.15). The elements were positioned such that the polarity of the direction 
of first motion would reflect the expected wave displacement direction. Damping 
resistors were added to the geophone elements and 50m of three-pair, shielded cable 
was connected to each component.  
 

 
Figure A4.15. Three uni-axial geophone elements on backing spine for tri-axial 
orthogonal sonde construction. 

 
Once the geophones or accelerometers were attached to the orientation spine and 
cabled, the spine was inserted into a piece of electrical conduit of desired diameter. 
Due to the dimension of a single geophone unit, the minimum conduit inner diameter 
was 46mm. Two different casing diameters were utilised in the manufacture of 
transducer sondes; 50mm outer diameter and 63mm outer diameter. The sondes were 
sealed within the conduit with a mixture of 2-component epoxy resin (Araldite). This 

1cm 

3cm
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encasement method was designed to seal the units from moisture and to ensure 
coupling of the transducers with the outer conduit shell (Figure A4.16). 
 

 
Figure A4.16. Epoxy resin encapsulation “potting” of geophone sondes in 50mm 
electrical conduit for installation into boreholes. 

 
Prior to encapsulation of the spine in the conduit with resin, the transducer 
orientation within the conduit was referenced on the outer shell using a series of 
marks. These marks would serve for control of the installed transducer component 
orientations. Completed accelerometer and geophone sondes are illustrated in Figure 
A4.17.    
 

    
Figure A4.17. PCB 500g tri-axial accelerometer sonde (left) and OYO101LT 14Hz 
tri-axial geophone sonde (right) in 63mm conduit for installation into boreholes. 
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A4.8 Thesis Blast Vibration Monitoring Data Acquisition 

System Specifications 

The strict sampling, memory and flexibility requirements for the blast monitoring 
project effectively removed commercially-available blast vibration monitoring 
systems from consideration. The systems available on the market at the time were 
deemed inadequate to deliver the desired data quality and system flexibility. The use 
of multiple transducer types and input sensitivities required a custom-designed 
system that would be capable of receiving non-standard input signals from both 
geophones and accelerometers concurrently in a compact and robust construction. 
The specifications of the desired blast monitoring system for use in the program were 
as follows: 

•  Multi-transducer input capability 

• Wire-break capability 

• Adjustable voltage gain for resolution control 

• Independent control of channel input sensitivities  

• Internal powering to accelerometers 

• Amplification of accelerometer channels 

• Bypass set-up for accelerometer/geophone ports 

• Minimal cross-channel interference 

• Easy to use transducer connections 

• Clear labelling of inputs to reduce operator error in connection  

• Water-tight, corrosion resistant robust construction 

• Tamper-proof enclosures 

 
As a result of the required characteristics, the data acquisition system selected for the 
near-field blast monitoring program consisted of a commercially-available data 
collection unit along with a custom-designed junction box. The data recording unit 
selected was the Instantel Minimate Plus 8-channel unit with upgraded 5MB 
memory. From the author’s past experience, the Instantel Minimate has been found 
to provide ease of use along with superior quality and resistance to damage.  
 
To fulfil the acquisition flexibility requirements, a specialised junction box was 
designed and purpose-built for each blast monitoring unit. The large number of 
channels required for adequate monitoring coverage required purchase of four data 
collection units. A single combined unit of a Minimate Plus 8-Channel unit and 
custom junction box is illustrated in Figure A4.18. 
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Figure A4.18. Blast Monitoring unit of Instantel Minimate Plus 8-Channel collection 
unit and custom-built junction box. 
 

A4.8.1  Instantel Minimate Plus 

The Instantel Minimate Plus 8-Channel vibration monitoring unit is a commercially-
available 12-bit stand-alone compliance monitor. Upgrade of the system memory and 
advanced user package allowed sampling rates up to 16,384Hz for 4 channels or 
8,192Hz simultaneously on all 8 channels. The small size, robust construction and 
supporting software were viewed as complementary for use in the blast monitoring 
program. There was a significant trade-off between unit size, resolution and sampling 
rate. Further technological advances in data processing and ADC construction since 
acquisition of the original systems have allowed sampling rates of up to 64 kHz on a 
similarly-sized unit. 
 

A4.8.2  Custom-Built Junction Box 

To achieve multiple transducer-type inputs and powering requirements, custom 
circuitry was designed within a junction box to be placed between the transducers 
and the Minimates. Within the junction box, attenuation circuits were added to allow 
the entire dynamic range of the accelerometers to be utilised based on the maximum 
acceptable voltage received by the Minimate units. Figure A4.19 shows the junction 
box exterior and the multiple available transducer inputs. 
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Figure A4.19. Custom-built junction box exterior, showing the flexible transducer 
inputs and Minimate interface. 

 
To ensure the data acquisition system was highly visible, sealed against the mining 
environment and adequately protected from rock fall or impact, each system of a 
combined Minimate and junction box was fitted into a padded case.  
 

A4.8.3  Protection of Data Acquisition Systems Underground 

As a basic design specification, the relatively lightweight units could be easily 
secured to weld-mesh, eye-bolts, or any fastener installed in the wall using wire, zip 
ties, utility hooks or any type of strap or cable (Figure A4.20). To secure against 
airblast-related damage risks, the cases could also be strapped to mesh using rope or 
bungee cord lacing across the body or weighted down on the floor of the drive. The 
water and mud resistant nature of the case allowed placement on the drive floors 
where no wall fixture was available for hanging. Under these conditions, visibility of 
the box was limited, and the boxes became more susceptible to rock fall damage, 
burying by spalling pillars or interaction with underground equipment. 
 

 
Figure A4.20. Blast monitoring equipment attached to weld-mesh using utility hooks 
at the BHP Cannington Mine. 
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During field applications where hanging was not possible, acquisition systems were 
placed on the drive floor near the monitored stope. After initial equipment damage 
was experienced due to rock fall, any unit on the drive floor was covered by bags of 
crushed-stone stemming. Prior to this, several blasting events caused damage to the 
boxes and cabling by spalling of pillars near the blast (Figure A4.21).   
 

 
Figure A4.21. Data acquisition system buried by pillar spall on the 220mLv level at 
BHP Cannington Mine. 

 

A4.9 Installation of Near-Field Vibration Transducers in the 

Underground Environment 

Installation of fully-encapsulated vibration transducers in the underground 
environment requires a high degree of operational support. The transducer hole must 
be added to drill designs by an engineer, mark-out by mine surveyors and drilled at 
the expense of production drilling. In addition, transducer installation requires 
underground utility crews and materials to grout the holes. Figure A4.22 shows two 
types of cement grout delivery systems used at the sponsors’ sites. Both systems 
required additional mine personnel for operation of equipment and assistance with 
cement grout delivery, mixing and pumping.  
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Figure A4.22. I.T. mounted grouting basket used at the Kanowna Belle Gold Mine 
(left) and portable piston pump and mixing bowl used in sensor installation at the 
Cannington Mine (right).   

 

A4.9.1  Installation Challenges Related to Water 

In instrumentation holes that are sub-vertical (downholes), water conditions in the 
rock mass can complicate transducer installation. Wet holes should be dewatered 
prior to sensor installation to ensure the cement grout curing process is not 
compromised. In sensor holes intersecting water-bearing structures or where the 
collar of the hole is located in a saturated area of the mine, installation is further 
complicated. Dewatering of drillholes in underground mines is usually accomplished 
using high-pressure air and a long pipe or hose. This practice is effective to a 
moderate depth (10-20m) in medium diameter drillholes (76-102mm), but presents 
many safety concerns from rapid ejection of water and drill chips. Complete 
dewatering of a borehole is typically not possible using compressed air in wet 
conditions. Therefore, at the pre-drilling design stage, residual water should be 
accounted for by overdesigning the hole length such that the transducer location is 
not located in standing water.  
 
In the toe area of an instrumentation hole, incomplete grout setting can occur due to 
excessive water or drill cuttings. This issue can also be present at the top of a grout 
column in a downhole or at the toe of an uphole, where up to 10% of the column 
length can be affected by in-grout water migration (Hutchinson and Diederichs, 
1996). In the thesis blast monitoring program, a minimum cement grout 
encapsulation length of 5m was adopted to ensure proper coupling and to reduce the 
effects of water migration or grout variability. 
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A5.1 Additional Information on the Holmberg-Persson Model 

The maximum vibration amplitude in the Holmberg-Persson model is assumed to be 
highly dependent on the distance from the closest elemental charge in the column to 
the transducer (R0) and the elemental explosive weight (dx × l). The original 
geometry identified by Holmberg and Persson (1979) is illustrated in Figure A5.1.  
 

 
Figure A5.1. Geometry in the original Holmberg-Persson model, showing the unit 
element dx, the minimum and elemental distances R0 and Ri and the monitoring point 
“A” (Holmberg and Persson, 1979). 

 
Based on the geometry presented in Figure A5.1, the distance (Ri) from an elemental 
charge to a point of interest (A) could be calculated through simple geometry using 
Equation A5.1 (Holmberg and Persson, 1979). 
 

( )2
0

2
0 tan ii xRRR −+= θ                   (A5.1) 

 
Where   R0 = normal distance between a charge element and point A (m) 
  � = elevation angle from charge toe to point A (º) 
  xi = distance from charge toe to elemental charge (m) 
 
The integration of the elemental charge dx over the entire charge length therefore 
yielded the general integral form of the Holmberg-Persson equation to predict PPV 
(v) in Equation A5.2. 
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Where   l = linear charge concentration (kg/m) 
  H = charge length (m) 

k, �, 
 = regression constants (k = 700, � = 0.7, 
 = 1.5 suggested) 
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The regression constants k and � in Equation A5.2 can be defined by performing a 
linear regression of PPV versus the Holmberg Term (a), where a is defined by 
Equation A5.3. 
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And  
 = 2� 
 
Such that 
 

( )αakPPV =          (A5.4) 
 
Using the recommended values for k, � and 
, Holmberg and Persson (1979) 
calculated the expected maximum particle velocities for various charge 
concentrations typical of open pits and tunnel blasting. The proposed PPV-based 
damage criteria observed in Swedish tunnel blasting were also included in the graph 
to estimate damage envelopes around the proposed explosive charges (Figure A5.2). 
 

 
Figure A5.2. Predicted PPV at different distances from the charge axis for small 
(left) and large linear charge concentrations (right) as a result of Holmberg-Persson 
near-field vibration modelling (Holmberg and Persson, 1979). 

 

A5.1.1  Corrections for Explosive Type 

Observed variations in measured vibrations based on different explosive types were 
addressed in the Holmberg-Persson model through the suggestion of normalising the 
strength of each explosive to the strength of standard ANFO. The equivalent charge 
of explosives such as water gels and emulsions relative to ANFO (sANFO) can be 
calculated by Equation A5.5 (Holmberg and Persson, 1979). 
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Where  Vg = released gas volume of the explosive at STP (m3/kg) 
  Q = heat of explosion of the blasting agent product (MJ/kg) 
 
For modern explosive products, ideal detonation modeling or physical testing 
generally provides either an energy output value or ANFO-relative weight strength 
(RWSANFO). Where RWSANFO is not provided for a given explosive product, an 
alternate calculation can be used that compares the weight-energy release of the 
explosive in question with that of ANFO. The RWSANFO can then be calculated using 
Equation A5.6. 
 

100exp ×=
ANFO

ANFO Energy
Energy

RWS
                (A5.6) 

 
Where  Energyexp  = Ideal output of energy from explosive (MJ/kg) 
  EnergyANFO  = Ideal output of energy from ANFO (MJ/kg) 
 
The equivalent weight of ANFO (EWANFO) for a different explosive formulation can 
be calculated based on the relationship between the linear charge concentration and a 
charge of equal diameter of ANFO (Equation A5.7) 
 

ANFO
ANFO RWS

W
EW exp100×

=
         (A5. 7) 

 
Where   Wexp = weight of new explosive (kg) 
 
For the range of explosive types and blasthole diameters experienced in the blast 
vibration monitoring program conducted as part of this thesis, the ANFO-relative 
weight strengths and equivalent linear charge concentrations are listed in Table A5.1. 
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Table A5.1. ANFO-equivalent properties of various explosive products used at 
KBGM and the Cannington Mine. 

Explosive Type Density 
(g/cc) 

Linear Charge 
Weight (kg/m) 

RWSANFO EWANFO 
(kg/m) 

Hole diameter(mm)  102 89  102 89 

ANFO 0.85 6.95 5.29 100 6.95 5.29 

SANFOLD 70 0.75 6.13 4.67 98 6.25 4.76 

SANFOLD 50 0.55 4.49 3.42 95 4.73 3.60 

General EP Emulsion 1.0 8.17 6.22 88 9.28 7.07 

Low-density Emulsion 0.8 6.54 4.98 75 8.72 6.64 

High-density Emulsion 1.2 9.81 7.47 101 9.71 7.40 

  
To investigate the effect of normalizing the charge weights of different explosive 
types to an equivalent charge of ANFO on vibration prediction equations, a series of 
firings were studied. The monitored blasts were charged with a combination of 
general purpose and low density emulsions with densities of 1.0 g/cc and 0.8 g/cc in 
89mm holes. The recorded PPV data was plotted against the Holmberg term (a) on 
log-log scale and then linear regression was performed. The results of the linear 
regression obtained for comparison were constants k and � and the linear regression 
coefficient of determination (R2). To assess the effect of charge normalization in 
relation to model accuracy for vibration prediction, comparison was performed for 
the regression results of non-normalized and normalized models. The results of the 
comparison are listed in Table A5.2. 
 

Table A5.2. Comparative linear regression statistics for ANFO normalized and non-
normalized linear charge concentrations. 

Data Set k � R2 Std Error F-value 

Non-normalized 38.32 0.57 0.41 0.38 156.4 

Normalized (EWANFO) 35.66 0.56 0.40 0.39 148.1 

 
The results in Table A5.2 do not show a significant change in model accuracy (R2 
correlation), but a decrease in k of approximately 7% is observed compared with the 
non-normalized linear charge concentration. The slope of the regression line also 
changes slightly along with the standard error and distribution (F-value) of the data 
set. Due to the reduced k, normalization of the linear charge concentration to an 
equivalent ANFO weight strength would result in a slightly lower value of PPV 
being predicted for a given charge geometry. The differences between the PPV 
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prediction models for ANFO equivalent and actual charge concentrations in the 
examined data sets have not been viewed as significant based on the comparative 
statistics. For this reason, all Holmberg-Persson predictive models applied to the 
sponsors’ site data have used the actual linear charge concentration without 
normalization to ANFO equivalent charges. 
 

A5.2 Additional Information on Comparisons between PPV 

Prediction Models 

Chapter 5 included a comparison between different charge weight scaling models for 
prediction of PPV and briefly discussed two additional models based on fundamental 
wave properties. A number of explosive and rock mass input parameters were 
required for the Lu-Hustrulid (2003) and Sambuelli (2009) models, which were not 
required for other charge weight scaling relationships. The input variables as applied 
in the analyses are listed in Table A5.3. 
  

Table A5.3. Input parameters for the Lu-Hustrulid (2003) and Sambuelli (2009) 
models used to compare with other charge weight scaling approaches. 

Model Input Value 

Lu-Hustrulid a 0.0445 m 

 R variable 

 �e 1000 kg/m3 (EP Emulsion 1.0g/cc) 

 D 5300 m/s (Adamson and Lund, 2001) 

 �c 3510 kg/m3 (Li, 2009) 

 Cp 5070 m/s (measured) 

 � 2.981 (Cunningham, 2006) 

Sambuelli Q Variable 

 r Variable 

 � 2,024,000 J/kg (Orica, 2008) 

 rh 0.089 m 

 f Variable 

 � 3510 kg/m3 (Li, 2009) 

 c 2757 (calculated from Cp) 
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A5.2.1  Comparison of Predicted PPV Values with Measured Values 

The measured PPV values for the analysed data set have been plotted against the 
predicted values of PPV for the five prediction models with the highest correlation 
values (Table 5.3). The results are shown in Figures A5.3 to A5.7.  
 

 

Figure A5.3. Measured PPV vs. predicted PPV using the square root Scaled Distance 
charge weight scaling model. 
 
 

 

Figure A5.4. Measured PPV vs. predicted PPV using the cube root Scaled Distance 
charge weight scaling model. 
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Figure A5.5. Measured PPV vs. predicted PPV using SDOuchterlony  scaling model. 
 

 

Figure A5.6. Measured PPV vs. predicted PPV using the H-P scaling model. 
 

 

Figure A5.7. Measured PPV vs. predicted PPV using the Sambuelli model. 
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A5.3 Additional Analyses of Peak Amplitude Data versus 

Charge Confinement 

The analyses performed in Chapter 5 for the influence of confinement on the 
measured peak amplitudes of blasting vibrations have been expanded. The additional 
information investigates the influence of simulated breakout angle, broken volume 
and broken powder factor on the measured peak amplitudes for the rise firing in 
stope 24jC6HL at the Cannington Mine. To isolate the data from shadowing effects 
introduced by the forming rise void at the two monitoring locations (North and 
South), only the intact travel path data have been plotted. Figures A5.8 to A5.10 
show the plots of measured VSPPA versus the simulated breakout angle, broken 
volume per charge and charge powder factor (calculated from each broken volume). 
 

 
 

Figure A5.8. Measured VSPPA versus simulated breakout angle (Figure 5.8) for 
confined rise charges in Cannington stope 24jC6HL.  
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Figure A5.9. Measured VSPPA versus simulated broken volume for confined rise 
charges in Cannington stope 24jC6HL. 

 

 
Figure A5.10. Measured VSPPA versus simulated broken powder factor for confined 
rise charges in Cannington stope 24jC6HL.  

 
Figures A5.8 to A5.10 do not identify any particular relationship between the 
measured peak amplitude and the breakout angle, broken volume or broken powder 
factor. This further supports the author’s proposal that the peak amplitude is more 
significantly influenced by factors other than the confinement under realistic blasting 
conditions.  
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A6.1 Numerical Simulation of Wave Propagation and 

Attenuation around a Stope Void 

To aid in understanding the physical effect of stope voids on the wave-field 
generated by a detonating explosive, two-dimensional numerical wave propagation 
simulation has been performed using Wave2000 Plus®. The characteristics and 
required inputs of the program have been described previously in Chapter 3. To 
confine the simulation to a two-dimensional geometry such that the results could be 
interpreted and compared with a field-monitored three-dimensional geometry, a 
number of model assumptions were made. These assumptions included: 

• The simulation geometry represented a horizontal plane through a vertically-
oriented columnar stope  

• The source and receivers were located on the same elevation (in the 
horizontal plane) near the mid-span of the stope void 

• The explosive source at a single point along the charge axis could be 
represented by a short, linear source 

• The explosive source was seismic only, without an associated gas expansion 
phase 

 
The main aim of the void-related series of propagation models was to simulate the 
effect of wave diffraction on the recorded waveforms at equal distances around a 
stope void. The model represented blast monitoring locations (receivers) along the 
Intact, Parallel Void and Normal Void geometries (Figure A6.1). 
 

 
Figure A6.1. Plan view of the two-dimensional simulation plane containing the stope 
void footprint, source and transducer locations used in the void-affected wave 
propagation simulation. 
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The first in a series of simulations investigating wave propagation around an existing 
stope void was dedicated to modelling the effect of a 20m x 20m void footprint 
(Figure A6.1) on the wave-field generated by a single blasthole near the void 
boundary. These stope footprint dimensions were selected for the simulation based 
on the average size of the stopes monitored at the Kanowna Belle Gold Mine and 
Cannington Mine. The intact rock properties used in the simulation are listed in 
Table A6.1. These material properties are typical of a competent, unjointed massive 
rock type such as a granite or quartzite experienced in some underground mining 
environments. 
 

Table A6.1. Mechanical properties of the rock mass simulated in Figure A6.1. 

Material Property Value
Rock Density 2700kg/m3 

Material Stiffness (�) 61GPa
Material Shear Stiffness (�) 25GPa

 
In the material model, the extracted stope was simulated by an air-filled void. The 
boundary between the void and the intact material was a fully-reflecting interface. To 
simulate the infinite model case, a fully absorbing boundary was applied to the 
outside of the model such that significant wave reflections were not experienced. The 
source parameters chosen for the model were exponentially-decaying sine waves of 
single period, applied along both the normal and shear directions.  
 

A6.1.1  Wave Propagation Modelling Results 

As observed in Figure A6.1, a series of receivers were placed at equal-distance 
locations away from the source along three orientations around the void. This 
configuration was used to remove the distance-related attenuation variability from 
the model such that only the effects of the stope void on amplitude and wave shape 
could be assessed. The receiver configuration within the model was similar to that 
utilised in the blast vibration monitoring program conducted by the author. Views of 
the model at various run times are displayed in Figure A6.2. 
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Figure A6.2. Plan view of seismic receivers located equidistant from a source near a 
simulated stope void and the generated wave-field early in the simulation (top left), 
mid-simulation (top right) and near the end of the simulation (bottom). 

 
The simulated velocity waveforms recorded at each receiver location consisted of 
both in-plane longitudinal and in-plane shear components. These resulting vector 
sum particle velocity waveforms were analysed to determine the distance-related 
amplitudes and energy losses due to interaction with the stope void. Within the 
simulated waveforms, there were large variations in magnitude, shape and arrival 
time when compared between each receiver location. Figure A6.3 shows the 
simulated vector sum particle velocity waveforms for the Intact (Receiver 1), Parallel 
Void (Receiver 2) and Normal Void (Receiver 3) cases.  
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Figure A6.3. VSPPV waveforms for Receiver 1 (top), Receiver 2 (middle) and 
Receiver 3 (bottom) for equivalent distances around the stope void.  

 
The VSPPVs contained within the void-affected waveforms (Receivers 2 and 3) 
appeared later in the waveform at a higher value of tp (peak time). This delay in peak 
time signified the influence of either void-induced shear wave separation or time-
delayed arrival of diffracted P- or S-waves. The VSPPV values for the parallel void 
(Receiver 2) and normal void (Receiver 3) were reduced by factors of 5.5 and 22 
times respectively, compared with the non-void wave-path (Receiver 1). 

 

A6.1.2  Comparison of Simulated Amplitudes 

To more accurately compare the simulated amplitude results for the three receiver 
locations, source and distance-related attenuation equations for each monitoring 
orientation were determined.  To establish the attenuation equations, both the slope 
and an intercept value were required following the general form: 
 
Amplitude = K(D)�        (A6. 1) 
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Due to the single transducer configuration used in each geometry in the void-affected 
simulation, K or � values could not be determined from the analysis of the simulated 
waveforms. Therefore, a baseline attenuation model was required to aid in 
determining K and � for each orientation. An undisturbed distance-related 
attenuation relationship was previously established from a control model performed 
without the presence of a void. This baseline attenuation relationship was observed in 
Chapter 3 in the unjointed model from the analyses of the effects of discontinuities 
on the attenuation rates of P-waves. The baseline material attenuation slope from the 
undisturbed elastic propagation model was -0.66. This slope and the simulated peak 
amplitudes recorded at each receiver location were then used to back-calculate the K 
values for each individual attenuation equation.  
 
The process of determining the individual attenuation equations required the 
assumption that the rate of attenuation with respect to distance would not change 
from the presence of the void as the simulated material did not change. The effect of 
the void on the amplitude would be reflected by the K intercept due to the initial loss 
of amplitude under interaction with the void. The K value of each attenuation curve 
was calculated such that the basic material attenuation curve of slope -0.66 would 
pass through each peak amplitude point at the appropriate VICD as specified in the 
model. The resulting receiver-specific attenuation curves are pictured in Figure A6.4. 
 

 
Figure A6.4. Proposed attenuation curves for the void-affected geometries with 
constant attenuation rates and variable intercepts as specified by modelling results.  
 

A6.1.3  Validation of the Model with Field Results 

To investigate the validity of the wave propagation simulation and the attenuation 
results shown in Figure A6.4, a sample field-collected data set was analysed having a 
receiver configuration similar to the model. The analysis was intended to compare 
actual measured wave attenuation behaviours for each orientation classification 
(Intact, Parallel Void and Normal Void) around an existing stope void. To represent 
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the intended geometry, the data analysed represented two blasts monitored in BHP 
Cannington stope 22gC6HL. The two blasts were fired on either side of the existing 
stope void. Figure A6.5 illustrates the monitoring geometry and the locations of the 
blasts with respect to the existing stope void. 
 

 
Figure A6.5. Plan view of transducer locations and blast locations in Stope 22gC6HL 
at BHP Cannington Mine used to compare the void-affected attenuation behaviours. 

 
Due to the complex wave shapes experienced in diffraction-affected wave 
propagation, peak particle amplitude was deemed as inadequate to characterise the 
wave attenuation accurately. Cube root Scaled Distance scaling of EDW-tot was used 
in place of PPV. The best-fit attenuation curves for the three different monitoring 
geometries over similar Scaled Distance ranges are illustrated in Figure A6.6 and the 
regression constants are listed in Table A6.2. The actual data points have not been 
displayed due to excessive data scatter within the measured results. 
 

 
Figure A6.6. Comparison of best-fit regression curves of SDCubRT versus EDW-tot for 
data collected for different geometric classifications with respect to the stope void. 
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Table A6.2. Regression results for the three best-fit curves in Figure A6.6. 

Classification K � R2 
Intact 1.26 x 105 -3.35 0.27 

Parallel Void 2.75 x 104 -2.71 0.17 
Normal Void 1.25 x 104 -2.81 0.14 

 
Extremely poor Scaled Distance model correlations were obtained for the parallel 
void and normal void data sets regardless of the scaling factor and wave quantity. 
The R2 correlation value for the Intact geometry was higher than that for the void-
affected geometries, although it was still poor. As illustrated in Table A6.2, further 
decreases in model correlations were observed as the number of diffraction points 
increased. Further investigation would be required to substantiate the models in 
Figure A6.6 due to the differences in attenuation slopes (�) between the data sets 
collected for the two separate firings. The similar attenuation slopes for the Parallel 
Void and Normal Void data sets for firing #8 partially validate the results of the 
simulations.  
 

A6.1.4  General Observations from Comparison of Field Data with 

Modelling Results 

Although poor correlation values were observed within the data sets, some 
characteristic relationships have been noted through the analysis. Comparison of the 
field-data attenuation relationships with the wave propagation modelling results over 
a normalised range of distances and charge weights (6.0 < SDCubRT <10.0) produced 
similar results. In the case of the field-collected vibration data, the reduction in 
vibration energy for the parallel void direction as represented by the K value was 
approximately 30% compared with the Intact direction for a similar Scaled Distance 
range. The measurements taken in the Normal Void direction were 70% lower due to 
interaction with the stope void at similar distances. Therefore, the field-observed 
behaviour was not as severe as the modelled results, where the EDW-tot calculated 
from the simulated waveforms was 94% lower for the Parallel Void case and 99% 
lower for the Normal Void case through comparison of intercept values. The 
differences in the results may be attributed to the loss of three-dimensional effects in 
the two-dimensional simulation due to: 

• Lack of a vertically-oriented shear wave 

• Differences in attenuation rates based on the linear source configuration 

• Loss of realistic large explosive energies and frequency ranges in the real 
blasting cases which are more resistant to attenuation  

• Inability to capture wide variability within near-field blast wave results 
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A7.1 Wave Frequency Content 

Chapters 2 and 3 stressed the importance of frequency content on the transmission 
characteristics of waves and the likelihood of damage to rock and existing 
discontinuities. At the current time, no rock mass blast damage criterion explicitly 
includes the effect of wave frequency on suspected damage. As previously discussed, 
large ranges in frequency spectra exist within a blast-generated wave-field. This 
complicates the determination of a discrete frequency value to characterise a 
complex blast-induced wave.  
 

A7.1.1   Methods of Determining Wave Frequency Content 

In blast vibration analyses, several methods are used to define the dominant 
frequencies present within a recorded waveform. One highly-utilised method of 
frequency calculation assumes simple sine wave behaviour of blasting vibrations. 
Using the sine wave approximation, the relationship between oscillation period and 
frequency can be used to calculate the frequency within the entire waveform or 
around the peak. This approach is commonly referred to as a “zero-crossing” method 
of frequency estimation. Other methods of determining the peak and dominant 
frequencies within a blast wave are through Fast Fourier Transform or amplitude-
frequency analysis. 
 
Calculation of zero-crossing frequencies of a blasting wave only requires 
identification of points in time where the signal crosses the zero amplitude axis 
(change in polarity). This type of analysis can be applied quickly through simple 
matching and amplitude analysis functions. The zero-crossing points for an example 
wave are shown in Figure A7.1.  
 

 
Figure A7.1. Illustration of zero-crossing points for a single hole radial waveform. 
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Once the zero-crossing times have been determined, the time lapse between zero-
crossing points can be calculated and the difference between two adjacent points can 
be used to calculate the frequency based on the half period-frequency relationship. In 
practice, the zero-crossing frequency calculation is generally applied to a time 
window containing the peak amplitude and therefore the “peak” frequency is 
estimated. This frequency at the peak amplitude should not be confused with the 
dominant frequency of the entire waveform, which can either be higher or lower than 
the peak frequency. A histogram of the frequencies calculated from the waveform in 
Figure A7.1 is illustrated in Figure A7.2. 
 

 
Figure A7.2. Histogram of frequency distribution showing the peak frequency and 
dominant frequencies as calculated with the zero-crossing method. 
 

Although zero-crossing frequency calculations generally fail to treat a waveform as a 
complex arrangement of various frequencies, it has been used for many years as a 
standard calculation method for peak and dominant frequencies. Disadvantages of 
the zero-crossing calculation method have been discussed by past researchers (e.g. 
Blair, 2004).  
 
Three different zero-crossing techniques for calculating either the peak or average 
wave frequencies are illustrated in Figures A7.3 to A7.5 for an example recorded 
waveform. The average frequency is the simple sine wave frequency over the entire 
duration. Each method utilises the zero crossing times and sine wave relationships 
between period and frequency. The approaches are referred to as the total duration 
average frequency (Figure A7.3), the single period peak frequency (Figure A7.4) and 
the half period peak frequency (Figure A7.5).   
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Figure A7.3. Calculation of average frequency from the total wave duration and 
number of oscillation periods for an example waveform. 

 

 
Figure A7.4. Calculation of the peak frequency using the single peak period zero 
crossing method. 

 

 
Figure A7.5. Calculation of peak frequency using the half peak period zero crossing 
method. 
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The three different zero-crossing frequency approximation methods reported 
frequency values ranging from 285 Hz peak frequency (Figure A7.4) up to 450 Hz 
average frequency (Figure A7.3) for the same waveform, highlighting some of the 
variability with the zero-crossing methods. 
 
To fully represent the frequency spectrum contained within a blasting waveform, 
Fast Fourier Transform (FFT) analysis can be utilised to display the power-frequency 
relationship. This method indicates the frequency spectral distribution by applying a 
Discrete Fourier Transform (DFT) over a waveform of finite time (Northrop, 2005). 
Descriptions of the mathematical processes used in FFT analysis are well-
documented elsewhere and therefore will not be discussed here. Many published 
research works recommend the use of FFT analysis for determination of blasting 
frequency spectra (e.g. Crenwelge, 1991; Fourney, et al., 1996; Rholl, 1996; Siskind, 
1996). Comparisons of the FFT frequency-power spectra for the waveform depicted 
in Figures A7.3 to A7.5 with the peak and average frequencies calculated using zero-
crossing methods are illustrated in Figure A7.6. 
  

 
Figure A7.6. FFT analysis of a blast wave compared with the results of zero-crossing 
frequency calculation techniques for the same waveform. 

 
By comparing the frequency spectrum in the FFT analysis to the peak and average 
frequencies calculated using zero-crossing methods (red, blue and green lines) the 
disadvantages of the zero-crossing approaches can be observed. In all three zero-
crossing approaches, a single frequency has been identified under assumption of sine 
wave behaviour. The FFT analysis performed over the entire 20ms duration has 
identified four frequency bands over which appreciable energy content was 
contained. The zero-crossing and average period methods failed to identify the 
frequency components at 128Hz, 576Hz and 864Hz. All three zero-crossing 
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techniques estimated within ±30% the dominant frequency band displayed in the 
FFT analysis at 352Hz. 
 

A7.2 Additional Frequency-Related Data Analyses: Peak 

Amplitude-Frequency Analysis 

The relationship between peak particle velocity and peak particle acceleration is 
strongly influenced by the frequency content of the blast wave measured at a point 
within the rock mass. Highly competent, confined rock masses with a high effective 
stiffness will typically support higher frequencies than a rock mass of lower stiffness 
due to fracturing, weak discontinuity infill or poorly cemented particles. The 
frequency content of a seismic wave, and more importantly a blast wave, can 
therefore be used to indicate the relative stiffness of the rock mass in which the 
waves are monitored (as observed by Summerfield, 1955 and Blair, 2004).  
 
The direct comparison of PPV with PPA as an indicator of blast wave frequency can 
be a valuable tool to indicate states of increased fracturing, rock mass anisotropy or 
general rock quality. The slope and intercept of the relationship between measured 
PPA and mathematically-derived PPV become important characteristics when 
describing a rock mass through which blasting vibrations are travelling. Blair (2004) 
illustrated the differences between rock mass properties and blast configurations 
based on inferred frequency content for a series of measurements under a number of 
various rock mass conditions (Figure A7.7).  
 

 
Figure A7.7. Comparison of vector sum PPV and vector sum PPA for a range of 
blasting applications to indicate the frequency-supporting characteristics of the rock 
mass or source frequency properties (Blair, 2004). 
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The peak amplitude-frequency approach illustrated in Figure A7.7 has been 
implemented in the KBGM and Cannington Mine case studies (Chapters 7 and 8) to 
investigate the influence of orientation effects and rock mass conditions on the 
inferred blast vibration frequencies at the measured peak amplitude. The 
relationships between the measured peak vector sum accelerations (VSPPA) and the 
peak vector sum particle velocities derived through integration (IntVSPPV) for 
multiple blastholes is shown in Figure A7.8 for Cannington Mine Stope 52h04HL 
footwall data.  
 

 
Figure A7.8. Log-Log scale plot of derived VSPPV versus measured VSPPA data 
collected for BHP Cannington Stope 52h04HL along the footwall orientation. 

 
The relationship between VSPPA and VSPPV derived through integration in Figure 
A7.8 indicates that the frequency-supporting characteristics of the rock mass are 
consistent over a range in charge weights and distances. The high coefficient of 
determination for the linear regression (R2=0.97) signifies a strong statistical 
relationship between the two variables over the monitored range. 
 
To investigate directional anisotropies related to varying geologies or rock mass 
conditions, or changes in the rock mass quality over time, multiple transducer data 
can be plotted together on a PPV-PPA graph. Through comparison of multiple data 
sets, the slopes and intercepts of the regression lines can be used to indicate changes 
in, or variations of, the frequency-supporting rock mass characteristics (bulk 
indicated stiffness). Figure A7.9 shows the comparison of data obtained from two 
transducers oriented at 90 degree angles to one another installed in two adjacent 
stope walls in Cannington stope 52h04HL. 
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Figure A7.9. Comparison of best-fit linear regressions of VSPPV versus VSPPA for 
BHP Cannington Stope 52h04HL footwall (black line) and southeast wall (grey line) 
for the same blasts. 

 
Figure A7.9 clearly indicates a difference between the best-fit curves for the two data 
sets collected in adjacent stope walls. The changes in both the intercept value and the 
slope indicate a possible difference in the frequency-supporting rock mass 
characteristics or inferred rock mass stiffness (bulk modulus). The regression line for 
the Southeast wall data (grey line) would predict a higher PPA for an assumed PPV, 
thus indicating a higher effective rock mass stiffness along the Southeast wall 
orientation. The curve for the footwall data (black line) indicates a lower stiffness 
due to a lower implied frequency-supporting condition (lower PPA for the same 
PPV). Comparison of 95% confidence regression results for the two data sets 
confirms that the footwall and southeast wall represented different populations in this 
case. The 95% confidence intercept value for the footwall data set was 0.65 and the 
southeast wall was 0.43 with nearly identical slopes as indicated by the best-fit 
equations.  
 
Peak amplitude-frequency analysis is yet another tool that can be applied to rock 
mass assessment, and provides valuable insight into the degree of fracturing or 
implied rock mass competence. This tool can easily be incorporated with other 
geotechnical assessment tools such as discontinuity mapping, wave travel-time 
tomography or stress modelling to characterise a rock mass containing an excavation. 
Peak amplitude-frequency analysis will be utilised extensively in Chapters 7 and 8 to 
characterise the rock masses containing the study stopes at the project sponsor sites. 
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A8.1 Methods of Indicating Rock Mass Damage from Blasting 

A number of factors influence the impact of blast-induced damage on rock mass 
performance. These include:  

• The scale and severity of damage 

• Expected or possible damage mechanism 

• Mechanical properties of the rock mass 

• Dimensions of the excavation 

• Existing damage from induced stress effects or prior mining activities 

 
Drilling and blasting processes in mining are expected to fragment rock and dislocate 
the fragments to enhance digability. As a result of the propagation of strain waves 
and gas penetration, some degree of fracturing would be expected occur in all 
directions around the blasthole. The fracture network is desired within a designed 
excavation volume boundary, however once the fracture network extends outside the 
excavation perimeter, it is considered undesirable blast damage. This damage can 
manifest as complete rock mass failure, micro- or macro-fracture leading to 
reduction in load-bearing capabilities or mobilisation of large-scale faults. 
 
One of the most significant challenges facing rock mechanics and blast damage 
investigations is the lack of a systematic method to directly measure the strength and 
condition of a rock mass in situ. At best, indirect assessment of rock mass conditions 
and induced damage are available where changes in rock mass properties are 
observed or measured. The degree of rock mass degradation or strength is then 
inferred from the results. Current tools do not allow for accurate indication of the 
scale of damage or damage mechanisms in practical field-scale applications and 
some methods of indicating rock mass damage require extraneous amounts of non-
production drilling that can be disruptive to the production cycle. This is especially 
so in the underground environment, where limited access to the rock mass around 
excavations inhibit the ability to gain a complete picture of micro-, macro- and meso-
scale damage within a confined rock mass.  
 
Some properties of an in situ rock mass can be measured and then related to strength 
or fracture characteristics using empirical or analytical relationships. These physical 
properties include sonic velocity, density, elastic properties or degree of fracturing. 
Damage to a rock mass does not necessarily indicate failure, especially under 
conditions of confinement. Therefore, some calibration must take place between the 
indicated degree of rock mass degradation through indirect measurements and the 
potential for failure for any method of assessment to become a tool of any value. 
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Many methods specific to static rock mass monitoring and geophysical investigation 
have been used to characterise or locate dynamically-induced rock mass damage 
from blasting. These techniques have been used in conjunction with direct and 
indirect observation techniques and material testing of core or rock blocks extracted 
from the damaged zone. The results are then used to characterise the change of in 
situ and intact rock properties due to blast-induced damage. These methods have 
included: 

•  Void surveys 

• Geophysical assessment 

•  Fracture density and continuity assessment 

•  Measurement of physical deformation around excavations 

•  Inferred damage envelope from measured blast vibration  

•  Numerical modelling 

 
In most cases, a combination of the above mentioned methods have been used along 
with direct observation to investigate the relationship between the physical properties 
of the damaged rock and the blasting or vibration parameters. The following sections 
attempt to discuss the processes used in assessment of blast damage and to indicate 
some of the limitations of each approach.  
 

A8.1.1  Direct Observation Techniques 

One method of indicating blast damage is direct observation. Observed post-blasting 
rock mass responses can include rock fall, spalling, fracture formation, excavation 
condition or profile or large discontinuity displacement at existing excavation 
boundaries. Although observation is a purely qualitative method of characterising the 
effects of blasting on the surrounding rock mass, it can be useful to gain a 
perspective of the time-related rock mass response (Fletcher et al., 1989), extent of 
effects (Ouchterlony et al., 1993) or frequency-of-events. Early work in defining the 
extents of overbreak from tunnel blasting in Sweden utilised this method for 
assessment of the immediate extent of heavy blast damage (after Ouchterlony et al., 
2002).  
 
Past studies, largely conducted in development or tunnel blasting, have linked 
measured or predicted peak particle velocity amplitudes to degrees of observed blast-
induced damage. From these studies, excavation surface effects such as fall of rock 
or loosening of rock blocks have commonly been included as the lowest observable 
damage threshold. The average vibration limit for excavation surface damage effects 
has ranged from approximately 200mm/s to 500mm/s as reported by past 
researchers. Table A8.1 outlines some of the lower vibration limits for assessment of 
visible secondary blast damage. 
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Table A8.1. Observed vibration-related damage limits as specified by past research. 

Researcher Type of Observed Damage Vibration Limit 
(mm/s) 

Langefors and Kihlström (1978) Fall of rock 300 

Yu (1980) Minor scabbing 500 

Holmberg et al. (1984) Tensile damage 400 

Page (1987) Fall of unstable blocks 100 – 600 

Tunstall (1997) (as listed by 
Singh and Narendrula, 2004) 

Loosening of joints 500 

Singh (2001) Loosening of joints 50-400 

 
Another direct visual inspection method for indicating blast damage during 
development blasting or tunnelling is assessment of the condition of the post-
excavation profile. The percentage of visible half-casts or half-barrels at the 
perimeter of the drive is a measure of the severity or extent of damage. This method 
can be used to assess various rating factors such as a half cast factor (HCF) or other 
indices to be compared with blast vibration values or rock mass properties to gain a 
quantitative comparison technique for different blasting conditions (e.g. Yu and 
Vongpaisal, 1996; Paventi et al., 1996; Singh, 2001; Martino and Chandler, 2004). 
 
Although direct observation methods are easy to implement, they provide only a 
superficial qualitative assessment of damage. The extent or severity of damage 
therefore cannot be determined outside the areas of direct rock mass exposure and 
cannot be applied within large open voids. To apply observation methods to areas of 
limited exposure, remote methods such as borehole camera televiewing in drilled 
boreholes or void surveying can be used to assess evolving rock mass damage. These 
methods are referred to as indirect observation techniques in this thesis. 
  

A8.1.2  Indirect Observation Techniques 

Under conditions of limited exposure or where direct observation would present 
hazards for mine personnel, indirect observation techniques can be employed to 
assess rock mass conditions. These indirect methods utilise equipment such as 
cameras, lasers or radar that are capable of viewing the rock mass through boreholes 
or can be placed within open voids. The accuracy of indirect observation techniques 
depends heavily on the equipment operator. Interpretation of the results is generally 
subjective and may fall upon unqualified mine personnel. The indirect observation 
techniques most widely utilised to assess rock mass responses to mining include 
borehole television viewing and post-mining void measurement.    
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A8.1.2.1 Borehole Television Viewing (BHTV) 

Past research in field-scale blast damage studies have regularly utilised borehole 
inspection techniques to indicate damage limits or occurrence of fracturing from 
blasting operations (e.g. LeBlanc et al., 1995; Villaescusa et al., 1997; Liu et al., 
2000; Keller and Kramer, 2000). The main goal of borehole inspection is to measure 
or observe changes in fracture frequency, fracture aperture or fracture shear 
displacement resulting from the interaction of cracks with the wall of an observation 
borehole.  
 
Borehole inspection is typically carried out using a small diameter front or side-
viewing television camera passed the length of a diamond-drilled hole. Use of a 
diamond-drilled hole is preferable as percussion-drilled boreholes can limit the 
accuracy of BHTV observations. This limitation is related to drilling-induced rock 
fracturing (Peška and Zoback, 1998) or loss of visibility of fractures due to irregular 
drillhole boundaries from percussion-induced rock damage. Figure A8.1 illustrates 
percussion drilling-induced rock mass damage as observed in percussion-drilled 
instrumentation hole televiewing at the BHP Cannington Mine. 
 

 
Figure A8.1. Borehole televiewing image of a percussion-drilled instrumentation 
hole in the R4 mining area at the BHP Cannington Mine damaged during drilling. 

 
Borehole televiewing can be constrained by the availability or capability of diamond 
drilling equipment at the mine site. A typical borehole television camera 
configuration is illustrated in Figure A8.2, showing the camera head, flexible cable, 
and televiewer. 
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Figure A8.2. WASM-owned Pearpoint P330 Flexiprobe BHTV camera. 

 
The basic stages of a borehole televiewing fracture assessment program includes 
design and drilling of observation boreholes, initial assessment of pre-mining 
fracturing and borehole surveys at various mining steps to indicate changes in 
borehole fracture conditions. Each step in the process can significantly influence the 
quality of the indicated fracture assessment and significant errors may be introduced.  
 
As the first step in the borehole assessment process, design of observation holes 
around an excavation requires a good understanding of the type and extent of damage 
that may be expected during mining. Knowledge of the mining activities in and 
around the observed stope is also important. Issues that must be taken into 
consideration when designing observation hole locations, lengths and orientations 
closely follow those discussed in Chapter 4 in relation to the design of 
instrumentation holes. Some of these considerations include: 

•  Design shape and size of stope 

• Likely performance of the stope and rock mass response to mining 

• Available development from which to drill 

• Availability of diamond-drilling equipment 

• Interaction of mining activities with observation hole locations 

• Water conditions within the rock mass 

• Production and stope preparation scheduling 

• In situ discontinuity orientation 

• Capabilities of televiewing equipment (lighting, cable length, cable stiffness) 
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In addition to the issues mentioned above, the location and orientation of observation 
holes can influence the quality of the data obtained during televiewing. This 
influence is a function of the expected fracturing in relation to the drillhole 
orientation and physical interaction between the observation hole and the 
propagating seismic waves. 
 
Observation holes can be drilled in several orientations with respect to the designed 
excavation boundary depending on the available drilling accesses. To ensure the state 
of pre-mining rock mass fracturing can be established, observation holes should be 
drilled prior to the start of stope extraction. This requires that a finalised stope 
perimeter design and production blasthole design have been approved and issued. As 
the intent of borehole televiewing is to track the changes in fracture intensity near the 
stope boundary, observation holes should be drilled to either intersect or closely 
follow the designed excavation perimeter. For scheduling purposes, observation 
holes that intersect the stope boundary should be drilled after production holes, as 
intersection of a production hole with an existing observation hole can complicate 
the drilling process. The likely results of hole intersection include drillhole deviation, 
loss of drilling pressure or hang-up of bits or drilling rods.  
 
The types of fracturing expected from blasting or stress-related damage mechanisms 
suggest that the extent of blast-induced radial fracture may be best represented in 
observation holes drilled parallel to blastholes. For investigation of fracturing from 
sagging or dilation of parallel structures such as a stope hangingwall, holes 
perpendicular to the direction of bedding or unstable discontinuities would be 
expected to provide the best results. In some cases, access for drilling can be limited. 
As a result, observation holes must be drilled parallel, oblique or perpendicular to 
excavation boundaries. The results of fracture observation and interpretation will 
vary greatly based on the drillhole orientation. 
 
To investigate mining and blasting-induced damage to the hangingwall of a steeply-
inclined stope, a study at the Mount Isa Mines Hilton Mine utilised observation holes 
drilled perpendicular to the excavation surface (Figure A8.3). This type of 
observation hole orientation allowed close assessment of hangingwall dislocation and 
dilation of bedded structures under the influence of both blast-induced and stress-
affected damage.    
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Figure A8.3. Cross section view of perpendicular orientation of instrumentation and 
observation holes at Mount Isa Mines Hilton Mine stope 5S52 (Villaescusa et al., 
1997). 

 
To capture radial fracture and shear dilation effects from the detonation of a single 
blasthole, Yang et al. (1994) utilised observation holes parallel to the explosive 
charge axis (Figure A8.4). This type of observation hole drilling required large areal 
exposure, and therefore may be used more frequently in open-pit investigation 
geometries. 
 

 
Figure A8.4. Observation hole collar locations (33-35) drilled parallel to the charge 
hole (hole 36) as utilised in an open pit or tunnelling geometries (Yang et al., 1994). 
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The orientation of observation holes can adversely affect the likelihood of 
intersection of fracturing. It is generally accepted that fracture patterns extending 
from a blasthole propagate in a radial direction. In homogeneous materials and 
instantaneous detonation characteristics, these cracks can be planar and oriented 
along the axis of the charge (Rossmanith et al., 1997). Similar fracturing patterns 
have been observed for non-ideal explosives in homogeneous rock types. Therefore, 
the probability of fracture intersection between an observation hole either 
perpendicular to or parallel to the charge column and a forming radial fracture could 
be limited (Figure A8.5). 
 

 
Figure A8.5. Fracture pattern in a plane normal to the charge axis and observation 
holes drilled perpendicular to the charge axis (holes 1, 2 and 3) and parallel to the 
charge axis (holes 4 and 5).  

 
From the simulated fracture pattern in Figure A8.5, the maximum extent of 
fracturing would only be recorded in observation holes 2, 3 and 5. Due to the 
inability to predict the extent and orientations of fracture propagation and extension, 
the probability would be low that the limited locations and orientations of 
observation holes would intersect the longest radiating fractures. 
 
An initial assessment of fracturing conditions should be performed prior to the start 
of blasting of an excavation. This assessment can be carried out through two 
different approaches; logging of the extracted core from the diamond-drilling of the 
observation hole or performing an initial televiewing survey. Either method can 
indicate the state of pre-mining fracture distribution and condition and can be 
compared to one another for calibration. 
 
At different steps in the excavation process, borehole television surveys can be 
performed and analysed to assess the presence of new fractures or evaluate the 
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change to existing fractures. These results can then be compared with the baseline 
fracture characteristics to assess the rock mass response to the mining process. Figure 
A8.6 illustrates the results of pre and post-blast BHTV surveys conducted in the 
stope 4/7 crown at the Pasminco Elura Mine (Li, 1993), indicating the change in 
fracture count over different borehole intervals. 
 

 
Figure A8.6. Pre- and post-blasting BHTV fracture observation for two different 
instrumentation locations in the crown of stope 4/7 at the Pasminco Elura Mine (Li, 
1993).  

 
The geometry represented in Figure A8.6 was such that the collars of the observation 
holes were located in a drive above the stope crown. Therefore, increasing length 
along the hole corresponded with the rock mass closer to the excavation. A general 
increase in fracture frequency along the blasthole was observed, along with a 
geometric increase closer to the stope crown.  
 
Due to the complexity of wave interaction with free surfaces in the vicinity of 
blasting events, the use of observation holes can lead to false indication of in situ 
fracturing. Through introduction of a zero-stress boundary, fresh fracturing can occur 
at the borehole wall due to body wave reflection or Rayleigh Waves travelling along 
the open borehole. Strong compressive or tensile stress waves can interact with the 
borehole boundary and create cracks that may not be present in the confined rock 
mass between the explosive charge and the observation hole. In addition, drilling of 
the observation hole can introduce failure-source flaws, thus leading to the existence 
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of fractures not otherwise present without the hole. Propagating fractures in the rock 
mass can also be arrested by the open observation hole boundary, thus limiting the 
observable fracture extent. 
 
Under states of stable or unstable crack propagation, fractures can be terminated by 
existing fractures or zero stress boundaries. In this sense, the inclusion of a synthetic 
large-aperture discontinuity (borehole) can lead to an underestimation of the extent 
of confined rock mass fracture due to the effects of fracture arrest. Very near a 
blasthole, intersection of an internally-pressurised propagating fracture with the 
observation hole can lead to pressure venting, again leading to artificial fracture 
arrest. 
 
Several limitations of BHTV damage assessment methods exist which are related to 
the borehole viewing equipment and the observation holes. To ensure accuracy of the 
results, several factors related to the BHTV method should be considered prior to 
interpretation of the results. These factors include: 

•  In-hole lighting, which affects the camera resolution and visibility 

•  Wet borehole conditions limiting visibility 

•  Interpretation of fracturing 

•  Limited visibility of tightly-healed fractures and mineralisation banding 

•  Irregular borehole shape from damaged ground, faults or stress notching 

•  Orientation of the borehole with respect to the fracturing orientations 

•  Excessive shearing of discontinuities resulting in a loss of hole length 

 
In addition to the above items, fracturing mechanisms cannot be determined from 
observation holes due to the inability to distinguish stress-related effects from 
dynamic-failure effects. In most cases, borehole TV inspection occurs at some 
significant time after blasting in underground applications. The delay can be 
attributed to post-blast no-entry conditions due to ventilation or seismic decay 
clearance times. During the delay between blasting and observation, rapid stress 
redistribution around the newly-formed excavation can lead to static rock mass 
damage or dislocation of new or existing fractures. 
 

A8.1.2.2  Post-Mining Void Analysis 

Another indirect observation method used for the assessment of rock mass behaviour 
is measurement and back analysis of the post-excavation void. This approach in the 
past has utilised methods of observation ranging from visual inspection and manual 
laser distance measurement to complex generation of three-dimensional void models 
from automated rotating laser or radar surveying methods. The use of post-extraction 
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void shape and size assessment is an important tool for back analysis of stope 
behaviour, but can also contribute a great deal of information with regards to blasting 
performance.  
 
The blasting and rock mass parameters contributing to the formation of the final 
stope void are numerous and interact in very complicated ways. Factors related to 
drilling and blasting that can affect rock mass response include drillhole deviation, 
explosive load, design offset from stope perimeters and firing sequences. Some rock 
mass characteristics that influence the excavation response to blasting include in situ 
stress redistribution, discontinuity location, size, orientation and properties and time-
dependent stope void behaviour. Therefore, results of a stope void survey can be 
affected by many factors including the time at which the survey is conducted. 
Germain and Hadjigeorgiou (1997) discovered no significant link between single 
parameters such as rock mass quality, stope hydraulic radius or charge size and the 
degree of stope overbreak in two Canadian underground mines.  
 
In the blast damage study conducted as part of this thesis, laser-based Cavity 
Monitoring System (CMS) surveys were performed during and after study stope 
extraction to assess stope performance. The post-extraction CMS results were used to 
indicate stope performance by transforming the final surveyed point cloud into a 
stope void wireframe. This wireframe was then compared with the initial stope 
design wireframe to assess the areas and extents of stope overbreak and underbreak. 
Figure A8.7 illustrates the results of a post-extraction CMS survey of Stope 24jC6HL 
at the BHP Cannington Mine compared with the design wireframe. 
 

 
Figure A8.7. Isometric view of stope design (grey) and post-void CMS survey (blue) 
of stope 24jC6HL at the BHP Billiton Cannington Mine. 
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Analysis of the surfaces created from the design stope and the post-extraction CMS 
can provide a great deal of information on the extent, location and shape of 
underbreak and overbreak to assess the likely factors contributing to the final stope 
profile. By superimposing the drill and blast design on the final CMS results, factors 
such as drillhole length or deviation can be assessed as specified in charging reports 
or through drillhole deviation measurements. Figure A8.8 illustrates a cross-section 
taken from the designed stope and final CMS surface of KBGM stope dB10-38T 
along a ring of blastholes. The blasthole charging plan was generated as a result of 
measured blasthole collars and toes recorded during charging of the patterns. 
 

 
Figure A8.8. Cross section of the planned (brown) and post-extraction (blue) stope 
surfaces along a drilled blasthole ring for KBGM stope dB10-38T.  

 
Characteristic failure shapes generated in the analysis of the CMS survey can aid in 
differentiating between blast-related breakage and failure along existing geologic 
features. From observation of Figure A8.8, several areas of stope overbreak appear to 
follow well-defined shapes such as existing blocks or discontinuities. Blasting effects 
are likely to have contributed to block failure and release through shock and gas 
loading, but overbreak in these circumstances cannot be contributed solely to 
blasting-induced rock fracture.  
 
It is important to note that some sources of stope overbreak or underbreak cannot be 
avoided due to the presence of the discontinuities and the pre-formed blocks. Loss of 
confinement due to stress redistribution can be a contributing failure mechanism at 
the excavation boundary and therefore resulting overbreak is not restricted to the 
case of wall failure through blasting alone. 
 
Due to limitations of laser surveying systems related to shadowing, dust, moisture 
and errors in referencing of the camera head, the results of CMS surveys contain a 
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degree of imprecision. Interpretation, translation, filtering and processing of the point 
cloud generated during the survey are generally performed after the survey to reduce 
the file size and the processing time for wire-framing of the model. Therefore, the 
results indicated in the final wireframe should be viewed with some degree of 
uncertainty based on the physical limitations of the laser surveying technology and 
the human interpretation of the results. In spite of the possible sources of error, the 
small degree of uncertainty is far outweighed by the value of the information that is 
provided by the results of CMS. 
 

A8.1.3  In Situ Geophysical and Geomechanical Methods 

In the underground mining environment, access to exposures in the rock mass is 
typically limited due to economic factors and rock mass stability concerns. The 
information collected at the limited number of exposures within an underground 
mine may not adequately describe the bulk properties of the rock mass on different 
scales due to variability related to discontinuities and mineralisation. Remote 
methods of assessing bulk in situ rock mass properties are therefore required to better 
understand the mechanical behaviour in response to mining. Tools commonly 
utilised in geophysical exploration and investigation can become useful to interpret 
rock mass characteristics through evaluating the wave transmission qualities. These 
tools include stress wave geotomography, penetrating radar and other remote sensing 
technologies. 
 

A8.1.3.1  Seismic Tomography 

One widely accepted geophysical method for characterising rock and rock mass 
conditions is analysis of seismic wave transmission characteristics. This approach is 
commonly referred to as seismic tomography, geotomography or seismic imaging. 
Seismic surveys are based on the behaviour of transmitted or reflected P- or S-waves 
travelling through a material. The seismic wave properties that have been most useful 
for rock mass characterisation are wave travel velocity (P-, S-, and Rayleigh Waves) 
and amplitude or frequency attenuation or wave rise time (as utilised by JKMRC, 
1984; Spathis et al., 1985; Fletcher et al., 1989; Friedel et al., 1995, Zou and Wu, 
2001; Cardarelli et al., 2003; Malmgren et al., 2007 and others). These wave 
properties form the basis of rock mass and engineering material characterisation as 
utilised in geophysical modelling for mineral exploration, earthquake science, 
location of changes of in situ stresses, hydrogeological surveys, foundation 
compaction and assessment of damage.  
 
Several critical factors should be considered when performing or interpreting the 
results of a seismic survey. The scale or characteristics of an interpreted structure or 
velocity anomaly can be adversely influenced during the survey or during post-
survey analysis and interpretation. During the physical survey, the density of seismic 
coverage (number of sources and sensors in a given volume), number of recorded 
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waves (number of sources generated per location) and the seismic source properties 
can affect the outcome. During analysis and interpretation, the size of the 
tomographic interpretation grid and assumed degrees of anisotropy can influence the 
results (Pratt and Chapman, 1992).  
 
Selection of a seismic source should include a consideration of the scale of geologic 
structures of interest. The observable alteration of a seismic wave interacting with an 
existing fracture is related to the ratio of the source wavelength to the surface area or 
critical dimension of the discontinuity. Long wavelength, low relative frequency 
seismic sources (such as commercial explosives or impact sources) are typically 
unable to accurately depict small fractures. This is due to a lack of interaction 
between the source wave and the fracture based on the difference in wavelength 
versus dimension. For micro-fracture detection in materials, extremely high 
frequency (kHz or MHz), low amplitude seismic sources are typically required. For 
detection of large-scale discontinuities such as ore bodies or faults, longer 
wavelength, low frequency (10-1000 Hz) high energy sources such as explosives or 
heavy mass impactors may be required to ensure transmission across the highly 
attenuating structures. 
 
Despite the complications involved in accurately performing a seismic survey and 
the degree of uncertainty introduced in the interpretation of results, changes in a rock 
mass can be measured and interpreted with great benefit. Changes in rock type or 
mineralisation (e.g. Rafat et al., 2001; Luo et al., 1998), indication of increased or 
persistent fracturing (e.g. Maxwell and Young, 1996; Cosma et al., 2001) or stress 
accumulation or relaxation (e.g. McGaughey et al., 1994; Friedel et al., 1996; Scott et 
al., 2004) have successfully been represented through the use of seismic tools as 
illustrated in many rock mass seismic assessments. 
 

A8.1.3.2  Ground Penetrating Radar (GPR) 

Another geophysical investigation method that can be used to characterise pre-
mining or mining-affected rock masses is ground penetrating radar (GPR). The GPR 
method utilises high frequency radar waves (MHz range) to form high-resolution 
images of geologic anomalies. Direct transmission or reflection surveys can be 
performed from the surface or from boreholes using GPR similar to traditional 
seismic approaches. Although many past researchers have favoured seismic methods 
over GPR for use in rock mass observation in mining applications, GPR has been 
used successfully for rock mass characterisation (e.g. Grandjean and Gourry, 1996; 
Stevens et al., 1995; Serzu et al., 2004). 
     

A8.1.3.3  In Situ measurement of Permeability and Conductivity 

Hydraulic conductivity can serve as an indicator of the degree of interconnectivity of 
fractures in a rock mass or the aperture of discontinuities in the periphery of 
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excavations. It is arguable that in areas where the flow of pressurised fluids is 
increased through rock mass damage, attenuation characteristics and stress-bearing 
properties of the rock mass will also be altered. Where hydraulic conductivity 
increases, the rock mass has sustained an increased degree of damage. Also in these 
areas, the rock mass strength may be further reduced through introduction of 
additional fracture surface area and penetration of high pressure blast-driven 
detonation products. 
 
A number of researchers have utilised hydraulic conductivity and permeability 
studies to characterise rock mass conditions around blasted or stress-damaged 
excavations. A majority of such studies have been performed with permeability 
especially in mind for the storage of nuclear waste and other materials in 
underground caverns (e.g. Pusch, 1989; Pusch and Stanfors, 1992). General 
investigations into permeability conducted at the Underground Research Laboratory 
(URL) in Canada have discovered significant changes (increase of up to 10,000 
times) from both stress-induced effects and blast-induced damage (e.g. Souley et al., 
2001; Martino and Chandler, 2004). Souley et al. (2001) identified that the rock mass 
permeability or transmissivity typically decreased by exponential decay-type 
behaviour with depth away from an excavation into the rock mass, and approached 
the virgin permeability (Figure A8.9). 
 

 
Figure A8.9. Reduction in hydraulic transmissivity with depth from the excavation 
(Souley et al., 2001). 

 
Other investigations into changes in hydraulic conductivity were conduced to 
investigate gas flow through broken coal (Butkovich and Hearst, 1976) or the 
contribution of induced stresses and blasting on tunnel rock permeability (Kelsall et 
al., 1984). Figure A8.10 illustrates the measured and predicted changes in hydraulic 
conductivity at given distances from a tunnel wall due to static and dynamic stress 
loading conditions.  
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Figure A8.10. Changes in hydraulic conductivity in the wall of an excavation at a 
depth of 1km due to combined stress loading conditions (Kelsall et al., 1984). 
 

A8.1.4 Rock Mass Deformation Measurement: Extensometers and TDR 

Cables 

One of the basic rock mechanics tools for measurements of rock mass deformation is 
dilation or convergence monitoring. Early methods to measure the response of a rock 
mass to the excavation process include rod convergence monitors, tensioned and un-
tensioned measuring bolts, differential surveying and anchored longitudinal 
displacement wires (Jaegar and Cook, 1969). Measurement of rock mass deformation 
within and around excavations provides a good indication of the response of a rock 
mass to the mining sequence and rate of extraction, and is the most commonly 
performed underground measurement (Brady and Brown, 2004). 
 
The use of multiple-point borehole extensometers (MPBX) allows incremental 
deformations to be measured at various anchoring distances within a rock mass from 
a remote location. This type of extensometer can be used near rock mass exposures 
with limited access, such as the hangingwall of an open stope, to characterise the 
axial displacement of each anchor point with respect to the borehole collar. The 
changes in displacement magnitude or rate of movement for each anchor point can 
indicate gradual unravelling or sagging and may be precursors to large-scale failure. 
 
Borehole extensometers have been used in conjunction with BHTV observation and 
blast vibration monitoring in open stope blast damage investigations. By measuring 
the deformation experienced within a crucial wall of the stope (for example an 
inclined hangingwall), the effects of stress redistribution and rock mass relaxation 
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can be characterised along with the effects of blasting. The combined assessment 
approach assumes that fresh fractures or existing discontinuities altered during 
blasting events will experience dilation that will then be indicated by measurements 
taken from MPBXs. The challenge is interpretation of the results in order to separate 
stress-related effects from blasting-related effects. 
 
MPBXs have been utilised successfully to investigate blasting and stress-related 
damage to the walls of open stopes or field-scale blast damage studies as noted by Li 
(1993), Liu and Proulx (1995), Villaescusa et al. (1997) and Scott (1998). Linking 
the recorded deformations with blasting events and stress modelling can be a useful 
tool to determine the rock mass response to static and dynamic loading. Figure A8.11 
illustrates the readings from an MPBX monitoring hangingwall response to mining 
as published by Villaescusa et al. (1997). 
 

 
Figure A8.11. Hangingwall MPBX measurements over the life a stope at MIM 
Hilton Mine showing times of stope blasting events (Villaescusa et al., 1997). 

 
Time Domain Reflectometry (TDR) is a technology employed in the 
telecommunications industry to determine the integrity of buried service lines 
through changes in an electric pulse travelling through standard coaxial cable. This 
technology has been adopted in rock mechanics in recent years to indicate rock mass 
failure or shear by determining the location of pulse alteration or distance to cable 
termination. TDR cables have been employed with mixed results in blast damage 
measurement, as demonstrated by LeBlanc et al. (1995).  
 
Investigation into the efficacy of TDR cables for indication of rock mass shear 
displacements was conducted by Aimone-Martin and Francke (1997) at the WIPP 
site in New Mexico, USA. After laboratory calibration to investigate the change in 
the observed pulse with applied shear displacements, deformations were measured in 
the backs, walls and floor of a gallery in rock salt. Testing of TDR cables in the field 
tests and laboratory tests concluded that the minimum response limit of shear 
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detection varied with the rate of deformation and generally averaged approximately 
0.5mm to 1.5mm. At large values of shear deformation, grout sliding and borehole 
crushing effects were indicated. 
 

A8.1.5  Rock Properties Testing of Extracted Rock Samples 

Testing of rock samples extracted after blasting events can provide valuable 
information on the degree of explosive-induced fracturing or rock mass alteration 
(e.g. Holmberg and Persson, 1978; Brinkmann, 1990; Ouchterlony et al., 1993; 
Kilebrant et al., 2009, Ouchterlony et al., 2009). The properties which can be 
measured from the extracted rock to assess the state of rock mass alteration at micro- 
and macro- scales include total fracture length, fracture frequency, rock density, 
seismic velocity, micro-crack density, rock strength and porosity. The traditional 
table of observed fracture lengths for different small-diameter charge concentrations 
is illustrated in Figure A8.12 based on cracks observed in extracted rock blocks. 
 

 
Figure A8.12. Swedish table of total fracture length from blasting with small 
diameter charge concentrations (Ouchterlony et al., 2009).   

 
In general, testing of extracted cores or blocks yields valuable information on the 
changes in the physical properties of the rock mass. These changes are valuable 
indicators of the physical behaviour of the remaining rock mass and the ability to 
sustain further static and dynamic loads. Using a combination of physical testing 
methods such as fracture mapping, seismic properties and density and porosity 
measurements, Kilebrant et al. (2009) investigated the influence of charge 
concentration in combination with decoupling on the damaged zone around 64mm 
diameter blastholes in granite (Figure A8.13). The diamond-drilled cores were 
extracted from the remaining face behind the line of blastholes in a surface quarry. 
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Figure A8.13. Depth of damage vs. charge concentration (after Kilebrant et al., 2009). 

 
The results of the study by Kilebrant et al. (2009) were compared with the Swedish 
standards and work performed by other Swedish researchers with good agreement. 
Using the relationship established at the upper end of the results table (>3.7 kg/m) 
can aid in estimating the damaged zone around larger diameter blastholes and 
explosives types typical of sublevel open stoping.  
 

A8.1.6  Other Methods of Damage Indication: Gas Penetration Monitoring 

Researchers in the past have attempted to use gas penetration measurements to 
indicate the extent of blasting damage in open pit operations. This approach relies on 
an assumption that radiating planes of fracturing of a high degree of persistence and 
continuity are able to transmit internal fracture pressures over moderate distances. In 
order to indicate the presence of damage behind a blast, measurements of gas 
pressure in sealed observation holes in the proximity of blasting have been 
performed. In open pit operations, the works of Brent and Smith (1999), Spathis et 
al. (2001) and Tannant and Peterson (2001) discuss the mixed results of gas 
penetration measurement behind open pit blasts. 
 
From the published references, the success of pressure measurements appears highly 
dependent on the distance between the monitoring holes and the nearest blastholes. 
Under conditions of excess distance, negative pressures have been measured; this has 
been interpreted as movement of the burden material without penetration of gas into 
the sealed instrumentation hole (Brent and Smith, 1999). Within several metres of 
the final row of blastholes or pre-split, positive gas pressures have been recorded by 
Tannant and Peterson (2001). In the underground environment, gas penetration 
measurement has not been widely accepted as a means of indicating blast damage. 
Confined fracture propagation conditions due to in situ stresses could be expected to 
reduce or eliminate the measurable internal crack pressure and lead to an 
underestimation of fracture extent.  
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A9.1 Explanation of Regression Summary Tables 

The nonlinear, multivariable regression results obtained for each analysed data set 
using the general form of the charge weight scaling equation (Equation 5.2) were 
output from Statistica 8.0 in the form of a summary table. The items listed in the 
summary table were the regression constants for the best fit (“Estimate” values K, 
alpha and epsilon), the R value (coefficient of correlation), the standard error for all 
regression constants, t- and p-values and the upper and lower 95% confidence 
regression constants (“Up. Conf Limit” and “Lo. Conf Limit”, respectively). The 
number of data points in the data set is also listed as the “df” value under the t-value. 
The “alpha” value in the tables refers to the “b” value (the power associated with the 
charge weight) and the “epsilon” value is the “n” regression constant corresponding 
with the power term associated with the distance. The general charge weight scaling 
equation according to the regression results would therefore be: 
 
VSPPV, VSPPA, EDW-tot, �W-MN  =  K· (W)alpha · (D)epsilon 
 
During the data analysis period, in excess of 1000 individual regressions were 
performed using various combinations of data subsets, charge weight scaling models, 
regression techniques and source-to-sensor distances. The results included in this 
appendix are the nonlinear regressions of VSPPV, VSPPA, EDW-tot and �W-MN 
(referred to as “MNS” {mean normal strain} in the tables) for 60 individual and 
combined data sets. Due to the excessive number of individual analyses, only the 
instantaneous amplitude (VSPPV and VSPPA) having the highest correlation value 
(R) regression result is included along with the results for EDW-tot and �W-MN. In some 
cases, the highest correlation value is represented by instantaneous amplitude such as 
VSPPV or VSPPA. In other data sets, EDW-tot or �W-MN represented the highest 
correlation values. No regression results have been listed for the stored strain energy 
density (EDW-SS) used in the blast damage criteria discussed in Chapter 6 and used in 
Chapters 7 and 8. The regression constants can be determined from the regressions of 
EDW-tot. The K value for EDW-SS is one-half of the K value for the EDW-tot regressions 
with the same b (alpha) and n (epsilon) values, as the EDW-SS has been calculated as 
½ of the EDW-tot. 
 
Details of the transducer data represented in the regression are expressed in the top 
line of each data table. The mine name is followed by the stope name, the wall in 
which the transducer(s) is installed and the transducer type/name. The term “Acc” 
refers to a tri-axial accelerometer, “Geo” refers to a tri-axial geophone sonde, and 
“Acc-Geo” or “Geo1-Geo2” refers to the combined data set generated by multiple 
transducers on a directional transducer array. 
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A9.2 KBGM Individual Regression Results: dA12-35 

dA12-35 Footwall Accelerometer and Geophone 
KBGM dA12-35 Acc-Geo
Dep. Var. : PPA -- R = 0.335
Level of confidence: 95.0% ( alpha=0.050)

Estimate Standard
error

t-value
df = 217

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

48240.83 41472.78 1.16319 0.246029 -33500.2 129981.9
-0.341 0.173 -1.97028 0.050078 -0.681 0.000
-1.072 0.315 -3.40292 0.000794 -1.694 -0.451  

KBGM dA12-35 Acc-Geo
Dep. Var. : EDW-tot -- R = 0.252
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 217
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

858612.2 1467984 0.58489 0.559228 -2034720 3751945
-0.574 0.341 -1.68447 0.093529 -1.246 0.098
-1.543 0.623 -2.47817 0.013968 -2.770 -0.316  

KBGM dA12-35 Acc-Geo
Dep. Var. : MNS -- R = 0.260
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 217
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

1023.415 826.5100 1.23824 0.216966 -605.600 2652.430
-0.140 0.1522 -0.92021 0.358482 -0.440 0.160
-0.942 0.2953 -3.18917 0.001638 -1.524 -0.360  

 
 

dA12-35 Footwall Accelerometer 
KBGM dA12-35 Acc
Dep. Var. : PPA -- R = 0.289
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 106
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

6926.670 8326.287 0.83190 0.407333 -9581.00 23434.34
-0.585 0.230 -2.54642 0.012320 -1.040 -0.130
0.074 0.474 0.15633 0.876070 -0.866 1.014  

KBGM dA12-35 Acc
Dep. Var. : EDW-tot -- R = 0.209
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 106
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

55605.21 123253.8 0.45114 0.652807 -188757 299967.9
-0.6691 0.417 -1.60593 0.111264 -1.495 0.1569
-0.2387 0.903 -0.26438 0.792004 -2.029 1.5512  

KBGM dA12-35 Acc
Dep. Var. : MNS -- R = 0.217
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 106
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

262.7669 319.6824 0.82196 0.412943 -371.035 896.5682
-0.4375 0.2348 -1.86311 0.065216 -0.903 0.0281
0.0183 0.4976 0.03675 0.970751 -0.968 1.0048  
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dA12-35 Footwall Geophone 
KBGM dA12-35 Geo
Dep. Var. : PPA -- R = 0.417
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 108
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

320140.5 638813.9 0.50115 0.617287 -946099 1586380
0.119 0.104 1.13642 0.258296 -0.088 0.326

-2.412 0.670 -3.59815 0.000485 -3.740 -1.083  
KBGM dA12-35 Geo
Dep. Var. : EDW-tot -- R = 0.489
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 108
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

114028.4 382603.4 0.29803 0.766251 -644358 872414.7
1.300 0.319 4.07202 0.000089 0.67 1.932

-3.510 1.106 -3.17235 0.001969 -5.70 -1.317
 

KBGM dA12-35 Geo
Dep. Var. : MNS -- R = 0.602
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 108
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

2143.075 2755.118 0.77785 0.438357 -3318.05 7604.198
0.593 0.088 6.76301 0.000000 0.419 0.767

-2.113 0.426 -4.95461 0.000003 -2.958 -1.267  
 

A9.3 KBGM Individual Regression Results: dB10-38B 

dB10-38B East Wall Accelerometer and Geophone 
KBGM dB10-38B EW Acc-Geo
Dep. Var. : PPV -- R = 0.733
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 172
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

11400.53 4980.836 2.2889 0.023302 1569.097 21231.96
0.117 0.072 1.6225 0.106534 -0.025 0.259

-1.977 0.110 -17.9119 0.000000 -2.195 -1.759  
KBGM dB10-38B EW Acc-Geo
Dep. Var. : EDW-tot -- R = 0.901
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 172
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

681350.0 318147.6 2.1416 0.033632 53373.67 1309326
0.820 0.155 5.2921 0.000000 0.51401 1.126

-4.034 0.162 -24.9423 0.000000 -4.35370 -3.715 
KBGM dB10-38B EW Acc-Geo
Dep. Var. : MNS -- R = 0.797
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 172
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

1380.161 523.9961 2.6339 0.009210 345.8699 2414.45
0.377 0.0691 5.4594 0.000000 0.2410 0.51

-1.880 0.0960 -19.5922 0.000000 -2.0694 -1.69 
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dB10-38B Footwall Accelerometer and Geophone 
KBGM dB10-38B FW Acc-Geo
Dep. Var. : PPV -- R = 0.808
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 177
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

10322756 8656628 1.1925 0.234674 -6760730 27406241
-0.665 0.099 -6.7214 0.000000 -0.860 -0.469
-3.406 0.283 -12.0152 0.000000 -3.965 -2.846  

(KBGM dB10-38B FW Acc-Geo)
Dep. Var. : EDW-tot -- R = 0.686
Level of confidence: 95.0% ( alpha=0.050)

Estimate Standard
error

t-value
df = 177

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

3.889E+09 6.478E+09 0.60029 0.5491 -8.895E+09 1.667E+10
-0.640 0.173 -3.69390 0.0003 -0.983 -0.298
-4.877 0.577 -8.45091 0.0000 -6.016 -3.738  

(KBGM dB10-38B FW Acc-Geo)
Dep. Var. : MNS -- R = 0.795
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 177
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

1118302 820695.8 1.3626 0.174731 -501306 2737910
-0.522 0.0847 -6.1621 0.000000 -0.689 -0.355
-3.110 0.2546 -12.2127 0.000000 -3.612 -2.607 

 
 

dB10-38B Footwall Accelerometer 
(KBGM dB10-38B FW Acc)
Dep. Var. : PPV -- R = 0.786
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 93

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

3676862 4748027 0.77440 0.440660 -5751779 13105502
-0.683 0.130 -5.23711 0.000001 -0.942 -0.424
-2.987 0.448 -6.66605 0.000000 -3.877 -2.097  

(KBGM dB10-38B FW Acc)
Dep. Var. : EDW-tot -- R = 0.646
Level of confidence: 95.0% ( alpha=0.050)

Estimate Standard
error

t-value
df = 93

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

2.163E+09 5.239E+09 0.41299 0.6806 -8.239E+09 1.257E+10
-0.639 0.235 -2.72248 0.0077 -1.104 -0.173
-4.649 0.843 -5.51603 0.0000 -6.322 -2.975  

(KBGM dB10-38B FW Acc)
Dep. Var. : MNS -- R = 0.795
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 93

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

691068.9 787963.2 0.87703 0.382729 -873670 2255808
-0.583 0.111 -5.24381 0.000001 -0.804 -0.362
-2.858 0.402 -7.10377 0.000000 -3.657 -2.059  
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dB10-38B Footwall Geophone 
(KBGM dB10-38B FW Geo)
Dep. Var. : PPV -- R = 0.607
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 81

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1190.655 1309.898 0.90897 0.366064 -1415.63 3796.942
0.504 0.084 6.02233 0.000000 0.34 0.670

-1.764 0.349 -5.05637 0.000003 -2.46 -1.070 
 (KBGM dB10-38B FW Geo)
Dep. Var. : EDW-tot -- R = 0.827
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 81

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

841103.7 2404774 0.34976 0.727423 -3943642 5625850
2.605 0.30 8.71263 0.000000 2.010 3.200

-6.202 0.94 -6.58205 0.000000 -8.077 -4.327  
(KBGM dB10-38B FW Geo)
Dep. Var. : MNS -- R = 0.747
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 81

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

2147.466 2798.313 0.76741 0.445066 -3420.30 7715.231
0.866 0.102 8.45584 0.000000 0.662 1.069

-2.585 0.409 -6.31455 0.000000 -3.400 -1.771  
 

A9.4 KBGM Individual Regression Results: dB10-38T 

dB10-38T East Wall Accelerometer and Geophone 
(KBGM-dB10-38T EW Acc-Geo)
Dep. Var. : PPA -- R = 0.769
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 217
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

0.91774 0.715046 1.28347 0.200695 -0.49158 2.32707
2.79 0.121 22.97377 0.000000 2.551 3.030

-2.08 0.244 -8.49532 0.000000 -2.558 -1.595  
(KBGM-dB10-38T EW Acc-Geo)
Dep. Var. : EDW-tot -- R = 0.788
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 217
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

0.11999 0.128645 0.93274 0.351990 -0.13356 0.37355
3.13 0.146 21.36842 0.000000 2.838 3.414

-1.89 0.301 -6.27363 0.000000 -2.482 -1.295  
(KBGM-dB10-38T EW Acc-Geo)
Dep. Var. : MNS -- R = 0.593
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 217
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

8.73479 5.247645 1.66452 0.097452 -1.60809 19.07767
1.089 0.1145 9.50428 0.000000 0.863 1.314

-1.149 0.1478 -7.77139 0.000000 -1.440 -0.858  
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dB10-38T East Wall Accelerometer 
(KBGM-dB10-38T EW Acc)
Dep. Var. : PPV -- R = 0.577
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 42

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

61.63801 113.1690 0.54465 0.588871 -166.746 290.0223
1.2491 0.464 2.68987 0.010211 0.312 2.1862

-1.6961 0.500 -3.39302 0.001518 -2.705 -0.6873  
(KBGM-dB10-38T EW Acc)
Dep. Var. : EDW-tot -- R = 0.361
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 42

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

6695.241 18676.34 0.35849 0.721774 -30995.1 44385.63
0.219 0.663 0.32982 0.743178 -1.119 1.5561

-1.322 0.700 -1.88837 0.065896 -2.734 0.0908  
(KBGM-dB10-38T EW Acc)
Dep. Var. : MNS -- R = 0.470
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 42

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

90.74952 166.3106 0.54566 0.588184 -244.879 426.3779
0.48756 0.4331 1.12574 0.266669 -0.386 1.3616

-1.21126 0.4467 -2.71139 0.009665 -2.113 -0.3097  
 
 

dB10-38T East Wall Geophone 
(KBGM-dB10-38T EW Geo)
Dep. Var. : PPA -- R = 0.875
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 172
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

32301.29 56590.06 0.57079 0.568884 -79399.1 144001.7
2.108 0.096 22.02432 0.000000 1.919 2.297

-4.399 0.526 -8.35688 0.000000 -5.438 -3.360  
(KBGM-dB10-38T EW Geo)
Dep. Var. : EDWtot -- R = 0.897
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 172
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

28811.00 48090.16 0.59910 0.549892 -66111.9 123733.9
2.136 0.093 23.05311 0.000000 1.953 2.319

-4.305 0.497 -8.65827 0.000000 -5.286 -3.323  
(KBGM-dB10-38T EW Geo)
Dep. Var. : MNS -- R = 0.829
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 172
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

3660.867 2672.321 1.3699 0.172497 -1613.90 8935.633
0.897 0.060 15.0141 0.000000 0.779 1.015

-2.756 0.221 -12.4533 0.000000 -3.193 -2.319  
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dB10-38T Footwall Accelerometer and Geophone 
 (KBGM-dB10-38T FW Acc-Geo)
Dep. Var. : PPA -- R = 0.581
Level of confidence: 95.0% ( alpha=0.050)

Estimate Standard
error

t-value
df = 316

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

2028.367 856.6829 2.3677 0.018501 342.8438 3713.890
0.609 0.0786 7.7485 0.000000 0.4545 0.764

-1.558 0.1255 -12.4115 0.000000 -1.8049 -1.311  
 (KBGM-dB10-38T FW Acc-Geo)
Dep. Var. : EDW-tot -- R = 0.384
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 316
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

377.7617 549.2684 0.68775 0.492112 -702.924 1458.447
1.827 0.382 4.78971 0.000003 1.077 2.578

-2.076 0.332 -6.24380 0.000000 -2.730 -1.422  
 (KBGM-dB10-38T FW Acc-Geo)
Dep. Var. : MNS -- R = 0.514
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 316
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

15.99994 10.65218 1.50203 0.134087 -4.95822 36.95810
1.189 0.155 7.69166 0.000000 0.885 1.493

-1.300 0.166 -7.82497 0.000000 -1.627 -0.974  
 
 

dB10-38T Footwall Accelerometer 
 (KBGM-dB10-38T FW Acc)
Dep. Var. : PPA -- R = 0.549
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 164
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

716.7407 447.5084 1.60163 0.111163 -166.880 1600.362
0.700 0.117 5.96549 0.000000 0.468 0.932

-1.285 0.197 -6.54097 0.000000 -1.673 -0.897  
 (KBGM-dB10-38T FW Acc)
Dep. Var. : EDW-tot -- R = 0.376
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 164
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

109.9562 170.4444 0.64511 0.519754 -226.592 446.5046
1.381 0.375 3.68605 0.000309 0.641 2.120

-0.792 0.454 -1.74346 0.083128 -1.689 0.105  
 (KBGM-dB10-38T FW Acc)
Dep. Var. : MNS -- R = 0.512
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 164
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

4.036989 3.587627 1.12525 0.262126 -3.04690 11.12088
1.130 0.197 5.74272 0.000000 0.741 1.518

-0.652 0.257 -2.53909 0.012045 -1.159 -0.145  
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dB10-38T Footwall Geophone 
(KBGM-dB10-38T FW Geo)
Dep. Var. : PPV -- R = 0.589
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 149
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

325.7481 229.6404 1.41851 0.158129 -128.024 779.5205
0.615 0.083 7.39557 0.000000 0.451 0.780

-1.265 0.236 -5.36880 0.000000 -1.730 -0.799 
 (KBGM-dB10-38T FW Geo)
Dep. Var. : EDWtot -- R = 0.599
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 149
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

264.9772 278.5053 0.95143 0.342929 -285.353 815.3074
1.654 0.253 6.52507 0.000000 1.153 2.154

-2.150 0.436 -4.92637 0.000002 -3.012 -1.287 
(KBGM-dB10-38T FW Geo)
Dep. Var. : MNS -- R = 0.626
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 149
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

172.4608 111.5108 1.54658 0.124085 -47.8860 392.8075
0.576 0.073 7.90025 0.000000 0.432 0.721

-1.315 0.216 -6.09364 0.000000 -1.741 -0.889  
 
 
 

dB10-38T Hangingwall Accelerometer and Geophone 
(KBGM-dB10-38T HW Acc-Geo)
Dep. Var. : PPA - R = 0.486
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 216
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

3208.022 2989.378 1.07314 0.284406 -2684.06 9100.108
0.440 0.084 5.24405 0.000000 0.275 0.605

-1.618 0.279 -5.81019 0.000000 -2.167 -1.069  
(KBGM-dB10-38T HW Acc-Geo)
Dep. Var. : EDW-tot -- R = 0.591
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 216
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

0.094020 0.115309 0.815381 0.415753 -0.133254 0.321294
1.220 0.170 7.157385 0.000000 0.884 1.556
0.329 0.319 1.033797 0.302387 -0.299 0.957  

(KBGM-dB10-38T HW Acc-Geo)
Dep. Var. : MNS -- R = 0.614
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 216
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

0.356423 0.241264 1.477316 0.141047 -0.119110 0.831955
0.633 0.065 9.745984 0.000000 0.505 0.761
0.255 0.193 1.320201 0.188165 -0.126 0.635  
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dB10-38T Hangingwall Accelerometer 
(KBGM-dB10-38T HW Acc)
Dep. Var. : PPV -- R = 0.569
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 109
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

228.9140 284.4334 0.80481 0.422683 -334.824 792.6517
0.530 0.098 5.42997 0.000000 0.337 0.724

-1.479 0.391 -3.78371 0.000253 -2.253 -0.704  
 (KBGM-dB10-38T HW Acc)
Dep. Var. : EDW-tot -- R = 0.588
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 109
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

0.76734 1.488664 0.51545 0.607281 -2.18315 3.717820
1.88 0.359 5.24266 0.000001 1.171 2.595

-1.41 0.653 -2.16734 0.032385 -2.708 -0.121  
(KBGM-dB10-38T HW Acc)
Dep. Var. : MNS -- R = 0.581
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 109
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

25.37605 27.79999 0.91281 0.363358 -29.7226 80.47473
0.536 0.087 6.16841 0.000000 0.364 0.708

-1.071 0.343 -3.12246 0.002297 -1.751 -0.391  
 
 
 

dB10-38T Hangingwall Geophone 
 (KBGM-dB10-38T HW Geo)
Dep. Var. : PPV -- R = 0.669
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 104
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

5339.351 8053.177 0.66301 0.508790 -10630.4 21309.10
0.487 0.075 6.52829 0.000000 0.339 0.635

-2.059 0.436 -4.72080 0.000007 -2.924 -1.194  
 (KBGM-dB10-38T HW Geo)
Dep. Var. : EDWtot -- R = 0.760
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 104
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

1966.394 3715.991 0.52917 0.597815 -5402.56 9335.344
1.291 0.188 6.85877 0.000000 0.918 1.664

-2.588 0.586 -4.41545 0.000025 -3.750 -1.425  
(KBGM-dB10-38T HW Geo)
Dep. Var. : MNS -- R = 0.811
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 104
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

225.6413 245.1053 0.92059 0.359395 -260.412 711.6943
0.684 0.066 10.33664 0.000000 0.553 0.815

-1.633 0.315 -5.18182 0.000001 -2.258 -1.008  
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A9.5 Cannington Mine Individual Regression Results: 22gC6HL 

22gC6HL Northeast Wall-240mLv Geophones 
(Cann 22gC6 NE-240 Geo)
Dep. Var. : PPV -- R = 0.736
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 560
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

2544.179 878.8927 2.8948 0.003942 817.8495 4270.508
0.397 0.0487 8.1388 0.000000 0.301 0.492

-1.575 0.0739 -21.3069 0.000000 -1.721 -1.430  
 (Cann 22gC6 NE-240 Geo)
Dep. Var. : EDWtot -- R = 0.679
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 560
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

862.0171 612.8098 1.4067 0.160082 -341.669 2065.704
1.393 0.118 11.7945 0.000000 1.161 1.625

-2.106 0.131 -16.0915 0.000000 -2.363 -1.849  
(Cann 22gC6 NE-240 Geos)
Dep. Var. : MNS -- R = 0.760 
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 560
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

519.8647 151.4868 3.4317 0.000644 222.3129 817.4165
0.396 0.042 9.5446 0.000000 0.315 0.478

-1.433 0.062 -23.0362 0.000000 -1.555 -1.311  
 

22gC6HL Northwest Wall Accelerometer and Geophone 
 (Cann 22gC6 NW Acc-Geo)
Dep. Var. : PPA -- R = 0.760
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 437
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

905225.2 379009.9 2.3884 0.017346 160316.3 1650134
0.204 0.060 3.3870 0.000771 0.086 0.32

-2.814 0.106 -26.6459 0.000000 -3.022 -2.61  
 (Cann 22gC6 NW Acc-Geo)
Dep. Var. : EDW-tot -- R = 0.503
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 437
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

1386.467 1233.828 1.12371 0.261752 -1038.51 3811.440
1.169 0.141 8.27951 0.000000 0.892 1.447

-1.878 0.199 -9.45871 0.000000 -2.268 -1.487  
(Cann 22gC6 NW Acc-Geo)
Dep. Var. : MNS -- R = 0.563
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 437
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

62.95069 27.30386 2.3056 0.021603 9.28747 116.6139
0.687 0.064 10.7256 0.000000 0.561 0.812

-1.190 0.109 -10.9255 0.000000 -1.404 -0.976  
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22gC6HL Northwest Wall Accelerometer 
Cann 22gC6 NW Acc
Dep. Var. : PPV -- R = 0.767
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 165
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

54744.48 40632.27 1.3473 0.179726 -25481.7 134970.7
0.439 0.095 4.5976 0.000008 0.250 0.627

-2.925 0.200 -14.5910 0.000000 -3.321 -2.529  
 (Cann 22gC6 NW Acc)
Dep. Var. : EDW-tot -- R = 0.767
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 165
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

3707549 3994990 0.9280 0.354737 -4180342 11595440
0.756 0.125 6.0637 0.000000 0.510 1.002

-4.298 0.348 -12.3543 0.000000 -4.985 -3.611  
 (Cann 22gC6 NW Acc)
Dep. Var. : MNS -- R = 0.775
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 165
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

9027.719 6022.807 1.4989 0.135805 -2863.99 20919.42
0.418 0.086 4.8383 0.000003 0.248 0.589

-2.691 0.178 -15.1226 0.000000 -3.042 -2.340  
 

 
22gC6HL Northwest Wall Geophone 

 (Cann 22gC6 NW Geo)
Dep. Var. : PPV -- R = 0.783
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 269
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

18763.95 9456.630 1.9842 0.048248 145.5331 37382.38
0.334 0.050 6.6992 0.000000 0.236 0.432

-2.101 0.127 -16.5935 0.000000 -2.350 -1.851  
(Cann 22gC6 NW Geo)
Dep. Var. : EDWtot -- R = 0.536
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 269
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

3376.385 5127.045 0.65854 0.510752 -6717.85 13470.62
1.213 0.210 5.77792 0.000000 0.800 1.627

-2.102 0.337 -6.24340 0.000000 -2.765 -1.439  
 (Cann 22gC6 NW Geo)
Dep. Var. : MNS -- R = 0.690
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 269
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

376.1976 225.2813 1.6699 0.096102 -67.3412 819.7363
0.611 0.067 9.1110 0.000000 0.479 0.743

-1.563 0.148 -10.5683 0.000000 -1.854 -1.272  
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A9.6 Cannington Mine Individual Regression Results: 24jC6HL 

24jC6HL 220mLv Northeast Wall Geophone 
 (Cann 24jC6 220 NE Geo)
Dep. Var. : PPA -- R = 0.721
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 88

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

4290.125 2630.350 1.63101 0.106462 -937.143 9517.393
0.553 0.148 3.74744 0.000319 0.260 0.846

-1.537 0.164 -9.35502 0.000000 -1.864 -1.210
(Cann 24jC6 220 NE Geo)
Dep. Var. : EDW-tot -- R = 0.480
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 88

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

555.2835 799.2412 0.69476 0.489034 -1033.04 2143.607
1.433 0.424 3.38118 0.001078 0.591 2.275

-1.737 0.441 -3.93414 0.000166 -2.614 -0.859
 (Cann 24jC6 220 NE Geo)
Dep. Var. : MNS -- R = 0.616
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 88

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

97.25710 61.06208 1.59276 0.114800 -24.0909 218.6051
0.660 0.151 4.37267 0.000034 0.360 0.960

-1.144 0.175 -6.52871 0.000000 -1.493 -0.796  

24jC6HL 220mLv Southeast Wall Accelerometer and Geophone
(Cann 24jC6 220 SE Acc-Geo)
Dep. Var. : PPA -- R = 0.780
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 144
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

245290.8 146155.8 1.6783 0.095461 -43597.1 534178.8
-0.017 0.116 -0.1488 0.881953 -0.247 0.212
-2.248 0.175 -12.8738 0.000000 -2.593 -1.903

 (Cann 24jC6 220 SE Acc-Geo)
Dep. Var. : EDWtot -- R = 0.816
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 144
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

838.7918 6768371 0.000124 0.999901 -13377355 13379033
33.4548 4059 0.008242 0.993435 -7989 8056

-61.4081 3791 -0.016200 0.987097 -7554 7431
 (Cann 24jC6 220 SE Acc-Geo)
Dep. Var. : MNS -- R = 0.719
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 144
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

6406.943 4368.974 1.4665 0.144702 -2228.66 15042.55
0.462 0.133 3.4648 0.000699 0.199 0.726

-2.428 0.202 -12.0476 0.000000 -2.826 -2.029 
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24jC6HL 220mLv Southeast Wall Accelerometer
 (Cann 24jC6 220 SE Acc)
Dep. Var. : PPA -- R = 0.726
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 62

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

127488.9 135252.1 0.94260 0.349543 -142876 397854.0
-0.027 0.183 -0.14977 0.881433 -0.393 0.338
-1.939 0.332 -5.83990 0.000000 -2.603 -1.275

 (Cann 24jC6 220 SE Acc)
Dep. Var. : EDWtot -- R = 0.813
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 62

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1702.316 24008799 0.000071 0.999944 -47991203 47994607
33.801 7255 0.004659 0.996298 -14469 14536

-62.412 6776 -0.009211 0.992680 -13607 13482
 (Cann 24jC6 220 SE Acc)
Dep. Var. : MNS -- R = 0.715
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 62

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

35719.58 55567.41 0.64282 0.522714 -75358.1 146797.2
0.399 0.229 1.74082 0.086675 -0.059 0.856

-3.091 0.505 -6.11868 0.000000 -4.101 -2.081  

 

24jC6HL 220mLv Southeast Wall Geophone
 (Cann 24jC6 220 SE Geo)
Dep. Var. : PPA -- R = 0.664
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 79

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

110081.0 124960.3 0.88093 0.381029 -138646 358808.4
0.086 0.123 0.70386 0.483592 -0.158 0.331

-2.150 0.385 -5.58207 0.000000 -2.917 -1.383
 (Cann 24jC6 220 SE Geo)
Dep. Var. : EDWtot -- R = 0.620
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 79

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

176918.1 459934.1 0.38466 0.701523 -738558 1092394
1.167 0.232 5.03745 0.000003 0.706 1.628

-3.391 0.897 -3.78031 0.000303 -5.176 -1.605
 (Cann 24jC6 220 SE Geo)
Dep. Var. : MNS -- R = 0.658
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 79

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

701.7333 586.2467 1.19699 0.234889 -465.162 1868.628
0.545 0.108 5.04030 0.000003 0.330 0.761

-1.695 0.272 -6.22630 0.000000 -2.237 -1.153  
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24jC6HL 220mLv Southwest Wall Accelerometer and Geophone
 (Cann 24jC6 220 SW Acc-Geo)
Dep. Var. : PPA -- R = 0.752
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 159
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

1368057 1065586 1.2839 0.201061 -736470 3472585
-0.165 0.101 -1.6399 0.103004 -0.364 0.034
-2.468 0.204 -12.0714 0.000000 -2.871 -2.064

 (Cann 24jC6 220 SW Acc-Geo)
Dep. Var. : EDWtot -- R = 0.553
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 159
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

20917733 38030600 0.55002 0.583075 -54192558 96028024
-0.216 0.213 -1.01409 0.312081 -0.637 0.205
-2.968 0.483 -6.14837 0.000000 -3.922 -2.015

 (Cann 24jC6 220 SW Acc-Geo)
Dep. Var. : MNS -- R = 0.654
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 159
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

24199.90 18480.63 1.3095 0.192263 -12299.3 60699.08
-0.115 0.108 -1.0624 0.289668 -0.329 0.099
-1.976 0.197 -10.0470 0.000000 -2.364 -1.588 

 

24jC6HL 220mLv Southwest Wall Accelerometer
 (Cann 24jC6 220 SW Acc)
Dep. Var. : PPA -- R = 0.662
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 76

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

588001.1 746723.6 0.78744 0.433472 -899228 2075230
-0.136 0.142 -0.95848 0.340858 -0.420 0.147
-2.174 0.352 -6.16728 0.000000 -2.876 -1.472

(Cann 24jC6 220 SW Acc)
Dep. Var. : EDWtot -- R = 0.453
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 76

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

4150207 11628791 0.35689 0.722163 -19010538 27310952
-0.112 0.303 -0.36829 0.713679 -0.716 0.492
-2.478 0.773 -3.20445 0.001979 -4.019 -0.938

 (Cann 24jC6 220 SW Acc)
Dep. Var. : MNS -- R = 0.585
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 76

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

37972.66 54023.97 0.70289 0.484275 -69625.4 145570.7
-0.216 0.163 -1.32410 0.189438 -0.540 0.109
-2.003 0.400 -5.01110 0.000003 -2.798 -1.207  
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24jC6HL 220mLv Southwest Wall Geophone
(Cann 24jC6 220 SW Geo)
Dep. Var. : PPV -- R = 0.480
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 80

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

475.0084 659.9982 0.71971 0.473800 -838.430 1788.447
0.477 0.127 3.74689 0.000337 0.223 0.730

-1.166 0.379 -3.07995 0.002837 -1.919 -0.413
(Cann 24jC6 220 SW Geo)
Dep. Var. : EDWtot -- R = 0.341
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 80

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

380.8502 1625.559 0.23429 0.815359 -2854.12 3615.816
1.151 0.476 2.41885 0.017840 0.204 2.098

-1.327 1.066 -1.24546 0.216597 -3.448 0.794
 (Cann 24jC6 220 SW Geo)
Dep. Var. : MNS -- R = 0.454
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 80

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

33.27337 51.29889 0.64862 0.518443 -68.8147 135.3614
0.606 0.151 4.01919 0.000131 0.306 0.906

-0.759 0.416 -1.82551 0.071655 -1.586 0.068  

 

24jC6HL 200mLv Northeast Wall Accelerometer and Geophone
(Cann 24jC6 200 NE Acc-Geo)
Dep. Var. : PPA -- R = 0.828
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 178
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

3052905 2246952 1.3587 0.175965 -1381187 7486996
-0.579 0.122 -4.7392 0.000004 -0.821 -0.338
-2.266 0.132 -17.1242 0.000000 -2.527 -2.005

(Cann 24jC6 200 NE Acc-Geo)
Dep. Var. : EDWtot -- R = 0.783
Level of confidence: 95.0% ( alpha=0.050)

Estimate Standard
error

t-value
df = 178

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

3.440731E+10 5.369672E+10 0.6408 0.5225 -7.1557E+10 1.4037E+11
-1.672 0.239 -7.0035 0.0000 -2.143 -1.201
-3.720 0.304 -12.2401 0.0000 -4.319 -3.120

(Cann 24jC6 200 NE Acc-Geo)
Dep. Var. : MNS -- R = 0.797
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 178
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

222917.4 155512.7 1.4334 0.153488 -83968.3 529803.1
-0.644 0.116 -5.5395 0.000000 -0.873 -0.415
-2.092 0.128 -16.3464 0.000000 -2.344 -1.839  
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24jC6HL 200mLv Northeast Wall Accelerometer
(Cann 24jC6 200 NE Acc)
Dep. Var. : PPA -- R = 0.800
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 86

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

818596.6 808262.6 1.0128 0.314004 -788176 2425369
-0.441 0.160 -2.7566 0.007132 -0.760 -0.123
-1.895 0.187 -10.1590 0.000000 -2.266 -1.525

(Cann 24jC6 200 NE Acc)
Dep. Var. : EDW-tot -- R = 0.757
Level of confidence: 95.0% ( alpha=0.050)

Estimate Standard
error

t-value
df = 86

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

4.390336E+09 9.1523E+09 0.4797 0.6327 -1.3804E+10 2.2584E+10
-1.411 0.314 -4.4883 0.0000 -2.036 -0.786
-3.230 0.417 -7.7399 0.0000 -4.059 -2.400

 (Cann 24jC6 200 NE Acc)
Dep. Var. : MNS -- R = 0.778
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 86

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

209574.9 210283.2 0.99663 0.321739 -208454 627604.0
-0.714 0.159 -4.47556 0.000023 -1.030 -0.397
-1.914 0.198 -9.68337 0.000000 -2.307 -1.521  

 

24jC6HL 200mLv Northeast Wall Geophone
 (Cann 24jC6 200 NE Geo)
Dep. Var. : PPA -- R = 0.816
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 89

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

119915.0 87699.37 1.3673 0.174962 -54341.8 294171.8
-0.013 0.094 -0.1350 0.892949 -0.199 0.174
-2.097 0.179 -11.7138 0.000000 -2.452 -1.741

 (Cann 24jC6 200 NE Geo)
Dep. Var. : EDWtot -- R = 0.890
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 89

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

2499.844 2325.881 1.0748 0.285372 -2121.63 7121.320
1.264 0.156 8.1223 0.000000 0.955 1.574

-2.391 0.183 -13.0720 0.000000 -2.754 -2.028
 (Cann 24jC6 200 NE Geo)
Dep. Var. : MNS -- R = 0.835
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 89

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

131.7065 72.12172 1.8262 0.071178 -11.5978 275.0108
0.619 0.084 7.3875 0.000000 0.453 0.786

-1.348 0.122 -11.0569 0.000000 -1.590 -1.106  
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24jC6HL 200mLv Southeast Wall Accelerometer and Geophone
 (Cann 24jC6 200 SE Acc-Geo)
Dep. Var. : PPA -- R = 0.832
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 196
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

5913.674 3203.802 1.8458 0.066425 -404.676 12232.02
0.479 0.112 4.2554 0.000032 0.257 0.700

-1.489 0.071 -21.0009 0.000000 -1.629 -1.349
(Cann 24jC6 200 SE Acc-Geo)
Dep. Var. : EDWtot -- R = 0.745
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 196
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

728.0696 606.2843 1.2009 0.231250 -467.609 1923.748
1.117 0.175 6.3934 0.000000 0.772 1.461

-1.403 0.101 -13.8545 0.000000 -1.602 -1.203
 (Cann 24jC6 200 SE Acc-Geo)
Dep. Var. : MNS -- R = 0.773
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 196
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

20.25011 9.354335 2.1648 0.031613 1.802043 38.69818
0.739 0.092 8.0492 0.000000 0.558 0.920

-0.813 0.061 -13.2256 0.000000 -0.934 -0.692  

 

24jC6HL 200mLv Southeast Wall Accelerometer
 (Cann 24jC6 200 SE Acc)
Dep. Var. : PPA -- R = 0.818
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 96

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

3613.837 2733.473 1.3221 0.189287 -1812.06 9039.739
0.516 0.154 3.3374 0.001204 0.209 0.822

-1.315 0.108 -12.1890 0.000000 -1.530 -1.101
 (Cann 24jC6 200 SE Acc)
Dep. Var. : EDWtot -- R = 0.749
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 96

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1332.929 1689.199 0.78909 0.432004 -2020.11 4685.963
1.051 0.263 3.99278 0.000128 0.528 1.573

-1.572 0.175 -8.96841 0.000000 -1.920 -1.224
 (Cann 24jC6 200 SE Acc)
Dep. Var. : MNS -- R = 0.810
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 96

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

41.25986 28.40950 1.4523 0.149672 -15.1326 97.65228
0.678 0.138 4.9049 0.000004 0.404 0.953

-1.036 0.096 -10.8072 0.000000 -1.226 -0.846  
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24jC6HL 200mLv Southeast Wall Geophone
 (Cann 24jC6 200 SE Geo)
Dep. Var. : PPV -- R = 0.846
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 97

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

262.6313 151.6477 1.7319 0.086479 -38.3473 563.6100
0.709 0.096 7.3832 0.000000 0.519 0.900

-1.213 0.110 -11.0564 0.000000 -1.431 -0.996
 (Cann 24jC6 200 SE Geo)
Dep. Var. : EDWtot -- R = 0.798
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 97

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

2363.629 2414.727 0.97884 0.330094 -2428.93 7156.193
1.206 0.183 6.58731 0.000000 0.843 1.569

-1.855 0.213 -8.72145 0.000000 -2.277 -1.433
(Cann 24jC6 200 SE Geo)
Dep. Var. : MNS -- R = 0.828
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 97

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

57.80581 33.38355 1.73157 0.086530 -8.45129 124.0629
0.687 0.094 7.30001 0.000000 0.500 0.873

-1.026 0.108 -9.48623 0.000000 -1.241 -0.812  

 

24jC6HL 200mLv Southwest Wall Accelerometer and Geophone
(Cann 24jC6 200 SW Acc-Geo)
Dep. Var. : PPA -- R = 0.517
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 199
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

8267.647 8728.591 0.94719 0.344690 -8944.76 25480.05
0.634 0.188 3.37107 0.000899 0.263 1.006

-1.510 0.229 -6.60400 0.000000 -1.961 -1.059
 (Cann 24jC6 200 SW Acc-Geo)
Dep. Var. : EDWtot -- R = 0.366
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 199
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

2160.352 3813.697 0.56647 0.571711 -5360.09 9680.797
1.019 0.312 3.26303 0.001297 0.403 1.635

-1.147 0.373 -3.07743 0.002382 -1.882 -0.412
 (Cann 24jC6 200 SW Acc-Geo)
Dep. Var. : MNS -- R = 0.503
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 199
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

48.02281 44.76834 1.07270 0.284707 -40.2584 136.3040
0.830 0.162 5.12375 0.000001 0.511 1.150

-0.934 0.194 -4.80898 0.000003 -1.317 -0.551  
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24jC6HL 200mLv Southeast Wall Accelerometer
 (Cann 24jC6 200 SW Acc)
Dep. Var. : PPV -- R = 0.519
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 98

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

0.206165 0.328916 0.626801 0.532247 -0.446558 0.858888
1.229 0.225 5.461824 0.000000 0.783 1.676
0.769 0.362 2.123458 0.036234 0.050 1.488

 (Cann 24jC6 200 SW Acc)
Dep. Var. : EDWtot -- R = 0.467
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 98

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

0.145899 0.355090 0.410879 0.682058 -0.558765 0.850563
1.542 0.349 4.422998 0.000025 0.850 2.234
1.482 0.537 2.759441 0.006910 0.416 2.547

 (Cann 24jC6 200 SW Acc)
Dep. Var. : MNS -- R = 0.529
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 98

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

0.156333 0.230995 0.676780 0.500140 -0.302070 0.614735
1.172 0.208 5.620161 0.000000 0.758 1.585
0.594 0.337 1.762833 0.081046 -0.075 1.262  

 

24jC6HL 200mLv Southeast Wall Geophone
 (Cann 24jC6 200 SW Geo)
Dep. Var. : PPV -- R = 0.470
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 98

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

94.48607 128.4055 0.73584 0.463585 -160.330 349.3026
0.683 0.160 4.27693 0.000044 0.366 0.999

-0.797 0.348 -2.28971 0.024183 -1.488 -0.106
 (Cann 24jC6 200 SW Geo)
Dep. Var. : EDWtot -- R = 0.477
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 98

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

44.65285 107.8464 0.41404 0.679749 -169.365 258.6706
1.467 0.287 5.11670 0.000002 0.898 2.036

-0.932 0.629 -1.48079 0.141872 -2.180 0.317
 (Cann 24jC6 200 SW Geo)
Dep. Var. : MNS -- R = 0.513
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 98

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

20.82148 24.60043 0.84639 0.399399 -27.9973 69.64024
0.707 0.137 5.14424 0.000001 0.434 0.980

-0.638 0.302 -2.11641 0.036844 -1.237 -0.040  
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24jC6HL 180mLv Southeast Wall Geophone
 (Cann 24jC6 180 SE Geo)
Dep. Var. : PPV -- R = 0.745
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 38

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

836.5110 1821.968 0.45912 0.648760 -2851.87 4524.893
0.764 0.289 2.64568 0.011792 0.179 1.348

-1.688 0.453 -3.72304 0.000636 -2.606 -0.770
 (Cann 24jC6 180 SE Geo)
Dep. Var. : EDWtot - R = 0.747
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 38

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

0.19573 0.951382 0.20574 0.838096 -1.73024 2.121705
3.954 1.118 3.53792 0.001082 1.692 6.217

-2.837 1.014 -2.79892 0.008011 -4.889 -0.785
 (Cann 24jC6 180 SE Geo)
Dep. Var. : MNS -- R = 0.810
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 38

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

7.74315 13.84883 0.55912 0.579361 -20.2923 35.77863
1.263 0.269 4.68983 0.000035 0.718 1.808

-1.134 0.342 -3.31681 0.002012 -1.826 -0.442  

 

24jC6HL 180mLv Southwest Wall Accelerometer and Geophone
 (Cann 24jC6 180 SW Acc-Geo)
Dep. Var. : PPV -- R = 0.892
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 79

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

6444.327 6275.746 1.0269 0.307619 -6047.23 18935.89
0.510 0.164 3.1106 0.002597 0.183 0.836

-1.836 0.130 -14.1350 0.000000 -2.095 -1.578
 (Cann 24jC6 180 SW Acc-Geo)
Dep. Var. : EDWtot -- R = 0.977
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 79

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

8419694 7603127 1.1074 0.271482 -6713952 23553340
0.731 0.152 4.8030 0.000007 0.428 1.034

-3.301 0.143 -23.0421 0.000000 -3.586 -3.016
 (Cann 24jC6 180 SW Acc-Geo)
Dep. Var. : MNS -- R = 0.932
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 79

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

2463.026 2275.408 1.0825 0.282344 -2066.06 6992.113
0.702 0.159 4.4140 0.000032 0.39 1.019

-1.999 0.117 -17.1128 0.000000 -2.23 -1.766  
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24jC6HL 180mLv Southwest Wall Accelerometer
 (Cann 24jC6 180 SW Acc)
Dep. Var. : PPV - R = 0.905
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 38

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

519.4789 624.9695 0.83121 0.411049 -745.706 1784.664
0.808 0.199 4.05763 0.000238 0.405 1.210

-1.350 0.164 -8.24763 0.000000 -1.681 -1.018
 (Cann 24jC6 180 SW Acc)
Dep. Var. : EDWtot -- R = 0.983
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 38

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1336665 1478768 0.9039 0.371741 -1656943 4330274
0.929 0.184 5.0527 0.000011 0.557 1.301

-2.899 0.171 -16.9293 0.000000 -3.245 -2.552
 (Cann 24jC6 180 SW Acc)
Dep. Var. : MNS -- R = 0.945
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 38

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

260.5938 299.5277 0.8700 0.389755 -345.768 866.9560
0.971 0.195 4.9865 0.000014 0.577 1.365

-1.567 0.148 -10.5876 0.000000 -1.867 -1.268  

 

24jC6HL 180mLv Southwest Wall Geophone
 (Cann 24jC6 180 SW Geo)
Dep. Var. : PPV -- R = 0.890
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 38

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1251.994 1220.136 1.02611 0.311328 -1218.04 3722.030
0.487 0.112 4.34855 0.000099 0.260 0.714

-1.494 0.185 -8.07429 0.000000 -1.869 -1.120
(Cann 24jC6 180 SW Geo)
Dep. Var. : EDWtot -- R = 0.858
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 38

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

419.7394 1513.672 0.27730 0.783054 -2644.53 3484.008
1.831 0.540 3.39048 0.001640 0.738 2.924

-2.267 0.496 -4.56614 0.000051 -3.272 -1.262
 (Cann 24jC6 180 SW Geo)
Dep. Var. : MNS -- R = 0.901
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 38

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

79.61594 113.8885 0.69907 0.488766 -150.939 310.1712
1.032 0.188 5.47473 0.000003 0.650 1.413

-1.568 0.239 -6.56142 0.000000 -2.051 -1.084  
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24jC6HL Cleaner 220-200-180 Southwest Wall Acc’s and Geo’s
 (Cann 24jC6 CR 220-200-180 SW Acc-Geo)
Dep. Var. : PPA -- R = 0.682
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 78

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1806.419 2077.959 0.86932 0.387337 -2330.48 5943.316
0.537 0.228 2.35613 0.020978 0.083 0.991

-1.181 0.156 -7.58942 0.000000 -1.491 -0.871
Cann 24jC6 CR 220-200-180 SW Acc-Geo
Dep. Var. : EDWtot -- R = 0.633
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 78

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1972.509 5448.168 0.36205 0.718294 -8873.96 12818.98
1.230 0.538 2.28733 0.024887 0.159 2.301

-1.931 0.359 -5.37204 0.000001 -2.646 -1.215
(Cann 24jC6 CR 220-200-180 SW Acc-Geo)
Dep. Var. : MNS -- R = 0.645
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 78

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

102.8963 119.4772 0.86122 0.391756 -134.965 340.7572
0.595 0.232 2.57084 0.012048 0.134 1.056

-1.049 0.149 -7.03815 0.000000 -1.346 -0.752  

 

24jC6HL Cleaner 220mLv Southwest Wall Acc and Geo
(Cann 24jC6 CR 220 SW Acc-Geo)
Dep. Var. : PPA -- R = 0.959
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 12

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

88005.95 79820.33 1.10255 0.291844 -85907.6 261919.5
0.936 0.190 4.93184 0.000347 0.523 1.350

-3.197 0.418 -7.63973 0.000006 -4.109 -2.285
(Cann 24jC6 CR 220 SW Acc-Geo)
Dep. Var. : EDWtot -- R = 0.915
Level of confidence: 95.0% ( alpha=0.050)

Estimate Standard
error

t-value
df = 12

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1.565309E+09 5.7580E+09 0.2719 0.7904 -1.0980E+101.411085E+10
0.864 0.473 1.8280 0.0925 -0.166 1.893

-6.364 1.553 -4.0986 0.0015 -9.747 -2.981
(Cann 24jC6 CR 220 SW Acc-Geo)
Dep. Var. : MNS -- R = 0.929
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 12

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

11050.39 10897.17 1.01406 0.330564 -12692.5 34793.28
0.421 0.171 2.45756 0.030173 0.048 0.7934

-2.445 0.374 -6.53556 0.000028 -3.260 -1.6300  
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24jC6HL Cleaner 200mLv Southwest Wall Acc and Geo
 (Cann 24jC6 CR 200 SW Acc-Geo)
Dep. Var. : PPA -- R = 0.677
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 32

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1763.906 3046.997 0.57890 0.566710 -4442.62 7970.435
0.519 0.331 1.56712 0.126923 -0.155 1.193

-1.141 0.281 -4.05959 0.000296 -1.713 -0.568
 (Cann 24jC6 CR 200 SW Acc-Geo)
Dep. Var. : EDWtot -- R = 0.624
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 32

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

1503.966 7302.525 0.20595 0.838133 -13370.8 16378.72
1.375 0.931 1.47726 0.149380 -0.521 3.270

-2.158 0.801 -2.69407 0.011147 -3.789 -0.526
 (Cann 24jC6 CR 200 SW Acc-Geo)
Dep. Var. : MNS -- R = 0.639
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 32

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

42.19436 85.78748 0.49185 0.626184 -132.549 216.9377
0.766 0.392 1.95211 0.059722 -0.033 1.565

-1.011 0.284 -3.55979 0.001184 -1.589 -0.432  

 

24jC6HL Cleaner 180mLv Southwest Wall Acc and Geo
Cann 24jC6 CR 180 SW Acc-Geo)
Dep. Var. : PPA -- R = 0.729
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 28

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

38.40883 112.6602 0.34093 0.735704 -192.365 269.1827
2.844 0.871 3.26506 0.002887 1.060 4.628

-3.468 0.713 -4.86632 0.000040 -4.928 -2.008
(Cann 24jC6 CR 180 SW Acc-Geo)
Dep. Var. : EDWtot -- R = 0.861
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 28

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

2546.277 5802.253 0.43884 0.664143 -9339.10 14431.65
3.268 0.860 3.79898 0.000718 1.506 5.031

-5.202 0.973 -5.34817 0.000011 -7.195 -3.210
(Cann 24jC6 CR 180 SW Acc-Geo)
Dep. Var. : MNS -- R = 0.713
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 28

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

28.18264 71.55053 0.39388 0.696650 -118.382 174.7472
2.230 0.749 2.97740 0.005940 0.696 3.764

-3.150 0.625 -5.03776 0.000025 -4.431 -1.869  
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A9.7 Cannington Mine Individual Regression Results: 52h09HL 

52h09HL Footwall Accelerometer and Geophone 
(Cann 52h09 FW Acc-Geo)
Dep. Var. : PPA -- R = 0.699
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 196
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

127758.0 67105.28 1.9038 0.058395 -4583.11 260099.1
-0.495 0.113 -4.3674 0.000020 -0.719 -0.272
-1.746 0.113 -15.4795 0.000000 -1.968 -1.524  

(Cann 52h09 FW Acc-Geo)
Dep. Var. : EDWtot -- R = 0.357
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 196
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

2446.858 2075.150 1.17912 0.239779 -1645.63 6539.347
0.253 0.190 1.33083 0.184791 -0.122 0.627

-1.072 0.200 -5.35761 0.000000 -1.466 -0.677  
 (Cann 52h09 FW Acc-Geo)
Dep. Var. : MNS -- R = 0.433
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 196
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

80.20311 33.35209 2.40474 0.017114 14.42809 145.9781
0.183 0.088 2.07440 0.039349 0.009 0.357

-0.701 0.108 -6.52050 0.000000 -0.914 -0.489  
 
 

52h09HL Footwall Accelerometer 
 (Cann 52h09 FW Acc)
Dep. Var. : PPA -- R = 0.791
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 96

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

912890.1 674138.5 1.3542 0.178865 -425264 2251044
-0.882 0.156 -5.6663 0.000000 -1.192 -0.573
-2.167 0.171 -12.6962 0.000000 -2.505 -1.828  

 (Cann 52h09 FW Acc)
Dep. Var. : EDWtot -- R = 0.621
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 96

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

260641.9 320247.9 0.81388 0.417730 -375045 896329.1
-0.636 0.264 -2.40999 0.017858 -1.159 -0.1121
-2.120 0.276 -7.68591 0.000000 -2.667 -1.5723  

 (Cann 52h09 FW Acc)
Dep. Var. : MNS -- R = 0.712
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 96

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

754.0316 444.5387 1.6962 0.093086 -128.371 1636.434
-0.156 0.126 -1.2447 0.216262 -0.406 0.093
-1.386 0.137 -10.1147 0.000000 -1.658 -1.114  
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52h09HL Footwall Geophone 
(Cann 52h09 FW Geo)
Dep. Var. : PPV -- R = 0.621
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 97

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

3394.900 2104.377 1.61326 0.109937 -781.705 7571.506
0.171 0.116 1.46705 0.145598 -0.060 0.402

-1.538 0.218 -7.07264 0.000000 -1.970 -1.107  
 (Cann 52h09 FW Geo)
Dep. Var. : EDWtot -- R = 0.599
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 97

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

26460.64 26579.03 0.99555 0.321948 -26291.4 79212.65
1.089 0.254 4.28971 0.000042 0.585 1.592

-3.157 0.498 -6.33407 0.000000 -4.146 -2.168  
 (Cann 52h09 FW Geo)
Dep. Var. : MNS -- R = 0.626
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 97

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

214.8625 105.1678 2.04304 0.043760 6.13345 423.5916
0.376 0.095 3.94952 0.000149 0.187 0.565

-1.228 0.179 -6.84209 0.000000 -1.584 -0.872 
 
 

52h09HL Hangingwall Accelerometer 
 (Cann 52h09 HW Acc)
Dep. Var. : PPV -- R = 0.561
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 98

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

9591.248 7634.883 1.25624 0.212015 -5559.93 24742.42
-0.199 0.142 -1.40633 0.162790 -0.480 0.082
-1.489 0.209 -7.11152 0.000000 -1.904 -1.073  

 (Cann 52h09 HW Acc)
Dep. Var. : EDW-tot -- R = 0.518
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 98

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

330750.7 401902.0 0.82296 0.412527 -466811 1128312
-0.373 0.226 -1.64686 0.102791 -0.822 0.076
-1.897 0.298 -6.37353 0.000000 -2.488 -1.307  

 (Cann 52h09 HW Acc)
Dep. Var. : MNS -- R = 0.576
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 98

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

2032.211 1469.882 1.38257 0.169940 -884.722 4949.144
-0.179 0.127 -1.41652 0.159794 -0.431 0.072
-1.407 0.192 -7.32191 0.000000 -1.788 -1.026  
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52h09HL Southeast Wall Accelerometer and Geophones 1 and 2 
(Cann 52h09 SE Acc-Geo1-Geo2)
Dep. Var. : PPA -- R = 0.811
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 296
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

6078.672 1974.152 3.0791 0.002271 2193.520 9963.824
0.479 0.071 6.7319 0.000000 0.339 0.619

-1.675 0.062 -27.2277 0.000000 -1.796 -1.554  
 (Cann 52h09 SE Acc-Geo1-Geo2)
Dep. Var. : EDWtot -- R = 0.709
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 296
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

9090.362 5938.215 1.5308 0.126881 -2596.11 20776.83
0.669 0.152 4.4087 0.000015 0.371 0.968

-2.000 0.114 -17.5014 0.000000 -2.225 -1.775  
(Cann 52h09 SE Acc-Geo1-Geo2)
Dep. Var. : MNS -- R = 0.771
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 296
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

129.3199 34.05718 3.7971 0.000178 62.29499 196.3448
0.493 0.056 8.7765 0.000000 0.382 0.603

-1.237 0.051 -24.1953 0.000000 -1.338 -1.137  
 
 

52h09HL Southeast Wall Accelerometer 
 (Cann 52h09 SE Acc)
Dep. Var. : PPV -- R = 0.803
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 100
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

1111.703 656.0362 1.6946 0.093268 -189.855 2413.260
0.487 0.127 3.8443 0.000213 0.236 0.739

-1.632 0.126 -12.9384 0.000000 -1.882 -1.381  
 (Cann 52h09 SE Acc)
Dep. Var. : EDWtot -- R = 0.693
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 100
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

12230.39 14681.54 0.83305 0.406804 -16897.4 41358.14
0.604 0.272 2.21913 0.028738 0.064 1.143

-2.024 0.252 -8.03182 0.000000 -2.524 -1.524  
(Cann 52h09 SE Acc)
Dep. Var. : MNS -- R = 0.797
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 100
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

221.5965 113.5210 1.9520 0.053731 -3.62587 446.8189
0.451 0.108 4.1652 0.000066 0.236 0.666

-1.453 0.111 -13.1176 0.000000 -1.673 -1.233  
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52h09HL Southeast Wall Geophones 1 and 2 
(Cann 52h09 SE Geo1-Geo2)
Dep. Var. : PPA -- R = 0.797
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 193
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

10165.49 3830.021 2.6542 0.008614 2611.419 17719.56
0.507 0.058 8.7088 0.000000 0.392 0.622

-1.898 0.099 -19.1543 0.000000 -2.094 -1.703  
(Cann 52h09 SE Geo1-Geo2)
Dep. Var. : EDWtot -- R = 0.829
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 193
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

12005.72 6433.167 1.8662 0.063527 -682.621 24694.06
1.074 0.119 9.0123 0.000000 0.839 1.310

-2.633 0.142 -18.5369 0.000000 -2.914 -2.353  
 (Cann 52h09 SE Geo1-Geo2)
Dep. Var. : MNS -- R = 0.802
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 193
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

325.4837 108.3185 3.0049 0.003010 111.8438 539.1236
0.541 0.051 10.6970 0.000000 0.441 0.641

-1.534 0.086 -17.7368 0.000000 -1.704 -1.363  
 

A9.8 Cannington Mine Individual Regression Results: 52h04HL 

52h04HL Northwest Wall Accelerometer and Geophones 1 and 2 
(Cann 52h04 NW Acc-Geo1-Geo2)
Dep. Var. : PPV -- R = 0.560
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 258
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

2178.947 1610.996 1.35255 0.177385 -993.428 5351.322
0.454 0.095 4.76446 0.000003 0.266 0.642

-1.501 0.183 -8.21378 0.000000 -1.861 -1.141  
 (Cann 52h04 NW Acc-Geo1-Geo2)
Dep. Var. : EDWtot -- R = 0.386
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 258
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

13868.76 24040.28 0.57690 0.564512 -33471.4 61208.92
0.766 0.274 2.79783 0.005533 0.227 1.305

-1.799 0.375 -4.79444 0.000003 -2.538 -1.060  
 (Cann 52h04 NW Acc-Geo1-Geo2)
Dep. Var. : MNS -- R = 0.386
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 258
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

203.5748 139.1509 1.46298 0.144690 -70.4413 477.5908
0.488 0.088 5.52442 0.000000 0.314 0.662

-1.148 0.164 -6.98968 0.000000 -1.472 -0.825  
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52h04HL Northwest Wall Accelerometer 
(Cann 52h04 NW Acc)
Dep. Var. : PPA -- R = 0.915
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 120
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

19651713 12186979 1.6125 0.109476 -4477657 43781084
0.613 0.061 10.0574 0.000000 0.492 0.734

-3.793 0.176 -21.5344 0.000000 -4.142 -3.444  
(Cann 52h04 NW Acc)
Dep. Var. : EDWtot -- R = 0.909
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 120
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

250522567 277519340 0.9027 0.368482 -298946413 799991547
1.296 0.146 8.8908 0.000000 1.007 1.584

-5.148 0.281 -18.3114 0.000000 -5.705 -4.592  
 (Cann 52h04 NW Acc)
Dep. Var. : MNS -- R = 0.890
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 120
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

54359.68 29188.82 1.8623 0.065000 -3432.15 112151.5
0.599 0.059 10.0798 0.000000 0.481 0.72

-2.755 0.146 -18.8371 0.000000 -3.044 -2.47  
 
 

52h04HL Northwest Wall Geophones 1 and 2 
(Cann 52h04 NW Geo1-Geo2)
Dep. Var. : PPA -- R = 0.835
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 135
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

80910.04 49433.93 1.6367 0.104016 -16855.1 178675.1
0.493 0.081 6.0856 0.000000 0.333 0.654

-2.529 0.177 -14.3157 0.000000 -2.879 -2.180  
 (Cann 52h04 NW Geo1-Geo2)
Dep. Var. : EDWtot -- R = 0.795
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 135
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

857010.7 1209897 0.7083 0.479959 -1535793 3249815
1.273 0.26 4.8304 0.000004 0.752 1.795

-4.245 0.32 -13.3208 0.000000 -4.875 -3.615  
(Cann 52h04 NW Geo1-Geo2)
Dep. Var. : MNS -- R = 0.814
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 135
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

1698.926 1068.081 1.5906 0.114031 -413.409 3811.262
0.588 0.090 6.5452 0.000000 0.411 0.766

-2.120 0.168 -12.6535 0.000000 -2.452 -1.789  
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52h04HL Footwall Accelerometer and Geophones 1 and 2 
 (Cann 52h04 FW Acc-Geo1-Geo2)
Dep. Var. : PPA -- R = 0.739
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 278
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

5284.066 5300.817 0.9968 0.319709 -5150.77 15718.90
0.602 0.175 3.4322 0.000690 0.257 0.947

-1.977 0.153 -12.9359 0.000000 -2.278 -1.676  
 (Cann 52h04 FW Acc-Geo1-Geo2)
Dep. Var. : EDW-tot -- R = 0.323
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 278
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

776.2358 2089.948 0.37141 0.710612 -3337.90 4890.370
0.794 0.483 1.64485 0.101130 -0.156 1.745

-1.289 0.407 -3.17063 0.001691 -2.090 -0.489  
 (Cann 52h04 FW Acc-Geo1-Geo2)
Dep. Var. : MNS -- R = 0.598
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 278
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

3.387096 2.851967 1.18763 0.235991 -2.22710 9.001290
0.824 0.136 6.08046 0.000000 0.557 1.091

-0.492 0.145 -3.38200 0.000823 -0.778 -0.206  
 
 

52h04HL Footwall Accelerometer 
 (Cann 52h04 FW Acc)
Dep. Var. : PPA -- R = 0.747
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 96

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

632945.5 1744442 0.36284 0.717525 -2829744 4095635
0.186 0.396 0.46941 0.639843 -0.601 0.973

-3.230 0.545 -5.92182 0.000000 -4.312 -2.147  
 (Cann 52h04 FW Acc)
Dep. Var. : EDW-tot -- R = 0.254
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 96

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

66615.39 527503.3 0.12628 0.899771 -980470 1113701
0.299 1.258 0.23738 0.812868 -2.199 2.797

-2.263 1.712 -1.32151 0.189473 -5.661 1.136  
 (Cann 52h04 FW Acc)
Dep. Var. : MNS -- R = 0.566
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value
df = 96

p-value Lo. Conf
Limit

Up. Conf
Limit

K
alpha
epsilon

2066.195 6068.266 0.34049 0.734230 -9979.22 14111.61
0.260 0.408 0.63825 0.524831 -0.549 1.069

-2.140 0.584 -3.66241 0.000409 -3.300 -0.980  
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52h04HL Footwall Geophones 1 and 2 
(Cann 52h04 FW Geo1-Geo2)
Dep. Var. : PPA -- R = 0.850
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 179
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

65564.76 65303.54 1.0040 0.316734 -63299.1 194428.6
0.531 0.129 4.1043 0.000062 0.276 0.786

-2.623 0.203 -12.8906 0.000000 -3.025 -2.222  
 (Cann 52h04 FW Geo1-Geo2)
Dep. Var. : EDWtot -- R = 0.723
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 179
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

732807.5 1402273 0.52259 0.601909 -2034306 3499921
0.588 0.27 2.17593 0.030871 0.055 1.122

-3.205 0.38 -8.42697 0.000000 -3.956 -2.455  
(Cann 52h04 FW Geo1-Geo2)
Dep. Var. : MNS -- R = 0.806
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 179
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

72.86444 60.47297 1.20491 0.229829 -46.4672 192.1961
0.683 0.101 6.77033 0.000000 0.484 0.882

-1.223 0.176 -6.96491 0.000000 -1.570 -0.877  
 
 

52h04HL Southeast Wall Accelerometer and Geophone 
 (Cann 52h04 SE Acc-Geo)
Dep. Var. : PPA -- R = 0.829
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 242
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

692.9389 291.8515 2.3743 0.018364 118.0455 1267.832
0.789 0.078 10.0967 0.000000 0.635 0.943

-1.523 0.076 -20.1721 0.000000 -1.672 -1.375  
(Cann 52h04 SE Acc-Geo)
Dep. Var. : EDWtot -- R = 0.547
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 242
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

10.56865 14.07681 0.75078 0.453512 -17.1601 38.29736
1.354 0.263 5.13961 0.000001 0.835 1.873

-0.906 0.145 -6.22509 0.000000 -1.192 -0.619  
 (Cann 52h04 SE Acc-Geo)
Dep. Var. : MNS -- R = 0.627
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 242
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

7.682693 3.332693 2.30525 0.021999 1.117903 14.24748
0.645 0.077 8.38890 0.000000 0.494 0.797

-0.580 0.087 -6.70536 0.000000 -0.750 -0.410  
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52h04HL Southeast Wall Accelerometer 
 (Cann 52h04 SE Acc)
Dep. Var. : PPV -- R = 0.897
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 120
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

187.7344 83.96244 2.2359 0.027205 21.49460 353.9742
0.733 0.079 9.3248 0.000000 0.577 0.889

-1.621 0.095 -17.0305 0.000000 -1.809 -1.432  
(Cann 52h04 SE Acc)
Dep. Var. : EDWtot -- R = 0.823
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 120
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

567.4199 573.6346 0.9892 0.324572 -568.337 1703.176
1.104 0.182 6.0527 0.000000 0.743 1.466

-2.363 0.212 -11.1392 0.000000 -2.783 -1.943  
 (Cann 52h04 SE Acc)
Dep. Var. : MNS -- R = 0.873
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 120
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

55.50591 22.65631 2.4499 0.015733 10.64799 100.3638
0.578 0.070 8.2700 0.000000 0.439 0.716

-1.407 0.093 -15.1800 0.000000 -1.591 -1.224 
 
 

52h04HL Southeast Wall Geophone 
 (Cann 52h04 SE Geo)
Dep. Var. : PPV -- R = 0.860
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 119
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

2209.932 1238.421 1.7845 0.076895 -242.265 4662.129
0.659 0.062 10.6014 0.000000 0.536 0.782

-1.946 0.156 -12.4380 0.000000 -2.256 -1.637  
 (Cann 52h04 SE Geo)
Dep. Var. : EDWtot -- R = 0.847
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 119
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

12368.52 14564.64 0.8492 0.397467 -16470.9 41207.96
1.406 0.167 8.4151 0.000000 1.075 1.737

-3.061 0.276 -11.1033 0.000000 -3.607 -2.515  
 (Cann 52h04 SE Geo)
Dep. Var. : MNS -- R = 0.868
Level of confidence: 95.0% ( alpha=0.050)
Estimate Standard

error
t-value

df = 119
p-value Lo. Conf

Limit
Up. Conf

Limit
K
alpha
epsilon

302.7290 146.7139 2.0634 0.041250 12.22074 593.2373
0.655 0.055 11.8651 0.000000 0.545 0.764

-1.624 0.134 -12.1508 0.000000 -1.889 -1.360  
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APPENDIX 10 : CRITICAL TENSILE PLANE STRAIN 

DAMAGE PREDICTIONS FOR STUDY STOPES 

 

A10.1   KBGM Stope dB10-38T ............................................................................. 480 
A10.2   Cannington Mine 24jC6HL ......................................................................... 483 
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A10.1 KBGM Stope dB10-38T 

A comparison was performed for KBGM stope dB10-38T between the damage 
predicted using the author’s proposed strain and energy-based approaches and the 
critical tensile plane strain model. A number of possible rock tensile strengths were 
used in the critical tensile plane strain damage predictions, as identified by various 
proposed forms of the equation in the published literature. These tensile strengths 
were defined by ratios of the UCS to �T; the values specified in the various forms of 
the critical tensile plane strain model are 10 and 15. Additionally, the value of 12 was 
selected based on the Griffith fracture criteria. To compare the static and dynamic 
conditions, both the static and dynamic Young’s Modulus were used.  
 
Two different approaches were applied for predicting the distances at which the 
values of PPVcrit were exceeded. These approaches included traditional log-log linear 
regression using cube root Scaled Distance and nonlinear multi-variable regression 
using the general charge weight scaling relationship discussed in Chapter 5. The data 
set used in both regressions was the combined data set for all monitoring orientations 
in stope dB10-38T. Figure A10.1 and A10.2 show the two different vibration 
prediction model results and the 95% upper confidence limits for both data sets.  
  

 
Figure A10.1. Log-log linear regression of KBGM dB10-38T combined data set. 

 



Appendix 10. Critical Tensile Plane Strain Damage Predictions for Study Stopes  481 

 
Figure A10.2. Nonlinear regression surface of KBGM dB10-38T combined data set. 

 

The calculated vales of PPVcrit and the predicted radius of tensile fracture (PPVcrit 
radius) and fracture extension (PPVExt radius) for the dB10-38T rock mass are shown 
in Tables A10.1 to A10.4. Tables A10.1 and A10.2 show the results for a 50kg 
charge weight. Tables A10.3 and A10.4 show the results for a 100kg charge weight. 
The differences between the tables with the same charge weight are the PPV 
prediction models (log-log linear regression of SDCubRT versus nonlinear regression 
of the charge weight scaling equation). 
 

Table A10.1. Comparisons of PPVcrit and predicted tensile fracture radii for the 
critical tensile plane strain model and nonlinear regression of PPV for a 50kg charge. 

UCS 
(MPa) 

UCS/�T �T 

(MPa) 
Vp 

(m/s) 
Est 

(GPa) 
Edyn 

(GPa) 
PPVcrit 
(mm/s) 

PPVcrit 
Radius 

(m) 

PPVExt 
Radius 

(m) 

113* 10 11 5940** 62*  1083 4.7 23.2 

113* 12 9 5940** 62*  862 6.1 30.1 

113* 15 7.5 5940** 62*  719 7.5 37.1 

113* 10 11 5940**  76** 883 5.9 29.3 

113* 12 9 5940**  76** 703 7.7 38.0 

113* 15 7.5 5940**  76** 586 9.5 46.9 

* data determined from rock testing 
** values from field measurement/calculations by the author 
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Table A10.2. Comparisons of PPVcrit and associated predicted tensile fracture radii 
using various forms of the critical tensile plane strain approach and log-log linear 
regression prediction of PPV for a 50kg charge. 

UCS 
(MPa) 

UCS/�T �T 

(MPa) 
Vp 

(m/s) 
Est 

(GPa)
Edyn 

(GPa) 
PPVcrit 
(mm/s) 

PPVcrit 
Radius  

(m) 

PPVExt 
Radius 

(m) 

113* 10 11 5940** 62*  1083 4.1 10.9 

113* 12 9 5940** 62*  862 4.8 12.8 

113* 15 7.5 5940** 62*  719 5.5 14.6 

113* 10 11 5940**  76** 883 4.8 12.6 

113* 12 9 5940**  76** 703 5.6 14.8 

113* 15 7.5 5940**  76** 586 6.4 16.8 

* data determined from rock testing 
** values from field measurement/calculations by the author 
 

Table A10.3. Comparisons of PPVcrit and associated predicted tensile fracture radii 
using various forms of the critical tensile plane strain approach and nonlinear 
regression prediction of PPV for a 100kg charge. 

UCS 
(MPa) 

UCS/�T �T 

(MPa) 
Vp 

(m/s) 
Est 

(GPa)
Edyn 

(GPa)
PPVcrit

(mm/s)
PPVcrit 
Radius  

(m) 

PPVExt 
Radius 

(m) 

113* 10 11 5940** 62*  1083 9.0 44.3 

113* 12 9 5940** 62*  862 11.7 57.6 

113* 15 7.5 5940** 62*  719 14.4 71.0 

113* 10 11 5940**  76** 883 11.4 56.0 

113* 12 9 5940**  76** 703 14.7 72.8 

113* 15 7.5 5940**  76** 586 18.2 89.8 

* data determined from rock testing 
** values from field measurement/calculations by the author 
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Table A10.4. Comparisons of PPVcrit and associated predicted tensile fracture radii 
using various forms of the critical tensile plane strain approach and log-log linear 
regression prediction of PPV for a 100kg charge. 

UCS 
(MPa) 

UCS/�T �T 

(MPa) 
Vp 

(m/s) 
Est 

(GPa) 
Edyn 

(GPa) 
PPVcrit 
(mm/s) 

PPVcrit 
Radius  

(m) 

PPVExt 
Radius 

(m) 

113* 10 11 5940** 62*  1083 5.2 13.8 

113* 12 9 5940** 62*  862 6.1 16.1 

113* 15 7.5 5940** 62*  719 6.9 18.3 

113* 10 11 5940**  76** 883 6.0 15.9 

113* 12 9 5940**  76** 703 7.0 18.6 

113* 15 7.5 5940**  76** 586 8.0 21.2 

* data determined from rock testing 
** values from field measurement/calculations by the author 
 

A10.2 Cannington Mine 24jC6HL 

The blast damage predictions for Cannington stope 24jC6HL 200mLv using the 
critical tensile plane strain model were performed for both the combined data set 
measured in all three monitored walls and for each independent wall. The only PPV 
prediction model that was applied to the data was the cube root Scaled Distance 
model. In addition to the recommended UCS/�T ratios of 10, 12, and 15, the tensile 
strength from rock testing results (13MPa) was used in the prediction of PPVcrit. The 
values of Vp used in the PPVcrit calculations reflected values measured in the author’s 
blast vibration monitoring program. 
 
Figures A10.3 to A10.6 show the log-log linear regressions of VSPPV versus 
SDCubRT for the combined data set collected on the 200mLv and the individual data 
sets collected in each wall. Significant differences between the attenuation 
behaviours can be observed for the individual wall data sets. 
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Figure A10.3. Plot of VSPPV versus cube root Scaled Distance for the 24jC6HL 
200mLv combined data set. 

 

 
Figure A10.4. Plot of VSPPV versus cube root Scaled Distance for the 24jC6HL 
200mLv Southeast wall data set. 
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Figure A10.5. Plot of VSPPV versus cube root Scaled Distance for the 24jC6HL 
200mLv Northeast wall data set. 
 

 

Figure A10.6. Plot of VSPPV versus cube root Scaled Distance for the 24jC6HL 
200mLv Southwest wall data set. 

 
Using the 95% upper confidence predictions equations for the combined or 
individual data sets and the calculated values of PPVcrit and PPVExt (0.25 PPVcrit), the 
extents of fresh tensile fracture and existing discontinuity extension were predicted. 
The material input values, PPVcrit values and the predicted damage extents are shown 
in Tables A10.5 to A10.9. The charge weights used for each set of calculations 
reflected those chosen for the damage predictions in Chapter 8. 
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Table A10.5. Comparisons of predicted PPVcrit and associated tensile fracture radii 
using various forms of the critical tensile plane strain approach and cube root Scaled 
Distance log-log linear regression prediction of all PPV data for a 50kg charge. 

UCS 
(MPa) 

UCS/�T �T 

(MPa) 
Vp 

(m/s) 
Est 

(GPa) 
Edyn 

(GPa) 
PPVcrit 
(mm/s) 

PPVcrit 
Radius 

(m) 

PPVExt 
Radius 

(m) 

209* 10 21 5600** 80*  1463 5.3 14.1 

209* 12 17 5600** 80*  1219 6.1 16.1 

209* 15 14 5600** 80*  975 7.1 18.8 

  13* 5600** 80*  910 7.5 19.7 

209 10 21 5600**  87** 1345 5.7 15.0 

209 12 17 5600**  87** 1121 6.4 17.0 

209 15 14 5600**  87** 897 7.5 19.9 

  13* 5600**  87** 837 7.9 20.9 

* data determined from rock testing 
** values from field measurement/calculations by the author 
 

Table A10.6. Comparisons of predicted PPVcrit and associated tensile fracture radii 
using various forms of the critical tensile plane strain approach and cube root Scaled 
Distance log-log linear regression prediction of all PPV data for a 75kg charge. 

UCS 
(MPa) 

UCS/�T �T 

(MPa) 
Vp 

(m/s) 
Est 

(GPa) 
Edyn 

(GPa) 
PPVcrit 
(mm/s) 

PPVcrit 
Radius 

(m) 

PPVExt 
Radius 

(m) 

209* 10 21 5600** 80*  1463 6.1 16.2 

209* 12 17 5600** 80*  1219 7.0 18.4 

209* 15 14 5600** 80*  975 8.1 21.5 

  13* 5600** 80*  910 8.5 22.6 

209 10 21 5600**  87** 1345 6.5 17.1 

209 12 17 5600**  87** 1121 7.4 19.5 

209 15 14 5600**  87** 897 8.6 22.8 

  13* 5600**  87** 837 9.1 23.9 

* data determined from rock testing 
** values from field measurement/calculations by the author 
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Table A10.7. Predicted PPVcrit and associated tensile fracture radii for the Southeast 
stope wall using various forms of the critical tensile plane strain approach and cube 
root Scaled Distance log-log linear regression prediction of PPV for a 50kg charge. 

UCS 
(MPa) 

UCS/�T �T 

(MPa) 
Vp 

(m/s) 
Est 

(GPa)
Edyn 

(GPa) 
PPVcrit 
(mm/s) 

PPVcrit 
Radius 

(m) 

PPVExt 
Radius 

(m) 

209* 10 21 6600** 80*  1724 3.2 9.1 

209* 12 17 6600** 80*  1437 3.7 10.5 

209* 15 14 6600** 80*  1150 4.3 12.4 

  13* 6600** 80*  1073 4.6 13.0 

209 10 21 6600**  119** 1159 4.3 12.3 

209 12 17 6600**  119** 966 5.0 14.1 

209 15 14 6600**  119** 773 5.9 16.8 

  13* 6600**  119** 721 6.2 17.7 

* data determined from rock testing 
** values from field measurement/calculations by the author 
 

Table A10.8. Predicted PPVcrit and associated tensile fracture radii for the Northeast 
stope wall using various forms of the critical tensile plane strain approach and cube 
root Scaled Distance log-log linear regression prediction of PPV for a 75kg charge. 

UCS 
(MPa) 

UCS/�T �T 

(MPa) 
Vp 

(m/s) 
Est 

(GPa) 
Edyn 

(GPa) 
PPVcrit 
(mm/s) 

PPVcrit 
Radius 

(m) 

PPVExt 
Radius 

(m) 

209* 10 21 5150** 80*  1345 7.2 14.8 

209* 12 17 5150** 80*  1121 7.9 16.2 

209* 15 14 5150** 80*  897 8.9 18.2 

  13* 5150** 80*  837 9.2 18.9 

209 10 21 5150**  73** 1474 6.8 14.0 

209 12 17 5150**  73** 1228 7.5 15.5 

209 15 14 5150**  73** 983 8.5 17.4 

  13* 5150**  73** 917 8.8 18.0 

* data determined from rock testing 
** values from field measurement/calculations by the author 
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Table A10.9. Predicted PPVcrit and associated tensile fracture radii for the 
Southwest stope wall using various forms of the critical tensile plane strain approach 
and cube root Scaled Distance log-log linear regression prediction of PPV for a 75kg 
charge. 

UCS 
(MPa) 

UCS/�T �T 

(MPa) 
Vp 

(m/s) 
Est 

(GPa)
Edyn 

(GPa)
PPVcrit 
(mm/s) 

PPVcrit 
Radius 

(m) 

PPVExt 
Radius 

(m) 

209* 10 21 5050** 80*  1319 11.8 24.5 

209* 12 17 5050** 80*  1099 13.0 27.0 

209* 15 14 5050** 80*  880 14.6 30.4 

  13* 5050** 80*  821 15.1 31.6 

209 10 21 5050**  70** 1508 11.0 22.9 

209 12 17 5050**  70** 1256 12.1 25.2 

209 15 14 5050**  70** 1005 13.6 28.3 

  13* 5050**  70** 938 14.1 29.4 

* data determined from rock testing 
** values from field measurement/calculations by the author 


