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AIM: To evaluate the image quality and diagnostic performance of coronary computed tomography 13 
angiography (CCTA) in patients with high heart rate within a single cardiac cycle 14 
using a 256-row detector CT system. 15 
MATERIALS AND METHODS: Eighty-four consecutive symptomatic patients (mean age 60.4_9.1 16 
years, 52 men) with suspected coronary artery disease and heart rate _75 beats/min undergoing CCTA 17 
and invasive coronary angiography (ICA) were enrolled retrospectively. Prospective 18 
electrocardiography (ECG)-triggered volume CCTA within a single cardiac cycle was performed using 19 
a 256-row, 16 cm detector CT system (Revolution CT, GE Healthcare) using automated tube voltage 20 
selection (kV Assist selecting 100 or 120 kV) and tube current modulation (Smart mA) techniques, 21 
with images reconstructed using 50% of adaptive statistical iterative reconstruction-V (ASiR-V). The 22 
image quality of coronary artery segments was evaluated by two reviewers using a four-point scale 23 
based on 18-segment model. The diagnostic accuracy of CCTA to detect _50% stenosis on ICA was 24 
analysed. The sensitivity, specificity, positive predictive value, and negative predictive value of CCTA 25 
to detect a _50% diameter stenosis on ICA were calculated from the chi-squared test of the 26 
contingency table on a per-segment, per-vessel, and per-patient basis. 27 
RESULTS: The body mass index was 25.6_3.5 kg/m2; the HR was 82.8_7.9 beats/min, and the mean 28 
HR variability was 8.3_4.8 beats/min. All of the coronary artery segments, 98.9% (1044/ 29 
1056) of coronary segments were rated as having diagnostic image quality. The diagnostic sensitivity, 30 
specificity, positive predictive value, and negative predictive value of CCTA, were 91.5%, 95.6%, 31 
77.7%, and 98.5% on a per-segment basis; 95.2%, 93.5%, 87%, and 97.7% on a pervessel basis; 100%, 32 
85.7%, 93.3%, and 100% on per-patient basis, respectively. The mean effective dose was 1.9_1 mSv. 33 

34 
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Introduction 37 

Coronary artery disease (CAD) is the leading cause of morbidity and mortality in both developed 38 

countries and developing countries [1-3]. In the past decade, coronary computed tomography 39 

angiography (CCTA) has been established as an effective modality for the anatomical evaluation of 40 

CAD. As a noninvasive imaging modality, CCTA is an ideal tool for quantifying the degree of stenosis 41 

and for characterizing atherosclerotic plaques [4, 5]. One of the limitations of CCTA is the presence of 42 

motion-related artifacts due to inadequate temporal resolution, especially in patients with high heart 43 

rate (HR) [6, 7]. Although the HR of some patients can be reduced with use of β-blockers, 5-11% of 44 

patients have contraindications to β-blockers [8] or higher doses of β- blockers are needed with longer 45 

time to wait before the scan can be performed [9]. Attempts have been made to improve the image 46 

quality by reducing the gantry rotation time, utilizing dual source acquisition techniques, increasing 47 

detector row and using motion correction algorithm such as snapshot freeze (SSF) technique to reduce 48 

motion artifacts. Sheta et al [7] reported that SSF reduced the motion artifacts by 30% to 41% in 49 

comparison with standard algorithm in patient with low HR. Several studies reported high diagnostic 50 

accuracy of CCTA using a dual source CT (DSCT) [8, 10, 11] and 64-detector row CT with SSF [12, 51 

13] in patients with high HR. However, the effective dose was higher than 3.4 mSv. In addition，the 52 

radiation-induced cancer associated with CCTA still remains a concern [12, 14]. 53 

The latest 256-row detector CT scanner with 160 mm cranial-caudal coverage, fast gantry rotation 54 

time of 280 ms with the use of SSF can permit acquisition of the whole heart within a single cardiac 55 
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cycle, but also results in decreased radiation dose [15]. The diagnostic performance of this single 56 

cardiac cycle CCTA in patients with HR≥75 bpm using the 256-row detector CT has not been reported. 57 

The aim of this study was to evaluate the diagnostic performance of CCTA for detection of 58 

significant stenosis in patients with HR≥75 bpm using a 256-row detector CT scanner. We hypothesize 59 

that CCTA can be performed within a single cardiac cycle even at high HR, and high diagnostic 60 

performance can be achieved at low radiation dose. 61 

Materials and methods 62 

Study population 63 

Between October 2015 and May 2016, 560 consecutive patients with symptomatic suspected CAD 64 

with HR≥75 bpm undergoing CCTA were retrospectively enrolled in this study. Exclusion criteria for 65 

CCTA were contraindications to contrast agent, renal function (estimated glomerular filtration rate<60 66 

ml/min), inability to sustain a 10 sec breath-hold and cardiac arrhythmias (arrhythmia, atrial 67 

fibrillation). Coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI) 68 

were excluded from this study group. Inclusion criteria were patients undergoing both CCTA and 69 

invasive coronary angiography (ICA) examinations within 4 weeks. In clinical practice, the ICA was 70 

determined by the referral doctors according to clinical data including CCTA results. A total of 124 71 

patients underwent both CCTA and ICA. Forty patients were excluded from this study due to the 72 

following reasons; history of (CABG in 8 patients, 30 patients with PCI, and 2 patients with time 73 

interval between CCTA and ICA more than 4 weeks. Therefore, the final population consisted of 84 74 

patients in this study. The study was approved by the institutional review board and written informed 75 

consent was obtained from all patients. Figure 1 is the flowchart showing patient recruitment. 76 
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CCTA scanning protocol 77 

All patients were scanned using a 256-row detector CT system (Revolution CT, GE Healthcare, 78 

Milwaukee, WI). The system provides 160 mm detector, a gantry rotation speed of 280 ms with motion 79 

correction technology. Automatically selected tube voltage was set by kV assist and tube current by 80 

Smart-mA based on the scout image of the patients. Prospectively ECG-triggered CCTA with volume 81 

acquisition was performed within a single cardiac cycle. The data acquisition window was set at 82 

35%-50% of the R-R interval when HR was 70-90 bpm, and 30%-60% of the R-R interval when HR 83 

higher than 90 bpm. Scanning parameters included 256×0.625 mm collimation, and scan coverage was 84 

120 mm, 140 mm or 160 mm with a matrix size of 512×512 pixels and reconstruction slice thickness 85 

and slice interval of 0.625 mm. After placing an 18-gauge through an antecubital vein for all patients, 86 

contrast agent of 60~70 ml (370 mg iodine/ml, Ultravist, Bayer Schering Pharma, Berlin, Germany) 87 

was injected at 4~5 ml/s rate followed by 30~35 ml of normal saline with a dual-head power injector. 88 

Coronary artery calcium scoring was not performed prior to the contrast-enhanced studies. 89 

CCTA image reconstruction and analysis 90 

Images were reconstructed using 50% of adaptive statistical iterative reconstruction-v (ASIR-V, GE 91 

Healthcare, Milwaukee, WI) algorithm. The cardiac phase to evaluate was selected as the one with 92 

minimal coronary motion, and the SSF motion correction algorithm was applied whenever required to 93 

further minimize artifacts. SSF uses data from 3 neighboring phases of the same cardiac cycle, with the 94 

center phase being the prescribed phase of interest, to estimate and compensate for motion [13, 16]. For 95 

image quality analysis, datasets were transferred to a workstation with post-processing software 96 

(Advantage Workstation 4.6; GE Healthcare), with analysis performed with both standard formats 97 
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(axial, multi-planar reformations [MPR], and curved multi-planar reformations [CPR]).The subjective 98 

image quality was independently assessed by two experienced radiologists (with 8 and 9years of 99 

experience in cardiac CT imaging, respectively) who were blind to ICA results. The 18-segment model 100 

of coronary artery tree was used according to the guidelines proposed by the Society of Cardiovascular 101 

Computed Tomography [17]. A four-point Likert scale was used to assess the image qualitatively: 1= 102 

excellent image quality free of artifacts; 2= good image quality with minor artifacts, but fully evaluable 103 

and diagnostic; 3= adequate image quality with moderate artifacts, but acceptable for diagnosis; 4= 104 

poor/severe artifacts and non-diagnostic image quality. All segments with 1.5 mm or greater in 105 

diameter were evaluated. Evaluable segments were assessed independently by the same two 106 

radiologists for the presence or absence of significant coronary artery lumen stenosis, defined as a 107 

diameter narrowing ≥50%. Stenosis was evaluated on a per-segment, per-vessel, and per-patient level. 108 

Any disagreements on the image scores and stenosis between two radiologists, consensus was reached 109 

during a joint reading session. Non-evaluable coronary artery segments were considered as positive 110 

findings for diagnostic purposes. 111 

ICA protocol and image analysis 112 

Two experienced interventionists (with 6 and 8 years of experience) who were unaware of the 113 

CCTA results analyzed the patients’ ICA images. For assessment of luminal narrowing of ≥50% 114 

diameter stenosis, at least two standardized projections of the right coronary artery (RCA) were 115 

acquired as well as 4 views of the left coronary artery, and additional views were used if necessary. The 116 

coronary angiogram was used as the reference standard for stenosis evaluation. Coronary artery 117 

stenosis was also evaluated on a per-segment, per-vessel, and per-patient level using the same standard 118 
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as that for the CCTA. Any case of disagreements between the interventionists was resolved by 119 

discussion. 120 

Radiation dose estimates of CCTA 121 

The estimated parameters of the CT volume dose index (CTDIvol) and dose-length product (DLP) 122 

values were obtained from the CT console. Effective dose (ED) of CCTA was calculated with the 123 

following formula using a chest-specific conversion coefficient: DLP (mGy×cm)×0.014 124 

(mSv×mGy-1×cm-1) for adults [18]. This value is averaged between male and female models. 125 

Statistical analysis 126 

All statistical analysis was performed using SPSS version 17.0 (SPSS, Chicago, IL, USA). 127 

Quantitative variables were expressed as mean ± standard deviation (SD). Categorical variables were 128 

described by frequencies or percentage. The inter-observer agreement of image quality scoring and 129 

stenosis assessment was tested by Cohen’s kappa. This was interpreted as moderate for 0.4 < kappa < 130 

0.60, good for 0.6 < kappa< 0.80, and excellent for kappa >0.80. The sensitivity, specificity, positive 131 

predictive value (PPV) and negative predictive value (NPV) of CCTA to detect a ≥50% diameter 132 

stenosis on ICA were calculated from the chi-squared test of the contingency table on a per-segment, 133 

per-vessel, and per-patient level. The area under the receiver–operating-characteristic curve (AUC) 134 

analyses was used to compare diagnostic performance. The 95% confidence intervals (95% CI) were 135 

also calculated for three level and three coronary arteries. All hypotheses were conducted using the 136 

significance level of P＜0.05. 137 

Results 138 

Study characteristics 139 
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In the present study, the mean age was 60.2±8.9 years (range: 34-77 years), 52 (61.9%) of 140 

patients were male. Mean HR during the scan was 82.8±7.9 bpm (range: 75~117 bpm). The median 141 

time between CCTA and ICA was 10 days (range 1~26 days). The DLP and ED was 141.8±70.5 142 

mGy×cm and 1.9±1.0 mSv, respectively. Details of clinical characteristics are provided in Table 1. The 143 

CT scan parameters and radiation dose are listed in Table 2. 144 

Subjective image quality assessment 145 

A total of 1056 segments were included for evaluation in 84 patients. 98.9% (1044/1056) segments 146 

were rated as diagnostic (score 1~3). For all of the coronary segments, 71.4% (754/1056) had excellent 147 

image quality (score 1); 22.9% (242/1056) had good image quality (score 2); 4.5% (48/1056) had 148 

adequate image quality (score 3); and 1.1% (12/1056) were of non-diagnostic image quality (score 4). 149 

Inter-observer agreement for image quality was good for the CCTA image quality assessment, with 150 

kappa value of 0.78. Figures 2 and 3 are an example of CCTA examination in two patients with high 151 

HR, but with diagnostic image quality showing significant coronary stenosis. 152 

 Diagnostic performance of CCTA 153 

In this trial population, there was a high prevalence of CAD (66.7% for ≥50% stenosis at ICA). 154 

3-vessel disease was present in 12 (14.3%) patients, 2-vessel disease in 23 (27.4%) patients, 155 

single-vessel disease in 21 (25.0%) patients, and 10 (11.9%) patients had occluded coronary arteries. 156 

The diagnostic accuracy of CCTA on per-segment, per-vessel and per-patient level were 95.0%, 94.0% 157 

and 95.2% respectively. The diagnostic performance of CCTA for the detection of ≥50% stenosis on 158 

per-segment, per-vessel and per-patient level assessment is detailed in Table 3. CCTA overestimated 159 

stenosis in 4 patients, including 2 patients with significant coronary artery calcification and 2 patients 160 
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due to motion artifacts (false positives). Of 336 coronary arteries, 100 (29.8%) were found to have at 161 

least one ≥50% stenosis at ICA. There were 15 false-positive and 5 false negative results at per-vessel 162 

assessment in CCTA. One hundred and thirty-nine of 1056 (13.2%) segments were noted to have at 163 

least ≥50% stenosis at ICA. There were 40 false positive and 13 false negative results at per-segment 164 

analysis as assessed at CCTA. Comparison of CCTA with ICA for a coronary stenosis ≥50% for the 165 

per-patient level evaluation demonstrated that the AUC was 0.93 (95% CI: 0.84~1.00) (Figure 4). The 166 

weighted kappa value for agreement between two independent readers in CCTA was 0.84 and in ICA 167 

was 0.93. 168 

Only 4 left main arteries in this group of patients were detected with ≥50% stenosis by CCTA and 169 

ICA, and no significant difference was found between CCTA and ICA. We also investigated the CCTA 170 

on diagnostic performance of other three main coronary arteries. The findings showed the sensitivity 171 

and specificity of 97.8% and 84.2% on left anterior descending (LAD), 95.7% and 93.4% on left 172 

circumflex (LCX), 93.8% and 94.2% on RCA, respectively (Table 4). Extensive calcifications and 173 

motion artifacts were the main reason for false positive findings in small vessel such as the distal 174 

segment of LCX and first diagonal branch. The relative low specificity of 84.2% is due to the high 175 

false positive rate with 6 cases reported. The 6 false positive cases are due to extensive calcifications in 176 

5 cases and motion artefact of the first diagonal branch on LAD in one case. 177 

Radiation dose associated with CCTA 178 

The value of CTDIvol and DLP for each scanning technique was shown on the CT console. The 179 

DLP and ED of the CCTA was 141.8±70.5 mGy/cm and 1.9±1.0 mSv in 84 patients, respectively 180 

(Table 2). Overall, the radiation dose was less than 1.0, 2.0, and 3.0 mSv in 22 (26.2%), 43 (51.2%), 181 
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and 74 (88.1%) patients, respectively. The mean ED was 2.0 mSv in 15 patients with HR above 90 bpm, 182 

which was slight higher than the 1.9 mSv in 69 patients with HR below 90 bpm, because of the wider 183 

exposure window. 184 

Discussion 185 

The primary finding of this study is that CCTA using a 256-detector row CT within a single 186 

cardiac cycle allows coronary artery imaging with high diagnostic accuracy in patients with HR higher 187 

than 75 bpm and lower than 117 bpm, with radiation dose below 3.0 mSv in more than three fourths of 188 

the patients. 189 

Impaired image quality due to high HR, and high radiation dose are still recognized as limitations 190 

to CCTA [2, 12, 19]. The non-proportional shortening of systole and diastole in patients with high HR 191 

is well known, with the length of diastole reducing more than that of systole [20]. Motion artifacts will 192 

occur when the motion velocity of the coronary artery in patients with high HR surpasses the temporal 193 

resolution of the modern CT scanner [21]. It may decrease the image quality of coronary artery in these 194 

patients. To achieve high diagnostic accuracy, high image quality is required. During the last decade, 195 

there have been some efforts to improve image quality on hardware such as broaden the detector and 196 

increase the gantry rotation speed or use dual source scanning. In addition, SSF is also used to increase 197 

the effective temporal resolution, which is motion correction algorithm using software. Authors have 198 

compared the diagnostic accuracy between CCTA and ICA in patients with high HR using a 64-slice 199 

CT with SSF technique. Andreini et al. [12] evaluated the diagnostic accuracy of CCTA with 98% on 200 

per-patient level in 64 patients. The mean HR was 74±8.2 bpm during the scan and the mean ED was 201 

3.42±1.26 mSv. Leipsic et al. [13] also reported the diagnostic accuracy of CCTA with 86% of on 202 
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per-patient level in 36 patients. The mean HR was 71.8±12.7 bpm, whereas, the ED was 13.2±1.8 203 

mSv, which was relatively high due to the use of retrospectively ECG triggered scanning. The 204 

diagnostic accuracy was 95.2% on per-patient level and the ED was 1.9±1.0 mSv in 84 patients in our 205 

study, which is consistent with these reports in terms of diagnostic accuracy, but with much lower dose. 206 

A similar previous study by Koplay et al. [2] reported that the ED was 1.9±0.3 in 23 patients with HR 207 

70-80 bpm, which was performed on a different scanner (dual source CT), however not all of patients 208 

underwent ICA. Li et al. [22] reported similar sensitivity and specificity of LAD, LCX, RCA when 209 

compared our study (Table 4), however, they used a 64-row detector CT scanner with SSF technique 210 

implemented in 46 patients with mean HR below 70 bpm. 211 

 Two studies [23, 24] showed that prospectively ECG-triggered CCTA in a single cardiac cycle can 212 

achieve high image quality and accuracy with low radiation dose using wide detector and single source 213 

CT scanner, but limited to patients with HR lower than 75 bpm. Detector of 160 mm in combination 214 

with gantry rotation speed of 0.28s/r on a latest 256-row detector CT also permits single cardiac cycle 215 

acquisitions [9]. In clinical practice, some patients may have contraindications to β-blockers and low 216 

HR cannot be achieved. In our study, we enrolled patients with HR≥75 bpm and the highest HR up to 217 

117 bpm, who were performed in a single cardiac cycle using this latest CT scanner. SSF technique was 218 

used in most patients in this study (64 of 84 patients, 76.2%) to correct motion artifacts. However, the 219 

use of SSF was not directly associated with the HR and target phase, which was determined by the 220 

image quality of coronary artery. A recently published study reported similar findings to our results. 221 

Latif [9] et al analyzed 439 patients with different HR and body mass index (BMI) using a 256-detector 222 

row CT. Their results showed the feasibility of acquiring CCTA images with single cardiac cycle with 223 
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good images quality. However, authors only assessed the image quality without addressing the 224 

diagnostic value of CCTA. Our study fills the gap in the literature by evaluating both image quality and 225 

diagnostic performance. 226 

In addition, iterative reconstruction techniques have been reported recently to improve the image 227 

quality and reduce radiation dose and improve diagnostic accuracy to some extent [9, 25, 26]. In this 228 

study, ASIR-V 50% was used in all patients for image reconstruction; therefore, this could contribute to 229 

the high percentage of diagnostic image quality and low radiation dose in this patient group. 230 

Radiation dose is directly related to the scan length, which is the DLP. Generally, scan range starts 231 

at the tracheal bifurcation and extends below the cardiac border by scout image [27]. In most cases of 232 

this study (80 of 84 patients, 95.2%), the entire heart could be scanned within a 140 mm. The mean ED 233 

of 1.9 mSv in this study is higher than that reported in some recent studies with mean ED less than 234 

1.0mSv [28-30]. However, different modes of high-pitch with dual-source CT were used in those 235 

studies, also with inclusion of patients with different heart rates. Given the average high HR included 236 

in this study, we consider the ED of less than 2 mSv is within acceptable range for diagnostic purpose 237 

of CCTA, although further dose reduction would be desirable with more intensive use of dose-lowering 238 

techniques. 239 

Our study has several limitations. First, the sample size is relatively small and it represents a 240 

clinically based cohort of patients undergoing CCTA and ICA examinations. Thus, the selected study 241 

cohort had high prevalence of significant CAD, and this may affect the diagnostic value of CCTA, in 242 

particular the specificity. Therefore, our results need to be interpreted with caution. Studies with 243 

inclusion of patients with low to intermediate likelihood of CAD but with high HR are needed to 244 
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determine the diagnostic value of CCTA. Second, since the patients with low HR were not included in 245 

this study, we could not compare the diagnostic performance between the patients with different heart 246 

rates. Further, this was a single center cross-sectional study. Thus, our results need to be confirmed in a 247 

larger series of patients, preferably including patient populations from multiple institutions. Third, 248 

although ICA is the reference method for determination of stenotic lesions, it does not provide 249 

lesion-specific ischemic changes in the coronary artery. Quantitative angiographic analysis of fractional 250 

flow reserve determinations should be employed for either CCTA or ICA in future studies. Finally, we 251 

only conducted qualitative assessment of image quality, while quantitative analysis of image quality 252 

was not performed, as our focus is to determine the diagnostic value of CCTA in CAD in clinical 253 

practice. 254 

In conclusion, our results show that CCTA using a 256-detector row CT with SSF technique can be 255 

performed in a single cardiac cycle with acquisition of images with high diagnostic value and low 256 

radiation dose in patient with high HR. This scan model will greatly widen the scope of its applications 257 

with patients who have contraindication to β-blockers.258 
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 351 

 352 
Figure 1. Flow chart shows recruitment of eligible patients in this study. HR, heart rate; CCTA, 353 
coronary computed tomography angiography; ICA, invasive coronary angiography; PCI, percutaneous 354 
coronary intervention; CABG, coronary artery bypass graft. 355 
 356 
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 357 
Figure 2 A 58-year-old woman with a BMI of 23.23 kg/m2 was examined. (a,b) Significant stenosis was identified in the 358 
mid-segment of LAD artery on curved reformation CT image (arrow), and (c) was confirmed by invasive coronary angiography 359 
(arrow). The HR was 90 beats/min during the scan and the reconstruction phase was 50% (d). The effective dose from CCTA 360 
was 2.0 mSv. 361 
 362 
 363 



 

21 
 

 364 
Figure 3 A 60-year-old man with a BMI of 24.34 kg/m2 was examined using 100 kV and 499 mA. (a, b) Significant stenosis was 365 
identified in the proximal segment of RCA by CCTA (arrow). (c) The stenosis was confirmed by ICA (arrow). (d) The HR was 366 
117 beats/min during the scan and the reconstruction phase was 36%. The effective dose was 1.81 mSv. 367 
 368 
 369 
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 370 
Figure 4 Receiver operating characteristic curves for detection of _50% stenosis on (a) per-segment, (b) per-vessel, (c) 371 
per-patient levels, and (d) LAD coronary artery, (e) LCX coronary artery, (f) RCA by artery analysis are demonstrated. The areas 372 
under curve were 0.94, 0.94, 0.93, 0.91, 0.95, and 0.94, respectively. 373 
 374 

375 
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