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Abstract We consider distributionally robust two-stage stochastic linear op-
timization problems with higher-order (say p ≥ 3 and even possibly irrational)
moment constraints in their ambiguity sets. We suggest to solve the dual form
of the problem by a semi-infinite programming approach, which deals with
a much simpler reformulation than the conic optimization approach. Some
preliminary numerical results are reported.
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1 Introduction

Many decision-making problems that involve uncertainty are modeled as stochas-
tic programs. In general, stochastic optimization models require detailed in-
formation on the probability distribution of the random variables. Under such
assumptions, the decision makers seek to minimize the aggregated expected
cost over the multi-stage planning horizon. In order to solve the stochastic
optimization problems, one often resorts to Monte Carlo sampling approxima-
tion approaches, which can be very challenging in practice. Motivated by re-
cent development in robust optimization, a new model of two-stage stochastic
programming is proposed, in which the second-stage objective is a worst-case
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recourse function subject to constraints in first and second-order moments of
the underlying random variables. Typically, these constraints specify a range
for the moments rather than specify a distribution for the random variables,
thus greatly reducing the computational load. In fact, the worst-case models
can be often reduced to second-order cone or semidefinite programs. How-
ever, due to nonconvexity, this “distributionally robust approach” fails to work
when third or higher order moment constraints are introduced. There are rich
literatures in distributionally robust models. For early literatures on distribu-
tionally robust models see Scarf (1958), Landau (1987), Dupacova (1987), Kall
and Wallace (1994), while Bertsimas et. al. (2013), Delage and Ye (2010), Ang
et. al. (2014), and Wiesemann et. al. (2014) provide more recent development.

The purpose of this paper is three fold. First, we propose to use a semi-
infinite programming (SIP) method to solve distributionally robust two-stage
stochastic linear programs with moment constraints of arbitrary pth order
(p ≥ 1) in the definition of their ambiguity sets. Second, we present a simple
analysis to convert the stochastic program to an SIP problem. Third, we test
our method with a numerical example and compare the solutions to the case
without higher-order moment constraints to see whether higher-order moment
information can significantly improve the quality of solutions.

It should be noted that the considered distributionally robust problem can
be reformulated as conic optimization problem in a recent study of Ang et. al.
(2014) and Bertsimas et al. (2013). However, they both assume up to second-
order moments of random variables. When dealing with higher-order moment
constraints, the reformulation involves a complex progressive decomposition
procedure that can only handle moment constraints of rational order (i.e.
p = r/s) (Chapter 2 of Ben-Tal and Nemirovski 2001). Our paper extends their
results in a way that the SIP algorithm proposed can deal with higher-order
moment information. The SIP conversion is straightforward for any p ≥ 1, and
there are plenty of choices for possible packages of SIP solvers.

The rest of this paper is organized as follows. In Section 2, we establish
the optimization model of the distributionally robust two-stage stochastic pro-
gramming problem with moment information and show its equivalence to SIP
problem under the so-call linear decision rule. In addition, we show that in the
simple case where the second-stage objective parameters are the only uncertain
terms, the problem can be also cast to SIP without additional assumptions.
Section 3 contains numerical results with certain interesting observations.

Notations. We denote a random vector, say z̃, with the tilde sign. Matrices
and vectors are usually represented as upper and lower case letters, respec-
tively. If x is a vector, we use the notation xi to denote the ith component
of the vector. A random vector is associated with its support Ω and a proba-
bility distribution P on a σ-algebra Σ of events. We use EP(z̃p

i ) to denote the
pth-order moments of z̃i under P, where z̃j are continuous random variables.
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2 The Distributionally Robust Two-stage Stochastic Linear
Program

We are concerned with the following two-stage stochastic programming prob-
lem with fixed recourse:

min
x∈X

{
c′x + sup

P∈F
EP[Q(x, z̃)]

}
(1)

where the apostrophe (′) stands for the transpose and

Q(x, z̃) = min d′y(z̃)
s. t. A(z̃)x + Dy(z̃) = b(z̃), (2)

y(z̃) ≥ 0,

where Q(x, z̃) is the recourse cost, x ∈ Rn is the vector of first-stage decision
variables in a feasible polyhedron X, d ∈ Rk, b(z̃) ∈ Rl, A(z̃) ∈ Rl×n are
second-stage data, and D ∈ Rl×k represents the fixed recourse matrix. More-
over, z̃ is a random vector with support Ω ⊂ Rm and P is the probability
distribution of z̃ subject to an ambiguity set F defined by certain moment
constraints.

A basic condition is imposed on problem (2). We assume for all x ∈ X
the feasible set of (2) is not empty for otherwise the optimal value of (1) is
trivially infinite. This condition can be guaranteed by certain assumptions on
the dual problem of (2), say, the dual feasible set is bounded. In practice, this
assumption is naturally valid, see Section 3 for an example.

The advantage of the distributionally robust approach, compared with the
traditional approach is that it does not require that P is exactly known and
computationally, it is more tractable.

2.1 Assumptions on Distributions of z̃

Since the information on moments of |z̃i| are relatively easy to estimate from
statistical data, we assume that the p-th order moment of |z̃i| exists. In par-
ticular, let F denote the family of probability distributions of z̃ defined as

F := {P : P(z̃ ∈ Ω) = 1, EP(|z̃j |p) ≤ µpj , p = pj1, ..., pjP j = 1, . . . ,m} , (3)

where µpjs are given constants. Note that, for simplicity of analysis, without
loss of generality we assume that P does not depend on j, i.e., each |z̃j | has
the same number of moment constraints, which can be achieved by adding
redundant constraints like EP(|z̃j |p) ≤ K for sufficiently large K. It will be
seen that our analysis is independent of the concrete values of p as long as
p ≥ 1.

The absolute value |zj | is necessary because it makes the constraints con-
vex. In addition, we assume that Ω is a nonnegative box and int Ω 6= ∅.
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2.2 Reformulation under the Linear Decision Rule

We assume the uncertain data b(z̃) and A(z̃), together with the vector y(z̃),
in (1) are affinely dependent on the random vector z̃, namely

y(z̃) = y0 +
m∑

j=1

z̃jy
j , b(z̃) = b0 +

m∑
j=1

z̃jb
j , and A(z̃) = A0 +

m∑
j=1

z̃jAj , (4)

where, bj ∈ Rl, and Aj ∈ Rl×n, j = 0, 1, . . . ,m, are deterministic values given
in advance.

The above affine-dependence assumption, also called the linear decision
rule, is often adopted in dealing with the uncertainties in robust optimization
models. See, e.g., Ben-Tal et al.(2004). Chen et al. (2008) used it in the context
of robust stochastic programming. Chen et al. (2010) adopted it in dealing with
joint chance constraints. It is easy to see that if int Ω 6= ∅, then the following
equivalence is valid.

A(z̃)x + Dy(z̃) = b(z̃), ∀z̃ ∈ Ω ⇐⇒ Ajx + Dyj = bj , j = 0, 1, ...,m. (5)

Note that, instead of x and y(z̃), the new decision variables are x and
y0, y1, ..., ym. By strong duality of linear programming, we obtain the following
equivalence.

y(z̃) ≥ 0, ∀z̃ ∈ Ω ⇐⇒ min
[
y0

i +
∑m

j=1 zjy
j
i

]
≥ 0 ∀ − ` ≤ z ≤ h,∀i ⇐⇒

∃sq, tq ∈ Rm
+ such that y0

q − `′sq − h′tq ≥ 0 and sq − tq = yq, ∀q = 1, ..., k,

where yq is the qth row of the matrix [y1, · · · , ym] and y0
q is the qth component

of y0.
Therefore, we have

EP[Q(x, z̃)] = EP[min
y,s,t

d′y0 +
m∑

j=1

d′yj z̃j ] (6)

s. t. Ajx + Dyj = bj , j = 0, 1, ...,m,

y0
q − `′sq − h′tq ≥ 0, q = 1, ..., k,

sq − tq = yq, q = 1, ..., k,

sq, tq ≥ 0, q = 1, . . . , k.
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In view of (6), the term supP∈F EP[Q(x, z̃)] is the optimal value of the
following maximization problem

max
P

EP

min
y,s,t

d′y0 +
m∑

j=1

d′yj z̃j

 (7)

s. t. Ajx + Dyj = bj , j = 0, 1, ...,m,

y0
q − `′sq − h′tq ≥ 0, q = 1, ..., k,

sq − tq = yq q = 1, ..., k,

EP(|z̃j |p) ≤ µp
j , p = 1, ..., P j = 1, . . . ,m,

P{z̃ ∈ Ω} = 1,

sq, tq ≥ 0, q = 1, . . . , k.

Using the duality theory of linear optimization in probability spaces (see Rock-
afellar (1974), see also Vandenberghe et al. (2007) for some examples), the dual
problem of (7) is

min
y,s,t,v0,v1,...,vP

v0 +
k∑

r=1

(µp)′(vp)

where µp = (µp1, ..., µpm)′, vp = (vp1, ..., vpm)′, p = 1, ..., P

s. t. v0 +
P∑

p=1

(vp)′(|zp|) ≥ min
y,s,t

d′y0 +
m∑

j=1

d′yjzj

 , ∀ z ∈ Ω,

where zp := (zp
1 , ..., zp

m)′, |zp| := (|zp
1 |, ..., |zp

m|)′,
Ajx + Dyj = bj , j = 0, 1, ...,m, (8)
y0

q − `′sq − h′tq ≥ 0, q = 1, ..., k,

sq − tq = yq, q = 1, ..., k,

sq, tq, v
p ≥ 0, p = 1, ..., P, q = 1, ..., k,

where v0 ∈ R and ∀p = 1, ..., P vp = (vp1, ..., vpm)′ ∈ Rm are the dual variables.

Theorem 1 Under linear decision rule, the two-stage problem (1) can be writ-
ten as

min
x,y,s,t,v0,...,vP

c′x + v0 +
P∑

p=1

(µp)′(vp)

s. t. v0 +
P∑

p=1

(vp)′|z|p ≥ min
y,s,t

d′y0 +
m∑

j=1

d′yjzj

∀z ∈ Ω,

Ajx + Dyj = bj , j = 0, 1, ...,m, (9)
y0

q − `′sq − h′tq ≥ 0, q = 1, ..., k,

sq − tq = yq, q = 1, ..., k,

sq, tq ≥ 0, q = 1, ..., k, x ∈ X.
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Proof. We prove this result by applying a generalized Slater condition. Specif-
ically, strong duality holds between (7) and (8) due to the special structure
of problem (8). To see this point, note that there exists an upper bound L,
which does not depend on z, such that

L ≥ min
y,s,t

d′y0 +
m∑

j=1

d′yjzj

∀z ∈ Ω

due to the compactness of Ω and the basic assumption that the recourse
problem is feasible for any x ∈ X. Thus, by setting v0 = L + 1, vp = 0 and
y0

q sufficiently large, the convex program (8) has a generalized Slater’s point.
Since the generalized Slater’s condition is always valid for the dual problem
(8). Then Theorem 18 of Rockafellar (1974) implies that

inf(8) = sup(7)

and the solution to (??) exists. Hence, problem (1) is equivalent to problem
(9). �

Corollary 1 Let

Π := {(y, s, t) : ∃x ∈ X such that the last four constraints in (9) are satisfied.}

Then Problem (9) is equivalent to

minx,y,s,t,v0,...,vP
c′x + v0 +

∑P
p=1(µp)′(vp)

s. t. v0 +
∑P

p=1(vp)′|z|p ≥ d′y0 +
∑m

j=1 d′yjzj∀z ∈ Ω,

Ajx + Dyj = bj , j = 0, 1, ...,m,
y0

q − `′sq − h′tq ≥ 0, q = 1, ..., k,
sq − tq = yq, q = 1, ..., k,
sq, tq ≥ 0, q = 1, ..., k, x ∈ X.


(10)

if Π is not empty.

Proof. The first constraint of (9) can be written as follows.

∀z ∈ Ω, ∃(y, s, t) ∈ Π : v0 +
P∑

p=1

(vp)′|zp| −

d′y0 +
m∑

j=1

d′yjzj

 ≥ 0,

or equivalently

min
z∈Ω

max
(y,s,t)∈Π

v0 +
P∑

p=1

(vp)′|zp| −

d′y0 +
m∑

j=1

d′yjzj

 ≥ 0.
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The above function is convex in z̃ and is concave in (y, s, t) and both sets, Ω
and Π, are closed and convex. By Sion’s minimax theorem [17], as long as Ω
or Π is compact, we have

min
z∈Ω

max
(y,s,t)∈Π

v0 +
P∑

p=1

(vp)′|zp| −

d′y0 +
m∑

j=1

d′yjzj



= max
(y,s,t)∈Π

min
z∈Ω

v0 +
P∑

p=1

(vp)′|zp| −

d′y0 +
m∑

j=1

d′yjzj

 .

The first constraint of (9) is therefore equivalent to

∃(y, s, t) ∈ Π, ∀z ∈ Ω : v0 +
P∑

p=1

(vp)′|zp| −

d′y0 +
m∑

j=1

d′yjzj

 ≥ 0,

which proves the corollary. �

Problem (10) is a linear SIP problem, in which the relationship z ∈ Ω
defines an SIP constraints.

2.3 Reformulation without the Linear Decision Rule

In the case where only d(z̃) is uncertain, problem (1) reduces to

min
x∈X

{
c′x + EP[Q(x, z̃)]

}
and

Q(x, z̃) = min z̃′y
s t. Ax + Dy = b,

y ≥ 0,
(11)

where we directly write d(z̃) as z̃ without loss of generality. Since x is inde-
pendent of P, Problem (11) can be re-written as follows.

min
x∈X

{
c′x + max

P∈F
EP[Q(x, z̃)]

}
s.t. Ax + Dy = b, y ≥ 0

EP(|z̃j |p) ≤ µpj , p = 1, ..., P, j = 1, . . . ,m,

P{z̃ ∈ Ω} = 1.
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By the strong duality theory of semi-infinite programming (Example 4 of
Rockafellar 1974) and our assumption on Ω, problem (11) is equivalent to

min
v0,v1,...,vP ,x,y

c′x + v0 +
P∑

p=1

(µp)′(vp) (12)

s. t. v0 +
P∑

p=1

(vp)′(|zp|) ≥ min
y

(z′y) , ∀ z ∈ Ω,

where zp = (zp
1 , ..., zp

m)′, |zp| = (|zp
1 |, ..., |zp

m|)′,
Ax + Dy = b,

y ≥ 0, vp ≥ 0, p = 1, ..., P.

where v0 ∈ R and vp = (vp1, ..., vpm)′ ∈ Rm are the dual variables.
Let

Π := {(x, y) : Ax + Dy = b} 1

Note that the set Ω is compact and int Ω 6= ∅. Then Problem (12) is equivalent
to the following SIP problem, in which the relationship z ∈ Ω defines an infinite
number of constraints.

Theorem 2 Problem (11) can be reformulated as a linear semi-infinite pro-
gram as follows.

minx,y,v0,v1,...,vP c′x + v0 +
∑P

p=1(µ
p)′(vp)

s. t. v0 +
∑P

p=1(v
p)′|zp| ≥ (z′y)∀z ∈ Ω,

Ax + Dy = b,
y ≥ 0, vp ≥ 0, p = 1, ..., P.

 (13)

Proof. Based on the analysis above, we only need to show that (11) is equiva-
lent to (13). The proof is exactly the same as that of Theorem 1 and Corollary
1. �

3 Numerical Experiment – A Production Planning Example

This numerical example aims to demonstrate how the SIP model works on the
classical two-stage stochastic programming problem. In particular, we exam-
ine how to incorporate higher-order moments information into decision making
and further study the value of the additional information. The SIP algorithm
we used is the exchange algorithm developed in Wu et al.(2005), which guar-
antee finite termination of the SIP reformulation of (1).
Example.2 A company manager is considering the amount of steel to pur-
chase (at $58/1000lb) for producing wrenches and pliers in next month. The

1 The set Π here is a simplified version of the set Π in Corollary 1.
2 This is a slightly different version of Example 7.3 in the book of Bertsimas and Freund

(2000). It is also the same production planning example appears in Ang et. al. (2014).
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manufacturing process involves molding the tools on a molding machine and
then assembling the tools on an assembly machine. Here is the technical data.

Wrench Plier
Steel (lbs.) 1.5 1
Molding Machine (hours) 1 1
Assembly Machine (hours) .3 .5
Contribution to Earnings ($/1000 units) 130 100

There are uncertainties (continuously distributed) that will influence his
decision. 1. The total available assembly hours (in thousand) of next month
could be between 8,000 and 10,000, with expectation 9, second moments 82 and
third moment 756. 2. The total available molding hours of next month could
be between 21 and 25, with expectation 23, second moments 533, and third
moment 12,443. The manager would like to plan, in addition to the amount
of steel to purchase, for the production of wrenches and pliers of next month
so as to maximize the worst-case expected net revenue (i.e. The worst-case
expected earnings minus the cost of purchasing steel) of this company.

3.1 The SIP Formulation under the Linear Decision Rule

Now, we assume that the moments of uncertain molding hours and assembly
hours are respectively known up to the third-order moment, namely

EP [̃|z1|] = 23; EP [̃|z2|] = 9;
EP[|z̃1|2] = 533; EP[|z̃2|2] = 82;
EP[|z̃1|3] = 12443; EP[|z̃2|3] = 756;
Ω = {z ∈ R2 : 21 ≤ z1 ≤ 25, 8 ≤ z2 ≤ 10}.

The SIP formulation of this problem is as follows:
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min
x,y,s,t,v0,v1,...,vP

58x + v0 + 23v11 + 9v12 + 533v21 + 82v22 + 12443v31 + 756v32

s.t. −v0 −
∑2

i=1 |zi|v1i −
∑2

i=1 |zi|2v2i −
∑2

i=1 |zi|3v3i

−(130y0
1 + 100y0

2)−
∑2

i=1(130yi
1 + 100yi

2)|zi| ≤ 0, ∀ z ∈ Ω

y0
1 + y0

2 + y0
3 = 0, 0.3y0

1 + 0.5y0
2 + y0

4 = 0,−x + 1.5y0
1 + y0

2 = 0
y1
1 + y1

2 + y1
3 = 1, 0.3y1

1 + 0.5y1
2 + y1

4 = 0, 1.5y1
1 + y1

2 = 0
y2
1 + y2

2 + y2
3 = 0, 0.3y2

1 + 0.5y2
2 + y2

4 = 1, 1.5y2
1 + y2

2 = 0
y3
1 + y3

2 + y3
3 = 0, 0.3y3

1 + 0.5y3
2 + y1

4 = 0, 1.5y3
1 + y3

2 = 1
−21s1

1 − 8s1
2 + s1

3 + 25t11 + 10t12 + t13 − y0
1 ≤ 0

−21s2
1 − 8s2

2 + s2
3 + 25t21 + 10t22 + t23 − y0

2 ≤ 0
−21s3

1 − 8s3
2 + s3

3 + 25t31 + 10t32 + t33 − y0
3 ≤ 0

−21s4
1 − 8s4

2 + s4
3 + 25t41 + 10t42 + t43 − y0

4 ≤ 0
s1
1 − t11 − y1

1 = 0, s1
2 − t12 − y2

1 = 0, s1
3 − t13 − y3

1 = 0
s2
1 − t21 − y1

2 = 0, s2
2 − t22 − y2

2 = 0, s2
3 − t23 − y3

2 = 0
s3
1 − t31 − y1

3 = 0, s3
2 − t32 − y2

3 = 0, s3
3 − t33 − y3

3 = 0
s4
1 − t41 − y1

4 = 0, s4
2 − t42 − y2

4 = 0, s4
3 − t43 − y3

4 = 0
x ≥ 0, sk, tk ≥ 0, k = 1, ..., 4.

The numerical results are as follows: x = 30, 500, minimal cost = -929.89. The
algorithm converges after 15 iterations. CPU time is 7.74 sec.

3.2 Value of Moment Information

One of the advantages of the SIP formulation is the easiness of incorporat-
ing higher-order moment information. This gives us an edge to explore the
“value of information” by looking at marginal value added from additional
information, especially, higher-order moments. The production planning ex-
ample above is used for constructing comparisons by assuming various levels
of knowledge we have about moments. Different steel purchasing levels are
calculated respectively and the comparison is shown in the table below.

Orders of moments known Steel purchased
=1 30500
≤2 30500
≤3 30500
≤4 30500
≤5 27861
≤6 17876
≤7 17876
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From the results above, it is interestingly noted although the general trend
is knowing more information enabling a more aggressive result (buying less
steel), adding one extra moment information may have no value in the sense
of making distributionally robust decision (e.g., the case when we increase our
knowledge from 1 moment to 4 moments). When the cost of evaluating uncer-
tainty moments is high or the confidence level of obtaining correct information
is low, dealing with low level of knowledge can be sufficient for distributionally
robust decision making, at least from our example.

4 Concluding Remarks

We reformulated the distributionally robust two-stage stochastic linear pro-
gram with separable moment constraints of arbitrary order as a semi-infinite
optimization problem under certain conditions such as the linear decision rule.
A numerical example in production planning is tested. The computational re-
sults appear to show that the improvement margin tends to fade as more and
higher order moment information is provided. Possible future directions of re-
search may include nonlinear cases of the problem and nonseparable moment
constraints (see e.g., Ling et. al. (2014) and Mehrotra and Zhang (2013)).
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