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This paper presents a computational approach for optimizing a class of hybrid systems in
which the state dynamics switch between two distinct modes. The times at which the mode
transitions occur cannot be specified directly, but are instead governed by a state-dependent
switching condition. The control variables, which should be chosen optimally by the system
designer, consist of a set of continuous-time input signals. By introducing an auxiliary binary-
valued control function to represent the system’s current mode, we show that any dual-
mode hybrid system with state-dependent switching conditions can be transformed into a
standard dynamic system subject to path constraints. We then develop a computational
algorithm, based on control parameterization, the time-scaling transformation, and an exact
penalty method, for determining the optimal piecewise constant input signals for the original
hybrid system. A numerical example on cancer chemotherapy is included to demonstrate the
effectiveness of the proposed algorithm.
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1. Introduction

A hybrid system is a system that involves both time-driven and event-driven dynamics
[2, 4, 14, 17, 23]. The event-driven dynamics typically cause switches in the time-driven
dynamics (which are often described by differential equations). Such switches can be clas-
sified into two types: controlled switches and autonomous switches. Controlled switches
are triggered externally (for example, by changing a gear or switch) and can be manip-
ulated directly by the system operator. Autonomous switches, on the other hand, occur
implicitly when the state trajectory crosses from one region in the state space to another;
they cannot be controlled directly.
Dynamic optimization problems involving hybrid systems have received significant at-

tention in the research literature. Most papers, especially those discussing computational
techniques, focus on hybrid systems with controlled switches [7]. In the present paper,
we instead focus on hybrid systems with autonomous switches. Dynamic optimization
problems for such systems arise in many practical applications such as medical science
[12, 13], power engineering [15], chemical process control [4], and robotics [1].
For hybrid systems with controlled switches, most of the available optimization tech-

niques rely on the assumption that the system dynamics are continuously differentiable
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with respect to the system’s state (although they are discontinuous with respect to time
due to the dynamics changing at the switching time points) [7]. This assumption is
clearly violated for hybrid systems with autonomous switchings: the dynamic equations
may change discontinuously for small perturbations in the state. Nevertheless, it is com-
mon to treat hybrid systems with autonomous switches the same as hybrid systems with
controlled switches, disregarding the implicit influence of the control parameters on the
autonomous switching mechanism. Consider, for example, the cancer chemotherapy prob-
lem in references [11–13]. This problem involves a hybrid system with two modes—one
mode is active when the drug concentration is below a given threshold, the other mode
is active when the drug concentration is above the threshold. This problem was solved in
[11–13] using gradient-based optimization techniques that require the state dynamics to
be continuously differentiable functions of the state. Since this assumption is violated for
hybrid systems with autonomous switches (of which the dynamics in the cancer problem
are an example), the solutions obtained in [11–13] are not guaranteed to be optimal.
A similar gradient-based optimization approach was used in references [15, 19] to solve

an optimal discrete-valued control problem for hybrid power systems. This approach uses
standard formulae for computing the cost and constraint gradients in optimal control (see
[7, 8]), but the continuous differentiability assumptions underlying these formulae are vi-
olated here because the dynamic system includes an autonomous switching mechanism.
In reference [1], proper gradient formulae for hybrid systems with autonomous switching
mechanisms are derived. However, these formulae are only applicable to simple hybrid
systems in which the control parameters only influence the switching surfaces (not the
dynamic equations), there are no continuous-time input signals, and there are no con-
straints on the system.
In this paper, we consider a more general class of hybrid systems with state-dependent

switching conditions. We allow canonical and continuous inequality constraints and we
also cater for time-varying input signals. The paper is organized as follows. In Section 2,
we define the dynamic optimization problem under consideration, which involves a hybrid
system with two modes. In Section 3, we introduce a binary-valued control function to
govern the switching between the two modes, and then replace the binary constraints
with equivalent constraints defined over a continuous range. In Section 4, we use the
well-known control parameterization and time-scaling methods [3, 8, 20] to derive an
approximate finite-dimensional problem. We then apply an exact penalty approach in
Section 5 to transform the resulting problem into a form that can be readily solved using
the optimal control software MISER 3.3 [5]. Section 6 reports numerical results obtained
by applying our new approach to the cancer chemotherapy problem in [11–13].

2. Problem formulation

Consider the following hybrid control system, defined on the time horizon [0, T ], in which
the dynamics depend on the location of the state within the state space:

ẋ(t) =

{

f1(x(t),u(t)), if x(t) ∈ Ω1,

f2(x(t),u(t)), if x(t) ∈ Ω2,
(1)

where

• x(t) ∈ R
n is the state vector at time t;

• u(t) ∈ R
r is the control vector at time t;
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• Ω1 and Ω2 are given regions with disjoint interiors such that Ω1 ∪ Ω2 = R
n; and

• f1,f2 : Rn × R
r → R

n are given continuously differentiable functions.

According to equation (1), the system dynamics switch when the state moves from Ω1

to Ω2, or from Ω2 to Ω1. Thus, unlike in conventional switched systems, the switching
times here are not independent decision variables; they are instead generated implicitly
by the state trajectory.
We assume that Ω1 and Ω2 can be defined as follows:

Ω1 = {x ∈ R
n : ω(x) ≥ 0 }, Ω2 = {x ∈ R

n : ω(x) ≤ 0 },

where ω : Rn → R is a given continuously differentiable function. The interiors of these
regions are defined by

int(Ω1) = {x ∈ R
n : ω(x) > 0 }, int(Ω2) = {x ∈ R

n : ω(x) < 0 }.

The initial condition for system (1) is

x(0) = x0, (2)

where x0 ∈ R
n is a given initial state.

Let

U =
{
[u1, . . . , ur]

⊤ ∈ R
r : umin

j ≤ uj ≤ umax
j , j = 1, . . . , r

}
,

where, for each j = 1, . . . , r, umin
j and umax

j are given constants such that umin
j < umax

j .
The set U ⊂ R

r is called the control restraint set. Any piecewise continuous function
u : [0, T ] → R

r such that u(t) ∈ U for all t ∈ [0, T ] is called an admissible control. Let U
be the class of all such admissible controls.
For a given u ∈ U , let x(·|u) be the corresponding state trajectory that satisfies the

dynamic equations (1) and the initial condition (2). We assume that, on the boundary
between the two regions Ω1 and Ω2,

f1(x(t),u(t)) = f2(x(t),u(t)), x(t) ∈ Ω1 ∩ Ω2. (3)

This ensures that the dynamics are well-defined on the boundary (since the state trajec-
tory may “slide” along the switching surface defined by ω(x) = 0 for some non-negligible
time interval).
We impose two types of constraints on the state trajectory: canonical constraints and

continuous inequality constraints. The canonical constraints (of both equality and in-
equality type) are expressed mathematically as follows:

gv(u) =

m∑

k=1

Φv,k(x(τk|u)) +

∫ T

0
Lv(x(t|u),u(t))dt

{

= 0, v = 1, . . . , pe,

≥ 0, v = pe + 1, . . . , p,
(4)

where Φv,k : Rn → R, v = 1, . . . , p, k = 1, . . . ,m, and Lv : Rn × R
r → R, v = 1, . . . , p,

are continuously differentiable functions and τ1, . . . , τm are given characteristic times
satisfying

0 = τ0 < τ1 < τ2 < · · · < τm ≤ T.
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Note that the canonical form (4) can model many constraints of practical interest, in-
cluding interior-point constraints and terminal state constraints [8].
Continuous inequality constraints are expressed mathematically by

hv(x(t|u)) ≥ 0, t ∈ [0, T ], v = 1, . . . , q, (5)

where hv : Rn → R, v = 1, . . . , q, are given continuously differentiable functions. Such
constraints impose restrictions on the system at every point in the time horizon.
We define a cost function in the same form as the canonical functions in (4):

g0(u) =

m∑

k=1

Φ0,k(x(τk|u)) +

∫ T

0
L0(x(t|u),u(t))dt, (6)

where Φ0,k : Rn → R, k = 1, . . . ,m, and L0 : Rn × R
r → R are given continuously

differentiable functions.
Our optimization problem is defined below.

Problem 1 Choose an admissible control u ∈ U to minimize the cost function (6)
subject to the hybrid system dynamics (1), the initial condition (2), the canonical con-
straints (4), and the continuous inequality constraints (5).

3. Problem transformation

The system dynamics in (1) are non-smooth because of the state-dependent switching
mechanism. Most optimization methods for hybrid systems are only applicable when the
switching mechanism is time-dependent and not state-dependent. Therefore, we intro-
duce a new binary-valued decision function z(t) defined as follows:

z(t)







= 1, if x(t) ∈ int(Ω1),

= 0, if x(t) ∈ int(Ω2),

∈ {0, 1}, if x(t) ∈ Ω1 ∩ Ω2.

(7)

The choice of whether z(t) = 1 or z(t) = 0 when x(t) ∈ Ω1 ∩ Ω2 is arbitrary. Since we
are assuming that the dynamic equations for Ω1 and Ω2 are identical on the boundary
between the two regions (see (3)), we can write (1) as

ẋ(t) = z(t)f1(x(t),u(t)) + (1− z(t))f2(x(t),u(t)), t ∈ [0, T ]. (8)

Standard nonlinear optimization algorithms such as interior-point and sequential
quadratic programming methods are designed to solve continuous optimization prob-
lems. Such methods cannot handle discrete variables in the form of (7). Therefore, to
proceed, we drop the binary requirements and consider z(t) to be a continuous-valued
function subject to the following bound constraints:

0 ≤ z(t) ≤ 1, t ∈ [0, T ]. (9)

Let Z denote the set of all piecewise continuous functions defined on [0, T ] and satisfying
inequality (9). Furthermore, let x(·|u, z) denote the solution of (8) and (2) corresponding

4



January 23, 2017 Optimization Methods & Software version4

to pair (u, z) ∈ U ×Z. To ensure that z(t) is consistent with (7), we impose the following
additional constraints:

z(t)(z(t) − 1) ≥ 0, t ∈ [0, T ], (10)

and

z(t)ω(x(t|u, z)) − (1− z(t))ω(x(t|u, z)) ≥ 0, t ∈ [0, T ]. (11)

The following result shows that (9)-(11) are equivalent to (7).

Proposition 3.1 Let u ∈ U and z ∈ Z be given. Then (u, z) satisfies definition (7) if
and only if (u, z) satisfies constraints (9)-(11).

Proof. If (u, z) satisfies (7), then obviously (9)-(11) are also satisfied. Thus, we focus on
the reverse implication. Suppose that (9)-(11) hold. Then it follows from (10) that for
all t ∈ [0, T ], either z(t) ≥ 1 or z(t) ≤ 0. But we already know from (9) that 0 ≤ z(t) ≤ 1
for any t ∈ [0, T ]. Thus, we must have z(t) ∈ {0, 1} for all t ∈ [0, T ].
If x(t) ∈ int(Ω1) and z(t) = 0, then it follows from (11) that ω(x(t)) ≤ 0, which is a

contradiction. Thus, if x(t) ∈ int(Ω1), then z(t) = 1. Similarly, if x(t) ∈ int(Ω2), then
z(t) = 0. This shows that (9)-(11) implies (7). This completes the proof. �

The technique described above for relaxing the binary-valued control is similar to the
so-called embedding transformation in the literature [16, 23]. Note, however, that we
include the additional constraints (10) and (11) to ensure that the transformed system is
equivalent to the original system. In the traditional embedding transformation, the two
systems are not equivalent (only the bound constraints (9) are imposed in the traditional
embedding transformation).
We can now rewrite the cost function (6) as follows:

g0(u, z) =

m∑

k=1

Φ0,k(x(τk|u, z)) +

∫ T

0
L0(x(t|u, z),u(t))dt. (12)

Similarly, the canonical constraints (4) and continuous inequality constraints (5) can be
rewritten, respectively, as

gv(u, z) =

m∑

k=1

Φv,k(x(τk|u, z)) +

∫ T

0
Lv(x(t|u, z),u(t))dt

{

= 0, v = 1, . . . , pe,

≥ 0, v = pe + 1, . . . , p,

(13)
and

hv(x(t|u, z)) ≥ 0, t ∈ [0, T ], v = 1, . . . , q. (14)

On the basis of Proposition 3.1, it is clear that Problem 1 is equivalent to the following
problem.

Problem 2 Choose a pair (u, z) ∈ U × Z to minimize the cost function (12) subject
to the dynamic system (8), the initial condition (2), the canonical constraints (13), and
the continuous inequality constraints (10), (11), and (14).
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4. Problem approximation

Define a partition on the time horizon [0, T ] as follows:

P = {t0, t1, . . . , tN},

where t0 = 0, tN = T , and tj−1 ≤ tj for each j = 1, . . . , N .
We assume that the partition P is chosen so that for each k ∈ {1, . . . ,m}, there exists

a corresponding νk ∈ {1, . . . , N} such that tνk
= τk, i.e., the partition includes the

characteristic times as node points.
We now approximate the control u ∈ U by a piecewise constant function consistent

with the partition P . In other words, the switching points for the piecewise constant con-
trol are the interior node points in the partition (i.e., tj, j = 1, . . . , N−1). This piecewise
constant approximation approach is an example of the well-known control parameteriza-
tion technique in the literature [8].
The control switching points in the partition P are decision variables to be chosen

optimally. Although allowing the switching points to be variable increases the approxi-
mation accuracy, it unfortunately makes the problem more difficult to solve, as standard
dynamic optimization methods, including those on which the optimal control software
MISER 3.3 [5] is based, cannot deal directly with variable switching times [10]. Hence, we
will apply the well-known time-scaling transformation described in [3, 6, 20] to transform
the variable switching times into fixed time points in a new time horizon. First, define

θj = tj − tj−1, j = 1, . . . , N.

The time-scaling transformation is performed by defining a new time variable s ∈ [0, N ],
and relating s to t through the following initial value problem,

ṫ(s) = θj , s ∈ [j − 1, j), j = 1, . . . , N, (15)

t(0) = 0, (16)

subject to the constraint

t(N) = T. (17)

To ensure that the characteristic times are transformed correctly, we also require the
following constraints in addition to (17):

t(νk) = τk, k = 1, . . . ,m. (18)

For s ∈ [j − 1, j], integrating (15)-(16) yields

t(s) =

j−1
∑

l=1

θl + θj(s− j + 1).

Let Θ be the set of all θ = [θ1, θ2, . . . , θN ]⊤ ∈ R
N satisfying θj ≥ 0 for each j = 1, . . . , N .

6
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Furthermore, let χ[j−1,j)(s) be the indicator function defined by

χ[j−1,j)(s) =

{

1, if s ∈ [j − 1, j),

0, otherwise.

Under the time-scaling transformation (15)-(16), the control switching times are mapped
from t = t1, t2, . . . , tN−1 to s = 1, 2, . . . , N − 1. The approximate piecewise constant
control can therefore be written as

ũ(s) =

N∑

j=1

ξjχ[j−1,j)(s),

where

ξj ∈ U, j = 1, . . . , N. (19)

We also assume that z ∈ Z is piecewise constant with respect to the partition P . Hence,
in the new time horizon, we may write z as

z̃(s) =

N∑

j=1

γjχ[j−1,j)(s),

where

γj ∈ [0, 1], j = 1, . . . , N. (20)

Note that N − 1 is an upper bound for the maximum number of mode switches.
We define

ξ = [(ξ1)
⊤, (ξ2)

⊤, . . . , (ξN )⊤]⊤, γ = [γ1, γ2, . . . , γN ]⊤.

Let Ξ be the set of all vectors ξ satisfying (19), and let Γ be the set of all vectors γ

satisfying (20). In the new time horizon, the dynamic system (8) becomes

˙̃x(s) = γjθjf
1(x̃(s), ξj) + (1− γj)θjf

2(x̃(s), ξj), s ∈ [j − 1, j), j = 1, . . . , N, (21)

where x̃(s) = x(t(s)). Furthermore, the initial condition (2) becomes

x̃(0) = x0. (22)

Let x̃(·|ξ,γ,θ) be the solution of (21) and (22) corresponding to (ξ,γ,θ) ∈ Ξ× Γ×Θ.
Therefore, our transformed cost function becomes

g̃0(ξ,γ,θ) =

m∑

k=1

Φ0,k(x̃(νk|ξ,γ,θ)) +

N∑

j=1

∫ j

j−1
θjL0(x̃(s|ξ,γ,θ), ξj)ds. (23)

7
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Furthermore, the canonical constraints (13) are transformed to

g̃v(ξ,γ,θ) =

m∑

k=1

Φv,k(x̃(νk|ξ,γ,θ))

+

N∑

j=1

∫ j

j−1
θjLv(x̃(s|ξ,γ,θ), ξj)ds

{

= 0, v = 1, . . . , pe,

≥ 0, v = pe + 1, . . . , p.

(24)

The continuous inequality constraints (14) become

hv(x̃(s|ξ,γ,θ)) ≥ 0, s ∈ [0, N ], v = 1, . . . , q. (25)

In addition, constraints (10) and (11) are transformed, respectively, to

G̃j(γj) = γj(γj − 1) ≥ 0, j = 1, . . . , N, (26)

and

H̃j(s, ξ,γ,θ) = γjω(x̃(s|ξ,γ,θ))− (1− γj)ω(x̃(s|ξ,γ,θ)) ≥ 0,

s ∈ [j − 1, j), j = 1, . . . , N.
(27)

We now define an approximate problem as follows.

Problem 3 Choose (ξ,γ,θ) ∈ Ξ× Γ×Θ to minimize the cost function (23) subject to
the switched system (21), the initial condition (22), and the constraints (17), (18), and
(24)-(27).

Note that, due to the piecewise constant assumption on the control, Problem 3 is only
an approximation of Problem 2.
Standard numerical optimization algorithms will struggle with Problem 3 because con-

straint (26) defines a disconnected feasible region. In the next section, we introduce an
exact penalty method to overcome this difficulty.

5. Exact penalty method

We apply the exact penalty approach in [9, 20–22] to transform Problem 3 into an
unconstrained optimization problem that can be easily solved using the optimal control
software MISER 3.3.
The constraint violation for Problem 3 is defined by

∆(ξ,γ,θ) =

pe∑

v=1

g̃v(ξ,γ,θ)
2 +

p
∑

v=pe+1

min{g̃v(ξ,γ,θ), 0}
2

+

q
∑

v=1

∫ N

0
min{hv(x̃(s|ξ,γ,θ)), 0}

2ds +

N∑

j=1

min{G̃j(γj), 0}
2

+

N∑

j=1

∫ j

j−1
min{H̃j(s, ξ,γ,θ), 0}

2
ds+

m∑

k=1

[
t(νk)− τk

]2
+
[
t(N)− T

]2
.

(28)

8
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Note that ∆(ξ,γ,θ) = 0 if and only if constraints (17), (18) and (24)-(27) are satisfied.
Based on the constraint violation (28), using the strategy introduced in [9, 20–22], an

exact penalty function is defined as follows:

Ĵδ(ξ,γ,θ, ǫ) =







g̃0(ξ,γ,θ), if ǫ = 0 and ∆(ξ,γ,θ) = 0,

g̃0(ξ,γ,θ) + ǫ−α∆(ξ,γ,θ) + δǫη, if ǫ > 0,

+∞, otherwise,

(29)

where ǫ is a new decision variable, δ > 0 is the penalty parameter and α and η are
positive constants satisfying 1 ≤ η ≤ α.
The new decision variable ǫ is subject to the following bound constraint:

0 ≤ ǫ ≤ ǭ,

where ǭ > 0 is a small positive number.
We now define the following unconstrained problem.

Problem 4 Choose (ξ,γ,θ) ∈ Ξ×Γ×Θ and ǫ ∈ [0, ǭ] to minimize the penalty function
(29) subject to the switched system (21) and the initial condition (22).

Note that when the penalty parameter δ is large, the third term δǫη in Ĵδ forces ǫ
to be small, thus causing the second term ǫ−α∆(ξ,γ,θ) to severely penalize constraint
violations. This is why Problem 4 is a good penalty formulation for Problem 3.
To be more precise, for each δ, let (ξ∗δ ,γ

∗

δ ,θ
∗

δ , ǫ
∗

δ) be a global solution of Problem 4. Then
according to Theorem 3 of [9], any sequence {(ξ∗δ ,γ

∗

δ ,θ
∗

δ)} generated by an increasing
sequence of penalty parameters contains a limit point as δ → ∞, and this limit point is
a global solution of Problem 3.
In general, Problem 4 is non-convex and can only be solved locally. In this case, if

(ξ∗δ ,γ
∗

δ ,θ
∗

δ , ǫ
∗

δ) is only a local solution of Problem 4, then Theorem 4 of [9] guarantees
that (ξ∗δ ,γ

∗

δ ,θ
∗

δ) is a local solution of Problem 3 when δ is sufficiently large.
The convergence results stated above (which are proved in [9]) show that a solution of

Problem 3 can be obtained by solving Problem 4 for large values of the penalty parameter.
In the next section, we demonstrate the effectiveness of this method with a numerical
example.

6. Numerical example

We consider the cancer chemotherapy problem in [11–13]. This problem involves choosing
a chemotherapy administration regime to minimize the size of a cancerous tumour. Let
C(t) denote the number of cancer cells in the tumour at time t, and let D(t) denote the
concentration of anti-cancer drug at the tumour site at time t. Here, t is measured in
units of days. The drug concentration is modelled by the linear differential equation

Ḋ(t) = u(t)− βD(t), (30)

D(0) = 0, (31)

where u(t) is the drug delivery rate at time t and β is a given constant. According to
this linear model, the drug concentration at the cancer site decreases exponentially after
the drug is administered.

9
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The tumour growth rate is the net change due to cell proliferation (modelled using the
Gompertz equation) and cell death from the anti-cancer drug (only active when the drug
concentration is above a certain threshold):

Ċ(t) = λC(t) ln(µ/C(t))
︸ ︷︷ ︸

cell proliferation

−

{

0, if D(t) ≤ Dth,

κ(D(t)−Dth)C(t), if D(t) ≥ Dth,
︸ ︷︷ ︸

cell death due to anti-cancer drug

(32)

C(0) = C0, (33)

where C0 is the size of the initial tumour population, Dth is the drug threshold concen-
tration, and λ, µ, and κ are given constants. The cancer treatment commences at time
t = 0 and ends at time t = T . The objective is to minimize C(T ), the number of cancer
cells at the terminal time.
The following constraints are imposed on the drug concentration to limit patient side

effects:

0 ≤ D(t) ≤ Dmax, t ∈ [0, T ], (34)

and

∫ T

0
D(t)dt ≤ Dtotal, (35)

where Dmax and Dtotal are given constants. As in [11–13], we also impose the following
restrictions on the tumour size to ensure that it decreases at, or faster than, a specified
rate:

C(τk) ≤ ρC(τk−1), k = 1, 2, 3, (36)

where ρ ∈ (0, 1) is a given fraction and

τk = 1
4kT, k = 0, 1, 2, 3, 4.

Since the magnitude of C(t) is massive (in the order of 1010), we re-scale the problem by
defining new state variables x1(t) = ln(µ/C(t)) and x2(t) = D(t). The problem dynamics
(30)-(33) then become

ẋ1(t) = −λx1(t) +

{

0, if x2(t) ≤ Dth,

κ(x2(t)−Dth), if x2(t) ≥ Dth,
(37)

ẋ2(t) = u(t)− βx2(t), (38)

with initial conditions

x1(0) = ln(µ/C0), x2(0) = 0. (39)

We also impose an upper bound on the drug delivery rate:

0 ≤ u(t) ≤ umax, t ∈ [0, T ]. (40)

10



January 23, 2017 Optimization Methods & Software version4

In terms of the new state variables, constraints (34)-(36) become

0 ≤ x2(t) ≤ Dmax, t ∈ [0, T ], (41)
∫ T

0
x2(t)dt ≤ Dtotal, (42)

x1(τk)− x1(τk−1) + ln ρ ≥ 0, k = 1, 2, 3. (43)

The problem is to minimize g0 = −x1(T ) (equivalent to minimizing the tumour size)
subject to the dynamics given by (37) and (38), the initial conditions (39) and the
constraints given by (40)-(43). In our simulations, we used the following values (taken
from [11]) for the model constants:

T = 84.0, λ = 9.9× 10−4, κ = 8.4× 10−3, β = 0.27, Dth = 10.0,

Dmax = 50.0, Dtotal = 2.1× 103, ρ = 0.5, µ = 1012, C0 = 1010, umax = 50.0.

After transforming and approximating the optimization problem using the procedures
described in Sections 3-5 (with N = 32 as the partition size), we obtained an uncon-
strained penalty problem. In this unconstrained problem, the goal is to minimize the
penalty function (29), which includes the following terms to replace constraints (41),
(42), and (43).

• Constraints (41):

∫ T

0
min{x2(t), 0}

2dt+

∫ T

0
min{Dmax − x2(t), 0}

2dt

−→

∫ N

0
min{x̃2(s), 0}

2ds+

∫ N

0
min{Dmax − x̃2(s), 0}

2ds.

• Constraint (42):

min

{

Dtotal −

∫ T

0
x2(t)dt, 0

}2

−→ min

{

Dtotal −

N∑

j=1

∫ j

j−1
θjx̃2(s)ds, 0

}2

.

• Constraints (43):

3∑

k=1

min
{
x1(τk)− x1(τk−1) + ln ρ, 0

}2
−→

3∑

k=1

min
{
x̃1(νk)− x̃1(νk−1) + ln ρ, 0

}2
.

The last term (corresponding to constraints (43)) is a nonlinear function involving the
state value at two characteristic times. Since the optimal control software MISER 3.3 [5]
requires that each nonlinear term involves only one characteristic time, we introduce two
additional variables ζ1 and ζ2, where

ζ1 = x̃1(ν1), ζ2 = x̃1(ν2), (44)

where s = ν1 corresponds to t = τ1, and s = ν2 corresponds to t = τ2. Then the penalty

11
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Figure 1. Numerical convergence of the exact penalty method starting from 30 random points: each dot shows
the constraint violation of the best solution found (in terms of minimum constraint violation) up to the current
iteration.

function term corresponding to (43) can be written as

min
{
x̃1(ν1)− ln(µ/C0) + ln ρ, 0}2 +min

{
x̃1(ν2)− ζ1 + ln ρ, 0

}2

+min
{
x̃1(ν3)− ζ2 + ln ρ, 0

}2
.

This format can be easily specified within MISER 3.3. The variables ζ1 and ζ2 are con-
sidered additional decision parameters subject to the canonical constraints (44). Note
that these new canonical constraints also need to be added into the constraint violation
(28) when solving the penalty problem using MISER 3.3. Any problem involving multi-
ple characteristic times will require a similar transformation before MISER 3.3 can be
applied, as the exact penalty method will result in a nonlinear function involving the
state at each characteristic time; see the definition of the constraint violation (28).
We used MISER 3.3 to solve the penalty problem (with δ = 1000, N = 32, α = 3,

and η = 2) starting from 30 randomly-chosen starting points. The numerical convergence
of the constraint violation over these 30 iterations is shown in Figure 1. The details of
the best solution obtained are reported in Table 1. Figures 2-4 show, respectively, the
drug concentration, drug delivery rate, and tumour growth corresponding to the optimal
solution. The graph in Figure 4 indicates that the cancer cell population is reduced
significantly by the end of the treatment period.
Note that the results here are not directly comparable with [11–13] because these refer-

ences do not consider the control upper bound (40). In the absence of this constraint, the
optimal treatment regime involves short periods of high-intensity treatment around each
characteristic time, leading to a graph of u(t) with tall “spikes” near each characteristic
time. We have included the upper bound constraint to make the results more realistic,
at the expense of an increase in the final tumour size.

12
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x1(T ) Final Tumour Population ǫ∗ Constraint Violation

16.30357 8.3071 × 104 0.101811 7.2363 × 10−3

Table 1. Optimal solution for the cancer chemotherapy problem, where ǫ∗ is the optimal value of ǫ.
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Figure 2. Drug concentration (blue dashed line) and optimal switching profile (red solid line) corresponding to
the optimal solution of the cancer chemotherapy problem.

7. Conclusion

We have presented a new computational method for optimizing a class of dual-mode
hybrid systems with state-dependent switching conditions subject to canonical and con-
tinuous inequality constraints. Our new method involves first introducing a binary-valued
control function to express the hybrid system as a single system of ordinary differential
equations. Then, we apply the control parameterization method (to approximate the
continuous-time input signals) and the time-scaling transformation (to map the switch-
ing times to fixed points) to derive a finite-dimensional nonlinear dynamic optimization
problem. This problem can be solved using the exact penalty method described in Sec-
tion 5. Our numerical results for the cancer chemotherapy problem in [11–13] show that
the proposed method is successful at solving realistic applied problems. Future work will
involve extending the method in this paper to hybrid systems with more than two modes,
and exploring more advanced multi-start strategies for dealing with non-convexity (for
example, the particle swarm method used in [18] may be applicable).
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