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Abstract In this paper, we propose a bi-objective dynamic optimization mod-
el involving a nonlinear time-delay system to optimize the 1,3-propanediol
(1,3-PD) production in a microbial batch process, where the productivity of
1,3-PD and the consumption rate of glycerol are taken as the two objectives.
The initial concentrations of biomass and glycerol, and the terminal time of the
process are the decision variables. By a time-scaling transformation, we first
transform the problem to the one with fixed terminal time but involving a new
system with variable time-delay. The normalized normal constraint method is
then used to convert the resulting problem into a sequence of single-objective
dynamic optimization problems. A gradient-based optimization method incor-
porating the constraint transcription technique is developed to solve each of
these single-objective dynamic optimization problems. Finally, numerical re-
sults are provided to demonstrate the effectiveness of the proposed solution
method.
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1 Introduction

Maximization of productivity and minimization of consumption are two top
priorities for any process industry. There is no exception in the case of fer-
mentation, where substrate consumption is expected to be minimized while
the target product productivity is expected to be maximized. This gives rise
to two conflicting objectives. Thus, it is a bi-objective optimization problem
in optimizing 1,3-propanediol (1,3-PD) microbial production process.

1,3-PD is a bulk chemical, which is used in the manufacture of polymer-
s, cosmetics, foods, lubricants, and medicines [27]. In recent years, 1,3-PD
microbial production is particularly attractive in that the process does not
generate toxic byproducts [1]. Glycerol is a prospective feedstock for 1,3-PD
production. Among microorganisms synthesizing 1,3-PD, Klebsiella pneumo-

niae (K. pneumoniae) is commonly used because of its high yield and produc-
tivity [14]. Glycerol fermentation by K. pneumoniae is a complex bio-process
containing time-delays and subject to multiple inhibitions of substrate and
products [3,22]. Compared with other operation modes, 1,3-PD batch pro-
duction can obtain the highest molar yield 1,3-PD to glycerol [7]. For 1,3-PD
batch production, extensive studies have been carried out. A kinetic model
for substrate consumption and product formation is established in [23]. An
enzyme-catalytic kinetic model is proposed in [20]. Based on these mathemat-
ical models, a parameter identification problem is discussed in [25]. A robust
dynamic optimization problem is investigated in [2]. Recently, a nonlinear
time-delay system is proposed to formulate the batch process [11]. For this
system, the corresponding dynamic optimization problem is discussed in [24].
Although the results obtained are interesting, only one objective is involved
in the above identification and dynamic optimization problems and thus they
all are single-objective dynamic optimization problems.

In this paper, we propose a bi-objective optimization model involving a
nonlinear time-delay system [11] to optimize 1,3-PD batch production, where
both the productivity of 1,3-PD and the consumption rate of glycerol are tak-
en as objective functions. The initial concentrations of biomass and glycerol,
and the terminal time of the process are taken as the decision variables. By a
time-scaling transformation [12], we transform the bi-objective dynamic opti-
mization problem into an equivalent one with fixed terminal time but involv-
ing a new system with variable time-delay. For this bi-objective optimization
problem, or a general multi-objective optimization problem (MOOP), there
is a set of optimal solutions that are equally good, which is known as the
Pareto set. By the way, numerical methods for generating the Pareto set of
a MOOP can be broadly classified into two categories [9]. The first category,
which is known as scalarization methods, transforms a MOOP into a sequence
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of parametric single-objective optimization problems, e.g., convex weighted
sum (CWS) [26], normalized normal constraint (NNC) [15,16], normal bound-
ary intersection [5] and adaptive methods [6]. The second category, which
is referred as vectorization methods, generates the Pareto set directly from
the multi-objective formulation, e.g., particle swarm optimization [4] and ge-
netic algorithm [10]. Note that, for the scalarization methods, gradient-based
deterministic optimization routes can be combined with to find optimal so-
lutions for large-scale and highly constrained MOOPs in a fast and efficient
way [13]. In this paper, we convert the transformed problem into a sequence
of single-objective dynamic optimization problems by using the NNC method.
The main reasons to choose the NNC method are: (i) it is independent of
the objective scales; and (ii) it can generate well-distributed points on the
Pareto set. We then develop a new gradient-based single-objective solver in-
corporating the constraint transcription technique [21] to solve each of these
resulting single-objective problems. On this basis, the NNC method in con-
junction with the new gradient-based single-objective solver is used to solve
the bi-objective dynamic optimization problem. Finally, numerical results are
provided to demonstrate the effectiveness of the proposed approach.

2 Dynamic Model

Based on the previous work [11], mass balance relationships for biomass, sub-
strate, and products in the process can be expressed as the following nonlinear
time-delay system:











ẋ1(t) = µ(x(t))x1(t− h),

ẋ2(t) = −q2(x(t))x1(t− h), t ∈ (0, tf ],

ẋℓ(t) = qℓ(x(t))x1(t− h), ℓ = 3, 4, 5,

(1)

with

x(t) = φ(t, ζ), t ≤ 0, (2)

where t denotes the process time; tf > 0 is the terminal time of the pro-
cess; x(t) := (x1(t), x2(t), x3(t), x4(t), x5(t))

⊤ ∈ R5 is the state vector whose
components are, respectively, the concentrations of biomass, glycerol, 1,3-PD,
acetate and ethanol at time t in the reactor; h = 0.26 is a delay argument;
ζ := (ζ1, ζ2, ζ3, ζ4, ζ5)

⊤ is the initial state; and φ : R × R5 → R5 is a given
initial function. Moreover, µ(x(t)) is the specific growth rate of cells, q2(x(t))
is the specific consumption rate of substrate, and qℓ(x(t)), ℓ = 3, 4, 5, are the
specific formation rates of products. These quantities are expressed by the
following equations [23]:

µ(x(t)) :=
µmx2(t)

x2(t) + k1

5
∏

ℓ=2

(

1−
xℓ(t)

x∗ℓ

)

,

qℓ(x(t)) := mℓ + Yℓµ(x(t)), ℓ = 2, 3, 4, 5,
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Table 1 The kinetic parameters and critical concentrations in the system (1) [11].

µm k1 m2 m3 m4 m5 Y2 Y3 Y4 Y5

0.994 0.368 3.24 -3.679 -0.491 7.309 11.75 76 35.54 14.78
x∗1 x∗2 x∗3 x∗4 x∗5 x∗

1
x∗

2
x∗

3
x∗

4
x∗

5

0.01 0 0 0 0 6 2039 939.5 1026 360.9

where µm, k1, mℓ and Yℓ are kinetic parameters; and x∗ℓ are critical concen-
trations for cell growth. The values of these kinetic parameters and critical
concentrations are listed in Table 1.

The terminal time in system (1) and (2) is a decision variable. Define

T := {τ ∈ R : a1 ≤ τ ≤ b1},

where a1 and b1 are the lower and upper bounds for the terminal time, respec-
tively. Any tf ∈ T is called an admissible terminal time. In addition, ζℓ = 0,
ℓ = 3, 4, 5, since there is no product being entered at the initial time point.
Let u := (ζ1, ζ2)

⊤ and define

U := {v ∈ R2 : ci ≤ vi ≤ di, i = 1, 2},

where ci and di are real numbers such that ci ≤ di. Any u ∈ U is called an
admissible initial concentration vector of biomass and glycerol.

For system (1) and (2), there exists a unique absolutely continuous solu-
tion x(·|u) corresponding to each u ∈ U on [0,∞] [8]. Furthermore, there exist
critical concentrations of biomass, glycerol and products. Outside these critical
concentrations, the cells will cease to grow. Thus, it is biologically meaningful
to restrict the concentrations of biomass, glycerol, and products within a set
defined by

x(t|u) ∈W :=
5
∏

ℓ=1

[x∗ℓ, x
∗

ℓ ], t ∈ [0, tf ], (3)

where x∗ℓ and x
∗

ℓ are the critical concentrations for cell growth (as used in the
formula µ(x(t))). These values are also listed in Table 1.

3 Bi-objective dynamic optimization problem

For the batch production governed by system (1) and (2), the aims are to
maximize the productivity of the target product and, at the same time, to
minimize the consumption rate of the substrate. Thus, there are two conflicting
objectives.
(i) Maximizing the productivity of 1,3-PD:

max
x3(tf |u)

tf
.



Bi-objective dynamic optimization in microbial batch process 5

(ii) Minimizing the consumption rate of glycerol:

min
u2 − x2(tf |u)

tf
,

where u2 is the initial concentration of glycerol.
Let

J(u, tf ) :=

(

−
x3(tf |u)

tf
,
u2 − x2(tf |u)

tf

)⊤

(4)

be the objective vector to be minimized. Then, incorporating constraint (3),
we present the following bi-objective dynamic optimization problem:

(BP) min J(u, tf )

s.t. x(t|u) ∈W, t ∈ [0, tf ],

(u, tf ) ∈ U × T .

For (BP), there are three non-standard features: (i) the terminal time is free
instead of fixed; (ii) the objective function is not a scalar but a vector; and
(iii) constraint (3) is a continuous state inequality constraint (i.e., it must be
satisfied at an infinite number of points in the time interval).

To circumvent the first difficulty, we apply a time-scaling transforma-
tion [12] from [0, tf ] to [0, 1] as given below:

t = t(s) = tfs, (5)

where s ∈ [0, 1] is a new time variable. Clearly, s = 0 corresponds to t = 0,
and s = 1 corresponds to t = tf . Then, system (1) is transformed into an
equivalent form given below:











˙̃x1(t) = tf µ̃(x̃(s))x̃1(s− t−1
f h),

˙̃x2(t) = −tf q̃2(x̃(s))x̃1(s− t−1
f h), s ∈ (0, 1],

˙̃xℓ(t) = tf q̃ℓ(x̃(s))x̃1(s− t−1
f h), ℓ = 3, 4, 5,

(6)

where

x̃(s) := x(tfs),

µ̃(x̃(s)) := µ(x(tfs)),

q̃ℓ(x̃(s)) := qℓ(x(tfs)), ℓ = 2, 3, 4, 5.

The initial condition (2) becomes

x̃(s) = φ(tfs, ζ), s ≤ 0. (7)

Let x̃(·|u, tf) denote the solution of the system (6) and (7) corresponding to
each (u, tf) ∈ U×T on [0, 1]. Then, under the time-scaling transformation (5),
constraint (3) becomes

x̃(s|u, tf ) ∈W, s ∈ [0, 1], (8)
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and the objective vector (4) turns into

J̃(u, tf ) :=

(

−
x̃3(1|u, tf)

tf
,
u2 − x̃2(1|u, tf )

tf

)⊤

. (9)

Therefore, (BP) can be stated equivalently as the following bi-objective dy-
namic optimization problem:

(EP) min J̃(u, tf )

s.t. x̃(s|u, tf ) ∈W, s ∈ [0, 1],

(u, tf ) ∈ U × T .

Obviously, (EP) is a bi-objective dynamic optimization problem with fixed
terminal time but involving a new system with variable time-delay.

4 A solution method

In this section, a numerical solution method combining the NNC method [16]
with a gradient-based single-objective solver is developed to solve (EP).

4.1 Normalized normal constraint

To apply the NNCmethod, we require two anchor points, denoted by J̃1(u
1∗, t1∗f )

and J̃2(u
2∗, t2∗f ). They are obtained from solving the following (EPUj), j =

1, 2, respectively.

(EPUj) min J̃j(u, tf)

s.t. x̃(s|u, tf ) ∈ W, s ∈ [0, 1],

(u, tf) ∈ U × T ,

where J̃j is the jth component of J̃ . The line joining these two points is called

the Utopia line. Furthermore, we define the Utopia point, J̃u, as:

J̃u := (J̃1(u
1∗, t1∗f ), J̃2(u

2∗, t2∗f ))⊤.

Note that the Utopia point is generally unattainable. The NNC method gen-
erates points of the Pareto set in the normalized objective space. Thus, define

l1 := J̃1(u
2∗, t2∗f )− J̃1(u

1∗, t1∗f ),

l2 := J̃2(u
1∗, t1∗f )− J̃2(u

2∗, t2∗f ).

Then, l1 and l2 give the distances between J̃(u2∗, t2∗f ) and J̃u, and between

J̃(u1∗, t1∗f ) and J̃u, respectively. Using l1 and l2, the normalized form of J̃ is
defined as

J̄(u, tf ) :=

(

J̃1(u, tf )− J̃1(u
1∗, t1∗f )

l1
,
J̃2(u, tf )− J̃2(u

2∗, t2∗f )

l2

)⊤

. (10)
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Let N̄ be the direction from J̄(u1∗, t1∗f ) to J̄(u2∗, t2∗f ) defined by

N̄ := J̄(u2∗, t2∗f )− J̄(u1∗, t1∗f ).

In addition, compute a normalized increment, δ, along the direction N̄ for a
prescribed number, m, of solutions as:

δ :=
1

m− 1
.

Evaluate a set of evenly distributed points on the Utopia line as

X̄pk := α1kJ̄(u
1∗, t1∗f ) + α2kJ̄(u

2∗, t2∗f ),

where α1k and α2k are weights satisfying 0 ≤ α1k ≤ 1, 0 ≤ α2k ≤ 1, and
α1k + α2k = 1. Note that α1k, k ∈ {1, 2, . . . ,m}, is incremented by δ between
0 and 1. Using the set of evenly distributed points on the Utopia line, we can
generate a corresponding set of Pareto points by solving (EPU2) sequentially
with an additional constraint:

N̄⊤ · (J̄ − X̄pk) ≤ 0. (11)

Specifically, for each generated point on the Utopia line, solve the following
single-objective dynamic optimization problem for the kth point X̄pk:

(EPU2,k) min J̄2(u, tf )

s.t. x̃(s|u, tf ) ∈ W, s ∈ [0, 1],

N̄⊤ · (J̄ − X̄pk) ≤ 0,

(u, tf ) ∈ U × T .

4.2 Single-objective solver

In this subsection, we will develop a gradient-based single-objective solver in
conjunction with constraint transcription technique [21].

4.2.1 Constraint transcription

Constraint (8) is a continuous state inequality constraint. We will apply a
constraint transcription technique to transcribe constraint (8) into a canonical
constraint.

Let

hℓ(x̃(s|u, tf )) := x∗ℓ − x̃ℓ(s|u, tf ),

h5+ℓ(x̃(s|u, tf )) := x̃ℓ(s|u, tf)− x∗ℓ, ℓ = 1, 2, . . . , 5.

Then, constraint (8) is equivalent to the following equality constraint:

G̃(u, tf) :=
10
∑

l=1

∫ 1

0

min{0, hl(x̃(s|u, tf))}ds = 0. (12)
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However, since min(·, ·) is non-differentiable at the points where hl = 0, stan-
dard optimization routines would have difficulties in dealing with such equality
constraint. Thus, constraint (12) is approximated by

G̃ǫ,γ(u, tf) := γ +

10
∑

l=1

∫ 1

0

ϕǫ(hl(x̃(s|u, tf )))ds ≥ 0, (13)

where ǫ > 0, γ > 0 are two adjustable parameters; and

ϕǫ(η) =











η, if η < −ǫ,

−
(η − ǫ)2

4ǫ
, if − ǫ ≤ η ≤ ǫ,

0, if η > ǫ.

Note that inequality constraint (13) is in the form of a canonical constraint.
For each ǫ > 0 and γ > 0, denote (EPUj) and (EPU2,k) replacing constrain-
t (8) with inequality constraint (13) by (EPUǫ,γ

j ), j = 1, 2, and (EPUǫ,γ
2,k),

k = 1, 2, . . . ,m, respectively. Then, we can solve a sequence of approximate
problems (EPUǫ,γ

j ) and (EPUǫ,γ
2,k) to obtain the solutions of (EPUj), j = 1, 2,

and (EPU2,k), k = 1, 2, . . . ,m.

4.2.2 Gradient computation

In solving (EPUǫ,γ
j ), j = 1, 2, and (EPUǫ,γ

2,k), k = 1, 2, . . . ,m, the gradients of J̃ ,

J̄ , and constraint functions (11) and (13) with respect to u and tf are needed.

Recall that J̄ is the normalized form of J̃ and constraint function (11) is also
a function of J̃ . Therefore, we only need the gradients of J̃ and constraint
function (13) with respect to u and tf . These gradient formulas are given in
the following theorems. The proofs of these theorems are similar to those given
for Theorems 1 and 2 in [12]. First, define

f̃(tf , x̃(s), x̃(s− t−1
f h)) :=















tf µ̃(x̃(s))x̃1(s− t−1
f h)

−tf q̃2(x̃(s))x̃1(s− t−1
f h)

tf q̃3(x̃(s))x̃1(s− t−1
f h)

tf q̃4(x̃(s))x̃1(s− t−1
f h)

tf q̃5(x̃(s))x̃1(s− t−1
f h)















,

ψ(s) :=







∂φ(tfs, ζ)

∂s
, s ≤ 0,

f̃(tf , x̃(s), x̃(s− t−1
f h)), s ∈ [0, 1],

and, for a given interval I,

χI(s) :=

{

1, s ∈ I,

0, otherwise.

Then, the following theorem gives the gradient formulas of J̃1(u, tf ) with
respect to u and tf .
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Theorem 1 Let (u, tf ) ∈ U × T . Then

∂J̃1(u, tf )

∂u
= λ⊤(0)

∂x̃(0)

∂u

+

∫ 0

−t
−1

f
h

λ⊤(s+ t−1
f h)

∂f̃(tf , x̃(s+ t−1
f h), x̃(s))

∂x̃(s)

∂φ(tfs, ζ)

∂u
ds,

and

∂J̃1(u, tf )

∂tf
= x̃3(1)t

−2
f +

∫ 1

0

λ⊤(s)t−1
f f̃(tf , x̃(s), x̃(s− t−1

f h))ds

+

∫ 1

0

t−2
f hλ⊤(s)

∂f̃(tf , x̃(s), x̃(s− t−1
f h))

∂x̃(s− t−1
f h)

ψ(s− t−1
f h)ds

+

∫ 0

−t
−1

f
h

λ⊤(s+ t−1
f h)

∂f̃(tf , x̃(s+ t−1
f h), x̃(s))

∂x̃(s)

∂φ(tfs, ζ)

∂tf
ds,

where λ(·) is the solution of the following costate system:

λ̇(s) = −

(

∂f̃(tf , x̃(s), x̃(s− t−1
f h))

∂x̃(s)

)⊤

λ(s)

− χ[0,1−t
−1

f
h](s)

(

∂f̃(tf , x̃(s+ t−1
f h), x̃(s))

∂x̃(s)

)⊤

λ(s+ t−1
f h), s ∈ [0, 1], (14)

with the terminal conditions

λ(1) = (0, 0,−t−1
f , 0, 0)⊤, (15)

λ(s) = (0, 0, 0, 0, 0)⊤, s > 1. (16)

The next theorem gives the gradient formulas of J̃2(u, tf) with respect to
u and tf .

Theorem 2 Let (u, tf ) ∈ U × T . Then

∂J̃2(u, tf )

∂u
= (0, t−1

f )⊤ + λ̄⊤(0)
∂x̃(0)

∂u

+

∫ 0

−t−1

f
h

λ̄⊤(s+ t−1
f h)

∂f̃(tf , x̃(s+ t−1
f h), x̃(s))

∂x̃(s)

∂φ(tfs, ζ)

∂u
ds,

and

∂J̃2(u, tf )

∂tf
= −

u2 − x̃2(1)

t2f
+

∫ 1

0

λ̄⊤(s)t−1
f f̃(tf , x̃(s), x̃(s− t−1

f h))ds

+

∫ 1

0

t−2
f hλ̄⊤(s)

∂f̃(tf , x̃(s), x̃(s− t−1
f h))

∂x̃(s− t−1
f h)

ψ(s− t−1
f h)ds

+

∫ 0

−t
−1

f
h

λ̄⊤(s+ t−1
f h)

∂f̃(tf , x̃(s+ t−1
f h), x̃(s))

∂x̃(s)

∂φ(tfs, ζ)

∂tf
ds,
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where λ̄(·) is the solution of the following costate system:

˙̄λ(s) = −

(

∂f̃(tf , x̃(s), x̃(s− t−1
f h))

∂x̃(s)

)⊤

λ̄(s)

− χ[0,1−t
−1

f
h](s)

(

∂f̃(tf , x̃(s+ t−1
f h), x̃(s))

∂x̃(s)

)⊤

λ̄(s+ t−1
f h), s ∈ [0, 1], (17)

with the terminal conditions

λ̄(1) = (0,−t−1
f , 0, 0, 0)⊤, (18)

λ̄(s) = (0, 0, 0, 0, 0)⊤, s > 1. (19)

The last theorem gives the gradient formulas of G̃ǫ,γ(u, tf ) with respect to
u and tf .

Theorem 3 Let (u, tf ) ∈ U × T . Then for each ǫ > 0 and γ > 0,

∂G̃ǫ,γ(u, tf )

∂u
= λ̃⊤(0)

∂x̃(0)

∂u

+

∫ 0

−t
−1

f
h

λ̃⊤(s+ t−1
f h)

∂f̃(tf , x̃(s+ t−1
f h), x̃(s))

∂x̃(s)

∂φ(tfs, ζ)

∂u
ds,

and

∂G̃ǫ,γ(u, tf )

∂tf
=

∫ 1

0

t−1
f λ̃⊤(s)f̃(tf , x̃(s), x̃(s− t−1

f h))ds

+

∫ 1

0

t−2
f hλ̃⊤(s)

∂f̃(tf , x̃(s), x̃(s− t−1
f h))

∂x̃(s− t−1
f h)

ψ(s− t−1
f h)ds

+

∫ 0

−t
−1

f
h

λ̃⊤(s+ t−1
f h)

∂f̃(tf , x̃(s+ t−1
f h), x̃(s))

∂x̃(s)

∂φ(tfs, ζ)

∂tf
ds,

where λ̃(·) is the solution of the following costate system:

˙̃
λ(s) = −

10
∑

l=1

∂ϕǫ(hl(x̃(s)))

∂x̃(s)
−

(

∂f̃(tf , x̃(s), x̃(s− t−1
f h))

∂x̃(s)

)⊤

λ̃(s)

− χ[0,1−t
−1

f
h](s)

(

∂f̃(tf , x̃(s+ t−1
f h), x̃(s))

∂x̃(s)

)⊤

λ̃(s+ t−1
f h), s ∈ [0, 1], (20)

with the terminal condition

λ̃(s) = (0, 0, 0, 0, 0)⊤, s ≥ 1. (21)

Theorems 1-3 provide the gradients of the objective vector J̃(u, tf ) and

the constraint function G̃ǫ,γ(u, tf ) for each given (u, tf ) ∈ U × T , ǫ > 0, and
γ > 0. Note that based on these gradients, the gradients of J̄ and constraint
function (11) with respect to u and tf can be computed, accordingly. As a
result, we present Algorithm 1 to solve (EPUǫ,γ

j ), j = 1, 2, and (EPUǫ,γ
2,k),

k = 1, 2, . . . ,m.
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Algorithm 1
Step 1: Provide an initial guess (u, tf ) ∈ U×T , ǫ > 0 and γ > 0, set parameters 0 < β1 < 1,

0 < β2 < 1, ǭ and γ̄.
Step 2: Compute (uǫ,γ∗, tǫ,γ∗

f
).

Step 2.1: Solve system (6) from s = 0 to s = 1 to obtain the state solution denoted by
x̃(·|u, tf ).

Step 2.2: Using x̃(·|u, tf ), compute J̃(u, tf ) by (9) and G̃ǫ,γ(u, tf ) by (13).
Step 2.3: Using x̃(·|u, tf ), solve costate systems (14)-(16), (17)-(19) and (20)-(21) from

s = 1 to s = 0 to obtain costate solutions denoted by λ(·|u, tf ), λ̄(·|u, tf ) and

λ̃(·|u, tf ), respectively.

Step 2.4: Using x̃(·|u, tf ), λ(·|u, tf ), λ̄(·|u, tf ) and λ̃(·|u, tf ), compute ∂J̃(u, tf )/∂u,

∂J̃(u, tf )/∂tf , ∂G̃
ǫ,γ(u, tf )/∂u and ∂G̃ǫ,γ(u, tf )/∂tf by their respective formulas in

Theorems 1-3. Furthermore, compute the gradients of J̄ and constraint function (11)
with respect to u and tf .

Step 2.5: Solve (EPUǫ,γ
j ), j ∈ {1, 2}, or (EPUǫ,γ

2,k
), k ∈ {1, 2, . . . ,m}, by gradient-

based optimization (e.g., sequential quadratic programming (SQP) [17]) to obtain
the corresponding (uǫ,γ∗, tǫ,γ∗

f
).

Step 3: Check feasibility of G̃(x̃(s|uǫ,γ∗, tǫ,γ∗
f

)) = 0, s ∈ [0, 1]. If (uǫ,γ∗, tǫ,γ∗
f

) is feasible,

then go to Step 4. Otherwise, set γ = β1γ. If γ ≤ γ̄, we have an abnormal exit. Otherwise,
go to Step 2.

Step 4: Set ǫ = β2ǫ and γ = β2γ. If ǫ > ǭ, then go to Step 2. Otherwise, output (uǫ,γ∗, tǫ,γ∗
f

)

and stop.

5 Numerical results

In the numerical computation, we write a Fortran subroutine, in which the gra-
dient computation procedure presented in Algorithm 1 is combined with the
optimization software NLPQLP—a Fortran implementation of SQP [18]— to
solve the needed single-objective dynamic optimization problems. This subrou-
tine used the 6th order Runge-Kutta method to solve the state and costate sys-
tems. Lagrange interpolation [19] is used whenever the Runge-Kutta method
requires the value of the state or costate at an intermediate time between two
adjacent knot points. In particular, the initial function, the bounds for the deci-
sion variables are φ(t, ζ) = ζ, a1 = 5, b1 = 20, c1 = 0.02, c2 = 400, d1 = 0.202,
d2 = 500, respectively. In Algorithm 1, we take u = (0.102, 418.26)⊤ and
tf = 6.92 as the initial values of decision variables, ǫ = 1.0 × 10−2 and
γ = 2.5 × 10−3 as the initial values for the approximating parameters, and
parameters β1 = 0.5, β2 = 0.1, ǭ = 1.0× 10−8 and γ̄ = 1.0× 10−7.

To solve (BP) using the NNC method, we write a Fortran program combin-
ing the NNC method with the single-objective solution subroutine. By running
this program with m = 20, evenly distributed points on the Pareto set is ob-
tained as shown in Fig. 1. For comparison, we also write another Fortran
program combining the CWS method, where the components of normalized
objective vector (10) are weighted, with the single-objective solution subrou-
tine to solve (BP). Running this program with m = 20 for evenly distributed
weight, a non-uniform spread of points on the Pareto set is obtained as shown
in Fig. 2. Note that a Pareto filter is designed to remove all non-globally Pare-
to solutions. This filter works by comparing a point in the presentation of the
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Fig. 1 Pareto set generated by NNC method.
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Fig. 2 Pareto set generated by CWS method.

Pareto set with every other generated point. If a point is dominated by other
points in the representation of the Pareto set, then it is eliminated. Clearly,
the Pareto set constructed from the points generated by the NNC method is
much more accurate. Furthermore, it is observed that the computation time
taken to generate the 20 points by the NNC method is 418.65 seconds. Howev-
er, it takes 532.82 seconds by the CWS method. These simulations are carried
out on a Thinkpad laptop computer with 2.8GHz CPU and 4GB memory. It
can be seen that all representations of the Pareto set are generated within a
few minutes. In addition to the fact that the NNC method generates a more
accurate representation of the Pareto set than the CWS method, it also gives
rise to faster computation time.

More specifically, five points A, B, C, D and E are taken from the repre-
sentation of the Pareto set obtained by the NNC method (see Fig. 1). The
corresponding weights, optimal solutions and objective values for points A, B,
C, D and E are listed in Table 2. Obviously, these two objectives are conflict-
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Table 2 The weights, optimal solutions and optimal objectives for points A, B, C, D and
E.

k α1k α2k u∗ t∗
f

J(u∗, t∗
f
)

A 1 0 1 (0.0200, 499.8056)⊤ 5.0000 (−7.5537, 2.2807)⊤

B 7 0.3158 0.6842 (0.1140, 418.2510)⊤ 5.0000 (−37.0534, 11.7543)⊤

C 14 0.6842 0.3158 (0.2020, 418.2595)⊤ 6.0874 (−68.3316, 24.3689)⊤

D 17 0.8947 0.1053 (0.2020, 437.2584)⊤ 7.8947 (−81.4623, 33.9381)⊤

E 20 1 0 (0.2020, 475.0829)⊤ 9.5224 (−84.3955, 40.5305)⊤

ing. Emphasizing one of these two objectives can be achieved by selecting the
weights α1k and 1− α1k. In particular, maximizing productivity of 1,3-PD is
focused when the value of α1k is close to one. On the other hand, minimizing
the consumption rate of glycerol is concentrated when the value of α1k is close
to zero. Moreover, the changes of the corresponding optimal concentrations of
biomass, glycerol and 1,3-PD are plotted in Fig. 3. From Fig. 3, we see that
the biomass for point D attains it upper bound (the horizontal red line) at the
terminal time. In other words, the continuous state constraint is active at the
terminal time. From Table 2 and Fig. 3, we can also confirm that the proposed
solution method is effective in solving (BP).

6 Conclusions

In this paper, we investigated the bi-objective dynamic optimization of 1,3-PD
production in a microbial batch process. We developed a numerical solution
method to construct the Pareto set of the bi-objective dynamic optimization
problem. This method was based on the NNC method in conjunction with the
gradient-based single-objective solver. Numerical results verified the effective-
ness of the proposed solution method.
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