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Abstract Woodside Energy Ltd (Woodside), Australia’s largest independent oil and gas company, operates mul-

tiple oil and gas facilities off the coast of Western Australia. These facilities require regular cargo shipments from

supply vessels based in Karratha, Western Australia. In this paper, we describe a decision support model for

scheduling the cargo shipments to minimize travel cost and trip duration, subject to various operational restric-

tions including vessel capacities, cargo demands at the facilities, time windows at the facilities, and base opening

times. The model is a type of non-standard vehicle routing problem involving multiple supply vessels—a primary

supply vessel that visits every facility during a round trip taking at most one week, and other supply vessels that

are used on an ad hoc basis when the primary vessel cannot meet all cargo demands. We validate the model via

test simulations using real data provided by Woodside.
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1 Introduction

This paper describes the results of a joint research project between Curtin University, Australia and Woodside

Energy Ltd (Woodside), Australia’s largest independent oil and gas company. The purpose of the project was to

develop a decision support model for optimally scheduling the cargo deliveries at Woodside-operated offshore oil

and gas facilities in the Indian Ocean off the coast of North West Australia.

The cargo deliveries are performed by a vessel fleet consisting of one primary supply vessel and multiple

secondary vessels. In the past, the fleet operated a “taxi-style” service whereby cargo deliveries were routed on

an ad hoc basis according to requests from the offshore facilities. The work in this paper was commissioned by

Woodside to investigate a fixed schedule format whereby the primary supply vessel performs the same round trip

each week, visiting every offshore facility once according to fixed arrival times. This fixed schedule format (which

may require chartering a larger primary vessel in the future) is cheaper to implement and allows the offshore

facilities to plan their operations with more certainty regarding cargo deliveries.

The purpose of this paper is to present a decision support model for designing the new schedule format. The

design problem involves determining an optimal seven-day schedule during which the primary supply vessel visits

every facility on a single round trip starting and finishing at the supply base. The secondary supply vessels are

used on an ad hoc basis to fill any cargo delivery shortfalls left over by the primary vessel. The problem is to choose

the trip start times and vessel routes (which are defined by the facility visit sequence and facility arrival times)

to ensure that prescribed cargo delivery requirements are satisfied. The optimization objective incorporates two

criteria: travel cost (less travel is better) and trip duration (less time is better). There is a natural trade-off between

these two criteria; for example, the minimum-distance schedule typically requires long periods of unproductive

waiting. The proposed decision support model provides a tool for finding the best compromise between these

competing objectives.

The cargo scheduling problem described above can be viewed as a vehicle routing problem with side constraints

[4,6]. These constraints include the following:

1. Cargo carried by a vessel cannot exceed the vessel’s capacity;
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2. Each offshore facility has a certain cargo demand that must be delivered;

3. The supply base is only open for part of each day and servicing can be paused during base closure;

4. The offshore facilities may be open for all or part of each day;

5. There is a fixed helicopter schedule for transporting personnel and, due to limited manpower at the offshore

facilities, cargo operations cannot occur while a facility is being prepared for helicopter arrival;

6. Night cargo operations are prohibited at some offshore facilities;

7. Each vessel’s tour cannot exceed seven days in duration; and

8. A minimum amount of cargo must be offloaded on each visit.

Constraints 4-6 above define a set of disjoint arrival windows for each offshore facility: a vessel must arrive

during one of these windows to ensure that its cargo offload operation does not intersect with facility closure,

helicopter arrival preparation, or possibly night hours if there are restrictions on night-time loading. Thus, our

cargo scheduling problem can be viewed as a vehicle routing problem with time windows, a class of problems that

has been extensively studied in the literature [4]. In addition, our problem also includes the non-standard side

constraints 3, 7, and 8. These non-standard constraints have been considered individually in the literature; see,

for example, references [1,3,7] for minimum delivery constraints and references [2,5] for trip duration constraints.

However, we are unaware of any previous work that incorporates all of constraints 1-8 above into a combined

optimization model.

The model described in this paper, which has been designed specifically for Woodside’s cargo scheduling

problem, does indeed contain all of constraints 1-8. Since the model is challenging to solve for realistic industry

scenarios, we present a heuristic method for determining an initial feasible schedule, which can be used to initialize

(and ultimately accelerate the convergence of) commercial optimization solvers such as CPLEX. The proposed

model has been applied at a strategic level to advise Woodside on fleet replacement options and different schedule

formats.

2 Model Description

We consider a network (N ,A), where N is the node set (containing nodes representing the facilities) and A is the

arc set (containing arcs representing the transportation links between facilities). In the node set N , the supply base

is represented by a single node 0 and each offshore facility is represented by multiple nodes, one for each arrival

window. Let F denote the set of offshore facilities and let Nf denote the set of nodes corresponding to facility
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f ∈ F (each node in Nf corresponds to a different time window for facility f). Furthermore, let K = {kP } ∪ KS

denote the set of vessels, where kP represents the primary supply vessel (conducts a closed tour visiting every

facility) and the elements of KS represent the secondary supply vessels (used on an ad hoc basis when needed).

Vessel k ∈ K is defined by the following parameters: Qk (deck-space capacity in m2), τkij (travel time required

to traverse (i, j) ∈ A), αk
ij (fixed cost coefficient corresponding to (i, j) ∈ A), and βk

ij (variable cost coefficient

corresponding to (i, j) ∈ A). The cost coefficients define the travel costs for the optimization problem; vessel k

traversing arc (i, j) incurs a fixed cost of αk
ij and a variable cost of βk

ij for every m2 of cargo flow. In practice, these

coefficients are typically chosen to measure travel distance or fuel consumption. For each offshore facility f ∈ F ,

the key parameters are: qf (cargo demand in m2 of deck-space), δkf (service duration for vessel k ∈ K), and εkf

(minimum cargo offload in m2 for vessel k ∈ K).

Our model is based on the following assumptions: time is measured in hours; the vessel fleet is heterogeneous;

service interruptions due to facility closure are allowed at the base but not at offshore facilities; each vessel

undergoes an initial base service before departing from the base; the open/close times of the supply base are the

same on each day; and vessels start servicing facilities immediately after arrival. Since service interruptions are not

allowed at offshore facilities, a vessel arriving at an offshore facility during a certain working shift must complete

the service during the same shift. In contrast, servicing at the base can be paused while the base is closed.

The primary supply vessel performs a single closed tour visiting every offshore facility; each secondary supply

vessel performs at most one closed tour and is not required to visit all facilities. The primary supply vessel’s tour

takes at most one week (inclusive of base service). All other tours must be completed within the same time frame

as the primary vessel’s tour. Since each tour can begin on any day of the week and may take as long as 7 days, we

consider the problem over an indicative 14-day time horizon.

Let δk0 denote the service duration at the base for vessel k ∈ K. Furthermore, let [ad0, b
d
0] denote the supply

base’s opening period on day d ∈ {1, . . . , 14}, and let [ai, bi] denote the arrival time window for node i ∈ N \ {0}.

Since the base’s open and close times are the same on each day, ad+1
0 = ad0 + 24 and bd+1

0 = bd0 + 24 for each

d ∈ {1, . . . , 13}. Furthermore,

b10 − a10 = b20 − a20 = · · · = b140 − a140 .

The decision variables in the model are defined below:

• xkij = binary variable indicating whether vessel k ∈ K traverses link (i, j) ∈ A (xkij = 1 if this occurs; xkij = 0

otherwise)
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• zkdl = binary variable indicating whether vessel k ∈ K starts the initial base service on day d and completes

the base service on day d+ l ∈ {d, d+ 1, . . . , 14}

• ykij = cargo flow transported by vessel k ∈ K along link (i, j) ∈ A

• ski = arrival time of vessel k ∈ K at node i ∈ N \ {0}

• sk0 = base service start time of vessel k ∈ K

• tk = trip duration of vessel k ∈ K

We define ski = 0 if vessel k never visits node i. Similarly, for any secondary supply vessel k ∈ KS , we define sk0 = 0

and tk = 0 if vessel k never leaves the base (recall that the primary supply vessel must leave the base, but there

is no such requirement for the secondary vessels).

The performance metrics of interest are travel cost and trip duration. These quantities are defined as follows:

Travel Cost Function =
∑
k∈K

∑
(i,j)∈A

αk
ijx

k
ij +

∑
k∈K

∑
(i,j)∈A

βk
ijy

k
ij (1)

and

Trip Duration Function =
∑
k∈K

tk. (2)

In the proposed decision support model, a composite objective function is formed by taking the linear combination

(with appropriate weights) of the travel cost and trip duration functions. This composite objective function should

be minimized subject to the constraints listed below (in what follows, M is a sufficiently large positive number).

• Bound constraints on the cargo flows:

0 ≤ ykij ≤ Qk, (i, j) ∈ A, k ∈ K. (3)

• Bound constraints on the facility arrival times:

∑
j∈N

aix
k
ji ≤ ski ≤

∑
j∈N

bix
k
ji, i ∈ Nf , f ∈ F , k ∈ K. (4)

• Bound constraints on the base service start times for the primary vessel:

7∑
d=1

7∑
l=0

ad0z
kP

dl ≤ s
kP
0 ≤

7∑
d=1

7∑
l=0

bd0z
kP

dl . (5)

• Bound constraints on the base service start times for each secondary vessel:

14∑
d=1

14−d∑
l=0

ad0z
k
dl ≤ sk0 ≤

14∑
d=1

14−d∑
l=0

bd0z
k
dl, k ∈ KS . (6)
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• Bound constraints on the trip durations:

0 ≤ tk ≤
∑
j∈N

168xk0j , k ∈ K. (7)

• Zero commodity flow if the corresponding link is not traversed:

ykij ≤ Qkxkij , (i, j) ∈ A, k ∈ K. (8)

• Cargo flow cannot exceed deck-space capacity:

∑
j∈N

yk0j ≤ Qk, k ∈ K. (9)

• Each offshore facility is visited precisely once by the primary supply vessel:

∑
j∈N

∑
i∈Nf

xkP
ji = 1, f ∈ F . (10)

• Each offshore facility is visited at most once by each secondary supply vessel:

∑
j∈N

∑
i∈Nf

xkji ≤ 1, f ∈ F , k ∈ KS . (11)

• Conservation of vessel flow at each node:

∑
j∈N

xkji =
∑
j∈N

xkij , i ∈ N , k ∈ K. (12)

• Primary supply vessel performs a single closed tour:

∑
j∈N

xkP
0j = 1. (13)

• Each secondary supply vessel performs at most one closed tour:

∑
j∈N

xk0j ≤ 1, k ∈ KS . (14)

• Vessels cannot deliver less than the minimum offload amount:

∑
j∈N

∑
i∈Nf

ykji −
∑
j∈N

∑
i∈Nf

ykij ≥
∑
j∈N

∑
i∈Nf

εkfx
k
ji, f ∈ F , k ∈ K. (15)

• Cargo demand requirements:

∑
k∈K

∑
j∈N

∑
i∈Nf

ykji −
∑
k∈K

∑
j∈N

∑
i∈Nf

ykij = qf , f ∈ F . (16)

• Time sequencing constraints (between offshore facilities):

∑
i∈Nf1

ski + δkf1
+
∑

i∈Nf1

∑
j∈Nf2

τkijx
k
ij ≤

∑
i∈Nf2

ski +M

{
1−

∑
i∈Nf1

∑
j∈Nf2

xkij

}
, f1 ∈ F , f2 ∈ F , k ∈ K. (17)
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• Time sequencing constraints (from the base to an offshore facility – primary vessel):

skP
0 + δkP

0 +
∑

j∈Nf

τkP
0j x

kP
0j +

7∑
d=1

7∑
l=0

l(ad+1
0 − bd0)zkP

dl ≤
∑

j∈Nf

skP
j +M

{
1−

∑
j∈Nf

xkP
0j

}
, f ∈ F . (18)

• Time sequencing constraints (from the base to an offshore facility – secondary vessels):

sk0 + δk0 +
∑

j∈Nf

τk0jx
k
0j +

14∑
d=1

14−d∑
l=0

l(ad+1
0 − bd0)zkdl ≤

∑
j∈Nf

skj +M

{
1−

∑
j∈Nf

xk0j

}
, f ∈ F , k ∈ KS . (19)

• Time sequencing constraints (from an offshore facility to the base):

∑
j∈Nf

skj + δkf +
∑

j∈Nf

τkj0x
k
j0 ≤ sk0 + tk +M

{
1−

∑
j∈Nf

xkj0

}
, f ∈ F , k ∈ K. (20)

• Primary supply vessel must begin base service in the first week:

7∑
d=1

7∑
l=0

zkP

dl = 1. (21)

• Secondary supply vessels must depart from the base if used:

14∑
d=1

14−d∑
l=0

zkdl =
∑
j∈N

xk0j , k ∈ KS . (22)

• Bounds on the base service completion time for the primary vessel:

7∑
d=1

7∑
l=0

ad+l
0 zkP

dl ≤ s
kP
0 + δkP

0 +
7∑

d=1

7∑
l=0

l(ad+1
0 − bd0)zkP

dl ≤
7∑

d=1

7∑
l=0

bd+l
0 zkP

dl . (23)

• Bounds on the base service completion time for the secondary vessels:

14∑
d=1

14−d∑
l=0

ad+l
0 zkdl ≤ sk0 + δk0 +

14∑
d=1

14−d∑
l=0

l(ad+1
0 − bd0)zkdl

≤
14∑
d=1

14−d∑
l=0

bd+l
0 zkdl +M

{
1−

14∑
d=1

14−d∑
l=0

zkdl

}
, k ∈ KS .

(24)

• Primary supply vessel must start before the secondary supply vessels:

M

{
1−

14∑
d=1

14−d∑
l=0

zkdl

}
+ sk0 ≥ skP

0 , k ∈ KS . (25)

• Secondary supply vessels must finish before the primary supply vessel:

−M
{

1−
14∑
d=1

14−d∑
l=0

zkdl

}
+ sk0 + tk ≤ skP

0 + tkP , k ∈ KS . (26)

Our decision support model can now be defined as follows: Minimize a linear combination of the objectives (1)

and (2) subject to constraints (3)-(26). This problem is a mixed-integer linear programming problem. In the next

section, we describe a computational strategy for solving this problem.

Note that ad+1
0 in constraints (19) and (24) is undefined when d = 14. This is not a problem, however, because

l = 0 when d = 14 and thus we always have l(ad+1
0 − bd0) = 0 regardless of the value of ad+1

0 .
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3 Solution Approach

Since the mixed-integer linear programming model in Section 2 is usually very challenging to solve for realistic

problem instances, we now discuss several methods for simplifying the model. One such method involves using the

arrival time windows to determine links that cannot be traversed, and then eliminating the corresponding xkij and

ykij variables. This is described in the following result.

Theorem 1 Any feasible schedule for the mixed-integer linear programming model in Section 2 satisfies

xkij = 0, ykij = 0, (i, j) ∈ A, k ∈ K : bj <


ai + δki + τkij , if i ∈ N \ {0},

a10 + δk0 + τk0j , if i = 0.

Proof The earliest time that vessel k can reach node j from node i is ai + δki + τkij for i ∈ N \{0} and a10 + δk0 + τk0j

for i = 0. Clearly, if bj is less than the earliest possible arrival time at node j, then vessel k cannot traverse link

(i, j), and the corresponding xkij and ykij variables must be zero.

Now, define

θk =

⌈
δk0

b10 − a10

⌉
.

The base service for vessel k must take place over at least θk distinct days. For example, if δk0 = 17 and the base

is open for 12 hours each day, then vessel k’s service at the base must span θk = 2 days. Our next result shows

that zkdl for l /∈ {θk − 1, θk} can be eliminated from the model.

Theorem 2 Any feasible schedule for the mixed-integer linear programming model in Section 2 satisfies

zkdl = 0, d ∈ {1, . . . , 14}, l /∈ {θk − 1, θk}, k ∈ K.

Proof Suppose, to the contrary, that there exists a feasible schedule with zkdl = 1 for some l ≤ θk − 2 or l ≥ θk + 1.

If l ≤ θk − 2, then vessel k spends at most l + 1 ≤ θk − 1 full days in service at the base. Hence, the number of

working hours that vessel k spends in service at the base cannot exceed

(θk − 1)(b10 − a10) =

(⌈
δk0

b10 − a10

⌉
− 1

)
(b10 − a10) <

δk0
b10 − a10

(b10 − a10) = δk0 .

This is a contradiction as vessel k must spend at least δk0 open hours at the base to complete the service.

Now, if l ≥ θk + 1, then vessel k spends at least l− 1 ≥ θk full days in service at the base. Thus, since the base

service takes δk0 working hours,

δk0 ≥ (l − 1)(b10 − a10) ≥ θk(b10 − a10) =

⌈
δk0

b10 − a10

⌉
(b10 − a10) ≥ δk0 .
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Hence,

δk0 = (l − 1)(b10 − a10).

It follows that up to the end of day d+ l− 1, the number of working hours spent by vessel k in service at the base

is

bd0 − sk0 + (l − 1)(b10 − a10) = bd0 − sk0 + δk0 ≥ δk0 .

But this implies that vessel k’s service is complete by the end of day d+ l − 1, contradicting zkdl = 1.

Theorems 1 and 2 can be used to eliminate many of the decision variables and thereby reduce the size and

complexity of the model. In addition, we can eliminate variables that pertain to travel between nodes corresponding

to the same facility:

xkij = 0, ykij = 0, i ∈ Nf , j ∈ Nf , f ∈ F , k ∈ K. (27)

Moreover, since returning unused cargo to the base is clearly non-optimal, we can eliminate the cargo flow variables

for arcs going back to the base:

yki0 = 0, i ∈ Nf , f ∈ F , k ∈ K. (28)

In our numerical experiments (see Section 4), the variable assignments described in Theorems 1 and 2 and equations

(27) and (28) typically result in dimension reductions of at least 50%. Despite this, the reduced model is still difficult

to solve in large dimensions. Thus, we now describe a heuristic method for generating an initial feasible schedule,

which can be used to accelerate the convergence of mixed-integer programming solvers such as CPLEX.

The heuristic method involves solving two subproblems. The first subproblem, called Subproblem A(dP ), is

formed by eliminating the secondary supply vessels and cargo demands and restricting the primary vessel’s start

day to day dP . The second subproblem, called Subproblem B(dP , dS), is formed by fixing the primary vessel’s tour

to the optimal solution of Subproblem A(dP ), restricting the secondary vessels’ start day to day dS , and including

the cargo flow variables for all vessels.

More specifically, Subproblem A(dP ) is constructed by defining

• ∅ → KS ;

• 0→ qf for each f ∈ F ;

• 0→ ykP
ij for each (i, j) ∈ A;

• 0→ zkP

dl for each d 6= dP and l ∈ {0, . . . , 14− d}; and

• 0→ xkP
0j for each j ∈ N : bj < adP

0 + δkP
0 + τkP

0j .
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Algorithm 1 Generates an initial feasible schedule

Set ∅ → S, where S is the set of candidate solutions

for (dP = 1, . . . , 7) do

Solve Subproblem A(dP )

if (Subproblem A(dP ) is feasible) then

for (dS = dP , . . . , dP + dtkP /24e) do

Solve Subproblem B(dP , dS) corresponding to the solution of Subproblem A(dP )

if (Subproblem B(dP , dS) is feasible) then

Add the optimal routes for the primary and secondary vessels to S

end if

end for

end if

end for

if (S = ∅) then

Stop: cannot find a feasible solution

else

Return the best candidate solution from S

end if

Subproblem B(dP , dS) is constructed by fixing variables (xkP
ij , z

kP

dP l, s
kP
i , skP

0 , tkP ) to the optimal solution of Sub-

problem A(dP ), and then defining

• 0→ zkP

dl for each d 6= dP and l ∈ {0, . . . , 14− d};

• 0→ zkdl for each d 6= dS , l ∈ {0, . . . , 14− d}, and k ∈ KS ;

• 0→ xk0j for each j ∈ N and k ∈ KS : bj < adS
0 + δk0 + τk0j ; and

• 0→ yk0j for each j ∈ N and k ∈ KS : bj < adS
0 + δk0 + τk0j .

The pseudocode for our heuristic algorithm is detailed in Algorithm 1. The algorithm repeatedly solves Sub-

problems A(dP ) and B(dP , dS), where Subproblem A(dP ) involves optimizing the primary vessel’s tour (for start

day dP ) while ignoring the secondary vessels, and Subproblem B(dP , dS) involves optimizing the secondary vessels’

tours (for start day dS) while the primary vessel’s tour is fixed to the optimal solution of Subproblem A(dP ). The

possible values for dP and dS are dP = 1, . . . , 7 and dS = dP , . . . , dP + dtkP /24e (recall that the tours for the

secondary vessels must take place within the primary vessel’s tour window). The algorithm solves Subproblems

A(dP ) and B(dP , dS) for each of these values and returns the best candidate solution obtained. If Algorithm 1

terminates with a candidate solution, then this solution is certainly feasible for the overall problem, but not nec-
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essarily optimal. The reason is that Algorithm 1 optimizes the primary vessel first in a greedy fashion before

optimizing the secondary vessels. This sequence may not yield an overall optimal result.

If Subproblem A(dP ) is infeasible for each dP = 1, . . . , 7, then the overall problem must be infeasible; the time

window constraints on the primary vessel are too restrictive. Alternatively, if Subproblem A(dP ) is feasible for

at least one dP , but the corresponding Subproblems B(dP , dS) are all infeasible, then the overall problem is also

infeasible. This is because any feasible schedule for the overall problem can be converted into a feasible schedule

of Subproblem B(dP , dS) by choosing dP to be the start day of the primary vessel, and dS to be the minimum

start day over all secondary vessels. Secondary vessels starting on a later day can be assumed to start on day dS

by adding a sufficiently long waiting period after the initial base service. Although the model assumes that base

servicing is conducted first, in reality the base service can be done at any time while the vessel is in port.

Fixing the primary vessel’s tour in Subproblem B(dP , dS) greatly simplifies the model, and thus it may be

possible to relax Subproblem B(dP , dS) by eliminating the requirement that all secondary vessels start on day dS ,

instead allowing any start day within the primary vessel’s tour window. This will potentially give a better initial

solution, although for the case study considered in this paper, Algorithm 1 already yields solutions that are very

close to optimal (see the results in the next section).

4 Numerical Results

We consider eight Woodside-operated offshore oil and gas facilities in the Indian Ocean off the coast of Western

Australia: Angel, Goodwyn A, Nganhurra, Ngujima-Yin, North Rankin A, North Rankin B, Okha, and Pluto. The

locations of these facilities are shown in Figure 1, where GWA denotes Goodwyn A, NGA denotes Nganhurra,

NY denotes Ngujima-Yin, and NRC denotes North Rankin A and B (these two platforms are very close and are

actually connected; thus, they are represented by a single point in Figure 1).

Our goal in this case study is to design an optimal vessel schedule for servicing the offshore facilities in Figure 1

using one platform supply vessel (PSV) and one off-take support vessel (OSV). The PSV is used solely for cargo

delivery, while the OSV is used for both cargo delivery and oil off-takes (with off-takes being the OSV’s primary

function). Thus, since we focus on cargo operations in this case study, the PSV is the primary vessel and the OSV

is the secondary vessel. The base for both vessels is King Bay supply base (KBSB) located near Karratha.

The deck-space capacity, speed, and fuel consumption rate for each vessel are given in Table 1. The distances

between facilities are given in Table 2. Since both vessels travel at a speed of 10 knots, the travel times can be
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Fig. 1 Locations of the oil and gas facilities in the case study in Section 4.

Vessel Capacity (m2) Speed (Knots) Fuel Consumption (L/NM)

PSV 850.0 10 54

OSV 212.5 10 40

Table 1 Deck-space capacity, speed, and fuel consumption rate for each vessel.

obtained by dividing the numbers in Table 2 by 10. North Rankin A and B, although connected by a bridge, still

require separate cargo deliveries. The time taken for a vessel to manoeuvre between North Rankin A and B is 30

minutes. Moreover, service time at the base is 21 hours for the PSV and 10.5 hours for the OSV.

In real operations, the OSV is normally reserved for off-take support, and is only used for cargo delivery when

the PSV cannot fulfill all cargo demands. Therefore, we choose the following cost function to penalize OSV usage

in addition to trip duration and fuel consumption:

Total Cost = tkP + tkS +
∑

(i,j)∈A
540τkP

ij x
kP
ij +

∑
(i,j)∈A

400τkS
ij x

kS
ij −

∑
f∈F

∑
j∈Nf

ykP
0j +

∑
f∈F

∑
j∈Nf

ykS
0j ,

where kP refers to the PSV, kS refers to the OSV, τkP
ij is the PSV’s travel time for link (i, j), and τkS

ij is the

OSV’s travel time for link (i, j). Thus, in the framework of the model in Section 2, the fixed and variable costs are

αkP
ij = 540τkP

ij , αkS
ij = 400τkS

ij , βkP
0j = −1, βkS

0j = 1, and βkP
ij = βkS

ij = 0 for i 6= 0. Here, the fixed cost coefficients
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KBSB Angel GWA NGA NY NRC Okha Pluto

KBSB - 68.4 78.4 180.0 175.0 75.0 65.0 95.9

Angel 68.4 - 38.4 188.4 181.7 27.5 10.0 75.0

GWA 78.4 38.4 - 155.0 155.9 12.5 30.0 38.4

NGA 180.0 188.4 155.0 - 5.0 165.0 170.0 117.5

NY 175.0 181.7 155.9 5.0 - 160.0 165.0 112.5

NRC 75.0 27.5 12.5 165.0 160.0 - 18.4 50.0

Okha 65.0 10.0 30.0 170.0 165.0 18.4 - 65.0

Pluto 95.9 75.0 38.4 117.5 112.5 50.0 65.0 -

Table 2 Distances (in nautical miles) between facilities.

measure fuel consumption while the variable cost coefficients are penalty factors designed to maximize PSV use

for cargo deliveries.

The minimum, average, and maximum cargo demand per week for each offshore facility are given in Table 3.

The service duration at each offshore facility is δki = 6 hours and the minimum cargo offload is 20.5 m2 (half

of the smallest demand in Table 3). The base is open from 6am to 6pm every day including weekends, i.e.,

[ad0, b
d
0] = [24d− 18, 24d− 6] for each d ∈ {1, . . . , 14}. We assume that Goodwyn A and the North Rankin complex

operate continuously. The other facilities are open from 6am to 6pm every day including weekends.

A problem scenario is defined by the helicopter schedule and the cargo demands and diesel requirements at the

offshore facilities. The helicopter schedule defines the set of time windows for each offshore facility (vessels cannot

arrive while a facility is being prepared for helicopter arrival). Table 4 shows the helicopter preparation intervals

provided by Woodside. Vessels cannot arrive during these intervals, as all personnel are required to prepare for

helicopter arrival.

In addition to the helicopter schedule, diesel deliveries further constrain the service time windows at the 24-

hour facilities Goodwyn A and North Rankin A and B. Specifically, we assume that diesel deliveries cannot be

performed at night. Thus, when diesel delivery is required, service visits at Goodwyn A and North Rankin A and B

must be restricted to daylight hours.

We consider two problem sets: the first problem set involves all eight offshore facilities with no diesel shipments;

the second problem set involves all facilities except Angel, with diesel required at Goodwyn A. These were two of

the scenarios of interest to Woodside.
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Weekly Cargo Demand (m2)

Facility Minimum Average Maximum

Angel 20 45 67

Goodwyn A 133 287 463

Nganhurra 106 133 188

Ngujima-Yin 74 127 196

North Rankin A 77 160 284

North Rankin B 65 124 262

Okha 43 102 198

Pluto 6 41 141

Table 3 Weekly cargo demand statistics for the offshore facilities.

Monday Tuesday Wednesday Thursday Friday

GWA 10:25am - 11:20am 12:35pm - 1:40pm 8:35am - 9:30am 10:25am - 11:20am 10:25am - 11:20am

NGA 8:00am - 8:50am - 8:00am - 8:50am - -

NY 9:30am - 10:55am - 9:30am - 10:55am - 8:20am - 9:05am

NRC 8:35am - 9:15am 8:35am - 9:30am 10:25am - 11:20am 8:35am - 9:15am 8:35am - 9:15am

Okha - 10:25am - 11:20am - 8:50am - 9:30am -

Table 4 Helicopter preparation intervals for the offshore facilities.

4.1 Eight Facilities with No Diesel

We first considered the scheduling problem with all eight facilities, no diesel shipments, and the average cargo

demands in Table 3. Applying the optimization software CPLEX (embedded in the AIMMS modelling platform)

to the full integer programming model took 5.12 hours to obtain an optimal solution. To simplify the model, we

applied the variable reduction techniques discussed in Section 3, which reduced the optimization model from 21,800

binary variables, 21,843 continuous variables, and 22,455 constraints to 9,484 binary variables, 9,653 continuous

variables, and 10,265 constraints. We then solved the reduced problem using a combination of CPLEX and the

heuristic method in Section 3 (for generating an initial feasible schedule). This took 24.71 minutes, far less than

the time taken to solve the full model.

For this problem instance, the OSV is required in addition to the PSV to satisfy the demand requirements;

the optimal visit sequences are illustrated in Figure 2. The total fuel consumption is 32,082 L and the journey
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Fig. 2 Optimal vessel routes for eight facilities with average demand requirements and no diesel: the top route is the PSV’s route;

the bottom route is the OSV’s route.

durations are 162.34 hours for the PSV and 38.00 hours for the OSV. Moreover, the PSV’s deck-space utilization

is 100% and the OSV’s deck-space utilization is 80%. As expected, the PSV is fully utilized at the optimal solution

(recall that the OSV is only used when the PSV is full).

We next generated 20 additional problem scenarios by changing the demand at each facility to random values

generated by a uniform distribution between the minimum and maximum demands (see Table 3), keeping all other

parameters the same. Thus, each of these 20 problem scenarios involves eight facilities and no diesel shipments,

but the demand requirements vary. Note that the average values in Table 3 are the average demands from the

historical data, not the means of the uniform distributions used to generate the problem scenarios.

We solved each scenario using CPLEX and the heuristic method in Section 3. All scenarios were solved to

optimality except scenarios 1 and 8, which were terminated after 2 hours of computation with optimality gaps of

1.98% and 4.38%, respectively. Interestingly, the final PSV route for each scenario is the same as the PSV route

shown in Figure 2, but the OSV route is different. This indicates that the PSV route mainly depends on the

helicopter schedule, which is fixed in the 20 problem scenarios. The OSV route, on the other hand, depends on the

demand requirements and is different for each scenario. See Table 5 for a summary of the results in these problem

scenarios. The “Improvement” column in Table 5 refers to the difference in objective values for the initial and

final schedules as a percentage of the final objective value. The values in the improvement column are very small,

indicating that the heuristic method generates near-optimal solutions and only a small improvement is obtained

by running CPLEX on the full model.
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OSV Usage

Scenario Total Demand (m2) Improvement Trip Duration (Hours) Deck-space Utilization Fuel Consumption (L)

1 1048.0 0.0382% 31.5 93.2% 6000.0

2 801.4 0.0000% 0.0 0.0% 0.0

3 977.7 0.0445% 59.0 60.1% 5736.0

4 1024.8 0.0382% 31.5 82.3% 6000.0

5 1027.4 0.0382% 31.5 83.5% 6000.0

6 825.3 0.0000% 0.0 0.0% 0.0

7 980.8 0.0442% 35.0 61.6% 5200.0

8 1056.9 0.0379% 38.0 97.3% 6200.0

9 902.0 0.0446% 59.0 24.5% 5736.0

10 999.2 0.0382% 31.5 70.2% 6000.0

11 987.2 0.0380% 38.0 64.6% 6200.0

12 1040.5 0.0440% 59.0 89.6% 5736.0

13 1007.4 0.0382% 31.5 74.1% 6000.0

14 780.5 0.0000% 0.0 0.0% 0.0

15 1033.6 0.0380% 38.0 86.4% 6200.0

16 967.7 0.0383% 31.5 55.4% 6000.0

17 1016.4 0.0382% 31.5 78.3% 6000.0

18 1029.1 0.0382% 31.5 84.3% 6000.0

19 1044.8 0.0379% 38.0 91.7% 6200.0

20 1021.5 0.0444% 59.0 80.7% 5736.0

Table 5 Results for the 20 randomly-generated problem scenarios in Section 4.1.

4.2 Seven Facilities (Angel Omitted) with Diesel at Goodwyn A

Unlike the other facilities, Angel and Pluto are normally unmanned and do not require regular cargo deliveries.

This is why the average demands for Angel and Pluto in Table 3 are significantly less than those for the other

facilities.

We considered a scheduling scenario in which Pluto, but not Angel, requires cargo delivery, and diesel is

required at Goodwyn A. The cargo demands for this scenario were chosen as the average demands given in

Table 3. Using our variable reduction techniques (see Section 3), the optimization model was reduced from 13,946

binary variables, 13,947 continuous variables, and 14,438 constraints to 5,849 binary variables, 5,976 continuous

variables, and 6,467 constraints. Solving the problem using a combination of CPLEX and the heuristic method in

Section 3 yields the optimal routes shown in Figure 3. The total fuel consumption is 29,587 L and the optimal

route durations are 156.09 hours for the PSV and 31.50 hours for the OSV. Moreover, the deck-space utilization
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Fig. 3 Optimal vessel routes for seven facilities (Angel omitted) with average demand requirements and diesel at GWA: the top

route is the PSV’s route; the bottom route is the OSV’s route.

of the PSV is 100% and the deck-space utilization of the OSV is 58%. For this example, solving the full integer

programming model took 42.9 seconds; the method described in Section 3 took 23.9 seconds.

As in Section 4.1, we generated 20 additional problem scenarios by randomly choosing the cargo demand at

each facility between the minimum and maximum values in Table 3. Solving these scenarios reveals that there is no

change in the optimal PSV route, but the optimal OSV route does change depending on the demand requirements.

All problem scenarios were solved to optimality and Table 6 gives the results. The “Improvement” column in

Table 6 has the same meaning as in Table 5. As with the scenarios in Section 4.1, the results in Table 6 show that

solutions obtained by the heuristic method are very close to optimal.

5 Conclusion

This paper has described a real example of where mixed-integer linear programming techniques have been applied to

aid strategic decision-making in the oil and gas industry. The scheduling problem we considered, as with most real-

world scheduling problems, is computationally challenging. Indeed, in our experience, CPLEX struggles to solve

the full (unsimplified) problem unless a good starting point is provided. The heuristic decomposition procedure in

Section 3 was designed for this purpose. The optimization model described in this paper has been implemented

as a basic scheduling tool, and further improvements are planned to enable dynamic schedule updates “on the

fly” in response to unforeseen events such as cyclones and equipment breakdowns. Our current model determines

the optimal vessel routes given fixed helicopter arrival times. Clearly, simultaneously optimizing the vessel and

helicopter schedules will yield better results, although this was outside the project brief defined by Woodside.

We plan to investigate the combined vessel-helicopter scheduling problem in future work. We also plan to extend

the model to allow for cargo delivery interruptions at the offshore facilities during facility closure or helicopter

preparation. Our current model only allows service interruptions at the base.
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OSV Usage

Scenario Total Demand (m2) Improvement Trip Duration (Hours) Deck-space Utilization Fuel Consumption (L)

1 962.0 0.0410% 38.0 52.7% 6200.0

2 683.2 0.0000% 0.0 0.0% 0.0

3 1046.6 0.0409% 38.0 92.5% 6200.0

4 1016.8 0.0412% 31.5 78.5% 6000.0

5 835.9 0.0000% 0.0 0.0% 0.0

6 906.2 0.0414% 31.5 26.5% 6000.0

7 1031.8 0.0412% 31.5 85.6% 6000.0

8 919.0 0.0479% 35.0 32.5% 5200.0

9 955.8 0.0478% 35.0 49.8% 5200.0

10 1049.7 0.0412% 31.5 94.0% 6000.0

11 805.8 0.0000% 0.0 0.0% 0.0

12 886.6 0.0479% 35.0 18.5% 5200.0

13 976.0 0.0413% 31.5 59.3% 6000.0

14 1039.2 0.0412% 31.5 89.0% 6000.0

15 916.3 0.0414% 31.5 31.2% 6000.0

16 819.9 0.0000% 0.0 0.0% 0.0

17 880.6 0.0479% 35.0 14.4% 5200.0

18 979.6 0.0410% 38.0 61.0% 6200.0

19 988.7 0.0410% 38.0 65.3% 6200.0

20 941.4 0.0414% 31.5 43.0% 6000.0

Table 6 Results for the 20 randomly-generated problem scenarios in Section 4.2.
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