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Abstract
Recently, the concept of time-frequency masking has developed
as an important approach to the blind source separation prob-
lem, particularly when in the presence of reverberation. How-
ever, previous research has been limited by factors such as the
sensor arrangement and/or the mask estimation technique im-
plemented. This paper presents a novel integration of two es-
tablished approaches to BSS in an effort to overcome such lim-
itations. A multidimensional feature vector is extracted from
a non-linear sensor arrangement, and the fuzzy c-means algo-
rithm is then applied to cluster the feature vectors into repre-
sentations of the source speakers. Fuzzy time-frequency masks
are estimated and applied to the observations for source recov-
ery. The evaluations on the proposed study demonstrated im-
proved separation quality over all test conditions. This estab-
lishes the potential of multidimensional fuzzy c-means cluster-
ing for mask estimation in the context of blind source separa-
tion.
Index Terms: blind source separation, reverberation, hard
k-means clustering, fuzzy c-means clustering, time-frequency
mask estimation.

1. Introduction
The human auditory system has a remarkable capability of dis-
tinguishing between simultaneous multiple speakers in every-
day situations. Unfortunately, automatic speech processing sys-
tems do not always have such abilities; such systems today are
often faced with the quintessential “cocktail party problem” [1].
The performance of such systems in the presence of compet-
ing speakers may improve with the implementation of a source
separation algorithm. Source separation is the recovery of the
original sources from a set of recorded observations. In the
instance where no a priori information of the original sources
and/or mixing process is provided, the separation is termed
blind source separation (BSS). BSS has many important appli-
cations including medical imaging, communication systems and
speech processing (for example, in the aforementioned cocktail
party problem).

In the last decade the research field of BSS has evolved sig-
nificantly to be an important technique in acoustic signal pro-
cessing [2]. The BSS problem can be summarized as follows.
M observations of N sources are related by the equation

X = AS (1)

where X is a mixture of sources contained in the matrix S, and A
is the mixing matrix. The aim of BSS is to recover the sources
S given simply the observed mixtures X; but rather than directly
estimate the source signals, the mixing matrix A is instead es-
timated. However, when the number of speakers exceeds that
of the sensors, the BSS problem is termed underdetermined and
a simple mixing matrix estimation does not suffice. Given the
lack of prior knowledge, an attractive approach to handle such
BSS is to exploit assumptions on the source signals instead, for
example, sparseness.

Multiple algorithms such as [3], [4] and [5] are based
on the presumption that the constituent source signals are
sparse. There are various definitions for sparseness in the lit-
erature; [6] defines it as to contain “as many zeros as possible”,
whereas others offer a more quantifiable measure such as kurto-
sis [7]. Often, a sparse representation of signals can be acquired
through the projection of the signals onto an appropriate basis,
such as the Gabor or Fourier basis. In particular, the sparseness
of signals in the short-time Fourier Transform (STFT) domain
was investigated in [3] and subsequently termed W-disjoint or-
thogonality (W-DO). This discovery of W-DO in speech signals
motivated a demixing approach, the degenerate unmixing esti-
mation technique (DUET), to recover the original source signal
through the masking of all coefficients that are not part of its
support. This time-frequency (TF) masking technique has since
evolved as a a popular and effective tool in BSS and has been
appeared in subsequent research [4], [5], [8], [9].

The original concept as initiated in [3] was applied for
demixing underdetermined anechoic mixtures of stereo data,
and a histogram-based approach to mask estimation was imple-
mented. Subsequent research [4] extended DUET through the
relaxation of the sparseness condition, with a particular focus
on underdetermined mixtures. However, its performance in re-
verberant conditions was not established. Further research as in
[5] proposed the multiple sensors DUET, known as MENUET,
where the sensor arrangement was extended to an arbitrary ar-
rangement of multiple sensors and applied to reverberant mix-
tures of speech. The mask estimation was also automated
through the application of a multidimensional k-means cluster-
ing algorithm.

Despite the advancements of techniques such as MENUET
over the original DUET, it is not without its limitations. The
k-means clustering is not very robust in the presence of out-
liers or interference in the data. This often leads to incorrect
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localization and partitioning results, particularly for reverberant
speech mixtures. A BSS algorithm presented in [8] investigates
fuzzy c-means clustering for mask estimation in the TF mask-
ing approach for source separation. Contrary to MENUET, this
approach integrates a fuzzy partitioning in the clustering in or-
der to model the reverberation, and thus ambiguity, surrounding
the membership of a TF cell to a cluster. However, this in-
vestigation was limited to a linear microphone array, with only
one-dimensional spatial cues extracted for the clustering stage.
Furthermore, this algorithm was not applicable to the underde-
termined BSS problem.

Motivated by these limitations, this paper presents an ex-
tension of the MENUET algorithm via a novel amalgamation
with the fuzzy c-means clustering as presented in [8]. The ap-
plicability of MENUET to arbitrary (and underdetermined) sen-
sor arrangements renders it superior in particular scenarios over
the investigation in [8]; however the non-robust clustering al-
gorithm used in [5] degrades its performance. It is proposed
that the integration of the established MENUET with fuzzy de-
cisions in the mask estimation will capture the ambiguity sur-
rounding the membership of a TF cell to a cluster, and will thus
track the reverberation that is inevitably present in the acoustic
scene.

The remainder of this paper is as follows: Section 2 de-
scribes the proposed algorithm in more detail. Section 3 reports
the experimental setup and results and compares these with the
MENUET as a baseline. The paper concludes in Section 4 with
insight into future work.

2. System overview
This section provides an overview of the proposed system. Fig.
1 shows a block diagram of the proposed TF masking scheme
for BSS. Spatial feature vectors are extracted from the micro-
phone array observations and clustered using the fuzzy c-means
algorithm. The partition matrix is then used to estimate fuzzy
masks and demix the source mixtures.

2.1. Problem statement

Consider a microphone array made up of M identical, omni-
directional sensors in a reverberant room where N sources are
present. It is assumed that in the STFT domain, each micro-
phone observation can be approximated by an instantaneous
mixing model

Xm(k, l) =
N�

n=1

Hmn(l)Sn(k, l) m = 1, . . . ,M (2)

where (k, l) represents the time and frequency index respec-
tively, Hmn(l) is the room impulse response from source n and
sensor m. Sn(k, l) and Xm(k, l) are the STFT of the m

th ob-
servation and n

th source respectively. Due to source sparseness
[3], [5] the sum in (2) is reduced to

Xm(k, l) ≈ Hmn(l)Sn(k, l) m = 1, . . . ,M (3)

Whilst this assumption holds true for anechoic mixtures, as the
reverberation in the acoustic scene increases it becomes increas-
ingly unreliable due to the effects of multipath propagation and
multiple reflections [3], [9].

2.2. Spatial feature extraction

In this algorithm mask estimation, and thus source separation, is
realized by estimating the TF points where a signal is assumed

Figure 1: Proposed time-frequency masking approach for blind

source separation.

to be dominant. To estimate such TF points, a spatial feature
vector is calculated from all M microphone observations. Pre-
vious research has identified level ratios and phase differences
between observations as appropriate features for TF masking in
the BSS framework. Should the source signals exhibit sufficient
sparseness, the level ratios and phase differences will provide
geometric information on the source/sensor locations and thus
permit effective separation. However, in reality, source signals
do not demonstrate such favorable conditions and it is therefore
necessary to modify the algorithm for calculating the ratios.

A comprehensive review of suitable features can be found
in [5]. In order to keep the variances of the level ratios and
phase differences at a comparable order of magnitude, level and
phase normalization was employed in this study.

The feature vector θ(k, l) per TF point (k, l) is calculated
as

θ(k, l) =
�
θL(k, l),θP (k, l)

�T
; (4)

where

θL(k, l) =

�
|X�(k, l)|
A(k, l)

, . . . ,
|XM (k, l)|
A(k, l)

�
(5)

θP (k, l) =

�
�

α
arg

�
X�(k, l)
XJ(k, l)

�
, . . . ,

�

α
arg

�
XM (k, l)
XJ(k, l)

��
;

(6)

where A(k, l) =

�
M�

m=1
|xm(k, l)|2 and α = 4πc−1

dmax,

where c is the propagation velocity, dmax is the maximum dis-
tance between any two sensors and J is the index of the refer-
ence sensor. The weighting parameter α is introduced to ensure
the phase difference is of the same range width as that of the
level ratio. In the presence of reverberation, it was shown that
the longer the distance between a pair of sensors, the greater the
accuracy of the phase ratio [10]. However, it should be noted
that the value of dmax is upper bounded by the spatial alias-
ing theorem; to prevent the violation of this theorem, dmax <

c/dfmax where d is the distance between sensors, and fmax is
the signal’s maximum frequency. Rewriting the feature vector
in complex representation yields

θj(k, l) = θ
L
j (k, l) exp (jθ

P
j (k, l)) (7)

where θ
L
j and θ

P
j are the j

th components of (5) and (6) re-
spectively. In this final feature vector representation, the phase
difference information is captured in the argument term, and the
level ratio is normalized by the normalization term A(k, l).

2.3. Fuzzy c-means clustering

The feature vector set Θ(k, l) = {θ(k, l)|θ(k, l) ∈
R2M

, (k, l) ∈ Ω} is then clustered using the fuzzy c-means
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algorithm [12] into N clusters, where Ω = {(k, l) : 0 ≤ k ≤
K−1, 0 ≤ l ≤ L−1} denotes the set of TF points in the STFT
plane. Each cluster is represented by a centroid vn and parti-
tion matrix U = {un(k, l) ∈ R|n ∈ (1, . . . , N), (k, l) ∈ Ω)}
which specifies the degree un(k, l) to which a feature vector
θ(k, l) belongs to the n

th cluster.
Clustering in the 2M -dimensional plane is achieved by

minimizing the cost function

Jfcm =
N�

n=1

�

∀(k,l)

un(k, l)
q�θ(k, l)− vn�� (8)

where q > 1 controls the membership softness and un ∈ [0, 1]
are the membership values. This minimization problem can be
solved using Lagrange multipliers with an alternating optimiza-
tion scheme [13] and Jfcm is then iteratively minimized using

v∗
n =

�

∀(k,l)∈Ω

un(k, l)
qθ(k, l)�

∀(k,l)∈Ω

un(k, l)q
∀n, (9)

u
∗
n(k, l) =

�
N�

j=1

�
�θ(k, l)− vn�2

�θ(k, l)− vj�2

� 1
q−1

�−1

∀n, k, l

(10)
until an appropriate termination criterion is met.

2.4. Mask estimation and source reconstruction

The membership partition matrix from the fuzzy c-means algo-
rithm is interpreted as a collection of N fuzzy TF masks, where

Mn(k, l) = u
∗
n(k, l) (11)

The separated signals are then obtained through the application
of the mask per source to an individual observation

Ŝn(k, l) = Mn(k, l)XJ(k, l) J ∈ 1, . . . ,M (12)

Finally, the estimated sources are reconstructed in the time-
domain by the application of the overlap-and-add method [14]
onto Ŝn(k, l). The reconstructed source estimate can be de-
noted as

ŝn(t) =
1

Cwin

L/τ0−1�

k�=0

ŝ
k+k�
n (t), (13)

where Cwin = 0.5/τ10L is a Hanning window constant,
and individual segments of the recovered signal are acquired
through an inverse STFT

ŝ
k
n(t) =

L−1�

l=0

Ŝn(k, l)e
jlω0(t−kτ0) (14)

if (kτ0 ≤ t ≤ kτ + L− 1), and zero otherwise.

3. Experimental Evaluations
3.1. Experimental setup

The experimental setup in this study was such as to reproduce
that in [5] for comparative purposes. Fig. 2 depicts the speaker
and sensor arrangement: a small rectangular room of dimen-
sions 4.45m x 3.55m x 2.5 m was used, with three identical,
omnidirectional sensors placed at location (2.56m, 1.8m, 1.2m).
Four stationary speakers were positioned in the same z-plane as

the sensors at a distance R. The wall reflections of the enclo-
sure, as well as the room impulse responses for each sensor,
were simulated using the image model method for small-room
acoustics [15]. For converting the microphone observations into
their STFT representations, a Hanning window and frame size
of 512 was utilized, with a sampling frequency of 8 kHz.

Figure 2: Setup for evaluations with room dimensions 4.45m x

3.55m x 2.50m.

The four speech sources were realized with utterances from
the TIMIT database [16], with a representative number of mix-
tures constructed in total. The length of each utterance was
4s, with simulations run for three different reverberation times
RT60 ∈ {0ms, 128ms, 300ms}. The distance R between the
sources and sensors was varied from 50cm to 170cm, equating
to a total of six acoustic conditions (Fig. 3) generated for eval-
uation.

For the purposes of performance evaluation, the MATLAB
toolbox BSS EV AL was used [17], [18]. This algorithm as-
sumes that a source estimate ŝ(t) can be realized as a decompo-
sition into

ŝ(t) = st(t) + ei(t) + en(t) + ea(t) (15)

where st(t) is an allowed distortion of the original source, and
ei(t), en(t) and ea(t) are the interferences, noise and arti-
facts error terms respectively. Two global performance mea-
sures were computed; the source-to-distortion ratio (SDR) and
source-to-interference ratio (SIR). Due to the fact that omnidi-
rectional sensors have been assumed, the noise error term en(t)
may be excluded in performance measure calculations.

3.2. Results and discussion

The performance of the proposed algorithm was tested against
the MENUET algorithm [5] to realize the effect of fuzzy c-
means clustering on source separation quality. The original
MENUET employs multidimensional hard k-means to clus-
ter the feature vectors into N clusters, as well as to esti-
mate the binary masks (see [5] for details on the clustering
and mask estimation procedure). This was tested on all six
acoustic scenarios, with the evaluations then repeated for the
fuzzy c-means clustering and fuzzy TF masks. For both al-
gorithms, the separation performance for recovery of the N

source signals was averaged over each of the six acoustic
conditions. The measures SDRimpv and SIRimpv , where
SDRimpv = SDRc−means−SDRk−means and SIRimpv =
SIRc−means − SIRk−means, were calculated in order to
quantify the improvement of the fuzzy c-means clustering and
the mask estimation. The results are shown in Fig. 3.
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As expected, there is a positive improvement in separa-
tion quality for each acoustic condition tested. In particular,
we note the significant improvement in the ratios not only for
anechoic conditions, but also when the reverberation is set to
128ms. The results for the case when reverberation is at 300ms
is very encouraging for R = 50cm; however when R is in-
creased to 170cm the improvement degrades. We can attribute
this result to the decrease in the direct sound contributions of
each source speaker to the room impulse response between each
speaker/microphone. Therefore, the sparseness assumption is
violated, and (3) becomes inapplicable. This phenomenon of
performance degradation with an increase in R is in accordance
with findings in [5]. However, the continual improvement of
the fuzzy c-means, even when the reverberation and R are rela-
tively high, indicates the superiority of the proposed study over
the k-means clustering as used in the original MENUET.

Figure 3: The average SDR and SIR improvement of fuzzy c-

means over k-means for each condition.

4. Conclusions
In this paper, the novel amalgamation of two existing BSS algo-
rithms was presented. The MENUET algorithm for TF masking
in BSS was modified in order to inherently model the indeci-
sion surrounding each TF cell to a cluster due to the reverber-
ant present in the scene. It was suggested that hard k-means
clustering for mask estimation is insufficient at capturing the
reverberation, and thus a more suitable means for clustering
such as the fuzzy c-means should be implemented. Evaluations
confirmed this hypothesis with positive improvements recorded
for the average performance in all acoustic settings for the un-
derdetermined BSS problem. In addition, the consistent per-
formance even in increased reverberation establishes the poten-
tial of fuzzy c-means clustering with the multidimensional TF
masking approach in MENUET.

Future work should focus upon improving the robustness of
the mask estimation (clustering) stage of the algorithm. For ex-
ample, it has been shown [19] that the Euclidean distance mea-
sure as employed in (8) is not robust to the outliers that are in-
evitably present in realistic acoustic scenes. A measure such as
the l1-norm could be implemented [13] in a bid to reduce error.
Furthermore, the authors of [8], [13] modified the standard c-
means algorithm to include observation weights and contextual
information. It is highly suggested that future research should

focus upon assimilating these established clustering techniques
with the MENUET algorithm in a bid to become closer to find-
ing a solution to the problem of blind source separation in the
presence of reverberation.
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