Micro-scale fracturing mechanisms in coal induced by adsorption of supercritical CO$_2$

Yihuai Zhang1, Zike Zhang2, Mohammad Sarmadivaleh1, Maxim Lebedev3, Ahmed Barifcani1, Hongyan Yu4, Stefan Iglauer1

1Department of Petroleum Engineering, Curtin University, 26 Dick Perry Avenue, 6151, Kensington, Australia
2Department of Petroleum Engineering, China University of Petroleum, Beijing, 102249, China
3Department of Exploration Geophysics, Curtin University, 26 Dick Perry Avenue, 6151, Kensington, Australia
4Department of Geology, Northwest University, Xi’an, 710069, China

*corresponding author (yihuai.zhang@postgrad.curtin.edu.au)

Abstract

Coal bed methane production can be assisted by CO$_2$ injection. However, CO$_2$ adsorption in the coal matrix leads to a dramatic reduction in permeability and an associated change in microstructure caused by coal matrix swelling. Furthermore, it has been recently observed that the induced swelling stress fractures the unswelling (mineral) phase in laboratory investigations. However, the failure mechanisms are still not understood, and the way internal swelling stresses are generated is not clear. Thus, in this paper, we propose a new method which combines x-ray microtomography imaging, nanoindentation testing and DEM modeling with which we can predict the rock mechanical performance at micro scale. Indeed we successfully simulated such swelling processes inside a coal sample, including a simulation of the fracture mechanism of the mineral phase, and a quantification of the in-situ von Mises stresses generated by swelling. We conclude that our proposed method is an efficient way for analysis and prediction of coal microfracturing and the associated microscale rock mechanical behavior.
Keywords

ECBM, discrete element method, microCT, microstructure, nanoindentation test

1. Introduction

Coal bed methane (CBM) is an unconventional energy resource, which exists in coal mines and deep unmineable coal seams (Hamawand et al., 2013). Recently, due to the decline in conventional energy resources coupled with a globally increasing energy demand (Lior 2008), CBM has gained increasing popularity (Connell et al., 2011; Pillalamarry et al., 2011; Hamilton et al., 2015; Vishal et al., 2015). Furthermore, CBM can be enhanced (enhanced coal bed methane, ECBM), e.g. through CO$_2$ injection, which efficiently displaces CH$_4$ from the coal matrix (White et al., 2005; Saghafi 2010). However, CO$_2$ injection dramatically reduces the coal seam’s permeability (Mazumder et al., 2006; Siriwardane et al., 2009; Anggara et al., 2016), which largely limits application of this technology. Mechanistically, cleats (the main flow conduits in coal) close due to coal matrix swelling induced by CO$_2$ adsorption (Shi and Durucan 2005; Wu et al., 2011; Zhang et al., 2016a; Liu and Rutqvist 2010; Espinoza et al., 2014) and it has recently been discovered that the swelling stress in the coal matrix can fracture the unswelling phase (i.e. inorganic mineral), (Zhang et al. 2016a). However, the detailed failure mechanisms and swelling stress quantification are still poorly understood due to only limited theoretical understanding of the micro-scale rock mechanical performance. It is thus of vital importance to further understand these mechanical changes in the coal so that advanced ECBM techniques can be developed.

The mechanical properties of small areas (up to nanoscale) on a material’s surface can now be obtained by nanoindentation measurements; such method has for instance been applied to natural rock samples including sandstone, limestone, shale and coal (Zhu et al., 2009; Bobko et al., 2011; Lebedev et al., 2014; Manjunath and Nair, 2015; Vialle and Lebedev, 2015; Liu et al., 2016). Thus nanoindentation gives us a way to identify the mechanical properties of heterogeneous coal (note that coal consists of the organic coal base matrix, inorganic minerals and pores). These mechanical properties are essential input data into numerical models, which can predict the mechanical behavior of the whole (heterogeneous) material. Earlier studies considered the coal matrix as a homogenous elastic continuum (e.g. Izadi et al., 2011), which
obviously cannot capture the clearly heterogeneous character of the coal, and thus can only provide rather biased predictions. To overcome this serious limitation we use discrete element method (DEM) modelling (cp. Cundall and Strack, 1979; Wang et al., 2014; Zhang et al., 2016e; Bai et al., 2016), where each material – coal matrix, mineral and void are assigned their respective true and individual mechanical properties, and combine this with high resolution x-ray micro-computed tomography (microCT) imaging, which can provide the detailed 3D morphology of the coal (Zhang et al., 2016b, 2016c, 2016d; Jing et al., 2016; Mostaghimi et al., 2017). Thus, in this paper, using this approach, we were able to quantify the swelling stresses generated by supercritical CO₂ injection into coal, and to identify the failure mechanisms occurring in the un-swelling phase.

2. Methodology

2.1 Experimental work

A small cylindrical coal plug (5 mm diameter and 10 mm length) was cut from a heterogeneous subbituminous medium rank coal block obtained from a coal seam at ~650m to 700m depth (buried at Permian period) from Pingdingshan coal mine, China; the generalized stratigraphic column is shown in Figure 1. The coal had a 54% (±2%) carbon content and a 36% (±1%) volatile matter content (measured by Chinese Standard GB/T 212-2008 and DL/T 1030-2006; Xu et al., 2016; Zhang et al., 2016d), additional properties are tabulated in Table 1. The microstructure of the sample is shown in Figure 2, the coal matrix, cleats and mineral phase can clearly be seen. The mineral was identified as calcite in SEM-EDS analysis. This plug was mounted into a HPHT (high pressure – high temperature) x-ray transparent flow cell (core holder), which was integrated into an in-situ microCT core flooding system (cp. Lebedev et al., 2016; Zhang et al., 2016c, 2016d; Iglauer et al., 2011; Rahman et al. 2016). The plug was vacuumed for 8 hours and subsequently more than 5000 PV (pore volumes) of scCO₂ were injected at typical reservoir conditions (confining pressure = 15 MPa, pore pressure = 10 MPa, temperature = 323 K (50°C), Pentland et al., 2011; Iglauer et al., 2011). The coal plug was imaged at high resolution (voxel size = 3.43 µm) with an Xradia VersaXRM instrument in 3D, before and after scCO₂ flooding. Indeed the sample’s micro-morphology changed significantly, micro cleats/fractures in the coal matrix closed due to swelling induced by scCO₂ adsorption (cp. 3 and 5 in Figure 3), and new fractures appeared in the un-swelling calcite phase (cp. 1, 2
and 4 in Figure 3); see Zhang et al., (2016b) for the details of this in-situ microCT scCO₂ core flooding experiment.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Graphic</th>
<th>Explanation</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Sandstone</td>
<td>clay, mud, sand with gravel and calcrete</td>
<td>161</td>
</tr>
<tr>
<td>200</td>
<td>Sandstone</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>300</td>
<td>Clay, mud, silty sandstone</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>400</td>
<td>Sand and mud interlayer</td>
<td></td>
<td>187</td>
</tr>
<tr>
<td>500</td>
<td>Mudstone</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>600</td>
<td>Sand and mud interlayer</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>700</td>
<td>Coal</td>
<td>clays, mud, silty sandstone</td>
<td>14</td>
</tr>
<tr>
<td>800</td>
<td>Coal</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>900</td>
<td>Coal</td>
<td>clays, mud, silty sandstone</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Limestone</td>
<td></td>
<td>>50</td>
</tr>
</tbody>
</table>
Figure 1. The generalized stratigraphic column of the Pingdingshan coal mine from which the coal sample was obtained.

Table 1: Physical properties of the coal studied (Xu et al. 2016; Zhang et al. 2016d).

<table>
<thead>
<tr>
<th>M (%)</th>
<th>V (%)</th>
<th>A (%)</th>
<th>C_f (%)</th>
<th>E (GPa)</th>
<th>ν</th>
<th>ρ (g/cm^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>36.0</td>
<td>4.2</td>
<td>54.0</td>
<td>2.6</td>
<td>0.3</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Note: M is the moisture content; V is the volatile matter; A is the ash yield; C_f is the fixed carbon content; E is Young’s Modulus; ν is Poission’s ratio; and ρ is the bulk density.
Figure 2. The micro structure of the unflooded coal sample; (A), (B): 2D microCT slices through the greyscale image; (A) 3.43 µm voxel size; (B) 33.7 µm voxel size, grey is coal matrix, black is void space, and white is calcite; (C) SEM image of the coal and associated EDS spectra; calcite is white and coal matrix is black/dark grey.
Figure 3. 2D microCT slices through the coal sample before and after scCO₂ injection (3.43 μm resolution); new fractures appeared in the calcite after flooding: 1, 2 and 4; the original micro cleats in the coal matrix closed after flooding: 3 and 5.

3. The stress-strain method

Initially we estimated the swelling stress via the traditional stress-strain method using the volume fractions measured (i.e. strains measured) on the microCT images, Table 2 (note that the volume strain $\varepsilon = (\text{the volume difference before and after CO}_2\text{ flooding}) / (\text{original volume})$. Negative values represent compression, while positive values represent expansion.

What is more, in an elastic 3D coordinate system, ε has following relation with Young’s modulus (E), stress (σ), and Poisson’s ratio (ν), e.g. Fjar et al., 2008; Ahmed and Meehan (2016):

$$\begin{align*}
\varepsilon_x &= \frac{1}{E} \left[\sigma_x - \nu(\sigma_y + \sigma_z) \right] \\
\varepsilon_y &= \frac{1}{E} \left[\sigma_y - \nu(\sigma_x + \sigma_z) \right] \\
\varepsilon_z &= \frac{1}{E} \left[\sigma_z - \nu(\sigma_x + \sigma_y) \right]
\end{align*}$$
Based on the former stress-strain studies on coal (cp. Seidle et al., 1992; Sheorey, 1994; Tajduš, 2009; Liu and Rutqvist, 2010; Espinoza et al., 2013), we assumed that the coal was under isotropic elastic and hydrostatic conditions, thus

\[\sigma_x = \sigma_y = \sigma_z \]

(2)

It follows for the volume matrix strain (\(\varepsilon_v \)):

\[\varepsilon_v = 3\varepsilon_x = 3 \frac{1}{E} [\sigma_x - \nu 2\sigma_x] \]

(3)

As the strain (\(\varepsilon \)) is equal to the volume matrix strain (\(\varepsilon_v \)) / 3, thus

\[\varepsilon = \frac{1}{E} \sigma (1 - 2\nu) \]

(4)

So,

\[\sigma = \frac{E\varepsilon}{1 - 2\nu} \]

(5)

Furthermore, the effective stress (\(\sigma_e \)) can be described as a function of internal swelling stress (\(\sigma_s \)), Liu and Rutqvist (2010):

\[\sigma_e = \sigma_t - \alpha P + \sigma_s \]

(6)

Thus before scCO\(_2\) injection (without swelling effect), the effective stress for the material can be described as

\[\sigma_{e1} = \sigma_{t1} - \alpha P_1 \]

(7)

After scCO\(_2\) injection (with swelling effect)

\[\sigma_{e2} = \sigma_{t2} - \alpha P_2 + \sigma_s \]

(8)

and the differential effective stress (before and after CO\(_2\) adsorption) \(\sigma \) (generated by the strain change) is thus:

\[\sigma = \sigma_{e2} - \sigma_{e1} = \sigma_{t2} - \alpha P_2 + \sigma_s - \sigma_{t1} + \alpha P_1 = \frac{E\varepsilon}{1 - 2\nu} \]

(9)

Thus the internal swelling stress (\(\sigma_s \)) can be obtained by

\[\sigma_s = \frac{E\varepsilon}{1 - 2\nu} - \sigma_{t2} + \alpha P_2 + \sigma_{t1} - \alpha P_1 \]

(10)
Where σ_t is the overburden (confining) pressure (15 MPa), P_2 is the pore pressure (10 MPa) for the second microCT scan, σ_t is 5 MPa, P_1 is 0 MPa for the first microCT scan, and α is Biot’s coefficient. Based on previous studies (e.g. Gray, 1987; Liu and Rutqvist, 2010), we set Biot’s coefficient $\alpha = 1$. For the coal matrix, we set a Young’s modulus (E) of 2 GPa and a Poisson’s ratio (ν) of 0.15 (an estimated value from an ultrasonic test on a sister coal plug, measured with a RIGOL DS4022 instrument at 1 MHz frequency). After inputting the data into equation (10), we obtained an internal swelling stress value of 20.52 MPa. However, the shortcoming of this stress-strain prediction was significant; the result cannot reflect the swelling progress which is dynamic (different swelling degrees induce different internal swelling stresses), and the assumption of isotropic elasticity is a strong simplification when modelling highly heterogeneous coal. Most importantly, this method cannot answer the questions about the failure mechanisms occurring in the mineral phase. Thus, further numerical modelling is required (see DEM simulations below).

Table 2: Volumetric and strain data for each phase before and after CO$_2$ flooding.

<table>
<thead>
<tr>
<th>Phases</th>
<th>The volume before scCO$_2$ injection [106µm3]</th>
<th>The volume after scCO$_2$ injection [106µm3]</th>
<th>Volume matrix Strain (ε_v)</th>
<th>Strain (ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Void (Micro cleats/fractures)</td>
<td>26.17</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Coal matrix</td>
<td>5500.08</td>
<td>5618.61</td>
<td>0.022</td>
<td>0.007</td>
</tr>
<tr>
<td>Calcite mineral</td>
<td>2171.02</td>
<td>2078.66</td>
<td>-0.043</td>
<td>-0.014</td>
</tr>
<tr>
<td>Total</td>
<td>7697.27</td>
<td>7697.27</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Discrete Element Method (DEM) simulation

The Discrete Element Method (DEM) has become a powerful numerical tool for analyzing the dynamic mechanical behavior of complex objects (Cundall and Strack, 1979; Scholtès and
Donzé, 2012). Precisely, DEM models objects as an assembly of interacting particles, and the
key advantage of DEM is that specific attributes (features, bonds, contacts, frictions and
boundary conditions) can be assigned to each particle (and thus each material) simultaneously.
We used the popular DEM built-in software – Particle Flow Code (PFC2D) in this study. In
PFC2D, the DEM simulations are based on Newton’s second law and the force-displacement
law at particle contacts. While the force-displacement law determines the contact force exerted
on each particle (these forces arise from the relative motion of the particles to each other);
Newton’s second law determines the motion for each particle (which arise from the contact
and body forces acting upon the particle), Cundall and Strack (1999). The constitutive behavior
of the material is simulated by stiffness model, slip model and bonding model. The stiffness
model provides the elastic relationship between the displacement and contact force, and the
slip model describes the relationship between normal and shear contact force when the
contacted particles slip in relation to each other; and the bonding model limits the total shear
and normal forces in the contact areas (Cundall and Strack, 1999; Sarmadivaleh, 2012;
Hashemi et al., 2014; Bewick et al., 2014; Zhang et al., 2016; Zhou et al., 2016; Jiang et al.,
2016). Here we used a small particle size (less than 6 µm) to simulate the coal matrix and
calcite mineral at micro-scale; and the effective stress applied in the true experiment has been
added via a boundary condition set, see below. Furthermore, the contact bond model (see
Potyondy and Cundall, 2004) was used in our simulation; and most importantly, the coal
swelling effect was modelled by continuously increasing the volume of the coal matrix particles.

Six simulations were performed (A – E), Figure 4. Each simulation used a high resolution 2D
microCT slice acquired experimentally (thus different micro-morphologies were tested,
Figures 4 and 5) to provide realistic geometrical input data. The simulations covered different
areal sizes: A and B were 0.4 mm × 0.4 mm, C was 0.85 mm × 0.85 mm, D and E were 1.37
mm × 1.37 mm. The number of particles in examples A, C and D were set to ~7000, in example
B to ~20000 and in example E both particle numbers were tested (i.e. both, ~7000 in E2, and
~20000 in E1). The volume of each particle in the coal matrix was increased until a total volume
(of each particle) increase of 1% was realized (which simulated the coal matrix swelling during
scCO₂ injection). A servo-control mode boundary condition with 5 MPa effective stress was
used to mimic the experimental conditions (where 5 MPa effective stress was applied, see
above). Other input parameters are summarized in Table 3. To obtain reasonable shear/normal
bond strengths in the DEM simulations, calibration simulations were run on example E for
different bond strengths (ranging from 1 MPa to 110MPa), see Figure 6.
These calibration simulations used model E and a 1% total coal particle volume swelling factor. Thus after comparing the computed fracture morphologies with the experimental microCT tomography results, we chose 50 ± 5 MPa (normally distributed) for the shear/normal bond strengths in all DEM simulations. Note that the bond strength input did not affect the final internal swelling stress output, and the maximal von Mises stresses predicted for all cases (at 1% particle swelling rate) were similar, around 20 MPa.

Table 3. Particle properties used in the DEM simulations.

<table>
<thead>
<tr>
<th>Input property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle density (coal matrix)</td>
<td>1052 kg/m³</td>
</tr>
<tr>
<td>Particle density (calcite mineral)</td>
<td>2000 kg/m³</td>
</tr>
<tr>
<td>Particle radius</td>
<td>6 µm to 9 µm (evenly distributed)</td>
</tr>
<tr>
<td>Friction coefficient</td>
<td>0.5</td>
</tr>
<tr>
<td>Shear Bond strength*</td>
<td>50 ± 5 MPa (normally distributed)</td>
</tr>
<tr>
<td>Normal Bond strength*</td>
<td>50 ± 5 MPa (normally distributed)</td>
</tr>
<tr>
<td>Young’s modulus (coal matrix)*</td>
<td>1 GPa and 8 GPa (normally distributed)</td>
</tr>
<tr>
<td>Young’s modulus (calcite mineral)*</td>
<td>18 GPa</td>
</tr>
</tbody>
</table>

*The Bond strength was chosen after conducting calibration simulations, see text for details.

#The Young’s moduli were obtained from the nanoindentation tests, see text for details.
Example A

Example B

Example C

Example D

MicroCT image

PFC2D model

0.4 mm

0.4 mm

0.85 mm

1.37 mm
Figure 4. PFC2D models and associated microCT images, examples A – D; A, C and D used ~7000 particles, and B ~20000 particles.

Figure 5. The PFC2D models with the associated microCT image, example E: E1 used ~20000 particles; and E2 ~7000 particles.

Figure 6. Calibration simulations for setting the bond strength. Simulations for 1 MPa to 110 MPa bond strength are shown, for a 1% coal matrix swelling factor.
5. Nanoindentation testing

The IBIS nanoindentation system and Berkovich nano-indenter were chosen for the nanoindentation tests, Figure 7. A cuboid coal sample \((l \times w \times h = 5 \text{ mm} \times 5 \text{ mm} \times 2 \text{ mm})\) was cut and carefully polished, and mounted on the objective stage. Subsequently the penetration depth \((h)\) – loading/unloading force \((P)\) curves were measured for each test point. Specifically 625 data points on a symmetric 25 × 25 grid \((240 \mu \text{m} \times 240 \mu \text{m} \text{ spacing})\) were measured. The maxim loading force was set to 4 mN (which is smaller than the one used in former studies on other natural rocks, Lebedev et al., 2014; Vialle and Lebedev, 2015; Zhang et al., 2016a) due to the brittle and soft nature of the coal sample. Finally, the indentation modulus \((M)\) was obtained from the measured \(P-h\) curves, equation 8 (Fischer-Cripps, 2004):

\[
M = \frac{1}{2} \sqrt{\frac{\pi}{A}} \frac{dP}{dh}
\]

(11)

where \(A\) is the contact area, and \(dP / dh\) was measured from several unloading curves at maximum applied force \(P_{\text{max}}\) and maximum penetration depth \(h_{\text{max}}\). For an isotropic material Young’s modulus \(E\) and Poisson’s ratio \(\nu\) can then be related to \(M\) as:

\[
M = \frac{E}{1-\nu^2}
\]

(12)

Furthermore, \(E\) can be approximated via (Fischer-Cripps, 2004; Lebedev et al., 2014):

\[
0.75 \, M \leq E \leq M
\]

(13)

when the material’s Poisson’s ratio ranges from 0 to 0.5 (the Poisson’s ratio is less than 0.5 for most natural materials, we estimated \(\nu = 0.15\) from the bulk volume ultrasonic test and \(\nu \approx 0.3\) for coal was reported by Wang et al., 2014),

The nanoindentation results are presented in Figure 7. It is clear from this data that the indentation modulus of the mineral phase (always larger than 15 GPa) was significantly higher than that of the coal matrix. Thus, for the DEM input, the \(E\) for the coal matrix was set to 1 GPa to 8 GPa (normally distributed) recall that coal is highly heterogeneous, and 18 GPa for the calcite phase.
Figure 7. (A) Schematic of the nanoindentation experiment, the indenter penetrates into the sample during loading; (B) a typical loading - unloading curve for the quartz calibration sample (A Young’s modulus of 72.5 GPa, a Poisson’s ration of 0.17, and an indentation modulus of 74.5 GPa were measured) where the h (μm) is the indentation depth and P (mN) is the indentation force; (C) indentation moduli (GPa) measured on the coal sample.

6. Results and discussion

The DEM simulations successfully predicted the change in coal microstructure caused by coal matrix swelling, which again was induced by scCO$_2$ injection (see Figures 8 and 9). Clearly cracks appeared in the mineral phase when the coal matrix volume increased by 1 %, consistent
with the experimental microCT observations (cp. Figure 3). Most failures in the calcite mineral phase were identified as tensile failures (red colored cracks in Figures 8 and 9) these appeared during the coal matrix swelling. We were furthermore able to compute the in-situ stresses, c.p. the von Mises stress map in Figure 8 and Figure 9). Note that the von Mises stress K is defined by

$$\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2 = 3K^2$$ (14)

and a K map can describe the in-situ stress exerted on each particle in the model. Clearly these stress fields were highly anisotropic, and maximum effective stresses concentrated on the mineral surface in most cases (Example A, B, D and E). The von Mises stresses continuously increased with increasing coal matrix swelling until failure (i.e. until the mineral was fractured). During failure, the swelling stresses generated were released, and the von Mises stress decreased again.

Furthermore, the number of particles in the simulation had no significant influence on the in-situ stresses (compare simulations E1 and E2 in Figure 9), although a larger particle number predicted a more realistic fracture morphology. Moreover, the volume fraction and morphology of the mineral was identified as the main factor determining the highest in-situ stresses; see example C (where the coal matrix volume fraction was only 20 %) in Figure 8; note that in this example, the highest in-situ effective stresses were located in the coal matrix, but not on the mineral surface, contrary to the behavior of the other examples. This can be explained by a morphological feature; the coal matrix was fully enclosed and trapped by the mineral phase, thus the generated stresses could not be released until all surrounding minerals failed. However, the mineral was less likely to fail as it had a much higher volume fraction than the coal matrix, and its Young’s modulus was significantly higher than that of the coal matrix; thus abnormally high stresses appeared inside the coal.

Finally the relationship between maximum von Mises stress (MPa), in in-situ von Mises stress map, and swelling percentage could be calculated, cp. Figure 10. Thus, the dynamic swelling stress (in-situ effective stress minus the original effective stress) could be obtained: the swelling stress in the normal areas (with an approximately 70 % coal matrix volume fraction) reached up to 20 MPa, while they reached more than 35 MPa in some areas where the coal matrix was enclosed by the mineral phase. In a field scale CO$_2$-ECBM project, such abnormally high swelling stresses (caused by CO$_2$ injection) can result in a series of problems such as well
borehole instabilities and/or fault re-activation (Karacan et al., 2011; Tu et al., 2016; Zhai et al., 2016). These effects should be analyzed further as they pose a significant geohazard.
Figure 8. Fractures development due to scCO₂ injection predicted via DEM. The in-situ mises stress maps are shown in color below the PFC models; (A) example A; (B) example B; and (C) is example C. Note: the red colored cracks indicate tensile failures and the black colored shear failures.
Figure 9. Fractures development due to scCO$_2$ injection predicted via DEM. The in-situ mises stress maps are shown in color below the PFC models; (D) example D; (E1) example E1; and
(E2) is example E2. Note: the red colored cracks indicate tensile failures and the black colored shear failures.

Figure 10. The relationship between maximum von Mises stress (from in-situ von Mises stress map, Figures 8 and 9) and swelling rate (%).

7. Conclusions

CO₂ can be injected into coal seams to enhance methane production (White et al., 2005; Saghafi 2010); however, the resulting coal matrix swelling effect leads to coal cleat closure and a dramatic permeability reduction (Karacan 2003; Zhang et al., 2016f); furthermore, it has been recently observed that the unswelling phase fractured due to the induced swelling stresses (Zhang et al., 2016b). However, how precisely such swelling stresses are generated and the associated failure mechanisms in the unswelling phase are not fully understood. Thus, in this paper, we developed a novel microscale discrete element method (DEM) which combines x-
ray microCT tomography imaging and nanoindentation measurements to predict such microscale rock mechanical performance.

These DEM simulations were run on five test samples where different geometrical morphologies were examined (the microCT images provided this input). The DEM models successfully simulated the swelling process and predicted failure morphologies in the mineral phase consistent with the microCT observations. Based on the simulation results, we conclude that the mineral phase shows tensile failure due to compression caused by coal matrix swelling. The von Mises stresses were quantified, and the maximum coal swelling stresses reached more than 35 MPa in areas which were fully enclosed by (unswelling) mineral. Such abnormally high stresses pose a geohazard risk in CO₂-ECBM projects.

Acknowledgements

The measurements were performed using the microCT system courtesy of the National Geosequestration Laboratory (NGL) of Australia, funding for the facility was provided by the Australian Government. This work was also supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia.

References

Zhang, Y., Lebedev, M., Sarmadivaleh, M., Barifcani, A., Iglauer, S., 2016a. Change in Geomechanical Properties of Limestone Due to Supercritical CO$_2$ Injection, SPE Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers.

