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Abstract 15 

Coal bed methane production can be assisted by CO2 injection. However, CO2 adsorption 16 

in the coal matrix leads to a dramatic reduction in permeability and an associated change 17 

in microstructure caused by coal matrix swelling. Furthermore, it has been recently 18 

observed that the induced swelling stress fractures the unswelling (mineral) phase in 19 

laboratory investigations. However, the failure mechanisms are still not understood, and 20 

the way internal swelling stresses are generated is not clear. Thus, in this paper, we 21 

propose a new method which combines x-ray microtomography imaging, 22 

nanoindentation testing and DEM modeling with which we can predict the rock 23 

mechanical performance at micro scale. Indeed we successfully simulated such swelling 24 

processes inside a coal sample, including a simulation of the fracture mechanism of the 25 

mineral phase, and a quantification of the in-situ von Mises stresses generated by swelling. 26 

We conclude that our proposed method is an efficient way for analysis and prediction of 27 

coal microfracturing and the associated microscale rock mechanical behavior. 28 

 29 
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1. Introduction 34 

Coal bed methane (CBM) is an unconventional energy resource, which exists in coal mines 35 

and deep unmineable coal seams (Hamawand et al., 2013). Recently, due to the decline in 36 

conventional energy resources coupled with a globally increasing energy demand (Lior 2008), 37 

CBM has gained increasing popularity (Connell et al., 2011; Pillalamarry et al., 2011; Hamilton 38 

et al., 2015; Vishal et al., 2015). Furthermore, CBM can be enhanced (enhanced coal bed 39 

methane, ECBM), e.g. through CO2 injection, which efficiently displaces CH4 from the coal 40 

matrix (White et al., 2005; Saghafi 2010). However, CO2 injection dramatically reduces the 41 

coal seam’s permeability (Mazumder et al., 2006; Siriwardane et al., 2009; Anggara et al., 42 

2016), which largely limits application of this technology. Mechanistically, cleats (the main 43 

flow conduits in coal) close due to coal matrix swelling induced by CO2 adsorption (Shi and 44 

Durucan 2005; Wu et al., 2011; Zhang et al., 2016a; Liu and Rutqvist 2010; Espinoza et al., 45 

2014) and it has recently been discovered that the swelling stress in the coal matrix can fracture 46 

the unswelling phase (i.e. inorganic mineral), (Zhang et al. 2016a). However, the detailed 47 

failure mechanisms and swelling stress quantification are still poorly understood due to only 48 

limited theoretical understanding of the micro-scale rock mechanical performance. It is thus of 49 

vital importance to further understand these mechanical changes in the coal so that advanced 50 

ECBM techniques can be developed. 51 

The mechanical properties of small areas (up to nanoscale) on a material’s surface can now be 52 

obtained by nanoindentation measurements; such method has for instance been applied to 53 

natural rock samples including sandstone, limestone, shale and coal (Zhu et al., 2009; Bobko 54 

et al., 2011; Lebedev et al., 2014; Manjunath and Nair, 2015; Vialle and Lebedev, 2015; Liu et 55 

al., 2016). Thus nanoindentation gives us a way to identify the mechanical properties of 56 

heterogeneous coal (note that coal consists of the organic coal base matrix, inorganic minerals 57 

and pores). These mechanical properties are essential input data into numerical models, which 58 

can predict the mechanical behavior of the whole (heterogeneous) material. Earlier studies 59 

considered the coal matrix as a homogenous elastic continuum (e.g. Izadi et al., 2011), which 60 
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obviously cannot capture the clearly heterogeneous character of the coal, and thus can only 61 

provide rather biased predictions. To overcome this serious limitation we use discrete element 62 

method (DEM) modelling (cp. Cundall and Strack, 1979; Wang et al., 2014;  Zhang et al., 63 

2016e; Bai et al., 2016), where each material – coal matrix, mineral and void are assigned their 64 

respective true and individual mechanical properties, and combine this with high resolution x-65 

ray micro-computed tomography (microCT) imaging, which can provide the detailed 3D 66 

morphology of the coal (Zhang et al., 2016b, 2016c, 2016d; Jing et al., 2016; Mostaghimi et 67 

al., 2017). Thus, in this paper, using this approach, we were able to quantify the swelling 68 

stresses generated by supercritical CO2 injection into coal, and to identify the failure 69 

mechanisms occurring in the un-swelling phase.  70 

 71 

2. Methodology 72 

2.1 Experimental work 73 

A small cylindrical coal plug (5 mm diameter and 10 mm length) was cut from a heterogeneous 74 

subbituminous medium rank coal block obtained from a coal seam at ~650m to 700m depth 75 

(buried at Permian period) from Pingdingshan coal mine, China; the generalized stratigraphic 76 

column is shown in Figure 1. The coal had a 54% (±2%) carbon content and a 36% (±1%) 77 

volatile matter content (measured by Chinese Standard GB/T 212-2008 and DL/T 1030-2006; 78 

Xu et al., 2016; Zhang et al., 2016d), additional properties are tabulated in Table 1.The 79 

microstructure of the sample is shown in Figure 2, the coal matrix, cleats and mineral phase 80 

can clearly be seen. The mineral was identified as calcite in SEM-EDS analysis. This plug was 81 

mounted into a HPHT (high pressure – high temperature) x-ray transparent flow cell (core 82 

holder), which was integrated into an in-situ microCT core flooding system (cp. Lebedev et al., 83 

2016; Zhang et al., 2016c, 2016d;  Iglauer et al., 2011; Rahman et al. 2016). The plug was 84 

vacuumed for 8 hours and subsequently more than 5000 PV (pore volumes) of scCO2 were 85 

injected at typical reservoir conditions (confining pressure = 15 MPa, pore pressure = 10 MPa, 86 

temperature = 323 K (50oC), Pentland et al., 2011; Iglauer et al., 2011). The coal plug was 87 

imaged at high resolution (voxel size = 3.43 µm) with an Xradia VersaXRM instrument in 3D, 88 

before and after scCO2 flooding. Indeed the sample’s micro-morphology changed significantly, 89 

micro cleats/fractures in the coal matrix closed due to swelling induced by scCO2 adsorption 90 

(cp. 3 and 5 in Figure 3), and new fractures appeared in the un-swelling calcite phase (cp. 1, 2 91 
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and 4 in Figure 3); see Zhang et al., (2016b) for the details of this in-situ microCT scCO2 core 92 

flooding experiment. 93 

 94 
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Figure 1. The generalized stratigraphic column of the Pingdingshan coal mine from which the 95 

coal sample was obtained. 96 

 97 

Table 1: Physical properties of the coal studied (Xu et al. 2016; Zhang et al. 2016d). 98 

M (%) V (%) A  (%) Cf (%) E (GPa) υ ρ (g/cm3)  

6.9  36.0 4.2 54.0 2.6 0.3 1.35  

Note: M is the moisture content; V  is the volatile matter; A is the ash yield; Cf  is the fixed carbon content;  E is 99 

Young’s Modulus; υ is Poission’s ratio; and ρ is the bulk density.  100 

 101 
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 102 

Figure 2. The micro structure of the unflooded coal sample; (A), (B): 2D microCT slices 103 

through the greyscale image; (A) 3.43 µm voxel size; (B)  33.7 µm voxel size, grey is coal 104 

matrix, black is void space, and white is calcite; (C) SEM image of the coal and associated 105 

EDS spectra; calcite is white and coal matrix is black/dark grey. 106 
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 107 

Figure 3. 2D microCT slices through the coal sample before and after scCO2 injection (3.43 108 

μm resolution); new fractures appeared in the calcite after flooding: 1, 2 and 4; the original 109 

micro cleats in the coal matrix closed after flooding: 3 and 5. 110 

 111 

3. The stress-strain method 112 

Initially we estimated the swelling stress via the traditional stress-strain method using the 113 

volume fractions measured (i.e. strains measured) on the microCT images, Table 2 (note that 114 

the volume strain ε = (the volume difference before and after CO2 flooding) / (original volume). 115 

Negative values represent compression, while positive values represent expansion. 116 

What is more, in an elastic 3D coordinate system, ε has following relation with Young’s 117 

modulus (E), stress (σ), and Poisson's ratio (υ), e.g. Fjar et al., 2008; Ahmed and Meehan (2016):  118 

{
 
 

 
 𝜀𝑥 = 

1

𝐸
 [𝜎𝑥 − 𝜐(𝜎𝑦 + 𝜎𝑧)]

𝜀𝑦 = 
1

𝐸
 [𝜎𝑦 − 𝜐(𝜎𝑥 + 𝜎𝑧)]

𝜀𝑧 =  
1

𝐸
 [𝜎𝑧 − 𝜐(𝜎𝑥 + 𝜎𝑦)]

                                                                                             (1) 119 
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Based on the former stress-strain studies on coal (cp. Seidle et al., 1992; Sheorey, 1994; Tajduś, 120 

2009; Liu and Rutqvist, 2010; Espinoza et al., 2013), we assumed that the coal was under 121 

isotropic elastic and hydrostatic conditions, thus 122 

𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧                                                                                                                                                                    (2)                                                                                                                                                                                                                                 123 

It follows for the volume matrix strain (εv): 124 

𝜀𝑣 = 3𝜀𝑥 =  3
1

𝐸
 [𝜎𝑥 − 𝜐2𝜎𝑥  ]                                                                                                                                    (3) 125 

As the strain (ε) is equal to the volume matrix strain (εv) / 3, thus 126 

𝜀 =  
1

𝐸
 𝜎(1 − 2𝜐)                                                                                                                                                             (4) 127 

So,   128 

𝜎 =  
𝐸𝜀

1−2𝜐
                                                                                                                                                                               (5) 129 

Furthermore, the effective stress (σe) can be described as a function of internal swelling stress 130 

(σs), Liu and Rutqvist (2010):  131 

𝜎𝑒 = 𝜎𝑡 − 𝛼𝑃 + 𝜎𝑠                                                                                                                                                          (6) 132 

Thus before scCO2 injection (without swelling effect), the effective stress for the material can 133 

be described as 134 

𝜎𝑒1 = 𝜎𝑡1 − 𝛼𝑃1                                                                                                                                                                (7) 135 

After scCO2 injection (with swelling effect) 136 

𝜎𝑒2 = 𝜎𝑡2 − 𝛼𝑃2 + 𝜎𝑠                                                                                                                                                    (8) 137 

and the differential effective stress (before and after CO2 adsorption) σ (generated by the strain 138 

change) is thus: 139 

𝜎 = 𝜎𝑒2 − 𝜎𝑒1 = 𝜎𝑡2 − 𝛼𝑃2 + 𝜎𝑠 − 𝜎𝑡1 + 𝛼𝑃1 = 
𝐸𝜀

1−2𝜐
                                                                                       (9) 140 

Thus the internal swelling stress (σs) can be obtained by                                                                   141 

𝜎𝑠 = 
𝐸𝜀

1−2𝜐
− 𝜎𝑡2 + 𝛼𝑃2 + 𝜎𝑡1 − 𝛼𝑃1                                                                                                                   (10) 142 
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Where σt2 is the overburden (confining) pressure (15 MPa), P2 is the pore pressure (10 MPa) 143 

for the second microCT scan, σt1 is 5 MPa, P1 is 0 MPa for the first microCT scan, and α is 144 

Biot’s coefficient. Based on previous studies (e.g. Gray, 1987; Liu and Rutqvist, 2010), we set 145 

Biot’s coefficient α = 1. For the coal matrix, we set a Young’s modulus (E) of 2 GPa and a 146 

Poisson's ratio (υ) of 0.15 (an estimated value from an ultrasonic test on a sister coal plug, 147 

measured with a RIGOL DS4022 instrument at 1 MHz frequency). After inputting the data into 148 

equation (10), we obtained an internal swelling stress value of 20.52 MPa. However, the 149 

shortcoming of this stress-strain prediction was significant; the result cannot reflect the 150 

swelling progress which is dynamic (different swelling degrees induce different internal 151 

swelling stresses), and the assumption of isotropic elasticity is a strong simplification when 152 

modelling highly heterogeneous coal. Most importantly, this method cannot answer the 153 

questions about the failure mechanisms occurring in the mineral phase. Thus, further numerical 154 

modelling is required (see DEM simulations below). 155 

 156 

Table 2: Volumetric and strain data for each phase before and after CO2 flooding. 157 

Phases The volume 

before scCO2 

injection 

[106µm3] 

The volume 

after  scCO2 

injection 

[106µm3] 

Volume 

matrix Strain 

(εv) 

Strain (ε) 

Void (Micro 

cleats/fractures) 

26.17 0 -1 -1 

Coal matrix 5500.08 5618.61 0.022 0.007 

Calcite mineral 2171.02 2078.66 -0.043 -0.014 

Total 7697.270 7697.27 0 0 

 158 

4. Discrete Element Method (DEM) simulation 159 

The Discrete Element Method (DEM) has become a powerful numerical tool for analyzing the 160 

dynamic mechanical behavior of complex objects (Cundall and Strack, 1979; Scholtès and 161 
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Donzé, 2012). Precisely, DEM models objects as an assembly of interacting particles, and the 162 

key advantage of DEM is that specific attributes (features, bonds, contacts, frictions and 163 

boundary conditions) can be assigned to each particle (and thus each material) simultaneously. 164 

We used the popular DEM built-in software – Particle Flow Code (PFC2D) in this study. In 165 

PFC2D, the DEM simulations are based on Newton’s second law and the force-displacement 166 

law at particle contacts. While the force-displacement law determines the contact force exerted 167 

on each particle (these forces arise from the relative motion of the particles to each other); 168 

Newton’s second law determines the motion for each particle (which arise from the contact 169 

and body forces acting upon the particle), Cundall and Strack (1999). The constitutive behavior 170 

of the material is simulated by stiffness model, slip model and bonding model. The stiffness 171 

model provides the elastic relationship between the displacement and contact force, and the 172 

slip model describes the relationship between normal and shear contact force when the 173 

contacted particles slip in relation to each other; and the bonding model limits the total shear 174 

and normal forces in the contact areas (Cundall and Strack, 1999; Sarmadivaleh, 2012; 175 

Hashemi et al., 2014; Bewick et al., 2014; Zhang et al., 2016e; Zhou et al., 2016; Jiang et al., 176 

2016). Here we used a small particle size (less than 6 µm) to simulate the coal matrix and 177 

calcite mineral at micro-scale; and the effective stress applied in the true experiment has been 178 

added via a boundary condition set, see below. Furthermore, the contact bond model (see 179 

Potyondy and Cundall, 2004) was used in our simulation; and most importantly, the coal 180 

swelling effect was modelled by continuously increasing the volume of the coal matrix particles.  181 

Six simulations were performed (A – E), Figure 4. Each simulation used a high resolution 2D 182 

microCT slice acquired experimentally (thus different micro-morphologies were tested, 183 

Figures 4 and 5) to provide realistic geometrical input data. The simulations covered different 184 

areal sizes: A and B were 0.4 mm × 0.4 mm, C was 0.85 mm × 0.85 mm, D and E were 1.37 185 

mm × 1.37 mm. The number of particles in examples A, C and D were set to ~7000, in example 186 

B to ~20000 and in example E both particle numbers were tested (i.e. both, ~7000 in E2, and 187 

~20000 in E1). The volume of each particle in the coal matrix was increased until a total volume 188 

(of each particle) increase of 1% was realized (which simulated the coal matrix swelling during 189 

scCO2 injection).  A servo-control mode boundary condition with 5 MPa effective stress was 190 

used to mimic the experimental conditions (where 5 MPa effective stress was applied, see 191 

above). Other input parameters are summarized in Table 3. To obtain reasonable shear/normal 192 

bond strengths in the DEM simulations, calibration simulations were run on example E for 193 

different bond strengths (ranging from 1 MPa to 110MPa), see Figure 6. 194 
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These calibration simulations used model E and a 1 % total coal particle volume swelling factor. 195 

Thus after comparing the computed fracture morphologies with the experimental microCT 196 

tomography results, we chose 50 ± 5 MPa (normally distributed) for the shear/normal bond 197 

strengths in all DEM simulations. Note that the bond strength input  did not affect the final 198 

internal swelling stress output, and  the  maximal von Mises stresses predicted for all cases (at 199 

1 % particle swelling rate) were similar, around 20 MPa. 200 

 201 

 202 

 203 

Table 3.  Particle properties used in the DEM simulations. 204 

Input property Value 

Particle density (coal matrix) 1052 kg/m3 

Particle density (calcite mineral) 2000 kg/m3 

Particle radius 6 µm to 9µm (evenly distributed) 

Friction coefficient   0.5 

Shear Bond strength* 50 ± 5 MPa (normally distributed) 

Normal Bond strength*  50 ± 5 MPa (normally distributed) 

Young’s modulus (coal matrix)# 1 GPa and 8 GPa (normally distributed) 

Young’s modulus (calcite mineral)# 18 GPa 

*The Bond strength was chosen after conducting calibration simulations, see text for details. 205 

#The Young’s moduli were obtained from the nanoindentation tests, see text for details. 206 
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Figure 4. PFC2D models and associated microCT images, examples A – D; A, C and D used 208 

~7000 particles, and B  ~20000 particles. 209 

 210 

 211 

Figure 5. The PFC2D models with the associated microCT image, example E: E1 used ~20000 212 

particles; and E2  ~7000 particles. 213 

 214 

 215 

Figure 6.  Calibration simulations for setting the bond strength. Simulations for 1 MPa to 110 216 

MPa bond strength are shown, for a 1 % coal matrix swelling factor. 217 
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 218 

 219 

5. Nanoindentation testing 220 

The IBIS nanoindentation system and Berkovich nano-indenter were chosen for the 221 

nanoindentation tests, Figure 7. A cuboid coal sample (l × w × h = 5 mm × 5 mm × 2 mm) was 222 

cut and carefully polished, and mounted on the objective stage. Subsequently the penetration 223 

depth (h) – loading/unloading force (P) curves were measured for each test point.  Specifically 224 

625 data points on a symmetric 25 × 25 grid (240 µm × 240 µm spacing) were measured. The 225 

maxim loading force was set to 4 mN (which is smaller than the one used in former studies on 226 

other natural rocks, Lebedev et al., 2014; Vialle and Lebedev, 2015; Zhang et al., 2016a) due 227 

to the brittle and soft nature of the coal sample. Finally, the indentation modulus (M) was 228 

obtained from the measured P-h curves, equation 8 (Fischer-Cripps, 2004): 229 

𝑀 =
1

2
 
√𝜋

√𝐴
 
𝑑𝑃

𝑑ℎ
                                                                                                                                                                     (11) 230 

where A is the contact area, and dP / dh was measured from several unloading curves at  231 

maximum applied force Pmax  and maximum penetration depth hmax. For an isotropic material 232 

Young’s modulus E and Poisson’s ratio υ can then be related to M as: 233 

𝑀 =
𝐸

1−𝜐2
                                                                                                                                                                            (12) 234 

Furthermore, E can be approximated via (Fischer-Cripps, 2004;  Lebedev et al., 2014): 235 

0.75 𝑀 ≤ 𝐸 ≤ 𝑀                                                                                                                                                           (13) 236 

when the material’s Poisson’s ratio ranges from 0 to 0.5 (the Poisson’s ratio is less than 0.5 for 237 

most natural materials, we estimated υ = 0.15 from the bulk volume ultrasonic test and υ   0.3 238 

for coal was reported by Wang et al., 2014),  239 

The nanoindentation results are presented in Figure 7. It is clear from this data that the 240 

indentation modulus of the mineral phase (always larger than 15 GPa) was significantly higher 241 

than that of the coal matrix. Thus, for the DEM input, the E for the coal matrix was set to 1 242 

GPa to 8 GPa (normally distributed) recall that coal is highly heterogeneous, and 18 GPa for 243 

the calcite phase.      244 
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 245 

 246 

Figure 7. (A) Schematic of the nanoindentation experiment, the indenter penetrates into the 247 

sample during loading; (B) a typical loading - unloading curve for the quartz calibration sample 248 

(A Young’s modulus of 72.5 GPa, a Poisson’s ration of 0.17, and an indentation modulus of 249 

74.5 GPa were measured) where the h (µm) is the indentation depth and P (mN) is the 250 

indentation force; (C) indentation moduli (GPa) measured on the coal sample.  251 

 252 

6. Results and discussion 253 

The DEM simulations successfully predicted the change in coal microstructure caused by coal 254 

matrix swelling, which again was induced by scCO2 injection (see Figures 8 and 9). Clearly 255 

cracks appeared in the mineral phase when the coal matrix volume increased by 1 %, consistent 256 



16 
 

with the experimental microCT observations (cp. Figure 3). Most failures in the calcite mineral 257 

phase were identified as tensile failures (red colored cracks in Figures 8 and 9) these appeared 258 

during the coal matrix swelling. We were furthermore able to compute the in-situ stresses, c.p. 259 

the von Mises stress map in Figure 8 and Figure 9). Note that the von Mises stress K is defined 260 

by  261 

𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 = 3𝐾2                                                                                                         (14) 262 

and a K map can describe the in-situ stress exerted on each particle in the model. Clearly these 263 

stress fields were highly anisotropic, and maximum effective stresses concentrated on the 264 

mineral surface in most cases (Example A, B, D and E). The von Mises  stresses continuously 265 

increased with increasing coal matrix swelling until failure (i.e. until the mineral was fractured). 266 

During failure, the swelling stresses generated were released, and the von Mises  stress 267 

decreased again.  268 

Furthermore, the number of particles in the simulation had no significant influence on the in-269 

situ stresses (compare simulations E1 and E2 in Figure 9), although a larger particle number 270 

predicted a more realistic fracture morphology. Moreover, the volume fraction and morphology 271 

of the mineral was identified as the main factor determining the highest in-situ stresses; see 272 

example C (where the coal matrix volume fraction was only 20 %) in Figure 8; note that in this 273 

example, the highest in-situ effective stresses were located in the coal matrix, but not on the 274 

mineral surface, contrary to the behavior of the other examples. This can be explained by a 275 

morphological feature; the coal matrix was fully enclosed and trapped by the mineral phase, 276 

thus the generated stresses could not be released until all surrounding minerals failed. However, 277 

the mineral was less likely to fail as it had a much higher volume fraction than the coal matrix, 278 

and its Young’s modulus was significantly higher than that of the coal matrix; thus abnormally 279 

high stresses appeared inside the coal. 280 

Finally the relationship between maximum von Mises stress (MPa), in in-situ von Mises stress 281 

map, and swelling percentage could be calculated, cp. Figure 10. Thus, the dynamic swelling 282 

stress (in-situ effective stress minus the original effective stress) could be obtained: the swelling 283 

stress in the normal areas (with an approximately 70 % coal matrix volume fraction) reached 284 

up to 20 MPa, while they reached more than 35 MPa in some areas where the coal matrix was 285 

enclosed by the mineral phase. In a field scale CO2-ECBM project, such abnormally high 286 

swelling stresses (caused by CO2 injection) can result in a series of problems such as well 287 
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borehole instabilities and/or fault re-activation  (Karacan et al., 2011; Tu et al., 2016; Zhai et 288 

al., 2016). These effects should be analyzed further as they pose a significant geohazard.   289 

 290 
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Figure 8. Fractures development due to scCO2 injection predicted via DEM. The in-situ mises 291 

stress maps are shown in color below the PFC models; (A) example A; (B) example B; and 292 

(C) is example C. Note: the red colored cracks indicate tensile failures and the black colored 293 

shear failures. 294 
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 295 

Figure 9. Fractures development due to scCO2 injection predicted via DEM. The in-situ mises 296 

stress maps are shown in color below the PFC models; (D) example D; (E1) example E1; and 297 
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(E2) is example E2. Note: the red colored cracks indicate tensile failures and the black 298 

colored shear failures. 299 

 300 

Figure 10. The relationship between maximum von Mises stress (from  in-situ von Mises 301 

stress map, Figures 8 and 9) and swelling rate (%). 302 

 303 

7. Conclusions 304 

CO2 can be injected into coal seams to enhance methane production (White et al., 2005; Saghafi 305 

2010); however, the resulting coal matrix swelling effect leads to coal cleat closure and a 306 

dramatic permeability reduction (Karacan 2003; Zhang et al., 2016f); furthermore, it has been 307 

recently observed that the unswelling phase fractured due to the induced swelling stresses 308 

(Zhang et al., 2016b). However, how precisely such swelling stresses are generated and the 309 

associated failure mechanisms in the unswelling phase are not fully understood. Thus, in this 310 

paper, we developed a novel microscale discrete element method (DEM) which combines x-311 
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ray microCT tomography imaging and nanoindentation measurements to predict such 312 

microscale rock mechanical performance.  313 

These DEM simulations were run on five test samples where different geometrical 314 

morphologies were examined (the microCT images provided this input). The DEM models 315 

successfully simulated the swelling process and predicted failure morphologies in the mineral 316 

phase consistent with the microCT observations. Based on the simulation results, we conclude 317 

that the mineral phase shows tensile failure due to compression caused by coal matrix swelling. 318 

The von Mises stresses were quantified, and the maximum coal swelling stresses reached more 319 

than 35 MPa in areas which were fully enclosed by (unswelling) mineral. Such abnormally 320 

high stresses pose a geohazard risk in CO2-ECBM projects. 321 

 322 
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