Probucol release from novel multicompartmental microcapsules for the oral targeted delivery in Type 2 Diabetes

Armin Mooranian, Rebecca Negrulj, Hesham S Al-Sallami, Zhongxiang Fang, Momir Mikov, Svetlana Golocorbin-Kon, Marc Fakhoury, Gerald F Watts, Vance Matthews, Frank Arfuso, Amanda Lambros and Hani Al-Salami*

1Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
2School of Pharmacy, University of Otago, Dunedin, New Zealand
3School of Public Health, Curtin University, Perth WA, Australia
4Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia
5Department of Pharmacy, Faculty of Medicine, University of Montenegro, Montenegro
6Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
7School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia
8Laboratory for Metabolic Dysfunction, UWA Centre for Medical Research, Harry Perkins Institute of Medical Research.
9School of Biomedical Science, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
10Faculty of Health Sciences, School of Occupational Therapy and Social Work, Curtin University, Perth, WA, Australia

Corresponding author:
Dr Hani Al-Salami
Senior Lecturer of Pharmaceutics, School of Pharmacy
Curtin University
Tel | + 61 8 9266 9816
Fax | + 61 8 9266 2769
Email | hani.al-salami@curtin.edu.au
Abstract

In previous studies, we developed and characterised multicompartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in Type 2 diabetes (T2D). We also designed a new microencapsulated formulation of Probucol-Sodium Alginate (PB-SA), with good structural properties and excipient compatibility. The aim of this study was to examine the stability and pH-dependant targeted release of the microcapsules at various pH values and different temperatures. Microencapsulation was carried out using a Büchi-based microencapsulating system developed in our laboratory. Using SA polymer, two formulations were prepared: empty SA microcapsules (SA, control) and loaded SA microcapsules (PB-SA, test), at a constant ratio (1:30) respectively. Microcapsules were examined for drug content, Zeta-potential, size, morphology and swelling characteristics, and PB release characteristics at pH 1.5, 3, 6, and 7.8. The production yield and microencapsulation efficiency were also determined. PB-SA microcapsules had 2.6 ± 0.25% PB content, and Zeta-potential of -66 ± 1.6%, suggesting good stability. They showed spherical and uniform morphology and significantly higher swelling at pH 7.8 at both 25 °C and 37°C (p<0.05). The microcapsules showed multiphasic release properties at pH 7.8. The production yield and microencapsulation efficiency were high (85 ± 5 and 92 ± 2 %, respectively). The PB-SA microcapsules exhibited distal gastrointestinal tract targeted delivery with a multi-phasic release pattern, and with good stability and uniformity. However, the release of PB from the microcapsules was not controlled, suggesting uneven distribution of the drug within the microcapsules.

Keywords: Probucol, artificial-cell microencapsulation, diabetes mellitus, anti-inflammatory, antioxidant, Type 2 Diabetes
Introduction

Diabetes mellitus is a disease characterized by hyperglycaemia and metabolic disorders. It is classified as Type 1 diabetes (T1D) or Type 2 diabetes (T2D). T1D is an autoimmune disease marked by the destruction of β-cells of the pancreas resulting in a partial or complete lack of insulin production and the inability of the body to control glucose homeostasis [1]. T2D develops due to genetic and environmental factors that lead to tissue desensitization to insulin [2]. Despite strict glycaemic control and the fact that new and more effective antidiabetic drugs are continuously appearing onto the market, diabetic patients still suffer from the disease and its complications [3]. Antidiabetic drugs are effective in minimizing variations between peaks and troughs of blood glucose levels in diabetic patients [3]. Common antidiabetic drugs include: sulfonylureas, such as Gliclazide that enhances insulin production, pancreatic β-cell functionality and improves insulin sensitivity; and the biguanide Metformin, which reduces glucose production in the liver [3]. However, the risks of hypoglycaemia, free radical and toxin build up remain major issues associated with T2D [4, 5]. Thus, there is an urgent need for new and more efficacious medications for diabetes that are capable of exerting a stronger protection of β-cells and have considerable anti-free radical and antioxidant effects. An advantage is optimising the formulations of drugs that have already shown desirable antidiabetic effects such as lowering of blood cholesterol and reducing the formation of atherosclerotic plaques.

Probucol (PB) is a highly lipophilic drug that has been shown to protect β-cells of the pancreas through its strong anti-free radical and antioxidant effects, and thereby neutralizing reactive oxygen species and alleviating oxidative stress [6, 7]. PB was developed as an antihyperlipidemic drug, but was withdrawn in some countries owing to high interindividual variation in absorption and potential adverse effects [8]. PB has high affinity for adipose tissues and has huge inter- and intra-individual variations in absorption after an oral dose [9]. The variations in absorption and efficacy are predicted to contribute significantly to its adverse effects, and compromise its potential clinical benefits in T2D [10]. Thus, developing a novel and stable formulation with high uniformity, efficient targeted delivery, and consistent release kinetics is anticipated to overcome these variations and maximise its potential use in T2D.

In a recent study carried out in our laboratory (manuscript currently under review), we designed novel multi-compartmental microcapsules of PB that displayed uniform and homogenous characteristics and exhibited pseudoplastic-thixotropic properties. These newly designed PB microcapsules showed good compatibility and structural properties. Accordingly, in this study, we aimed at describing further the targeted delivery, stability, and release properties of these PB microcapsules.

Materials and methods

Materials

Probucol (PB, 99%) and low viscosity sodium alginate (LVSA, 99 %) were purchased from Sigma Chemical Co, USA. Calcium chloride dihydrate (CaCl₂·2H₂O, 98%) was obtained from Scharlab S.L, Australia. All solvents and reagents were supplied by Merck (Australia) and were of HPLC grade and used without further purification.

Drugs preparations

Due to PB being highly insoluble [11] in aqueous media, it was dissolved in 10% freshly prepared Ultrasonic suspension prior to carrying out of experiments. Stock suspensions of PB (20 mg/mL) were prepared by adding the powder to 10% Ultrasonice water-soluble gel in 100mL HPLC water. The CaCl₂ stock solution (2%) was prepared by adding CaCl₂ powder to HPLC water. All preparations were mixed thoroughly at room temperature for 4 hours, stored in the refrigerator, and used within 48 hours of preparation.
Preparation of microcapsules

Vibrational-jet flow microencapsulation of PB-loaded LVSA was prepared using a Büchi-390 based-microencapsulation system (BÜCHI Labortechnik, Switzerland). Polymer solutions containing SA with and without PB were made up to a final concentration of PB-SA in a ratio of 1:30 respectively. Parameters were set in a frequency range of 1000-1500Hz and a flow rate of 4 mL/min under a consistent air pressure of 300 mbar. Vibrational-jet flow prepared microcapsules were collected from the microencapsulating system and, for each formulation, 3 independent batches were prepared and tested separately (n=3). All microcapsules (unloaded and PB-loaded) were prepared and treated in the exact same way. Furthermore, the microcapsules were dried using stability chambers (Angelantoni Environmental and Climatic Test Chamber, Italy). The weight of the recovered dry particles was then recorded and the PB contents, production yield, microencapsulation efficiency, zeta potentials, and mean particle size of each preparation were all measured and compared, as described below.

Characterization of PB-loaded microcapsules

Drug content, production yield, microencapsulation efficiency, and stability studies:

Drug content, production yield, and microencapsulation efficiency: 1 g of microcapsules was carefully weighed, ground, and dissolved in 200 mL of phosphate buffer (pH 7.8) and the suspension was stirred with a magnetic stirrer for 6 hours. 2 mL of the solution were then transferred to 100 mL flask and diluted with phosphate buffer (vehicle) to 100 mL. Aliquots of the dissolution medium (2 mL) were withdrawn at predetermined time points (every 200 seconds) and filtered through a 0.22 μm Millipore filter. The amount of dissolved drug was determined spectrophotometrically at λ_{max} = 242 nm against the buffer as blank [12, 13]. The measurements were performed under sink conditions, and average values were calculated. Absorbance was measured using an UV spectrophotometer (Shimatzu UV-Vis spectrophotometer 1240, Japan). PB concentrations were calculated from the calibration curve. All analyses were carried out in triplicate (n=3). Drug contents, production yield, and microencapsulation efficiency were calculated from the following equations.

1. \[\text{%Drug Content} = \frac{\text{Calculated amount of PB in the microcapsules}}{\text{Total weight of microcapsules}} \times 100 \]

2. \[\text{%Production Yield} = \frac{\text{Total weight of the microcapsules}}{\text{Total weight of the polymer + drug solution}} \times 100 \]

3. \[\text{%Encapsulation Efficiency} = \frac{\text{Drug content}}{\text{Theoretical content}} \times 100 \]

Zeta-potential and size analysis: To determine the electrokinetic stability and size uniformity of the microcapsules in the colloidal system, zeta potential and size distribution for the microencapsulated formulation of SA and PB-SA were measured by photon correlation spectroscopy using a Zetasizer 3000HS (Malvern Instruments, Malvern, UK), and by the Mie and Fraunhofer scattering technique using a Mastersizer 2000 (Malvern Instruments, Malvern, UK). The measurements were performed at 25°C with a detection angle of 90°, and the raw data were subsequently correlated to Z average mean size using a cumulative analysis via an OmniSEC-Zetasizer software package. Each sample was measured 10 times. All analyses were performed on samples appropriately diluted with filtered deionized water. All determinations were performed in triplicate and results were reported as mean ± SD.

Optical microscopy (OM): Morphological characteristics and particle size analysis were determined utilizing a Nikon YS2-H mounted with a ToupTek photonics FMA050 fixed calibrated microscope.
adaptor (Japan). Sample analysis was carried out in triplicates. Briefly, pre-determined quantities (10 microcapsules from each formulation) of freshly prepared microcapsules were loaded onto a glass slide mounted to a calibrated scale. OM software (ToupTek Digital, Japan) capable of particle size analysis, microcapsule characterization, and morphological assessments was used to determine the basic characteristics of the microcapsules that are needed to complement the scanning electron microscopy (SEM) studies.

Swelling Studies: To determine the swelling properties of the microcapsules (SA and PB-SA), 50 mg dry microcapsules were weighed and placed in 20 mL of two pH values (3 and 7.8) and two temperatures (25°C and 37°C) for 6 hours. The selection of the two temperatures, pH values, and study duration was based on our previously published work [14, 15]. The swollen microcapsules were then removed at periodically predetermined intervals (hourly). The wet weight of the swollen microcapsules was determined by blotting them with filter paper to remove moisture adhering to the surface, immediately followed by weighing on an electronic balance. All experiments were done in triplicate (n=3). The swelling index of the microcapsules was calculated from the following formula [16, 17]:

\[
\text{Swelling Index} = \frac{\text{Final weight}}{\text{Initial weight}}
\]

Drug release studies (in-vitro dissolution test): A weighed sample (2 g) of PB loaded microcapsules was suspended in 200 mL of phosphate buffer solution at pH values of 1.5, 3, 6, and 7.8 for 6 hours, as appropriate. The dissolution medium was stirred at 200 rpm. Sink conditions were maintained throughout the assay period [18, 19]. All the experiments were carried out at 25°C. The absorbances of the solutions were measured every 30 minutes using a Hewlett Packard-based time controlled UV-spec mounted with a closed-loop flow system under sink conditions (Figure 1). All analyses were carried out in triplicate (n=3). Additionally, unloaded microcapsules (containing no drug) were analysed spectrophotometrically at \(\lambda_{\text{max}} = 242\text{nm}\) using phosphate buffer at all four pH values (temperature maintained at 25°C) in order to exclude any interference in the analytical data and to ensure that only PB was being measured at that particular wavelength and experimental condition.

![Figure 1: Closed-loop flow system for microcapsule-drug release measurements.](image)
Physical and chemical stability:

The stability test was carried out by placing predetermined amounts of freshly prepared microcapsules onto sterile petri dishes (30 microcapsules in each) and storing them in thermostatically controlled ovens at -20°C, 5°C, 25°C, and 40°C respectively, with relative humidity set at 35% for 3 days. The experiment was conducted using a stability chamber (Angelantoni environmental and climatic test chamber, Italy). A temperature and humidity regulator was used to ensure constant experimental conditions. At the end of the experiment, the microcapsules were analyzed for any changes in appearance and morphology, and for the determination of the amount of drug remaining in each formula, using a validated UV-Vis stability-indicating method [20, 21]. Briefly, the dosage forms were crushed and dissolved in a 200 mL phosphate buffer at pH 7.8. The solution was filtered and the first 20 mL were removed; and 10 mL of the filtrate were diluted to 100 mL in a volumetric flask. Then, 1 mL aliquot of the prepared solution was transferred to 10 mL volumetric flask, and the volume was completed with the buffer. A calibration curve was constructed for PB in phosphate buffer across the concentration range of 0.01 mg to 4 mg/mL with R²=0.99 (data not shown). Physical stability data (morphology and appearance) were recorded for both microencapsulated formulations (SA and PB-SA), and chemical stability (drug content remaining) was recorded for the PB-SA formulation.

Statistical analysis

Values are expressed as means ± SD. Drug content, production yield, and microencapsulation efficiency were assessed using Student’s t-test. Swelling index and drug dissolution comparison for the different formulations were also assessed and compared using Student’s test. The best fit model was derived using GraphPad Prism software (V6; GraphPad Software, Inc., USA). Statistical significance was set at p < 0.05 and all statistical analyses were performed using GraphPad Prism software.

Results and Discussion

Drug content, production yield, and microencapsulation efficiency:

Significant levels of PB-loading (microencapsulation) efficiency were achieved for all microcapsules as shown in Table 1. The results of the drug content and encapsulation efficiency showed minimum variation among repeated samples, which confirms the reproducibility of our developed microencapsulation method. Additionally, high production yield with low variability in drug content and good drug loading efficiency were achieved. Neither any peaks for a biodegradable polymer nor any alteration of the chromatographic pattern of PB was observed, which is in line with our published work.

Table 1: Drug content, production yield, encapsulation efficiency, zeta potential, and mean particle size of SA and PB-SA microencapsulation formulations.

Microcapsule size analysis and Zeta potential determination:

Analysis of the size of the microcapsules obtained from each formulation, as demonstrated in Table 1, revealed uniform and consistent particle size distribution, and thus the addition of the drug did not alter the size of the microcapsules, ensuring effective encapsulation without adverse effects on size. SA and PB-SA microcapsules had an range in size of 0.8-1 mm. The significant uniformity in particle size distribution of the microcapsules ensures reproducibility. As depicted by Zeta potential values of -66mV (SA) and -72.9mV (PB-SA), the dispersion of microcapsules suggested a stable system [22], with the PB-SA formulation being more charged (Table 1). This is assuming the higher charge (>25 mM) indicates stronger surface electrical charge of the suspended drug particles. Additionally, the PB-SA formulation would be more stable, given the greater repulsion created within the suspension system [23].

Optical Microscopy:
From both formulations, SA and PB-SA, ten microcapsules were randomly selected for particle size and morphological analysis. Results show an overall consistent and uniform shape as determined via a calibrated scale mounted onto a glass slide. As evident in Figure 2, the mean diameter of SA microcapsules (Figure a) (average ± SD) was 800 ± 20 μm, while that of PB-SA microcapsules (Figure b) was 850 ± 50 μm. Results obtained also include the horizontal diameter (L1), the vertical diameter (L2), and the microcapsule width (L3).

Figure 2: SA microcapsule (a) and PB-SA microcapsule (b). L1 is the horizontal diameter, L2 is the vertical diameter, and L3 is the microcapsule width.

Swelling studies:

Figure a and Figure b show that the formulation type, the pH of the medium, and the temperature do have an effect on the swelling characteristics of the microcapsules. Evidently, the higher the temperature and pH, the more swelling of microcapsules in both formulations.

In line with PB-SA in-vitro dissolution data (Figure c), the swelling index corresponds to degree of drug release. The greater the swelling, the higher the amount of drug that diffuses into the dissolution media. This is due to water uptake, expansion, and subsequent erosion of the alginate matrix, resulting in the loss of microcapsule structural integrity and release of both surface bound and encapsulated PB [24]. The swelling index is heavily influenced by pH and temperature, and, by considering physiological parameters, it is evident that at pH 7.8 and 37°C, the greatest swelling and thus the most extensive drug release occurs from PB-SA microcapsules. PB-containing microcapsules swell more than empty SA microcapsules. This could be due to the fact that the surface of PB-SA microcapsules contains dry crystal agglomerates compromising the surface integrity, causing weak links in the alginate matrix and easy expansion and rupture upon contact with water.

By considering the swelling and dissolution data, it seems logical to emphasize the importance of the alginate matrix structural integrity and stability in order to ensure controlled drug release, particularly in physiological conditions. An important formulation excipient that should be considered for future work is a bile acid (BA), which has the potential to provide stability and matrix reinforcement [14]. Additionally, BAs have also been shown to be more hydrophobic than their corresponding salts, ensuring greater protection from water penetration as well as being very good tissue permeation enhancers in diabetes [25, 26].

Figure 3: Swelling characteristics of PB-SA and SA microcapsules (pH 3 and 7.8) at 25°C.

Figure 4: Swelling characteristics of PB-SA and SA microcapsules (pH 3 and 7.8) at 37°C.

Drug release studies and in-vitro dissolution:

Propranolol release from the PB-SA microcapsules was studied in triplicates across four pH values (1.5, 3, 6, and 7.8) at 25°C for a period of 6 hours each. The selection of these four pH values was based on our previous studies examining the best sites of potential antidiabetic drug absorption in the gastrointestinal tract (GIT) [27-33]. However, the use of a gradient-pH system may have also provided good prediction of in vivo results.

The release of PB was dependant on temperature and pH, which is in line with previous studies using SA-drug formulations [34, 35]. As shown in Figure d, PB release was slow and minimal but in a relatively controlled manner at low acidic pH values (1.5 and 3). As pH values were increased, the release of PB was also increased, in particular, at pH 7.8, which is expected [24, 36]. PB release from PB-SA microcapsules at pH 6 and 7.8 was biphasic and multiphasic, respectively (Figure e). This has important implications in diabetes therapy as work in our laboratory has confirmed the distal GIT to be the site of intended drug delivery due to an abundance of efflux transporters, which have been associated with PB absorption after oral administration, such as the transporter ABCA1 [37, 38]. However, the
exact impact of such release patterns in PB oral absorption, efficacy, and safety profiles remains
difficult to predict [39-41].
A possible explanation of the multi-phasic release of PB from the PB-SA microcapsules is that PB is
unevenly distributed within the microcapsules, with some of it on the outside, as well as inside of the
microcapsules. Thus, the multi-phasic drug release pattern depicted in PB-SA dissolution data (Figure
3) could be the preferential binding of PB to the microcapsule surface, and by coating the microcapsule
surface, the drug would be quickly liberated following swelling and erosion of the alginate matrix.
Preferential deposition of encapsulated drugs onto microcapsule surfaces has been extensively
studied, and may occur due to several factors such as the hydrophilic-lipophilic balance of the surface
(HLB), the molecular weight, solubility, and degree of ionisation of the drug, as well as the surface
charge of the microcapsule and the physicochemical properties and proportions of the excipients used
[42]. It is also possible that the rapid release of PB from the microcapsule surface is attributed to its
very low solubility in the release medium (creating thermodynamic instability); as such, release
mechanisms often stem from drugs that are very lipophilic and their release patterns are characterised
by short “burst” times followed by much slower release concentrations [43].
It appears that microencapsulation of PB using only the sodium alginate polymer results in drug
coating of the surface by the drug, with some being distributed within the core of the microcapsule.

Figure 5: Probucol release from PB-SA microcapsule over time across various pH values

Accelerated stability studies (environmental chamber):
Accelerated stability studies were carried out over a 3 day period, testing both formulations (SA and
PB-SA) at -20\(^\circ\)C, 5\(^\circ\)C, 25\(^\circ\)C, and 40\(^\circ\)C and at a relative humidity of 35%.
Both formulations (SA and PB-SA) appeared to retain their original morphological characteristics
throughout the study. However, there were some changes in the colour, overall size, and quality of
the microcapsule surfaces across the temperatures. In detail, at -20\(^\circ\)C, some PB-SA microcapsules
formed agglomerates that were easily re-dispersed, while others retained their original shape. The
appearance of PB-SA at this temperature was white and spherical following the 3 day period, with the
original quality (soft microcapsules) maintained. Similarly, SA microcapsules were also soft, spherical,
and flexible but were much lighter in colour (opaque in appearance). At the higher temperatures,
microcapsules appeared to change colour from a white (5\(^\circ\)C and 25\(^\circ\)C) to a light brown (at 40\(^\circ\)C), most
likely due to oxidation of the alginate, whilst retaining their spherical shapes and even homogenous
particle size distribution. In terms of size, it was evident that an increase of the temperature resulted
in greater shrinkage (by up to 50%), of the microcapsules, with the biggest effect seen at a
temperature of 40\(^\circ\)C. This may be explained in terms of loss of moisture content, reducing the overall
surface area and volume of each microcapsule. In addition, the microcapsules at all temperatures
(except at -20\(^\circ\)C) had become harder and more brittle owing to loss of moisture within the
microcapsules and reduction in their elasticity.
UV analysis of the microcapsules after three days of accelerated stability testing revealed an average
% drug content of 2.6 ± 0.3 for PB-SA microcapsules, illustrating that various accelerated
environmental conditions did not compromise drug content nor did it result in loss of drug structure.
This complemented the visual characterisation of the microcapsules following accelerated stability
testing and confirmed uniformity of drug contents.

Conclusion
Our vibrational-jet flow microencapsulation method of PB is effective in producing microcapsules with
good stability and uniformity. However, the multi-phasic release characteristics may not result in
optimised oral absorption. Thus, an interesting future investigation will be to incorporate BA as a
formulation excipient, which may provide reinforcement to the alginate polymer matrix and enhance
the controlled release of the drug, and perhaps optimise its potentials in T2D.

Acknowledgment
The authors acknowledge the CHIRI at Curtin University, and the Curtin-seeding grant for support, and
also acknowledge the use of equipment, scientific and technical assistance of the Curtin University
Electron Microscope Facility, which has been partially funded by the University, State and Commonwealth Governments.

The authors declare no conflict of interest.
References

