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Abstract Power maximization has always been a practical consideration in wind turbines. The
question of how to address optimal power capture, especially when the system dynamics are
nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the
control methodology for variable-speed variable-pitch wind turbines including the effects of
uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The
nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy
is formulated by designing the optimal desired states. With the known system, a model-based
nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the
wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural
fault tolerant control is designed passively to be robust on model uncertainties, disturbances
including wind speed and model noises, and completely unknown actuator faults including
generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that
the closed-loop system is uniformly bounded. Simulation studies are performed to verify the
effectiveness of the proposed method.

Keywords wind turbine nonlinear model, maximum power tracking, passive fault tolerant control,
adaptive neural control

1 Introduction

Nowadays wind turbines as an efficient emerging mechanism to harvest energy, are considered as
one of the most effective methods to produce power with minimal pollution and environmental
damage [1]. On the other hand, the huge costs of wind turbines must be paid off by reasonable
production of electrical power [2]. One of the most important procedures to make wind turbines
work efficiently is to keep their operation within the desired performance regions. Accordingly, it
is very important to utilize proper control schemes to increase the produced power [3,4].

Additionally, as wind turbines are large, expensive and hard-to-maintain structures, the fault
diagnosis and isolation (FDI), and fault tolerant control (FTC) concepts can be used to increase the
wind turbine reliability [5-8]. These methods can also help the system to avoid vulnerability in
dangerous wind situations [7,8]. FTC is a new aspect in wind turbines studies [9]. This method
tries to keep wind turbine operating, despite the existence of faults [10]. Two different FTC



schemes are normally considered, namely active and passive [11]. In active FTC, there should be a
fault diagnosis scheme to detect faults, on which basis the controller will be reconfigured to make
the wind turbine operate normally. On the other hand, in passive FTC, the nominal controller is
initially designed such that it is robust against a range of considered faults. The passive FTC is
conservative compared to the active one, but it does not depend on fault detection algorithms
which mostly detect faults in wind turbines inaccurately, due to the system nonlinear behaviour
[12].

The standard wind turbine control approach focuses on tracking the desired, so-called ideal
power curve, as shown in Fig. 1 [13], where P, is the ideal produced power and V,, is the
effective wind speed at the rotor plane.
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Fig. 1 Ideal power curve [13]

The cut-in wind speed, V,,... » is the lowest operational wind speed and the cut-out wind speed,
V,

weonr TEPresents the highest operational wind speed for the wind turbine and the wind turbine is

shut down for wind speeds out of this range. For the system and control level perspective, there
are two different regions where the wind turbine operates. The first region is known as the partial
load operation and occurs for wind speeds from Vv, .., to the nominal wind speed, V,,, , which is

the lowest wind speed where the turbine produces its nominal power, P, . The full load region is
between v, and V, In the partial load region, where the focus of this paper is concentrated,

w,cut-out *
it is desirable to extract as much power as possible from the wind, whilst in the full load region,
the output power should be kept at its nominal value, P, [14], to maximize system reliability and

to reduce operational costs.

The control of wind turbines can be considered as effectively controlling the electromagnetic
torque load on the generator shaft in partial load operation and as controlling the blade pitch angle
in full load operation [15]. The main controller scheme in partial load operation is the use of the
so-called standard reference controller that excludes the wind speed from the governing equations
and derives a formula to keep the power coefficient at its optimal value [16]. On the other hand, to
consider the wind speed variation in the control design, in Ref. [17] it was assumed that the wind
speed was measurable and accordingly the desired trajectory can be defined. However, since this
assumption is rarely true, some studies [18,19] have reported on the design of estimators to
measure the effective wind speed or in developing other novel adaptive methods [20].

Due to its aerodynamic and generator components, it is known that the wind turbine systems are
highly nonlinear and strongly coupled systems [21]. However, several studies [12,14,22-25] have
reported on the control of the linearized model of wind turbine systems. In some papers, where
PID control is used, the nonlinear model of the wind turbine system is linearized around some
operating points, which are based on wind speeds that lead to a family of linearized models.
Therefore, for each of them, a PID controller can be designed and using gain scheduling method,
the final control is constructed as switching among these linear controllers. However, because the
wind speed can vary abruptly, fast switching may lead to system instability [26]. On the other
hand, to guarantee stability and performance, robust linear parameter varying (LVP) methods
which, to some degree, are conservative can be deployed [27].



Nevertheless, linear model control of wind turbines leads to some model inaccuracies which
may decrease the efficiency of the control system. On the other hand, by using nonlinear and
robust controllers more accurate results can be obtained [28-30]. However, the development of an
accurate dynamic model of real physical wind turbines is not currently available or is extremely
hard to formulate [27]. Accordingly, the design of model-based control is a challenging issue for
practical wind turbine control systems. Thus, the enhanced control of a wind turbine without a-
priori knowledge of its dynamics, by employing approximating methods like fuzzy logic [31-33]
or neural network [34,35], has attracted much attention.

This paper presents a novel nonlinear modeling and control approach for variable-speed
variable-pitch wind turbines operating in the partial load region. The system dynamics are
modeled and an optimal desired trajectory is defined in order to maximize the system power. The
proposed model-based control is used to prove that the obtained controller guarantees the
asymptotically stability of the closed-loop system. Uncertainties in the system are then considered
and an adaptive neural network model is proposed to handle the uncertainties. Unknown external
disturbances and unknown actuator faults are also applied and a proper algorithm was designed to
cope with such difficulties. Simulations are performed to verify the effectiveness of the method.
The structure of the paper is organized as follows. In Section 2, the wind turbine nonlinear model
is presented. The proposed control strategy to maximize the harvested energy is stated in Section
3, and designed in Section 4. Simulations are performed and results are discussed in Section 5
where two different wind speeds and faults scenarios have been implemented to evaluate the
proposed controllers. The conclusion remarks with a summary of the paper are given in Section 6.

It should be noted that matrices and vectors are represented by uppercase and lowercase with
bold face symbols, respectively, and scalars are represented in regular forms.

2 Dynamic model of wind turbine

In this section, the nonlinear model of the wind turbine system is described. The control strategy
of the wind turbine is then illustrated and consequently, the nonlinear state space representation of
the wind turbine model is derived. Finally, the possible faults which are going to be controlled via
the proposed controller are pointed out. The wind turbine model can be divided and modelled into
the following subsystems [13].

2.1 Aerodynamic model
The Kkinetic energy in the wind can be transferred to mechanical energy via the blades of the wind
turbines that are directly connected to the rotor shaft rotating with speed «, . The resulting applied
rotor torque, T,, is as follows,

1

T.(t) = MPAV, G, (A1), AM). At) =

o R
T ,1
e

where p is air density, A issweptarea, C, is power coefficient, 3 is blade pitch angle, 2 is tip

speed ratio, R is blade length and V, is the wind speed at the rotor plane. The nonlinear mapping
from the tip speed ratio and the pitch angle to power coefficient is shown in Fig. 2 [13].
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Fig. 2 Power coefficient surface [13]

The power coefficient is modelled as [36],
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where the constant coefficients in Eq. (2) are C, =0.5176, C, =116, C;=04, C, =5, C; =21
and Cg =0.0068. The resulting surface of Eq. (2) is shown in Fig. 2.

The transferred wind power to the rotor can be written as
P, =05pAV}, P, =R,C,, (3)
where P, is the available power in wind and P, is the extracted power into the wind turbine.

Analysis of the power coefficient curve and the equation shows that the maximum C,, is 0.48 that
occursat g=0° and 1=8.1.

2.2 Drivetrain model

The drivetrain transfers the torque and power captured at the rotor plane to the electrical generator.
The drivetrain torsional rotation behaviour can be modelled as a two-degree of freedom inertia

model including the low speed rotor shaft with inertia J,, and high speed generator shaft with
inertia J,, as shown in Fig. 3.

Fig. 3 Drivetrain rotational model



The gear train increases the shaft speed by the speed ratio_ N, , which when combined with

torsion stiffness, K, and torsional damping, By, , results in a torsion angle of twist of the main
shaft of 6, . The drivetrain efficiency is 74 and the resulting torque on the generator shaft is T,

rotating at the generator shaft speed e, . B, and B, are angular velocity viscous friction

components of the rotor and generator shafts, respectively. The dynamics of the rotor shaft is as
follows:

3, () =T,®) - B () -T,,
where T, is load torque acting on rotor shaft. The dynamics of the generator shaft is as follows:
4@, (1) =T, = Byag, (t) ~ T (0) ,
where T, represents the exciting torque acting on the generator shaft. On the other hand,

T, =74T,/ Ny and a torsion spring and a friction coefficient model the drivetrain torsional
response is as follows:

T =Kgbh () + BdtéA ).

Accordingly, the resulting simplified drivetrain equations of motion can be written as,

316, (0 =T, () ~ K0, (1)~ (B, +Bdt>wr<t>+%wg(t),
g

3y ()= 58, )+ 85, ) —[Bg + HaBa }wg O-T,0), 4,0 = 00— 0,0 . @
[¢] [¢] Ng g

2.3 Pitch system model

The pitch hydraulic mechanism that is responsible to change the pitch angle of blades to the
reference value of pitch angle, g, which is commanded from controller by a torque T, is
modelled as a second order system with communication delay, t, as the following:

3B +CpBM) + KB =T, (t-ty), (5)

where J;, C, and K, represent inertia, damping and spring coefficients of the pitch actuator,

respectively. It should be noted that the pitch actuator has both a limited slew rate and a limited
operational area.

2.4 Generator and converter models

The Kinetic energy of the generator shaft is converted to electrical energy via the electromagnetic
generator and to enable variable-speed operation, currents in the generator are controlled using a
built-in power electronic converter in the generator interfacing with the grid to control the
generator currents. The generator torque, T, (t), is controlled by the speed controller providing the

reference torque, T, ¢ . This tracking dynamic element can be modelled as a first order system

with time constant z, and communication delay t,, as,

g

7,0 = —%Tg ®) +%Tg,ref (t-ty). (6)

The wind turbine electrical systems and their controllers respond much faster than the reference
controller, so the electrical produced power, P, (t), can be approximated by a static relation

including the efficiency of the generator, 7, as



Ry(8) = 7,0, OT, 1) - (7)

It should be noted that in the generator subsystem a minimum load, a maximum load, and a
slew rate for the load torque, are considered.

2.5 Modelling assumptions

In summary, the following assumptions are made in implementing the nonlinear model of the
wind turbine in this research [37,38]:

* Power coefficient is approximated by an empirical equation;
* Drivetrain is modelled as a two-degree of freedom rotating system;
* The oscillations of the tower and blades are ignored,

* The yaw mechanism is ignored and the wind is assumed to always be perpendicular to the
rotor plane;

» Wind speed fluctuations over the area of the rotor plane are neglected;

» Pitch actuator and generators are modelled as second and first order systems, respectively,
with limited operational range and change rate, for more realistic models with time constant and
communication delay;

* All blades are pitched identically and have same pitch actuator dynamic behaviour.

2.6 Assembled model

The block diagram of the resulting wind turbine model is shown in Fig. 4, where the reference
signals for the pitch angle and generator load torque, are generated from the controller. The wind
speed, pitch angle and rotor speed in the aerodynamic subsystem provide the aerodynamic torque,
which is fed to the drivetrain and generator torque, as well. The electrical power is produced in the
generator utilizing the generator speed from the drivetrain and generator torque.

The available measurements in the wind turbines are the generator torque, pitch angle, generator
speed, rotor speed and wind speed. Additionally, the output power is evaluated as the product of
the measurements of the generator speed and generator torque. Finally, to make the model more
realistic, noise was added to the measurement sensors which are used in proposed controller. The
noise contents are white noise with Gaussian probability distribution function as:

&, U N(0,0.025%), &, O N(0,0.5%) and £, N(0,0.2%),, where &, is noise which is added to

variable i, and N(a,b®) represents a Gaussian distribution with mean a and standard deviation b
[39].
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Fig. 4 Wind turbine model at system level

2.7 Nonlinear state space representation

This section describes the state space nonlinear model of the wind turbine that is used in the
proposed controller. The key point is that the subsystem governing equations should be transferred



to the rotor shaft to deal with only one equation. The complete equation derived for the system
model is presented in Appendix A. Accordingly, by taking x = [ J' o.dt, ﬂT as the state vector, the
model of the wind turbine system can be written in compact form as,

Hx+g=17, (8)

where H el *? is the lumped inertia matrix, g0 ? denotes the nonlinearities of the wind
turbine, 7 < 2 is the generator and the pitch actuator control input torques, and can be derived as,

N2 N2 . —-N
J+—J3,] 0 —T,+| B.+—-B, |6, ; _[ _iTg ® +£T9,ref (t-1,) |t
H= um y = um N Ty Ty
0 J, C,A1)+K,A(1) T,(t-t,)

It should be noted that in practical applications, the real outputs of the controller are T, and
T, and other parameters in z can be used to represent the actuator dynamics.

3 Control strategy

3.1 Background on control of partial load operation

In partial load region, where this research is concentrated, to produce as much power as possible,
the maximum point on the power coefficient curve should always be reached. The maximum value

of the power coefficient is 0.48 which occurs at g=0° and A=8.1. The variation in wind speed

only effects the tip speed ratio, 4. Thus, the pitch angle is fixed at the optimal value of g=0°.

On the other hand, being able to keep the tip speed ratio at 8.1 depends on the wind speed as well
as the rotor speed. The wind speed is not controllable, so the rotor speed should be controlled.
This aim can be achieved by controlling the generator torque to modify the generator speed and,
consequently, the rotor speed.

3.2 Faults in wind turbine

The wind turbines, being large and complex mechanical and electrical systems, which operate in
harsh environments with high wind speeds and storms and having considerable mechanical
vibrations, will always be affected by mechanical and electrical faults which reduce the turbine
efficiency and, in some extreme cases, lead to system failure and structural damage [39,40].

Faults are considered as system abnormalities that deviate the system from its normal operation.
So, without loss of generality, the best procedure for managing faults that lead to uncontrollable
system modes and structural damage, is to shut down the system and proceed with the required
maintenance. However, other moderate faults can be managed and controlled passively or actively
by correct fault diagnosis and appropriate controller algorithms [41]. In active fault tolerant
control, firstly, the fault is going to be detected and then, the location of the detected fault will be
isolated. Additionally, via fault identification, the size and type of fault will be determined,
Finally, feeding all of this information, to a controller, either a nominal controller or a new one
which is switched into the control procedure, the effect of the fault will be removed from the final
system [7]. In noisy, uncertain dynamic models with some unavailable models and parameters,
e.g., wind turbines, it is a rigorous task to model the system accurately and to deploy model-based
fault detection and identify its behaviour. Additionally, in complex systems, different fault sources
may have similar final effects on the system. On the other hand, the use of different controllers to
be used in faulty situations will increase the cost which is in contrast to the fault tolerant control of
systems which aims at keeping the cost at a reasonable level [14]. So, utilizing the passive fault
tolerant control concept, the nominal controller is designed such that the final system is robust
towards some types of faults which are considered in the control design procedure. Indeed, in
passive fault tolerant control the need for fault detection, isolation, identification and
reconfiguring of the nominal controller, will be eliminated [27]. Accordingly, in this paper one of

7



the most likely faults in wind turbines, which is the actuator fault [12,27], is considered in the
controller design. Firstly, faults are considered on the blade pitch actuator that creates torque to
rotate the blade to the desired pitch angle, and then secondly, on the generator torque actuator
which applies the electromagnetic torque onto the generator shaft to change the rotor speed to
track the optimal power coefficient.

The integrated dynamic model of the wind turbine given in Eq. (8), exposed with the fault and
disturbance can be written as,

Hx+g=7z+f+d, (9

where x =[x,x,]" e denotes the state vector, d(e) (1 ? represents an external disturbance on
the wind turbine system considered to be bounded by |d||<d where d is a known finite number
which can represent any un-modelled dynamic mode that may affect the system, and f(t)0? is

the actuator fault which can be seen as any external torque which is applied onto the generator
torque and pitch actuators, other than the ones which are produced by the controller. These faults
can be due to high air density, pump wear, hydraulic leakage and internal controller errors in
actuators [39].

Property 1: It is assumed that the lumped inertia matrix, H , is a known symmetric and
positive-definite matrix.

Assumption 1: It is assumed that the fault f (t) exerted on the actuators, is uniformly bounded,
i.e., there exists an unknown constant f ] *, such that | f (t)]|< T, Vt €[0,00). Note that in
reality, the exerted fault f(t) is finite and thus it is assumed that it is bounded by an unknown
constant [27,42].

3.3 Problem formulation

In this paper, the variable-speed variable-pitch wind turbine tracking problem in partial load
operation, is formulated to be solved as:
Consider the given smooth desired trajectory x,(t) =[x, X,,]" , for the wind turbine dynamics

given by Eqg. (9), find the generator and the pitch actuator input torques = such that the wind
turbine states x =[x, x,]" track a given desired trajectory x, as closely as possible, i.e.,

!im|xi (t)—xg ()| =06, for i=1,2 with &, being small positive constants, meanwhile the
boundedness of the closed-loop system is ensured.

Remark: This paper aims to maximise the aerodynamic power extracted from the wind, by
tracking the optimal values of desired states, i.e., the desired rotor speed, w,(t), and blade pitch

angle, g, (t).
3.4 Preliminaries

3.4.1 Neural network

In the literature on adaptive control of nonlinear systems, due to their approximation property and
the learning capability, neural networks are extensively used for approximation of unknown
nonlinearities. In this paper, the radial basis function neural networks (RBFNN) as a class of
linearly parameterized neural networks are employed to approximate a smooth and continuous
function f(Z):0%—0 overacompactset @, <09 as [43-45]

f(2)=6"h(Z)+¢, (10)

where Z =[z,z,,...,z,]" €Q, is the neural network input vector, 6 cl® (s>1 is the neural

network node number) is an unknown ideal constant weight vector,
h(Z) =[h,(Z),h,(Z),....h,(Z)]" €0 ° is a basis function vector, ¢ <[l represents the unknown



approximation errors under the ideal neural network weight and can be assumed to be bounded as
le|<& with £ >0 being an unknown constant. In this study, h(Z) is chosen as a Gaussian

function for i=1,2,...,s and can be expressed as

~(Z2-9)"(2-9)

h(Z)= exp{ } (11)

where ¢, is the width of the Gaussian function, and 8 =[39,,9,.,...9,1" is the center for the ith

input element of the neural network. The optimal weight value 8", is expressed as
0" =arg min[sup |t (2)—9Th(2)|] (12)
0c1° | zeq,

3.4.2 Technical lemmas

Lemma 1 [43]: For bounded initial conditions, if there exists a positive definite and C*
continuous Lyapunov function V (x) satisfying a, (|x|) <V (x) <a,(|x|) , such thatV <—bV (x) +b,

, Wwhere b, and b, are positive constants and a,, a,:0" —[ are class K functions, then the
solution x(t) is uniformly bounded.

Lemma 2 [46]: For any constant 7 >0 and ¥ 0 , the following inequality holds,

0< |‘P|—‘Ptanh[%} <k, (13)

where k, is a constant satisfying k, =e ™, i.e., k, =0.2785 and || is the absolute value of ¥,

From this point onwards, for simplifying notation, it is omitted the state and time dependence of
the system, provided no confusion would arise.

4 Control design

4.1 Known wind turbine dynamics

In case that the wind turbine dynamics, H, g, actuator fault f and disturbance d are all
known, the model-based control can be designed.

Let x, = ja)r (9)dg and x, = A, and define the tracking error variables as e, = o, —, , and

e, =f,— where o, 0" and B, e[l are the desired rotor speed and blade pitch angle,
respectively. Further define the filtered tracking error zel as z=¢,+ye, where y 0" isa
constant control gain; the wind turbine dynamic model given by Eq. (8) can be expressed as

¢ = H(HR, — H&+.A) = H (H%, —7— f —d +g+4), (14)

. . . 0
where £ =[e,z]" €0 ? is the composite error signal, and A = H{ s }
78,

Theorem 1: For the wind turbine dynamic described by Eq. (9) under Property 1, and proposed
control

t=HX, +A+k< +7,, (15)
where 7, is a part of controller for nonlinearity, disturbance and fault, as

r.=f+d—g, (16)



and k, =k >0 isa 2x2control gain matrix, then the closed-loop system is asymptotically
stable.

Proof: See Appendix B.

4.2 Uncertain wind turbine dynamics

Typically, in practical applications, wind turbine nonlinear uncertainties in dynamics g(e),
actuator fault f (e) and disturbances d(e) are unknown. Accordingly, the control 7, in Eq. (16)

cannot be realized in practice. To overcome that difficulty, the RBFNN approach is developed to
approximate uncertainties. Accordingly, the control z, can be modified as

7, =0"h—F tanh(£j+a tanh [ﬂj ,(17)
T 7,

and the adaption laws are designed as

6- r(c;Th—aCé) , F=¢tanh (ij—af F, (18)

1

where =[4,,6,,....0,]" e[1* is the estimation of ideal weights 8" <[l * of the neural network and

=TT >0 are the 2x2 control gain matrices, and 7, >0, 7,>0, o. >0 and &, >0 are positive

numbers. Note that due to its good approximation ability, neural networks can construct robust
and effective frameworks to accommodate system uncertainty [47]. However, the question of how
to training the neural network weights remains a challenging issue. Unlike the conventional
trainings methods of neural network weights which are mostly based on optimization theory, this
paper presents a weight updating law, as in Eq. (18), based on Lyapunov direct method.

Employing the neural network explained in Section 4.1, it is defined as g = 6 h+e;the input
vector Z el *® is definedas z =[x",x",¢7, X4, %4] and F Ll 2 represents the estimations of
unknown finite number F e[l %, where |E+ f| < F . The second terms of the adaption laws in Eq.

(18), contains the o —modification constants which are designed to improve the system
robustness. Note that the control term 7, in Eq. (17) consists of three parts:

« The first term, #"h, is designed to estimate the unknown nonlinear uncertainties in the wind
turbine dynamics. It uses the RBFNN for the estimation purpose and adapts online using the first
adaptive law in Eq. (18).

¢

« The second term, —F tanh(—j , is designed for handling completely unknown faults on the
A

actuators. It deals with the system faults with unknown bounds using the Lemma 2, and employing
the second adaptive law in Eq. (18). In addition, estimation of F , which includes both unknown

bounds of faults and the neural network estimation errors, |E+ T| < F, is used to tackle the
difficulties that arise due to the error ¢ .

« The third term, d tanh {ﬁj is used for handling the unknown disturbances. It designed to
7,

employ the Lemma 2 for coping with the uncertainty problem, and since the bound of the
disturbances, d , are known, there is no need to develop a new adaptive law.

Theorem 2: Considering the wind turbine system Eq. (9), under Property 1 and Assumption 1,
the control input Eq. (15), and Eq. (16) with the parameter updating law Eq. (17), if the initial
conditions are bounded, then the closed-loop system will be uniformly bounded.

Proof: See Appendix C.
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5 Simulation

In this section, numerical simulations are performed to evaluate the ability of the proposed
controller to control the wind turbine model given by Eq. (9) for two different wind speeds, faults
and disturbances. The uncertain wind turbine dynamic model is considered and a RBFNNs with
seven nodes on the hidden layer are designed to approximate the model nonlinearities. In addition,
disturbances and actuator faults are assumed to be unknown, and modified control given by Eq.
(17) with the adaptive laws derived at Eq. (18) is utilized to handle the uncertainties. The
necessary parameter values used in the simulation are summarized in Table 1 [17]. Also, the wind
speed which is applied on the system is shown in Fig. 5 [15].

Table 1 Wind turbine model values [17]

Parameter Value
50
H, kg-m?
0 5
R, m 2
A, m? 12.6
P, kg/md 1.2

13 T T T T T T T T

Wind Speed (m/s)

2 1 L 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

Fig. 5 Wind speed profile.

The desired state variables should be designed such that power coefficient, C_, is always kept at
its maximum value, i.e., 0.48 which occurs at 4,, =8.1 and 4, = 0. To hold the tip speed ratio,
2, at8.1, the rotor velocity, w, , should be varied with respect to the wind speed. It is considered
@4 = 4,V, I R, and consequently the desired value for rotor speed is @, = (8.1/2)V, . Accordingly,

the desired value for the first state variable is derived as [t = [ m,dt = [(8.1/2),dt . On the

other hand, the second state variable is the pitch angle which should be kept at zero, i.e.,
By = B, =0".These two desired values are used to regulate the response of wind turbine with the

proposed controller. Additionally, as mentioned earlier, it is necessary to keep C, at0.48; so, this

can be used to evaluate the correctness of the results. The fault tolerant ability of the controller is
verified by applying actuator faults, which are modelled as sinusoidal waveforms as a function of
time with amplitudes of 30 N-m for both generator and pitch actuators. The above magnitudes of
the fault are defined to be applied into the system dynamics Eq. (9) while the actual fault
magnitudes are unknown for the uncertain controller in Eq. (17) being derived by the second
adaptive laws given by Eq. (18). Also, the disturbances are sinusoidal waveforms as a function of
time with amplitudes of 0.1 N-m for both generator and pitch actuators. It should be noted that
maximum amplitude of disturbances, i.e., 0.1 N-m, is a known value in the uncertain controller
structure.
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Rotor speed, pitch angle, and power coefficient of the system are depicted at Figs. 6-8,
respectively. It can be found from Fig. 6 that using the proposed controller, tracking of the desired
rotor speed is done successfully despite the wind speed variation, noises and system faults. It is
obvious from Fig. 7 that the pitch angle always stays very close to its desired value, i.e., 0°.
Finally, Fig. 8 shows that the controller effectively kept the power coefficient very close to its
optimal value, i.e., 0.48, to ensure the wind turbine extracts as much power as possible from the
wind.
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Fig. 6 Rotor speed using proposed controller
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Figures 9-12 shows the control efforts. Total generator and pitch actuator torques are shown in
Figs. 9 and 10, respectively. Figures 11 and 12 show the generator and pitch torques, which are
applied to compensate for the effects of actuator faults, respectively. The figures shows that the
magnitudes of the torques are within the practical range [15]. It should be noted that negative
values for generator torque are due to the concept that generator torque is applied as a load on the
wind turbine. Additionally, the sign of the pitch actuator torque shows the direction that it should
be rotated. It is also obvious from the figure that considerable control effort is made to compensate
for the effect of the fault on the generator actuator.
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Fig. 10 Total pitch actuator torque
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Fig. 11 Applied generator torque due to fault in generator actuator and disturbance
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Fig. 12 Applied pitch torque due to fault in pitch actuator and disturbance

Now, to evaluate the proposed controller, a real wind speed, which is measured from a wind
farm [9], as shown in Fig. 13, is fed into the wind turbine model. It should be noted that the
applied actuator faults are 16sin(t /22) for the generator actuator and 20sin(t/60) for the pitch
actuator. Also, the disturbances are 0.3sin(t/30) on the generator actuator and 0.4sin(t/15) on
the pitch actuator. The rotor speed and desired one are illustrated in Fig. 14. Additionally, the
power coefficient is depicted in Fig. 15. It is obvious that the proposed controller is keeping the
rotor speed close to the desired one and, as a result, the power coefficient is close to its maximum
of one.
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Fig. 15 Power coefficient of wind turbine for real wind speed profile.

6 Conclusions

In this paper, nonlinear adaptive FTC has been developed for wind turbine systems. The nonlinear
dynamic model has been derived and the desirable variables have been designed to be optimal
such that the wind turbine produces the maximum power. Neural networks have been employed
and appropriate update laws have been designed to compensate for the system uncertainties and to
improve the robustness. Actuator faults on generator and pitch torque actuators have been
considered, and the passive characteristic of the proposed controller has been presented to be
tolerant against unknown faults. It is proved that under the proposed adaptive FTC scheme,
uniform boundedness of the closed-loop wind turbine system is achieved. Numerical simulations
have been performed and results showed that the controller, despite the presence of faults and
disturbances, is able to track the desired trajectories of rotor speed and pitch angle to maintain
wind turbine operation in the optimal operating area. It also showed the capability of the proposed
control approach to keep the wind turbine system working at its maximum power coefficient
which guarantees the maximum power generation.
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Appendices

Appendix A: Derivation of nonlinear state space wind turbine
model

The wind turbine nonlinear model is derived by transferring all subsystems equations around the
rotor shaft. First, the generator dynamic equation is transferred onto the rotor shaft. Then, it is
assumed that the gears are rigid, so that the gear torsion angle is 8, =0 and consequently,

Ng@, = @y . Accordingly, considering Fig. 2,

. . . . T,
36, =T,-T,-B/6,, 3,0, =T, - T, —B,6,, T =7, N—' 6, =Ngy6,,
9

) N,T,
= 3,6, =T, -—"

Mt

-B4,,

) Ng /. » . :
= 3,6, =T, —n—g(Jgeg +Ty+By6; )-B/6,,
dt

NS ). N . N,
= +—g |6 +| T +| B, +—B, |6 |=——T;. (A1)
Tt Tt Tt
Additionally, the pitch actuator can be formulated as,

On the other hand, the generator torque actuator which produces the load torque becomes,

T, (t)= J.{—iTg (t)nLTiTgyref (t—tg’d )]dt. (21)

Ty 9

Now by taking x = [ J' 6.dt, ,BT as the state vector the system is as follows.

Hx+g=r1,(22)
where,
N2 NZ : N 1 1
Jr+_ng 0 _Ta+ Br+_ng gr __QJ __TQ (t)+_Tgvaf (t_tgvd) dt
= Mt y 9= Tt  T= Tt Ty Ty )
0 3y C,B1)+K,A(t) T, (t-1)

where  is the controller signal vector.

Appendix B: Proof of Theorem 1
Choose a non-negative Lyapunov candidate function as,
v :%;TH;. (23)

The time derivative of Eq. (23) is given by
V=(THE =T (H%, —7— f —d + g+ A). (24)
Substituting Egs. (15) and (16) into Eq. (24) results in
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V <-k(¢T¢<0.(25)

Accordingly, considering Property 1, and noting that A, (H)|¢|" <V < A (H)|¢]" and using
the Barbalat lemma [48], asymptotic stability of the wind turbine system is simply drawn.

Appendix C: Proof of Theorem 2

Choose an augmented non-negative Lyapunov candidate function as
1 1~ ~ 1~
V=2(¢TH(+Z0'T'0+=FTF , (26
S¢THCHS 3 (26)
where =6-6", and ||9|| <g,and F =F —F . The time derivative of Eq. (23) is given by
V=T (H%, —7— f—d+ g+ A)+ 679+ FF . (27)
Using Lemma 2, it can be obtained that
|¢|F - ¢F tanh {% <k,Fn,, (28)
i
and
¢|d —¢d tanh({CI J <k, - (29)
2
In addition, through completion of squares it is obvious that,

6. 070< —%"é"z + % ¢'[’, (30)

where o is a positive number and
|| || — ¢ _9'r6.(31)
(1" D)
Also,

~oFF :—O'flf(F+lf)£—%F2+%Fz. (32)

Substituting Egs. (15) and (17) into Eq. (27) and considering Egs. (28)—(32), Eq. (27) can be

reformed as
VskeTe-t % grpig Trpz, %
R T 2 F3

i = +k Frn +kn, <-bV +b,, (33)

[ 24, (K . . "
where blzmm[ oo l),mmbL O;;_l)j,mm(af)}and b, =—% 2+%Fz+kpl=;71+kp;7z.

A (H)
Accordingly, using Lemma 1 and choosing the bounded initial condition, the closed-loop system
of wind turbine given by Eq. (9) is uniformly bounded.
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