Addiction is a treatable disease

Millions of people worldwide are suffering from diseases of addiction

We at Indivior envision a day in which all patients around the world will have unrestricted access to quality treatments and services for the chronic relapsing conditions and co-morbidities of addiction.

Indivior Italia S.r.l.
Via Spadolini, 7 - 20141 Milano Italy
www.indivior.com
Editorial Board

Editor in Chief
Icro Maremmani
Santa Chiara University Hospital, University of Pisa, Italy, EU

Associate Editors
Thomas Clausen
SERAf, Norwegian Centre for Addiction Research, University of Oslo, Norway
Pier Paolo Pani
Social Health Division, Health District 8 (ASL 8), Cagliari, Italy, EU
Marta Torrens
University of Barcelona, Spain, EU

International Advisory Board
Hannu Alho
National Public Health Institute (KTL), University of Helsinki, Finland, EU
Marc Auriaacombe
University Victor Segalen, Bordeaux 2, France, EU
Alexander Baldacchino
University of St Andrews Medical School, North Haugh, St Andrews, Scotland, United Kingdom, EU
James Bell
South London and Maudsley NHS Foundation Trust & Langston Centre, Sydney, Australia
Olof Blix
County Hospital Ryhov, Jönköping, Sweden, EU
Barbara Broers
University Hospital of Geneva, Switzerland
Miguel Casas
University Hospital of “Vall d’Hebron” - University of Barcelona, Spain, EU
Michael Farrell
National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
Loretta Finnegan
National Institutes of Health, Bethesda, MD, USA, [Retired]
Gabriele Fischer
Addiction Clinic, University of Vienna, Austria, EU
Carla Gambarana
Department of Molecular and Developmental Medicine, University of Siena, Italy
Gilberto Gerra
United Nations Office on Drugs and Crime (UNODC), Vienna
Gian Luigi Gessa
University of Cagliari, Italy, EU, [Emeritus]
Michael Gossop
King’s College, University of London, UK, EU
Leift Grönbladh
Institute of Addictive Diseases, University Hospital of Uppsala, Sweden, EU
Lars Gunne
University of Uppsala, Sweden, EU, [Emeritus]
Herman Joseph
Stop Stigma Now; NAMAREcovery, New York, NY, USA
Michael Krausz
St. Paul’s Hospital, University of British Columbia, Canada
Mary Jane Kreek
The Rockefeller University, New York, USA
Evgeny Krupitsky
St. Petersburg Bekhtererev Psychoneurological Research Institute, Saint Petersburg, Russia
Mercedes Lovrecic
Institute of Public Health of the Republic of Slovenia, Ljubljana, Slovenia, EU
Joyce Lowinson
Albert Einstein College of Medicine, The Rockefeller University, New York, USA, [Emeritus]
Angelo GI Maremmani
Association for the Application of Neuroscientific Knowledge to Social Aims (AU-CNS), Lucca, Italy, EU
Robert Newman
Baron de Rothschild Chemical Dependency Institute, Beth Israel Medical Center, New York, NY, USA
Charles P. O’Brien
University of Pennsylvania, Philadelphia, USA
Lubomir Okruhlica
Centre for Treatment of Drug Dependencies, Bratislava, Slovak Republic, EU
Matteo Pacini
Institute of Behavioural Sciences, Pisa, Italy, EU
Mark Parrino
American Association for the Treatment of Opioid Dependence, New York, USA
Einat Peles
Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
Giulio Perugi
Department of Clinical and Experimental Medicine, University of Pisa, Italy, EU
Jens Reimer
University of Hamburg, Germany and Psychiatry Health North, Bremen, Germany, EU
Marc Reisinger
European Opiate Addiction Treatment Association, Brussels, Belgium, EU
Lorenzo Somaini
Addiction Treatment Center, Cossato (Biella), Italy, EU
Marlene Stenbacka
Karolinska Institute, Stockholm, Sweden, EU
Alessandro Tagliamonte
University of Siena, Italy, EU [Retired]
Ambros Uchtenhagen
Research Foundation on Public Health and Addiction, Zurich University, Switzerland
Helge Waal
Center for Addiction Research (SERAf), University of Oslo, Norway, [Emeritus]
George Woody
University of Pennsylvania, Philadelphia, USA
Editorial Coordinator
Marilena Guareschi
Psychologist
Association for the Application of Neuroscientific Knowledge to Social Aims, AU-CNS, Pietrasanta, Lucca, Italy, EU

Assistants
Luca Rovai
Specialty in Psychiatry
Master in Addictologia, University of Pisa
Lecturer in Addiction Medicine, University of Pisa, Italy, EU
Silvia Bacciardi
Specialty in Psychiatry
Master in Addictologia, University of Pisa
Enrico Massimetti
Specialty in Psychiatry
Master in Addictologia, University of Pisa
Denise Gazzarrini
School of Psychiatry, University of Pisa, Italy, EU
Master in Addictologia, University of Pisa
Fabio Rugani
School of Psychiatry, University of Naples, Italy, EU
Master in Addictologia, University of Pisa
Alessandro Pallucchini
School of Psychiatry, University of Pisa, Italy, EU
Vincenza Spera
School of Psychiatry, University of Pisa, Italy, EU
Iacopo Belcari
Psychologist

Publishers
Association for the Application of Neuroscientific Knowledge to Social Aims, AU-CNS
"From science to public policy”
Not for profit Agency
Via 20 Settembre, 83 - 55045 Pietrasanta, Lucca, Italy, EU
Phone +39 0584 790073 - Fax +39 0584 72081 - E-mail: info@aucns.org
Internet:http://www.aucns.org

Pacini Editore
Via A. Gherardesca - 56121 Ospedaletto, Pisa, Italy, EU
Phone +39 050 313011 - Fax +39 050 3130300 - E-mail: info@pacinieditore.it
Internet:http://www.pacinieditore.it

Cited in:
EMBASE Excerpta Medica Database
SCOPUS
EMCave
Social Sciences Citation Index (SSCI) - Thomson Reuters

Open Access at:
http://www.heroinaddictionrelatedclinicalproblems.org
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory health of patients receiving agonist opioid treatment: Gender differences</td>
<td>5</td>
</tr>
<tr>
<td>Peter Nelson, Anne Bartu, AW(Bill) Musk, and Patrick Aboagye-Sarfo</td>
<td></td>
</tr>
<tr>
<td>Analgesic plus prayer versus analgesic alone. Effect of prayer on intensity of postoperative pain, anxiety and physiological indices in surgical patients. A randomized clinical trial</td>
<td>13</td>
</tr>
<tr>
<td>Ali Hasanpour Dehkordi, Daryoush Fatehi, and Kamal Solati</td>
<td></td>
</tr>
<tr>
<td>Comparative study on sleep quality and disorders in opiate and methamphetamine users</td>
<td>21</td>
</tr>
<tr>
<td>Habibolah Khazaie, Amir Jalali, Yazdan Jozani, Shahla Moradi, Fatemeh Heydarpour, and Behnam Khaledi-Paveh</td>
<td></td>
</tr>
<tr>
<td>Randomized controlled pilot trial of auricular acupuncture in men with schizophrenia and co-occurring multisubstance use disorders</td>
<td>29</td>
</tr>
<tr>
<td>Yuri Gimelfarb, Eran Goldstein, Zipi Natan, Sabri Elwahidi, Elionora Kaikov, and Yehuda Baruch</td>
<td></td>
</tr>
<tr>
<td>Correlation between duration of treatment and cortisol plasma level in methadone maintained patients</td>
<td>37</td>
</tr>
<tr>
<td>Liljana Ignjatova, and Aneta Spasovska Trajanovska</td>
<td></td>
</tr>
<tr>
<td>Psychopathological dimensions and addictive behaviours in Heroin Use Disorder patients</td>
<td>43</td>
</tr>
<tr>
<td>Angelo G.I. Maremmani, Luca Rovai, Silvia Bacciardi, Enrico Massimetti, Denise Gazzarrini, Alessandro Pallucchini, Fabio Rugani, Pier Paolo Pani and Icro Maremmani</td>
<td></td>
</tr>
<tr>
<td>Heroin addiction patterns of treatment-seeking patients, 1992-2013: comparison between pre- and post-drug policy reform in Portugal</td>
<td>51</td>
</tr>
<tr>
<td>Samuel Pombo, and Nuno Félix da Costa</td>
<td></td>
</tr>
</tbody>
</table>
Respiratory health of patients receiving agonist opioid treatment: Gender differences

Peter Nelson¹, Anne Bartu², AW(Bill) Musk³, and Patrick Aboagye-Sarfo⁴

¹-Mental Health Commission of Western Australia, Next Step Drug and Alcohol Service, Rockingham, Western Australia, Australia
²-Curtin University, Faculty Health Sciences, School of Nursing and Midwifery, Perth, Western Australia, Australia
³-Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, Western Australia, Australia
⁴-Health Department of Western Australia, Innovation and Health Systems Reforms, Western Australia, Australia

Summary

Background: The recommended treatment for opioid dependent people is agonist opioid treatment (AOT). The pharmacotherapies used are methadone and buprenorphine. The effects of methadone are similar to other opioids such as morphine and include sedation and respiratory depression. There is good evidence that polydrug use, particularly tobacco, cannabis and alcohol, is common among opioid dependent people on AOT programs. These drugs have also been linked to impaired lung function. The aims were to examine gender differences in (a) tobacco and cannabis consumption, and (b) respiratory symptoms and lung function of opioid dependent people receiving AOT.

Methods: The sample (n=149) were recruited from two Western Australian drug and alcohol clinics from March 2009 to July 2012 from a pool of ~350 patients receiving AOT. Data were obtained on current and past smoking, passive smoking, cannabis use, AOT medications, asthma, and respiratory symptoms. Forced expiratory volume in 1 second (FEV₁), forced vital capacity (FVC) and the FEV₁/FVC ratio were measured by spirometry.

Results: Mean age ~40. Smoking prevalence (tobacco) was 89% males and 82% females, cannabis 47% males and 54% females. Over 60% were unemployed. The majority were treated with methadone. Breathlessness was associated with FEV₁ (p=0.02) and FVC (p=0.02), asthma with FEV₁ (p=0.04). COPD was detected in 27% of males and 24% of females. 51% reported shortness of breath when hurrying on level ground or walking up a slight hill and 30% gave a history of morning cough. As indicated by the FEV₁/FVC ratio <0.70, 27.3% of men and 24 % of women had COPD.

Conclusions: The sample was relatively young but many men and women were exhibiting smoking related respiratory symptoms and ~25% had COPD. Declining lung function appears to be an important morbidity among patients on OST, particularly among women. Smoking cessation interventions should be included in AOT regimes.

Key Words: Lung health; Agonist Opioid Treatment; Chronic Obstructive Airways Disease; smoking; gender differences

1. Introduction

The recommended treatment for opioid dependent people is agonist opioid treatment (AOT). The pharmacotherapies used for AOT are methadone and buprenorphine [21]. Methadone is a synthetic opioid agonist with a relatively long plasma half life. The effects of methadone are similar to other opioids such as morphine and include sedation and respiratory depression. Buprenorphine is a partial opioid agonist which unlike methadone reaches a ceiling where high doses do not further increase respiratory depression [21]. In Australia in 2013, 47,000 opioid dependent people were treated with AOT, almost double the 25,000 being treated in 1998 [5].

Smoking tobacco accounts for approximately 19,000 deaths per annum. In Australia, in 2003, it was estimated that tobacco was responsible for 8% of the burden of disease [6]. The majority of deaths attributable to smoking were from Chronic Obstructive Pulmonary Disease (COPD) (54,492), a largely irreversible progressive disease defined by a combination of related diseases including bronchitis and emphysema mainly characterized by difficulty in breathing,
ischaemic heart disease (31,435) and lung cancer (6,309) [6]. Most of the burden of disease occurs in those over 45 years of age. There is good evidence that polydrug use, particularly tobacco, cannabis and alcohol, is common amongst opiate dependent people on AOT programs. A population based study (n = 41,396) examined cancer mortality among persons who had received AOT in 1985 – 2005. Lung cancer was common and members of the cohort were 3.6 (95% CI 2.8 – 4.6) times more likely to die from lung cancer than matched persons in the general population [27].

A high prevalence of COPD among people aged 50 years and over receiving AOT (methadone) has recently been observed in a Canadian case control study utilizing prescription claims data [8]. People receiving methadone maintenance treatment (n = 199) were randomly selected and compared to a matched group not on methadone. The methadone group were significantly more likely to receive medication for COPD (OR = 32.65, p< 0.001) and depression (OR = 4.07, p < 0.001) than the control group.

Cannabis is the most widely used illicit drug in Australia. It can be eaten or smoked in a water pipe but in Australia is commonly smoked in a ‘joint’. A systematic review of 34 publications from 1996 to 2005 on the effect of cannabis smoking on pulmonary function and respiratory complications reported that short-term exposure to cannabis was associated with bronchodilation and long-term smoking was associated with increased respiratory symptoms suggestive of COPD [28]. Cannabis smoking has been linked to emphysema and secondary pneumothorax in young adults (age 24 – 27 years).

The aim of this study was to examine gender differences in tobacco and cannabis consumption, respiratory symptoms and lung function in people receiving AOT. This population may be particularly prone to lung disease from their exposure to tobacco and cannabis smoke and opioid drugs. Despite this the published literature relating to gender differences in respiratory morbidity of this population is scant.

2. Methods

This cross sectional study was approved by the South Metro Area Health Services Human Research Ethics Committee (Approval #08/517). Participants (n=149) were recruited from a pool of approximately 350 patients at two well established public Western Australian drug and alcohol clinics in Fremantle (n=78) and Rockingham (n=71) from March 2009 to July 2012. Informed consent was obtained from all participants before enrollment. Both methadone and buprenorphine (Suboxone) doses were prescribed on a flexible, individualized basis according to recommended guidelines [21]. All patients 18 years and over were eligible to be included. Participants completed a questionnaire and underwent spirometry testing.

A modified version of the British Medical Research Council questionnaire [25] was used to collect data on age, gender, current and past smoking, passive smoking, cannabis use, AOT medications, asthma and respiratory symptoms. Tobacco smoking and cannabis use was categorized by age of initiation of use and number of cigarettes/joints/bongs per day. Duration of episode of AOT from commencement of treatment to time of enrollment in the study was calculated.

Spirometry was used to measure the forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and the FEV1/FVC ratio. A Vitalograph air bellows spirometer was used at Fremantle and an Easy One electronic spirometer at Rockingham. FEV1 and FVC were recorded in accordance with the American Thoracic Society Guidelines [1]. A minimum of three spirometric tests were conducted for each participant and the highest recorded FEV1 and FVC was used in the analysis.

Spirometric end points recommended by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) [16] and used in a recent Australian study of respiratory symptoms and illness in older Australians (BOLD) [29] was adopted. A FEV1/FVC ratio of < 0.70 was taken as being indicative of COPD. Two spirometers and training for all staff involved were provided by the Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth. Patients were given a summary of their spirometry results which they could take to their General Practitioner if abnormal together with smoking cessation literature and advice.

Initially we attempted to recruit patients by providing appointments specifically for the study. However few attended and therefore recruitment was done at routine clinic appointments.

Univariate analysis was used to estimate the frequencies, mean and median for respiratory symptoms and diseases, smoking (tobacco and cannabis), demographic characteristics and lung function for all subjects. In addition, the standard deviation (SD) of the mean, quartiles and range of the median were estimated to assess the variation in the distribution of various variables. Linear regression modeling was used.
to examine the relationship between lung function measurements and other factors including the respiratory symptoms and diseases, smoking behaviours (both tobacco and cannabis use), AOT drugs and demographics characteristics. Data were analysed with Epicalc R version 2.16.10.

3. Results

Two thirds of the sample were men. The average age of men and women was similar (~40 years and the majority were unemployed. Over 80% were over 30 years of age. Women were smaller and weighed less than men. Over two thirds of men and women were treated with methadone. The median dose of methadone was 69mg for men, 70mg for women. The median dose of buprenorphine for men and women was similar (16mg) (Table 1). The mean duration of methadone at time of recruitment to the study was 6.7 months for men; 9 months for women: for buprenorphine it was 7 months for men and 6 months for women.

Over 80% of men and women were current tobacco smokers. Over half the women and almost half the men were current cannabis smokers (Table 2). The average age of commencing tobacco smoking for men and women was approximately 15 years: for cannabis 15.2 years for men and 17.1 years for women. Men smoked an average of 18 cigarettes per day, women 13. Over 40% of men and 34% of women were smoking cannabis on a daily basis. There were no significant differences between men and women in regard to tobacco and cannabis use.

The prevalence of respiratory symptoms and disease are shown in Table 3. A greater percentage of women than men reported being breathless when hurrying, walking on level ground and walking at own pace. A greater percentage of men than women were short of breath at rest. The proportion of men and women who reported usually coughing in the morning was similar (30%). A greater percentage of women than men (50%, 43.4%) reported coughing day or night. Slightly more women than men coughed most days for three months in a year and brought up phlegm, consistent with a diagnosis of chronic bronchitis. A greater percentage of women than men

Table 1: Socio-demographics and AOT characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Males</th>
<th>Females</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age in year (SD)</td>
<td>39.34 (9.02)</td>
<td>39.82 (8.75)</td>
<td>0.75</td>
</tr>
<tr>
<td>Mean height in cm (SD)</td>
<td>176.3 (8.4)</td>
<td>164.7 (6.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean weight in kg (SD)</td>
<td>84.0 (16.7)</td>
<td>74.3 (20.2)</td>
<td><0.01</td>
</tr>
<tr>
<td>Mean time on current buprenorphine treatment (months)*</td>
<td>7.2 (5.3)</td>
<td>6.0 (5.6)</td>
<td>0.21</td>
</tr>
<tr>
<td>Mean time on current methadone treatment (months)*</td>
<td>6.7 (6)</td>
<td>9.0 (7.2)</td>
<td>0.06</td>
</tr>
<tr>
<td>No. of Sex (%)</td>
<td>99 (66.4)</td>
<td>50.0 (33.6)</td>
<td></td>
</tr>
<tr>
<td>No. aged greater than 30 years (%)</td>
<td>81 (81.8)</td>
<td>42.0 (84.0)</td>
<td>0.92</td>
</tr>
<tr>
<td>No. of Unemployed (%)</td>
<td>62 (62.6)</td>
<td>32.0 (64)</td>
<td>0.99</td>
</tr>
<tr>
<td>No. on methadone (%)</td>
<td>71 (71.7)</td>
<td>33.0 (66)</td>
<td>0.6</td>
</tr>
<tr>
<td>Median methadone dose in mg (IQR)</td>
<td>69 (2-120)</td>
<td>70.0 (8.0-120.0)</td>
<td>0.51</td>
</tr>
<tr>
<td>Median buprenorphine dose in mg (IQR)</td>
<td>16 (6-60)</td>
<td>16.0 (2.0-30.0)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

*Reflects the length of the current episode of AOT treatment from commencement to time of recruitment. SD=Standard deviation

Table 2: Tobacco and cannabis use

<table>
<thead>
<tr>
<th>Variables</th>
<th>All</th>
<th>Males</th>
<th>Females</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean cigarettes smoked/day (SD)</td>
<td>17.52 (11.3)</td>
<td>18 (12.2)</td>
<td>13.1 (8.5)</td>
<td>0.14</td>
</tr>
<tr>
<td>Mean age of initiation tobacco in years (SD)</td>
<td>15.80 (4.1)</td>
<td>15.6 (4.2)</td>
<td>14.8 (3.6)</td>
<td>0.91</td>
</tr>
<tr>
<td>Mean Age of initiation cannabis (SD)</td>
<td>15.62 (4.4)</td>
<td>15.2 (3.3)</td>
<td>17.1 (5.2)</td>
<td>0.09</td>
</tr>
<tr>
<td>Mean Cones/joints/bongs smoked per day (SD)</td>
<td>6.40 (8.0)</td>
<td>5.8 (8.1)</td>
<td>5.9 (7.3)</td>
<td>0.90</td>
</tr>
<tr>
<td>No. of Current tobacco smoker (%)</td>
<td>129 (86.6)</td>
<td>88 (89.0)</td>
<td>41 (82.0)</td>
<td>0.36</td>
</tr>
<tr>
<td>No. of current cannabis user (%)</td>
<td>63 (42.3)</td>
<td>47 (47.5)</td>
<td>27 (54.0)</td>
<td>0.15</td>
</tr>
<tr>
<td>Daily use cannabis (%)</td>
<td>58 (38.9)</td>
<td>41 (41.4)</td>
<td>17 (34.0)</td>
<td>0.38</td>
</tr>
<tr>
<td>Use cannabis 2-3 times/week (%)</td>
<td>26 (17.4)</td>
<td>17 (17.2)</td>
<td>9 (18.0)</td>
<td>0.78</td>
</tr>
<tr>
<td>Use cannabis less than weekly (%)</td>
<td>18 (12.1)</td>
<td>13 (13.1)</td>
<td>5 (10.0)</td>
<td>0.58</td>
</tr>
</tbody>
</table>

SD= Standard deviation
reported being diagnosed by a doctor with asthma, bronchitis, other chest problems and pleurisy.

Spirometry results are presented in Table 4. In comparison with men, women had lower FEV1 and FVC spirometry scores (p<0.001). Based on GOLD criteria 27.3% of men and 24% of women were categorized as having COPD (FEV1/FVC ratio of <0.70). Breathlessness was significantly associated with FEV1 (p=0.02) and FVC (p=0.02). Asthma was significantly associated with FEV1 (p=0.04) but not FVC. Current cannabis use was associated with FVC (p=0.04). The modeling did not show any evidence of significant interactions between the other variables examined (Table 5).

4. Discussion

This study was conducted to examine gender differences in tobacco and cannabis consumption, respiratory symptoms and lung function among people receiving AOT. The characteristics of the participants in the study were similar to those reported nationally [5]. That is the majority were over 30 years of age, almost two thirds were male, and over 64% were treated with methadone. Over 80% were current tobacco smokers. This is far higher than the 11.5% of Western Australian aged 16 years and over who reported smoking tobacco in the past year in the WA Surveillance System 2010 [10]. This high prevalence of smoking tobacco among people on AOT is similar to that reported elsewhere [2,12].

Over a third also smoked cannabis on a daily basis, a considerably higher proportion than the 13.4% aged 14 years and older reported in the recent national survey [4]. Both men and women commenced smoking tobacco and cannabis around 15 years of age, though some started as early as 11 years indicating an average exposure to tobacco and cannabis of

<table>
<thead>
<tr>
<th>Table 3: Respiratory symptoms and diagnoses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Breathless</td>
</tr>
<tr>
<td>When hurrying on level ground/walking up a slight hill (GR 1)</td>
</tr>
<tr>
<td>When walking with people your age on level ground (GR 2)</td>
</tr>
<tr>
<td>When walking on level ground at own pace (GR 3)</td>
</tr>
<tr>
<td>Short of breath when at rest (GR 4)</td>
</tr>
<tr>
<td>Cough</td>
</tr>
<tr>
<td>Usually in morning</td>
</tr>
<tr>
<td>Usually day or night</td>
</tr>
<tr>
<td>Most days for three months in past year</td>
</tr>
<tr>
<td>Bring up phlegm most days for three months in past year</td>
</tr>
<tr>
<td>Disease diagnosed by doctor</td>
</tr>
<tr>
<td>Asthma</td>
</tr>
<tr>
<td>Bronchitis</td>
</tr>
<tr>
<td>Other chest problems</td>
</tr>
<tr>
<td>Pleurisy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4: Average Spirometry measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Mean FEV1 (SD)</td>
</tr>
<tr>
<td>Mean FVC (SD)</td>
</tr>
<tr>
<td>Mean FEV1/FVC (SD)</td>
</tr>
<tr>
<td>Mean FEV1 % predicted (SD)</td>
</tr>
<tr>
<td>Mean FVC % predicted (SD)</td>
</tr>
<tr>
<td>No. of FEV1/FVC <0.70 =COPD (%)</td>
</tr>
</tbody>
</table>

SD=Standard deviation
Maximal function of the respiratory system is reached at approximately 20 years for females and 25 for males after which lung function slowly decreases with age especially in smokers and asthmatics [15,19]. Physiological changes associated with aging include decreases in the elastic recoil of the lung and the surface area of the alveoli available for gas exchange decrease in compliance of the chest wall and strength of respiratory muscles. The age-related decline in lung function (FEV1) has been observed in a recent Busselton Health Study which found that smoking tobacco and asthma have an additive effect, with increased rate of lung decline in adult life [18].

As assessed by questionnaire and spirometry, many participants were already manifesting respiratory symptoms and disease associated with smoking behaviour, the prevalence of which detected in our study appears high for a population with an average age of 40 years [14]. Spirometry testing is not generally available in Australian drug and alcohol clinics or general practice. Increasing availability in these locations would entail an investment in resources such as equipment and training of relevant health professionals in procedures and interpretation of test results and

Table 5: Factors predicting FEV1 and FVC adjusted for age* and sex.

<table>
<thead>
<tr>
<th>Variable</th>
<th>FEV1</th>
<th>FVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco Smoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Past</td>
<td>2.63 (7.58)</td>
<td>0.72</td>
</tr>
<tr>
<td>Current</td>
<td>-1.97 (6.42)</td>
<td>0.76</td>
</tr>
<tr>
<td>Pack/week</td>
<td>-0.04 (0.04)</td>
<td>0.35</td>
</tr>
<tr>
<td>Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>-6.35 (2.99)</td>
<td>0.04</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>-3.79 (2.99)</td>
<td>0.21</td>
</tr>
<tr>
<td>Pleurisy</td>
<td>-7.37 (4.22)</td>
<td>0.08</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>1.32 (0.30)</td>
<td>0.66</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>2.61 (2.87)</td>
<td>0.36</td>
</tr>
<tr>
<td>Cannabis Smoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Past</td>
<td>4.87 (5.33)</td>
<td>0.36</td>
</tr>
<tr>
<td>Current</td>
<td>6.12 (5.21)</td>
<td>0.20</td>
</tr>
<tr>
<td>Joint/bong</td>
<td>-0.11 (0.19)</td>
<td>0.55</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlegm</td>
<td>-2.60 (1.98)</td>
<td>0.19</td>
</tr>
<tr>
<td>Cough</td>
<td>-0.83 (2.04)</td>
<td>0.68</td>
</tr>
<tr>
<td>Breathlessness</td>
<td>-2.12 (0.92)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*p<0.05

Overall 37% had been diagnosed with asthma. This far exceeds the 19% of asthma reported among adults in Western Australia aged 18-79 years in 2005-07 [3]. As noted above, we classified COPD in accordance with the GOLD recommendations. Our estimates are not directly comparable to those of the BOLD study because spirometry was measured before and after bronchodilation with salbutamol which was not done in our study. Also the BOLD study reported on participants aged 40 years and over and age groupings of 40-54 years, 55-74 years and 75 years and over. Nonetheless it is of interest to note that patients in the present study had a higher “prevalence” of COPD than those in the BOLD 40 plus age group and a much higher proportion of Gold Stage 1 than the Bold 75 plus group (not tabled).

Maximal function of the respiratory system is reached at approximately 20 years for females and 25 for males after which lung function slowly decreases with age especially in smokers and asthmatics [15,19]. Physiological changes associated with aging include decreases in the elastic recoil of the lung and the surface area of the alveoli available for gas exchange decrease in compliance of the chest wall and strength of respiratory muscles. The age-related decline in lung function (FEV1) has been observed in a recent Busselton Health Study which found that smoking tobacco and asthma have an additive effect, with increased rate of lung decline in adult life [18].
referral pathways to specialist respiratory services when necessary. Spirometric testing may not currently be an option for many treatment facilities.

Tobacco smoking is the main modifiable environmental risk factor for COPD. In Australia the proportion of people aged 14 years and over who smoke tobacco has declined from 29% in 1992 to 18% in 2012 [14]. This is largely due to public health campaigns and legislation which has had limited effect on people on AOT. It has been reported that for this population smoking cessation improves quality of life [11, 22] and is not associated with increased drug use [11, 20, 23]. Few AOT treatment facilities in Canada [13], Australia [9, 30] or USA [24, 26] routinely offer smoking cessation programs. Recommendations have been made for inclusion in treatment programs [7, 9, 30].

Limitations

Our study has several limitations, the main one being the lack of follow-up and an age/gender matched control group. It is cross sectional hence does not capture the full history of exposure to methadone or buprenorphine via possible involvement in multiple AOT treatment episodes. In addition approximately a third (n=149) of the available patients were recruited suggesting that selection bias may affect the findings. The study is based on a relatively small sample of patients who consented to participate and may under or overestimate the extent of lung function deficits identified. The possibility that the more ‘chaotic’ patients failed to participate cannot be discounted.

Also patient acceptability of spirometry testing needs to be taken into account. It takes time to explain, administer and discuss the test results. While we encountered few direct refusals, procrastination was common with many saying they were too busy on the day, had other commitments or would consider being tested at their next appointment with the clinic.

Quantifying cannabis use is problematic. The concept of a ‘standard joint’ i.e. that one joint be considered equivalent to 10 puffs, five bongs or 0.5g of cannabis has been proposed [31]. Variations in concentrations of tetrahydrocannabinol have been reported [17] and anecdotally it is not uncommon for smokers to mix cannabis with tobacco confounding accurate estimations of cannabis exposure. In this study we have used quantity and frequency measures based on joints per day/week plus age of initiation to use, all of which are subject to recall bias and do not take into account possible periods of abstinence.

5. Conclusions

Smoking tobacco/cannabis was common among both males and females. Women were more likely than males to have respiratory symptoms, asthma, bronchitis and other chest problems. Declining lung function, relative to age, is potentially an important morbidity among people on AOT, particularly women. Interventions to optimize client outcomes and avoid potential progression of lung disease by early diagnosis and reducing/ceasing smoking behaviour are indicated. While treatment of opioid addiction is the primary function of AOT, there is a need to include other behaviours such as smoking tobacco and cannabis which patients may not see as a current problem or health risk.

References

Received November 2, 2015 - Accepted June 8, 2016