
 
 

School of Science 
Department of Environment and Agriculture 

 
 
 
 
 
 
 
 
 
 
 

The integration and validation of precision management tools in mixed 

farming systems 

 
 
 
 
 
 
 
 
 

Peter John McEntee 

 
 
 
 
 
 
 
 
 
 
 
 
 

This thesis is presented for the Degree of 
Doctor of Philosophy 

of 
Curtin University 

 
 
 
 
 
 
 
 
 
 

October 2016 
 
 







 

 PAGE | i 

DECLARATION 

 

To the best of my knowledge and belief, this thesis contains no material previously 

published by any other person except where due acknowledgment has been made. 

 

This thesis contains no material which has been accepted for the award of any other 

degree or diploma in any university. 

 

 

 

Peter John McENTEE 

PhD Candidate 

 

Date: 4 October 2016 



 

 PAGE | ii 

  



 

 PAGE | iii 

ACKNOWLEDGMENTS 

Firstly, I would like to acknowledge my four supervisors, principal supervisor Dr 

Sarita Bennett and co-supervisors Professor Bob Belford, Dr John Harper and Dr 

Mark Trotter. Special thanks to Bob (even in retirement) and Sarita for their 

patience and perseverance when paid employment distracted me from this thesis. 

It has been an interesting journey, with many thesis progress meetings being held 

on Skype while I sat on the side of the Great Northern Highway near Fitzroy 

Crossing WA, using my mobile as a hotspot, as road trains rumbled past. 

A special thank you to the two farming families that hosted my research and 

welcomed me into their lives: Murray and Kris Hall and family at “Milroy”, 

Brookton, WA and Adam Inchbold at “Grandview”, Yarrawonga, Vic. No question 

was too stupid nor request too large. Murray and Kris welcomed me into their 

house on many occasions over the years of field work. Thanks also for the use of 

workshops and equipment as needed. Both Adam’s and Murray’s enthusiasm for 

farming knows no bounds. I sincerely hope that this research will be of value to 

them. 

I would also like to acknowledge the early support of Dr Roger Mandel as I started 

on this journey. The never-ending mad humour and support of Dr John Harper has 

been invaluable to get through the tough times. 

There are so many others to thank:  

Roger Lawes and Mike Robertson from CSIRO Floreat for the initial idea for this 

research. 

Gonz Mata from CSIRO Floreat for background on Pastures from Space over coffees 

in the Floreat staff room. 

Richard Stovold and Norm Santich from Landgate Floreat for MODIS data and advice 

on remote sensing. 

Graham Donald for sharing his extraordinary wealth of remote sensing experience. 

Dez Schneider at PARG, UNE for advice on setting up and using a CropCircle, JMP 

and ArcGIS and answering lots of stupid questions. 



 

 PAGE | iv 

Deanna Duffy from SPAN at CSU Thurgoona for patient advice over the years on 

finding my way around ArcGIS. 

Simon McDonald from SPAN at CSU Thurgoona for his insightful statistical and 

ArcGIS advice. 

Roger Weise and Colin Booth at Fairport Farm Software for their generous provision 

of PAM, gpMapper and PastureWatch software and support. 

Frank D’Emden from Precision Agronomics Australia. 

Wes Lefroy from Precision Soil Tech. 

James Easton at CSBP for support with soil testing. 

Dr Christine Davies of Tweak Editing for her invaluable assistance in formatting and 

proofreading the final version of the thesis. 

Special thanks to life-long best buddy Andy Pearce for providing a home away from 

home (and many bottles of red) on my ventures to Perth. Without Andy’s generous 

support this thesis would never have come to fruition. 

I would also like to acknowledge Curtin University for their ongoing support, and to 

the Grains Research and Development Corporation for providing a Grains Research 

Scholarship. This work would not have happened without their support. 

And finally to my darling wife Robyn and my daughter Eva. Thank you for the 

sacrifices you have made, for persevering with and believing in your missing 

husband/dad, whether down in the ‘dungeon’ or across in the west, you never lost 

faith in what I was doing. It has finally come to an end and now we can have some 

weekends together. To my mum Jean, who is so proud that I have completed this, 

thanks for being there for me. 

  



 

 PAGE | v 

TERMS AND ABBREVIATIONS 

 

AGB Above Ground Biomass  

AG Asymmetric Gaussian  

ANCOVA Analysis of Covariance 

APAR Absorbed Photosynthetically Active Radiation  

APSIM Agricultural Production Systems Simulator  

AR Annual Rainfall 

AVHRR Advanced Very High Resolution Radiometer  

BOM Bureau of Meteorology  

CSIRO Commonwealth Scientific and Industrial Research Organisation  

CV Coefficient of Variation  

DEM Digital Elevation Model  

DL Double Logistic  

DM Dry Matter  

DWR Dry Weight Ranking 

EC Electrical Conductivity 

ECa Apparent Electrical Conductivity 

ECe Electrical Conductivity of Saturated Soil Extract 

EM ElectroMagnetic 

EMI ElectroMagnetic Induction 

EVI Enhanced Vegetation Index 

fAPAR Fraction of Absorbed Photosynthetically Active Radiation  

FOO Feed on Offer  

GC Ground Cover  

GI Growth Index  

GIS Geographic Information System 

GPS Global Positioning System  

GPP Gross Primary Production  

GR Gamma Radiometric 

GSR Growing Season Rainfall 

HS High and Stable 

HUS High and Unstable 

Landsat ETM+ Landsat Enhanced Thematic Mapper Plus 

LAI Leaf Area Index  



 

 PAGE | vi 

LOOCV Leave One Out Cross Validation 

LS Low and Stable 

LUE Light Use Efficiency  

LUS Low and Unstable 

MODIS Moderate Resolution Imaging Spectroradiometer 

MNLI Modified Non-Linear Index 

MVC Maximum Value Composite 

NDVI Normalised Difference Vegetation Index  

NIR Near-InfraRed 

NLI Non-Linear Index 

NPP Net Primary Productivity  

OC Organic Carbon 

PAR Photosynthetically Active Radiation  

PfS Pastures from Space  

PGR Pasture Growth Rate  

RF Rainfall 

RMSE Root Mean Square Error  

RPM Rising Plate Meter  

RTK Real-Time Kinematic 

SAVI Soil-Adjusted Vegetation Index  

SLC Scan Line Corrector  

SG Savitzky-Golay 

SR Simple Ratio 

SSM Site Specific Management 

TGDM Total Green Dry Matter 

USGS United States Geological Survey  

VI Vegetation Index  

VIC Victoria 

WA Western Australia 

 

 

  



 

 PAGE | vii 

ABSTRACT 

While precision agriculture (PA) technologies are widely used in cropping systems, 

the use of these technologies as a whole-of-farm management strategy in mixed 

farming systems has received far less attention. Relatively little is known about the 

nature, extent, or temporal stability of spatial variability of pasture production in 

mixed farming systems and whether it is feasible to manage this variability in a site-

specific way. Given that, in a mixed farming system, somewhere between 20 and 

40% of the farm area is in pasture at any time, there is significant potential for PA 

technologies to enhance mixed farm management practices. 

The research described in this thesis was conducted in selected paddocks on two 

farms in southern Australia—“Milroy” located near Brookton in the south-west of 

Western Australia and “Grandview” near Yarrawonga in north-eastern Victoria. The 

owners of both farms were long-term users of PA technologies for their cropping 

enterprises. The intention in the research methodology was to use existing PA 

technologies which were available to farmers at an affordable cost. The work fell 

into three phases. The first phase was essentially a ‘desk-top’ exercise, to see if 

there were relationships, on both farms, between sub-paddock spatial variation in 

biomass production in the crop and pasture phases. This was done using the 

Moderate Resolution Imaging Spectroradiometer (MODIS) normalised difference 

vegetation index (NDVI) as an indirect measure of crop and pasture productivity. 

The results indicated that relationships appeared to exist between individual MODIS 

pixels in both cropping and pasture phases of paddock rotations over time. 

However, the relatively large size of MODIS pixels (6.25 ha) ultimately became a 

limiting factor in the analysis in terms of interpretive value, as the removal of 

contaminated pixels meant using fewer data samples which affected the statistical 

analysis. The second phase involved extensive field work to obtain, process and 

map geo-referenced, high-resolution data about the nature of spatial variability in 

crop and pasture growth and the variations in soil chemical and physical properties 

at “Milroy” and “Grandview”. A CropCircleTM active optical sensor was used to 

measure pasture NDVI, which was correlated to pasture total green dry matter 

(TGDM) with in-field pasture calibration sampling. Electromagnetic induction (EMI) 
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sensing of soils using the EM38 instrument was undertaken, as well as gamma 

radiometric sensing at “Milroy”. Overall, there was a general trend for apparent 

electrical conductivity (ECa) to increase linearly with increasing clay content across 

all paddocks. There were also generally strong correlations between ECa and 

salinity. The most robust relationships with agronomic significance at “Milroy” were 

between ECa and soil texture (clay content), phosphorus buffering index (PBI), 

exchangeable sodium percentage (ESP), chloride, cation exchange capacity (CEC) 

and organic carbon. At “Grandview”, the results were less consistent, but the 

combined data for both paddocks again demonstrated robust relationships 

between ECa and soil texture (clay content) and organic carbon. However, in some 

instances, the relationships between ECa and agronomic factors of importance were 

negative or showed no relationship. Prediction of pasture TGDM from the Crop 

CircleTM NDVI scans revealed strong correlations between NDVI and the harvested 

pasture biomass, with R2 values between 0.72 and 0.85 across both properties. 

Depending on the paddock, the root mean square prediction errors ranged from 

157–533 kg/ha, which compared favourably to more time-consuming traditional 

pasture measurement methods using devices such as rising plate meters. Potential 

zones for differential management across crop and pasture phases were created 

using k-means clustering of plant yield and soil data. The defined zones revealed 

important differences between management classes, irrespective of whether the 

paddock was in crop or pasture.  

The third phase integrated the high-resolution data to create a single spatial and 

temporal index of production for paddock. Crop grain yields and pasture TGDM data 

were reduced to a single stability index (SI) for each paddock, creating four 

productivity zones: high and stable, high and unstable, low and stable, and low and 

unstable. The index has the potential to be used by farmers to manage from a 

whole-of-farm perspective. 

The research described here has been successful in working towards providing both 

researchers and producers with a methodology and information to incorporate 

pasture phase information into a mixed farming precision management system. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 THE ADOPTION OF PRECISION AGRICULTURE IN MIXED FARMING SYSTEMS 

Precision agriculture (PA) has become a major driver for productivity within farming 

systems (Banhazi et al., 2012; Blumenthal et al., 2008; Chen et al., 2009; Hedley, 

2015; Kingwell and Pannell, 2005; Robertson et al., 2012). Precision agriculture aims 

to vary production inputs such as fertiliser and seeding rates, both spatially and 

temporally at the sub-paddock scale for cost efficiencies, productivity 

improvements and environmental benefits. 

Several factors have facilitated the adoption of PA technologies in Australia: 

 The advent of low-cost global positioning systems (GPS) linked to yield 

monitors on grain harvesters (Bramley and Janik, 2005). 

 Differential GPS with 2 cm accuracy and auto-steer fitted to tractors has 

allowed the sowing of a crop between the rows of a previous crop and 

enabled differential management of contrasting zones within variable 

paddocks. 

 Farmers have recognised opportunities to improve input efficiency and 

maximise profitability by optimising decisions around inputs within large 

heterogeneous paddocks. 

 Affordable GPS-linked remote sensing technologies have enabled the 

monitoring of within-paddock biomass and/or nitrogen status of crops at 

high resolutions during the growing season. 

 These same technologies have enabled the identification and mapping of 

variable soil properties such as soil texture and salinity using 

electromagnetic induction (EMI) and gamma radiometric (GR) sensors. 

Despite PA technologies in Australia being readily available, their use has been 

largely confined to cropping systems. In contrast to their adoption for cropping, few 

producers have applied these tools—which they have often already acquired—to 

improve the production efficiency of their pasture phases and livestock enterprises. 
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There appear to have been few attempts to use spatial monitoring technologies to 

investigate livestock and pasture interactions in the pasture phase and to follow the 

after-effects of different management strategies into a subsequent cropping phase. 

For the most part, pasture paddocks tend to be managed as single units, ignoring 

the existence of productivity gradients across the landscape (Hill et al., 1999). There 

have been no published studies into a grazing system that matches the 

management of land, soil types and selection of pasture cultivars to site-specific 

management zones, and the effects of such a system on the productivity of 

pasture–crop systems. As a consequence, the uniform application of inputs to 

variable-yielding paddocks may result in economic losses and contribute to 

environmental degradation (Chen et al., 2009). Factors such as soil type and depth, 

botanical composition, livestock grazing preferences and aspect (Murray et al., 

2007; Virgona and Hackney, 2008), and the location of watering points and shade 

(Mathews et al., 1999) can all create nutrient gradients across a landscape. 

Research has also shown that grazing livestock create specific spatial patterns of 

pasture biomass utilisation which affects the spatial heterogeneity of the paddock 

and brings about significant nutrient redistribution (Laca, 2009; Rook et al., 2004; 

Schellberg et al., 2008; Schnyder et al., 2010; Trotter et al., 2010). 

1.2 OBJECTIVES 

The primary objective of this thesis was to explore the nature of sub-paddock scale 

spatial variation in both the cropping and pasture phases of mixed farming 

enterprises in southern Australia using readily available PA technologies. This is an 

aspect of precision farming technology that has not been previously explored to any 

extent. 

Secondary objectives were to: 

1. Quantify spatial and temporal crop and pasture yield variability using in-

paddock high-resolution proximal sensing. 

2. Explore the spatio-temporal relationships between crop and pasture 

production using the high-resolution data obtained. 



CHAPTER 1. GENERAL INTRODUCTION 

 PAGE | 3 

There is a significant amount of high-resolution data which has been gathered and 

is available for analysis from cropping phases in the form of geo-referenced yield 

monitor data and, to varying degrees, soil chemical/conductivity analysis. Most 

farmers have historical records about spatial variability in grain yields, but have little 

information about the spatial variability of pasture productivity from those same 

paddocks.  

By and large, pasture–livestock phases are ‘set and forget’ exercises, where 

livestock and the pastures they graze are managed in the most basic manner. This 

practice is a missed opportunity to improve whole-farm management by taking 

advantage of precision farming systems, especially as most farmers are already 

familiar with and using some form of precision technology in their cropping 

enterprises. Many farmers who actively use PA in their cropping phases have 

pondered the very same questions (pers. comm.): 

 “How can I use PA to find out what is going on in pasture–livestock 

phases?” 

 “Can I integrate this knowledge into my overall farming system to minimise 

the cost and risks of moving between cropping and livestock phases?” 

Meeting these objectives will provide valuable insights into the capacity of PA 

technologies to be used as an integrated, whole-farm management system, rather 

than in cropping phases alone. 

1.3 OVERVIEW OF THESIS STRUCTURE AND CHAPTERS 

This thesis consists of a series of investigations linked by underlying considerations 

around the potential use of PA technologies in both the crop and pasture phases of 

mixed farming systems in southern Australia. The thesis is organised according to 

the general order in which the research was undertaken.  

Chapter 2 provides an overview of past and current research literature in the use of 

remote sensing in crop and pasture systems and the role of vegetation indices in 

measuring crop and pasture biomass. This is then extended to include the use of 

high-resolution active proximal sensors for the measurement of crop and pasture 

biomass and soil characteristics. 
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Chapter 3 describes a preliminary analysis using eight consecutive years of low-

resolution Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data to 

investigate the relationship, if any, between biomass production across the crop 

and pasture phases on two properties. The limitations of using low-resolution 

remotely sensed data for identifying sub-paddock scale spatial variation are 

discussed. The findings of Chapter 3 were presented at the 16th Australian 

Agronomy Conference, 14–18 October 2012 in Armidale, NSW in a paper entitled 

“The integration and validation of precision management tools in mixed farming 

systems”. 

Chapter 4 extends the analysis of Chapter 3 by using TIMESAT software to create a 

series of metrics that characterise vegetation phenology from the MODIS NDVI 

data. The phenology metrics were analysed to test the utility of the low-resolution 

MODIS data in exploring the variability of within-paddock biomass production 

between the crop and pasture phases. The findings of Chapter 4 were presented at 

the 9th European Conference on Precision Agriculture in Lleida, Catalonia, Spain, 

July 2013 in a paper entitled “Sub-paddock scale spatial variability between the 

pasture and cropping phases of mixed farming systems in Australia”. 

Chapter 5 describes the acquisition, processing, spatial mapping and preliminary 

analysis of high-resolution soil textural, ‘on-the-go’ proximal sensing methods using 

soil electromagnetic induction and gamma radiometrics. The proximally sensed data 

is supported by traditional soil sampling and chemical testing.  

Chapter 6 describes methodology for the acquisition of high-resolution pasture 

NDVI data from a Crop CircleTM active optical sensor, calibrated with in situ pasture 

sampling. The data were processed and used to identify the extent of spatial 

variability in pasture dry matter production over a two-year period within the 

experimental paddocks.  

The soil ECa and gamma radiometric data, soil chemistry and paddock elevation 

data acquired in Chapter 5 were used, in combination with existing crop yield data 

for those paddocks and the pasture dry matter data derived from Crop CircleTM 

sensing, to delineate potential whole-of-rotation management classes that 

integrate both the pasture and cropping phases.  
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Chapter 7 describes the process of calculating spatial and temporal trends in the 

variability of crop grain and pasture green dry matter over time and their spatio-

temporal relationships using the data acquired and developed in Chapters 5 and 6. 

A paddock production stability index (SI) was created to identify and combine the 

spatial and temporal variation for both crop and pasture phases on selected 

paddocks from each property and to divide a paddock into four productivity zones: 

high and stable, high and unstable, low and stable, and low and unstable.  

A component of the methodology and results from Chapter 7 were presented at the 

13th International Conference on Precision Agriculture, St Louis, Missouri, 31 July 

2016, in a paper entitled “Mapping the stability of spatial production in integrated 

crop and pasture systems: towards zonal management that accounts for both yield 

and livestock–landscape interactions”. 

Chapter 8 summarises the results, discusses the implications of the research, and 

presents the overall conclusions for the management of mixed farming systems. It 

also discusses research limitations and areas for further research. 

The Appendices provide the supplementary information in relation to particular 

chapters. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 MIXED FARMING SYSTEMS IN AUSTRALIA 

Mixed farming systems that combine grain cropping and pasture-based livestock 

enterprises dominate the dryland farming regions of Australia. In southern 

Australia, the mixed farming zone lies between the 300 and 600 mm average annual 

rainfall isohyets and is highly seasonal, encompassing temperate climates with cool, 

wet winters and hot, dry summers. The combination of highly variable rainfall (Love, 

2004) and volatile commodity prices faced by Australian farmers in these regions 

has favoured a diversified farming system. Having a flexible mix of crop and 

livestock options to even out fluctuations in income over time, in response to price 

and/or climate signals, moderates the risks to the farm enterprise (Bell and Moore, 

2011).  

The main pastures sown are self-regenerating annual legumes—mainly 

subterranean clover (Trifolium subterraneum L.) and annual medics (Medicago 

spp.). Where rainfall is sufficient to support perennial species, lucerne (Medicago 

sativa L.) is often sown in mixtures with annuals such as subterranean clover (Hayes 

et al., 2010; Kirkegaard et al., 2011). The use of lucerne and other perennials is 

limited to areas receiving more than 450 mm of annual rainfall (Fillery and Poulter, 

2006; White et al., 2003). 

Incorporating a pasture–livestock phase provides a number of important benefits 

including: 

 Improving soil nitrogen for subsequent crops: estimates of atmospheric N-

fixation for legumes range between 20 and 25 kg N/ha per tonne of legume 

dry matter produced (Herridge et al., 2008). Angus and Peoples (2013) 

observed that a mixed farming system with legume-dominant pasture 

phases occupying ~40% of the farmed area can sustain a stable N balance. 

In contrast, much of the biologically fixed N in a grain legume rotation is 

removed in the grain (Peoples et al., 2012).  
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 Rebuilding soil organic matter and improving soil structure: pasture phases 

are an effective way of building soil organic matter, especially in 

conjunction with grasses (Angus et al., 2006).  

 Control and management of weeds through competition and grazing by 

livestock, particularly where herbicide-resistant weeds are an issue (Doole 

and Pannell, 2008).  

 Crop disease and pest control (Doole and Pannell, 2008). 

 Improving livestock production: legume-based pastures can maintain 

higher carrying capacities (Bathgate and Pannell, 2002; Fisher et al., 2012).  

 Provide management flexibility: the length of pasture or crop phases can 

be varied as a management response to climate or commodity price 

variations (Verburg et al., 2008). 

By international standards, Australian mixed farms are large and becoming larger 

(Figure 2.1). This has occurred to capture economies of scale and allow farmers to 

offset diminishing terms of trade. The increased size of farms has meant that 

properties often encompass different soil types of varying productivity. This has 

occurred concurrently with a reduction in available farm labour, placing pressure on 

farm owners and managers to simplify their farming systems, often at the expense 

of a pasture–livestock phase. 
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FIGURE 2.1: TRENDS IN THE SIZE OF FARMS (BLUE) AND LAND AREA PER UNIT OF LABOUR (ORANGE) 

ACROSS THE SOUTHERN AUSTRALIAN MIXED FARMING ZONE BETWEEN 1990 AND 2014. SOURCE: 

AUSTRALIAN BUREAU OF AGRICULTURAL AND RESOURCE ECONOMICS (2016). 

 

2.1.1 DIMINISHED ADOPTION OF PASTURE–LIVESTOCK PHASES IN AUSTRALIAN MIXED 

FARMING SYSTEMS 

Notwithstanding the advantages of pasture–livestock phases described in the 

literature, there has been a trend over the past 20 years towards increased 

cropping intensity within mixed farming zones and a shift towards higher 

proportions of cropping (Figure 2.2). In some cases, this has involved the complete 

removal of livestock and associated infrastructure, and a change to continuous 

cropping using cereal and broadleaf crops, herbicides for weed control and higher 

rates of nitrogen fertiliser. The higher relative prices received for grain products 

compared to livestock in recent years, and the associated decline in returns to 

grazing enterprises, has contributed to this trend (Bell and Moore, 2012). There 

have also been significant technical changes to cropping systems over this period 

that have led to longer cropping rotations and the declining importance of pasture 

phases in crop rotations. These include:  

 The replacement of pasture phases with canola as a break crop and grain 

legumes for nitrogen fixation.  
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 The introduction of herbicide-tolerant crops which have facilitated the 

adoption of no-till/conservation agriculture, allowing the intensification of 

cropping. Additionally, residual herbicides used in cropping (e.g. 

sulfonylureas (Group B), triazine (Group C)) have severely affected the 

capacity for pasture legumes to regenerate and persist during pasture 

phases (Nichols et al., 2007; Peoples et al., 2012). 

 Labour supply shortages that have favoured increased cropping activity 

over more labour-intensive livestock activities (Doole et al., 2009). There 

has been an ongoing trend towards less labour per hectare farmed (Figure 

2.1). 

 Crop residues retained under no-till cropping systems have reduced the 

variability in cereal yields (D'Emden and Llewellyn, 2006). 

 The economics of fertiliser nitrogen has been seen as more financially 

attractive and flexible than biologically fixed N from pastures (Angus and 

Peoples, 2013).  

 The increasing trend towards no-till and controlled-traffic cropping systems 

(Tullberg et al., 2007) has led to a belief among some producers that soil 

structural damage by livestock could adversely affect the following crop 

yields (Flower et al., 2008; Rainbow and Derpsch, 2011). However, 

experimental evidence indicates that the effects of soil compaction by 

livestock on following crop yields are unlikely to be significant (Bell et al., 

2011). 

Ironically, increased herbicide use under a no-till, controlled-traffic farming system 

can increase the rate of herbicide resistance in weeds (Farooq et al., 2011; Owen et 

al., 2014, 2015), requiring either cultivation or a pasture–livestock phase to enable 

adequate weed control (Kirkegaard et al., 2014; Renton and Flower, 2015). 
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FIGURE 2.2: TREND IN THE PROPORTION OF FARM AREA CROPPED ACROSS THE SOUTHERN 

AUSTRALIAN MIXED FARMING ZONE BETWEEN 1990 AND 2014. SOURCE: AUSTRALIAN BUREAU OF 

AGRICULTURAL AND RESOURCE ECONOMICS (2016). 

 

2.2 PRECISION AGRICULTURE IN MIXED FARMING SYSTEMS 

Precision agriculture collects and processes high-resolution data about crops, 

pastures, livestock and soils, in time and space, to improve the efficiency of farm 

input use, productivity and environmental outcomes (Chen et al., 2009; Mulla, 

2013; Robertson et al., 2012). Historically, PA has been largely confined to cropping 

systems, with much lower levels of adoption in pasture, livestock and viticulture 

(Bramley, 2009; Schellberg et al., 2008). 

The widespread availability of high-resolution, low-cost global navigation satellite 

systems such as GPS has been a key enabling technology of PA, making 

technological advances such as machinery auto-steer/guidance (through real-time 

kinematic technology) possible. Further advances have included variable rate 

fertiliser application, section control on spray units and, more recently, robotics 

based on sensor networks and proximal sensing, allowing enhanced real-time 

decision making (Banhazi et al., 2012; Dong et al., 2013; Hedley, 2015; Robertson et 

al., 2012).  
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These technologies have significant potential for adoption across both the pasture 

and crop phases of mixed farming systems. The near real-time monitoring of 

pastures, as well as crops by remote sensing applications, has the capacity to allow 

high-resolution management of pasture–crop systems, without the need for 

extensive, labour-intensive and expensive field sampling. Additionally, technologies 

such as real-time livestock tracking through the use of GPS collars or eartags, and 

the control of stock with virtual fencing are now being brought to the market at an 

affordable cost (http://agersens.com/). 

Monitoring livestock behaviour with the use of tracking devices has become 

widespread in the last ten years (Barnes et al., 2011; Handcock et al., 2009; 

Schellberg et al., 2008; Trotter et al., 2010b). The precision of modern GPS 

technology allows the position of individual animals to be determined within 10 m 

or better (Laca, 2009). The development of lightweight tracking collars has allowed 

cost-effective monitoring of stock movements, tracking the times and locations of 

peak grazing activity (Freire et al., 2012; Trotter et al., 2010c). This data can be 

imported into a geographic information system (GIS) to evaluate livestock 

behaviour and herd inter-relationship characteristics, pasture utilisation and 

nutrient redistribution (Finger et al., 2014; Trotter et al., 2010c). Analysing the total 

time spent by animals in a particular area can help to visualise the spatial variability 

in grazing pressure, by producing maps that indicate the preferred grazing areas 

(Trotter and Lamb, 2008). Research to date has shown that grazing livestock create 

specific spatial patterns of pasture biomass utilisation that affect the spatial 

heterogeneity of the paddock and brings about significant nutrient redistributions 

(Laca, 2009; Rook et al., 2004; Trotter et al., 2010b).  

The development of virtual fences has been ongoing over recent decades. Bishop-

Hurley et al. (2007) found virtual fencing to be a viable technology for managing 

livestock. Unlike conventional fencing, virtual fences are not fixed in time and space. 

The most common virtual fencing systems work on the basis of an audible warning 

and electric stimulation as negative reinforcements (Umstatter, 2011). A significant 

advantage of virtual fencing is the flexibility it offers in managing stocking densities 

and the time spent grazing particular areas of a paddock (Anderson, 2007). 
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Although beyond the scope of this research, both GPS-mapped livestock activity and 

virtual fencing are technologies that can provide an additional means of validating 

the observed spatial variability in pasture growth from NDVI imaging, soil 

characteristics and landscape factors. 

2.2.1 THE USE OF REMOTE SENSING IN PRECISION AGRICULTURE 

Remote sensing refers to technologies for measuring object properties on the 

Earth’s surface using data acquired at a distance, rather than in situ, for example 

from aircraft and satellites. It is done by recording the electromagnetic radiation 

(EMR) that emanates from the Earth’s land surfaces, oceans or atmosphere (Jones 

and Vaughan, 2010). There are many types of EMR, of which visible light is just one 

form. An important criterion of EMR is its wavelength, which ranges from fractions 

of a nanometre to several metres. The properties of objects or areas on the Earth’s 

surface can be identified and delineated in terms of their associated levels of 

electromagnetic energy. Areas observed are referenced in a geographic coordinate 

system so that they can be located on a map.  

Remote sensing systems can be categorised into two types, passive or active, based 

on the energy source. Passive remote sensing systems do not have their own light 

energy source and rely on the detection of electromagnetic (EM) energy from the 

sun or reflected from the Earth’s surface. Passive sensing of visible light is therefore 

limited to daytime. Satellite-based optical sensors are an example of passive 

sensors. Active remote sensing systems have their own energy source. These 

systems send bursts of EM energy in the direction of the target and measure the 

energy returning from the target to the sensor. This means they can be used at 

night. Radar and lasers are examples of active sensors. 

Most remote sensing in PA uses optical imagery to record the spatial variability in 

soil and crops by measuring the reflected radiation from plant or soil surfaces. The 

underlying premise of monitoring crop and pasture condition by remote sensing is 

that key vegetation parameters related to growth and yield have distinguishing 

reflectance signatures in the visible and/or non-visible EM spectrum (Bauer, 1985). 

Remote sensing in agriculture using satellites has occurred since the early 1970s 

(Bauer and Cipra, 1973; Doraiswamy et al., 2003; Jewel, 1989). As precision 
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agriculture has increased in adoption, satellite remote sensing has been 

incorporated within the suite of PA technologies and tools. Information about many 

vegetation and soil characteristics is linked to the amount of energy reflected, 

transmitted or emitted in these areas of the EM spectrum. Depending on the spatial 

resolution of the sensor, variability in these characteristics can be analysed over 

time at the paddock, farm or regional scale by making use of the different bands of 

information captured by the sensors. 

Satellite-based sensors range from relatively low resolution (100 m to 1 km) 

multispectral platforms such as the Advanced Very High Resolution Radiometer 

(AVHRR) and MODIS to medium-resolution sensors (10–30 m) such as Landsat and 

SPOT, through to modern high-resolution (1–5 m) sensors like IKONOS, Quickbird 

and Rapideye. However, high-resolution imagery is very expensive.  

Two satellite systems in particular have been fundamental to the use of remote 

sensing in precision agriculture: Landsat and the earth observing system’s (EOS) 

Aqua and Terra platforms. Because MODIS and Landsat imagery is free, they 

provide a low-cost means of assessing variability in crop and pasture characteristics 

at the paddock scale. These two satellite-based sensor systems will now be 

discussed briefly. 

2.2.2 LANDSAT 

A series of Landsat satellites have been launched since 1972. Landsat 4 and Landsat 

5 were the fourth and fifth satellites of the series, respectively. Landsat 4 and 5 are 

sun synchronous, polar orbiting satellites travelling around the Earth from pole to 

pole at an altitude of 705 km. Landsat 4, launched on 16 July 1982, was equipped 

with the Multiple Spectral Scanner (MSS); Landsat 5, launched on 1 May 1984, was 

equipped with both the MSS and Thematic Mapper (TM) sensors (Headley, 2012; 

Markham et al., 2004). 

Landsats 4 and 5 offered images at 30 m resolution. Landsats 1 to 5 have now been 

decommissioned. In October 1993, Landsat 6 failed at launch after not reaching the 

velocity necessary to obtain orbit. 
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Landsat 7 carried the Enhanced Thematic Mapper Plus (ETM+) and was launched on 

15 April 1999. ETM+ replicated the capabilities of the TM sensors with additional 

features such as a panchromatic band with 15 m spatial resolution, full aperture 

diffuser calibration system, a thermal IR channel with 60 m spatial resolution and an 

on-board data recorder (Headley, 2012). The TM sensor has seven spectral bands 

(see Table 2.1). The Scan Line Corrector (SLC), which compensates for the forward 

motion of Landsat 7, failed in May 2003. Attempts to recover the SLC were 

unsuccessful. This now results in around 22% of any given scene being lost 

(Markham et al., 2004). Landsat 8 was launched in February 2013 and covers the 

entire globe every 16 days in an 8-day offset from Landsat 7 (Headley, 2012). 

 

TABLE 2.1: LANDSAT 7 SENSITIVITY AND RESOLUTION.  

Landsat 7 Wavelength (micrometres) Resolution (metres) 

Band 1–Blue 0.45–0.52 30 

Band 2–Green 0.52–0.60 30 

Band 3–Red 0.63–0.69 30 

Band 4–Near-Infrared (NIR) 0.77–0.90 30 

Band 5–SWIR 1 1.55–1.75 30 

Band 6–Thermal Infrared 1 10.40–12.50 60 (30) 

Band 7–SWIR 2 2.09–2.35 30 

Band 8–Panchromatic 0.52–0.90 15 

Source: US Geological Survey. http://landsat.usgs.gov/band_designations_landsat_satellites.php 

 

Although Landsat offers high-resolution imagery that is ideal for pasture biomass 

assessment, the lack of regular coverage in the southern hemisphere and long 

revisit times reduce the opportunities to monitor reflectance from crop and soil. If 

cloud cover interferes, the observation windows decrease further, resulting in few 

images during the growing season. 

http://landsat.usgs.gov/band_designations_landsat_satellites.php
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2.2.3 TERRA (EOS AM) AND AQUA (EOS PM) 

The Terra (EOS AM) and Aqua (EOS PM) satellites carry the Moderate Resolution 

Imaging Spectroradiometer (MODIS) instrument. MODIS is part of the National 

Aeronautics and Space Administration’s (NASA) Earth Observing System program 

which has provided continuous global data on the Earth’s biosphere since the 

sensor was first launched aboard the Terra satellite in December 1999. It was 

complemented by a second sensor launched aboard the Aqua satellite in May 2002 

and subsequently both the Terra and Aqua MODIS sensors have provided nearly 

complete Earth coverage on a daily basis. Temporal compositing (usually on a 

weekly basis) is used to remove clouds, aerosols and cloud-shadow contamination. 

The composited vegetation indices are produced at 10-day intervals. The suite of 

MODIS land products includes three vegetation-focused product series: i) MOD13—

vegetation indices (VIs): normalised difference vegetation index (NDVI) and 

enhanced vegetation index (EVI), ii) MOD15—leaf area index (LAI) and fraction of 

absorbed photosynthetically active radiation (fAPAR), and iii) MOD17—gross 

primary production (GPP), net primary production (NPP) and net photosynthesis 

(Justice et al., 2002). 

2.2.4 PLANT/SOIL/LIGHT INTERACTIONS 

For remote sensing of vegetation, the most common EM bands used are the red 

and near-infrared (NIR) bands because they are specifically related to plant 

physiology. Between wavelengths of 400 and 2500 nm, the incident radiation on a 

vegetation surface is influenced by three main elements (Dorigo et al., 2007): 

 the optical properties of the vegetative material itself 

 the arrangement of the materials in the vegetation canopy 

 the optical properties of the soil beneath the canopy. 

The quality of the signal received is also affected by atmospheric conditions as well 

as the viewing and illumination angles (Cierniewski and Verbrugghe, 1997; Roujean 

and Breon, 1995). Depending on the wavelength, the radiance flux can be affected 

by atmospheric scattering or pass through without impact. Atmospheric scattering 

is more significant at low angles of solar elevation and high levels of atmospheric 

turbidity (Jensen, 2005).  
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Chlorophyll pigments inside leaf cell chloroplasts provide energy for photosynthesis 

by absorbing sunlight in the visible blue and red wavelengths (~400–480 nm; 620–

700 nm, respectively), resulting in dominant reflectance in the green wavelengths 

(~500–580 nm). The chloroplast pigments are transparent to higher wavelength 

near-infrared (NIR) radiation (>700 nm) in healthy, actively growing plants. 

Combined with scattering within the leaf mesophyll layer, this results in very strong 

NIR reflectance (Gates et al., 1965; Jones and Vaughan, 2010; Trotter et al., 2010b). 

Green light (500–600 nm) is largely reflected by all plants, so a healthy, actively 

photosynthesising plant appears green, due to the reduced amounts of red and 

blue light reflected.  

Healthy, actively growing plants will present a large difference between the levels of 

absorbed red and NIR reflectance. In contrast, the lower levels of chlorophyll in 

stressed plants absorb much less red light (red reflectance rises) and reduced NIR 

reflectance as the internal structure of the leaf collapses. As a result, the 

combination of red and NIR wavelengths, or the ‘red-edge’ region between the Red 

and NIR wavebands (around 700 nm), can be good indicators of plant type, species 

composition, biomass, LAI, phenological stage, and disease or nutritional status 

(Devadas et al., 2009; Flowers et al., 2001; Haboudane et al., 2004; Huete et al., 

1999; Lamb et al., 2002; Moges et al., 2005). Bare soil can be differentiated from 

actively growing vegetation because it typically has a higher red and lower NIR 

reflectance. 

2.2.5 SPECTRAL INDICES 

Spectral indices are created by combining two or more spectral bands 

mathematically in such a way that the index created is more clearly related to 

parameters of interest such as photosynthetic activity or plant canopy LAI. Deriving 

spectral indices is a widely adopted practice in remote sensing, particularly in the 

use of vegetation indices (VIs) for studying vegetation cover (Bannari et al., 1995; 

Glenn et al., 2008; Huete et al., 2011; Ji and Peters, 2007; Zwiggelaar, 1998). Indices 

were developed to reduce ‘noise’ from the data, introduce corrections for 

atmospheric distortions and to normalise results. Although there are many indices, 

most provide a ratio between light reflected in the red and NIR parts of the EM 
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spectrum (Table 2.1) to separately identify water, soil and vegetation effects (Glenn 

et al., 2008). Most vegetation indices are related to the Simple Ratio (SR) (Jordan, 

1969):  

                                                  SR = ρNIR/ρRed 

where ρNIR and ρRed are the reflectance values of red and near-infrared light 

received at the sensors. 

According to Huete et al. (1994; p. 226), a vegetation index should: 

 maximise sensitivity to plant biophysical parameters 

 normalise or model external effects such as sun angle, viewing angle and 

atmosphere 

 minimise canopy ground contamination caused by canopy background 

variations for consistent spatial and temporal comparisons 

 be a global product that allows for spatial and temporal assessments of 

vegetation conditions, and 

 be correlated to key biophysical parameters such as biomass, LAI or fAPAR 

for validation and quality control. 

Over the years, different vegetation indices have been derived to take advantage of 

the relationship between red and near-infrared reflectance and healthy vegetation 

(Thenkabail et al., 2000). These vegetation indices have been positively correlated 

with a wide range of functionally useful variables that tend to vary together, 

including biomass, LAI, chlorophyll content, leaf nitrogen content, photosynthesis 

and fAPAR (Atzberger, 2013; Bannari et al., 1995; Carlson and Ripley, 1997; Dorigo 

et al., 2007; Lamb et al., 2002; Rembold et al., 2013; Schellberg et al., 2008; 

Zwiggelaar, 1998).  

The NDVI is the most widely used index (Ollinger, 2011; Rouse et al., 1973; Tucker, 

1979). The advantage of NDVI is that it can be calculated from sensors which have a 

database of images acquired over a long period of time. These extensive datasets 

provide a means to monitor vegetation characteristics such as GPP and feed on 

offer (FOO) (Edirisinghe et al., 2004, 2011; Hill et al., 2004). Canopy architecture 

strongly influences NIR reflectance (Gitelson et al., 2002). This includes the 
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distribution of vegetation and the amount of light reflected from the soil beneath 

the plant canopy, leaf angle distribution, localised chlorosis, and the LAI of the 

canopy (Huete, 1988; Verhoef, 1984). Lamb et al. (2002) reported that the NDVI 

and, in particular, the NIR band tended to plateau as the number of leaf layers 

increased because NIR was unable to infiltrate past the top 3–5 leaves. In 

comparison, the enhanced vegetation index (EVI) and the red-edge position (REP) 

do not saturate as quickly at higher levels of canopy closure (Huete et al., 2002). 

The normalised difference vegetation index (NDVI) 

The NDVI is the most widely used mathematical combination of red and NIR 

wavelengths for remote monitoring of vegetation in agriculture (Tucker, 1979).  

It is expressed as:  NDVI =  
𝜌(NIR)− 𝜌(Red)

𝜌(NIR)+𝜌(Red)
 

The NDVI was first expressed by Rouse et al. (1973) and in the ensuing years used in 

a wide range of remote sensing studies and applications (Balaghi et al., 2008; Beck 

et al., 2006; Tucker, 1979; Tucker and Sellers, 1986; Tucker et al., 2001; Wall et al., 

2008; Xu et al., 2014; Zhao et al., 2009).  

The SR and NDVI are based on the strong absorption of light in the red wavelengths 

by chlorophylls a and b in green leaves, which reaches a maximum ~690 nm, 

whereas plant cell walls scatter light in NIR wavelengths (~850 nm) (Tucker, 1979). 

This absorption contrast across the 650–850 nm bandwidth is captured by the NDVI 

and other vegetation indices. The NDVI normalises values between –1 and +1. 

Dense, actively photosynthesising vegetation has a high NDVI value, while soil 

values have a low, positive NDVI value and water has negative NDVI values because 

of strong absorption in NIR wavelengths.  

Various combinations of the red, NIR and green bands were tested by Tucker (1979) 

for the prediction of plant green biomass, chlorophyll content and leaf moisture 

content. He found that NDVI was strongly correlated with these parameters. 

Advantages of the NDVI include (Huete et al., 2002): 

 It allows changes in seasonal and inter-annual vegetation growth to be 

monitored at local and global scales. 
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 The use of a ratio-based index minimises the effects of multiplicative noise 

such as solar illumination differences, low viewing angles, atmospheric 

attenuation and cloud shadows that can be present in multi-band imagery 

taken over extended time periods. 

Disadvantages of the NDVI include (Huete et al., 2002): 

 It is non-linear and can be affected by additive noise influences such as 

atmospheric path radiance and viewing angles. 

 The index has scaling issues in high biomass conditions where the NDVI 

signal saturates. 

 The index is highly sensitive to background ‘noise’ such as bare soil and 

gives high NDVI values with darker-coloured plant canopies. 

Many alternative formulations have been developed to correct for specific 

deficiencies of the basic NDVI. The alternatives incorporate modifications aimed at 

minimising the effects of noise caused by variation in the underlying soil reflectance 

or by atmospheric absorption. They include the enhanced vegetation index (EVI) 

(Huete et al., 1999) and the soil-adjusted vegetation index (SAVI) (Huete, 1988). The 

value of SAVI for reducing the background soil noise intrinsic to the NDVI has been 

established in several studies (Bannari et al., 1995; Bausch, 1993; Rondeaux et al., 

1996). Several modifications to SAVI to optimise the reduction in soil background 

effects have been reported (Broge and Leblanc, 2001). The EVI was developed for 

MODIS and corrects for canopy background and atmospheric influences. It does not 

saturate as readily as the NDVI at high biomass values. Several studies have shown 

the EVI to be strongly correlated with photosynthesis and plant transpiration (Huete 

et al., 2011; Ponce et al., 2011; Wagle et al., 2014). A few of the most widely 

adopted vegetation indices based primarily on red/infrared wavelengths are shown 

in Table 2.2. 

2.2.6 REMOTE SENSING OF CROPS 

Low-resolution imagery from the AVHRR and MODIS sensors has been widely used 

for more than 30 years in crop monitoring and yield prediction (Atzberger, 2013; 

Tucker and Sellers, 1986). High temporal frequency, wide coverage and low cost per 

unit area have made satellite imagery an important management tool for 



CHAPTER 2. LITERATURE REVIEW 

 PAGE | 23 

monitoring agricultural vegetation. The most common vegetation index used for 

these analyses is the NDVI (Labus et al., 2002; Quarmby et al., 1993; Wall et al., 

2008) because the nearly linear relationship with fAPAR means it can be used as an 

indirect measure of primary productivity (Baret and Guyot, 1991).  

The simplest form of crop monitoring using remotely sensed information is to 

compare current crop status with real-time in-paddock measurements or with 

imagery from previous years, or the average of a run of previous years. Differences 

are then used to identify possible yield limitations for the current drop (Aase and 

Siddoway, 1981; Baret et al., 1989; Tucker et al., 1980, 1981).  

The size of individual MODIS pixels (250 m square) is relatively large for use on an 

individual farm. Pixels can, therefore, include non-crop and other vegetation, rocky 

outcrops, buildings, etc. Image masking (Kastens et al., 2005) is used to limit the 

analysis to a subset of yield-correlating pixels.  

More quantitative approaches to yield prediction have included various correlation 

or regression approaches using yield monitor data in conjunction with AVHRR, 

MODIS (Wall et al., 2008) and higher resolution Landsat IKONOS and SPOT imagery 

(Fisher et al., 2009; Meroni et al., 2013; Thenkabail, 2003). More sophisticated 

approaches have included agronomic and/or meteorological data and achieved high 

correlation for certain crops (Balaghi et al., 2008; Prasad et al., 2007; Reynolds et 

al., 2000). 
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TABLE 2.2: COMMON VEGETATION INDICES USED IN REMOTE BIOMASS SENSING. 

Abbreviation Name Formula Parameter measured Reference 

NDVI Normalised difference 

vegetation index 

(NIR–Red)/(NIR+Red) Green biomass Rouse et al. (1973) 

NDRE Normalised difference red-

edge 

(NIR790nm–Red720nm)/(NIR790nm+Red720nm) Chlorophyll content Clarke et al. (2001) 

SR Simple ratio NIR/Red Chlorophyll content Birth and McVey (1968) 

SAVI Soil-adjusted vegetation index [(NIR–Red)/(NIR+Red+L)]x(1+L) Green biomass when 

vegetation cover is low 

Huete (1988) 

EVI Enhanced vegetation index 2.5x[(NIR–Red)/((NIR+6xRed–7.5xBlue)+1)] Green biomass corrected 

for certain atmospheric 

distortions 

Huete et al. (2002) 

NLI Non-linear index (NIR2–Red)/(NIR2+Red) Green biomass Goel and Qin (1994) 

MNLI Modified non-linear 

vegetation index 

[(NIR2–Red)x1.5)]/[(NIR2+Red)+1.5)] Green biomass Gong et al. (2003) 
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2.2.7 REMOTE MONITORING OF PASTURES 

Compared to spatial variation of yields in cropping phases, far less is known about 

the extent of within-paddock spatial variation during the pasture–livestock phase in 

mixed farming systems. Most of the reported research in this regard has been 

undertaken on international grassland farming systems (Edirisinghe et al., 2012; Lee 

et al., 2011; Marques Da Silva et al., 2008; Serrano et al., 2010, 2011a; Suzuki et al., 

2012; Zhao et al., 2007), with a much smaller body of work relevant to Australian 

dryland pasture systems (Trotter, 2010; Trotter et al., 2008, 2010a; Virgona and 

Hackney, 2008). None of this research has been conducted on mixed farming 

systems.  

There are relatively few reports in the literature relating to the spatial variation in 

pasture biomass, its underlying causes and how it compares to grain harvest yield 

variation during the cropping phase. This knowledge could significantly enhance the 

capacity for a manager to implement highly effective site-specific management 

strategies in a continuous sequence across pasture and cropping phases.  

Historically, grazing management in most mixed farming systems has been low-

input, using conservative, set-stocking systems which result in under-utilisation of 

pasture. More intensive grazing systems such as rotational and cell grazing enable 

greater utilisation of pastures and can lead to higher levels of productivity and 

profitability (Warn et al., 2003). Intensive rotational systems involve controlled 

movement of livestock, grazing for short periods through small paddocks based on 

regular, quantitative assessment of biomass/feed budgeting (Laca, 2009). 

Whichever grazing system is used, the regular measuring and mapping of pasture 

herbage mass can provide producers with information on the current condition of 

their pastures which can be used to calculate forage demand and supply. This can 

then be used to develop spatially-effective grazing management strategies (Bell et 

al., 2008).  

The estimation of paddock pasture biomass during the growing period has 

traditionally been based on direct measurement by harvesting from numerous, 

relatively small quadrats and the subsequent sorting and weighing of pasture 
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samples (Haydock and Shaw, 1975). The method is highly labour-intensive, 

expensive and time-consuming. A variety of alternative point sampling biomass 

estimation methods exist, including visual assessments (Campbell and Arnold, 1973; 

Cayley and Bird, 1996), pasture height measurers (Ganguli et al., 2000; Hutchings, 

1991), plate meters (Earle and McGowan, 1979; Gourley and McGowan, 1991), 

electrical capacitance probes (Vickery et al., 1980) and ‘on-the-go’ point sampling 

strategies such as dry weight ranking (Cayley and Bird, 1996; Haydock and Shaw, 

1975; Tsutsumi and Itano, 2005). Each method has advantages and disadvantages, 

but all are labour intensive, expensive, difficult to use on a regular basis, and prone 

to error when practised by unskilled operators. 

The only extensive application of satellite remote sensing to pastures as a co-

ordinated service is ‘Pastures from Space’ (PfS). Pastures from Space is a remote 

sensing based pasture monitoring and evaluation service which uses satellite 

imaging as a basis for providing estimates of pasture growth rate (PGR) and FOO 

(Donald et al., 2010; Edirisinghe et al., 2011). It is available commercially as Pasture 

Watch™ (Fairport Farm Software, Perth WA). The model includes components 

detailed by Fitzpatrick and Nix (1970), where a growth index is derived from soil 

moisture, temperature and light indices. It also takes advantage of NDVI’s strong 

relationship to LAI (Baret and Guyot, 1991; Edirisinghe et al., 2011; Gower et al., 

1999; Hill et al., 2004) to provide the spatial fraction of absorbed photosynthetic 

active radiation (fAPAR) (Edirisinghe et al., 2004; Hill et al., 2004). The growth index, 

combined with local climate data, is used to calculate estimates of PGR and FOO. 

Research carried out in Western Australia has indicated that the sub-paddock 

spatial distribution of pasture biomass is strongly related to spatial variability in 

NDVI (Donald et al., 2010; Edirisinghe et al., 2011; Hill et al., 2004). The ability for 

remote sensing technology such as PfS to provide timely pasture availability data at 

a paddock scale to accurately assess pasture biomass on a regular basis is a 

significant management breakthrough for maximising pasture utilisation.  

The information from PfS has the potential to enable growers to: 

 optimise PGR, quality and utilisation 

 better manage the whole-farm system such as pasture–crop rotations 
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 better match land and soil types to management and selection of pasture 

cultivars 

 monitor the effect of long-term regional climate shifts. 

The spatial resolution of PfS is limited to that of the MODIS sensor, providing a 

resolution of approximately 250 metres square (equivalent to a pixel size of 6.25 

ha). However, at the sub-paddock scale, a spatial resolution of 6 ha means a 

significant number of MODIS pixels in a particular paddock may be ‘mixed’, i.e. 

containing data from neighbouring paddocks, rocky outcrops, trees, etc. Fairport 

Farm Software has discontinued the PastureWatch service. A new version of PfS has 

recently been released, ‘Pastures from Space Plus’. It is largely a research and 

teaching tool at this stage. 

2.3 SUMMARY 

The amount of solar radiation absorbed by plants is a function of the intensity and 

duration of incoming radiation and the crop or pasture’s PAR interception capacity. 

Interception capacity is largely determined by plant leaf area/LAI. Monteith (1972, 

1977) suggested that the net gain, by plant photosynthetic tissues, in dry matter 

production per unit time (net primary productivity–NPP) was linearly related to the 

amount of incident solar energy plants received, moderated with a number of 

independent efficiency terms, including the amount of solar radiation absorbed 

over a season and a vegetation light use efficiency (LUE) term. Because of its close 

relationship to LAI and fAPAR (Myneni et al., 1997; Wang et al., 2003), NDVI can be 

used as an indirect measure of primary productivity. NDVI was chosen for this study 

because, as well as providing a measure of the relative use of photosynthetically 

active radiation (PAR) by plant canopies, it is cheaply and readily available from 

sensors such as MODIS and Landsat. MODIS imagery is available on a daily basis, 

composited to weekly images, thereby minimising data loss due to cloud events. 

While there are a large number of vegetation indices available for monitoring the 

Earth’s surface (Thenkabail et al., 2000), the NDVI is widely used because of its 

simplicity and low-cost availability. The NDVI can be easily obtained from satellite 

sensors such as NOAA-AVHRR, MODIS and Landsat, and provides a measure of PAR 
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from plant canopies (Edirisinghe et al., 2011). Despite the issues of noise and error 

in NDVI datasets, and the presence of numerous alternative vegetation indices 

designed to reduce some of these effects, the NDVI remains particularly popular for 

the remote sensing of vegetation phenology. In particular, MODIS vegetation 

indices, which are produced daily and composited at 16-day intervals and multiple 

spatial resolutions, can provide reliable spatial and temporal assessments of 

vegetation canopy greenness. 

2.4 PADDOCK MANAGEMENT ZONES AND SITE-SPECIFIC MANAGEMENT 

Precision agriculture uses the gathering, processing and analysis of high-resolution, 

spatially-dense, geo-referenced datasets to better inform decision making for 

improved management of crop and pasture production (Harmon et al., 2005). The 

most common approach to managing spatial variability in crops is to define and use 

‘management zones’ in a system known as ‘site-specific management’ (SSM) (Plant, 

2001; Taylor et al., 2007; Whelan and McBratney, 2003). SSM aims to better 

quantify and delineate the causes of yield variability between different parts of a 

paddock by creating management zones (Buttafuoco et al., 2010; Farid et al., 2016; 

Moral et al., 2010). Management zones are defined as areas within a paddock to 

which a particular management action can be applied. In general, the delineation of 

management zones is based on factors such as soil electrical conductivity, soil 

chemistry, elevation, slope and organic matter content, in combination with 

historical crop or pasture yields (Taylor et al., 2007; Whelan and Taylor, 2013). Using 

this data, paddocks can be partitioned into management classes so that each 

homogeneous zone receives inputs tailored to the particular soil types, landscape 

position and management history. A strong focus of SSM has been on improving 

nutrient use efficiency (Aggelopoulou et al., 2011; McCormick et al., 2009; 

Robertson et al., 2012; Serrano et al., 2011b, 2014). There are several data sources 

available to a producer that can be used to help delineate management zones. 

Examples in the literature range from farmer ‘mud maps’ (Oliver et al., 2010), yield 

and soil survey data (Oliver and Robertson, 2009; Simeoni et al., 2009; Sudduth et 

al., 2010), proximal soil sensors (Pullanagari et al., 2012; Schirrmann et al., 2011; 
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Serrano et al., 2010; Sun et al., 2012), and combinations of these (Castrignanò et al., 

2012; Wong et al., 2010).  

Several approaches have been developed using yield data coupled to remotely 

sensed soil and elevation information to more accurately delineate site-specific 

management zones. These include the use of EMI sensors which measure the 

capacity of the soil to conduct an electrical current and gamma radiometric 

emissions which provide information on soil parent materials which can be 

associated with changes in soil types and textures across a paddock (De Benedetto 

et al., 2013; Farid et al., 2016; Hedley et al., 2004; Moral et al., 2010; Rodrigues Jr et 

al., 2015; Song et al., 2009). 

Field studies have indicated that in-season SSM-based variation of fertiliser inputs 

to account for differences in yield potential across a paddock can significantly 

improve nitrogen use efficiency (Diacono et al., 2013; Song et al., 2009). Although 

SSM has been largely restricted to crop management, its application in the pasture 

phases of mixed farming systems could be advantageous over traditional methods 

in terms of optimising fertiliser efficiency and pasture productivity, given that there 

is significant variation in pasture productivity across a paddock (Virgona and 

Hackney, 2008). Anderson et al. (2012) reported strong responses in biomass 

production and pasture quality to nitrogen differentially applied to SSM zones. The 

authors expected that the responses would become more evident as the season 

unfolded, as a result of soil moisture variation across the paddock. 

2.5 PROXIMAL SENSING SYSTEMS 

Yield monitor data or remotely sensed data sets such as the NDVI and other 

vegetation indices discussed above can show the variability of biomass or crop 

production at the sub-paddock scale at a range of resolutions (Blackmore, 2003; 

Robertson et al., 2008, 2009). However, determining sub-paddock scale 

management zones from yield maps or remotely sensed satellite data alone is 

problematic, as these data sets give little indication about the reasons for 

differences in crop performance. Biomass production within a zone over time is 

affected by a range of interactions between climate, biotic and abiotic factors. 
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Remotely sensed imagery needs to be used carefully for management zone 

identification because it provides only a within-season snapshot and may not relate 

to final crop yield.  

Given the limitations of satellite remote sensing described earlier, the use of 

proximal sensors to monitor crop growth and crop stress has been increasing. Both 

grain and pasture production in Australia is often strongly dependent on soil type, 

particularly the capacity for the soil to retain water and subsequently release it to 

the plant. Therefore, defining within-field management zones based on estimates of 

plant available water capacity (PAWC) can be of value.  

A better understanding of the spatial patterns in soil properties that cause 

yield/quality variation can be achieved with maps of soil variability. The use of high-

accuracy GPS receivers enables geo-referencing of sensor data and permits the 

simultaneous collection of elevation data, which influences water movement and 

soil development in the local environment. Traditionally, geo-referenced manual 

soil sampling and laboratory analysis has involved sampling at a relatively small 

number of sites across a paddock due to the cost and labour intensiveness of such 

surveys. The relatively few sampling sites make it difficult to quantify the degree of 

variability in soil properties at a sufficiently high resolution for site-specific 

management. This in turn can make it hard to identify relationships between soil 

properties of agronomic interest and crop and pasture yields.  

The advent of relatively low cost, proximal soil sensing technologies such as EMI, 

which measures the ability of the soil to conduct electricity, and gamma 

radiometrics, which measures naturally occurring gamma ray emitting isotopes of 

potassium (K), uranium (U) and thorium (Th) as they decay (Wilford, 2008), are 

enabling technologies for high-resolution soil mapping.  

2.5.1 SOIL ELECTRICAL CONDUCTIVITY 

When an electrical current is applied to soil, it can be conducted via three pathways 

(Corwin and Lesch, 2005b): 

1. A liquid phase pathway through pore-connected soil solution of water 

and ions. 
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2. A solid–liquid phase pathway primarily through exchangeable cations that 

are bound to the surface of clay particles. 

3. A solid pathway via solid soil particles that are in direct and continuous 

contact with one another. 

As a consequence, the soil’s ability to conduct electricity is affected by soil texture 

(particularly clay content), mineralogy, soil moisture and drainage, the soil’s cation 

exchange capacity (CEC), subsoil characteristics, soil organic matter, ions of 

dissolved salts, and soil temperature (Kitchen et al., 2005; McBratney et al., 2005). 

The higher the level of each of these attributes, the greater the electrical 

conductivity of the soil. Higher electrical conductivity values generally translate into 

higher fertility and hence higher yield potential. Excessively high readings tend to 

indicate salinity (Brevik et al., 2006; Corwin and Lesch, 2003; Kitchen et al., 2005). 

Apparent soil electrical conductivity (ECa) is a depth-weighted measure of a soil’s 

ability to conduct electricity to a specified depth (Greenhouse and Slaine, 1983). It is 

reported in milliSiemens per metre (mS/m). Changes in the electrical conductivity of 

the soil are reflected in variations in ECa. 

Since an EMI sensor is measuring ECa rather than directly measuring salinity, the 

ECa readings must be calibrated to the traditional laboratory estimate of salinity, 

which is the electrical conductivity of the saturation paste extract (ECe). To convert 

ECa to ECe, regression of measured ECa values against laboratory ECe standards are 

used (Bennett et al., 2009; Corwin and Lesch, 2005a). 

There are two main ‘on-the-go’ technologies for measuring bulk soil ECa: 

electromagnetic induction (EMI) and electrical resistivity (ER). Soil EC measurement 

by either method reportedly produces similar results (Sudduth et al., 1998). The use 

of electromagnetic induction instruments is the more common practice in Australia. 

EMI instruments such as the Geonics EM31 and EM38 (Geonics Inc., Mississauga, 

Ontario, Canada) use pairs of transmitting and receiving induction coils at opposite 

ends of the instrument.  

EMI has been used to map soil properties such as salinity, water and clay content 

(Brevik et al., 2006; Corwin and Lesch, 2005a; Kitchen et al., 2005; Llewellyn et al., 
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2010), to estimate the soil depth to underlying clay hardpans (Doolittle et al., 1994), 

elevation, soil pH and pasture dry matter yield (Serrano et al., 2010), and for 

irrigation scheduling (Hedley et al., 2013).  

The variations in soil properties identified using ECa are often used to define 

management zones. For agricultural applications, soil properties that correlate 

strongly with ECa are soil salinity, clay content and soil water. However, 

temperature (air and soil), mineral content and clay type will affect any calibration 

(McBratney et al., 2005). 

 

 

FIGURE 2.3: GEONICS EM38. 

 

2.5.2 GAMMA RADIOMETRICS 

Gamma ray spectrometry is a soil sensing technique that can be performed from 

the air or a ground-based platform. Gamma rays are part of the natural radioactive 

decay process and are emitted as high-energy short wavelength electromagnetic 

radiation. Potassium (K), uranium (U) and thorium (Th) are the three main elements 

in the soil that have naturally occurring isotopes which emit gamma rays as they 

decay (Wilford, 2008). The rays can be detected by remote sensors because they 

can travel a reasonable distance in the air. Gamma radiometers measure natural 

emissions such as 40K, the daughter radionuclides of 238U and 232Th, and total 

emissions from all elements primarily from the top 40 cm of soil or rock. Emissions 

from the radionuclides have been used to estimate soil properties across a paddock 

such as clay content, topsoil texture, soil depth, soil pH, plant available potassium, 
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organic carbon levels and iron content (Viscarra-Rossel et al., 2007; Wong et al., 

2008, 2009; Wong and Harper, 1999). 

 

 

FIGURE 2.4: A GAMMA RADIOMETER. 

 

2.5.3 COMBINING EMI AND GR SENSING 

In certain landscapes, the use of EMI sensing alone for measuring soil properties can 

be problematic. The occurrence of salt in the landscape can make it difficult to 

differentiate between clay soils and saline sandy soils since both give high ECa 

readings. Additionally, EMI sensing cannot distinguish sandy soils from gravels 

because both materials give low ECa readings. This makes it difficult to estimate soil 

depth and PAWC from EMI sensor outputs in landscapes containing shallow soils 

over gravel (Wong et al., 2009). Similarly, GR sensing cannot discriminate between 

soils of varying gravel and clay content as they both give strong signals. These 

limitations can be overcome by combining EMI sensing with gamma radiometry as 

complementary technologies for soil mapping and interpretation. Wong et al. 

(2008, 2010) used both EMI and GR sensors to map the soil properties of a West 

Australian cropping paddock that contained sands, clays, gravels and saline soils. By 

combining the ECa and GR paddock survey data, Wong et al. (2010) predicted soil 

characteristics in the highly weathered sands and gravel soils in the Western 

Australian wheatbelt using a rule-based method and derived a set of rules for 
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combining the interpretation of dual EM38 and GR sensor data. These rules are 

summarised in Table 2.3. 

 

TABLE 2.3: RULES FOR INTERPRETATION OF DUAL EM38 AND GAMMA RADIOMETRIC SENSOR DATA.  

Rule number and 

description 

ECa (mS/m) 40K counts (100/s) Grower’s description 

of soil type 

1. High–medium 

2. Low–high 

3. Low–low 

4. Low–medium 

5. High–high 

>20 

<15 

<10 

<15 

>20 

<80 

>80 

<40 

40–80 

>80 

Good sand 

Shallow gravelly 

Poor sand 

Medium sand 

Red clayey 

Source: Wong et al. (2010) 

 

2.5.4 ACQUISITION OF HIGH-RESOLUTION MEASUREMENTS OF PASTURE BIOMASS 

USING AN NDVI PROXIMAL SENSOR 

Recently, a range of relatively low cost ‘on-the-go’ optical sensors for collecting geo-

referenced, high-resolution data about biomass in the paddock has become 

available that overcome many of the constraints and drawbacks of manual 

measurement or estimation described above. Unlike satellite-based sensors, these 

devices are ‘self-contained’, having their own light source. The Crop CircleTM and 

Greenseeker® sensors are examples of these LED-based active sensors. A single LED 

provides both red (~650 nm) and near-infrared (NIR) (~880 nm) output (Holland et 

al., 2004). The NDVI, produced from these ‘active optical sensors’, has been 

extensively used in crop nitrogen management (Holland et al., 2004; Inman et al., 

2005; Lamb et al., 2009; Tremblay et al., 2009). There has been considerably less 

research investigating the use of these sensors for measuring and managing 

pastures (Trotter et al., 2010a). 
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2.5.5 OTHER PROXIMAL SENSING TECHNOLOGIES 

While proximal sensors are widely used to identify potential management zones 

and to map soil properties such as salinity, clay and soil water content, the 

development of sensing technologies that can measure soil fertility and pH status 

for agronomic management are still in the development stage (Adamchuk et al., 

2004). Recently, Veris Technologies (Salina, Kansas, USA) released a sensor to log 

soil organic matter, EC and CEC values ‘on-the-go’. To calibrate the sensor, 

‘traditional’ soil sampling is carried out with sample locations guided by the results 

from the sensor for calibrating the sensor output to laboratory-tested organic 

matter and CEC values. Field testing has shown the unit to have variable accuracy at 

this stage (Cho and Sudduth, 2016; Kweon et al., 2013; Schirrmann et al., 2011). 

2.6 CONCLUSIONS 

The continued integration of crop and legume-based pasture–livestock phases in a 

mixed farming system offers great benefits to Australian dryland farming systems 

into the future. Legume pastures are one of the few reliable means for building soil 

organic matter, and the emerging threat of herbicide-resistant weeds will increase 

the need for animals in the system in the future.  

The ongoing run-down in soil fertility and soil carbon under cropping rotations 

(Keating and Carberry, 2010) is also likely to constrain the extent of continuous 

cropping rotations. The balance between crop and pasture–livestock enterprises is 

highly sensitive to price differentials between grain and livestock products.  

Increased climate variability being observed in many of Australia’s mixed crop–

livestock regions will require flexible production options. In the longer term, energy 

prices and consequently nitrogen fertiliser prices will continue to rise, making the 

economics of obtaining a greater proportion of nitrogen from legumes, particularly 

pasture legumes, attractive. 

The use of precision agriculture (PA) on a whole-of-farm basis provides farmers with 

the opportunity to take advantage of technologies that can improve farm efficiency 

and productivity through the flexible use of resources between enterprises that are 

facilitated by mixed farming systems. The use of PA technologies has the potential 
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to enable pasture–livestock phases to improve the sustainable productivity of 

cropping systems. However, at this stage, there is no evidence in the literature that 

explores the effects within a paddock through multiple cropping and pasture 

phases. At the moment, many producers have a significant bank of data on the 

cropping phase of a rotation, but virtually no data on what is happening during the 

pasture rotation and certainly none at the sub-paddock scale. There is no data on 

how livestock use a paddock over time and no data on nutrient transfers. During 

pasture phases, the paddock and livestock generally receive only minimal 

management attention. There are no measurements, at the sub-paddock scale, of 

the relationships between production during the cropping phase and the pasture 

phase.  

For example, do areas of high crop production correlate with areas of high pasture 

production? These are significant knowledge gaps. The research described in this 

thesis explores some of these knowledge gaps by using readily available PA 

technologies to monitor and explore the relationships between crop and pasture 

productivity at the sub-paddock scale. 

The following hypotheses were tested: 

HYPOTHESIS 1: Spatial variation in biomass production over time is correlated 

between the cropping and pasture phases of mixed farming enterprises. 

If Hypothesis 1 is proven from a preliminary analysis of remotely sensed satellite 

data in Chapters 3 and 4, then two further hypotheses will be tested. These are: 

HYPOTHESIS 2: Spatial variation of production in the crop and pasture phases of a 

mixed farming system can be identified and quantified at high resolution using PA 

technologies.  

HYPOTHESIS 3: Data acquired using PA technologies can be used to create a single 

index of paddock productivity that describes the spatial variation in, and temporal 

stability of, crop and pasture production over time. 
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CHAPTER 3. TEMPORAL AND SPATIAL CORRELATION OF PASTURE AND 

CROP BIOMASS WITHIN PADDOCKS USING MODIS NDVI 

3.1 INTRODUCTION 

As discussed in Chapter 2, there is little information available regarding the 

relationships between the spatial variation of biomass production in both the 

cropping and pasture phases of a paddock rotation in Australian mixed farming 

systems, particularly at the sub-paddock scale. For the most part, paddocks in the 

pasture phase tend to be managed as single units, ignoring the existence of 

productivity gradients across the landscape (Hill et al., 1999).  

While historical data on spatial variation in crop yields is available from producers 

who use properly calibrated yield monitors during harvest, there are no long-term 

records of paddock pasture ‘yields’, particularly at the sub-paddock scale, held by 

producers. Measurements of pasture productivity have historically relied on 

harvesting, drying and weighing samples from quadrats, which is a time-consuming 

and expensive task. 

An alternative approach to measuring crop and pasture yield is to use the spatial 

variation in remotely sensed biomass as a surrogate for yield. In an Australian 

context, the agronomic basis to using remote sensing of biomass to forecast crop 

yields has been discussed by Smith et al. (1995), Perry et al. (2013) and Schutt et al. 

(2009) and for pasture yields by Hill et al. (2004), Donald et al. (2010a) and 

Edirisinghe et al. (2011). The advantage of this approach is that remotely sensed 

spectral reflectance indices can be used to estimate crop and pasture biomass. The 

NDVI itself (like other remotely sensed vegetation indices) is not an intrinsic physical 

quality of plants. It is an optical measure of canopy greenness, being comprised of a 

mathematical combination of spectral bands. While a platform such as Landsat 7 

TM/ETM+ (30 m spatial resolution) provides higher resolution data than MODIS 

(Headley, 2012), the temporal coverage (every 16 days) combined with the higher 

probability of cloud contamination (Ju and Roy, 2008) can restrict the availability of 
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Landsat images to just a few scenes each year. This would have limited the analysis. 

Additionally, there have been image quality issues with Landsat 7 since 2003, due to 

an irreparable fault in the satellite’s sensors (Chapter 2, p. 17). MODIS NDVI data 

was therefore chosen as a proxy measure of biomass production.  

The objective described in this and the following chapter was to investigate the 

nature of the relationship in spatial variation between pasture and crop yields using 

MODIS NDVI as an indirect measure of changes in biomass at the sub-paddock scale 

in two different regions of Australia and across a range of seasons. Having many 

years of historical MODIS satellite images available meant that sufficient seasons of 

data could be obtained to describe paddock performance.  

This chapter tested Hypothesis 1 (Chapter 2, p. 36) that, “spatial variation in 

biomass production over time is correlated between the cropping and pasture 

phases of mixed farming enterprises”. This chapter describes the study sites and the 

initial testing of the hypothesis using low-resolution MODIS NDVI data. 

3.2 MATERIALS AND METHODS 

3.2.1 STUDY SITES 

Two properties were used for the study: “Milroy”, a 1900 ha sheep and cropping 

enterprise located at Brookton (32.22oS, 116.57oE), 120 km east of Perth, WA and 

“Grandview”, a 2250 ha cattle and cropping enterprise located 10 km south of 

Yarrawonga (36.05oS, 145.60oE) in north-eastern Victoria (Figure 3.1). Wheat 

(Triticum spp.) and canola (Brassica napus L.) are the main crops grown on both 

properties.  

“Milroy” has a mean annual and growing season (April–October) rainfall of 437 mm 

and 357 mm, respectively (Australian Bureau of Meteorology (BOM), Brookton 

patched-point data 1970–2000). Rainfall is winter dominant. The mean daily 

maximum temperature is 24.1°C and the mean daily minimum temperature is 

9.8°C. Growing season temperatures range from a mean maximum of 20.2°C to a 

mean minimum of 7.0°C. “Grandview” has a mean annual and growing season 

(April–October) rainfall of 539 mm and 359 mm, respectively (BOM Yarrawonga 

data-drill 1970–2000). Rainfall is winter dominant. The mean daily maximum 
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temperature is 22.0°C and the mean daily minimum temperature is 8.9°C. Growing 

season temperatures range from a mean maximum of 17.8°C to a mean minimum 

of 5.9°C. 

Detailed rainfall data is shown in Table 3.1. 

On each property, three paddocks were identified that had historically been in 

pasture/crop rotations. Pastures on “Milroy” are predominantly self-sown and 

dominated by subterranean clover (Trifolium subterraneum L.) and capeweed 

(Arctotheca calendula L.) with some serradella (Ornithopus sativus Brot.), barley 

grass (Hordeum glaucum Steud.) and annual ryegrass (Lolium rigidum Gaud.). After 

a continuous cropping rotation (three years or more), annual pastures at “Milroy” 

are generally re-sown. At “Grandview”, the crop and pasture phases are each of six 

years’ duration. Pastures comprise lucerne (Medicago sativa L.), subterranean 

clover and chicory (Chicorium intybus L.), and are established by undersowing with 

the crop in the last cropping year. Pasture and crop rotations across the three 

selected paddocks at each property are described in Table 3.2.  

At “Milroy”, soil landscapes fall within the Pingelly subsystems Pn_1 and Pn_3u. 

Pn_1 is described as “gravelly hill crests and upper slopes with sandy gravels and 

small areas of pale deep sands and loamy gravels”. Pn_3u is described as “mainly 

sandy and loamy duplexes with some loamy earths, coarse granitic sands, doleritic 

clay loams and shallow gravelly rises. Mainly York Gum, Jam and Wandoo 

woodland” (Verboom and Galloway 2004). Soils at “Grandview” comprise brown 

sodosols and patches of vertosols (Isbell 2016) with surface soils of stony sandy 

loams and sandy clay loams. 
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FIGURE 3.1: LOCATION OF THE TWO STUDY SITES IN AUSTRALIA. “MILROY” FARMING ENTERPRISES 

ARE CROPPING AND CROSS-BRED SHEEP ON AN ANNUAL PASTURE SYSTEM, WITH SUBTERRANEAN 

CLOVER, CAPEWEED AND SERRADELLA. “GRANDVIEW” FARMING ENTERPRISES ARE CROPPING AND 

CATTLE ON A PERENNIAL PASTURE SYSTEM, WITH LUCERNE, SUBTERRANEAN CLOVER AND CHICORY. 

 

TABLE 3.1: ACTUAL RAINFALL RECEIVED 2004–2011 AS GROWING SEASON RAINFALL (GSR) AND 

ANNUAL RAINFALL, AND AS A PERCENTAGE OF LONG-TERM AVERAGE GSR AND ANNUAL RAINFALL FOR 

“MILROY” AND “GRANDVIEW”. 

 

2004 2005 2006 2007 2008 2009 2010 2011 Ave 

“MILROY”          

GSR 263.9 428.4 227.9 360.8 416.3 327.7 161.7 330.8 381.0 

% of average GSR 74% 120% 64% 104% 117% 92% 45% 93%  

Annual rainfall 303.7 501.3 391.7 391.5 494.2 439.2 256.4 466.7 405.6 

% of average 

annual rainfall 

70% 115% 90% 90% 113% 100% 59% 107%  

“GRANDVIEW”          

GSR 260 333.5 148 190 155 245 406.5 242.5 338.3 

% of average GSR 72% 93% 41% 53% 43% 68% 113% 67%  

Annual rainfall 365 567.5 217 355 334 293 794 687.5 517.5 

% of average 

annual rainfall 

68% 105% 40% 66% 62% 54% 147% 127%  
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TABLE 3.2: PADDOCK ROTATIONS FOR “MILROY” AND “GRANDVIEW”. THE PADDOCK NOTATION (E.G. 

M25) IS THE SYSTEM USED BY THE FARM OWNER TO IDENTIFY INDIVIDUAL PADDOCKS. 

Paddock 2004 2005 2006 2007 2008 2009 2010 2011 

“MILROY”      

M25 (53 ha) wheat pasture pasture barley pasture wheat pasture pasture 

M41 (70 ha) lupins barley pasture pasture canola wheat pasture pasture 

M45 (67 ha) wheat lupin pasture canola wheat pasture barley pasture 

“GRANDVIEW”     

GV4 (63 ha) pasture wheat oaten 

hay 

canola wheat canola wheat pasture 

GV8 (38 ha) pasture canola wheat wheat canola wheat wheat pasture 

GV39 (60 ha) pasture canola wheat canola wheat wheat barley pasture 

 

3.2.2 MODIS SATELLITE DATA 

The NDVI data sets for 2004–2011 used in this study were derived from composite 

images of daily MODIS NDVI from the radiometers carried on the Terra and Aqua 

satellites, and were provided by Landgate's Satellite Remote Sensing Services unit in 

Perth, Western Australia. The NDVI data was calculated from calibrated, top-of-

atmosphere reflectances. The daily NDVI images were composited into weekly 

images using the Maximum Value Composite (MVC) process described by Holben 

(1986) to minimise atmospheric effects and to remove cloud and cloud-shadow 

pixels. Any pixels in the resulting composite that had a ‘no data’ value due to cloud 

cover were filled by using the value from the previous week's NDVI composite at 

the same location. The MODIS images have a ground resolution of approximately 

250 metres square with an ortho-rectification accuracy of approximately ±50 m 

(Smith et al., 2011). The datasets contained 52 or 53 NDVI observations per pixel 

per year, depending on the annual starting date. The dataset values were located to 

pixel centres using ArcGIS 10.2 (ESRI Redlands, California, USA) so that pixels lying 

within the study paddocks boundaries could be identified. MODIS pixels for each 

paddock are shown at Appendices 1 and 2. 
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Selection of MODIS pixels for use in the analysis 

MODIS pixel spatial resolution of 6.25 ha in paddocks of 60–100 ha can mean that a 

significant number of the pixels for a paddock may contain ‘corrupted’ data values, 

e.g. pixels that straddle paddock boundaries, areas containing rocky outcrops, or 

contaminated by other types of vegetation such as forested areas. This limited the 

number of pixels that could be used in the analysis. Mixed pixels (those that were 

not predominantly crop or pasture within the nominated paddocks) were also 

removed from the analysis (e.g. see Figure 3.2). This comprised pixels with more 

than 20% of their total area not in either pasture or crop and/or lying outside the 

paddock boundary. 

 

 

FIGURE 3.2: EXAMPLES OF THE DISTRIBUTION OF MODIS PIXELS (250 M X 250 M) OVER “MILROY” 

(WA) PADDOCK M41 (A) AND “GRANDVIEW” (VIC) PADDOCK GV39 (B). PIXELS MARKED WITH A 

YELLOW TICK WERE INCLUDED IN THE ANALYSIS. OTHER PIXELS WERE CONSIDERED EITHER TOO 

CONTAMINATED BY BUSHLAND, WATER OR ROCKY OUTCROPS OR HAD INSUFFICIENT PIXEL AREA FALLING 

WITHIN THE PADDOCK BOUNDARY TO BE INCLUDED. 
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Data processing and analysis 

The analysis had three parts: 

1. Analysing the relationships, on a year-by-year basis, between individual 

paddock pixels when in a cropping or pasture phase. 

2. Identifying the spatial trend of annual NDVI values, over time, by 

calculating a mean value of each pixel for the eight years of the study. 

3. Identifying the stability, over time, of NDVI values across a paddock, by 

pixel. 

1. Comparison of annual NDVI values: For the pixels retained for analysis, weekly 

MODIS NDVI data values were extracted from weekly maximum value composites, 

over the period 2004–2011. For each year, the 52 weekly NDVI values (January to 

December), were summed to create a total annual NDVI value. The accumulated 

NDVI was used as a surrogate for green biomass growth, through continuous 

additions of NDVI through the year. This resulted in values between 16 and 26 for 

annual accumulated NDVI, depending on the pixel and the season. The use of 

accumulated NDVI as an estimate of annual biomass production is common in the 

literature, either as a summation of weekly NDVI values, or as the integral of the 

area under an NDVI time-series curve (Bradley et al., 2007; Ferencz et al., 2004; Hill 

and Donald, 2003; Jönsson and Eklundh, 2004; Reed et al., 1994, 1996). Capturing 

the NDVI values across the year also takes into account the variability in plant 

growth rates across the season, particularly in pasture phases, where different plant 

successions may dominate at different times of the year, e.g. sub-clover early in the 

season and capeweed late in the season.  

Because in some years the paddocks were in pasture and other years in crop (and a 

variety of crops including canola), standardisation of the data was also explored 

using the methodology described in Blackmore (2000) and Fisher et al. (2009). 

However, the analysis showed no difference between using the raw NDVI values or 

standardising the data, so the standardising approach was not pursued.  

2. Calculation of the spatial trend in NDVI pixel values: Once the accumulated 

annual NDVI data sets had been created, they were analysed for spatial trends. 
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Correlation analyses were run on the accumulated annual MODIS NDVI values for 

each pixel in each paddock using the JMP v.12.2.0 software package (SAS Institute 

Inc, Cary, North Carolina,USA) to determine if relationships existed between the 

pasture phase and crop phase NDVI values on a pixel-by-pixel basis over the eight 

years for which data were available.  

3. Calculating the temporal stability of NDVI pixel values over time: The temporal 

stability of crop or pasture production comprises two elements. The first is the 

variation that occurs between the paddock mean yield from year to year. Blackmore 

(2000) referred to this as the ‘inter-year offset’ and defined it as the difference 

between the mean yield value between two years in the same paddock. The largest 

driver of this variation in temperate cropping zones is variability in annual rainfall 

(Turner and Asseng, 2005). 

The second temporal effect involves situations in which a particular part of a 

paddock produces above average yield in one year and below average yield in 

another year, irrespective of rainfall. This alternating pattern of relative grain yield 

has been referred to as the ‘flip-flop effect’ (Nuttall and Armstrong, 2006). 

Blackmore et al. (2003) termed this variation the ‘temporal variance at a single 

point’. 

In terms of the MODIS NDVI analysis described here, temporal stability is measured 

by the between-season variability for each pixel, i.e. how stable the estimate of 

production from a particular part of the paddock is over time under different 

seasonal conditions. It was measured by calculating the standard deviation for each 

mean pixel NDVI value over time. The temporal standard deviation indicates the 

amount of change in accumulated NDVI for a particular pixel over time. If a pixel 

was temporally stable in regard to total NDVI, it showed a persistent relationship 

with the median value for a period of time. A pixel was considered temporally 

stable if the median relative difference was near zero and there was a small 

standard deviation. 
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3.3 RESULTS 

3.3.1 ANNUAL VARIATION IN NDVI 

Tables 3.3 and 3.4 show the accumulated annual NDVI value for each MODIS pixel 

used, the paddock means, the associated standard deviations and GSR for “Milroy” 

and “Grandview”, respectively.  

Table 3.5 summarises the correlation analyses, showing the range of correlation 

coefficients for accumulated annual NDVI for crop years, pasture years, and crop x 

pasture years between 2004 and 2011 for each of the three paddocks at “Milroy” 

and “Grandview”. The data sets were approximately normally distributed. 

Figure 3.3 is an example of a scatterplot matrix from the cross-correlation analysis 

of annual accumulated NDVI values for each pixel for each year. The example is for 

paddock M45 based on the data from Table 3.3. Correlations are linear and positive. 

The effect of low rainfall in 2006 and 2010 is reflected in lower r-values. Scatterplot 

matrices for the remaining paddocks are in Appendices 3 and 4.  

“Milroy”: Paddock M25 

In this paddock, all cropping years showed strong positive correlations for NDVI 

values for individual MODIS pixels with r-values between 0.78 and 0.97 (Table 3.5). 

This indicates that the same NDVI value pixels were consistently high over time and 

low NDVI value areas were consistently low. There was a similar pattern when 

comparing years in which the paddock was in pasture, with r-values ranging from 

0.59 to 0.94, except in the 2006 drought year which had an r-value of 0.36.  

When comparing pixel biomass production between crop years and pasture years 

(16 combinations), the correlation matrix gave strong r-values ranging from 0.71 to 

0.96, with one weak value of 0.44 between 2004 (wheat) and 2008 (pasture), and 

two medium strength correlations of 0.55 and 0.61.  

“Milroy”: Paddock M41 

For the cropping years (six combinations), there was only one strong positive r-

value (0.97). Other r-values ranged between –0.37 and 0.43. These were all 

associated with the 2004 (lupin) or 2005 (barley) years. For years in which the 
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paddock was in pasture, all r-values were strong and positive, ranging from 0.70 to 

0.98. Correlation between crop and pasture phases showed eight combinations 

with r-values between 0.61 and 0.99. The lowest r-value was –0.43, between the 

2004 (lupin) and 2007 (pasture) years. There were seven other weak correlations, 

three associated with 2004 (lupin) and four with 2005 (barley).  

“Milroy”: Paddock M45 

In this paddock, all cropping years showed strong positive correlations with r-values 

between 0.65 and 0.91. There was a similar pattern when comparing years in which 

the paddock was in pasture with r-values between 0.74 and 0.97. The interaction 

between crop and pasture phases showed 11 combinations with r-values between 

0.84 and 0.98 and four combinations, all associated with the 2006 drought year, 

with r-values between 0.55 and 0.69.  

“Grandview” 

The 2006 drought season had the lowest mean NDVI value in all three paddocks. 

The 2006 season received 40% of average GSR. The 2010 and 2011 seasons had the 

highest mean NDVI values for all paddocks and received 147% and 127% of 

“Grandview” average annual rainfall, coinciding with the transition from a cropping 

phase to a new pasture phase. 

“Grandview”: Paddock GV4 

Pairwise correlations for accumulated annual NDVI for paddock GV4, between all 

cropping years (15 combinations), were generally poor with only three r-values 

between 0.89 and 0.98. The remaining 12 were between –0.91 and 0.40. Nine of 

these were associated with either the 2007, 2008 or 2010 seasons. For the only 

pasture–pasture combination (2004/2011), the r-value was 0.74. Pasture–crop 

interactions (12 combinations) had five r-values between 0.52 and 0.98. Seven were 

between –0.63 and 0.33, with five of these associated with the 2008 or 2011 

seasons.  
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“Grandview”: Paddock GV8  

Eight of the 15 combinations for crop years had r-values between 0.53 and 0.99. 

There were seven between –0.90 and 0.38, of which five were associated with the 

2007 or 2008 years. For the two years in which the paddock was in pasture (2004 

and 2011), the r-value was 0.92. Crop/pasture pairwise comparisons (12 

combinations) had eight r-values between 0.56 and 0.94. There were four between 

–0.85 and 0.33, all associated with the 2007 or 2008 seasons.  

“Grandview”: Paddock GV39 

Seven of the 15 combinations for cropping phase correlations had r-values between 

0.54 and 0.96. There were seven combinations with r-values between –0.25 and 

0.40, of which six were associated with 2007 or 2008. For the two years in which the 

paddock was in pasture (2004 and 2011), the r-value was 0.96. Crop/pasture phase 

comparisons (12 combinations), showed nine with r-values between 0.61 and 0.99 

and four between –0.36 and 0.10. All four were associated with 2007 or 2008.  

3.3.2 SPATIAL TREND 

Tables 3.6 and 3.7 show the temporal trends at the sub-paddock scale using the 

means of NDVI values for each of the MODIS pixels used and also overall paddock 

NDVI means for “Milroy” and “Grandview”, respectively. The temporal means show 

the average NDVI value for each pixel in a paddock over the eight years of the 

study.  

Values are shown for (i) all years irrespective of whether the paddock was in crop or 

pasture, (ii) for years when in crop, and (iii) for years when in pasture. MODIS pixels 

with a mean greater than the paddock mean could be expected to have higher 

production than the paddock average in most seasons, and vice versa. This is a 

measure of the consistency of spatial variation over time. For example, in “Milroy” 

paddock M25, pixels 45 and 46 consistently had the highest NDVI value whether in 

crop or pasture.  

Similarly, in “Grandview” paddock GV4, pixels 46 and 48 had the highest mean NDVI 

values across all years irrespective of whether the paddock was in pasture or crop, 

while pixels 51 and 52 had the lowest mean values across all years and rotations.  
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Table 3.8 shows the results of a correlation analysis of the data in Tables 3.6 and 

3.7. Spearman’s correlation co-efficient was used because of the small sample size. 

All combinations of variables show strong and significant correlations at “Milroy” 

and two strong correlations at “Grandview”, with one of these significant. That is, 

except for “Grandview” paddock GV8, over the eight years of the study, MODIS 

pixels with a high mean NDVI when in crop could be expected to have a high mean 

NDVI when in pasture, and vice versa. 

3.3.3 TEMPORAL STABILITY 

Tables 3.9 and 3.10 show the standard deviations in the long term (2004–2011) 

NDVI for “Milroy” and “Grandview”, respectively. Values are shown for each pixel 

for all years (s.d. all), crop years only (s.d. crop) and pasture years only (s.d. past).  

The medians shown were derived from descriptive statistics for the NDVI data. 

Pixels with an s.d. lower than the median could be considered relatively stable in 

biomass production over time whereas pixels with a high value for temporal s.d. 

could be yielding high in some years and low in others, i.e. relatively unstable over 

time (Blackmore, 2000) and showing inconsistent behaviour.  

“Milroy” 

In paddock M25, for all years, the most stable pixels were 46, 51 and 58. This was 

also the case with pasture years. For crop years, pixels 46, 51 and 52 were the most 

stable. Overall, the standard deviations for pasture were significantly larger than for 

crop, indicating greater variation in pasture production across the paddock than for 

crop.  

In paddock M41, for all years, pixels 3, 4 and 5 were most stable. Again, this was the 

case for pasture. For crop, pixels 3, 5 and 6 were most stable. In M45, for all years, 

pixels 24, 25, 33 and 34 were most stable. For pasture, it was pixels 25, 27, 33 and 

34 and for crop years pixels 21, 23, 24 and 25. 

“Grandview” 

In paddock GV4, for all years, the most stable pixels were 46, 47 and 51. This was 

also the case with pasture and cropping years.  
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In paddock GV8, for all years, pixels 37 and 38 were most stable. Again this was the 

case for pasture and crop years. In GV39, for all years, pixels 1, 8 and 15 were most 

stable. This was also the case for pasture years. However, in cropping years, pixels 

9, 16 and 17 were most stable. 
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TABLE 3.3: RAW ACCUMULATED ANNUAL NDVI VALUES AND GSR (MM), FOR “MILROY” PADDOCKS, 

2004–2011. 

 Pixel 2004 2005 2006 2007 2008 2009 2010 2011 

  wheat past past barley past wheat past past 

M25 45 20.56 24.89 17.98 22.14 24.66 20.45 21.23 21.56 

 46 20.94 24.27 17.58 21.89 24.19 20.47 20.97 22.32 

 51 19.65 23.78 17.35 20.65 23.85 19.44 20.22 21.24 

 52 20.08 24.38 17.25 20.81 24.21 19.57 20.62 21.51 

 58 20.11 23.55 17.35 20.43 23.03 18.90 20.09 20.60 

 mean 20.27 24.17 17.5 21.18 23.99 19.77 20.63 21.45 

 s.d. 0.5 0.53 0.3 0.78 0.61 0.68 0.48 0.62 

  lupin barley past past canola wheat past past 

M41 3 18.86 22.55 19.28 20.04 23.54 20.48 21.02 21.91 

 4 19.49 23.55 17.88 18.80 22.66 18.42 20.44 20.09 

 5 19.61 23.27 17.11 18.63 22.47 18.62 18.81 19.70 

 6 19.70 22.40 16.38 18.40 22.26 18.40 17.46 19.40 

 11 18.27 22.85 15.78 18.92 21.56 17.20 19.01 18.32 

 12 18.57 23.29 16.02 18.84 21.34 17.36 18.20 18.23 

 mean 19.08 22.98 17.08 18.94 22.31 18.41 19.16 19.61 

 s.d. 0.6 0.46 1.32 0.57 0.8 1.17 1.35 1.35 

  wheat lupin past canola wheat past barley past 

M45 20 17.29 21.48 14.67 17.97 20.21 17.99 18.66 19.20 

 21 18.09 21.30 14.69 18.59 20.42 18.04 17.34 18.85 

 23 16.23 20.17 12.85 16.69 18.02 16.34 16.80 17.47 

 24 15.95 18.82 12.63 16.35 16.82 15.39 15.41 16.40 

 25 16.23 19.24 14.45 16.30 18.75 16.46 15.90 17.16 

 27 15.37 18.63 12.28 14.74 16.02 15.02 14.45 15.84 

 33 16.45 19.41 13.88 15.54 15.24 15.90 14.67 17.01 

 34 17.26 20.07 14.61 15.94 16.69 16.89 15.77 17.26 

 mean 16.61 19.89 13.76 16.52 17.77 16.5 16.3 17.4 

 s.d. 0.88 1.07 1.02 1.25 1.91 1.11 1.41 1.13 

  GSR 263.9 428.4 227.9 360.8 416.3 327.7 161.7 330.8 
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TABLE 3.4: RAW ACCUMULATED ANNUAL NDVI VALUES AND GSR (MM) FOR “GRANDVIEW” 

PADDOCKS, 2004–2011. 

 Pixel 2004  2005  2006  2007  2008  2009  2010  2011  

  past wheat oaten hay canola wheat canola wheat past 

GV4 46 22.28 23.84 18.25 21.50 19.88 20.79 23.59 25.08 

 47 22.19 23.82 18.32 21.20 19.76 19.25 23.97 25.11 

 48 22.41 24.52 18.40 21.17 19.75 19.56 24.18 26.05 

 51 22.00 22.67 17.66 20.21 20.15 19.97 24.44 24.99 

 52 21.97 22.26 17.42 20.18 19.79 19.70 24.46 25.10 

 mean 22.17 23.42 18.01 20.85 19.87 19.85 24.13 25.27 

 s.d. 0.19 0.93 0.44 0.61 0.17 0.58 0.36 0.44 

  past canola wheat wheat canola wheat wheat past 

GV8 37 22.48 21.81 18.48 21.56 19.77 20.87 22.34 26.09 

 38 22.87 21.84 19.34 22.60 20.36 21.73 23.45 25.57 

 40 24.31 22.19 19.72 22.40 19.34 22.67 24.68 28.75 

 42 23.57 22.31 19.19 21.67 18.81 22.62 24.38 28.22 

 mean 23.31 22.04 19.18 22.06 19.57 21.97 23.71 27.16 

 s.d. 0.81 0.25 0.52 0.52 0.66 0.86 1.05 1.57 

  past canola wheat canola wheat wheat barley past 

GV3

9 

1 19.94 20.52 17.10 21.30 20.60 21.07 23.67 23.14 

 8 21.71 21.64 18.11 21.34 19.87 20.64 23.60 25.46 

 9 22.85 22.10 18.71 20.39 20.04 21.16 23.84 28.69 

 15 22.92 23.24 19.08 22.41 20.34 21.11 24.34 26.89 

 16 23.49 22.76 19.39 20.79 20.43 21.50 24.02 29.86 

 17 23.66 23.18 19.72 21.21 20.68 21.52 24.40 29.81 

 mean 22.43 22.24 18.09 21.24 20.33 21.17 22.98 27.31 

 s.d. 1.4 1.05 0.96 0.68 0.32 0.32 0.34 2.67 

 GSR 260 333.5 148 190 155 245 406.5 242.5 
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FIGURE 3.3: PAIRWISE SCATTERPLOTS SHOWING PEARSON CORRELATION COEFFICIENTS (R) BETWEEN 

ACCUMULATED ANNUAL MODIS NDVI PIXEL VALUES, 2004–2011, FOR “MILROY” PADDOCK M45. 

FOR EXAMPLE, THE R-VALUE BETWEEN 2005 (CROP) AND 2009 (PASTURE) IS 0.9583 (AN R-VALUE 

OF 1 IMPLIES PERFECT CORRELATION). THE DENSITY ELLIPSES (RED LINES) ENCLOSE APPROXIMATELY 

95% OF THE POINTS. 
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TABLE 3.5: HIGHEST AND LOWEST PEARSON CORRELATION COEFFICIENTS (R-VALUES) FOR “MILROY” 

AND “GRANDVIEW” PADDOCKS, FROM CROSS-CORRELATION ANALYSIS OF ACCUMULATED ANNUAL 

NDVI BETWEEN CROPPING PHASES, PASTURE PHASES AND CROPPING X PASTURE PHASES. 

 Between: 

 Crop years Pasture years Crop & pasture years 

“MILROY” M25    

       Lowest r-value 0.78 (2004/2009) 0.36 (2006/2011) 0.44 (2004/2008) 

       Highest r-value 0.97 (2007/2009) 0.94 (2005/2008) 0.96 (2007/2010) 

“MILROY” M41    

       Lowest r-value –0.37 (2005/2009) 0.70 (2007/2011) –0.43 (2004/2007) 

       Highest r-value 0.97 (2008/2009) 0.98 (2006/2011) 0.99 (2008/2011) 

“MILROY” M45    

       Lowest r-value 0.65 (2004/2008) 0.74 (2006/2011) 0.55 (2006/2010) 

       Highest r-value 0.91 (2007/2008) 0.97 (2009/2011) 0.98 (2005/2011) 

“GRANDVIEW” GV4    

       Lowest r-value –0.91 (2007/2010) 0.74 (2004/2011) –0.63 (2004/2010) 

       Highest r-value 0.98 (2005/2006) 0.74 (2004/2011) 0.98 (2004/2005) 

“GRANDVIEW” GV8    

       Lowest r-value –0.9 (2005/2008) 0.92 (2004/2011) –0.85 (2008/2011) 

       Highest r-value 0.99 (2009/2010) 0.92 (2004/2011) 0.94 (2004/2010) 

“GRANDVIEW” GV39    

       Lowest r-value –0.25 (2007/2009) 0.96 (2004/2011) –0.36 (2007/2011) 

       Highest r-value 0.96 (2005/2006) 0.96 (2004/2011) 0.99 (2004/2006) 

Values in bold significant at P=0.05 
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TABLE 3.6: TEMPORAL NDVI MEANS FOR “MILROY” PADDOCKS, 2004–2011. MEANS ARE SHOWN 

FOR ALL CROP/PASTURE YEARS, CROP YEARS ONLY AND PASTURE YEARS ONLY. 

Paddock Pixel All years Crop years Pasture years 

M25 45 21.69 21.05 22.07 

 46 21.58 21.10 21.86 

 51 20.77 19.91 21.29 

 52 21.05 20.15 21.59 

 58 20.51 19.81 20.92 

Paddock mean 21.12 20.41 21.55 

M41 3 20.96 21.36 20.56 

 4 20.16 21.03 19.30 

 5 19.78 20.99 18.56 

 6 19.30 20.69 17.91 

 11 18.99 19.97 18.01 

 12 18.98 20.14 17.82 

Paddock mean 19.7 20.7 18.7 

M45 20 18.43 19.12 17.28 

 21 18.42 19.15 17.19 

 23 16.82 17.58 15.55 

 24 15.97 16.67 14.81 

 25 16.81 17.28 16.02 

 27 15.29 15.84 14.38 

 33 16.01 16.26 15.60 

 34 16.81 17.15 16.26 

Paddock mean 16.82 17.38 15.89 
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TABLE 3.7: TEMPORAL NDVI MEANS FOR “GRANDVIEW” PADDOCKS, 2004–2011. MEANS ARE 

SHOWN FOR ALL CROP/PASTURE YEARS, CROP YEARS ONLY AND PASTURE YEARS ONLY. 

Paddock Pixel All years Crop years Pasture years 

GV4 46 21.90 21.31 23.68 

 47 21.70 21.05 23.65 

 48 22.00 21.26 24.23 

 51 21.51 20.85 23.50 

 52 21.36 20.63 23.54 

Paddock mean 21.70 21.02 23.72 

GV8 37 21.67 20.80 24.29 

 38 22.22 21.55 24.22 

 40 23.01 21.83 26.53 

 42 22.60 21.50 25.90 

Paddock mean 22.38 21.42 25.23 

GV39 1 20.92 20.71 21.54 

 8 21.55 20.87 23.58 

 9 22.22 21.04 25.77 

 15 22.54 21.76 24.90 

 16 22.78 21.48 26.67 

 17 23.02 21.79 26.73 

Paddock mean 22.17 21.27 24.87 
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TABLE 3.8: PAIRWISE CORRELATIONS BETWEEN THE TEMPORAL MEAN PIXEL NDVI FOR “MILROY” 

AND “GRANDVIEW” BETWEEN CROP AND PASTURE PHASES. 

Paddock Spearman’s 
rho 

N P 

“Milroy”    

M25 0.90 5 <0.05 

M41 0.83 6 <0.05 

M45 0.76 8 <0.05 

“Grandview”    

GV4 0.80 5 0.1 

GV8 0.40 4 0.6 

GV39 0.82 6 <0.05 

 

  



CHAPTER 3. TEMPORAL AND SPATIAL CORRELATION OF PLANT BIOMASS WITHIN PADDOCKS USING MODIS NDVI 

 PAGE | 77 

TABLE 3.9: STANDARD DEVIATION OF NDVI PIXEL MEANS FOR “MILROY” PADDOCKS, 2004–2011. 

  Standard deviation 

Paddock Pixel All years Crop years Pasture years 

M25 45 2.27 0.95 2.84 

 46 2.16 0.72 2.76 

 51 2.20 0.65 2.71 

 52 2.36 0.63 2.93 

 58 2.02 0.80 2.49 

Median 2.2 0.72 2.76 

M41 3 1.62 2.10 1.15 

 4 2.01 2.46 1.18 

 5 2.08 2.23 1.08 

 6 2.14 1.97 1.29 

 11 2.27 2.67 1.51 

 12 2.30 2.68 1.24 

Median 2.11 2.35 1.21 

M45 20 2.04 1.71 2.34 

 21 1.99 1.65 2.20 

 23 2.05 1.59 2.41 

 24 1.73 1.31 1.95 

 25 1.55 1.58 1.41 

 27 1.78 1.67 1.87 

 33 1.68 1.87 1.58 

 34 1.59 1.74 1.43 

Median 1.75 1.66 1.9 
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TABLE 3.10: STANDARD DEVIATION OF NDVI PIXEL MEANS FOR “GRANDVIEW” PADDOCKS 2004–

2011. 

  Standard deviation 

Paddock Pixel All years Crop years Pasture years 

GV4 46 2.26 2.16 1.98 

 47 2.48 2.39 2.06 

 48 2.74 2.55 2.58 

 51 2.48 2.37 2.12 

 52 2.59 2.43 2.22 

Median 2.48 2.39 2.12 

GV8 37 2.24 1.44 2.55 

 38 1.90 1.49 1.91 

 40 3.00 2.00 3.14 

 42 2.99 2.13 3.28 

Median 2.62 1.75 2.85 

GV39 1 2.02 2.11 2.26 

 8 2.24 1.84 2.65 

 9 3.08 1.78 4.13 

 15 2.44 1.94 2.81 

 16 3.27 1.67 4.50 

 17 3.17 1.71 4.35 

Median 2.76 1.81 3.47 
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FIGURE 3.4: SOUTH-EASTERN AUSTRALIA SUFFERED A SEVERE DROUGHT BETWEEN 2006 AND 2009. 

THIS FIGURE SHOWS TOTAL RAINFALL DECILES ACROSS THE AUSTRALIAN CONTINENT FOR THE THREE 

YEARS FROM JUNE 2006 TO MAY 2009. THE LOCATIONS OF THE TWO PROPERTIES ARE INDICATED. 

DECILES ARE EXPRESSED USING LONG-TERM CLIMATOLOGY FROM 1900 TO 2009. SOURCE: 

AUSTRALIAN BUREAU OF METEOROLOGY. 

 

3.4 DISCUSSION 

The purpose of this initial analysis was to test Hypothesis 1 (Chapter 2, p. 36), that 

“spatial variation in biomass production over time is correlated between the 

cropping and pasture phases of mixed farming enterprises”. This was done using 

relatively low spatial resolution MODIS NDVI data to determine if a relationship 

existed at the sub-paddock scale and over time, between the productivity in the 

pasture and cropping phases of mixed farming rotations. In the past, MODIS NDVI 

information has been used in conjunction with rainfall and temperature data to 

estimate pasture growth rates (Donald et al., 2010, 2013; Edirisinghe et al., 2011; 

Smith et al., 2011) and crop biomass or yield (Hu et al., 2009; Perry et al., 2013; 

Schut et al., 2009; Wardlow et al., 2007; Xu et al., 2014) but has not been used to 

test correlations between crop and pasture growth. Geerken et al. (2005) used 
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correlation between NDVI time-series to classify variations in rangeland vegetation; 

Donald et al. (2010) used it to evaluate low-resolution MODIS NDVI data against 

two, higher spatial resolution data sets; and Brown et al. (2007) incorporated it to 

assist in classifying crop types.  

There is no evidence in the literature that low-resolution NDVI data has been used 

to explore the relationships between crop and pasture production within the same 

paddock(s). The results reported here indicate that the Pearson correlation 

coefficients for accumulated MODIS NDVI across all paddocks on “Milroy” had 

generally strong, positive relationships between crop, pasture and crop–pasture 

interactions. In other words, at “Milroy”, over time, the same MODIS pixels were 

high yielding irrespective of whether the paddock was in a crop or pasture phase.  

This provides evidence to support the hypothesis being tested here, that spatial 

variation in biomass production over time is correlated between the cropping and 

pasture phases of mixed farming enterprises. 

The only periods where this consistent pattern was broken at “Milroy” were 

associated with the 2006 and 2010 drought years (64% and 45% of average GSR, 

respectively). In the case of paddock M41, which was in pasture in 2006 and 2007 

and again in 2010 and 2011, the farm owner reported that the low rainfall of 2006 

and 2010 caused poor subterranean clover seed-set which carried through into 

2007 and 2011 (Hall, pers. comm.). 

The correlation relationships at “Grandview” were not as consistent, but it must be 

borne in mind that this research occurred within the ‘Millenium drought’ that 

impacted all of south-eastern Australia (Figure 3.4). Growing season rainfall (GSR) 

for “Grandview” in 2006, 2007 and 2008 was in the first decile of long-term GSR 

(1970–2000). For 2009, GSR was in the first quartile of long-term averages. In fact, 

GSR was less than average in seven of the eight years of the study (Table 3.1).  

At “Grandview”, the severity of the drought between 2006 and 2008 led to 

restricted plant growth throughout those seasons as a result of the cumulative 

negative effects on stored soil moisture, which were reflected in the NDVI results in 

2007 and 2008. Figure 3.4 shows the extent of the rainfall deficiency between 2006 
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and 2009, with “Grandview” falling within the zone delineated as ‘lowest on 

record’. During this period, all three “Grandview” paddocks were in crop (Table 3.2). 

The farm owner reported such poor crop performance in 2007 and 2008 that many 

crops on “Grandview” were cut for hay or grazed off, rather than harvested. The 

extremely poor GSR from 2006–2009 appears to have influenced the strength and 

direction of some MODIS NDVI pixel correlations. Additionally, pastures were only 

in the rotation in years 1 and 8, which presents a difficulty for meaningful statistical 

analysis. Crop and pasture phases at “Grandview” last for six years, so 2004 was the 

last of a pasture phase which was followed by six years in crop (2005–2010), with a 

new pasture phase commencing in 2011. 

The responses of perennial pastures to seasonal climatic conditions are more 

complex than annuals, as they do not exhibit the distinct beginning and end of 

season that characterises both annual pastures and crops. The pattern of perennial 

pasture growth (and associated NDVI values) at “Grandview” can be affected by 

annual rainfall outside of the crop growing season. This is especially the case if there 

is a large difference between AR and GSR. This can result in longer periods of high 

NDVI readings and bursts of photosynthesis in response to rainfall events. As such, 

the mixed perennial/annual pasture swards such as at “Grandview” may fluctuate 

more in NDVI signal strength than at “Milroy” due to differential rates of growth 

between the various constituents of the pasture. This is evident in 2011, when the 

NDVI pixel responses to the newly established pasture varied significantly, 

particularly in paddocks GV8 (s.d.=1.57) and GV39 (s.d.=2.67). These standard 

deviations were the highest across all years for both these paddocks. The annual 

rainfall in 2011 was 127% of the long-term average and followed 2010 which 

received 147% of the long-term average rainfall, so there would have been 

considerable biomass growth over a long period. In contrast, 2004 (pasture year) 

annual rainfall was 68% of the long-term average (1970–2000) and standard 

deviations were 0.19, 0.81 and 1.4 for GV4, GV8 and GV39, respectively.  

Notwithstanding the less-than-ideal seasonal conditions in the majority of years, 

there were strong and significant correlations for both spatial trend and temporal 

stability in the cropping rotations for the three “Grandview” paddocks. The only 
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exception was to temporal stability in GV8. It is not clear at this stage why this 

occurred with GV8, but there were only four pixels in the analysis and it is possible 

that there are simply too few pixels to develop a clear trend. 

Although only an indirect indicator of biomass, by measuring changes in plant 

canopy optical properties, the MODIS NDVI pixel data in this study enabled changes 

in crop and pasture growth to be tracked at the sub-paddock scale. The drawback to 

the analysis is related to the low spatial resolution, which results in mixed pixels and 

small data sets of between four and eight pixels per paddock, making it difficult to 

draw firm conclusions about sub-paddock scale spatial variation. Nonetheless, 

evidence from the results in this chapter provides grounds to accept Hypothesis 1.  

3.5 CONCLUSION 

In this chapter, MODIS NDVI was used as a proxy for biomass production to 

investigate the nature of biomass growth in crop and pasture phases in a mixed 

farming system on two properties, in different climatic regions and different states, 

of Australia.  

In the absence of any data on pasture productivity on either farm, MODIS NDVI data 

was used as an indirect measure of crop and pasture productivity over time. The 

relationship between the spectral properties of crops and pastures and their 

biomass/yield has long been recognised, and there is a significant body of published 

research on the relationship between NDVI and biomass dating back to the 1970s.  

This chapter tested Hypothesis 1 (Chapter 2, p. 36), that “spatial variation in 

biomass production over time is correlated between the cropping and pasture 

phases of mixed farming enterprises”. 

The correlations between biomass growth in cropping and pasture phases at 

“Milroy” were encouraging and generally provided evidence in support of the 

hypothesis being tested. On both properties, poor correlations appear to have been 

primarily a reflection of periods of plant stress during drought. This may be 

reflecting variations in soil water availability inherent in differing soil textures and 

also physical/chemical constraints within a paddock. This was particularly evident in 
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the drought years at “Grandview” between 2006 and 2009. These possibilities will 

be explored further in Chapter 5 using proximal soil sensing and soil testing. 

Additionally, the relatively coarse spatial resolution of MODIS data is recognised as 

a limiting factor to the spatial patterns that can be resolved in this analysis, 

particularly given the size of MODIS pixels (6.25 ha) in comparison with paddock 

sizes at “Milroy” and “Grandview” (65–100 ha). The relative size of MODIS pixels 

also means that the analysis was based on a small number of data points once 

pixels with mixed vegetation were removed, which is likely to introduce some bias. 

Despite the relatively coarse resolution data used in this initial study, the results, 

based on multiple paddocks over multiple years, indicate that relationships appear 

to exist between individual MODIS pixels between the cropping and pasture phases 

of paddock rotations over time.  

These relationships appear to hold for both annual pasture/crop-based systems at 

“Milroy” and to a lesser extent in the perennial pasture/crop system at “Grandview” 

which was badly affected by drought between 2006 and 2008. The results are 

encouraging but are hampered by the low spatial resolution of MODIS NDVI.  

The following chapter extends the MODIS NDVI analysis by creating a smoothed 

time series of the weekly NDVI composites to calculate a range of phenology 

metrics for each pixel between 2004 and 2011.  

The relationships between these metrics and paddock behaviour are explored to 

see if they can enhance the MODIS NDVI analysis and help to explain some of the 

inconsistencies reported in this chapter. 
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CHAPTER 4. ANALYSIS OF CROP AND PASTURE PHENOLOGY WITH 

MODIS NDVI TIME SERIES 

4.1 INTRODUCTION 

The previous chapter described the analysis of accumulated MODIS NDVI data over 

an eight-year period to determine if there was any correlation, over time, in 

biomass production between the cropping and pasture–livestock phases in two 

mixed farming systems. The analysis, which used a broad metric in the form of total 

accumulated annual NDVI, showed a strong correlation, on a pixel-by-pixel basis, in 

biomass production across the experimental paddocks at “Milroy”. The exceptions 

were due to drought effects in 2006 and 2010. The correlations for “Grandview” 

were less clear but were likely to have been affected by the millennium drought. In 

this chapter, Hypothesis 1, that “spatial variation in biomass production over time is 

correlated between the cropping and pasture phases of mixed farming enterprises”, 

is further tested by comparing crop and pasture phenology in each paddock MODIS 

pixel to determine if correlations exist between crop and pasture phenology. This is 

done using the TIMESAT 3.1 software package developed by Jönsson and Eklundh 

(2004). TIMESAT was used to characterise vegetation phenology in the “Milroy” and 

“Grandview” paddocks by extracting numerical observations related to vegetation 

dynamics for each MODIS NDVI pixel in the time series of NDVI data (Henebry and 

de Beurs, 2013; Reed et al., 2009). The software creates and analyses smoothed 

time-series satellite sensor data. The temporal smoothing removes artefacts 

associated with atmospheric conditions, data gaps and cloud cover effects. After 

smoothing, extracted profiles are significantly clearer making it possible to identify 

phenological markers. The TIMESAT software provides three different smoothing 

functions to fit time-series data (Eklundh and Jönsson, 2011): asymmetric Gaussian 

(AG) (Jönsson and Eklundh, 2002), double logistic (DL) (Beck et al., 2006) and 

adaptive Savitzky-Golay (SG) filtering (Chen et al., 2004). 
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4.2 MATERIALS AND METHODS 

4.2.1 CALCULATION OF NDVI PHENOLOGY METRICS 

The TIMESAT programme processes NDVI time-series curves to calculate a set of 

phenology metrics. The metrics decompose the curve into a set of statistics which 

are shown in Figure 4.1 and described in Table 4.1. In this analysis, all three 

smoothing methods contained within TIMESAT were tested by creating smoothed 

curves from “Milroy” paddock M25 NDVI data (Figure 4.2). All three approaches 

have different strengths and weaknesses. Both the AG and DL approaches are less 

sensitive to noise and can give a better description on the beginning and ending of 

the seasons (Jönsson and Eklundh, 2002) than SG (Hird and McDermid, 2009). 

Although the adaptive SG approach can identify subtle and rapid changes in the 

time series, it is sensitive to noise. Beck et al. (2006), Gao et al. (2008) and Hird et 

al. (2009) examined the DL and AG function approaches and found that they 

produced similar results, with the AG method being less sensitive to incomplete 

time-series data and concluding that either method was appropriate for describing 

vegetation dynamics. The overall advantage of the AG method is flexibility, in that it 

can be applied to time series at varying temporal resolutions (e.g. daily, bi-weekly, 

monthly values), and with scaled or unscaled NDVI values. Based on assessments of 

the three approaches in the literature, the AG method was selected for temporally 

smoothing data and estimating phenology metrics. 

Smoothed time series of weekly NDVI composites for each MODIS pixel were 

constructed using the AG filter. The parameters applied in the TIMESAT analysis 

were as described in the TIMESAT 3.1 software manual, section 9.4; seasonal 

parameter: 0.5, number of envelope iterations: 1, number of seasons/year: 1 

(setting the seasonality parameter to 1 forces the program to treat data as if there 

is one annual season), adaptation strength: 2, SG window size: 4, amplitude value: 

0, season start: 0.1, season end: 0.1. Eight complete phenological cycles (2004–

2011) were processed using the MODIS NDVI data from Chapter 3 and 11 

phenology metrics were calculated for each cycle. The raw metric values for the 

small integral (as a proxy for annual biomass production) were also graphed against 
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GSR, by paddock, for each pixel, to examine within-paddock spatial and temporal 

variation across the study period. 

 

 

FIGURE 4.1: PHENOLOGY METRICS ASSOCIATED WITH THE SMOOTHED CURVE OF AN NDVI TIME 

SERIES. ‘A’ = START OF ACTIVE GROWING SEASON; ‘B’=END OF ACTIVE GROWING SEASON; ‘C’ & ‘D’ = 

80% POINTS FOR CALCULATING MIDDLE OF SEASON; ‘E’ = VALUE AT PEAK OF SEASON; ‘AC’ & ‘DB’ = 

RATES OF INCREASE/DECREASE (RATE OF GREEN-UP/DECLINE); ‘F’ = AMPLITUDE; ‘G’ = SEASON 

LENGTH; ‘H’ = LARGE INTEGRAL; ‘I’ = SMALL INTEGRAL (SEASONAL VEGETATION PRODUCTIVITY); ‘J’ 

BASE LEVEL. ADAPTED FROM TUANMU ET AL. (2010). 

 

4.2.2 STATISTICAL ANALYSIS 

Data from 34 MODIS pixels were processed through TIMESAT from the three 

paddocks at “Milroy” and three at “Grandview” over the eight-year period (2004–

2011). The paddock pixel means were then used in a correlation analysis using JMP 

12.2 to explore relationships between pasture and crop phenology over the eight 
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years of the data set. Because of the small number of pixels per paddock, the data 

sets were analysed by farm rather than by paddock.  

 

 

FIGURE 4.2: EXAMPLE OF NDVI SIGNAL SMOOTHING FROM “MILROY” PADDOCK M25 BY (A) 

ASYMMETRIC GAUSSIAN, (B) DOUBLE LOGISTIC AND (C) SAVITZKY-GOLAY APPROACHES USING 

TIMESAT 3.1.  
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TABLE 4.1: DEFINITIONS OF THE TIMESAT SEASONALITY PARAMETERS SHOWN IN FIGURE 4.1 AND THE METHOD OF CALCULATION. 

 Metric Significance How calculated 

a Season onset Time at which seasonal photosynthetic 
activity begins 

Time for which the left edge increased to 10% of the seasonal amplitude, measured 
from the left minimum level 

b Season end Time at which seasonal photosynthetic 
activity ends 

Time for which the right edge decreased to 10% of the seasonal amplitude, measured 
from the right minimum level 

g Season length Period of seasonal photosynthetic 
activity 

Time from the start to the end of the season 

j Base level  Given as the average of the left and right minimum values 
c,d Peak time Time at which seasonal photosynthetic 

activity reaches a maximum 
Computed as the mean value of the times for which, respectively, the left edge 
increased to the 80% level, and the right edge decreased to the 80% level 

e Peak value Maximum level of seasonal 
photosynthetic activity 

Largest data value for the fitted function during the season 

f Seasonal 
amplitude 

Amplitude of seasonal photosynthetic 
activity, measure of seasonality 

Difference between the maximum value and the base level 

a–c Left derivative Rate of increase at the beginning of the 
season 

Calculated as the ratio of the difference between the left 20% and 80% levels and the 
corresponding time difference 

d–b Right derivative Rate of decrease at the end of the 
season 

Calculated as the absolute value of the ratio of the difference between the right 20% 
and 80% levels and the corresponding time difference. The rate of decrease is thus 
given as a positive quantity 

i Large seasonal 
integral 

Accumulation of seasonal 
photosynthetic activity, related to 
biomass 

Integral of the function describing the season from the season start to the season end 

h Small seasonal 
integral 

Accumulation of seasonal 
photosynthetic activity, related to 
biomass 

Integral of the difference between the function describing the season and the base 
level from season start to season end 

Source: (Tuanmu et al., 2010) 
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4.3 RESULTS 

The means for the phenology metrics, by MODIS pixel for both crop and pasture 

phases, for each paddock at “Milroy” are shown in Tables 4.3–4.5 and for 

“Grandview” paddocks in Tables 4.6–4.8. The results of the correlation analysis 

between crop and pasture pixel means for each property are at Table 4.9. 

The correlation analysis for “Milroy” showed reasonably strong and significant 

correlations for end of season, peak ndvi value, seasonal amplitude and small 

integral. At “Grandview”, reasonably strong and significant correlations occurred for 

start of season (negative), season length (negative), timing of peak ndvi value and 

seasonal amplitude (negative). In both crop and pasture phases at “Milroy,” there 

were variations in mean emergence times between pixels which ranged from two 

weeks for paddock M25 to five weeks for paddock M45 (Tables 4.3–4.5). The mean 

rate of green-up shows that pixel 52 in M25, pixel 12 in M41 and pixel 23 in M45 

exhibited the fastest rates of growth, whether in crop or pasture. The slowest pixels 

to senesce (seasonal amplitude or rate of brown-off) were pixels 58, 3 and 25. Peak 

NDVI and greatest amplitude occurred at pixel 45 and 52 in M25, pixel 12 in M41 

and pixel 20 in M45.  In paddocks M25, M41 and M45, pixels 45, 3/4 and 20 were 

respectively associated with the longest mean season lengths and highest, or close 

to highest, total mean biomass production as measured by the small integral. At 

“Grandview”, there was less variation evident between mean values for the start of 

the season for both crop and pasture, with no more than a week’s variation in crop 

emergence and no more than two week’s variation in pasture, for all pixels in all 

three paddocks. In paddock GV4, pixel 52 exhibited the fastest mean rate of green-

up for crop and pasture and pixel 46 had the slowest mean rate of brown-off. Pixel 

46 also had the longest mean growing period for crop and close to longest for 

pasture and highest mean biomass production for crop as measured by the small 

integral. In GV8, pixels 40 and 42 had the fastest mean rate of growth for crop and 

second fastest for pasture, and pixels 37 and 38 shared the longest mean rate of 

brown-off. This accorded with the longest mean growing periods for crop, but not 

for pasture (pixels 40 and 42 for pasture). Pixels 40 and 42 had the highest mean 

biomass for crop as measured by the small integral, with pixels 37 and 38 being 
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highest for pasture. Pixel 8 had the fastest mean rate of growth and  rates of brown-

off in paddock GV39. Mean growing length between pixels was similar in crop, but 

there was up to four-week’s difference between pixels for pasture.  

Figure 4.3 provides an example of the smoothed NDVI time-series curves fitted by 

the TIMESAT programme using the AG approach. The example is for the eight 

MODIS pixels (here labelled P1 to P8) in “Milroy” paddock M45. The pale blue lines 

are the raw NDVI signals.  

Graphs showing the small integral (as a proxy of annual biomass production) plotted 

against GSR, by paddock, for each pixel, are in Figure 4.4 for “Milroy” paddocks and 

Figure 4.5 for “Grandview” paddocks. These graphs do not discriminate between 

crop and pasture phases; all data has been combined. It can be seen that the NDVI 

response generally tracks GSR. At “Milroy”, there is significant spatial variation 

evident between pixels within a year, except in 2008 where it is less than the 

temporal variation (between years), demonstrating a temporal response to climate. 

At “Grandview”, there appears to be much less spatial variation evident between 

pixels within a year than at “Milroy”. Temporal variation is greater than spatial 

variation between pixels within a year, again indicating a temporal response to 

climate. The years 2006–2008 were drought years. 
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FIGURE 4.3: SMOOTHED NDVI TIME-SERIES CURVES FITTED BY THE TIMESAT PROGRAMME USING 

THE ASYMMETRIC GAUSSIAN APPROACH FOR THE EIGHT MODIS PIXELS IN “MILROY” PADDOCK M45. 

THE NDVI VALUES ON THE LEFT-HAND AXIS ARE IN 0.1 INCREMENTS, BEGINNING AT 0.1. THE 

SEQUENCE STARTS IN 2004, THE FIRST CURVE ON THE LEFT IS A ‘DUMMY’ CURVE REQUIRED TO FORCE 

TIMESAT TO PROCESS THE FULL SEQUENCE OF YEARS. 
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TABLE 4.2: AN EXAMPLE OF THE OUTPUT FROM TIMESAT, PIXEL 45 FROM “MILROY” PADDOCK M25, BETWEEN 2004 AND 2011, SHOWING VALUES FOR THE DERIVED 

PHENOLOGY METRICS. THE GAUSSIAN FIT WAS USED. SEASON START, SEASON END, SEASON LENGTH AND PEAK TIME ARE MEASURED IN WEEKS FROM 1 JANUARY. PEAK VALUE 

AND AMPLITUDE ARE NDVI VALUES, AND THE REMAINING METRICS ARE UNIT-LESS. 

Pixel ID Rotation 

phase 

Year Season 
start 

(week) 

Season 
end 

(week) 

Season 
length 

(weeks) 

Base 
value 

(NDVI) 

Peak 
time 

(week) 

Peak 
value 

(NDVI) 

Ampli-
tude 

(NDVI) 

Rate of 
green-

up 

Rate of 
die-off 

Large 
integral 

Small 
integral 

45 wheat 2004 20.37 47.60 27.24 0.2092 35.81 0.7454 0.5362 0.04016 0.0662 15.34 9.27 

45 pasture 2005 12.5 47.00 34.41 0.2344 28.60 0.7021 0.4677 0.0937 0.04785 21.42 12.98 

45 pasture 2006 30.9 46.00 15.07 0.2483 38.70 0.7351 0.4867 0.0656 0.08127 8.35 4.13 

45 barley 2007 19.3 47.10 27.83 0.2338 35.10 0.8032 0.5694 0.04219 0.06353 16.99 9.98 

45 pasture 2008 13.2 47.10 33.87 0.2335 30.10 0.6797 0.4461 0.07452 0.07844 21.01 12.60 

45 wheat 2009 21.4 48.20 26.76 0.2311 37.10 0.7349 0.5038 0.03919 0.06807 15.13 8.43 

45 pasture 2010 11.5 47.50 36.01 0.2215 32.20 0.6104 0.3889 0.02198 0.04642 17.83 9.42 

45 pasture 2011 20.3 48.70 28.41 0.2071 33.20 0.7656 0.5585 0.06845 0.04758 16.86 10.65 
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FIGURE 4.4: SMALL INTEGRAL (A PROXY FOR ANNUAL BIOMASS PRODUCTION) AGAINST GROWING SEASON RAINFALL (GSR) FOR MODIS PIXELS ANALYSED FROM “MILROY” 

PADDOCKS (A) M25, (B) M41 AND (C) M45 FROM 2004–2011.   
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FIGURE 4.5: SMALL INTEGRAL (A PROXY FOR ANNUAL BIOMASS PRODUCTION) AGAINST GROWING SEASON RAINFALL (GSR) FOR MODIS PIXELS ANALYSED FROM 

“GRANDVIEW” PADDOCKS (A) GV4, (B) GV8 AND (C) GV39 FROM 2004–2011. PASTURE YEARS WERE 2004 (OLD PASTURE GOING INTO A NEW SIX-YEAR CROP PHASE) AND 

2011 (NEW SIX-YEAR PASTURE PHASE COMING OUT OF CROP). 
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TABLE 4.3: MEANS OF PHENOLOGY METRICS FOR BOTH CROP AND PASTURE PHASES FROM TIMESAT FOR “MILROY” PADDOCK M25. SEASON START, SEASON END, SEASON 

LENGTH AND PEAK TIME ARE MEASURED IN WEEKS FROM 1 JANUARY. PEAK VALUE AND AMPLITUDE ARE NDVI VALUES, AND THE REMAINING METRICS ARE UNIT-LESS. 

Pixel Season start (week) Season end (week) Season length (weeks) Peak time (week) Peak value (NDVI) 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

45 20.36 17.68 47.63 47.26 27.28 29.55 36.00 32.56 0.76 0.70 

46 22.26 17.22 47.72 47.34 25.47 30.11 36.59 32.54 0.77 0.67 

51 22.33 16.08 46.34 46.58 24.01 30.52 35.80 31.36 0.78 0.66 

52 23.30 15.92 46.36 46.82 23.06 30.90 35.73 31.20 0.79 0.67 

58 21.45 15.88 46.23 46.36 24.82 30.48 35.41 31.08 0.74 0.64 

 Amplitude (NDVI) Rate of green-up Rate of die-off Large integral Small integral 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

45 0.54 0.47 0.04 0.06 0.07 0.06 15.82 17.09 9.22 9.96 

46 0.53 0.42 0.04 0.05 0.07 0.06 14.88 16.82 8.29 9.02 

51 0.57 0.45 0.05 0.06 0.08 0.06 14.00 16.85 8.55 9.79 

52 0.57 0.45 0.06 0.06 0.08 0.06 13.90 17.18 8.40 9.97 

58 0.52 0.42 0.05 0.05 0.07 0.05 14.12 16.29 8.23 9.12 
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TABLE 4.4: MEANS OF PHENOLOGY METRICS FOR BOTH CROP AND PASTURE PHASES FROM TIMESAT FOR “MILROY” PADDOCK M41. SEASON START, SEASON END, SEASON 

LENGTH AND PEAK TIME ARE MEASURED IN WEEKS FROM 1 JANUARY. PEAK VALUE AND AMPLITUDE ARE NDVI VALUES, AND THE REMAINING METRICS ARE UNIT-LESS. 

Pixel Season start (week) Season end (week) Season length (weeks) Peak time (week) Peak value (NDVI) 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

3 20.25 18.80 47.98 48.25 27.75 29.45 35.34 34.33 0.67 0.62 

4 18.77 19.78 48.12 47.75 29.35 27.97 35.90 35.58 0.70 0.66 

5 20.06 22.55 47.80 47.05 27.74 24.50 36.76 36.13 0.71 0.66 

6 21.35 22.95 47.63 45.95 26.29 22.98 36.96 36.08 0.71 0.64 

11 21.53 21.55 48.80 47.45 27.26 25.91 37.14 35.50 0.73 0.67 

12 21.64 22.33 48.55 47.30 26.93 24.96 36.95 35.78 0.72 0.67 

 Amplitude (NDVI) Rate of green-up Rate of die-off Large integral Small integral 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

3 0.40 0.35 0.05 0.03 0.06 0.03 15.49 14.84 7.60 6.25 

4 0.48 0.44 0.04 0.03 0.08 0.05 16.34 14.25 9.41 7.59 

5 0.48 0.43 0.04 0.04 0.08 0.06 15.62 12.43 8.73 6.40 

6 0.47 0.40 0.05 0.04 0.09 0.06 15.04 11.37 8.30 5.57 

11 0.52 0.47 0.04 0.04 0.07 0.06 15.05 13.08 9.05 7.53 

12 0.52 0.48 0.06 0.05 0.08 0.06 15.69 12.65 9.86 7.38 

  



CHAPTER 4. ANALYSIS OF CROP AND PASTURE PHENOLOGY WITH MODIS NDVI TIME SERIES 

 PAGE | 100 

TABLE 4.5:  MEANS OF PHENOLOGY METRICS FOR BOTH CROP AND PASTURE PHASES FROM TIMESAT FOR “MILROY” PADDOCK M45. SEASON START, SEASON END, SEASON 

LENGTH AND PEAK TIME ARE MEASURED IN WEEKS FROM 1 JANUARY. PEAK VALUE AND AMPLITUDE ARE NDVI VALUES, AND THE REMAINING METRICS ARE UNIT-LESS. 

Pixel Season start (week) Season end (week) Season length (weeks) Peak time (week) Peak value (NDVI) 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

20 19.73 22.13 48.12 47.93 28.41 25.78 36.30 35.60 0.701 0.639 

21 17.33 23.90 48.40 48.23 31.06 24.35 35.58 36.20 0.664 0.644 

23 22.42 24.27 48.15 48.63 25.73 24.36 36.24 36.17 0.664 0.593 

24 21.33 23.30 48.07 47.60 26.74 24.32 36.26 36.23 0.602 0.560 

25 15.73 25.53 47.56 47.77 31.84 22.22 35.40 36.80 0.540 0.533 

27 21.49 25.90 48.01 47.70 26.52 21.80 36.48 36.70 0.572 0.569 

33 20.47 25.40 48.73 48.37 28.26 22.95 36.29 36.47 0.567 0.633 

34 20.41 24.40 48.50 46.97 28.09 22.54 36.44 36.87 0.604 0.631 

 Amplitude (NDVI) Rate of green-up Rate of die-off Large integral Small integral 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

20 0.508 0.449 0.039 0.048 0.069 0.055 14.67 12.68 8.80 7.37 

21 0.463 0.445 0.033 0.044 0.055 0.054 15.19 11.80 8.49 6.56 

23 0.483 0.416 0.048 0.049 0.062 0.046 12.91 10.80 7.88 6.17 

24 0.421 0.385 0.038 0.049 0.060 0.048 12.18 10.12 7.03 5.51 

25 0.338 0.321 0.021 0.036 0.051 0.044 13.58 9.75 6.71 4.61 

27 0.398 0.400 0.033 0.046 0.056 0.059 11.51 9.32 6.51 5.34 

33 0.388 0.459 0.032 0.050 0.052 0.048 12.21 10.54 6.80 6.25 

34 0.416 0.441 0.032 0.043 0.060 0.062 12.90 10.68 7.23 6.16 
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TABLE 4.6: MEANS OF PHENOLOGY METRICS FOR BOTH CROP AND PASTURE PHASES FROM TIMESAT FOR “GRANDVIEW” PADDOCK GV4. SEASON START, SEASON END, 

SEASON LENGTH AND PEAK TIME ARE MEASURED IN WEEKS FROM 1 JANUARY. PEAK VALUE AND AMPLITUDE ARE NDVI VALUES, AND THE REMAINING METRICS ARE UNIT-LESS. 

Pixel Season start (week) Season end (week) Season length (weeks) Peak time (week) Peak value (NDVI) 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

46 22.97 13.08 47.13 47.69 24.19 34.61 36.25 37.97 0.773 0.742 

47 23.32 13.60 47.17 47.85 23.88 34.25 36.50 37.58 0.773 0.737 

48 23.72 13.24 47.28 47.61 23.56 34.38 36.72 37.40 0.775 0.733 

51 24.02 13.23 47.05 48.20 23.03 34.98 36.90 38.07 0.778 0.755 

52 23.98 13.31 47.00 48.40 23.03 35.10 36.88 38.23 0.781 0.759 

 Amplitude (NDVI) Rate of green-up Rate of die-off Large integral Small integral 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

46 0.742 0.406 0.066 0.042 0.098 0.086 15.25 13.90 9.23 6.19 

47 0.737 0.394 0.063 0.051 0.112 0.079 15.05 19.29 9.03 6.50 

48 0.733 0.393 0.062 0.055 0.105 0.089 14.91 18.79 8.75 6.74 

51 0.755 0.429 0.062 0.054 0.112 0.098 14.44 11.99 8.46 5.86 

52 0.759 0.433 0.064 0.066 0.120 0.098 14.48 24.88 8.71 7.64 

  



CHAPTER 4. ANALYSIS OF CROP AND PASTURE PHENOLOGY WITH MODIS NDVI TIME SERIES 

 PAGE | 102 

TABLE 4.7: MEANS OF PHENOLOGY METRICS FOR BOTH CROP AND PASTURE PHASES FROM TIMESAT FOR “GRANDVIEW” PADDOCK GV8. SEASON START, SEASON END, 

SEASON LENGTH AND PEAK TIME ARE MEASURED IN WEEKS FROM 1 JANUARY. PEAK VALUE AND AMPLITUDE ARE NDVI VALUES, AND THE REMAINING METRICS ARE UNIT-LESS. 

Pixel Season start (week) Season end (week) Season length (weeks) Peak time (week) Peak value (NDVI) 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

37 21.43 21.43 47.07 48.15 25.62 26.78 36.08 37.81 0.727 0.812 

38 21.75 21.43 46.98 48.15 25.21 26.78 35.95 37.81 0.742 0.812 

40 23.32 18.79 46.40 47.39 23.11 28.57 36.02 36.73 0.779 0.798 

42 23.02 18.62 46.82 46.71 23.80 28.10 36.03 36.48 0.776 0.773 

 Amplitude (NDVI) Rate of green-up Rate of die-off Large integral Small integral 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

37 0.483 0.529 0.046 0.044 0.078 0.107 14.72 17.78 7.95 9.49 

38 0.474 0.529 0.047 0.044 0.068 0.107 14.70 17.78 7.43 9.49 

40 0.521 0.458 0.064 0.042 0.092 0.090 14.81 19.03 8.38 8.60 

42 0.531 0.433 0.063 0.042 0.088 0.107 15.04 18.41 8.71 8.12 
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TABLE 4.8: MEANS OF PHENOLOGY METRICS FOR BOTH CROP AND PASTURE PHASES FROM TIMESAT FOR “GRANDVIEW” PADDOCK GV39. SEASON START, SEASON END, 

SEASON LENGTH AND PEAK TIME ARE MEASURED IN WEEKS FROM 1 JANUARY. PEAK VALUE AND AMPLITUDE ARE NDVI VALUES, AND THE REMAINING METRICS ARE UNIT-LESS. 

Pixel Season start (week) Season end (week) Season length (weeks) Peak time (week) Peak value (NDVI) 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

1 21.28 24.65 47.20 46.47 25.92 21.82 35.28 37.50 0.718 0.744 

8 21.78 23.46 47.05 46.09 25.25 22.66 35.28 36.78 0.747 0.767 

9 22.30 21.61 46.95 47.52 24.64 37.20 35.85 36.19 0.758 0.782 

15 21.40 21.64 47.08 46.15 25.66 24.50 35.10 36.58 0.755 0.771 

16 22.10 20.57 47.22 47.88 25.11 36.42 35.85 36.07 0.782 0.794 

17 22.33 20.82 47.07 46.19 24.72 34.55 35.85 36.29 0.779 0.801 

 Amplitude (NDVI) Rate of green-up Rate of die-off Large integral Small integral 

 crop pasture crop pasture crop pasture crop pasture crop pasture 

1 0.487 0.462 0.054 0.046 0.070 0.094 15.07 13.41 8.71 6.69 

8 0.514 0.451 0.059 0.046 0.071 0.091 15.19 14.48 8.88 6.86 

9 0.514 0.458 0.056 0.038 0.076 0.099 15.07 22.16 8.55 8.56 

15 0.510 0.430 0.059 0.042 0.072 0.091 15.84 15.99 9.04 7.08 

16 0.550 0.491 0.058 0.028 0.080 0.089 15.61 23.54 9.34 11.36 

17 0.534 0.458 0.059 0.026 0.080 0.100 15.51 22.60 8.94 9.43 
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TABLE 4.9: RESULTS OF CORRELATION ANALYSIS FOR “MILROY” AND “GRANDVIEW” SHOWING 

PEARSON’S  CORRELATION CO-EFFICIENT (r) AND ASSOCIATED P-VALUE (p), BETWEEN PIXEL MEANS OF 

CROP AND PASTURE, FOR TIMESAT PHENOLOGY METRICS. 

 

 r P 

MILROY (N=19)   

Start of Season –0.4 0.07 

End of Season 0.6 <0.01 

Season Length 0.1 0.75 

Peak Time 0.4 0.1 

Peak Value 0.8 <0.001 

Amplitude 0.7 <0.001 

Rate of green-up 0.4 0.09 

Rate of die-off 0.6 <0.01 

Small Integral 0.6 <0.01 

   

GRANDVIEW (N=15)   

Start of Season –0.6 <0.05 

End of Season 0.03 0.9 

Season Length –0.6 <0.05 

Peak Time 0.6 <0.05 

Peak Value –0.2 0.6 

Amplitude –0.7 <0.01 

Rate of green-up 0.2 0.4 

Rate of die-off –0.3 0.2 

Small Integral –0.2 0.4 
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FIGURE 4.6: TIME-SERIES SEQUENCE FOR A MODIS PIXEL IN “GRANDVIEW” PADDOCK GV39, 

SHOWING THE EFFECT OF FLOODING RAINS (CIRCLE IN RED) ON CURVE FITTING FOR “GRANDVIEW” 

PADDOCKS IN 2011, RESULTING IN MULTIPLE FLUSHES OF PASTURE GROWTH AND ANOMALOUS 

METRICS FOR 2011 (ALSO REFLECTED IN FIGURE 4.5 C). 

 

4.4 DISCUSSION 

The research outlined in this chapter further tested Hypothesis 1, that “spatial 

variation in biomass production over time is correlated between the cropping and 

pasture phases of mixed farming enterprises”.  

At “Milroy”, the start of season metric indicated that pastures emerge earlier than 

crops. This is to be expected, as the emergence of self-sown pastures is determined 

by rainfall/soil moisture, whereas crop emergence is also determined by sowing 

date, which commences around 25 April each year at “Milroy” (Hall, pers. comm.).  

Variations in emergence times between pixels both within and between paddocks 

at “Milroy” are quite large and likely due to the presence of duplex soil layers and 

water-repellent gravels, particularly in paddocks M41 and M45. The emergence of 

both crop and pasture at “Grandview” is more uniform and largely reflective of the 

fact that both crops and pastures are sown into prepared seedbeds at “Grandview”, 

with pastures under-sown into the final crop rotation. The crop and pasture data at 

“Grandview” were unfortunately limited by the fact that there were only two 

pasture years—2004, which was the last year of a pasture phase, and 2011, which 
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was the start of a new pasture phase and production in the intervening crop years 

was affected by the “Millennium drought” (Heberger, 2011; van Dijk et al., 2013).  

In Figure 4.4, the effects of the 2006 and 2010 drought years in the south-west of 

WA on biomass production at “Milroy” (as measured by the small integral) are 

clearly visible, as are the differences in responses of individual pixels within and 

across years. For paddock M25, 2008 was a ‘one off’ self-sown pasture containing 

lots of stubble. The pasture did not establish well and was also grazed heavily by 

sheep to reduce the stubble load (Hall, pers. comm.). Additionally, pastures in M25 

were spray-topped in 2004, 2006 and 2008. This may account for the anomalous 

behaviour observed in 2005 and 2008 in Figure 4.4. For paddock M41, a 

subterranean clover/serradella pasture mix was sown in 2006. The 2006 drought 

affected the subsequent seed-set, and the pasture did not re-establish well in 2007. 

A canola crop sown in 2008 did not establish well and had to be re-sown (Hall, pers. 

comm.). 

The farm owner also reported that “Milroy” suffered ongoing frosts in 2006 and 

2010 (Hall, pers. comm.). He also advised that pasture emergence and growth in 

2010 was poor in M41 because of low rainfall, resulting in poor seed-set and 

pasture establishment for both 2010 and 2011. Additionally, this paddock was 

coming out of a largely continuous crop rotation from 2004 to 2009, with little 

residual clover seed in the soil. The 2010 pasture had no grazing capacity and the 

low pasture biomass and subsequent poor seed-set in that year meant that the 

2011 pasture was also poor.  

At “Milroy” there were some strong, positive correlations in the phenology metrics 

for the crop and pasture phases (Table 4.9). These correlations were for the end of 

season and seasonal amplitude or rate of die-off, which can be explained by the 

determinate nature of annual crops and pastures. There were also strong 

correlations between peak NDVI value and biomass production as measured by the 

small integral. Again, these results were expected with annual species. However, 

correlations at “Grandview” were either poor or confoundingly negative in many 

cases. This may be reflective of the fact that the two permanent pasture years 
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measured in the study were either side of six years of crops where production was 

affected by extreme weather events. 

The NDVI data for “Grandview” (2004–2011) encompassed a severe drought 

between 2006 and 2009 during which all three paddocks were in a cropping phase, 

which would have impacted on the crop–pasture interactions. Additionally, 

between October 2010 and December 2011, “Grandview” received nearly 980 mm 

of rainfall, which would have disproportionately influenced NDVI for perennial 

pastures over crop for 2011. This can be seen in Figure 4.6, where the ‘smoothed’ 

curve for 2011 is highly irregular. The effect is also apparent in Figure 4.5 a–c, 

where the small integral values for all pixels are strongly divergent.  

The TIMESAT software added limited interpretive value to the analysis conducted in 

Chapter 3. The difficulties associated with using large 6.25 ha MODIS pixels to 

explore sub-paddock variation in small paddocks (<100 ha) was evident from this 

analysis, as it was in the previous chapter. The small number of pixels available for 

analysis after removing ‘corrupted’ pixels also means that the statistical analysis is 

of doubtful validity. The use of MODIS NDVI is much better suited to analysis at the 

regional or whole-farm scale, such as that reported by Hill and Donald (2003), 

Bradley et al. (2007) and Smith et al. (2011).  

Timesat was developed for regional scale interpretation of MODIS imagery and has 

been reported in land use studies, e.g. across Europe (Klisch and Atzberger, 2014), 

rangelands in Africa (Fensholt et al., 2013) and for assessing forests in regions of 

Brazil (Teles et al., 2015), rather than for identifying spatial variation in small farm 

paddocks. While it has been used for large area crop interpretation (Chakraborty et 

al., 2012; Pan et al., 2015; Xu et al., 2014), it has never been reported in the 

literature as being used to discriminate between crop and pasture phases within a 

single paddock. The software is clearly able to extract phenology metrics at the sub-

paddock scale required for interpretation of mixed farm production patterns, 

however the size of the MODIS pixels themselves ultimately becomes the limiting 

factor in its usefulness as interpreting smaller areas inevitably means using fewer 

data samples and prevents the use of appropriate statistical analyses to support 

research outcomes.  
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4.5 CONCLUSION 

The objective in using TIMESAT to analyse the MODIS NDVI data sets was to further 

refine the analysis from Chapter 3 to investigate the behaviour of crop and pasture 

phases at the sub-paddock scale over time.  

Of interest in this research is whether crop and pasture phases demonstrate similar 

growth behaviour within a pixel. Although using relatively low-resolution imaging 

and small data sets, the calculation of phenology metrics for both cropping and 

pasture phases in two geographically different regions could characterise seasonal 

growth characteristics, including total production, season duration and spatial 

variability. However, for a large number of the phenology metrics, the software was 

not able to add substantial interpretive value to support the hypothesis being 

tested that, “spatial variation in biomass production over time is correlated between 

the cropping and pasture phases of mixed farming enterprises”. Moderate to high 

correlations were observed for some metrics in the annual systems at “Milroy” 

which were primarily related to biomass production—the small integral, seasonal 

amplitude, peak value, peak time, season end and rate of brown-off—however the 

analysis was limited because of the low sample sizes. The results point to the need 

to obtain much higher resolution data on grain yield and pasture biomass 

production to answer the questions raised by the hypothesis that spatial variation in 

biomass production over time is correlated between the cropping and pasture 

phases of mixed farming enterprises. 

In the following chapters, the acquisition and analysis of high-resolution crop, 

pasture and soil data gathered post-drought at “Milroy” and “Grandview” is 

described. High-resolution data will be the key to adding interpretive value to the 

relationships between crop and pasture phases in mixed farming systems and to 

developing management systems that allow spatial and temporal variability to be 

exploited to maximise economic returns. 
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CHAPTER 5. PROXIMAL SOIL SENSING AND SOIL CHEMICAL ANALYSIS 

OF FIELD STUDY SITES TO PROVIDE HIGH-RESOLUTION DATA FOR 

COMPARISONS BETWEEN CROPPING AND PASTURE PHASES 

5.1 INTRODUCTION 

The previous two chapters examined the relationships between biomass production 

in pasture and cropping phases of two mixed farming systems, one located on the 

east and the other on the west coast of Australia. This was done using MODIS NDVI 

as a proxy for biomass. Although relatively coarse resolution data was used in that 

study, when the impacts of low rainfall years are taken into account, the results 

indicated a definite relationship over time between spatial variation in biomass 

production in the cropping and pasture phases at the sub-paddock scale. The 

relationships appeared to hold for annual pastures at “Milroy” and to a lesser 

extent for perennial pastures at "Grandview" where results were affected by the 

Millenium drought. The limitations of applying low-resolution, remotely sensed 

data to relatively small paddocks were discussed. The need for high-resolution data 

to better identify within-paddock spatial variation was identified.  

This chapter describes the field acquisition and analysis of geo-referenced, high-

resolution soil data, using vehicle-mounted electromagnetic induction (Doolittle and 

Brevik, 2014) and gamma radiometric (Wong et al., 2009) sensors. The use of both 

techniques has been described extensively in the literature, and the technical 

background is described in the literature review (Chapter 2, sections 2.5.1–2.5.3). 

Because of the speed and comparative ease of use, relatively low cost, and the large 

number of geo-referenced measurements collected, both EMI and GR sensing have 

significant advantages over traditional methods used to collect soil information. The 

proximally sensed data is then used in combination with traditional, low-density soil 

physical and chemical analysis obtained from field sampling and laboratory testing. 

Within-paddock soil variability is then mapped to determine if spatially dense 

datasets can be useful either alone or in combination with traditional field sampling 
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to characterise soil texture and chemical properties that are related to crop and 

pasture productivity. 

The spatial variability of soil characteristics and relationships to pasture productivity 

have been documented in a limited number of pasture paddocks (Fu et al., 2010, 

2013; McCormick et al., 2009; Serrano et al., 2010, 2011; Shi et al., 2000) but has 

not been widely studied in Australian grazing systems (King et al., 2006; Merry et 

al., 1990). Very few studies have investigated the spatial variability of soil 

characteristics in the context of constraints to the overall productivity of crop and 

pasture phases in mixed farming systems (Stefanski and Simpson, 2010). 

Historically, fertiliser has been applied uniformly to pastures, with little 

consideration of the spatial variability that might exist in nutrient levels and the 

potential response. 

This chapter describes the collection and manipulation of soil electrical conductivity 

(EMI) and gamma radiometric (GR) data as well as soil chemical and physical 

properties for “Milroy” and “Grandview” paddocks. The data is mapped and also 

tested for a range of correlations. The data gathered will be used to inform the 

testing of Hypothesis 2 that, “spatial variation of production in the crop and pasture 

phases of a mixed farming system can be identified and quantified at high resolution 

using PA technologies” in Chapter 6, and Hypothesis 3 that, “data acquired using PA 

technologies can be used to create a single index of paddock productivity that 

describes the spatial variation in, and temporal stability of, crop and pasture 

production over time” in Chapter 7. 

5.2 MATERIAL AND METHODS 

5.2.1 STUDY SITES  

The study sites (Table 5.1) were the same as those described in Chapters 3 and 4, 

with the addition of two years of data (2012 and 2013) and an additional paddock 

(GV3) included at “Grandview”. 
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TABLE 5.1: PADDOCK SIZES, ROTATIONS AND RAINFALL DATA FOR “MILROY” AND “GRANDVIEW”. 

Paddock (size) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

“MILROY”           

M25 W P P B P W P P P P 

M41 L B P P C W P P P P 

M45 W L P C W P B P P C 

GSR (mm) 264 428 228 370 416 328 162 331 234 371 

Annual rainfall (mm) 304 501 392 392 494 439 256 467 300 461 

“GRANDVIEW”           

GV3        P P P 

GV4 P W O C W C W P P P 

GV8 P C W W C W W P P P 

GV39 P C W C W W B P P P 

GSR (mm) 260 334 148 190 155 245 407 243 218 254 

Annual rainfall (mm) 365 568 217 355 334 293 794 688 658 394 

W = wheat, C = canola, L = lupin, B = barley, O = oats, P = pasture 

 

Both sites received below average growing season rainfall (except “Milroy” 2013) 

during the period of research described in this chapter (2011–2013), resulting in 

likely soil moisture constraints on both pasture and crop production. 

5.2.2 EMI AND GR PROXIMAL SENSING 

“Milroy”, Western Australia 

At “Milroy”, proximally sensed geophysical data was acquired using a commercial 

contractor in October 2012. EMI measurements were taken using a Geonics 

DUALEM 21S sensor (Geonics Limited, Ontario, Canada). The unit was set to 

measure to a depth of 50 cm in horizontal dipole mode (ECah) and 100 cm in 

vertical mode (ECav). Potassium, thorium, uranium and total count GR emission 

data were gathered with a Radiation Solutions RSX1 sensor with a vehicle-mounted 
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4.0 L thallium-activated sodium iodide crystal (Radiation Solutions, Ontario, Canada) 

(Figure 5.1). The probability of gamma rays reaching the sensor depends on both 

the mass density and electron density of the medium they travel through. Soil water 

affects the results of gamma surveys because it attenuates gamma emissions, thus 

reducing the depth from which gamma sources are detected, which can confound 

the interpretation of the parent material abundance (Loijens, 1980). The IAEA 

(2003) recommend that to maximise resolution, gamma surveys should be 

conducted when soil is dry and should not be conducted within three hours of rain. 

The gamma survey at “Milroy” was undertaken in October 2012. Soil was 

reasonably dry and total rainfall for June–October was 188 mm with evaporation of 

460 mm. The rainfall data would indicate that the soil moisture would be likely to 

be quite uniform to the depth that gamma emittance would be detected (30–40 

cm). Because there was a single scan, the influence of variations in underlying 

geology (and soil types) in the geologically complex zones that underlie “Milroy” are 

likely to be more important on the gamma signal than the scale of influence of 

variations in soil moisture due to recent rainfall. Soil coring was also undertaken by 

the contractor to ground-truth the data and support the interpretation of the 

gamma results. The data were processed to account for Compton scattering (Cook 

et al., 1996). The geophysical data was gathered on 35 m transects at a sampling 

rate of one reading/sec and a groundspeed of between 15 and 20 km/h, resulting in 

a sampling density of approximately 60 readings/ha. All data (elevation, EMI and 

GR) was geo-referenced using a real-time kinematic (RTK) differential correction 

signal. 
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FIGURE 5.1: VEHICLE EQUIPPED WITH RADIATION SOLUTIONS RSX1 AND GEONICS DUALEM 21S 

SENSORS USED AT “MILROY”. 

 

“Grandview”, Victoria 

At “Grandview”, only EMI data was collected, again using a commercial contractor. 

In this instance, a Geonics EM38-MK2 with 0.5 m and 1.0 m intercoil spacings was 

used. The instrument was housed in a sealed Pelican case on a rubber sled, towed 

behind a four-wheel drive vehicle. It was used in horizontal mode (ECah) for all 

paddocks, giving a conductivity of 0.38 m at 0.5 m coil separation and 0.75 m 

conductivity at 1.0 m coil separation. Transect width was 30 m. The horizontal mode 

was used at the recommendation of the contractor, who has many years of EMI 

sensing experience in the region. The instrument was calibrated on-site as per 

instructions outlined in the Geonics EM38-MK2 Ground Conductivity Meter 

Operating Manual, July 2008. Data was logged using an Allegro CX Field PC (Juniper 

Systems, Logan, Utah, USA) loaded with Geonics EM38-MK2 software. The data 

logger was set to acquire and record survey data from the EM38-MK2 system at 

four readings per second. Output feed and guidance was provided using a Raven 

‘Cruizer’ GPS (Raven Industries, Sioux Falls, South Dakota, USA). Scans were taken in 

2013. 

5.2.3 EMI AND GR DATA MAPPING 

Raw data was processed using the protocol developed by Taylor et al. (2007). Data 

points more than 2.5 standard deviations (s.d.) above and below the paddock mean 
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were removed. The data was then imported into ArcGIS 10.2 (ESRI, Redlands, 

California), converted to Universal Transverse Mercator (UTM) projection, and 

mapped to a standard square 5 m x 5 m grid. Data was interpolated to the grid with 

Vesper 1.62 (Australian Centre for Precision Agriculture, The University of Sydney, 

NSW) using an exponential variogram and a block size of 10 m x 10 m. Interpolated 

data were then converted to raster surfaces in ArcGIS 10.2 to produce maps of the 

spatial variability in soil ECa and GR counts for each paddock. 

5.2.4 SOIL SAMPLING AND TESTING 

“Milroy” 

Ground-truthing of the proximally sensed soil data was carried out shortly after the 

EMI or GR surveys, using the soil ECa and gamma maps to identify soil sampling 

sites.  

The paddocks surveyed were all in an annual pasture rotation. Sampling sites were 

selected according to the range of EMI or GR total count (depending on the 

landscape), GR potassium and GR thorium values. Soil cores were taken at a 

sampling density sufficient to enable accurate mapping at a scale of 1:30,000 on the 

recommendations of CSIRO for surveying soil and land resources (McKenzie et al., 

2008).  

EMI-based soil sampling was done at 0–10 cm, 10–30 cm and 30–60 cm. GR-based 

soil sampling was done at 0–10 cm and 10–30 cm (gamma rays having little ground 

penetration beyond 35 cm (IAEA, 2003)).  

Samples were collected using a hydraulic soil corer of 50 mm diameter, with 0–10 

cm samples bulked from seven evenly arranged points along the perimeter of a 

circle of 35 cm diameter to account for nutritional distributional differences.  

In 2014, additional soil testing was carried out at eight sites in paddock M41 as part 

of a paddock liming analysis carried out by the farm owner. Samples for these tests 

were taken between 0 cm and 50 cm, at 10 cm intervals, using a hydraulic soil 

coring drill.  
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All soil analyses were conducted by the CSBP soil testing laboratories (Kwinana, 

WA). The location of “Milroy” soil testing sites is shown in Figure 5.2. Detailed soil 

test data for paddock M25 is in Appendix 7, M41 in Appendix 8, and M45 in 

Appendix 9. 

“Grandview” 

All paddocks surveyed with the EM38 were in permanent pasture. Soil core samples 

were taken a week after the EMI acquisition using a 50 mm hydraulic soil corer 

(Figure 5.3), based on sites selected after the EMI data had been interpolated in 

ArcGIS and analysed (Figure 5.4).  

The ECa datasets were divided into ‘low’, ‘medium’ and ‘high’ categories, based on 

the ECa histogram for each paddock. The bottom 10% of values constituted the 

‘low’ conductivity zone and the top 10% of values the ‘high’ conductivity zone. Soil 

test sites concentrated on low and medium ECa zones. Soil samples were taken at 

0–10 cm and 10–50 cm. Soil analyses were conducted by CSBP soil testing 

laboratories (Kwinana, WA). Detailed soil test data for paddocks GV8 and GV39 are 

at Appendix 11. 

Soil texture maps for “Milroy” paddocks M25 and M41 and “Grandview” paddocks 

GV8 and GV39 were also created based on each farm owner’s personal knowledge 

and observations with these paddocks. These maps are at Figures 5.9 and 5.10 

(“Milroy”) and Figure 5.12 (Grandview). 

The soil test results were evaluated by comparing individual site soil test values with 

critical values corresponding to nationally recognised, responsive values for 

pastures (Table 5.2). The ‘critical soil test value’ is the soil test value where 95% of 

maximum pasture production occurs. These values were established from soil test–

pasture response relationships. The 95% critical soil test value is a simple, 

commonly used reference point to define where further applications of nutrients 

are unlikely to markedly increase pasture production (Gourley et al., 2007). 
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FIGURE 5.2: SOIL TESTING SITES FOR “MILROY” PADDOCKS M25 (A) AND M41 (B).     INDICATES TEST 

SITES RELATED TO ELECTROMAGNETIC AND GAMMA RADIOMETRIC SENSING IN 2012 AND    TO SOIL 

TESTING IN 2014. 

 

 

FIGURE 5.3: SOIL CORE SAMPLING, “GRANDVIEW”. 
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TABLE 5.2: CRITICAL VALUES FOR KEY SOIL NUTRIENTS (FROM GOURLEY ET AL., 2007). 

Parameter Critical value 

Phosphorus 30 mg/kg 

Potassium 140 mg/kg 

Sulphur >8 mg/kg 

Organic carbon:sand 0.5–1.0% 

Organic carbon:clay loam 1.2–2.0% 

Conductivity (ECe) 4–8 dS/m 

pH (CaCl2) 4.8 

PBI low = <100 

 

To visualise the spatial variability of soil chemistry characteristics, the soil test 

values were plotted as points onto individual paddock maps (Figures 5.16–5.19). 

 

 

FIGURE 5.4: SOIL TEST LOCATIONS FOR “GRANDVIEW” PADDOCKS GV8 (A) AND GV39 (B) ARE 

DEPICTED BY . SITES WERE DETERMINED BY ECA VALUES FROM EM38 SENSING IN 2013. 1L = SOIL 

TEST SITE NUMBER 1 IN THE LOW CONDUCTIVITY ZONE, 1M = SOIL TEST SITE 1 IN THE MEDIUM 

CONDUCTIVITY ZONE AND SO ON. 
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Soil electrical conductivity 

Soil electrical conductivity (EC) is routinely measured by soil laboratories using a 1:5 

soil/water suspension (EC1:5) due to its processing speed and relatively low cost 

(Rayment and Lyons, 2010). The EC1:5 test provides a rapid estimate of the 

concentration of electrically-charged water-soluble salts that can move into and 

persist in the soil solution. Measuring salinity (conductivity) in a saturated extract 

(ECe) is a more robust measure of conductivity relative to plant growth as it takes 

into account soil texture. This is important because water content at saturation and 

the dilution of salts are directly affected by soil texture. Therefore, soil EC1:5 values 

were converted to saturation salinity (ECe) using a multiplication factor based on 

soil texture (Shaw, 1999), using the formula:  

ECe (dS/m) = EC1.5 (dS/m) x conversion factor (Hazelton and Murphy, 2007).  

The conversion factors are shown in Table 5.3, and ECe salinity tolerance ratings in 

Table 5.4. 

 

TABLE 5.3: CONVERSION FACTORS FOR CONVERTING EC1:5 (DS/M) TO AN APPROXIMATE VALUE OF 

ECE (DS/M). SOIL TEXTURE GRADES ARE AS DESCRIBED BY MCDONALD AND ISBELL (2009). 

Soil texture grade Conversion 
factor 

Sand, loamy sand, clayey sand 23 

Sandy loam, fine sandy loam, light sandy clay loam 14 

Loam, fine sandy loam, silty loam, sandy clay loam 9.5 

Clay loam, silty clay loam, fine sandy clay loam, sandy clay, silty 

clay, light clay 

8.6 

Light–medium clay 8.6 

Medium clay 7.5 

Heavy clay 5.8 

Source: Hazelton and Murphy (2007) 
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TABLE 5.4: SALINITY RATINGS FOR SOIL BASED ON ECE. 

Rating ECe (dS/m) Effect on plants 

Non-saline <2 Mostly negligible 

Slightly saline 2–4 Yields of sensitive crops affected 

Moderately saline 4–8 Yields of many crops affected 

Highly saline 8–16 Only tolerant crops yield satisfactorily 

Extremely saline >16 Only very tolerant crops yield satisfactorily 

Source Hazelton and Murphy (2007) 

 

5.2.5 ELEVATION DATA 

Geo-referenced elevation values were obtained from the EMI/GR sensing GPS data 

for “Milroy”. For “Grandview”, elevation data from the yield monitor output was 

used. The elevation data was imported into ArcGIS 10.2, converted to UTM 

projection and mapped to a standard square 5 m x 5 m grid.  

Data was interpolated to the grid with Vesper 1.62 using an exponential variogram 

and a block size of 10 m x 10 m. Interpolated data was then converted to raster 

surfaces in ArcGIS 10.2 to produce elevation maps for each paddock. 

5.3 RESULTS  

The results shown here are for “Milroy” paddocks M25 and M41 and “Grandview” 

paddocks GV8 and GV39. These were the paddocks for which pasture data was 

obtained in both 2012 and 2013. The results for other paddocks are contained 

within Appendices 5, 6, 9 and 10, but will not be described further here. 

5.3.1 SPATIAL VARIABILITY OF ECA AND GR DATA 

Figures 5.5 and 5.6 show the spatial distributions of the ECa and GR data for 

“Milroy”; Figure 5.7 shows mapped ECa data for “Grandview”. Table 5.5 presents 

descriptive statistics for pre-processed ECa datasets collected from the EMI surveys 

of the “Milroy” and “Grandview” paddocks. Histograms showing the distribution of 

ECa data points recorded by the EMI sensor are in Figure 5.8 a–d for “Milroy” and 
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5.8 e–f for “Grandview”. Mean ECa values are higher for the “Grandview” sites. The 

differences in mean ECa reflect the contrasting soil textures between the highly 

weathered, sandy soils at “Milroy” and the finer-textured clays at “Grandview”. The 

CVs are much higher for “Milroy” compared to “Grandview”, suggesting much 

greater soil variability at the “Milroy” sites. There also appears to be considerable 

variability in the 0–38 cm region at “Grandview” GV39.  

In comparing the 0–50 cm and 0–100 cm ECa maps for “Milroy” (Figure 5.5), 

paddock M25 showed similar patterns between the 0–50 cm and 0–100 cm ECa 

maps, while M41 showed some dissimilarities between the same zones. 

At “Grandview”, the 0–38 cm and 0–75 cm ECa maps (Figure 5.7) showed similar 

patterns of spatial distribution. ECa values appear to be lowest in paddock GV39 in 

the north-east section of the farm. GV39 has the highest elevation in the landscape 

of the “Grandview” paddocks analysed. The overall paddock means for 0–50 cm ECa 

in the “Milroy” paddocks ranged from 7.6 to 7.9 mS/m, with overall paddock CVs 

ranging from 82 to 98% (Table 5.5). The mean 0–100 cm ECa ranged from 12.7 to 21 

mS/m with CVs ranging from 84 to 104% (Table 5.5). The values were considerably 

greater for the “Grandview” paddocks, with the mean 0–38 cm ECa ranging from 

16.4 to 43.8 mS/m, with CVs ranging from 20.5 to 60% (Table 5.5). The mean 

“Grandview” 0–75 cm ECa ranged from 79.5 to 103.8 mS/m, with CVs ranging from 

9.7 to 12%. 

5.3.2 RELATIONSHIPS BETWEEN ECA, GR DATA, SOIL PHYSICAL AND SOIL CHEMICAL 

PROPERTIES 

ECa and soil texture: “Milroy" 

The results from the soil analysis indicated that the majority of soils in the “Milroy” 

paddocks had more than 60% sand and less than 20% clay throughout the profile 

(0–60 cm depth), and thus were classified as either sandy, sandy loam or duplex 

(sand over clay) soils (Table 5.6). The range in percentage sand 0–60 cm was 74 to 

94%. These high sand percentages are typical of soils in the south-west of Western 

Australia. Sand content did not change with depth to 60 cm, while clay content 

increased marginally. In gravel soils, the gravel percentage increased markedly with 
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depth. Average clay content ranged from 4.4 to 21%, and a low average silt content 

(<7%) was observed throughout the profiles. 

Analysis of the relationship between ECa and clay content measured at various 

depth intervals (0–10 cm, 10–30 cm and 30–60 cm) showed variable correlation 

(Table 5.8). There was a strong positive correlation at 10–30 cm with all five data 

points included (Figure 5.15 a), and a strong positive correlation at 0–10 cm and 30–

60 cm when one highly sodic outlier was removed. There was also a strong positive 

correlation between ECa 0–50 cm and ECe 10–30 cm (Figure 5.15 b). The 

percentage sand was negatively correlated with ECa in the “Milroy” paddocks. ECa 

0–50 cm generally showed a stronger correlation with sand content than ECa (0–

100 cm).  

There is also a reasonable similarity between the soil texture zones identified by the 

farm owner in paddock M25 (Figure 5.9) with the ECa 0–100 cm map (Figure 5.5 b) 

and the gamma K map (Figure 5.6 b). Similarly, the farm owners’ soil texture map 

for paddock M41 (Figure 5.10) shows resemblances to ECa 0–100 (Figure 5.5 d) and 

gamma TC (Figure 5.6 e). 

ECa and soil texture: “Grandview”  

Across all paddocks at “Grandview”, subsoil textures were fine clays (45–55% clay) 

(Table 5.7, Figures 5.12 and 5.13). In the more elevated sections of the paddocks, 

the “Grandview” soils (0–10 cm) had more than 20% clay and were classified as 

sandy loam/sandy clay loam soils. The lower-lying areas had more than 35% clay (0–

10 cm). ECa values appear to be lowest in paddock GV39 (Figure 5.7), which is 

located in the north-west part of the farm. GV39 has the highest elevation of the 

“Grandview” paddocks analysed (Figure 5.14).  

In terms of texture, GV39 also appeared to comprise increased sandy clay loam over 

clay than the other “Grandview” paddocks tested. There were significant 

differences in soil texture between the tops of hills, mid-slopes and points of lowest 

elevation in GV8 and GV39. On the tops of the hills, the topsoil tended to be stonier 

sandy clay loams, transforming to chromosols down the slope. The was no evidence 

of an A2 horizon.  
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There were strong positive correlations between ECa 0–38 cm values and clay 

content at 0–10 cm and 10–50 cm (Figure 5.15 c, Table 5.9). The soil texture 

properties in lower-lying areas with the highest conductivity corresponded with 

sodosols, with pockets of vertosols (Isbell 2016). There was a strong positive 

correlation between ECa 0–38 cm and ECe 10–50 cm (Figure 5.15 d). 

The soils at “Grandview” have been characterised in the APSoil database (Keating et 

al., 2003). The relevant reference soils are Yarrawonga Nos. 210 and 629 for clay 

and Yarrawonga Nos. 208 and 596 for sandy clay loam over clay. Based on the 

APSoil database, the corresponding plant available water capacities (PAWC) from 0–

180 mm were estimated as clay (high conductivity zone) at 120.5 mm; sandy clay 

loam over clay (medium conductivity zone) at 114 mm and sandy clay loam over 

clay (low conductivity zone) at 85 mm. 

There is also a reasonable similarity between the soil texture zones identified by the 

farm owner in paddock GV8 (Figure 5.12 a) with the ECa 0–50 and 0–100 cm maps 

(Figure 5.7 a, b). Similarly, the soil texture map for paddock GV39 (Figure 5.12 b) 

shows a strong resemblance to the ECa 0–50 and 0–100 cm maps (Figure 5.7 c, d). 

Soil pH: “Milroy”  

The soil test pH (0–10 cm) across the two paddocks ranged from 4.0 to 5.6 (mean 

4.6) for M25 and from 4.7 to 5.1 (mean 4.87) for M41 (Figures 5.16 a and 5.17 a). 

There was some evidence of a spatial trend in pH in paddock M41, increasing with 

elevation as soil texture changed from deep sand to sandy loam.  

Seven of the nine pH sites in M25 were below the critical pH value of 4.8 (Appendix 

9) whereas, in M41, only one site was below the critical value and at eight of the 11 

sites, pH increased with depth. There were no significant correlations between 

either ECa or GR data and pH. 

Soil pH: “Grandview” 

The soil test pH (0–10 cm) across the two paddocks ranged from 4.5 to 5.2 (mean 

4.95) for GV8 and from 5.2 to 6.3 (mean 5.83) for GV39 (Figures 5.18 b and 5.19 a). 
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One site in GV8 was below the critical value. There were no significant correlations 

between ECa data and pH. 

Phosphorus: “Milroy” 

The range of soil test phosphorus concentrations across each of the paddocks was 

similar, being 23 to 51 mg/kg for M25 and 25 to 55 mg/kg for M41 (Figures 5.16 b 

and 5.17 b). The lowest P-value in M41 was in the lowest part of the paddock, in 

deep sand.  

There appeared to be little association between soil phosphorus levels and 

elevation in either paddock or with animal camping behaviour. The mean soil P-

value for each paddock (32.8 mg/kg for M25 and 45.2 mg/kg for M41) was above 

the critical value of 30 mg/kg. However, several sites in each paddock had Colwell P 

values well above or below the critical value. This reflects the variability in soils in 

“Milroy” paddocks, from deep sands to sandy loams/gravels. The correlations 

between ECa and GR data and Colwell P were weak and negative (not shown). 

Surface (0–10 cm) phosphorus buffering index (PBI) varied between 30 and 69 in 

M25 (Figure 5.16 e) and 11 and 124 in M41 (Figure 5.17 f). There were strong 

positive correlations between both ECa 0–10 cm and gamma thorium 0–10 cm with 

PBI in the 0–10 cm zone (Table 5.8). High thorium readings are indicative of soils 

with gravel content. Iron falls within the decay chain of thorium, so soils with higher 

iron oxide levels tend to have high PBI values. These areas generally correspond to 

lateritic soils. 

Phosphorus: “Grandview” 

The range of Colwell P concentrations across each of the paddocks was similar, 

being 30 to 74 mg/kg for GV8 and 29 to 72 mg/kg for GV39 (Figures 5.18 a and 5.19 

b). These values are much higher than the coarser-textured soils at “Milroy”. Lower 

phosphorus levels in GV39 were associated with elevation (Figures 5.14 d and 5.19 

b).  

There appeared to be little association between soil phosphorus, as measured by 

Colwell P, and elevation in paddock GV8. The mean soil P-value for each paddock 

(51.5 mg/kg for GV8 and 45 mg/kg for GV39) was well above the critical P-value (30 
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mg/kg). Like “Milroy”, the correlations between ECa and Colwell P were weak and 

negative (Table 5.9). 

Potassium: “Milroy” 

Soil test potassium values ranged from 29 to 320 mg/kg for M25 and 47 to 277 

mg/kg for M41 (Figures 5.16 d and 5.17 d). The areas of high potassium 

concentration tended to be associated with sandy loam textured soils. Five of the 

eight sites in M25 were well below the critical value for K (140 mg/kg) as were five 

of the ten sites in M41. There were no significant correlations between ECa, Colwell 

K and gamma K or other radiometric data (Table 5.8).  

Potassium: “Grandview” 

The soil test potassium values ranged from 213 to 506 mg/kg for GV8 and 420 to 

631 mg/kg for GV39 (Figures 5.18 d and 5.19 d). All values were well above the 

critical value (140 mg/kg) and significantly higher than the values recorded at 

“Milroy”. There was no relationship between ECa values and Colwell K at 

“Grandview”.  

Sulphur: “Grandview” only 

Sulphur levels ranged from 6.4 to 9.8 mg/kg in GV8 and 4 to 28.1 mg/kg in GV39 

(Figures 5.18 e and 5.19 h). Spatial trends between S and elevation were not 

observed in GV8, although high levels of S appeared to be associated with the 

lowest elevations in GV39 (Figures 5.14 d and 5.19 h). Although the mean sulphur 

concentrations for both paddocks (8.45 mg/kg for GV8 and 12.0 mg/kg for GV39) 

were above the critical value (8 mg/kg), variability in GV39 at the sub-paddock scale 

was considerable. 

Aluminium: “Milroy” 

Values were obtained for both exchangeable aluminium and Al (CaCl2). There were 

no significant correlations between ECa and either Al (CaCl2) or exchangeable Al. 

There were significant correlations between gamma thorium and exchangeable Al 

at 0–10 cm and 10–30 cm (Table 5.8).  
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Sites with lower gamma thorium and low ECa values tended to have higher soil test 

aluminium values. “Milroy” soils are highly weathered and have lower levels of 

exchangeable cations and are therefore prone to acidification, as evidenced by the 

soil pH results described above, allowing aluminium to become available. 

Aluminium: “Grandview” 

There was no correlation evident between ECa and exchangeable Al. 

Chloride: “Milroy” only 

There were strong correlations between ECa 10–30 cm and 30–60 cm and chloride 

(Table 5.6). These correlations reflect the typically strong electrolytic effect of 

chloride on EMI readings. The ECa 0–100 cm data had an anomalous negative point 

corresponding to a thorium value of 54 ppm. It is suspected that the high gravel 

content lateritic soil at this sample point interfered with the magnetics on the deep 

EM38 channel. This can be caused by lateritic bauxite deposits which are common 

throughout remnant areas of the Darling Scarp where “Milroy” is located. The soil 

core image for this point (Figure 5.11 c) shows high gravel content 30–60 cm. 

Removal of this outlier gave a significant correlation. There were no correlations 

between GR data and chloride. 

Cations: “Milroy” 

Cation exchange capacity (CEC) at “Milroy” showed strong correlations with ECa 0–

10, 10–30 and 30–60 cm (Table 5.8). There were strong significant correlations of 

CEC with gamma total count and gamma U (Table 5.8).  

There were also strong correlations between exchangeable sodium percentage 

(ESP) and ECa 10–30 and 30–60 cm (Table 5.8). Site EM5 (paddock M25) recorded 

an ESP of 12%.  

Cations: “Grandview” 

Clay content in these soils increased to more than 50% over the 10–50 cm depth 

range. Most subsoil profiles were sodic with ESP greater than 6% at six of the 11 

sites (Figures 15.6 g and 15.7 f). There were no strong correlations between ECa and 

CEC or ESP (Table 5.9).  
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Organic carbon: “Milroy” 

Organic carbon (OC) levels ranged from 1.22 to 2.96% in M25 and 0.06 to 0.59% in 

M41 (Figures 5.16 f and 5.17 g). These values reflected soil texture classes in M25 

but in M41 were generally below the threshold values.  

There were significant correlations between ECa 0–50 cm and organic carbon at 0–

10 and 10–30 cm and OC at 0–10 cm with gamma thorium, gamma uranium and 

total count (Table 5.8).  

Organic carbon: “Grandview” 

Organic carbon levels ranged from 1.9 to 3.98% in GV8 and 2.37 to 4.06% in GV39 

(Figures 5.18 f and 5.19 g) which were above the threshold values. These values are 

greater than at “Milroy” and reflect the finer-textured soils at “Grandview”.  

There were strong negative correlations between ECa 0–38 cm and OC 0–50 cm and 

ECa 0–75 cm and OC 10–50 cm (Table 5.7). 
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FIGURE 5.5: MAPS OF SOIL ECA FROM EMI SCANS OF “MILROY” PADDOCKS M25 AND M41 

CONDUCTED IN OCTOBER 2012. (A) M25 0–50 CM SOIL DEPTH, (B) M25 0–100 CM, (C) M41 0–

50 CM AND (D) M41 0–100 CM. NUMBERS WITHIN MAPS RELATE TO ECA/GAMMA INTERPRETATION 

SITES. 
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FIGURE 5.6: SPATIAL ESTIMATES OF γ-RAY EMISSION FROM TOTAL EMISSION (TC), POTASSIUM (K), 

THORIUM (TH) AND URANIUM (U) FOR “MILROY” PADDOCK M25 AND M41. (A) M25 γ TOTAL 

COUNT, (B) M25 γK, (C) M25 γTH, (D) M25 γU, (E) M41 γ TOTAL COUNT, (F) M41 γK, (G) M41 

γU, (H) M41 γTH. NUMBERS WITHIN MAPS RELATE TO ECA/GAMMA INTERPRETATION SITES. 
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FIGURE 5.7: MAPS OF SOIL ECA FROM EM38 SCANS OF “GRANDVIEW” PADDOCKS GV8 AND GV39 

CONDUCTED IN OCTOBER 2013. (A) GV8 0–38 CM, (B) GV8 0–75 CM, (C) GV39 0–38 CM AND 

(D) GV39 0–75 CM. SCANS WERE CONDUCTED WITH THE EM38 IN HORIZONTAL MODE (ECAH). 
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FIGURE 5.8: DISTRIBUTION OF ECA DATA POINTS FOR “MILROY” M25 (A) 0–50 CM, (B) 0–100 CM, 

M41 (C) 0–50 CM, (D) 0–100 CM AND “GRANDVIEW” GV8 (E) 0–38 CM, (F) GV8 0–75 CM, 

GV39 (G) 0–38 CM AND (H) 0–75 CM. THE RED BRACKET OUTSIDE OF THE BOX IDENTIFIES THE 

SHORTEST HALF, WHICH IS THE MOST DENSE 50% OF THE OBSERVATIONS (ROUSSEUW AND LEROY 

1988). 

  

(c) (d) 

(e) (f) 

(g) (h) 

(a) (b) 
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TABLE 5.5: DESCRIPTIVE STATISTICS FOR ECA DATASETS COLLECTED FROM EMI SURVEYS OF 

“MILROY” AND “GRANDVIEW” PADDOCKS. N= THE NUMBER OF SENSOR DATA POINTS COLLECTED. 

Paddock EM38 
depth (cm) 

N Mean 
(mS/m) 

Standard 
deviation 

Median 
(mS/m) 

CV (%) 

“Milroy”       

M25 50 2911 7.94 7.8 5.2 98.0 

 100 2936 21.0 17.6 16.8 84.0 

M41 50 3654 7.6 6.2 5.6 82.0 

 100 3652 12.7 13.2 9.4 104.0 

“Grandview”       

GV8 38 6239 43.78 8.99 42.58 20.5 

 75 6228 103.8 12.50 103.13 12.0 

GV39 38 7762 16.39 9.81 17.58 60.0 

 75 7687 79.45 7.77 78.63 9.7 
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FIGURE 5.9: SOIL TEXTURE MAP FOR MILROY PADDOCK M25. THE MAP WAS CREATED FROM FARMER 

KNOWLEDGE (MURRAY HALL, PERS. COMM.).  SANDY LOAM,  WHITE CLAY,  SHALLOW SANDY 

DUPLEX,  SAND ON CLAY LOAM,  DEEP SAND,  DEEP SANDY DUPLEX. 

 

FIGURE 5.10: SOIL TEXTURE MAP FOR “MILROY” PADDOCK M41. THE MAP WAS CREATED FROM 

FARMER KNOWLEDGE (MURRAY HALL, PERS. COMM.).  SANDY LOAM,  FRIABLE SAND,  GRAVELS, 

 SANDY DUPLEX (SODIC),  SAND ON CLAY LOAM,  DEEP SAND. 
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FIGURE 5.11: TYPICAL SOILS ON “MILROY”: (A) SANDY LOAM, (B) FRIABLE SAND, (C) SANDY DUPLEX, 

(D) SAND OVER CLAY LOAM, (E) DEEP SAND AND (F) SALINE WHITE CLAY. 

 

 

FIGURE 5.12: BROAD SOIL TEXTURE MAP FOR “GRANDVIEW” PADDOCK (A) GV8 AND (B) GV39. THE 

MAPS WERE CREATED FROM FARMER KNOWLEDGE (ADAM INCHBOLD, PERS. COMM.).  SANDY CLAY 

LOAM OVER MEDIUM CLAY,  SANDY CLAY LOAM OVER SODIC FINE CLAY,  CLAY LOAM OVER FINE 

CLAY. 
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FIGURE 5.13: TYPICAL “GRANDVIEW” SOILS, TAKEN FROM (A) A LOW ECA ZONE, (B) A MEDIUM ECA 

ZONE AND (C) A HIGH ECA ZONE. 
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FIGURE 5.14: “MILROY” PADDOCK ELEVATION SURFACES M25 (A), M41 (B), DERIVED FROM REAL-

TIME KINEMATIC (RTK) GPS HEIGHTS FROM GAMMA RADIOMETRIC SENSING AND “GRANDVIEW” 

PADDOCK ELEVATION SURFACES GV8 (C), GV39 (D), DERIVED FROM YIELD MONITOR GPS HEIGHTS. 
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TABLE 5.6: SOIL COLOURS AND TEXTURES FOR “MILROY” PADDOCKS M25 AND M41. THE CSBP 

SOIL DESCRIPTION CHART IS IN APPENDIX 24. 

Paddock Site Depth 
(cm) 

Colour Sand 
(%) 

Silt (%) Clay (%) Gravel 
(%) 

M25 EM3 0–10 BRGR 87.8 6.2 6.0 0 

  10–30 BRGR 90 5.9 4.1 27.5 

  30–60 GRWH 85.9 6.6 7.5 37.5 

 EM5 0–10 BR 76.1 8.4 15.4 5 

  10–30 BR 63.7 8.2 28.1 5 

  30–60 BR 80.7 1.5 17.8 0 

 Th4 0–10 DKGR    0 

  10–30 BRRD    0 

 K4 0–10 GRBR    5 

  10–30 BRYW    5 

M41 EM2 0–10 LTBR 75.5 6.8 17.7 0 

  10–30 OR 80.9 6.7 12.5 0 

  30–60 OR 73.4 6.7 19.9 0 

 Th1 0–10 GR    0 

  10–30 LTGR    0 

 K3 0–10 GRBR    5 

  10–30 BRWH    5 
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TABLE 5.7: SOIL COLOURS AND TEXTURES FOR “GRANDVIEW” PADDOCKS GV8 AND GV39. THE 

CSBP SOIL DESCRIPTION CHART IS IN APPENDIX 24. 

Paddock Site Colour Clay (%) 
0–10 cm 

Clay (%) 
10–50 

cm 

GV8 L1 DKGR 30  45  

 L2 GR 25 45 

 L3 GR 30 45 

 M1 LTBR 35 45 

 M2 BRGR 40 50 

 M3 BR 35 45 

GV39 L1 GR 35 50 

 L2 BR 35 45 

 L3 GR 35 50 

 H1 LTBR 35 55 

 H2 GR 40 50 

 H3 BRGR 40 50 
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TABLE 5.8: PEARSON CORRELATION COEFFICIENTS (R) AND REGRESSION COEFFICIENTS (R2) FOR 

RELATIONSHIPS BETWEEN ECA AND GAMMA RADIOMETRIC DATA WITH SOIL PARAMETERS AT 

“MILROY”. SIGNIFICANT RESULTS ARE SHOWN IN BOLD. 

MILROY r p N R2 

ECa (mS/m) 0–50 cm and:     
% clay 0–10 cm 0.44 0.45 5 0.20 
% clay 0–10 cm 0.96 <0.05 4 0.92 
% clay 10–30 cm 0.91 <0.05 5 0.84 
% clay 30–60 cm 0.43 0.50 5 0.19 
Colwell K (mg/kg) 0–10 cm 0.77 <0.001 22 0.60 
Colwell K (mg/kg) 30–60 cm 0.94 <0.001 26 0.62 
OC (%) 0–10 cm 0.85 <0.001 18 0.73 
OC (%) 10–30 cm 0.80 <0.001 15 0.70 
ECe (mS/m) 0–10 cm 0.50 <0.01 30 0.25 
ECe (mS/m) 10–30 cm 0.91 <0.001 29 0.83 
pH 10–30 cm 0.60 <0.001 29 0.36 
PBI 0–10 cm 0.83 <0.001 28 0.70 
PBI 30–50 cm 0.89 <0.01 14 0.50 
Exch. Al (%) 0–30 cm –0.80 0.10 5 0.64 
Exch. Al (%) 0–60 cm –0.76 0.14 5 0.57 
Chloride (mg/kg) 10–30 cm 0.98 <0.05 5 0.96 
Chloride (mg/kg) 30–60 cm 0.98 <0.01 5 0.96 
CEC (cmol/kg) 0–10 cm 0.90 <0.05 5 0.80 
CEC (cmol/kg) 10–30 cm 0.98 <0.01 5 0.96 
CEC (cmol/kg) 30–60 cm 0.97 <0.01 5 0.95 
ESP (%) 0–10 cm 0.74 0.15 5 0.55 
ESP (%) 10–30 cm 0.99 <0.001 5 0.97 
ESP (%) 30–60 cm 0.96 <0.01 5 0.92 
Gamma K (%) and:     
CEC 0–10 cm 0.67 

 
0.9 
0.9 

0.91 
0.88 
0.9 

0.91 
0.92 
0.77 
-0.65 
-0.93 
0.8 

 
0.76 
0.9 

0.87 
 

0.85 
0.90 

0.2 5 0.64 
Gamma Th (ppm) and:     
ECa (mS/m) 0.90 <0.001 13 0.81 
OC (%) 0–10 cm 0.90 <0.05 5 0.80 
PBI 0–10 cm 0.91 <0.001 13 0.83 
pH 0–30 cm 0.88 <0.001 12 0.78 
Exch. Al (cmol/kg) 0–10 cm 0.90 <0.05 5 0.81 
Exch. Al (cmol/kg) 10–30 cm 0.91 <0.05 5 0.82 
ESP (%) 0–10 cm 0.80 0.1 5 0.64 
Gamma TC (counts/sec) and:     
ECa (mS/m) 0.76 <0.01 13 0.58 
OC (%) 0–10 cm 0.90 <0.05 5 0.87 
ESP (%) 0–10 cm 0.87 0.05 5 0.75 
Gamma U (ppm) and:     
OC (%) 0–10 cm  0.85 0.05 5 0.78 
ESP (%) 0–10 cm 0.90 0.05 5 0.82 

Note: where Pearson’s r was below 0.25 data is not shown.  



CHAPTER 5. PROXIMAL SOIL SENSING AND SOIL CHEMICAL ANALYSIS 

 PAGE | 143 

TABLE 5.9: PEARSON CORRELATION COEFFICIENTS (R) AND REGRESSION COEFFICIENTS (R2) FOR 

RELATIONSHIPS BETWEEN ECA DATA WITH SOIL PARAMETERS AT “GRANDVIEW”. SIGNIFICANT RESULTS 

ARE SHOWN IN BOLD. 

GRANDVIEW r p N R2 

ECa 0–38 cm and:     

% clay 0–10 cm 0.86 <0.001 24 0.74 

% clay 10–50 cm 0.87 <0.001 24 0.77 

pH 0–10 cm 0.34 0.1 24 0.12 

pH 10–50 cm 0.77 <0.001 20 0.59 

Col P 0–10 cm –0.27 <0.05 24 0.07 

Col P 10–50 cm –0.53 <0.05 15 0.30 

Col K 0–10 cm –0.72 <0.001 24 0.51 

Col K 10–50 cm –0.66 <0.05 20 0.44 

OC 0–50 cm –0.84 <0.001 20 0.71 

CEC 0–10 cm –0.44 <0.05 24 0.19 

CEC 10–50 cm 0.72 <0.001 20 0.51 

ESP 0–10 cm 0.59 <0.05 24 0.34 

ESP 10–50 cm 0.77 <0.001 20 0.60 

ECa 0–75 cm and:     

% clay 0–10 cm 0.78 <0.001 24 0.61 

% clay 10–50 cm 0.85 <0.001 20 0.75 

pH 10–50 cm 0.80 <0.001 20 0.70 

ESP 10–50 cm 0.78 <0.001 20 0.61 

OC 10–50 cm –0.83 <0.001 20 0.70 

CEC 10–50 cm 0.79 <0.001 20 0.61 

Note: where Pearson’s r was below 0.25 data is not shown.  
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FIGURE 5.15: DISTRIBUTION OF ECA VALUES FOR REGRESSION AGAINST % CLAY AND ECE FOR 

“MILROY” PADDOCKS (A) AND (B) AND “GRANDVIEW” PADDOCKS (C) AND (D). 
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FIGURE 5.16: SOIL TEST RESULTS FOR MILROY PADDOCK M25. (A) PH (CACL2), (B) COLWELL P 

(MG/KG), (C) KG N/HA 0–50 CM AND (D) COLWELL K (MG/KG). WHERE A SINGLE RESULT IS SHOWN 

AT A POINT, THE DEPTH IS 0–10 CM, WHERE MULTIPLE RESULTS ARE SHOWN, THE DEPTHS ARE 0–10 

CM, 10–30 CM AND 30–60 CM. 

  

(c) (d) 

(a) (b) 
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FIGURE 5.16 (CONT.): SOIL TEST RESULTS FOR MILROY PADDOCK M25. (E) ECE (DS/M), (F) OC (%) 

AND (G) PBI. WHERE A SINGLE RESULT IS SHOWN AT A POINT, THE DEPTH IS 0–10 CM, WHERE 

MULTIPLE RESULTS ARE SHOWN, THE DEPTHS ARE 0–10 CM, 10–30 CM AND 30–60 CM. 

(g) 

(e) (f) 
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FIGURE 5.17: SOIL TEST RESULTS FOR MILROY PADDOCK M41. (A) PH (CACL2), (B) COLWELL P 

(MG/KG), (C) KG N/HA 0–50 CM AND (D) COLWELL K (MG/KG). WHERE A SINGLE RESULT IS SHOWN 

AT A POINT, THE DEPTH IS 0–10 CM, WHERE THREE VALUES ARE SHOWN, THE DEPTHS ARE 0–10 CM, 

10–30 CM AND 30–60 CM. WHERE FIVE VALUES ARE SHOWN, DEPTHS ARE AT 10 CM INTERVALS, 

FROM 0–10 CM. 

 

(c) (d) 

(a) (b) 
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FIGURE 5.17 (CONT.): SOIL TEST RESULTS FOR MILROY PADDOCK M41. (E) ECE (DS/M), (F) PBI AND 

(G) OC (%). WHERE A SINGLE RESULT IS SHOWN AT A POINT, THE DEPTH IS 0–10 CM, WHERE THREE 

VALUES ARE SHOWN, THE DEPTHS ARE 0–10 CM, 10–30 CM AND 30–60 CM. WHERE FIVE VALUES 

ARE SHOWN, DEPTHS ARE AT 10 CM INTERVALS, FROM 0–10 CM. 

 

  

(g) 

(e) (f) 
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FIGURE 5.18: SOIL TEST RESULTS FOR GRANDVIEW PADDOCK GV8. (A) COLWELL P (MG/KG), (B) PH 

(CACL2), (C) KG N/HA 0–50 CM AND (D) COLWELL K (MG/KG). WHERE A SINGLE RESULT IS SHOWN 

AT A POINT, DEPTH IS 0–10 CM. MULTIPLE VALUES AT A SITE ARE 0–10 CM AND 10–50 CM. 

  

(c) (d) 

(a) (b) 
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FIGURE 5.18 (CONT.): SOIL TEST RESULTS FOR GRANDVIEW PADDOCK GV8. (E) S (MG/KG), (F) OC 

(%), (G) ESP (%) AND (H) ECE (DS/M). WHERE A SINGLE RESULT IS SHOWN AT A POINT, DEPTH IS 0–

10 CM. MULTIPLE VALUES AT A SITE ARE 0–10 CM AND 10–50 CM. 

  

(g) (h) 

(e) (f) 
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FIGURE 5.19: SOIL TEST RESULTS FOR GRANDVIEW PADDOCK GV39. (A) PH (CACL2), (B) COLWELL P 

(MG/KG), (C) KG N/HA 0–50 CM AND (D) COLWELL K (MG/KG). WHERE A SINGLE RESULT IS SHOWN 

AT A POINT, DEPTH IS 0–10 CM. MULTIPLE VALUES AT A SITE ARE 0–10 CM AND 10–50 CM. 

  

(c) (d) 

(a) (b) 
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FIGURE 5.19 (CONT.): SOIL TEST RESULTS FOR GRANDVIEW PADDOCK GV39. (E) ECE (DS/M), (F) 

ESP (%), (G) OC (%) AND (H) S (MG/KG). WHERE A SINGLE RESULT IS SHOWN AT A POINT, DEPTH IS 

0–10 CM. MULTIPLE VALUES AT A SITE ARE 0–10 CM AND 10–50 CM. 

  

(g) (h) 

(e) (f) 
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5.4 DISCUSSION 

This chapter has described the acquisition and analysis of baseline data that is 

required for the hypotheses that will be tested in Chapters 6 and 7, that: 

1. Spatial variation of production in the crop and pasture phases of a mixed 

farming system can be identified and quantified at high resolution using 

PA technologies, and  

2. Data acquired using PA technologies can be used to create a single index 

of paddock productivity that describes the spatial variation in, and 

temporal stability of, crop and pasture production over time. 

The objectives of this chapter were to i) investigate the use of EMI and GR sensing 

to map soil variability at a sub-paddock scale, and (ii) to relate the EMI and GR 

observations to measured soil physical and chemical properties related to crop and 

pasture productivity.  

The results show that the use of EMI alone or EMI and GR sensing in combination 

can provide relatively low-cost, high-resolution, spatially-dense data sets to help 

quantify the extent and nature of spatial variability in soil properties across a 

paddock. The results generally support findings reported in the literature regarding 

the use of EMI and/or GR sensing in predicting properties such as soil textural 

changes, clay content and soil moisture (Corwin and Lesch, 2005; Doolittle and 

Brevik, 2014; Rodrigues Jr et al., 2015; Sudduth et al., 2013; Wong et al., 2009, 

2010). 

5.4.1 RELATIONSHIPS BETWEEN PROXIMALLY SENSED DATA AND SOIL TEXTURE 

In general, the mapped soil ECa and GR patterns (Figures 5.5–5.7) reflected local 

topography (Figure 5.14). That is, higher soil ECa values (reflecting higher soil 

moisture content and/or finer soil textures) generally occurred in lower-lying parts 

of the paddocks. The relatively low ECa values at “Milroy” also reflected the 

coarser-textured, highly weathered lateritic soils of the Darling escarpment where 

“Milroy” is located (Anand and Butt, 2003). Gamma radiometric patterns for 

potassium and thorium concentrations appeared to be related to the occurrence of 

geological features which influenced both soil texture and the presence of lateritic 
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gravels. The highest concentrations of gamma thorium and gamma potassium 

appeared to be distributed across the property where heavier-textured soils occur, 

apart from where sandy gravels occur, which are high in thorium and generally have 

low ECa levels.  

In “Milroy” paddock M25, there are areas where both the ECa and gamma 

emissions are low (site 1 in Figure 5.5 a and b and Figure 5.6 a–d). This would 

indicate the presence of a uniform sand. However at M25 site 3, ECa is low, but 

gamma emissions are high. The difference in the gamma emissions between sites 1 

and 3 is due to the presence of gravel at site 3. The gravel is as poorly conductive as 

sand, giving a low ECa value, but high gamma emission. This would indicate an area 

of shallow sand over gravel. The area of high ECa at M25 site 2 in Figures 5.5 a and b 

is not picked up in the gamma survey. The higher ECa values are usually due to an 

increase in soil moisture content and potentially an associated rise in salinity.  

At M25 site 4, ECa and gamma thorium are both as low as at site 1, which would 

indicate a deep sand. However, gamma K here is elevated, indicating an underlying 

finer-textured soil, such as a sand over clay duplex soil, which was confirmed by soil 

coring (Figure 5.11 d). In paddock M41, site 1 (Figure 5.5 c and d and Figure 5.6 e–h) 

has low ECa and low gamma emissions, indicating a uniform deep sand. Site 2 has 

low ECa and high gamma, indicating shallow soil over gravel. Site 3 is situated on a 

saline drainage line and therefore has high ECa values, but is not picked up in the 

gamma survey.  

The more uniform clay soils at “Grandview” exhibited higher mean electrical 

conductivities than “Milroy” (Table 5.5). This is related to closer contact between 

soil particles in the fine clays of “Grandview” and the resulting capacity to better 

retain soil moisture (Corwin and Lesch, 2003; Heil and Schmidhalter, 2012). The 

“Grandview” soils also have higher levels of sodium in the 10–50 cm layer than the 

sandier soils of “Milroy”. 

Although there are only a small number of data points from “Milroy” for ECa vs. 

clay, the data points are well-distributed along the regression line from low ECa 

values to high (Figure 5.15 a). There was one very high ECa value (~40 mS/m). 

Removal of this point did not affect the slope of the regression line, i.e. this point 
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was not affecting the correlation relationship. At “Grandview”, there was also a 

strong correlation between ECa and clay content (Figure 5.15 c, Table 5.9).  

Overall, the general trend of the relationship between ECa and clay content showed 

that ECa increased linearly with increasing clay content across all paddocks over two 

different geographic regions of Australia. Percentage clay was positively correlated 

with ECa in all the study paddocks. The positive relationship of ECa with percentage 

clay is consistent with findings in several previous studies (Castrignanò et al., 2012; 

Doolittle and Brevik, 2014; Kitchen et al., 2005; Kweon et al., 2013; Triantafilis and 

Lesch, 2005).  

The combined use of EMI and GR sensing in the highly weathered landscapes where 

“Milroy” is located shows clear advantages over EMI alone. The approach proved 

valuable because areas of non-wetting gravels which could not be differentiated 

from deep sands using EMI sensing alone were identified with gamma sensing. 

Similarly, GR data helped with the interpretation in areas of the paddocks where 

high ECa values could be attributed to either clay or salinity in otherwise coarse-

textured soils. 

These interpretations also correspond reasonably well with the soil maps for 

“Milroy” M25 and M41 in Figures 5.9 and 5.10 and “Grandview” paddocks GV8 and 

GV39 in Figure 5.12, which were derived from the knowledge and experience of the 

farm owners (pers. comm.).  

5.4.2 RELATIONSHIPS BETWEEN ECA AND SOIL CHEMISTRY 

There were strong correlations between ECa and salinity (conductivity as measured 

by ECe) at 10–30 cm at “Milroy”, except for one very high ECa value (~40 mS/m). 

However, as with ECa vs. clay content, removal of this point did not affect the slope 

of the regression line, i.e. the value was not driving the correlation relationship. At 

“Grandview”, the regression for ECa vs. conductivity (ECe) at 10–30 cm could only 

explain 46% of the variation in ECe.  

The histograms of ECa data point distribution (Figure 5.8 a–d) illustrate the 

generally low ECa values in the two “Milroy” paddocks. The occurrence of very high 

ECa values in these paddocks was atypical and would indicate that salinity is not a 
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major plant growth restrictor at “Milroy” except for relatively small lenses of 

salinity, as seen in Figure 5.5.  

In contrast, high ECa values occurred more frequently in the distributions for 

“Grandview” (Figure 5.8 e–f). These are indicative of both the higher levels of clay 

and also higher electrical conductivities influenced by high ESP values in the subsoil 

(Figures 5.18 g and 5.19 f).  

The descriptive statistics of ECa data (Table 5.5) revealed that coefficients of 

variation (CV) for the “Milroy” sites were significantly higher than at “Grandview”, 

(with the exception of GV39, 0–38 cm), reflecting a substantially greater level of 

spatial variability in “Milroy” soils than those at “Grandview”. The high degree of 

within-paddock variation in soil ECa at “Milroy”, as defined by CV, may indicate that 

whole-paddock uniform management currently being practised might not be the 

most effective strategy.  

At “Milroy”, some reliable relationships (Table 5.8) between the EMI and GR survey 

data and important soil properties were identified, many of which have been 

previously reported in the literature. The most robust relationships with agronomic 

significance were between ECa (0–50 cm) and soil texture (clay content), PBI, ESP, 

chloride, CEC and OC. This suggests that ECa data could be a useful tool in 

identifying different nutrient management zones for site-specific management 

strategies. The strong associations between ECa, ESP and chloride at “Milroy” (Table 

5.8) can be used to identify areas of problem soils within this landscape. CEC is a 

measure of a soil’s capacity to adsorb and hold cations and provides an indication of 

the amount of nutrients available in the soil. The low CEC, sandy (low ECa) soils at 

“Milroy” would retain smaller quantities of cations, and a program of multiple, 

smaller applications of highly mobile nutrients such as K and S may be warranted in 

those areas, and of P where PBI is low. In areas identified as having higher ECa 

(higher clay content, CEC and OC), less frequent and larger applications may be 

appropriate (Hazelton and Murphy, 2007; Price, 2006).  

The relationships with GR data were less consistent, with gamma thorium 

correlating with PBI 0–10 cm, exchangeable Al and OC 0–10 cm. CEC and OC 

increased with increasing ECa as would be expected. Interestingly, there were no 
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consistent relationships between GR potassium and Colwell K at “Milroy”, which 

was unexpected. Gamma ray spectrometry measures radiation from all forms of 

potassium contained within the soil, some of which is readily available while some is 

contained in mineral structures and poorly available. Wong and Harper (1999) 

reported strong correlations between gamma emission from K and Colwell K soils in 

the Western Australian cropping zone. However, the authors also pointed out that 

this relationship may not hold in all situations because of the impacts of local 

geology and pedologic history on soil formation processes. The owner of “Milroy” 

has been applying high levels of fertiliser K to both paddocks, which may have 

confounded the relationship between Colwell K and total K as measured by the 

gamma survey. The soils at “Milroy” are generally highly leached and coarse 

textured and therefore have a lower capacity to retain potassium ions, possibly 

leading to lower Colwell K values. Plant responses to potassium fertilisers have been 

reported in soils with exchangeable potassium values below 0.2 meq/100 g (Abbott 

and Vimpany, 1989). Three of the five sites tested were at, or below, this level. The 

other aspect to consider is management, in terms of import and export of K. 

At “Grandview”, the results were less consistent. The combined data for both 

paddocks demonstrated robust relationships between ECa 0–38 cm and soil texture 

(clay content) and organic carbon and ECa 0–75 cm with clay, pH and OC (Table 5.9). 

In some instances, the relationships between ECa and agronomic factors of 

importance were negative or showed no relationship. Individual paddock data was 

also generally inconclusive.  

This accords with reported work on “Grandview” (Inchbold et al., 2009) where the 

medium ECa zone (comprising 80% of ECa values) was highly unstable and thus 

unpredictable when adding farm inputs such as nitrogen and phosphorus. In 

contrast, responses to these inputs on the high and low ECa zones were highly 

predictable (Inchbold et al., 2009; P. Baines pers. comm.). 

The farm owner at “Grandview” has been employing variable rate phosphorus 

applications during cropping phases (replacement P based on previous year’s yield 

map) for many years. The soil phosphorus results would appear to reflect this 

management practice, showing relatively uniform soil P across the paddocks. During 
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pasture phases (2004 and 2011), the farm owner aimed to apply approximately 8 

kg/ha of P as 100 kg/ha of single superphosphate. The highest P-value in GV39 was 

associated with a cattle camp and feed trough, indicating that there may have been 

some nutrient transfer occurring. The highest P-value in GV8 was also associated 

with a cattle camping area. Surprisingly, there was no relationship between ECa and 

CEC. Changes in CEC are usually associated with changes in clay content. Because 

“Grandview” soils have a clay loam/clay texture, a positive correlation of ECa with 

clay content and CEC would have been expected in these paddocks over depth.  

Mean sulphur concentrations for both paddocks (8.45 mg/kg for GV8 and 12.0 

mg/kg for GV39) were above the critical value (8 mg/kg), variability in GV39 at the 

sub-paddock scale was considerable, suggesting potential value from variable rate 

application of sulphur. 

The results described here have demonstrated the capacity and efficiency of EMI 

and GR sensing to improve the accuracy and reliability of sub-paddock soil maps 

and provide more detailed information on variations in soil textures and soil 

properties within a paddock. In highly weathered areas such as “Milroy”, which 

contain sandy, clayey, gravelly and salt-affected soils, the integration of multi-

sensor data improved the characterisation of sub-paddock soil properties compared 

to using an EMI sensor alone.  

Overall, the results emphasised that each property differed and that the 

relationships between the sensor data and soil properties measured are complex 

and cannot be generalised. The results also showed that the relationships of ECa 

with soil texture were generally more consistent than those with chemical 

properties. Laboratory soil test results from paddock sampling did not always 

correlate positively with the proximally sensed estimates of those properties, 

sometimes creating ambiguous and inconsistent relationships. Interpretation of the 

results can sometimes be confounded by the complex interactions among different 

soil properties. This accords with similar findings that differences in soil physical 

properties can have a greater influence over variation in ECa than differences in soil 

chemical properties (Castrignanò et al., 2012; Doolittle and Brevik, 2014; Jung et al., 

2005). For these reasons, it is clear that any proximal sensing approach has to be 
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supported by ground-truthing and calibration in the form of field sampling and soil 

testing if proximally sensed data is to be interpreted beyond a basic observation of 

the extent to which a particular paddock is variable. It is physically difficult and 

expensive to accurately map the extent of within-paddock soil variability at the 

spatial resolution required by precision agriculture methodologies using 

conventional laboratory-based soil testing techniques alone. This reinforces the 

point that proximal soil sensing technologies alone cannot replace the detail 

provided by manual soil sampling in the paddock. Instead, traditional soil sampling 

and proximal sensing techniques should be used together to provide even more 

information about the soils at a given site than is possible using either approach 

alone. 

Indeed, the research described in this chapter would have benefitted from more 

extensive soil testing, but was restricted by budgetary constraints. Nonetheless, 

across two contrasting sites on either side of the continent, maps of soil 

characteristics predicted from the proximally sensed data will be helpful in 

understanding within-paddock variation. 

5.5 CONCLUSION 

Although a considerable body of research has described measuring and 

understanding the spatial variability of soil characteristics in cropping systems, 

there is little information available in the literature describing the same 

characteristics in mixed farming systems. The work described in this chapter sought 

to evaluate the potential use of relatively low-cost EMI and GR sensor data in mixed 

farming production systems for testing the hypotheses in Chapters 6 and 7. Overall, 

some strong positive correlations were evident between remotely sensed data and 

soil textural properties. Correlations between ECa values and soil chemical 

properties were less consistent, and the relationships were specific to the paddocks 

they were taken in.  

In the following chapters, the acquisition of further high-resolution datasets and 

maps will be explored and used in conjunction with the proximally sensed soil data 

obtained here. This high-resolution data will be used to explore sub-paddock 
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variations in and productive stability of mixed farming systems in both space and 

time. 
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CHAPTER 6. HIGH-RESOLUTION ACTIVE OPTICAL SENSING FOR MIXED 

FARMING SYSTEMS 

6.1 INTRODUCTION 

In Chapters 3 and 4, MODIS NDVI was used as a proxy for measuring crop and 

pasture biomass to confirm the hypothesis that, “spatial variation in biomass 

production over time is correlated between the cropping and pasture phases of 

mixed farming enterprises”. It was also noted that the MODIS pixel size of 250 m 

(6.25 ha) limited the opportunity to identify within-paddock spatial variability at a 

sufficiently fine scale. Much higher resolution data was needed to enable 

identification of sub-paddock variation in biomass and soil physical and chemical 

properties and their correlation to production in cropping and pasture phases. 

Chapter 5 then described preliminary work using ‘on-the-go’ proximal soil sensors 

as a means of rapidly obtaining high-resolution information about variations in soil 

texture (and associated soil PAWC) and chemistry using soil conductivity (ECa) and 

radioactivity (gamma). Paddock maps identifying spatial variability in soil 

conductivity and gamma emissions at a spatial resolution of 10 m were created. 

These maps showed strong correlations with actual soil texture variations across 

each paddock (Chapter 5, Figure 5.15). There were also good correlations with some 

soil chemical properties (Chapter 5, Tables 5.8–5.9). 

This chapter describes the acquisition and analysis of high-resolution crop and 

pasture yield data. This data, in combination with the soil physical and chemical 

information from Chapter 5, will be used to test Hypothesis 2 (Chapter 2, p. 36) that 

“spatial variation of production in the crop and pasture phases of a mixed farming 

system can be identified and quantified at high resolution using PA technologies”.  

At present, managers of mixed farming systems have no practical way of 

quantifying dry matter pasture production and the associated sub-paddock 

variability at high resolution during pasture phases. This is a significant problem 

when the spatial heterogeneity commonly associated with pastures is taken into 
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consideration (Laca, 2009). In contrast, most modern crop harvesters are equipped 

with yield monitors which allow crop producers to compile a high-resolution (10 m) 

database of spatial variation in crop yields (yield maps) over time. This data, 

combined with other information relating to crop performance (including paddock 

histories, soil chemical and physical properties, growing season rainfall, disease 

loads, frost events and satellite NDVI data) can be used to make decisions about 

site-specific management of crops, including variable rate management (Cook and 

Bramley, 1998; Whelan and Taylor, 2013). In this chapter, pasture yield data is 

determined by using a Crop CircleTM active optical sensor to measure the level of 

pasture production in selected paddocks during pasture–livestock rotations on 

“Milroy” and “Grandview”. Compared to spatial variation in crop yields, relatively 

little is known about the degree of within-paddock spatial variation during the 

pasture–livestock phase in mixed farming systems. Most of the reported research in 

this regard has been undertaken on international grassland farming systems 

(Edirisinghe et al., 2012; Lee et al., 2011; Marques Da Silva et al., 2008; Serrano et 

al., 2010, 2011; Suzuki et al., 2012; Zhao et al., 2007), with a much smaller body of 

relevant work on Australian dryland pasture systems (Trotter, 2010; Trotter et al., 

2008, 2010; Virgona and Hackney, 2008). None of this research has been conducted 

on mixed farming systems. Knowledge of the spatial variation in pasture biomass, 

its underlying causes, and how it compares to grain harvest yield variation during 

the cropping phase could significantly enhance the capacity for a manager to 

implement highly effective site-specific management strategies in a continuous 

sequence of pasture and cropping phases.  

The combined soil ECa paddock elevation data is therefore used in combination 

with crop yield data and the pasture dry matter data derived from Crop CircleTM 

sensing to delineate potential management classes suitable for differential 

management. Here, the protocol described by Taylor et al. (2007) for use in 

cropping systems is extended to incorporate both pasture dry matter yields and 

crop yields. The advantage of this methodology is that it can capture high spatial 

density data from every year in a rotation, not just the cropping years. For example, 

at “Grandview”, which has five-year pasture phases, the only precision data being 
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collected at present is crop yield, which only occurs five years in ten. Even at 

“Milroy”, which has shorter pasture phases ranging from one to three years, 

precision yield data is only captured somewhere between three years in four to 

three years in six. 

6.2 MATERIALS AND METHODS 

6.2.1 STUDY SITES 

The study sites were the same as those described previously (Chapter 3, pp. 58–61). 

Crop harvest yield data was available at both sites for all paddocks between 2004 

and 2014. However, not all yield data could be used due to in-paddock problems 

with yield sensors, calibration and/or operator error. Both sites received below 

mean annual and mean growing season rainfall over most seasons and years of the 

conducted research, resulting in likely soil moisture constraints on both pasture and 

crop production. Table 6.1 summarises crop and pasture rotations for both 

properties as well as available yield data. Rainfall data is shown in Table 6.2. 

 

TABLE 6.1: PADDOCK ROTATIONS FOR “MILROY” AND “GRANDVIEW” AND CROP HARVESTER YIELD 

MONITOR DATA THAT WAS AVAILABLE FOR ANALYSIS, 2004–2014. 

Paddock 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

“MILROY”            

M25  WA P P BC P WA P P P W W 

M41 LA BC P P CC WA P P P P W 

“GRANDVIEW”            

GV8 P CA WC WA CC WA WC W P P P 

GV39 P CC WC CA WA WA BC P P P P 

B = barley, C = canola, L = lupin, W = wheat, P = pasture 
A
 = Yield data available for this year; 

C
 = yield data was corrupted and unusable in this year 
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TABLE 6.2: ANNUAL RAINFALL (AR) AND GROWING SEASON RAINFALL (GSR) FROM 2004 TO 2014 

FOR “MILROY” AND “GRANDVIEW”. THE GROWING SEASON IS DEFINED AS THE PERIOD BETWEEN 1 

APRIL AND 31 OCTOBER. MEAN RAINFALL VALUES ARE FROM THE AUSTRALIAN BUREAU OF 

METEOROLOGY BROOKTON AND YARRAWONGA PATCHED-POINT DATA 1970–2000. 

YEAR mean 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

“MILROY”           

AR (mm) 437 304 501 392 392 494 439 256 467 300 461 371 

GSR (mm) 357 264 428 228 370 416 328 162 331 234 371 348 

“GRANDVIEW”         

AR (mm) 539 365 568 217 355 334 293 794 688 658 394 531 

GSR (mm) 359 260 334 148 190 155 245 407 243 218 254 327 

 

6.2.2 CROP HARVEST YIELD DATA AND YIELD MAPPING 

At “Milroy”, grain yield data was acquired on a Case 2388 harvester (2004–2008) 

and Case 2388 and 8010 harvesters (2009–2014) connected to a differentially 

corrected real-time kinematic (RTK) GPS system. At “Grandview”, grain yield data 

was acquired with a New Holland CR960 harvester coupled to a differentially 

corrected RTK GPS system.  

Raw yield data was processed using the protocol developed by Taylor et al. (2007). 

Data was inspected and trimmed to more realistic values by removing obvious 

outliers by constraining to a lower threshold of 0 t/ha and an upper threshold of 5.5 

t/ha at “Milroy” and a lower threshold of 0 t/ha and an upper threshold of 7.5 t/ha 

at “Grandview”. Extremely high yield registrations can result from the harvester 

suddenly slowing and low registrations can result from driving with the comb down 

but not harvesting or taking a full swath. After trimming, data points more than 2.5 

standard deviations (s.d.) above the paddock mean and 1.5 s.d. below the paddock 

mean were removed, after first plotting and inspecting the data in PAM Precision 

Data Processor (v.3.3.7) (Fairport Farm Software, Perth, WA) to confirm that the 

cleaned data ‘made sense’.  
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Figure 6.1 a–c shows the change in the histogram as a yield data layer, in this case, 

when “Milroy” paddock M25 in 2009 (wheat) was cleaned. The diagrams show (a) 

the histogram of the raw data and the presence of extreme values, (b) the same 

data after values are manually constrained to sensible limits, and (c) the cleaned 

data after final trimming using 2.5 s.d. above the paddock mean and 1.5 s.d. below 

the paddock mean as thresholds (Taylor et al., 2007).  

Yield data was then imported into ArcGIS 10.2 (ESRI, Redlands, California), 

converted to UTM projection, and mapped to a standard square 5 m x 5 m grid. 

Data was interpolated to the grid with Vesper 1.62 (Australian Centre for Precision 

Agriculture, The University of Sydney, NSW) using an exponential variogram and a 

block size of 10 m x 10 m. Interpolated data was then converted to raster surfaces 

in ArcGIS 10.2 to produce harvest yield maps for each paddock.  

 

 

FIGURE 6.1: EFFECT OF TRIMMING YIELD DATA: HISTOGRAMS SHOW (A) RAW YIELD DATA FROM 

“MILROY” PADDOCK M25 IN 2009, (B) SAME DATA CONSTRAINED TO SENSIBLE THRESHOLDS BY 

REMOVING OBVIOUS NONSENSICAL VALUES, AND (C) DATA TRIMMED USING 2.5 S.D. ABOVE THE 

PADDOCK MEAN AND 1.5 S.D. BELOW THE PADDOCK MEAN AS THRESHOLDS. 

 

6.2.3 MAPPING PASTURE GREEN HERBAGE MASS IN PASTURES 

Red and near-infrared (NIR) reflectance values for the calculation of vegetation 

indices were acquired using a Crop CircleTM ACS-210 active sensor (Holland Scientific 

Inc., Lincoln, NE, USA). The Crop CircleTM was chosen over the GreenSeeker® 

because the Crop CircleTM records individual signal values for red and NIR to a data 

logger, enabling the calculation of a range of vegetation indices based on red and 

NIR values. The GreenSeeker® provides values for NDVI only.  
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For mapping of pasture biomass, the Crop CircleTM sensor head was linked to a 

Trimble EZ-Guide 250 GPS Lightbar guidance system (Trimble, Sunnyvale, CA, USA) 

and a Holland Scientific GeoSCOUT 400 series data logger set to record geo-

referenced red and NIR outputs at 1 Hz. The Crop CircleTM sensor head, data logger 

and Trimble lightbar were mounted on a Honda four-wheel motorbike at “Milroy” 

and on the front of a Toyota Hilux at “Grandview” (Figure 6.2). On both vehicles, the 

ACS-210 sensor was mounted so that its height was approximately 90 cm above the 

ground. At this height, the angular field of view of the device (32o x 6o) produced a 

beam footprint of ~56 cm long x 12 cm wide. All Crop CircleTM data was collected 

along transects spaced 40 m apart (Figure 6.3). The initial transect path for each 

paddock was recorded in the Trimble EZ-Guide 250 memory so that, when returning 

to a paddock, the transect paths could be repeated. Speed across the paddocks was 

approximately 10–15 km/hr. NDVI values from the transects were trimmed to 

remove NDVI values <0.1 and >0.9. Remaining points were then imported into 

ArcGIS 10.2 converted to UTM projection and mapped to a standard square 5 m x 5 

m grid. The standard grid is required to enable data from different years and 

different sources to be analysed simultaneously. The grid was established in ArcGIS 

10.2 using the Geospatial Modelling Environment platform (Spatial Ecology, 

http://www.spatialecology.com) and kept constant throughout the analysis. Data 

was interpolated to the grid using Vesper 1.62 software (Australian Centre for 

Precision Agriculture, The University of Sydney, NSW) (Whelan et al., 2001). Block 

kriging was used with an exponential variogram and a block size of 10 m x 10 m. 

General settings were as described in the Vesper 1.62 User Manual (Australian 

Centre for Precision Agriculture, The University of Sydney, NSW) (Whelan et al., 

2001). The data were then mapped in ArcGIS 10.2 to produce raster surfaces of 

NDVI for each paddock (Figure 6.4). At “Milroy”, Crop CircleTM
 scans of paddocks 

M25 and M41 were taken in July, August and September 2012 and in 

August/September 2013. At “Grandview”, paddocks GV8 and GV39 were scanned in 

August and September 2012 and September 2013.   

http://www.spatialecology.com/
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FIGURE 6.2: CROP CIRCLE
TM

 ACS-210 MOUNTED ON A QUAD BIKE AT “MILROY” (A) AND A TOYOTA 

HILUX AT “GRANDVIEW” (B) CONNECTED TO A GEOSCOUT 400 DATA LOGGER AND TRIMBLE EZ-

GUIDE 250 LIGHTBAR GPS. THE SENSOR WAS MOUNTED SO THAT ITS HEIGHT WAS APPROXIMATELY 90 

CM ABOVE THE GROUND. 

 

 

FIGURE 6.3: EXAMPLE OF 40 M TRANSECT PATHS FOR CROP CIRCLE
TM

 SCANS IN PADDOCK M41 AT 

“MILROY”.  
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FIGURE 6.4: AN EXAMPLE OF AN INTERPOLATED NDVI SURFACE FOR “MILROY” PASTURE PADDOCK 

M41. 

 

6.2.4 COLLECTION OF PASTURE SAMPLES FOR CALIBRATION OF VEGETATION INDEX 

To calibrate the NDVI scans to actual pasture biomass present in the paddock, 

pasture samples were taken across each paddock. For pasture recording and 

harvesting at calibration sites, a quadrat 56 cm long x 12 cm wide was constructed 

from 1 cm diameter metal rod to emulate the Crop CircleTM’s footprint 90 cm above 

ground. The quadrat was painted flat black to minimise reflection.  

Twenty-five random pasture samples were taken from each study paddock on both 

properties in 2012 and 2013. At “Milroy”, paddocks M25 and M41 were scanned 

and sampled in early September 2012. In 2013, paddock M41 was scanned with the 

Crop CircleTM sensor and pasture samples taken in both August and September. M41 

was grazed heavily before the August 2013 scan and calibration cuts. It was then 

left unstocked for five weeks to allow it to recover and then re-scanned, and further 

calibration cuts taken. The reason for doing this was to try to characterise pasture 

growth rate in that paddock without animal impact. Paddock M25 was in wheat in 

2013 and was scanned and sampled in August 2013 before the crop became too 

advanced for travel across the paddock. At “Grandview”, paddocks GV8 and GV39 
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were scanned with the Crop CircleTM sensor and pasture samples taken in early 

September 2012 and again in October 2013.  

Pasture calibration cuts 

Multivariate k-means clustering based on the Crop CircleTM NDVI values was used in 

JMP® 12.2 (SAS Institute Inc., Cary, NC), to randomly select 25 pasture sampling sites 

in each paddock. The NDVI point values from the pasture scans were divided into 

five clusters, and five points selected randomly from within each cluster, to give 25 

sampling points for each paddock. These sites were then imported into ArcGIS 10.2 

and mapped as geo-referenced points in the paddock (Figure 6.5).  

To locate each sampling point for the calibration cuts, the selected pasture sites 

were imported into ‘gpMapper’ mapping software (Fairport Farm Software, Perth 

WA), loaded on a laptop computer and linked to the Trimble EZ-guide 250 GPS. At 

each sample point, Crop CircleTM was used in ‘hand-held’ configuration, with the 

sensor head at 90 cm above the ground surface and the 56 cm x 12 cm quadrat 

positioned so that it was within the Crop CircleTM footprint. The GeoScout 400 data 

logger was set to ‘plot’ mode. A minimum of 100 NDVI plot values were taken for 

each site, and the readings later averaged to arrive at a representative NDVI value. 

Each site was photographed, a dry-weight-rank (DWR) assessment (Jones and 

Hargreaves 1979) of pasture composition made and leaf area index assessed. 

Pasture within the quadrat was then harvested to ground level using battery 

powered Ryobi grass shears (Techtronic Industries Coy Ltd, Hong Kong, PRC). The 

cut pasture samples were placed in ziplock bags on-site and immediately 

refrigerated to minimise respiration losses. Samples were subsequently sorted into 

green and dead herbage mass fractions and legume/grass/herb to provide 

estimates of percentage green herbage mass. The pasture samples were oven-dried 

in paper bags at 80oC for 48 hours and then weighed. Dry weights were converted 

from ‘grams per quadrat’ to ‘kilograms per hectare’ to provide total herbage mass 

in kilograms of green dry matter (TGDM) per hectare for each sample site. 
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FIGURE 6.5: CROP CIRCLE
TM

 PASTURE CALIBRATION SITE LOCATIONS AT “MILROY” AND 

“GRANDVIEW” IN 2012 AND 2013. (A) M25 2012, (B) M25 2013, (C) M41 2012, (D) M41 

2013, (E) GV8 SEPTEMBER 2012, (F) GV8 OCTOBER 2013, (G) GV39 SEPTEMBER 2012 AND (H) 

GV39 OCTOBER 2013. 

 

6.2.5 TESTING OF NDVI AGAINST SOME ALTERNATIVE VEGETATION INDICES 

To test the validity of using NDVI rather than an alternative vegetation index, the 

averaged red and NIR reflectance values acquired from Crop CircleTM for each 

pasture sample site were used to create four different spectral indices; (i) NDVI, (ii) 

the Soil-Adjusted Vegetation Index (SAVI), (iii) the Non-Linear Vegetation Index (NLI) 

and (iv) the Modified Non-Linear Vegetation Index (MNLI). The formula for each of 

these indices is in Table 6.3. Because of the small sample sizes involved (n=25), the 

datasets were validated using Leave One Out Cross Validation (LOOCV) in the R 

statistical package (v. 2.14.1–The R Foundation for Statistical Computing, Vienna, 

Austria). The script used to analyse the datasets is given in Appendix 15. The LOOCV 
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analysis provided root mean square error (RMSE) values for each of the indices 

tested. The index with the lowest RMSE for every set of calibration samples was the 

NDVI (Tables 6.4 and 6.5). NDVI was therefore used as the vegetation index to 

develop the pasture calibration equations for total green dry matter (TGDM). 

6.2.6 CALCULATION OF TGDM CALIBRATION EQUATIONS 

The NDVI value taken at each pasture sampling cut site was regressed against the 

corresponding TGDM site value from the pasture sample cuts to produce a 

calibration equation for each paddock in each year of scanning. The calibration 

equations were then used to convert the geo-referenced NDVI values acquired from 

the Crop CircleTM pasture scans to geo-referenced TGDM values.  

The TGDM values were then imported into ArcGIS 10.2 and interpolated to a 5 m x 

5 m grid using Vesper 1.62 software (Australian Centre for Precision Agriculture, The 

University of Sydney, NSW) (Whelan et al., 2001). Raster surfaces of TGDM for each 

paddock were then produced in ArcGIS 10.2. 
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TABLE 6.3: VEGETATION INDICES TESTED FOR USE IN THE CROP CIRCLE
TM

 PASTURE CALIBRATION ANALYSIS. RATHER THAN JUST USING THE NDVI, FOUR DIFFERENT VEGETATION 

INDICES WERE TESTED TO DETERMINE WHICH INDEX GAVE THE LOWEST ERROR OF PREDICTION. 

Index Abbreviation Formula Reference 

Normalised Difference Vegetation Index NDVI (NIR–Red)/(NIR+Red) Rouse et al. (1973) 

Soil-Adjusted Vegetation Index SAVI [(NIR–Red)/(NIR+Red+L)]x(1+L) Huete (1988) 

Non-Linear Vegetation Index NLI (NIR2–Red)/(NIR2+Red) Goel and Qin (1994) 

Modified Non-Linear Vegetation Index MNLI [(NIR2–Red)x1.5]/[(NIR2+Red)+1.5] Gong et al. (2003) 
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6.2.7  PASTURE SPECIES COMPOSITION ASSESSMENTS 

The TGDM maps derived from the NDVI scans show total biomass in a paddock. This 

is because NDVI simply shows greenness and cannot differentiate between a high-

quality pasture and an actively photosynthesising patch of weeds—it will show both 

as green biomass and, therefore, both as equally ‘edible’ to livestock. It cannot be 

assumed that everything in a pasture is edible, so it is very important to ground-

truth the NDVI-derived TGDM maps to identify just what is growing in the paddock. 

This was done using the DWR technique (Jones and Hargreaves, (1979).  

Geo-referenced DWR sampling points were established across each paddock on 80 

m transects using the Trimble EZ-Guide 250 Lightbar GPS mounted as previously 

described, with sample points between 100 m and 150 m apart (Figure 6.6). At each 

sample point, a minimum of ten DWR estimates was conducted, using a 0.1 m2 

quadrat thrown randomly around a 5 m radius such that ~500 quadrats were 

assessed across each paddock at each sampling time. Individual pasture species 

were grouped into either legume, grass or broadleaf classes.  

The DWR procedure records the species that rank first, second and third in each 

quadrat according to their estimated contribution to pasture dry matter. The data 

were entered in a Microsoft Excel spreadsheet for analysis. Firstly, the rankings 

(first, second or third for each species) were multiplied by the constants 70.2, 21.1 

and 8.7, respectively. These multipliers were derived by Jones and Hargreaves 

(1979) from a least-squares analysis of many sets of hand-sorted samples, using the 

constraint that the sum of the multipliers equals 100. The resulting figures were 

then added to give the percentage of each species expressed in terms of dry weight. 

Where required, tied ranks (e.g. where more than one species is ranked first) were 

used (Cayley and Bird 1996). The array and frequency functions of Excel were used 

to condense the data into a summary table of geo-referenced rankings. 

The geo-referenced DWR data points were imported into ArcGIS 10.2 and 

interpolated to the 5 m x 5 m grid using Vesper 1.62 software (Australian Centre for 

Precision Agriculture, The University of Sydney, NSW). Raster surfaces of the three 
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main pasture components of each paddock (grass, legume, herb) were then 

produced in ArcGIS 10.2. 

 

 

FIGURE 6.6: DRY-WEIGHT-RANK (DWR) SAMPLING LOCATIONS FOR “MILROY” PADDOCK M41 IN 

SEPTEMBER 2012. AT EACH POINT, A MINIMUM OF TEN ESTIMATES OF PASTURE COMPOSITION WAS 

MADE USING THE DWR TECHNIQUE, AS MODIFIED BY JONES AND HARGREAVES (1979), USING A 0.1 

M
2
 QUADRAT. THE DWR ESTIMATES CONDUCTED AT THE 25 PASTURE CALIBRATION SITES (FIGURE 

6.5) WERE ALSO INCLUDED. 

 

6.2.8 ESTABLISHING SUB-PADDOCK MANAGEMENT CLASSES  

A multivariate k-means clustering analysis was carried out using JMP® 12.2 on 

selected data layers (crop yield, pasture dry matter yield, elevation and ECa) to 

assess and partition the within-paddock variability in both crop yield and pasture 

dry matter production. Although the use of k-means clustering is a common 

methodology for identifying potential yield zones in cropping situations (Cupitt and 

Whelan, 2001; Florin et al., 2009; Taylor et al., 2007; Whelan and McBratney, 2003), 

there is no reference in the literature to using this approach to analyse and identify 

potential management classes for site-specific management across the combined 

cropping and pasture phases of mixed farming systems.  

The datasets used had previously been mapped onto a common 5 m grid via block 

kriging with local variograms using VESPER 1.62 (Australian Centre for Precision 

Agriculture, The University of Sydney, NSW) (Whelan et al., 2001). The k-means 
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analysis was configured to produce solutions for two, three and four clusters. This 

number of clusters was considered to encompass a range of management classes 

that would be acceptable to farm managers in terms of practical differential zonal 

management.  

To verify whether differences between potential management classes derived from 

the k-means clustering were genuine and significant, a confidence interval (CI) 

approach was used, as described by Cupitt and Whelan (2001) and modified by 

Taylor et al. (2007).  

For two management classes to statistically differ,  

|�̅�𝑐𝑙𝑎𝑠𝑠𝐴 − �̅�𝑐𝑙𝑎𝑠𝑠𝐵| ≥  (�̃�𝑘𝑟𝑖𝑔 × 1.96) x 2         (Taylor et al., 2007) 

where �̅�ClassA is the mean of Class A, �̅�ClassB is the mean of Class B, and �̃�𝑘𝑟𝑖𝑔
2  is the 

median kriging variance.  

The point of this statistic is to establish whether the difference in mean crop and 

pasture yield values from the k-means clustering process is significantly greater 

than the error associated with the spatial prediction of the yield data. If this is the 

case, then there is a reasonable degree of confidence that the class means from the 

clustering process are not equal. 

“Milroy” paddocks M25 and M41 

The data layers used were the crop yield monitor data for 2004 and 2009 for M25 

(both wheat) and 2009 and 2014 for M41 (both wheat) growing seasons together 

with TGDM for September 2012 and August 2013 and the soil electrical conductivity 

and elevation data described in Chapter 5.  

“Grandview” paddocks GV8 and GV39 

The same process was carried out on the “Grandview” data. For paddock GV8, crop 

yield data was available for 2005 (wheat), 2007 (canola) and 2009 (wheat). For 

paddock GV39, crop yield data was available for 2007 (canola), 2008 (wheat) and 

2009 (wheat). Total green pasture dry matter was available for 2012 and 2013 with 

the soil electrical conductivity and elevation data described in Chapter 5.  
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To identify any influence on zone partitioning from including TGDM variation, 

clustering was firstly carried out in JMP using the crop yield data only with ECa and 

elevation and then repeated using both crop yield data and the pasture TGDM with 

ECa and elevation. 

6.3 RESULTS 

The results shown here are for “Milroy” paddocks M25 and M41 and “Grandview” 

paddocks GV8 and GV39. These were the paddocks for which pasture green dry 

matter data was available in both 2012 and 2013. The results for the other 

paddocks are contained within Appendices 12–14, 17 and 18 but will not be 

described further in the results. 

6.3.1 CROP YIELD MAPS 

“Milroy” 

The yield maps for paddock M25 (Figure 6.7 a and b) show similar spatial variation 

in yield, despite being five years apart and having different growing season rainfall 

(GSR), 264 mm (2004) and 328 mm (2009) (Table 6.2). The patterns of spatial 

variation in paddock M41 (Figure 6.7 c and d) for 2009 and 2014 are also similar.  

“Grandview” 

Figure 6.8 a–c shows crop harvest yield maps for paddock GV8 in 2005 (canola), 

2007 (wheat) and 2009 (wheat). In 2005, the GSR of 334 mm was close to the mean, 

but 2007 (190 mm) and 2009 (245 mm) were well below. The 2005 map for GV8 

shows less variation across the paddock, suggesting that there was sufficient rainfall 

for all parts of the paddock to perform well. 

From 2006 to 2008, annual rainfall was in the lowest 10–20% of years recorded at 

“Grandview” and GSR was well below average. The 2006 year only had 217 mm 

total annual rainfall, so little residual moisture was available for the 2007 season. 

For paddock GV39, the yield maps for 2007–2009 are shown in Figure 6.8 d–f. The 

effect of the drought on crop yields can be clearly seen in Figure 6.8 d and e. A 

higher proportion of the paddock yielded poorly, although some areas still recorded 

reasonable yields of around 4 t/ha. 
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As was the case in paddock GV8, the more elevated part of GV39 (south-east 

corner) (Chapter 5, Figure 5.14 d) yielded better in the very dry years. Nonetheless, 

yield variation within paddocks is apparent, even during the drought years. When 

GSR was closer to the mean (2009), the lower parts of the paddock also yielded well 

(Figure 6.8 f). 

6.3.2 CROP CIRCLETM NDVI SCANS 

Figures 6.9 and 6.10 show the maps of spatial variation in NDVI reflectance from 

Crop CircleTM scans of pasture for “Milroy” paddocks M25 and M41 and 

“Grandview” paddocks GV8 and GV39, respectively. 

“Milroy” 

Figure 6.9 a–c shows the NDVI maps for paddock M25 for August 2012, September 

2012 and August 2013. This is late winter–early spring and pasture is limited and 

growth rates slow. Sites 2, 3 and 4 have the highest NDVI values across all scans. 

The NDVI maps for “Milroy” paddock M41 are in Figure 6.9 d–g. The impact of 

grazing on pasture growth (and therefore NDVI) can be seen between maps (f) and 

(g), reflecting the heavy grazing just prior to the August 2013 scan. Map (g) shows 

the response of pasture growth in the paddock to rainfall, aspect and soil types, 

without the added factor of animal impact. The “Milroy” paddock M25 image from 

Pasture WatchTM for September 2012 (Figure 6.11) demonstrates the relative lack of 

detail provided by the large MODIS pixels in comparison to the high resolution of 

the Crop CircleTM scans. 

“Grandview” 

For “Grandview”, GSR was below the long-term mean of 359 mm in both years, with 

218 mm received in 2012 and 254 mm in 2013. The scans in 2013 were conducted 

in October in a season with a particularly low annual rainfall of 394 mm, with annual 

pastures beginning to senesce, compared to the 2012 scans which occurred in the 

cooler months of August and September in a year of above average annual rainfall 

(658 mm).  

The productivity of the more elevated parts of paddock GV8 is evident again in 

Figure 6.10 a and b. The NDVI scans for GV39 in 2012 (Figure 6.10 d and e) showed 
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higher reflectance values in the more elevated parts of the paddock. The area of 

medium NDVI reflectance increased between August and September 2012. 

6.3.3 PREDICTION OF PASTURE DRY MATTER FROM NDVI SCANS 

Comparison of the performance of TGDM prediction by selected vegetation indices 

using LOOCV 

Tables 6.4 and 6.5 show the performance of selected vegetation indices in 

predicting TGDM on the pasture calibration datasets for “Milroy” paddocks M25 

and M41 and “Grandview” paddocks GV8 and GV39, respectively.  

For all paddocks, NDVI had the lowest RMSE of prediction (kg TGDM/ha) and was 

therefore chosen as the most appropriate to use for the NDVI to TGDM calibration 

process.  

Correlation between Crop CircleTM NDVI and pasture biomass (TGDM) 

Figures 6.12 (“Milroy”) and 6.13 (“Grandview”) show the regression of the Crop 

CircleTM NDVI scan values at each of the 25 pasture harvesting sites in each paddock 

against the actual TGDM harvested at each site for 2012 and 2013.  

In all cases, a non-linear relationship best represented the capacity of NDVI to 

predict TGDM, with R2 values ranging from 0.66 to 0.88 at “Milroy” and 0.76 to 0.84 

at “Grandview”. The regression curves for Milroy M45 and Grandview GV3 and 4 

are at Appendix 16. 

6.3.4  PASTURE BIOMASS ‘YIELD’ MAPS 

Figures 6.14 and 6.15 show the predicted pasture TGDM ‘yield’ maps for “Milroy” 

paddocks M25 and M41 and “Grandview” paddocks GV8 and GV39, respectively. 

These maps were created by applying the prediction equations from Figures 6.12 

and 6.13 to the Crop CircleTM NDVI scan values at each sampling time for each 

paddock.  

Variability of TGDM in each paddock was also characterised with histograms 

showing the distribution of TGDM and related descriptive statistics in each year. 

The histograms for “Milroy” and “Grandview” are in Figures 6.16 and 6.17, 

respectively. 
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“Milroy” 

Paddock M25 had low levels of TGDM when scanned, except the northern area 

around site 2 (Figure 6.14 a and b) which showed the highest amount of TGDM in 

the paddock. Site 2 comprised mostly subterranean clover (Trifolium subterraneum 

L.) with some barley grass (Hordeum glaucum L.) (Figure 6.19).  

Site 1 was an area of very low TGDM. Site 4 had some areas of low–moderate 

TGDM (Figure 6.14 a and b). A significant part of M25 was covered in capeweed 

(Arctotheca calendula L.) and storksbill (Erodium spp.) in September 2012 (Figure 

6.18). Both plants have a prostrate growing habit, producing a relatively high NDVI 

value when green and actively growing but, like succulents, produce little dry 

matter.  

An NDVI scan of the paddock can, therefore, show relatively high NDVI values 

where capeweed or storksbill are present, but a TGDM map of the same area shows 

low levels of dry matter, which is reflected in the TGDM map for September 2012. 

The histogram of TGDM distribution for this paddock in September 2012 (Figure 

6.16 a) shows a mean TGDM of 1116 kg/ha, which is very close the recommended 

minimum residual pasture mass of 1000–1200 dry matter kg/ha in spring for 

lactating ewes (http://www.lifetimewool.com.au/Sheep%20Zones/zonecereal 

sheepwa.aspx). The distribution is positively skewed, showing that the paddock has 

little available feed, with 75% of TGDM present below 1286 kg/ha (and 90% below 

1600 kg/ha). Figure 6.14 a shows available feed mostly in the area around site 2.  

Paddock M41 in September 2012 (Figure 6.14 c) and September 2013 (Figure 6.14 

e) had a similar pattern in the spatial variation of TGDM distribution across both 

years. The south-eastern area of the paddock, including around site 1 (Figure 6.14 

c–e) shows low TGDM. The pasture here was dominated by capeweed, with small 

amounts of subterranean clover (Figure 6.20 b). The area around site 3 had very low 

TGDM, with only sparse vegetation (Figure 6.22). The remainder of the paddock, 

including around sites 2 and 4, was dominated by subterranean clover, with some 

annual ryegrass (Lolium rigidum L.) and capeweed (Figure 6.21 a and b).  

http://www.lifetimewool.com.au/Sheep%20Zones/zonecerealsheepwa.aspx
http://www.lifetimewool.com.au/Sheep%20Zones/zonecerealsheepwa.aspx
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The TDGM histogram for September 2012 (Figure 6.16 b) shows a mean TGDM of 

819 kg/ha, which is close to the recommended spring minimum residual pasture 

green dry matter for sheep grazing pastures (1000–1200 kg DM/ha; Lifetime Wool, 

2006). With 100% of TGDM below 1072 kg/ha, animals would have been using all 

available feed in the paddock. This is reflected in the map of spatial variation in 

TGDM at Figure 6.14 c.  

The histogram for September 2013 (Figure 6.16 c) is negatively skewed, but around 

a mean of 1667 kg/ha TGDM, which indicates that the paddock has been lightly 

stocked. The paddock had been spelled for six weeks after intense grazing in 

August, with 75% of pasture green dry matter above 1400 kg/ha and with a 

maximum of 2260 kg/ha. There is also a much higher frequency of low-yielding 

areas in 2013 compared to 2012 as indicated by the thicker tail to the left of the 

distribution curve. The absence of any stock has led to a significant increase in 

pasture green dry matter, and the spatial pattern of growth (Figure 6.14 e) is similar 

to that in September 2012. In the absence of any grazing by livestock, pasture 

growth is largely dictated by moisture and spatial variation in soil texture and 

chemistry. 

“Grandview” 

Maps showing the spatial variation in TGDM for paddocks GV8 and GV39 are in 

Figure 6.15. The generally better TGDM yields occurred in areas of higher elevation 

(Chapter 5, Figure 5.14 c and d) in both paddocks in 2012. Flooding rainfall 

preceded the 2012 growing season, with nearly 350 mm recorded from late 

February to early March. However, “Grandview” then received only 218 mm GSR, 

which was below average. GSR in 2013 was a little closer to the long-term mean at 

254 mm, but the June–September cumulative rainfall was also higher in 2013 (184 

mm) than 2012 (122 mm).  

For “Grandview” paddock GV8, the histogram for September 2012 (Figure 6.17 a) 

shows a mean TGDM of 953 kg/ha, with 90% of TGDM below 1242 kg/ha, which is 

close the recommended minimum residual pasture green dry matter for cattle 

grazing pasture (1500 kg green DM/ha; http://mbfp.mla.com.au/pasture-

http://mbfp.mla.com.au/pasture-utilisation
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utilisation). The distribution is close to a normal curve, with higher kurtosis. The 

map of TGDM in Figure 6.15 a shows most of the paddock in the 557–1194 kg/ha 

TGDM range. In October 2013, the mean TGDM for paddock GV8 was 1900 kg/ha, 

with 90% above 1600 kg/ha. The map for October 2013 (Figure 6.15 b) has a much 

higher proportion of the paddock classified as high TGDM, in the 1841–2557 kg/ha 

range. The differences in TGDM present between the 2012 and 2013 seasons at 

pasture sampling sites 1 to 4 for paddock GV8 is reflected in the photographs in 

Figure 6.23 a–g. 

The histogram for “Grandview” paddock GV39 in September 2012 (Figure 6.17 c) 

shows TGDM to be fairly normally distributed around a mean of 1113 kg/ha with 

75% of TGDM below 1300 kg/ha. The spatial distribution map in Figure 6.14 c shows 

most biomass in the 685–1399 kg/ha range. The histogram of TGDM for October 

2013 shows a higher mean TGDM of 1574 kg/ha, with 75% above 1362 kg/ha. The 

histogram has a slight negative skew. The differences in TGDM present between the 

2012 and 2013 seasons at pasture sampling sites 1 and 2 for paddock GV39 is 

reflected in the photographs in Figure 6.24 a–d.  

6.3.5 DRY-WEIGHT-RANK (DWR) PASTURE SPECIES ASSESSMENTS 

Figures 6.25 and 6.26 show the DWR of pasture composition for “Milroy” paddocks 

M25 and M41, respectively. The assessments show pasture composition 

categorised into legume, grass and broadleaf species by percentage. Assessments 

were conducted in M25 for 2012 only and in paddock M41 in 2012 and 2013. Figure 

6.25 b shows that paddock M25 was heavily dominated by broadleaf weeds 

(Arctotheca calendula L. and Erodium spp.) and, according to the farm owner, was 

the principal reason for the paddock being returned to crop in 2013. The only 

significant area of better quality pasture (subterranean clover/ryegrass) was around 

site 2.  

Grasses were mainly confined to the gravel-dominated margins of the paddock. 

Figures 6.18 and 6.19 are photographs of the areas around sites 4 and 2, 

respectively, illustrating the differences in pasture composition. Figures 6.20–6.22 

are photographs in paddock M41 of the areas around sites 1, sites 2 and 4, and site 

3, respectively, illustrating the differences in pasture composition. The paddock 

http://mbfp.mla.com.au/pasture-utilisation
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maintained a high legume content in both years, particularly around sites 2 and 4 

(Figure 6.21 a and b).  

The lowest elevation portion of the paddock (south-west boundary including site 1) 

was dominated by broadleaf weeds (Arctotheca calendula L. and Erodium spp.) in 

both years (Figure 6.20 c and d). The area around site 3 predominantly hosted 

weeds, with some legume present along the drainage line and rise to the east 

(Figure 6.22 a and b).  

At “Grandview”, legume pastures (particularly lucerne) dominated in the more 

elevated, coarser-textured soils in both paddocks (sites 2 and 3 in GV8 and site 1 in 

GV39). Barley grass tended to dominate in areas that were more heavily wooded 

(site 4 in GV8 and site 2 in GV39 and sites marked ‘T’ in both paddocks). 

6.3.6 ESTABLISHING SUB-PADDOCK MANAGEMENT CLASSES USING K-MEANS 

CLUSTERING 

“Milroy” 

Potential management zones are depicted in Figures 6.28 (paddock M25) and 6.29 

(paddock M41). For both paddocks, maps a, c and e, show zones derived with crop 

yield data only and maps b, d and f show zones with both crop yield and pasture 

TGDM included.  

The clustering maps clearly show that there is little difference in the resulting 

spatial patterns when the pasture data is included in the analysis. Tables 6.6 (crop 

data only) and 6.7 (crop and pasture data) show the cluster means, the median σkrig 

and the CI statistic (Equation 1, p. 175) for each variable for paddock M25. Tables 

6.8 and 6.9 show this same data for paddock M41.  

The management class (zone) maps at Figures 6.28 and 6.29 and information 

contained in Tables 6.6–6.9 were used to determine the optimum number of 

management classes in the paddock. In the case of M25, the two-management class 

output produced a significant result for both years. The three-management-class 

output produced significant results for two of the three classes for both years. So a 

two- or three-class solution is possible, largely depending on the preference of the 

farm owner. For M41, the analysis also showed a significant difference between the 
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class means for two classes. When three or four zones were considered, there were 

some non-significant differences between class means. That is, the possibility that 

the variability in the mapping and zoning procedures could incorrectly describe the 

spatial patterns cannot be discounted. Therefore, for M41, the analysis showed that 

a two-class solution may be optimal.  

For both “Milroy” paddocks, the two-class solution split the ECa values into a high 

conductivity zone and a low conductivity zone (Tables 6.7 and 6.9). The three-class 

solutions for both paddocks created a third class by splitting the low conductivity 

zone in two, with the lowest conductivity zone having higher mean yields for crop 

and TGDM than the higher of the low conductivity zones. The two-class solution for 

“Milroy” M25 partitioned the capeweed and clover/barley grass into separate 

management classes.  

The three-class solution for “Milroy” M41 again split the low conductivity values 

into two zones that partition the less fertile, deep sands and gravel soils into one 

class (zone of lowest conductivity), the sandy loam areas (marginally higher 

conductivity) into a second class and the saline area into a third, high conductivity 

zone. It also largely partitioned the legume/broadleaf/grass distribution in 

accordance with the results of the DWR surveys.  

“Grandview” 

Potential management classes produced by the k-means clustering are depicted in 

Figures 6.30 (paddock GV8) and 6.31 (paddock GV39). As with the “Milroy” analysis, 

the k-means clustering Figures 6.30 and 6.31 a, c and e show the results from using 

crop yield data alone and Figures 6.30 and 6.31 b, d and f show the results for both 

crop yield and pasture TGDM included. For paddock GV8, a two-class solution is 

optimal based on the confidence interval analysis (Tables 6.10 and 6.11). Class ‘A’ 

comprised the higher yielding areas, Class ‘B’ the lower. For GV39, a two-class 

solution is the only outcome which had significantly different means across all crop 

and TGDM values. The three-class solutions for both paddocks GV8 and GV39 split 

the ECa values into three distinct zones—low conductivity, medium conductivity 

and high conductivity (Tables 6.12 and 6.13).  
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The standard deviations for the clusters for “Milroy” and “Grandview” (Tables 6.14 

and 6.15, respectively) also show the effects of partitioning into classes, with a 

reduction in the variability of crop yields within classes compared to whole-paddock 

management (single class). This is generally the case with TGDM, except for 

“Milroy” M25 where both two- and three-class solutions showed increased 

variability on the more productive soil in the northern tip of the paddock, which was 

a mix of subterranean clover and barley grass. On both properties, the clustering 

process also split the classes on ECa values. 

 

 

FIGURE 6.7: GRAIN YIELD MAPS DERIVED FROM YIELD MONITOR DATA FOR “MILROY” PADDOCK M25 

IN (A) 2004 (WHEAT) AND (B) 2009 (WHEAT), AND PADDOCK M41 IN (C) 2009 (WHEAT) AND (D) 

2014 (WHEAT). YIELDS SHOWN ARE IN T/HA. 
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FIGURE 6.8: GRAIN YIELD MAPS DERIVED FROM YIELD MONITOR DATA FOR “GRANDVIEW” PADDOCKS 

GV8 IN (A) 2005 (CANOLA), (B) 2007 (WHEAT) AND (C) 2009 (WHEAT), AND GV39 IN (D) 2007 

(CANOLA), (E) 2008 (WHEAT) AND (F) 2009 (WHEAT). YIELDS SHOWN ARE IN T/HA. THE SITES 

MARKED ‘T’ ON MAPS (A) AND (D) CONTAIN MANY TREES AND ARE THE CAUSE OF LOW YIELDS IN THESE 

AREAS. THE AREA CIRCLED IN (A) IS AN AREA OF HIGHER ELEVATION WITH COARSER-TEXTURED STONY 

SOILS. 
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FIGURE 6.9: MAPS OF CROP CIRCLE
TM

 NDVI SCANS FOR “MILROY” PADDOCKS M25 AND M41 

CONDUCTED IN 2012 AND 2013. (A) M25 AUGUST 2012, (B) M25 SEPTEMBER 2012, (C) M25 

AUGUST 2013, (D) M41 AUGUST 2012, (E) M41 SEPTEMBER 2012, (F) M41 AUGUST 2013 AND 

(G) SEPTEMBER 2013. PADDOCK M41 WAS GRAZED HEAVILY BEFORE THE AUGUST 2013 SCAN AND 

LEFT UNSTOCKED UNTIL AFTER THE SEPTEMBER 2013 SCAN. BOTH PADDOCKS WERE IN ANNUAL 

PASTURE, EXCEPT M25 WHICH WAS IN WHEAT IN 2013. 
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FIGURE 6.10: MAPS OF CROP CIRCLE
TM

 NDVI SCANS FOR “GRANDVIEW” PADDOCKS GV8 AND 

GV39 CONDUCTED IN 2012 AND 2013. (A) GV8 AUGUST 2012, (B) GV8 SEPTEMBER 2012, (C) 

GV8 OCTOBER 2013, (D) GV39 AUGUST 2012, (E) GV39 SEPTEMBER 2012, (F) GV39 OCTOBER 

2013. BOTH PADDOCKS WERE IN PERENNIAL PASTURE. THE SITES MARKED ‘T’ ON MAPS (A) AND (D) 

CONTAIN WOODED AREAS. 
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FIGURE 6.11: IMAGE OF “MILROY” PADDOCK M25 FROM PASTURE WATCH
TM

 FOR SEPTEMBER 

2012. PASTURE WATCH
TM

 USES MODIS NDVI. 
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TABLE 6.4: PERFORMANCE OF SELECTED VEGETATION INDICES TO PREDICT TOTAL GREEN DRY MATTER ON THE CALIBRATION DATASETS FOR “MILROY” PADDOCKS M25 AND 

M41 USING LEAVE ONE OUT CROSS VALIDATION WITH A VALIDATION SET OF 25. ROOT MEAN SQUARE ERROR (RMSE) OF PREDICTION (KG TGDM/HA) IS SHOWN FOR EACH 

INDEX. ON THE BASIS OF THESE RESULTS, NDVI WAS CHOSEN AS THE MOST APPROPRIATE INDEX AS IT CONSISTENTLY GAVE THE LOWEST RMSE. 

 September 2012  August 2013  September 2013 

Paddock  NDVI SAVI NLI MNLI  NDVI SAVI NLI MNLI  NDVI SAVI NLI MNLI 

M25 338.75 337.66 360.92 390.68  1158.51 1157.69 1280.44 1184.14      

M41 197.31 209.25 199.35 203.08  157.65 173.47 196.57 186.39  420.58 443.80 441.47 452.62 

Note: Paddock M25 was sown to wheat in 2013 and therefore not used for calibration in that year. The scans were taken while the wheat crop was in early growth stage. In 
2013, paddock M41 was grazed heavily until August, then destocked, scanned, and allowed to recover for five weeks before re-scanning. NDVI = normalised difference 
vegetation index, SAVI = soil-adjusted vegetation index, NLI = non-linear vegetation index, MNLI = modified non-linear vegetation index. 
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TABLE 6.5: PERFORMANCE OF SELECTED VEGETATION INDICES TO PREDICT TOTAL GREEN DRY MATTER 

ON THE CALIBRATION DATASETS FOR “GRANDVIEW” PADDOCKS GV8 AND GV39 USING LEAVE ONE 

OUT CROSS VALIDATION WITH A VALIDATION SET OF 25. ROOT MEAN SQUARE ERROR (RMSE) OF 

PREDICTION (KG TGDM/HA) IS SHOWN FOR EACH INDEX. ON THE BASIS OF THESE RESULTS, NDVI 

WAS CHOSEN AS THE MOST APPROPRIATE INDEX AS IT CONSISTENTLY GAVE THE LOWEST RMSE. 

 September 2012  October 2013  

Paddock NDVI SAVI NLI MNLI  NDVI SAVI NLI MNLI  

GV8 217.60 222.65 223.87 239.20  490.21 492.29 536.84 604.16  

GV39 449.64 691.20 625.84 698.85  533.51 813.67 614.16 774.81  

NDVI = normalised difference vegetation index, SAVI = soil-adjusted vegetation index, NLI = non-
linear vegetation index, MNLI = modified non-linear vegetation index. 

  



CHAPTER 6. HIGH RESOLUTION ACTIVE OPTICAL SENSING FOR MIXED FARMING SYSTEMS 

 PAGE | 195 

 

FIGURE 6.12: REGRESSION OF CROP CIRCLE NORMALISED DIFFERENCE VEGETATION INDEX (NDVI) VALUES 

AGAINST TOTAL GREEN DRY MATTER (TGDM) DETERMINED BY DIRECT HARVESTING FOR “MILROY” FIELDS 

M25 IN SEPTEMBER 2012 AND AUGUST 2013, AND M41 IN SEPTEMBER 2012, AUGUST 2013 AND 

SEPTEMBER 2013. IN 2013, FIELD M41 WAS GRAZED HEAVILY UNTIL AUGUST, THEN DESTOCKED, SCANNED, 

AND ALLOWED TO RECOVER FOR FIVE WEEKS BEFORE RE-SCANNING IN SEPTEMBER 2013. THE R2
 VALUES 

FOR EACH CURVE INDICATE A STRONG RELATIONSHIP BETWEEN NDVI AND TGDM, PARTICULARLY FOR NDVI 

VALUES BETWEEN 0.3 AND 0.7. 
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FIGURE 6.13: REGRESSION OF CROP CIRCLE NORMALISED DIFFERENCE VEGETATION INDEX (NDVI) 

VALUES AGAINST TOTAL GREEN DRY MATTER (TGDM) DETERMINED BY DIRECT HARVESTING IN 

“GRANDVIEW” FIELDS GV8 (A, C) AND GV39 (B, D) IN SEPTEMBER 2012 AND OCTOBER 2013, 

RESPECTIVELY. THE R2
 VALUES FOR EACH CURVE INDICATE A STRONG RELATIONSHIP BETWEEN NDVI 

AND TGDM, PARTICULARLY FOR NDVI VALUES BETWEEN 0.4 AND 0.7. 
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FIGURE 6.14: MAPS OF TOTAL GREEN DRY MATTER (TGDM) IN KG/HA, DERIVED FROM THE 

CALIBRATION OF CROP CIRCLE
TM

 NDVI SCANS FOR “MILROY” PADDOCKS M25 IN (A) SEPTEMBER 

2012 AND (B) AUGUST 2013, AND M41 IN (C) SEPTEMBER 2012, (D) AUGUST 2013 AND (E) 

SEPTEMBER 2013. 
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FIGURE 6.15: INTERPOLATED MAPS OF TOTAL GREEN DRY MATTER (TGDM) IN KG/HA, DERIVED FROM 

THE CALIBRATION OF CROP CIRCLE
TM

 NDVI SCANS FOR “GRANDVIEW” PADDOCKS GV8 IN (A) 

SEPTEMBER 2012 AND (B) OCTOBER 2013, AND GV39 IN (C) SEPTEMBER 2012 AND (D) OCTOBER 

2013. THE SITES MARKED ‘T’ ON MAPS (A) AND (C) CONTAIN WOODED AREAS. 
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FIGURE 6.16: TGDM DISTRIBUTION HISTOGRAMS FOR “MILROY” PADDOCKS M25 IN SEPTEMBER 

2012 (A), AND M41 IN AUGUST (B) AND SEPTEMBER (C) 2013.  
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FIGURE 6.17: TGDM DISTRIBUTION HISTOGRAMS FOR “GRANDVIEW” PADDOCKS GV8 IN 

SEPTEMBER 2012 (A) AND OCTOBER 2013 (B), AND GV39 IN SEPTEMBER 2012 (C) AND OCTOBER 

2013 (D).  
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FIGURE 6.18: “MILROY” PADDOCK M25 WAS HEAVILY COVERED IN CAPEWEED (ARCTOTHECA 

CALENDULA L.) AND STORKSBILL (ERODIUM SPP.) IN SEPTEMBER 2012. THE PHOTO WAS TAKEN 

LOOKING SOUTH-WEST FROM SITE 4. SITE 1 IS TO THE RIGHT. 

 

 

FIGURE 6.19: “MILROY” PADDOCK M25 SHOWING HIGH SUBTERRANEAN CLOVER CONTENT AROUND 

SITE 2, HIGH ECA SOIL MOISTURE ZONE. 
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FIGURE 6.20: “MILROY” PADDOCK M41 (A) LOOKING SOUTH-EAST FROM SITE 1 (DEEP SAND). THIS 

AREA IS THE LOWEST PART OF THE PADDOCK, LOW IN POTASSIUM AND COPPER AND DOMINATED BY 

CAPEWEED (B). 

 

 

FIGURE 6.21: (A) SITE 2 IN “MILROY” PADDOCK M41, HIGH SUBTERRANEAN CLOVER CONTENT, 

LOOKING NORTH-EAST AND (B) HIGH SUBTERRANEAN CLOVER CONTENT NEAR SITE 4. 
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FIGURE 6.22: SITE 3 IN “MILROY” PADDOCK M41, SHOWING THE IMPACT OF SALINE/SODIC SOIL ON 

PASTURE GROWTH LOOKING (A) NORTH-WEST AND (B) SOUTH-EAST FROM SITE 3 TOWARDS THE 

DRAINAGE LINE. 
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FIGURE 6.23: PHOTOGRAPHS OF PASTURE IN THE VICINITY OF GRANDVIEW SITES 1–4 IN PADDOCK 

GV8. SITE 1 IN (A) 2012 AND (B) 2013; SITE 2 IN (C) 2012 AND (D) 2013; SITE 3 IN (E) 2012 AND 

(F) 2013 AND SITE 4 IN (G) 2012 AND (H) 2013. THE TOTAL AMOUNT OF TGDM PRESENT WAS 

GREATER IN 2013 THAN 2012. GROWING SEASON RAINFALL WAS 218 MM IN 2012 AND 254 MM IN 

2013. ADDITIONALLY, 62 MM MORE RAIN WAS RECEIVED BETWEEN JUNE AND SEPTEMBER 2013 

THAN 2012 AND THE EFFECT ON PASTURE GROWTH AND COVERAGE IS EVIDENT FROM THE IMAGES. 
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FIGURE 6.24: PHOTOGRAPHS OF PASTURE IN THE VICINITY OF GRANDVIEW SITES 1 AND 2 IN PADDOCK 

GV39. SITE 1 IN (A) 2012 AND (B) IN 2013 AND SITE 2 IN (C) 2012 AND (D) 2013. THE TOTAL 

AMOUNT OF TGDM PRESENT WAS GREATER IN 2013 THAN 2012. GROWING SEASON RAINFALL WAS 

218 MM IN 2012 AND 254 MM IN 2013. ADDITIONALLY, 62 MM MORE RAIN WAS RECEIVED 

BETWEEN JUNE AND SEPTEMBER 2013 THAN 2012 AND THE EFFECT ON PASTURE GROWTH AND 

COVERAGE IS EVIDENT FROM THE IMAGES. 

  



CHAPTER 6. HIGH RESOLUTION ACTIVE OPTICAL SENSING FOR MIXED FARMING SYSTEMS 

 PAGE | 206 

 

 

FIGURE 6.25: DRY-WEIGHT-RANK PASTURE COMPOSITION, BY PERCENTAGE, FOR “MILROY” PADDOCK 

M25 IN 2012. (A) LEGUME, (B) BROADLEAF AND (C) GRASS. RANGE CATEGORIES ARE PERCENT 

COMPOSITION. 

1 

2 

3 

4 
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FIGURE 6.26: DRY-WEIGHT-RANK PASTURE COMPOSITION, BY PERCENTAGE, FOR “MILROY” PADDOCK M41 IN 2012 (A) LEGUME, (B) BROADLEAF AND (C) GRASS, AND IN 

2013 (D) LEGUME, (E) BROADLEAF AND (F) GRASS. RANGE CATEGORIES ARE PERCENT COMPOSITION. 
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FIGURE 6.27 DRY-WEIGHT-RANK PASTURE COMPOSITION, BY PERCENTAGE, FOR “GRANDVIEW” 

PADDOCK GV8 (A) LEGUME, (B) GRASS AND (C) BROADLEAF, AND FOR PADDOCK GV39 IN 2012 (D) 

LEGUME, (E) GRASS AND (F) BROADLEAF AND 2013 (G) LEGUME, (H) GRASS AND (I) BROADLEAF. 

RANGE CATEGORIES ARE PERCENT COMPOSITION. THE SITES MARKED ‘T’ ON MAPS (A) AND (D) 

CONTAIN WOODED AREAS. 
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TABLE 6.6: “MILROY” PADDOCK M25, MEAN VALUES FOR EACH MANAGEMENT CLASS COMBINATION 

FROM K-MEANS CLUSTERING OUTPUT (ON CROP YIELD VALUES ONLY) AND THE MEDIAN KRIGING 

VARIANCE AND 95% CONFIDENCE INTERVALS. 

Classes Wheat 2004 

(t/ha) 

Wheat 2009 

(t/ha) 

ECa 0–100 cm 

(mS/m) 

ECa 0–50 cm 

(mS/m) 

Elev 

(m) 

Two      

2a 2.83a† 2.43a 64.68 30.27 296.09 

2b 2.29b 1.97b 16.79 6.10 313.46 

Three      

3a 2.86a 2.45a 67.25 31.91 295.49 

3b 1.96b 1.49b 15.72 6.19 319.36 

3c 2.52a 2.31a 18.32 6.39 309.20 

Four      

4a 2.42a 2.35a,c 20.78 6.70 302.62 

4b 2.89b 2.48a 68.33 32.66 295.38 

4c 1.81c 1.33b 19.82 7.76 313.47 

4d 2.52a,b 2.01c 11.59 5.01 326.53 

Median σkrig 0.099 0.096    

95% CI‡ 0.388 0.376    

† Mean values with different letters indicate that the yield between management classes is 
significantly different. ‡CI, confidence interval 
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TABLE 6.7: “MILROY” PADDOCK M25, MEAN VALUES FOR EACH MANAGEMENT CLASS COMBINATION 

FROM K-MEANS CLUSTERING OUTPUT (ON CROP YIELD AND PASTURE TGDM VALUES) AND THE 

MEDIAN KRIGING VARIANCE AND 95% CONFIDENCE INTERVALS. 

Classes Wheat 

2004 

(t/ha) 

Wheat 

2009 

(t/ha) 

TGDM 

Sep 2012 

(kg/ha) 

TGDM 

Aug 2013 

(kg/ha) 

ECa 

0–100 cm 

(mS/m) 

ECa 

0–50 cm 

(mS/m) 

Elev 

(m) 

Two        

2a 2.87a† 2.48a 1423.83 4150.85 66.29 31.16 295.41 

2b 2.29b 1.97b 1070.79 3734.49 17.27 6.34 313.30 

Three        

3a 1.87a 1.44a 984.32 3130.61 20.35 8.06 313.47 

3b 2.51b 2.24b 1107.79 4019.72 16.70 5.96 312.87 

3c 2.93c 2.56b 1499.58 4256.31 68.17 32.13 294.77 

Four        

4a 3.05a 2.77a 1834.07 4602.89 71.44 33.95 294.37 

4b 2.51b 1.98b 817.24 3456.15 52.25 23.49 301.02 

4c 2.53b 2.26b 1128.28 4019.84 15.36 5.45 313.30 

4d 1.86c 1.48c 1025.07 3277.35 16.76 6.07 314.39 

Median σkrig 0.099 0.096      

95% CI‡ 0.388 0.376      

† Mean values with different letters indicate that the yield between management classes is 
significantly different. ‡CI, confidence interval  
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TABLE 6.8: “MILROY” PADDOCK M41, MEAN VALUES FOR EACH MANAGEMENT CLASS COMBINATION 

FROM K-MEANS CLUSTERING OUTPUT (ON CROP YIELD VALUES ONLY) AND THE MEDIAN KRIGING 

VARIANCE AND 95% CONFIDENCE INTERVALS. 

Classes Wheat 2009 

(t/ha) 

Wheat 2014 

(t/ha) 

ECa 0–100 cm 

(mS/m) 

ECa 0–50 cm 

(mS/m) 

Elev 

(m) 

Two      

2a 2.32a† 3.88a 11.15 6.55 307.57 

2b 1.67b 3.57a 57.24 32.85 297.98 

Three      

3a 2.51a 4.36a 13.03 6.72 307.22 

3b 1.94b 2.93b 8.17 6.57 308.16 

3c 1.62b 3.52c 58.89 34.05 297.53 

Four      

4a 2.53a 4.30a 8.51 7.37 308.6 

4b 2.18a,c 3.55a,c 13.67 6.34 298.15 

4c 1.26b 3.01b 59.66 35.10 295.64 

4d 1.92c 4.41c 13.33 6.24 308.82 

Median σkrig 0.136 0.134    

95% CI‡ 0.534 0.523    

† Yield values with different letters indicate that the mean between management classes is 
significantly different. ‡CI, confidence interval 
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TABLE 6.9: “MILROY” PADDOCK M41, MEAN VALUES FOR EACH MANAGEMENT CLASS COMBINATION 

FROM K-MEANS CLUSTERING OUTPUT (ON CROP YIELD AND PASTURE TGDM VALUES) AND THE 

MEDIAN KRIGING VARIANCE AND 95% CONFIDENCE INTERVALS. 

Classes Wheat 

2009 

(t/ha) 

Wheat 

2014 

(t/ha) 

TGDM 

Sep 2012 

(kg/ha) 

TGDM 

Aug 2013 

(kg/ha) 

ECa 

0–100 cm 

(mS/m) 

ECa 

0–50 cm 

(mS/m) 

Elev 

(m) 

Two        

2a 2.43a† 4.11a 894.16 1858.94 10.98 6.36 308.58 

2b 1.75b 3.10b 596.73 1097.21 28.28 16.58 301.73 

Three        

3a 2.50a 4.31a 923.99 1906.64 11.94 6.48 307.59 

3b 1.95b 3.00b 671.05 1406.77 10.34 6.99 307.61 

3c 1.64b 3.58c 583.58 847.55 57.98 33.79 296.93 

Four        

4a 1.91a,b 3.51a,b 745.36 1336.40 14.97 5.37 293.95 

4b 1.58a 3.55a 569.36 808.76 60.93 36.08 296.51 

4c 2.21bc 3.01b 678.33 1570.47 8.84 8.67 319.26 

4d 2.52c 4.41c 946.74 1965.79 11.80 6.59 307.78 

Median σkrig 0.136 0.134      

95% CI‡ 0.534 0.523      

† Yield values with different letters indicate that the mean between management classes is 
significantly different. ‡CI, confidence interval 
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TABLE 6.10: “GRANDVIEW” PADDOCK GV8, MEAN VALUES FOR EACH MANAGEMENT CLASS 

COMBINATION FROM K-MEANS CLUSTERING OUTPUT (ON CROP YIELD VALUES ONLY) AND THE MEDIAN 

KRIGING VARIANCE AND 95% CONFIDENCE INTERVALS. 

Classes Wheat 

2005 

(t/ha) 

Canola 

2007 

(t/ha) 

Wheat 

2009 

(t/ha) 

ECa 

0–38 cm 

(mS/m) 

ECa 

0–75 cm 

(mS/m) 

Elev 

(m) 

Two       

2a 2.49a† 1.46a 2.34a 50.26 113.83 142.74 

2b 2.61b 1.96b 2.77b 39.46 97.74 143.16 

Three       

3a 2.60a 1.94a 2.72a 53.16 114.69 144.78 

3b 2.44b 1.20b 2.15b 46.70 110.25 141.36 

3c 2.61a,c 1.95a,c 2.76a,c 37.77 95.99 142.94 

Four       

4a 2.72a 1.47a 2.45a 42.40 106.81 140.04 

4b 2.15b 1.12b 1.96b 50.38 111.90 143.55 

4c 2.58c 2.00c 2.79c 37.08 94.20 143.40 

4d 2.60c 1.94c 2.73c 52.97 114.49 144.75 

Median σkrig 0.020 0.032 0.027    

95% CI‡ 0.078 0.125 0.106    

† Yield values with different letters indicate that the mean between management classes is 
significantly different. ‡CI, confidence interval 
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TABLE 6.11: “GRANDVIEW” PADDOCK GV8, MEAN VALUES FOR EACH MANAGEMENT CLASS 

COMBINATION FROM K-MEANS CLUSTERING OUTPUT (ON CROP YIELD AND PASTURE TGDM VALUES) 

AND THE MEDIAN KRIGING VARIANCE AND 95% CONFIDENCE INTERVALS. 

Classes Wheat 

2005 

(t/ha) 

Canola 

2007 

(t/ha) 

Wheat 

2009 

(t/ha) 

TGDM 

Sep 2012 

(kg/ha) 

TGDM 

Oct 2013 

(kg/ha) 

ECa 

0–38 cm 

(mS/m) 

ECa 

0–75 cm 

(mS/m) 

Elev 

(m) 

Two         

2a 2.62a† 1.93a 2.76a 1026.86 1983.43 41.24 100.67 143.07 

2b 2.43b 1.35b 2.20b 740.80 1659.86 49.17 111.39 142.85 

Three         

3a 2.61a 1.95a 2.74a 956.11 1967.44 52.66 113.92 144.74 

3b 2.62a 1.87a 2.72a 1024.21 1964.67 38.21 97.53 142.37 

3c 2.30b 1.20b 2.06b 679.91 1556.55 48.69 110.37 142.91 

Four         

4a 2.58a 2.01a 2.80a 1029.32 1972.36 36.91 94.17 143.32 

4b 2.72b 1.48b 2.46b 970.63 1905.76 42.29 106.64 140.07 

4c 2.61a 1.95a 2.74a 961.70 1968.02 52.72 114.08 144.76 

4d 2.20c 1.18c 2.02c 634.06 1503.09 50.03 111.12 143.69 

Median σkrig 0.020 0.032 0.027      

95% CI‡ 0.078 0.125 0.106      

† Yield values with different letters indicate that the mean between management classes is 
significantly different. ‡CI, confidence interval 
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TABLE 6.12: “GRANDVIEW” PADDOCK GV39, MEAN VALUES FOR EACH MANAGEMENT CLASS 

COMBINATION FROM K-MEANS CLUSTERING OUTPUT (ON CROP YIELD VALUES ONLY) AND THE MEDIAN 

KRIGING VARIANCE AND 95% CONFIDENCE INTERVALS. 

Classes Canola 

2007 

(t/ha) 

Wheat 

2008 

(t/ha) 

Wheat 

2009 

(t/ha) 

ECa 

0–38 cm 

(mS/m) 

ECa 

0–75 cm 

(mS/m) 

Elev 

(m) 

Two       

2a 0.56a† 1.77a 2.16a 19.78 85.66 159.76 

2b 1.12b 2.67b 3.15b 13.87 75.98 165.63 

Three       

3a 0.51a 1.22a 1.53a 21.88 84.79 161.92 

3b 0.68b 2.48b 2.97b 16.43 83.79 158.83 

3c 1.20c 2.67c 3.14b,c 13.68 75.18 166.73 

Four       

4a 0.57a,c 1.37a 1.71a 11.96 77.82 163.36 

4b 0.70a 2.53b 3.00b 16.56 83.79 158.95 

4c 1.21b 2.68b 3.16b 13.76 75.15 166.77 

4d 0.49c 1.22a 1.56a 26.50 88.33 160.86 

Median σkrig 0.048 0.095 0.083    

95% CI‡ 0.188 0.372 0.325    

† Yield values with different letters indicate that the mean between management classes is 
significantly different. ‡CI, confidence interval 
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TABLE 6.13: “GRANDVIEW” PADDOCK GV39, MEAN VALUES FOR EACH MANAGEMENT CLASS 

COMBINATION FROM K-MEANS CLUSTERING OUTPUT (ON CROP YIELD AND PASTURE TGDM VALUES) 

AND THE MEDIAN KRIGING VARIANCE AND 95% CONFIDENCE INTERVALS. 

Classes Canola 

2007 

(t/ha) 

Wheat 

2008 

(t/ha) 

Wheat 

2009 

(t/ha) 

TGDM 

Sep 2012 

(kg/ha) 

TGDM 

Oct2013 

(kg/ha) 

ECa 

0–38 cm 

(mS/m) 

ECa 

0–75 cm 

(mS/m) 

Elev 

(m) 

Two         

2a 0.56a† 1.75a 2.12a 878.34 1241.79 19.56 85.88 159.84 

2b 1.10b 2.65b 3.14b 1249.94 1768.07 14.17 76.14 165.42 

Three         

3a 1.20a 2.65a 3.15a 1306.90 1765.63 13.72 75.18 166.74 

3b 0.71b 2.55a,b 2.96a,b 982.33 1612.89 16.63 83.20 159.38 

3c 0.50c 1.23c 1.60c 855.14 1078.14 21.08 85.18 161.31 

Four         

4a 0.72a 2.61a 3.00a 982.48 1634.37 16.29 83.11 159.26 

4b 0.56a,b 1.51b 1.61b 1050.24 1259.65 27.13 85.33 165.04 

4c 0.49b 1.16b 1.75b 739.71 997.65 16.32 84.55 158.63 

4d 1.21c 2.66a 3.17a 1309.00 1768.42 13.59 75.11 166.77 

Median σkrig 0.048 0.095 0.083      

95% CI‡ 0.188 0.372 0.325      

† Yield values with different letters indicate that the mean between management classes is 
significantly different. ‡CI, confidence interval 
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FIGURE 6.28: POTENTIAL MANAGEMENT CLASSES FOR “MILROY” PADDOCK M25 DERIVED FROM K-

MEANS CLUSTERING USING CROP YIELD, PASTURE TGDM, ECA AND PADDOCK ELEVATION DATA AS 

INPUTS. MAPS ON THE LEFT-HAND SIDE (A, C AND E) SHOW TWO-, THREE- AND FOUR-CLASS 

OUTCOMES, RESPECTIVELY, DERIVED USING CROP YIELD DATA ONLY. MAPS ON THE RIGHT (B, D AND F) 

SHOW TWO, THREE AND FOUR CLASSES, RESPECTIVELY, INCORPORATING BOTH CROP YIELD AND 

PASTURE TGDM DATA IN THE K-MEANS CLUSTERING.  
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FIGURE 6.29: POTENTIAL MANAGEMENT CLASSES FOR “MILROY” PADDOCK M41 DERIVED FROM K-

MEANS CLUSTERING USING CROP YIELD, PASTURE TGDM, ECA AND PADDOCK ELEVATION DATA AS 

INPUTS. MAPS ON THE LEFT-HAND SIDE (A, C AND E) SHOW TWO-, THREE- AND FOUR-CLASS 

OUTCOMES, RESPECTIVELY, USING CROP YIELD DATA ONLY. MAPS ON THE RIGHT (B, D AND F) SHOW 

TWO, THREE AND FOUR CLASSES, RESPECTIVELY, INCORPORATING BOTH CROP YIELD AND PASTURE 

TGDM DATA IN THE K-MEANS CLUSTERING. 
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FIGURE 6.30: POTENTIAL MANAGEMENT CLASSES FOR “GRANDVIEW” PADDOCK GV8 DERIVED FROM 

K-MEANS CLUSTERING USING CROP YIELD, PASTURE TGDM, ECA AND PADDOCK ELEVATION DATA AS 

INPUTS. MAPS ON THE LEFT-HAND SIDE (A, C AND E) SHOW TWO-, THREE- AND FOUR-CLASS 

OUTCOMES, RESPECTIVELY, USING CROP YIELD DATA ONLY. MAPS ON THE RIGHT (B, D AND F) SHOW 

TWO, THREE AND FOUR CLASSES, RESPECTIVELY, INCORPORATING BOTH CROP YIELD AND PASTURE 

TGDM DATA IN THE K-MEANS CLUSTERING. 
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FIGURE 6.31: POTENTIAL MANAGEMENT CLASSES FOR “GRANDVIEW” PADDOCK GV39 DERIVED 

FROM K-MEANS CLUSTERING USING CROP YIELD, PASTURE TGDM, ECA AND PADDOCK ELEVATION 

DATA AS INPUTS. MAPS ON THE LEFT-HAND SIDE (A, C AND E) SHOW TWO-, THREE- AND FOUR-CLASS 

OUTCOMES, RESPECTIVELY, USING CROP YIELD DATA ONLY. MAPS ON THE RIGHT (B, D AND F) SHOW 

TWO, THREE AND FOUR CLASSES, RESPECTIVELY, INCORPORATING BOTH CROP YIELD AND PASTURE 

TGDM DATA IN THE K-MEANS CLUSTERING. 

  



CHAPTER 6. HIGH RESOLUTION ACTIVE OPTICAL SENSING FOR MIXED FARMING SYSTEMS 

 PAGE | 221 

TABLE 6.14: THE EFFECT OF CREATING WITHIN-PADDOCK MANAGEMENT CLASSES ON THE STANDARD 

DEVIATIONS (S.D.) OF CROP YIELDS AND PASTURE TGDM IN “MILROY” PADDOCKS M25 AND M41. 

‘ONE CLASS’ IS EQUIVALENT TREATING THE WHOLE PADDOCK AS ONE MANAGEMENT UNIT (I.E. 

UNIFORM MANAGEMENT). 

“MILROY” 2004 yield 

s.d. (t/ha) 

2009 yield 

s.d. (t/ha) 

TGDM 

Sep 2012 

s.d. (kg/ha) 

TGDM 

Aug 2013 

s.d. (kg/ha) 

M25     

one class 0.50 0.60 380 1018 

two classes 0.46 0.54 608 1112 

 0.46 0.58 309 993 

three classes 0.38 0.49 321 953 

 0.33 0.42 300 889 

 0.43 0.47 589 1029 

four classes 0.41 0.39 409 743 

 0.43 0.52 302 1116 

 0.32 0.42 300 913 

 0.36 0.50 303 946 

 2009 yield 

s.d. (t/ha) 

2014 yield 

s.d. (t/ha) 

TGDM 

Sep 2012 

s.d. (kg/ha) 

TGDM 

Aug 2013 

s.d. (kg/ha) 

M41     

one class 0.32 0.49 186 449 

two classes 0.35 0.70 164 394 

 0.50 0.87 133 288 

three classes 0.32 0.55 160 376 

 0.42 0.65 147 338 

 0.61 0.97 83 228 

four classes 0.43 0.68 146 344 

 0.62 0.98 198 323 

 0.38 0.71 75 192 

 0.31 0.51 111 363 
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TABLE 6.15: THE EFFECT OF CREATING WITHIN-PADDOCK MANAGEMENT CLASSES ON THE STANDARD 

DEVIATIONS (S.D.) OF CROP YIELDS AND PASTURE TGDM IN “GRANDVIEW” PADDOCKS GV8 AND 

GV39. ‘ONE CLASS’ IS TREATING THE WHOLE PADDOCK AS ONE MANAGEMENT UNIT (I.E. UNIFORM 

MANAGEMENT). 

“GRANDVIEW” 2005 yield 

s.d. (t/ha) 

2007 yield 

s.d. (t/ha) 

2009 yield 

s.d. (t/ha) 

TGDM 

Sep 2012 

s.d. (kg/ha) 

TGDM 

Oct 2013 

s.d. (kg/ha) 

GV8      

one class 0.32 0.40 0.34 234 239 

two classes 0.17 0.28 0.20 194 165 

 0.31 0.36 0.30 207 256 

three classes 0.16 0.25 0.22 231 192 

 0.17 0.32 0.23 187 162 

 0.30 0.28 0.27 193 251 

four classes 0.17 0.23 0.19 171 164 

 0.13 0.29 0.24 232 176 

 0.16 0.23 0.22 225 197 

 0.27 0.28 0.29 176 245 

 2007 yield 

s.d. (t/ha) 

2008 yield 

s.d. (t/ha) 

2009 yield 

s.d. (t/ha) 

TGDM 

Sep 2012 

s.d. (kg/ha) 

TGDM 

Oct 2013 

s.d. (kg/ha) 

GV39      

one class 0.38 0.77 0.74 254 368 

two classes 0.17 0.78 0.77 164 309 

 0.32 0.54 0.35 188 238 

three classes 0.29 0.54 0.36 168 236 

 0.18 0.54 0.34 135 267 

 0.15 0.48 0.58 189 278 

four classes 0.18 0.53 0.31 131 265 

 0.22 0.50 0.62 128 242 

 0.12 0.48 0.61 127 267 

 0.28 0.53 0.33 168 234 
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6.4 DISCUSSION 

This chapter tested Hypothesis 2 (Chapter 2, p. 36) that, “spatial variation of 

production in the crop and pasture phases of a mixed farming system can be 

identified and quantified at high resolution using PA technologies”.  

There were three main outcomes from the research described in this chapter: 

1. Within-paddock variations in pasture biomass production were identified, 

quantified and mapped at a high resolution using relatively low cost ‘on-

the-go’ sensing technologies commonly used in precision agriculture. 

2. The variations in crop yield and pasture green dry matter production 

within a paddock were generally related to the underlying variability in 

soil properties and soil chemistry. 

3. Crop yield and pasture green dry matter production were used in 

combination with EMI and elevation data to delineate potential 

management classes for whole-farm differential management of 

paddocks in mixed farming systems. 

On the basis of the results described in this chapter, there are sufficient grounds to 

accept Hypothesis 2. The study is unique in that it used high-resolution NDVI 

pasture scans to estimate pasture TGDM in mixed farming systems involving both 

volunteer annual pastures in south-west WA and sown perennial pastures in north-

east Victoria. NDVI-based pasture measurement studies reported in the literature 

have mostly been in paddocks that were highly managed monocultures where 

pasture species distribution was not an issue, e.g. perennial ryegrass (Lolium 

perenne L.) alone or with white clover (Trifolium repens L.) in Europe (Schut et al., 

2006; Suzuki et al., 2012), fescue (Festuca arundinacea) in the USA (Flynn et al., 

2008), and fescue or perennial ryegrass/white clover in Australia and New Zealand 

(Cosby et al., 2016; Edirisinghe et al., 2012; Pullanagari et al., 2011; Trotter et al., 

2010).  

On both properties, the spatial variation in both crop and pasture yields 

corresponded strongly with the spatial variation in ECa (and GR sensing in the case 

of “Milroy”) and hence to soil texture changes (Chapter 5, Tables 5.8 and 5.9). 

Numerous studies have shown that soil texture and soil moisture are primary 
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drivers of ECa variation in non-saline soils (Brevik et al., 2006; Corwin and Lesch, 

2005; Dang et al., 2011; Doolittle and Brevik, 2014; Rodrigues Jr et al., 2015; 

Sudduth et al., 2005, 2013) and this was reflected in the results from Chapter 5. 

Crop and pasture production are often strongly reliant on soil type and the ability of 

the soil to hold water and subsequently release it to the plant. Where rainfall is 

limited, soil water supply to plants is closely related to plant available water 

capacity (PAWC) which, in turn, is associated with soil textural changes (Oliver et al., 

2006, 2009; Wong and Asseng, 2006). For example, the sites labelled ‘1’ in the 

“Milroy” M25 and M41 yield maps (Figure 6.7) are both areas of low grain yield and 

correspond to the ECa and GR interpretation of these areas as deep sand. “Milroy” 

M25 site 2 and M41 site 4 (Figure 6.7) are high-yielding areas and correspond with 

the ECa/GR interpretation as sandy clay loam textures.  

At “Grandview”, crops were under soil moisture stress in most years of this study 

due to the severe drought occurring across south-eastern Australia. Variability in 

crop growth from variable soil textures and chemistry is a common feature of the 

Riverine Plains landscape where “Grandview” is situated (Inchbold et al., 2009). In 

both GV8 and GV39 in low rainfall years (2007 and 2009), the yields in areas of 

higher elevation in each paddock, where coarser-textured stony soils occurred (low 

ECa, e.g. the region of GV8 circled in Figure 6.8 a), were higher than the lower-lying 

areas of finer-textured clay soils (higher ECa) (Chapter 5, Figure 5.7 and this chapter, 

Figure 6.8). The area along the eastern side of GV8, marked ‘1’ in Figure 6.8 a, is the 

lowest part of the paddock and, in the poor rainfall years of 2007 and 2009, had the 

lowest yields. In a higher rainfall year (2005), this difference in yield was not 

evident. For paddock GV39, the effect of the drought on crop yields in 2007 and 

2008 can be clearly seen in Figure 6.8 d and e. The deep (0–75 cm) ECa map shows 

an area of high soil moisture in the northern part of the paddock (lowest elevation), 

which is not picked up by the 0–38 cm EMI scan, but appears to yield well when 

rainfall is less limiting (2009) and plant roots can access moisture at depth. 

Previous research at “Grandview” (Inchbold et al., 2009) reported that, although 

higher elevated areas of paddocks had low conductivity (low ECa) values and 20% 

less total water than the areas of high conductivity, the low ECa zones showed 
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water movement to the greatest depth, indicating an ability of the coarser-textured 

soils to ‘wet up’ more quickly. Despite the research being conducted during very dry 

years, the authors reported that soils showing medium conductivity (mid-range ECa 

values) always had surplus soil water, leading to the conclusion that rooting depth 

in these soils was limited by factors other than moisture (e.g. salinity or elevated 

ESP in subsoils). The farm owner reported little water extraction below 60 cm on 

the medium ECa soils (Adam Inchbold, pers. comm.). The high conductivity zone 

had the least water at depth, therefore requiring more moisture to ‘wet up’. The 

authors concluded that, at “Grandview”, although the low conductivity areas of a 

paddock held less water, the water that was held was used more effectively by 

plants through unimpeded root exploration and water extraction to greater depths. 

This accords with the results being reported in this study, where the coarser soils of 

the low conductivity areas, which were generally situated in the more elevated 

parts of the paddock, were the most productive, particularly in the drier years. The 

farm owner also reported that the elevated areas, although of lower inherent 

fertility, would yield well with sufficient fertiliser application (Adam Inchbold, pers. 

comm.). 

The spatial variation of the Crop CircleTM pasture NDVI scans in both “Milroy” and 

“Grandview” paddocks was similar to the spatial variation of crop yield. This was 

also consistent with the results from the MODIS NDVI study reported in Chapters 3 

and 4. That is, areas of the paddocks that had higher relative crop yield were also 

areas of higher NDVI under pasture in 2012 and 2013 and vice versa. The 

interpretive value of the much higher resolution scans of pasture obtained with 

Crop CircleTM is clearly illustrated in the differences between a Pasture WatchTM 

(MODIS NDVI) map of “Milroy” paddock M25 from September 2012 (Figure 6.11), 

and the corresponding Crop CircleTM derived NDVI map (Figure 6.9 b). This 

reinforces the comments made in Chapters 3 and 4 regarding the limitations of 

MODIS NDVI to provide sufficient detail for comparisons with crop yield monitor 

data in small paddocks. 

At “Grandview”, the pattern of variation in NDVI in 2013 was almost identical to 

crop yield in 2009 (Figure 6.8 f). Predicting TGDM from the Crop CircleTM NDVI scans 
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revealed strong correlations between NDVI and the harvested pasture biomass, 

with R2 values between 0.72 and 0.85 across both properties, except “Milroy” M41 

in August 2013 (R2
 = 0.66) (Tables 6.4 and 6.5). This would indicate that the 

methodology used here provides a suitable estimate and is (i) fast in comparison to 

‘traditional’ methods for estimating pasture biomass and (ii) robust, whether used 

on an annual pasture system on the sandy soils of south-west WA, or a perennial 

pasture system on the clay-based soils of north-east Victoria. Depending on the 

paddock, prediction errors (RMSE) ranged from 157–533 kg/ha which compared 

favourably to the more time-consuming traditional methods using devices such as 

rising plate meters, capacitance meters or pasture rulers. Reported errors for these 

instruments range from 200–500 kg/ha (Sanderson et al., 2001; Serrano et al., 

2011). Hyperspectral sensing on pure ryegrass pastures reported estimation errors 

between 167 and 477 kg/ha (Schut et al., 2006) and an RMSE of 388 kg/ha 

(Kunnemeyer et al., 2001).  

The high-resolution maps of predicted TGDM derived from Crop CircleTM scans 

(Figures 6.14 and 6.15) are essentially ‘yield maps’ of pasture biomass, which can be 

compared to crop yield maps. The TGDM map for “Milroy” paddock M25 in August 

2013 displayed a spatial variation in biomass consistent with the soil texture zones 

identified by the ECa and GR scanning (Figure 6.14 b and Chapter 5, Figures 5.5 a 

and b, 5.6 a–d). The spatial variation in TGDM was also consistent with that shown 

by the crop yield maps for this paddock in 2009 (Figure 6.7 b). A similar situation 

occurred with “Milroy” M41.  

At “Grandview”, the general pattern of pasture TGDM variation in both GV8 and 

GV39 for 2013 (Figure 6.15 b and d) reflects that of crop yield in 2009 (Figure 6.8 c 

and f). GSR in those years was similar at 245 mm and 254 mm, respectively. In 

relatively dry years, the areas of low ECa performed well, presumably through 

deeper root exploration and therefore a longer extraction period leading to better 

use of the little water that fell. Higher TGDM yields tended to occur on the coarser-

textured soils of higher elevation in both paddocks, echoing the situation which 

occurred in the cropping phase.  
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The distribution of species within pastures from the DWR analysis highlights the 

different management requirements of annual and perennial pastures grazed by 

sheep and cattle, respectively (Figures 6.25–6.27). The typical south-west WA 

annual pasture composition, dominated by subterranean clover and capeweed, is 

evident at “Milroy”. The species distribution patterns also reflected broad soil 

texture variations. At “Milroy”, capeweed dominated in the less fertile, deep sands, 

with grasses generally restricted to gravelly margins. The sandy loam soils were 

dominated by subterranean clover, with some capeweed. Grass species formed a 

negligible component of the pasture mix at “Milroy” and their presence is actively 

managed by the farm owner. The presence of grasses in annual pastures and the 

associated herbicide resistance are an ongoing threat to cereal production. The 

perennial legume/grass system at “Grandview” has five-year pasture phases. The 

less-intensive grazing pressure of cattle compared to sheep is reflected in the much 

higher grass component in the pasture composition maps. The owners of both 

properties confirmed that the DWR maps reflected their understanding of species 

distribution across the paddocks. The greater presence of legume pastures in the 

higher elevation parts of both paddocks is also evident and reflects the variation 

observed in the cropping phase. The deep rooting capacity of lucerne would appear 

to enable it to explore for deep moisture in the lighter-textured soil in the higher 

parts of both GV8 and GV39 at “Grandview”. 

The inclusion of pasture TGDM, as well as crop yields, into the k-means clustering 

analysis did not significantly change the shape or extent of the management class 

solutions at either “Milroy” or “Grandview” (Figures 6.28–6.31). The management 

classes produced conformed with both farm owners’ general perceptions regarding 

the productivity of their paddocks. Incorporating the spatial variability of pasture 

productivity into the analysis has not materially affected the number, shape or size 

of management classes for differentially managing variability across both pasture 

and crop rotations. This provides further evidence in support of Hypothesis 1 that, 

“spatial variation in biomass production over time is correlated between the 

cropping and pasture phases of mixed farming enterprises”. 
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The results from the k-means clustering showed that on both properties there were 

important differences between management classes, irrespective of whether the 

paddock was in crop or pasture. 

Firstly, there are genuine soil type differences within the same paddock. It is, 

therefore, reasonable to assume that clustering of crop and pasture TGDM yields 

with ECa and paddock elevation (which affects water movement) divided the 

paddocks into zones of similar soil texture and soil moisture condition.  

Secondly, these differences influence crop and pasture growth sufficiently to be 

statistically separated by differences in mean production levels. The k-means 

analysis identified a two-class solution as the only management class outcome 

having statistically different class means based on crop yield (Tables 6.7–6.14) on all 

paddocks. 

Thirdly, even where there may not be a statistically significant difference for all class 

means, the clustering process can reveal subtle differences based on ECa/soil 

texture relationships. So, from a practical farm management perspective, there was 

evidence to suggest that a uniform management approach across both crop and 

pasture rotations will not necessarily achieve optimal production and that, at a 

minimum, two-zone differential management is likely to be highly effective, even on 

the broken landscapes of “Milroy”. For example, the two-class solution for “Milroy” 

M25 partitioned the capeweed and clover/barley grass into separate management 

classes. 

It is also noteworthy that the three-class solutions for both “Milroy” paddocks 

create a third management class by partitioning the low conductivity zone into two 

classes, with the zone of lowest ECa values having higher mean yields for crop and 

TGDM than the zone with higher ECa values. Similarly, the three-class solution for 

“Milroy” M41 split the low conductivity values into two zones that partitioned the 

less fertile deep sands and gravel soils into one class (areas of lowest ECa), the 

sandy loam areas (marginally higher ECa values) into a second class, and the saline 

area into a third, high ECa zone. It also largely partitioned the 

legume/broadleaf/grass distribution in accordance with the results of the DWR 

surveys. This is potentially a valuable management tool for decision making around 
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differential paddock management in the sandy “Milroy” soils. While a two-

management zone solution may be statistically optimal for “Milroy”, the three-zone 

solution provides the farm owner with the knowledge to identify and decide 

whether to separately manage ‘problem’ soils. This opportunity is not provided by 

the two-zone solution.  

At “Grandview”, previous research had identified that the optimal way to 

differentially manage cropping soils in the Riverine Plains was to ‘zone up’ based on 

areas of low, medium and high soil conductivity (P. Baines, pers. comm.). Analysis of 

the results of the k-means clustering for “Grandview” described here, provide 

evidence for arrival at the same conclusion, but from a different perspective.  

6.5 CONCLUSION 

In this chapter, the use of high-resolution proximally sensed data for both crop 

grain yield and pasture biomass was used to estimate the within-paddock spatial 

distribution of production in mixed farming systems, in order to test Hypothesis 2 

that, “spatial variation of production in the crop and pasture phases of a mixed 

farming system can be identified and quantified at high resolution using PA 

technologies”. The evidence from the results in this chapter provides sufficient 

grounds to accept this hypothesis.  

The use of an active optical NDVI sensor such as Crop CircleTM
 proved effective in 

calibrating pasture NDVI to pasture TGDM in paddocks, irrespective of whether they 

were in annual or perennial pasture, with consistently high R2 values. It is important 

to note that the sensing and measurement of both crops and pastures used 

equipment and software that already exists on many farms that are using PA 

technologies. The issue of animal grazing impact on the spatial distribution of TGDM 

in a paddock was unable to be accounted for. This is less than ideal but was 

unavoidable given the limited resources and time available.  

At both properties, under two entirely different management systems and distinct 

climatic zones, the k-means clustering algorithm identified potential management 

classes that conformed to general topographical changes and changes in soil type 

across both landscapes. The management class statistics helped identify and 



CHAPTER 6. HIGH RESOLUTION ACTIVE OPTICAL SENSING FOR MIXED FARMING SYSTEMS 

 PAGE | 230 

understand the potential underlying causes of yield variation in both pastures and 

crops.  

The inclusion of some of the environmental data from Chapter 5 (ECa and elevation) 

in the k-means analysis provided stability to the clustering algorithm inputs and 

gave an indication of potential yields, where rainfall is not limiting. Now, instead of 

having yield maps based solely on the cropping phase of a rotation, a producer can 

have a continuous sequence of high-resolution yield data across both crop and 

pasture phases to allow management decisions to be made with more confidence 

from a whole-farm perspective. In the following chapter, this data will be used to 

develop a single paddock index for the identification and management of spatial 

and temporal stability of both crop and pasture phases in mixed farming systems. 
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CHAPTER 7. DEVELOPMENT OF A SINGLE PADDOCK INDEX TO DEFINE 

CROP AND PASTURE VARIABILITY OVER TIME 

7.1 INTRODUCTION 

The underlying objective of this body of research was to use precision agriculture 

(PA) technologies to identify and measure spatial variation in the pasture phases of 

two mixed farming systems and then integrate this knowledge with existing crop 

yield data to facilitate whole-of-farm management at the sub-paddock scale.  

Chapters 5 and 6 described the acquisition and analysis of high-resolution paddock 

data to help identify and investigate the factors contributing to spatial variability in 

both crop and pasture yields. Chapter 6 described a methodology for measuring 

pasture biomass production at a fine scale so that it could be compared to crop 

yield at the same point. Chapter 6 also extended the traditional analysis of crop 

management zones by incorporating pasture yield as well as crop yield data to 

create common management classes across both crop and pasture phases. The 

identification and use of management zones is a popular PA strategy for managing 

spatial variability in a system of ‘site-specific management’ (SSM) (Plant, 2001; 

Taylor et al., 2007). However, experience has indicated that spatial variation in yield 

is not always consistent, but influenced by seasonal variations and often temporally 

unstable (McBratney et al., 1997; Wong and Asseng, 2006). Nuttall and Armstrong 

(2006) found that grain and grain legume crops in the Mallee (north-western 

Victoria) on clay loam soils ‘flip-flopped’ between high, medium or low yielding in 

different years, thus opening ‘a Pandora’s box of uncertainty’ for the agronomic 

interpretation of yield maps (Cook and Bramley, 2001).  

These anomalous interactions were put down to interactions between rainfall, soil 

microrelief and crop type. While Chapter 6 focused on the spatial variation of crop 

and pasture production within a paddock, this chapter explores the temporal 

variation of pasture and crop production by calculating productive stability in two 

paddocks at “Milroy” and two at “Grandview”. In doing so, it will test Hypothesis 3 
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(Chapter 2, p. 36) that, “data acquired using PA technologies can be used to create a 

single index of paddock productivity that describes the spatial variation in, and 

temporal stability of, crop and pasture production over time”. 

The assessment of temporal stability is important because it affects the reliability of 

management zones as a strategy for differential management in crop and pasture 

phases. At present, no research is reported in the literature about the similarities of 

spatial and temporal variation between cropping and pasture phases within the 

same paddock and whether or not it would be feasible to manage such variability in 

combination with crops in a site-specific way. To determine the temporal stability of 

yield patterns, a methodology is required to enable comparisons between different 

years.  

Several approaches have been used to identify regions of temporal stability in crops 

(Blackmore, 2000; Blackmore et al., 2003; Dobermann et al., 2003; Marques da 

Silva, 2006) and in pastures (Marques da Silva et al., 2008; Serrano et al., 2011; Xu 

et al., 2006). These approaches used an averaged standardised yield combined with 

an arbitrarily defined threshold value of the coefficient of variation, standard 

deviation, or variance. Lawes et al. (2009) used regression against both yield means 

and growing season rainfall to characterise spatio-temporal variation in crops alone.  

In the work described here, inter-annual spatial variability maps of both crop and 

pasture production were obtained following the methodology of Blackmore (2000) 

by calculating the standardised temporal arithmetic mean of crop or pasture yield 

using the data from Chapter 6. While Blackmore’s analysis was concerned with 

either mixed crops (2000) or cereal crops only (2003), the analysis presented here is 

unique in that it includes both crop and pasture yield data. By combining both crop 

and pasture data, significant knowledge gaps are filled for the farm manager, who 

currently only has crop yield data to make decisions about paddock management. 
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7.2 MATERIALS AND METHODS 

7.2.1 STUDY SITES 

The study sites were the same as those described previously (Chapter 3, pp. 58–61 

and Chapter 6, pp. 167–168). 

7.2.2  CALCULATING THE SPATIAL TREND OF YIELD 

Crop rotations at “Milroy” and “Grandview” included cereals (wheat) and oilseed 

(canola) crops as well as annual (“Milroy”) and perennial (“Grandview”) pastures 

(Table 7.1). The crop yield and pasture TGDM data had already been kriged to a 

regular grid (Chapter 6, pp. 168–170). The spatial trend of yield for crops and 

pastures was determined by averaging the yield at each grid point over a sequence 

of yield maps. Since different crops were involved in some rotations at 

“Grandview”, and because of the large absolute difference in yield potential 

between cereals and oilseeds, a simple averaging technique (i.e. summing the yield 

values at a point over x years and dividing by x) could not be used to calculate the 

yield trends for crops and pastures. Therefore, the yield data was standardised to 

remove the yield units, replacing them with a relative percentage yield that allowed 

comparison between crops and pastures. The standardised yield was calculated as 

per Blackmore (2000) as follows: 

𝑠𝑖  =  (
𝑦𝑖

�̅�
)     × 100                                                             (1) 

where si is the standardised crop or pasture yield (%) at point i; yi is the interpolated 

yield at point i; and �̅� is the mean yield for that year.  

The point mean was then calculated over the years of interest, enabling different 

crops or pasture to be included and compared: 

�̅�𝑖 =  (∑ 𝑠𝑖,𝑡
𝑛
𝑡=1 )/𝑛                                                           (2) 

where  �̅�𝑖 is the average of 𝑠𝑖 , the standardised yield at point i, over n years.  

This standardised yield shows, at any point, in any one year, how the yield differs 

from the paddock mean (100%). The standardised data were then classified into 

four yield zones in relation to the relative percentage difference from the paddock 

mean (100%); the areas for which this value was greater than the paddock mean 
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were classified as ‘above average’ (AA) and ‘relatively high yielding’ (RHY), while the 

areas for which this value was less than 100% were defined as ‘below average’ (BA) 

and ‘relatively low yielding’ (RLY). The yield data distribution quartiles were used to 

define the yield categories. The standardised yield data was then imported into 

ArcGIS 10.2 (Environmental Systems Research Institute, Redlands, California) and 

mapped to a standard square 5 m x 5 m grid. The data was interpolated to the grid 

with Vesper 1.62 using an exponential variogram and a block size of 10 m x 10 m. 

Interpolated data was then converted to raster surfaces in ArcGIS 10.2 to produce 

yield maps of standardised data for each year of crop grain yield and each year of 

pasture DM yield.  

Spatial trend yield maps were then created by averaging the standardised yield at 

each grid cell over the years being considered (effectively ‘combining’ yield maps) 

and processed in ArcGIS 10.2. These spatial trend maps show the spatial yield 

pattern in a paddock over time for both crops and pastures. 

7.2.3 TEMPORAL STABILITY 

The temporal stability of crop or pasture production comprises two elements. The 

first is the variation that occurs between the paddock mean yield from year to year. 

Blackmore (2000) referred to this as the ‘inter-year offset’ and defined it as the 

difference between the mean yield value between two years in the same paddock. 

The largest driver of this variation in temperate-climate cropping zones is variability 

in annual rainfall (Turner and Asseng, 2005).  

The second temporal effect involves situations in which a particular part of a 

paddock produces above average yield in one year and below average yield in 

another year, irrespective of rainfall. This alternating pattern of relative grain yield 

has been referred to as the ‘flip-flop effect’ (Nuttall and Armstrong, 2006). 

Blackmore et al. (2003) termed this variation the ‘temporal variance at a single 

point’.  

7.2.4 CALCULATING TEMPORAL STABILITY 

To estimate how stable in time the crop and pasture yields were at “Milroy” and 

“Grandview”, the coefficient of variation (CV) in yield was calculated at each point 
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in the paddock for which there was a yield value for either grain yield or pasture 

TGDM, following the procedure developed by Blackmore (2000). In his later work, 

Blackmore (2003) used standard deviation rather than CV. However, in that study, 

Blackmore was dealing with paddocks of a single crop (wheat). In the research 

reported here, multiple crops were sometimes involved (wheat and canola) as well 

as pasture. The advantage of using CV is that it is unit-less. This allows the CVs of 

multiple crops and pastures to be compared with each other, which is not the case 

for standard deviation or root mean squared residuals.  

For multiple crops, the CV was calculated from the standardised yield values 

calculated previously, using the equation from Blackmore (2000):  

CV𝑠𝑖 =

(
𝑛 ∑ 𝑠𝑖𝑡

2 −(∑ 𝑠𝑖𝑡
𝑛
𝑡=1 )

2𝑛
𝑡=1

𝑛(𝑛−1)
)

0.5

�̅�𝑖
× 100                                (3) 

where CVsi is the coefficient of variation of the standardised data at point i, over n 

years. 

Using this equation, the CVs of crop grain yield and pasture TGDM yield were 

calculated for “Milroy” paddocks M25 and M41 and “Grandview” paddocks GV8 

and GV39, for both cropping and pasture phases for the years with sufficient data 

(Table 7.1).  

 

TABLE 7.1: CROP YIELD AND PASTURE TGDM DATA USED FOR CALCULATING THE PADDOCK STABILITY 

INDICES FOR “MILROY” AND “GRANDVIEW”. 

Paddock 2004 2005 2007 2008 2009 2012 2013 2014 

“MILROY”         

M25  wheat    wheat pasture pasture  

M41    wheat 
 pasture pasture wheat 

“GRANDVIEW”         

GV8  canola wheat  wheat pasture pasture  

GV39   canola wheat wheat pasture pasture  
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The CV data for crop yields and pasture DM yields were imported into ArcGIS 10.2 

(ESRI, Redlands, California) and mapped to a standard square 5 m x 5 m grid and 

interpolated using Vesper 1.62 as previously described. The interpolated data was 

then converted to raster surfaces in ArcGIS 10.2 to produce maps showing the 

range of CV values (%) across each paddock for crop grain yield and pasture TGDM 

yield. The CV shows a low value if a particular area of the paddock has a yield value 

that is always close to the mean. These areas can be considered areas of stable yield 

(less dispersed) in temporal terms. If the yield in other areas of the paddock 

sometimes approaches the mean and sometimes deviates from it, then these can 

be regarded as areas of temporally unstable yield. The temporal stability maps can 

then be classified into stable yield zones and unstable yield zones when a given 

temporal CV value (threshold) is adopted to subdivide the two zones.  

A threshold value for the temporal CV of 30% was used by Blackmore (2000) for 

cereal crops, and two threshold values (15 and 25%) were used by Xu et al. (2006) 

and Serrano et al. (2011), respectively, for grassland. Blackmore (2000) concluded 

that his use of a CV of 30% to define these two zones was too high, as it resulted in 

no zones being regarded as unstable for all fields and years of his study.  

For this current work, rather than selecting an arbitrary value, the mean CV value 

for crop yield and pasture TGDM distributions for each paddock were calculated in 

JMP 12.2 and used as threshold values.  

7.2.5 CREATING A SPATIAL AND TEMPORAL TREND MAP 

By combining the data behind the spatial trend maps and the temporal stability, a 

single representation of each paddock over time and across rotations (i.e. both crop 

and pasture–livestock phases) can be arrived at by classifying the paddock into four 

categories based on yield (high or low) and stability (stable or unstable) at a point in 

time. The four classes are described in Table 7.2. Because yield and stability are not 

mutually exclusive variables, there are four possible combinations for these two 

variables: high and stable (HS); high and unstable (HUS); low and stable (LS), and 

low and unstable (LUS).  
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Crop grain and pasture TGDM yields were considered high if a particular point value 

was above the mean (>100%) and vice versa. The stability of yield at that point was 

compared to a threshold value—in this case, the mean of the distribution of yield 

CV values for the paddock—to determine if the yield at that point was stable 

(<mean CV) or unstable (>mean CV) (Table 7.2). 

The spatial trend and temporal stability categories for the crop and pasture 

rotations were then concatenated to create an overall stability index for each 

paddock. Mapping this index shows areas of the paddock that are high and stable in 

both crop and pasture yield, areas that are high and unstable, etc. Because the crop 

and pasture maps will never correlate perfectly, there are areas that are neither HS, 

HUS, LS nor LUS in the overall stability map, leaving areas that are uncategorised. 

These areas were filled in by adding, firstly, areas that were high and stable in crop 

and low and stable in pasture and vice versa (HLS) and, secondly, areas that were 

high and unstable in crop and low and unstable in pasture and vice versa (HLUS). 

7.2.6 CORRELATION BETWEEN PADDOCK STABILITY ZONES AND SOIL CHEMICAL AND 

TEXTURAL PROPERTIES 

The results of geo-located soil tests which were mapped in Chapter 5 (Figures 5.16–

5.19) were overlain on the stability index maps to see if there were any correlations 

between particular paddock stability zones and soil test values which might indicate 

if soil constraints may be influencing zone partitioning.  

Because there were relatively few soil test sites per paddock, the EMI data (Chapter 

5, p. 115) was also tested. EMI is an indicator of soil textural change and was 

measured at the same scale and same paddock points as both pasture and crop 

yields. 
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TABLE 7.2: STABILITY INDEX (SI) CLASS CODES AND THE CONDITIONS FOR MEETING A CLASS (FROM 

BLACKMORE, 2000). 

Management class (code) Condition 1 Condition 2 

High and stable (HS) �̅�𝑖 >100 CV𝑠𝑖 < mean CV 

High and unstable (HUS) �̅�𝑖 >100 CV𝑠𝑖 > mean CV 

Low and stable (LS) �̅�𝑖 <100 CV𝑠𝑖 < mean CV 

Low and unstable (LUS) �̅�𝑖 <100 CV𝑠𝑖 > mean CV 

 

7.2.7 STATISTICAL ANALYSIS 

Because of the large number of data points in each paddock (>15,000), a 

representative sample of points was used for the statistical analyses. Randomised 

points were generated in ArcGIS across all four stability zones in each paddock using 

the standardised crop yield data. The number of points generated was proportional 

to the area of each zone, with the smallest zone within a paddock always having a 

minimum of 30 points. Crop and pasture TGDM and CV values for these points were 

extracted in ArcGIS. The pasture TGDM and CV values were then tested against the 

crop yield and CV point values at each random point.  

For each paddock, analyses were conducted on that paddock’s random dataset to 

compare the relationships across all four zones (HS, HUS, LS and LUS). Since the 

stability indices are categorical data, a Chi-squared analysis was used. Not all of the 

datasets were from normal distributions, so non-parametric analysis was used—in 

this case Spearman’s rho—to test correlation of the whole dataset, using JMP 12.2. 

The Kruskal–Wallis one-way ANOVA test (Kruskal and Wallis, 1952) was used to test 

for differences between stability zones using the R statistical package (v3.2.4). The 

script used in "R" is in Appendix 19. 

The Kruskal–Wallis test computes a test statistic and P-value (assuming a Chi-square 

distribution) as well as pairwise comparisons at a specified alpha level (0.05 in this 

case). For the Kruskal–Wallis tests, the null hypothesis was that the medians of all 

zones were equal, and the alternative hypothesis was that the population median of 
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at least one zone was different from the population median of at least one other 

zone.  

The following combinations were tested for each paddock: crop yield, pasture yield, 

crop yield CV, pasture yield CV, crop yield minus pasture yield, and crop CV minus 

pasture CV, with the stability zones as the categorical variable in each case. The 

expectation was that: (i) the medians of the standardised values for the high-

yielding zones (HS and HUS) would be similar as would yields in the two low-yielding 

zones (LS and LUS) but that the yield medians between both groups (HS, HUS) and 

(LS, LUS) would differ. For the stability measure (coefficient of variation), the 

expectation was that the medians of CV for the stable zones (HS and LS) would be 

similar as would the unstable zones (HUS and LUS) and that the CV medians 

between both groups (HS, LS) and (HUS, LUS) would differ.  

The EMI data was tested by using the same randomised points as those for crop and 

pasture yields described above, but substituting the corresponding ECa value and 

testing that with Kruskal–Wallis for comparisons between stability zones (HS, HUS, 

LS and LUS) and ECa values to see if the EMI results could explain any differences 

between the zones. 

7.2.8 CORRELATION ANALYSIS OF POINT VALUES FOR CROP GRAIN YIELD AND PASTURE 

DRY MATTER PRODUCTION 

To see if there was any relationship between crop and pasture yields at a point, a 

correlation analysis was conducted using JMP 12.2 on between-year crop yields and 

pasture TGDM yields for each paddock. 

7.3 RESULTS 

7.3.1 INTER-ANNUAL SPATIAL VARIABILITY MAPS 

The maps of spatial variability of standardised yield over time for both crop and 

pasture are presented in Figure 7.1 for each “Milroy” paddock and Figure 7.2 for 

each “Grandview” paddock. Yields were categorised by quartiles of yield data 

distribution and coded as relatively low yielding (1st quartile), below average (2nd 

quartile), above average (3rd quartile) and relatively high yielding (4th quartile). 
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7.3.2 TEMPORAL VARIABILITY MAPS 

The maps of temporal variability of standardised yield over time for both crop and 

pasture are presented in Figure 7.3 for each “Milroy” paddock and Figure 7.4 for 

each “Grandview” paddock.  

7.3.3 STABILITY INDEX MAPS (SPATIAL AND TEMPORAL TREND MAPS) 

The stability index maps for both crop and pasture phases are shown at Figure 7.5 

for “Milroy” paddocks M25 and M41 and Figure 7.6 for Grandview paddocks GV8 

and GV39. In these maps, the data from the spatial trend and temporal stability 

maps have been combined into four classes—high or low yielding depending on 

whether the data value was above or below the spatial mean, and stable or 

unstable depending on whether the data value was above or below the stability 

threshold. The stability thresholds used in each paddock are shown in Table 7.3. 

Figure 7.7 illustrates the process used to create these maps. 

Figures 7.8–7.11 show the overall paddock stability maps which combine the crop 

and pasture spatial trend and temporal stability data into one map. In each figure, 

map (a) shows areas of the paddock where the yields for both crop and pasture, 

over time, responded in a similar fashion—either high yield and stable (HS), high 

yield and unstable (HUS), low yield and stable (LS) or low yield and unstable (LUS). 

The areas of the map that remain uncoloured represent other combinations of yield 

and stability other than HS, HUS, LS or LUS zones. Map (b) shows the stability zones 

from map (a) (HS, HUS, LS or LUS) plus those areas of the paddock that were always 

temporally stable (where CV < mean), but flip-flopped in terms of yield for crop and 

pasture (e.g. HS for crop and LS for pasture, or vice versa). These areas are 

designated HLS on the maps, i.e. areas that are high or low yielding, but stable. Map 

(c) is map (b) with the added inclusion of all zones that are temporally unstable 

(where CV > mean), i.e. either HUS in crop and LUS in pasture, or vice versa. So 

zones with green tones are showing stable areas of the paddock whereas 

red/yellow tones are showing unstable areas.  
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7.3.4 CORRELATION BETWEEN PADDOCK STABILITY ZONES AND SOIL CHEMICAL AND 

TEXTURAL PROPERTIES 

Examples of the soil test maps overlain on stability index are in Figure 7.12. The 

remaining overlain maps are in Appendices 20–23. There were no clear correlations 

between stability zones and soil test results. Unfortunately, the soil tests were 

conducted 12–18 months prior to the stability zones being delineated so soil tests 

did not target particular stability zones. 

7.3.5 STATISTICAL ANALYSIS 

“Milroy” (Table 7.4) 

The Spearman’s rho correlation revealed a moderately strong, statistically 

significant relationship in paddock M41 between the standardised values for crop 

yield and pasture TGDM for the randomised points (ρ=0.66, P<0.0001, N=262) 

(Figure 7.13), but the relationship in paddock M25 was poor (ρ=0.25, P<0.0004, 

N=199).  

The Kruskal–Wallis one-way ANOVA showed that the stability index categories (HS, 

HUS, LS, LUS) for paddock M41 had significantly different medians for most of the 

differences between high and low yield zones and stable and unstable zones (Table 

7.4). This was also the case when yield differences (crop yield minus pasture yield) 

were tested. The exception was M41 pasture median TGDM stability (CV). In M25, 

crop yield medians differed significantly between high- and low-yielding areas, but 

pasture TGDM median differences did not differ between HS, HUS, LS and LUS. The 

same situation occurred with M25 pasture TGDM stability (Table 7.4). However, 

even where the Kruskal–Wallis test did not identify one median as being 

significantly different, median values were still generally grouped along yield or 

stability categories. For example, the pasture yield medians for M25, although not 

significantly different, were (103.4 and 102.3) for high yielding and (97.4 and 96.7) 

for low yielding. The stability difference between crop and pasture in M41 (crop CV 

minus pasture CV) were stable (3.2 and 6.6) and unstable (11.4 and 14.8) even 

though these median values in each case did not statistically differ (Table 7.4).  
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 “Grandview” (Table 7.5) 

The Spearman’s rho correlation revealed a statistically significant relationship 

between the standardised values for crop yield and pasture TGDM for the 

randomised points for both paddock GV8 (ρ=0.57, P<0.0001, N=253) and GV39 

(ρ=0.66, P<0.0001, N=192).  

The Kruskal–Wallis one-way ANOVA showed that paddock GV8 had significantly 

different medians for both crop yield and pasture TGDM between high- and low-

yielding areas. Crop yield medians differed, but were grouped into stable (6.7 and 

9.7) and unstable (15.0 and 20.6) values (Table 7.5). The same result occurred with 

yield differences, with high yielding (8.5 and 7.2) and low yielding (10.8 and 12.9) 

(Table 7.5). This grouping was not apparent with pasture CV or crop–pasture CV 

differences. 

The results for paddock GV39 showed a similar outcome, with crop yield and 

pasture TGDM yield partitioned to discrete high- and low-yielding areas. Crop and 

pasture stability medians did not always show significant differences between 

stable and unstable areas, but both were grouped correctly (Table 7.5). For 

example, crop CV values for stable (12.0 and 16.7) and unstable (29.4 and 30.5). The 

same occurred with crop–pasture differences, with yields falling into high (10.1 and 

13.8) and low (14.9 and 17.3) and stable (6.3 and 12.3) and unstable (19.1 and 

17.2). 

EMI data (Table 7.6): “Milroy” 

The Kruskal–Wallis test showed that no ECa median values differed from any of the 

others across the four stability zone categories for paddock M25. In paddock M41, 

the Kruskal–Wallis test on ECa shallow (0–50 cm) showed significant differences 

between the medians of (HS and HUS), (HS and LUS), (HUS and LS) and (LS and LUS). 

In the 0–100 cm range, there were significant differences between the medians of 

(HS and LS), (HUS and LS) and (LS and LUS).  

EMI data (Table 7.6): “Grandview” 

In paddock GV8, the Kruskal–Wallis test for ECa at 0–38 cm depth showed 

significant differences in the medians for (HS and LS), (HUS and LS) and (HUS and 
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LUS). At 0–75 cm, there were significant differences in the medians for (HS and 

HUS), (HS and LS), (HUS and LS) and (HUS and LUS). For paddock GV39, ECa 0–38 cm 

showed significant differences between the medians for (HS and LS) and (HS and 

LUS). At 0–75 cm, there were significant differences between the medians for (HS 

and LS), (HS and LUS), (HUS and LS) and (HUS and LUS). 

 

TABLE 7.3: STABILITY THRESHOLDS USED IN THE CALCULATION OF STABILITY INDICES FOR “MILROY” 

AND “GRANDVIEW” PADDOCKS. IN EACH CASE, THE MEAN VALUE OF THE DISTRIBUTION OF CV VALUES 

FOR CROP OR PASTURE WERE USED. 

Property Paddock Stability threshold 

  Crop Pasture 

“MILROY” M25 18% 21% 

 M41 13% 13% 

    
“GRANDVIEW” GV8 13% 12% 

 GV39 22% 12% 
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FIGURE 7.1: MAPS OF MEAN STANDARDISED YIELD DATA FOR “MILROY” PADDOCKS M25 (A) CROP 

YIELD AND (B) PASTURE TGDM, AND M41 (C) CROP YIELD AND (D) PASTURE TGDM. RHY = 

RELATIVELY HIGH YIELDING, AA = ABOVE AVERAGE YIELD, BA = BELOW AVERAGE YIELD AND RLY = 

RELATIVELY LOW YIELDING. CATEGORIES ARE BASED ON QUARTILES. 
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FIGURE 7.2: MAPS OF MEAN STANDARDISED YIELD DATA FOR “GRANDVIEW” PADDOCKS GV8 (A) 

CROP YIELD AND (B) PASTURE TGDM, AND GV39 (C) CROP YIELD AND (D) PASTURE TGDM. RHY = 

RELATIVELY HIGH YIELDING, AA = ABOVE AVERAGE YIELD, BA = BELOW AVERAGE YIELD AND RLY = 

RELATIVELY LOW YIELDING. CATEGORIES ARE BASED ON QUARTILES. 
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FIGURE 7.3: MAPS SHOWING THE DISTRIBUTION OF CVS OF STANDARDISED YIELD OVER TIME 

(TEMPORAL VARIABILITY) FOR “MILROY” PADDOCKS M25 (A) CROP YIELD AND (B) PASTURE TGDM 

AND M41 (C) CROP YIELD AND (D) PASTURE TGDM. THE BLUE AREAS INDICATE THE MOST STABLE 

YIELDS AND THE RED AREAS INDICATE THE LEAST STABLE YIELDS. 
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FIGURE 7.4: MAPS SHOWING THE DISTRIBUTION OF CVS OF STANDARDISED YIELD OVER TIME 

(TEMPORAL VARIABILITY) FOR “GRANDVIEW” PADDOCKS GV8 (A) CROP YIELD AND (B) PASTURE 

TGDM AND GV39 (C) CROP YIELD AND (D) PASTURE TGDM. THE BLUE AREAS INDICATE THE MOST 

STABLE YIELDS AND THE RED AREAS INDICATE THE LEAST STABLE YIELDS. 
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FIGURE 7.5: STABILITY INDEX MAPS FOR “MILROY” PADDOCKS M25 (A) STANDARDISED CROP YIELD 

AND (B) STANDARDISED PASTURE TGDM, AND M41 (C) STANDARDISED CROP YIELD AND (D) 

STANDARDISED PASTURE TGDM. HS = HIGH AND STABLE YIELDING ZONES, HUS = HIGH AND 

UNSTABLE, LS = LOW AND STABLE AND LUS = LOW AND UNSTABLE. 
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FIGURE 7.6: STABILITY INDEX MAPS FOR “GRANDVIEW” PADDOCKS GV8 (A) STANDARDISED CROP 

YIELD AND (B) STANDARDISED PASTURE TGDM, AND GV39 (C) STANDARDISED CROP YIELD AND (D) 

STANDARDISED PASTURE TGDM. HS = HIGH AND STABLE YIELDING ZONES, HUS = HIGH AND 

UNSTABLE, LS = LOW AND STABLE AND LUS = LOW AND UNSTABLE. 
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FIGURE 7.7: THE STABILITY INDEX MAP (E) ABOVE FOR CROP YIELD IN “MILROY” PADDOCK M41 IS A 

COMBINATION OF THE FEATURES FOUND IN THE SPATIAL TREND AND TEMPORAL STABILITY MAPS. 

STANDARDISED YIELD MAPS (A) AND (B) ARE COMBINED TO CREATE A SPATIAL TREND MAP (C) WHICH 

SHOWS THE MEAN STANDARDISED YIELD (SPATIAL VARIATION) OVER THE PERIOD IN QUESTION. THE 

TEMPORAL STABILITY MAP (D) SHOWS THE STABILITY OF YIELD (AS CV) ACROSS THE PADDOCK OVER THE 

SAME PERIOD. COMBINING THE SPATIAL TREND MAP (C) AND TEMPORAL STABILITY MAP (D) PROVIDES 

THE STABILITY INDEX MAP (E) WITH FOUR ZONES: HIGH YIELDING AND STABLE (HS), HIGH YIELDING AND 

UNSTABLE (HUS), LOW YIELDING AND STABLE (LS) AND LOW YIELDING AND UNSTABLE (LUS). 
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FIGURE 7.8: COMBINED CROP AND PASTURE STABILITY MAPS FOR “MILROY” PADDOCK M25 (A) 

SHOWS ALL DATA POINTS THAT ARE EITHER HS, HUS, LS AND LUS FOR BOTH CROP AND PASTURE, (B) 

IS MAP (A) INCLUDING POINTS WHERE YIELDS ARE TEMPORALLY STABLE, BUT EXHIBIT CONTRARY YIELD 

BEHAVIOUR (I.E. POINTS ARE HS IN CROP BUT LS IN PASTURE, OR VICE VERSA), (C) IS MAP (B) BUT 

NOW INCLUDES ALL POINTS THAT ARE TEMPORALLY UNSTABLE AND EXHIBITING CONTRARY YIELD 

BEHAVIOUR (I.E. POINTS ARE HUS IN CROP BUT LUS IN PASTURE, OR VICE VERSA). 
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FIGURE 7.9: COMBINED CROP AND PASTURE STABILITY MAPS FOR “MILROY” PADDOCK M41 (A) 

SHOWS ALL DATA POINTS THAT ARE EITHER HS, HUS, LS AND LUS FOR BOTH CROP AND PASTURE, (B) 

IS MAP (A) INCLUDING POINTS WHERE YIELDS ARE TEMPORALLY STABLE, BUT EXHIBIT CONTRARY YIELD 

BEHAVIOUR (I.E. POINTS ARE HS IN CROP BUT LS IN PASTURE, OR VICE VERSA), (C) IS MAP (B) BUT 

NOW INCLUDES ALL POINTS THAT ARE TEMPORALLY UNSTABLE AND EXHIBITING CONTRARY YIELD 

BEHAVIOUR (I.E. POINTS ARE HUS IN CROP BUT LUS IN PASTURE, OR VICE VERSA). 
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FIGURE 7.10: COMBINED CROP AND PASTURE STABILITY MAPS FOR “GRANDVIEW” PADDOCK GV8 (A) 

SHOWS ALL DATA POINTS THAT ARE EITHER HS, HUS, LS AND LUS FOR BOTH CROP AND PASTURE, (B) 

IS MAP (A) INCLUDING POINTS WHERE YIELDS ARE TEMPORALLY STABLE, BUT EXHIBIT CONTRARY YIELD 

BEHAVIOUR (I.E. POINTS ARE HS IN CROP BUT LS IN PASTURE, OR VICE VERSA), (C) IS MAP (B) BUT 

NOW INCLUDES ALL POINTS THAT ARE TEMPORALLY UNSTABLE AND EXHIBITING CONTRARY YIELD 

BEHAVIOUR (I.E. POINTS ARE HUS IN CROP BUT LUS IN PASTURE, OR VICE VERSA). 
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FIGURE 7.11: COMBINED CROP AND PASTURE STABILITY MAPS FOR “GRANDVIEW” PADDOCK GV39 

(A) SHOWS ALL DATA POINTS THAT ARE EITHER HS, HUS, LS AND LUS FOR BOTH CROP AND PASTURE, 

(B) IS MAP (A) INCLUDING POINTS WHERE YIELDS ARE TEMPORALLY STABLE, BUT EXHIBIT CONTRARY 

YIELD BEHAVIOUR (I.E. POINTS ARE HS IN CROP BUT LS IN PASTURE, OR VICE VERSA), (C) IS MAP (B) 

BUT NOW INCLUDES ALL POINTS THAT ARE TEMPORALLY UNSTABLE AND EXHIBITING CONTRARY YIELD 

BEHAVIOUR (I.E. POINTS ARE HUS IN CROP BUT LUS IN PASTURE, OR VICE VERSA). 
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FIGURE 7.12: MAPS OF (A) “MILROY” PADDOCK M41 CROP PHASE, (B) PASTURE PHASE, (C) 

“GRANDVIEW” PADDOCK GV39 CROP PHASE, AND (D) PASTURE PHASE STABILITY MAPS SHOWING SOIL 

TEST POINTS AND COLWELL P RESULTS. HS = HIGH AND STABLE YIELDING ZONES, HUS = HIGH AND 

UNSTABLE, LS = LOW AND STABLE AND LUS = LOW AND UNSTABLE. 
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TABLE 7.4: RESULTS FROM THE KRUSKAL–WALLIS ONE-WAY ANOVA TEST FOR DIFFERENCES BETWEEN THE STABILITY ZONES BASED ON CROP AND PASTURE YIELD OR CV FOR 

“MILROY” PADDOCKS M25 AND M41. VALUES SHOW THE ZONE MEDIANS CALCULATED BY THE KRUSKAL–WALLIS TEST AND INDICATE WHERE A SIGNIFICANT DIFFERENCE 

OCCURRED BETWEEN AT LEAST ONE MEDIAN. THE CORRELATION BETWEEN CROP YIELD AND PASTURE TGDM WAS ALSO TESTED WITH SPEARMAN’S RHO. HS = HIGH AND 

STABLE YIELDING ZONES, HUS = HIGH AND UNSTABLE, LS = LOW AND STABLE AND LUS = LOW AND UNSTABLE.  IS THE CHI-SQUARED TEST STATISTIC FOR EACH KRUSKAL–

WALLIS TEST, Ρ IS THE SPEARMAN’S CORRELATION COEFFICIENT AND P IS THE RELATED PROBABILITY. N IS THE NUMBER OF POINTS IN THE SAMPLE. 

PADDOCK HS HUS LS LUS χ2 P ρ P 
“MILROY” M25 (N=199)        
Correlation: crop yld x pasture yld       0.25 0.004 
Crop yield 116.2a† 113.4a 88.1b 73.3c 151.8 <0.001   
Pasture yield 103.4ns 102.3ns 97.4ns 96.7ns 7.7 0.053   
Crop CV 7.1a 26.9b 9.3a 34.8b 137.9 <0.001   
Pasture CV 16.9ns 16.1ns 16.5ns 18.7ns 0.96 0.81   
Crop yld–Pasture yld 19.4a 19.3ab 12.6a 24.1b 10.35 0.02   
Crop CV–Pasture CV 13.1a 12.0a 10.0a 19.5b 9.8 0.02   
“MILROY” M41 (N=262)        
Correlation: crop yld x pasture yld       0.66 <0.001 
Crop yield 110.5a 112.7a 85.6b 78.3b 193.18 <0.001   
Pasture yield 116.8a 105.9a 91.3b 82.8b 99.29 <0.001   
Crop CV 5.2a 18.7b 5.8a 25.2c 177.09 <0.001   
Pasture CV 4.9a 7.3b 11.0bc 14.9c 53.17 <0.001   
Crop yld–Pasture yld 10.0a 7.5a 15.6b 17.2b 25.68 <0.001   
Crop CV–Pasture CV 3.2a 11.4bc 6.6c 14.8b 54.81 <0.001   

† Median values with different letters indicate that the SI zone medians are significantly different. ns = not significant.  
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TABLE 7.5: RESULTS FROM THE KRUSKAL–WALLIS ONE-WAY ANOVA TEST FOR DIFFERENCES BETWEEN THE STABILITY ZONES BASED ON CROP AND PASTURE YIELD OR CV FOR 

“GRANDVIEW” PADDOCKS GV8 AND GV39. VALUES SHOW THE ZONE MEDIANS CALCULATED BY THE KRUSKAL–WALLIS TEST AND INDICATE WHERE A SIGNIFICANT DIFFERENCE 

OCCURRED BETWEEN AT LEAST ONE MEDIAN. THE CORRELATION BETWEEN CROP YIELD AND PASTURE TGDM WAS ALSO TESTED WITH SPEARMAN’S RHO. HS = HIGH AND 

STABLE YIELDING ZONES, HUS = HIGH AND UNSTABLE, LS = LOW AND STABLE AND LUS = LOW AND UNSTABLE.      IS THE CHI-SQUARED TEST STATISTIC FOR EACH KRUSKAL–

WALLIS TEST, Ρ IS THE SPEARMAN’S CORRELATION COEFFICIENT AND P THE RELATED PROBABILITY. N IS THE NUMBER OF POINTS IN THE SAMPLE. 

PADDOCK HS HUS LS LUS χ2 P ρ P 
“GRANDVIEW”  GV8 (N=253)       
Correlation:crop yld x pasture yld       0.57 <0.001 
Crop yield 108.5a† 109.4a 94.5b 88.7b 176.89 <0.001  <0.001 
Pasture yield 104.9a 106.8a 86.1b 94.7b 37.64 <0.001  <0.001 
Crop CV 6.7a 15.0b 9.7c 20.6d 181.98 <0.001  <0.001 
Pasture CV 6.0a 12.2b 13.5b 12.5b 26.74 <0.001  <0.001 
Crop yld–Pasture yld 8.5a 7.2a 10.8ab 12.9b 8.51 <0.001  <0.001 
Crop CV–Pasture CV 4.2a 7.5b 9.7b 11.3b 36.76 <0.001  <0.001 
“GRANDVIEW”  GV39 (N=192)       
Correlation:crop yld x pasture yld       0.66 <0.001 
Crop yield 114.8a 119.2a 77.2b 74.3b 138.9 <0.001  <0.001 
Pasture yield 112.1a 105.9a 88.4b 86.4b 57.84 <0.001  <0.001 
Crop CV 12.0a 29.4b 16.7c 30.5b 143.09 <0.001  <0.001 
Pasture CV 7.8ns 12.2ns 7.6ns 10.4ns 7.34 0.06  <0.001 
Crop yld–Pastureyld 10.1a 13.8ab 14.9b 17.3b 11.36 0.01  <0.001 
Crop CV–Pasture CV 6.3a 19.1b 12.3c 17.2bd 54.45 <0.001  <0.001 

† Median values with different letters indicate that the SI zone medians are significantly different. ns = not significant. 
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TABLE 7.6: RESULTS FROM THE KRUSKAL–WALLIS ONE-WAY ANOVA TEST FOR DIFFERENCES 

BETWEEN THE EMI READINGS BY STABILITY ZONES FOR “MILROY” PADDOCKS M25 AND M41 AND 

“GRANDVIEW” PADDOCKS GV8 AND GV39. VALUES SHOW THE ZONE MEDIANS CALCULATED BY THE 

KRUSKAL–WALLIS TEST AND INDICATE WHERE A SIGNIFICANT DIFFERENCE OCCURRED BETWEEN AT 

LEAST ONE MEDIAN. HS = HIGH AND STABLE YIELDING ZONES, HUS = HIGH AND UNSTABLE, LS = LOW 

AND STABLE AND LUS = LOW AND UNSTABLE.  IS THE CHI-SQUARED TEST STATISTIC FOR EACH 

KRUSKAL–WALLIS TEST AND P THE RELATED PROBABILITY. N IS THE NUMBER OF POINTS IN THE 

SAMPLE. 

PADDOCK HS HUS LS LUS χ2 P 

“MILROY”        

M25 (N=199)      

EM 0–50 cm 6.7†ns 7.3ns 5.6ns 6.4ns 3.79 0.28 

EM 0–100 cm 19.1ns 24.9ns 15.9ns 20.2ns 5.45 0.14 

M41 (N=262)      

EM 0–50 cm 5.2a 6.6c 5.8a,b 9.0c 28.38 <0.001 

EM 0–100 cm 10.2a 11.5a,c 6.5b 12.2a,c 11.80 <0.01 

“GRANDVIEW”       

GV8 (N=253)      

EM 0–38 cm 42.4a,b 37.7a 45.2c,d 42.3b,d 12.29 <0.01 

EM 0–75 cm 103.2a 94.6b 110.2c 106.9a,c 18.41 <0.001 

GV39 (N=192)      

EM 0–38 cm 12.3a 15.1a,b 23.8b 17.3b 14.48 <0.01 

EM 0–38 cm 76.9a 78.8a 84.6b 82.7b 36.36 <0.001 

† Median values with different letters indicate that the SI zone medians are significantly different. 

ns = not significant. 
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FIGURE 7.13: SCATTERPLOT MATRIX OF SPEARMAN’S RHO FOR STANDARDISED CROP YIELD VS. 

PASTURE TGDM VALUES AT RANDOMISED DATA POINTS IN “MILROY” PADDOCK M41 (Ρ=0.66, 

P<0.0001, N=262). THE DENSITY ELLIPSE (RED LINE) ENCLOSES APPROXIMATELY 95% OF THE 

POINTS. 

 

7.4 DISCUSSION 

This chapter has outlined a methodology for calculating spatial variation and 

temporal stability for both crop and pasture yields within a paddock. Much of the 

crop, pasture and soil data acquired in Chapters 5 and 6 has been combined in a 

novel way to test Hypothesis 3 (Chapter 2, p. 36) that, “data acquired using PA 

technologies can be used to create a single index of paddock productivity that 

describes the spatial variation in, and temporal stability of, crop and pasture 

production over time”. 

Previous attempts to create paddock stability zones have been restricted to either 

crop or grassland paddocks but have never been combined for paddocks that 

include a sequence of both crop and pasture in a mixed farming system. Blackmore 

(2000), Blackmore et al. (2003), Marques da Silva (2006), Marques da Silva et al. 

(2008) and Xu et al. (2006) have described the creation of stability zones in either 

crop or pasture paddocks. However, all struggled to find a valid method to 
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determine a ‘threshold’ value for temporal variability. Blackmore (2000) used an 

arbitrary CV value of 30% for the stability threshold but found that this left 97% of 

the experimental paddock classified as stable and concluded that the threshold 

figure was far too high and the unstable area too insignificant to be worthwhile 

managing. Xu et al. (2006) in grassland used threshold figures of CV < 15% for 

stable, 15 < CV < 25% for moderately stable, and CV > 25% for unstable.  

In the work described here, the stability threshold value was determined as the CV 

distribution mean for crop and pasture yield for each paddock. None of the authors 

mentioned above attempted to statistically test the stability zones they created. If 

the stability zone categories as tested by the Kruskal–Wallis test (Tables 7.4 and 7.5) 

correctly reflect spatial variability in yield across a paddock for crop and pasture 

phases, then it would be expected that the medians of the high-yielding areas in 

both crop and pasture phases (HS and HUS) would not significantly differ (i.e. areas 

that are high yielding in crop are also high yielding in pasture), as would the 

medians for low-yielding areas (LS and LUS). For temporal stability, the expectation 

was that the medians for stable areas in the paddock for both crop and pasture 

phases (HS and LS) would not significantly differ (i.e. irrespective of being high or 

low yielding, areas that are stable in crop yield are also stable in pasture yield), as 

would the medians for unstable areas (HUS and LUS). Table 7.7 summarises the 

results from the Kruskal–Wallis test data shown in Tables 7.4 and 7.5. With the 

exception of the M25 pasture yield, all medians for spatial variation in yield at both 

“Milroy” and “Grandview” are differentiated into high yielding (HS and HUS) and 

low yielding (LS and LUS) zones at P<0.001. The M25 pasture yield spatial variation 

medians, although not significantly different at P=0.05, were still grouped into high- 

and low-yielding zones. This provides strong evidence to support the validity of the 

methodology used to split the yield spatial variability data among zones. That is, the 

methodology partitioned both crop and pasture yields in the same areas in each 

paddock. 

The Kruskal–Wallis test for the temporal stability aspect (CV) of the stability zones 

did not always show a significant difference between the medians of the stable and 

unstable categories (Table 7.7). The crop CV medians were consistent, with both 
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“Milroy” paddocks having significantly different medians between the stable and 

unstable yields. Although not showing a significant difference at P=0.05, the 

“Grandview” crop CV medians were grouped into stable and unstable categories. 

For example, at “Grandview” GV8, the crop CV medians were 6.7 and 9.7 for the 

stable yields (HS and LS) and distant from the medians in the unstable zones (HUS 

and LUS), which were also close to each other (15.0 and 20.6) (Table 7.5). The 

results for pasture phase temporal stability were much less consistent. There were 

no paddocks where the pasture CV medians differed significantly at P=0.05 and 

“Grandview” GV39 was the only paddock where the medians were grouped into 

stable and unstable categories. 

There are many factors in the pasture phase which confound temporal stability in 

comparison to the cropping phase. In effect, a highly managed monoculture in the 

cropping phase is being compared to a largely unmanaged, highly diverse and 

complex sward of pasture species with uncontrolled animal impact. These factors 

combine to affect the spatial heterogeneity of a paddock during the pasture–

livestock phase compared to when the paddock is in crop. Pasture stability is also 

affected by factors such as animal grazing and diet selection impact, stocking rate 

decisions by managers, pasture regrowth, and often highly variable species 

composition within swards. These effects can result in significant variations over 

time in species dominance in different parts of a paddock. For example Figure 6.26 

(p. 203) shows variation in species distribution in “Milroy” paddock M41 between 

2012 and 2013 and the increasing dominance of broadleaf weeds (in this case, 

capeweed, Arctotheca calendula L.). Similarly, Figure 6.27 (p. 204) shows an 

increase in legumes and reduction in grasses in “Grandview” paddock GV39 

between 2012 and 2013. Figures 6.14 (p. 193) and 6.15 (p. 194) also show the 

changes in TGDM distribution at “Milroy” and “Grandview”, respectively, across the 

2012 and 2013 seasons.  

It is, therefore, difficult in the short term to differentiate between variations in 

temporal stability of pasture growth brought about by rainfall, soil moisture and soil 

nutrient supply from those caused by grazing. The overall spatial and temporal 
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utilisation of a paddock by livestock is unclear without acquiring data through GPS 

tracking (Trotter and Lamb, 2008).  

It was anticipated that the stability zones might be useful for identifying potential 

nutrient variations across a paddock and providing the opportunity to better 

manage decisions around fertiliser strategy. Nutrients enter and leave the soil and 

farm system via several pathways, including exports of grain, animal products, 

fodder, leaching and run-off, and variations in soil retention. The amounts lost 

through leaching are not readily or accurately known, and the distributions brought 

about through manure and urine deposition by grazing animals is highly variable 

and can influence the spatial distribution of nutrients across a paddock.  

It was expected that the ‘high and stable’ zones would show lower nutrient levels 

than the low and unstable areas, as greater nutrient removal would occur from the 

high and stable areas in the form of crop and animal product exports compared to 

low and stable areas. The levels of nutrients exported by both crops and animal 

products have been quantified (Price, 2006). Soils require a certain level of 

phosphorus to maintain their current P status. This is largely determined by the 

particular soil type and its associated PBI value (Gourley et al., 2007). Maintaining 

paddock P at levels higher than that necessary for production is costly because 

additional P inputs are required to build and maintain high levels of soil fertility 

because of phosphorous ‘tie up’ in soil (Simpson et al., 2010). The higher the PBI 

value and the greater the Colwell P level, the greater the amount of P required to 

maintain the status quo. Therefore, parts of a paddock that have different soil 

nutrient levels and PBIs can have differing maintenance fertiliser requirements and 

might benefit from differential fertiliser treatment.  

Although only a small number of soil tests were conducted in the research 

paddocks, when the paddock stability index maps were overlaid on the soil test 

results, some broad trends were apparent. The levels of P in all paddocks varied 

considerably but were generally above critical levels. In “Milroy” paddock M25 

(Figure 7.12), the high production areas (HS, HUS) had lower levels of P than the 

low-producing areas, indicating that nutrient export may have been occurring from 

the high production areas. This also appeared to be the case in “Grandview” 
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paddock GV39 (Figure 7.12). Unfortunately, the soil tests were conducted before 

the stability zones were identified. With the benefit of hindsight, it would be of 

great benefit to conduct further soil testing now that the stability zones have been 

identified. Currently, variable rate fertiliser P decisions at “Grandview” are based 

solely on P removal in grain during the cropping phase. The pastures receive a 

blanket rate of P.  

 

TABLE 7.7: SUMMARY OF KRUSKAL–WALLIS TEST RESULTS FOR YIELD AND STABILITY. 

PADDOCK CROP YIELD PASTURE YIELD CROP CV PASTURE CV 

“MILROY”     

M25 Sig. difference 
between high & 
low yield 
medians 

Median 
differences 
between high 
and low yield 
not significant 
but grouped H 
& L 

Sig. difference 
between stable 
and unstable 
medians 

No significant 
difference 
between 
medians nor 
groupings S & 
US 

M41 Sig. difference 
between high & 
low yield 
medians 

Sig. difference 
between high & 
low yield 
medians 

Sig. difference 
between stable 
and unstable 
medians 

No significant 
difference 
between 
medians nor 
groupings S & 
US 

“GRANDVIEW”     

GV8 Sig. difference 
between high & 
low yield 
medians 

Sig. difference 
between high & 
low yield 
medians 

Median 
differences 
between stable 
and unstable 
yield not 
significant but 
grouped S & US 

No significant 
difference 
between 
medians nor 
groupings S & 
US 

GV39 Sig. difference 
between high & 
low yield 
medians 

Sig. difference 
between high & 
low yield 
medians 

Median 
differences 
between stable 
and unstable 
yield not 
significant but 
grouped S & US 

Median 
differences 
between stable 
and unstable 
yield not 
significant but 
grouped S & US 

H = high yield, L = low yield, S = stable yield, US = unstable yield. 
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The analysis of the relationships between EMI data and the stability zones was 

inconclusive, and there were no clear associations with either yield or stability. At 

“Milroy”, the ECa median values for both the (HS and HUS) and (LS and LUS) zones 

in paddock M41 differed, i.e. the medians were differentiating on temporal stability 

(5.2, 5.8) and (6.6, 9.0) rather than spatial variation in yield (H or L). The effect was 

not as pronounced at greater depth (0–100 cm). In “Grandview” paddock GV8, 

differences in the medians of ECa 0–38 cm appear to be associated with spatial 

variation in yield i.e. (HS and HUS) and (LS and LUS), although the medians for HS 

and LUS did not differ. At 0–75 cm, the high yield zones differentiate on temporal 

stability (i.e. the medians of HS and HUS differ), which may be the influence of sodic 

subsoils. For paddock GV39, the medians appeared grouped on spatial variation in 

yield (HS and HUS) and (LS and LUS) with significant differences between the 

medians of (HS and LS) and (HS and LUS), indicating that soil conductivity might be 

influencing spatial variation in yield rather than yield temporal stability. At 0–75 cm, 

there was a similar result, with the medians again aligning on yield. There is not 

enough data to draw any definitive conclusions, but this is an area that warrants 

further investigation. 

Previous attempts at creating stability analyses have tried to use the analysis 

(unsuccessfully) to predict future crop yields (Blackmore, 2000; Blackmore et al., 

2003; Robinson et al., 2009). This is not the intention here. The index has been 

created as a whole-of-farm management tool, integrating high-resolution data from 

both crop and pasture phases to form a rolling sequence of data to inform longer-

term management decisions.  

On the basis of the results discussed here, there are grounds to conclude that 

Hypothesis 3, “data acquired using PA technologies can be used to create a single 

index of paddock productivity that describes the spatial variation in, and temporal 

stability of, crop and pasture production over time” has been proven. There are 

some exceptions and uncertainties revolving around the measurement of spatial 

variation and temporal stability in pasture phases. There was limited capacity for 

replication because of the timeframes associated with the research. These 

constraints are not insurmountable and do not lessen the value of the concepts 
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behind the stability index which, given the complexity of temporal stability in 

pasture, still appears to be a resilient tool. Proximal sensing has been successfully 

used to identify crop and pasture production at high spatial resolution as well as 

variations in soil physical properties. These are significant steps forward in creating 

an integrated whole-farm management system based on precision technology.  

7.5 CONCLUSION 

This chapter has described the creation of paddock stability maps and a stability 

index that identifies and combines the spatial and temporal variation for both crop 

and pasture phases in a mixed farming system into four productivity zones: high and 

stable, high and unstable, low and stable, and low and unstable. Production in each 

zone was analysed statistically for consistency and relevance between crop and 

pasture phases.  

A combined spatial and temporal index of production was created for each paddock 

as a whole. This stability index takes the crop yield and pasture TGDM data acquired 

and analysed in Chapters 5 and 6 and reduces it to a single variable: SI (stability 

index) for each paddock. EMI data was analysed in terms of the stability zones, but 

the results were inconclusive.  

The combined paddock stability maps created in this chapter are visually similar, in 

both the extent and location of the zones, to the potential management zones 

identified from k-means clustering of pasture and crop yields with ECa and elevation 

data that were created in Chapter 6 (Figures 6.28–6.31). This is especially the case 

for “Milroy” paddock M41, but also for “Milroy” M25 and the “Grandview” 

paddocks. Although created from an entirely different analysis and use of data, the 

paddock stability maps developed here, where zones of common spatial and 

temporal ‘behaviour’ of crop and pasture are overlaid, bear a strong resemblance to 

the potential management classes identified in Chapter 6 (Section 6.3.6) using k-

means clustering that included EMI data.  

There is still a great deal of work required to refine the definition of pasture SI 

zones. Additional soil test data based on the SI zones would have been invaluable to 

help identify and possibly better characterise zone differences. The soil test data 
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was gathered before the stability zone work was commenced and unfortunately do 

not match the stability zone boundaries. As a result, the interpretive value of the 

soil test data was limited. Future work will also need to address the impact of 

grazing on pasture TGDM estimation and decisions about productive stability. These 

are both areas where there are significant knowledge gaps that were unable to be 

taken into account in the work described here. This is evident in the Kruskal–Wallis 

tests, where there were a number of non-significant results associated with the 

pasture CVs. It is not always going to be clear if a particular part of a paddock 

happened to be low in pasture TGDM production because nothing much grew 

there, or because it was eaten off. Meta-analysis of data from livestock fitted with 

GPS tracking collars and accelerometers could identify spatial preference and 

distribution of animals within a paddock at particular times of day, week, month or 

by season and of livestock social networks. It could also identify foraging patterns, 

time spent grazing, resting and ruminating. This applies to the grazing of a crop in a 

‘grain & graze’ system (Price and Hacker, 2009) as well as when the paddock is in 

pasture. The use of tracking data combined with modelling of grazing with software 

packages such as Grass Gro (Donnelly et al., 2002) or Ausfarm (Moore et al., 2007) 

could further refine the accuracy of the pasture data. Notwithstanding these 

reservations, this work has shown the paddock stability index to be a robust 

methodology that can identify significant areas of a paddock that exhibit similar 

productive behaviour, whether in crop or pasture, year in year out.  

While highly mobile nutrients like nitrogen need to be managed in-season during 

cropping phases in response to in-season soil moisture and rainfall (Basso et al., 

2012), less mobile nutrients such as P, K and S can be managed with a longer-term 

view, based on the temporal variance reflected in stability zones. In this way, the 

different outcomes required from a crop (maximising grain yield) and pasture 

(maximising digestible biomass) phase can be managed and monitored at the sub-

paddock scale. The stability zones can also be used to create ‘gross margin’ maps of 

each paddock to assist in optimising financial inputs and returns. 

The work described here is unique but needs further testing. There are sufficient 

grounds to conclude that Hypothesis 3 has been proven. The methodology can be 
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of great benefit to a farm manager, not only in terms of future expectations of 

production but also in terms of decisions regarding variable rate applications of 

seed and fertiliser and even future land uses.  
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While the applications and benefits of precision agriculture (PA) technologies in 

cropping systems have been widely discussed in the literature, the use of these 

technologies as a whole-of-farm management strategy in mixed farming systems 

has received far less attention. Relatively little is known about the nature, extent or 

temporal stability of the spatial variability of pasture production in mixed farming 

systems and whether it is feasible to manage this overall variability in a site-specific 

way. Given that at any time in a mixed farming system somewhere between 20 and 

40% of the farm area will be in pasture, there is significant potential for PA 

technologies to enhance mixed farm management practices. 

This study explored some themes around the use of PA technologies in mixed 

farming systems, based on the measurement and management of spatial variation 

in mixed farming systems. Technologies explored included satellite-based remote 

sensing and ‘on-the-go’ proximal sensors. 

The research described here has been successful in working towards providing both 

researchers and producers with methodology and information to incorporate 

pasture phase information into a precision management system. A criterion when 

planning this work was that it had to benefit farmers, not just research ‘curiosity’. 

This meant that the PA technologies used had to be relatively user-friendly and 

affordable, and ideally, already in use on-farm. This would encourage farmer uptake 

and comfort with the concepts and approaches taken, e.g. being able to measure 

pasture biomass with an instrument.  

The following hypotheses were tested: 

HYPOTHESIS 1: Spatial variation in biomass production over time is correlated 

between the cropping and pasture phases of mixed farming enterprises. 

HYPOTHESIS 2: Spatial variation of production in the crop and pasture phases of a 

mixed farming system can be identified and quantified at high resolution using PA 

technologies. 

HYPOTHESIS 3: Data acquired using PA technologies can be used to create a single 

index of paddock productivity that describes the spatial variation in, and temporal 

stability of, crop and pasture production over time. 



CHAPTER 8. GENERAL DISCUSSION, CONCLUSIONS AND FUTURE WORK 

 PAGE | 277 

The literature review (Chapter 2) discussed the applications of satellite-based 

remote sensing to precision agriculture, including the use of vegetation indices. 

Chapters 3 and 4 investigated the use of low-resolution MODIS NDVI data to test 

Hypothesis 1. The results from Chapters 3 and 4 provided sufficient evidence, albeit 

at a very coarse resolution, to support this hypothesis. A clear outcome of the work 

described in Chapters 3 and 4 is that resolution matters: comparisons between crop 

and pasture productivity need to be carried out at a spatial resolution that is fine 

enough to reflect the spatial variability observed from yield mapping data. Yield 

monitor data was collected at 10 m spacings (the width of the header front), EMI 

and GR scans were conducted at 30–35 m spacings, and Crop CircleTM data was 

collected on 40 m transects. These transects fall within the optimal spacings 

determined by O’Leary et al. (2005). Resolutions of 30–40 m are also compatible 

with most seeder bars, the requirements of controlled-traffic operations, and 

appear to be on a scale that growers can manage variability with their current 

machinery. While 30 m resolution NDVI data is available at no cost from Landsat 7 

and 8, the satellite-based remote sensing approach is still limited by the availability 

of cloud-free images for the peak growing months between July and November. 

Chapter 5 explored the use of ‘on-the-go’ soil sensors to quantify and map soil 

variability at much higher spatial resolution, supported with traditional physical and 

chemical soil analysis. The results demonstrated the capacity of EMI and GR sensing 

to provide accurate and reliable detail on within-paddock variation in soil textures 

and some soil chemical properties. In regions with highly weathered soils, such as 

“Milroy”, the integration of GR data improved the characterisation of sub-paddock 

soil properties compared with using an EMI sensor alone. The data acquired and 

processed in this chapter was then used to test Hypotheses 2 and 3. 

The work in Chapter 6 demonstrated that ‘yield’ maps showing the spatial variation 

in mixed species pasture green dry biomass can be produced as accurately as 

paddock sampling using exclusion cages and pasture cuts, or pasture disc meters, 

but far more rapidly and at much higher spatial resolution. Once pasture cuts have 

been taken and the weights are calibrated to NDVI readings, ongoing scans of a 100 

ha paddock can be completed in less than two hours. This is the first time that high-



CHAPTER 8. GENERAL DISCUSSION, CONCLUSIONS AND FUTURE WORK 

 PAGE | 278 

resolution pasture and crop yield data has been combined to identify potential 

management classes for a paddock. The results from Chapter 6 confirmed 

Hypothesis 2 that, “spatial variation of production in the crop and pasture phases of 

a mixed farming system can be identified and quantified at high resolution using 

precision agriculture technologies”. They also demonstrated that there was 

significant spatial variability within a year in both the crop and pasture phases. 

At the conclusion of Chapter 6, some of the data was used to identify potential 

management zones using k-means clustering to identify areas within a paddock that 

might be suitable for site-specific management. There were two further outcomes 

worth noting from this work: 

1) The pasture data did not substantially change the shape or size of the 

management classes (Figures 6.28–6.31) in any of the paddocks studied. 

This provides additional evidence to support Hypothesis 1. 

2) At “Milroy”, moving from two to three management classes partitioned 

the low yield class into two sub-classes, rather than creating three new 

classes across the dataset. The original low class was divided into one 

class of low mean yields containing the infertile deep sands and gravels, 

and a second class of low mean yields containing saline soils. This is 

potentially a valuable method for identifying and categorising problem 

soils for targeted management. 

Chapter 7 successfully tested Hypothesis 3 that, “data acquired using PA 

technologies can be used to create a single index of paddock productivity that 

describes the spatial variation in, and temporal stability of, crop and pasture 

production over time”. Spatial trends in yield were defined by the average value of 

crop or pasture production at each point in a paddock over time. The temporal 

variance maps showed how each part of a paddock performed over time, relative to 

the mean, by using a modified standard deviation function. The creation of the 

stability index described a methodology for turning spatial and temporal data into 

management information. Classified management maps based on stability indices 

were created to show the spatial and temporal trends simultaneously and to 

identify potential management zones. These maps were derived from a different set 
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of data from the management class maps in Chapter 6, but there are strong 

similarities between them. The stability index still has some limitations and areas of 

uncertainty in its current form but is certainly worthy of further research. 

Notwithstanding these reservations, this is the first time a pasture stability index 

has been created for mixed farming systems. The work described in this thesis has 

shown that the paddock stability index is a robust methodology that can identify 

areas within a paddock that exhibit similar productive behaviour, whether in crop or 

pasture, year in year out. It has the potential to inform decisions regarding fertiliser 

use and application as well as grazing management in whole-farm planning. It 

enables the capturing of precision data, not just in cropping years, but in every year 

of production. This is potentially a breakthrough in farming systems management 

into the future.  

8.1 CONSTRAINTS 

There were some constraints in this study. First were the typical constraints 

imposed by the nature of a PhD research project—there was a limited budget for 

travel and field work (field sites were some 3000 km apart).  

Livestock grazing had a considerable effect on the spatial heterogeneity of the 

pasture, and it was not always clear if a particular part of a paddock happened to be 

low in pasture TGDM production because nothing much grew there, or because it 

was eaten off. Fixed cameras in paddocks and/or dung counts were considered 

possible means of identifying paddock spatial usage by stock, but again time 

became a constraining factor. 

Secondly, the corruption of crop yield datasets from both farms limited the amount 

of yield data available. Corruption was generally due to equipment malfunctions 

during harvest or not calibrating multiple harvesters. This meant that statistical 

analysis of data was based on a smaller number of datasets than would be ideal. 

The very nature of mixed farming rotations also affects available data, as within a 

ten-year period there may be a maximum of five or six possible cropping years. 

Budget constraints restricted the amount of soil testing that could be done. Despite 

CSBP very kindly performing the soil analysis work at no cost at the “Grandview” 
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sites, and Precision SoilTech at the supplementary “Milroy” sites, the EMI and GR 

sensing and soil sampling were a significant cost. In hindsight, it would have been 

valuable to conduct further soil sampling after the delineation of the management 

classes described in Chapters 6 and 7. This would have helped to identify soil 

properties which may have been driving differences between zones.  

If the work was to continue without constraints, it would have been invaluable to 

carry out further soil analysis and measure plant available water capacity, both of 

which have a significant influence on crop and pasture productivity and their 

correlations with the stability index zones (Armstrong et al., 2009; Oliver et al., 

2006; Rab et al., 2009). Prior to identifying test sites, it would also be beneficial to 

map paddock utilisation by livestock to identify potential nutrient transfer sites. 

Ideally, there would be sufficient data to create soil fertility and pH maps. 

8.2 FURTHER WORK 

Future work will need to address the impact of grazing on pasture TGDM estimation 

and decisions about productive stability.  

There is a great deal of work required to refine the definition of pasture stability 

index zones. For example, the impact of grazing on pasture TGDM estimation and 

decisions about productive stability is an area with significant knowledge gaps that 

were not accountable in the work described here. This is evident in the Kruskal–

Wallis tests, where there were some non-significant results associated with the 

pasture CVs.  

Meta-analysis of data from livestock fitted with GPS tracking collars and 

accelerometers could identify spatial preference and distribution of animals within 

a paddock at particular times of the day, week, month or by season and of livestock 

social networks. It could also identify foraging patterns, time spent grazing, resting 

and ruminating. This applies to the grazing of a crop in a ‘grain & graze’ system 

(Price and Hacker, 2009) as well as when the paddock is in pasture. The use of 

tracking data combined with modelling of grazing with software packages such as 

‘Grass Gro’ or ‘Ausfarm’ could further refine the accuracy of the pasture data. 

Notwithstanding these reservations, this work has shown that the paddock stability 
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index is a robust methodology that can identify significant areas of a paddock that 

exhibit similar productive behaviour, whether in crop or pasture, year in year out.  

Virtual fencing is a technology that is not far from becoming economically viable, 

especially for cattle. Virtual fencing based on the stability index zones would further 

enhance livestock/pasture management flexibility in a mixed farming system. Both 

farm owners had commented on the difficulty they have in managing stock in 

paddocks that need to be large enough for efficient cropping–livestock 

management. 

8.3 CONCLUDING REMARKS 

The dominant influences on yield variability in rainfed farming systems are 

climate/rainfall and variation in soil physical characteristics such as soil texture and 

water holding capacity. A key challenge for managers of these farming systems, 

therefore, is managing the risk associated with low and variable rainfall on highly 

variable soils. The work described here provides farm owners, managers and 

researchers with a methodology for monitoring spatial variation in both crop and 

pasture phases. It is hoped that this work provides a valuable contribution to the 

challenges of managing from a whole-farm perspective to minimising the costs and 

risks of moving between cropping and livestock phases. 

Although there is still much to do to develop the stability index into a viable 

management tool, feedback from the participants in this research has been 

positive: 

“This stability index stuff is more important—it will be valuable for our N strategy 

and predicting yield potentials and yield targets. This is particularly good”. Adam 

Inchbold, “Grandview” 2016. 

“Really interesting—I never thought about variable rate fertiliser in our pastures. 

We can do it with the stability indices.” Adam Inchbold, 2015, “Grandview”. 

"Pastures are a significant share of production land area in a mixed farming system, 

the research described here utilising currently available Precision technologies 

shows how we can enhance crop productivity, pasture availability and animal feed 
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regimes. This can save costs, leading to better profits." Murray Hall, 2015, “Milroy”, 

Brookton, WA.  

“This is excellent, you are cementing in what’s going on in the paddock by combining 

sets of data, rather than looking at just one factor.” Peter Baines, 2016, local 

agronomist, Albury, NSW. 
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APPENDICES 

APPENDIX 1: MODIS PIXELS FOR “MILROY” PADDOCK M25 (A), M41 (B) AND M45 (C). 
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APPENDIX 2: MODIS PIXELS FOR ACCUMULATED NDVI FOR “GRANDVIEW” PADDOCKS GV4 (A) 

GV8 (B) AND GV39 (C). 
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APPENDIX 3: CORRELATION MATRIX FOR ACCUMULATED NDVI FOR “MILROY” PADDOCK M25 (A) 

AND M41 (B). 
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APPENDIX 4: CORRELATION MATRIX FOR ACCUMULATED NDVI FOR “GRANDVIEW” PADDOCK GV4 

(A) GV8 (B) AND GV39 (C). 
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APPENDIX 5: EMI MAPS FOR “MILROY” PADDOCK M45 (A) 0–50 CM, (B) 0–100 CM AND 

“GRANDVIEW” PADDOCKS GV3 (C) 0–38 CM AND (D) 0–75 CM) AND GV4 (E) 0–38 CM AND (F) 0–

75 CM. 
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APPENDIX 6: GAMMA RADIOMETRIC MAPS FOR “MILROY” PADDOCK M45 (A) GAMMA TC, (B) 

GAMMA K (C) GAMMA TH AND (D) GAMMA U. 
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APPENDIX 7: SOIL TEST RESULTS FOR “MILROY” PADDOCKS M25. 

Paddock Site Depth NO3 NH4 Colwell P Colwell K S (ppm) OC% EC 
(mS/m) 

pH 
(CaCl2) 

Al 
(CaCl2) 
ppm 

PBI 

M25 EM3 0–10 1.0 9.0 31.0 82.0 4.6 2.2 4.4 4.7  39 

  10–30   13.0 40.0   2.0 4.9 0.6  

  30–60       1.7 5.5 0.2  

 EM5 0–10 5.0 18.0 28.0 233.0 4.9 2.8 5.6 4.7  69 

  10–30   5.0 159.0   7.1 5.8 0.2  

  30–60       11.8 6.6 0.2  

 Th4 0–10       6.0 4.7 2.7 29.8 

  10–30       0 0 0  

  30–60       2.0 1.57 0.89  

 K4 0–10   23.0 29.0   5.4 4.9 2.1 30.9 

  10–30   9.0 15.0   2.2 4.8 1.5  

  30–60   14.0 20.0   3.3 4.83 1.66  
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APPENDIX 8: SOIL TEST RESULTS FOR “MILROY” PADDOCK M41. 

Paddock Site Depth NO3 NH4 Colwell P Colwell K S (ppm) OC% EC 
(mS/m) 

pH 
(CaCl2) 

Al (CaCl2) 
ppm 

PBI 

M41 EM2 0–10 2.0 12.0 55.0 86.0 3.8 1.5 2.7 4.8  60 
  10–30   6.0 49.0   1.5 4.9 0.3  
  30–60       2.5 5.9 0.2  
 Th1 0–10       2.1 4.7 3.1 22.6 
  10–30       2.0 4.4 8.4  
  30–60       2.0 4.5 6.6  
 K3 0–10   48.0 43.0   2.8 4.8 2.8 39 
  10–30   12.0 20.0   1.1 4.7 2.0  
  30–60   24.0 28.0   1.7 4.73 2.23  
             
 1 0–10 1 3 25 47 4.7 0.78 3.4 4.8  11.5 
  10–20 1 <1 14 <15 1.4 0.17 <1 4.6  3.8 
  20–30 <1 <1 13 <15 1.9 0.14 <1 4.6  10.0 
  30–40 1 <1 12 17 1.9 0.12 <1 4.7  11.6 
  40–50 1 <1 9 20 2.1 0.28 <1 4.6  18.5 
 2 0–10 1 7 44 79 4.1 1.02 5.3 4.8  23.9 
  10–20 1 <1 34 18 2.8 0.30 1.3 4.7  19.5 
  20–30 1 <1 18 15 3.0 0.18 1.0 4.8  19.2 
  30–40 <1 <1 8 19 2.5 0.10 1.3 4.9  13.6 
  40–50 <1 <1 5 22 1.9 0.06 <1.0 5.1  10.6 
 3 0–10 2 14 44 277 10 2.1 11.7 4.9  124.3 
  10–20 2 <1 5 111 10.5 0.57 2.5 5.5  148.7 
  20–30 1 <1 5 53 14.2 0.34 2.7 5.8  161.0 
  30–40 1 <1 3 38 15.6 0.30 2.7 6.0  189.7 
  40–50 1 <1 4 35 16.1 0.31 2.5 5.9  180.9 
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Paddock Site Depth NO3 NH4 Colwell P Colwell K S (ppm) OC% EC 
(mS/m) 

pH 
(CaCl2) 

Al (CaCl2) 
ppm 

PBI 

 4 0–10 2 9 50 133 14.1 2.56 7.7 5.0  100.5 
  10–20 2 1 12 50 10.2 0.83 2.6 5.2  114.7 
  20–30 2 1 7 36 8.8 0.43 2.8 5.6  106.1 

M41  30–40 1 1 5 32 13.6 0.39 2.9 5.7  162.8 
  40–50 1 2 5 28 30.4 0.38 4.2 5.8  188.5 
 5 0–10 2 8 50 184 7.7 2.13 5.2 5.1  77.9 
  10–20 2 <1 10 120 4.5 0.6 2.2 5.4  69.6 
  20–30 2 <1 6 90 6.1 0.36 2.2 5.9  76.4 
  30–40 1 <1 4 69 6.9 0.23 2.1 6.1  83.3 
  40–50 1 <1 5 69 7.7 0.29 2.3 6.1  99.2 
 6 0–10 5 8 49 127 7.4 1.37 5.4 4.9  35.9 
  10–20 2 2 13 25 3.4 0.26 1.7 4.9  28.3 
  20–30 1 <1 5 23 4.2 0.17 1.4 5.4  35.0 
  30–40 <1 <1 4 20 7.0 0.18 2.1 5.5  49.4 
  40–50 1 2 3 21 21.8 0.20 4.4 5.7  105.5 
 7 0–10 8 3 46 71 9.8 1.6 6.0 4.9  57.7 
  10–20 2 2 11 31 6.7 0.7 2.4 5.1  80.2 
  20–30 1 1 6 27 4.8 0.55 1.6 5.5  83.2 
  30–40 2 <1 4 18 4.0 0.32 2.2 5.7  59.7 
  40–50 <1 2 5 17 5.6 0.22 2.4 5.8  59.8 
 8 0–10 15 5 45 120 20.6 2.57 11.8 4.9  124.5 
  10–20 2 3 10 33 16.4 0.95 4.3 5.1  170.1 
  20–30 1 2 7 29 22.6 0.6 4.5 5.3  174.6 
  30–40 1 2 7 26 21.1 0.72 3.6 5.3  205.7 
  40–50 1 <1 6 26 24.6 0.59 3.9 5.3  206.2 
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APPENDIX 9: SOIL TEST RESULTS FOR “MILROY” PADDOCK M45. 

Paddock Site Depth NO3 NH4 Colwell P Colwell K S (ppm) OC% EC 
(mS/m) 

pH 
(CaCl2) 

Al (CaCl2) 
ppm 

PBI 

M45 EM4 0–10 4.0 13.0 38.0 179.0 11 3.6 4.5 4.8  172 
  10–30   9.0 144.0   2.9 5.2 0.3  

  30–60       2.8 5.9 0.2  

 K2 0–10   13.0 75.0   4.0 4.8 1.8 103.8 

  10–30   4.0 42.0   2.5 4.8 1.5  

  30–60   7.0 53.0   3.0 4.8 1.57  

 Th3 0–10       8.4 4.7 2.0 153.9 

  10–30       4.0 5.6 1.6  

  30–60       5.5 5.3 1.04  

 1 0–10 7 9 28 250 14.8 3.61 11.2 5.1  108.2 

  10–20 3 4 11 109 8.3 1.45 8.0 5.4  122.6 

  20–30 3 3 11 132 13.5 1.58 9.6 5.5  126.9 

  30–40 2 2 7 129 23.5 1.33 12.2 5.5  121.4 

 2 0–10 4 7 26 371 13.0 3.3 6.6 5.2  228.6 

  10–20 2 2 6 216 9.8 1.69 2.2 5.5  333.3 

  20–30 1 <1 3 222 9.4 1.11 3.2 5.6  385.3 

  30–40 1 1 3 180 11.0 1.32 2.6 5.9  451.5 

  40–50 2 <1 4 142 10.2 1.19 3.4 5.9  482.1 

 3 0–10 3 6 21 180 8.8 2.17 3.2 5.3  95.9 

  10–20 2 <1 4 107 5.8 0.68 1.7 5.3  104.3 

  20–30 1 <1 2 100 4.8 0.34 1.3 5.7  109.8 

  30–40 1 1 <2 69 4.6 0.22 1.4 5.8  124.3 

  40–50 <1 <1 <2 50 4.6 0.27 1.1 5.9  116.9 

 4 0–10 2 12 44 380 20.1 3.29 10.3 5.1  159.2 
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Paddock Site Depth NO3 NH4 Colwell P Colwell K S (ppm) OC% EC 
(mS/m) 

pH 
(CaCl2) 

Al (CaCl2) 
ppm 

PBI 

  10–20 2 <1 10 182 10.0 1.07 3.5 5.7  170.2 

  20–30 1 1 5 115 14.3 0.40 3.1 6.1  169.1 

  30–40 1 <1 5 97 13.9 0.21 2.3 6.2  171.4 

  40–50 1 <1 4 67 10.6 0.35 3.1 6.3  165.0 

M45 5 0–10 1 7 46 126 10.8 1.93 3.7 4.5  89.8 
  10–20 2 <1 10 76 12.5 0.85 1.8 4.5  100.9 
  20–30 1 <1 5 48 12.8 0.45 1.4 4.8  105.5 
  30–40 1 <1 7 24 12.5 0.34 1.6 5.0  25.8 
  40–50 1 <1 5 26 13.1 0.33 1.9 5.1  111.4 
 6 0–10 1 6 46 130 13.3 1.89 5.2 4.6  129.5 
  10–20 1 <1 9 50 11.7 0.62 2.0 4.6  132.6 
  20–30 1 <1 6 25 11.5 0.36 2.5 5.2  143.4 
  30–40 1 <1 4 23 14.8 0.34 2.0 5.3  151.1 
  40–50 1 <1 7 31 13.6 0.5 2.3 5.4  162.2 
 7 0–10 13 6 58 126 16.2 2.15 7.0 4.7  50.5 
  10–20 3 1 28 40 6.1 1.21 1.6 4.6  54.3 
  20–30 2 <1 10 34 3.8 0.42 1.4 5.1  30.2 
  30–40 <1 <1 7 22 3.4 0.27 <1.0 5.2  101.0 
  40–50 1 <1 5 27 3.5 0.3 1.2 5.4  26.2 
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APPENDIX 10: SOIL TEST RESULTS FOR “GRANDVIEW” PADDOCKS GV3 AND GV4. 

 
Paddock 

Site Depth NO3 

(mg/kg) 
NH4 

(mg/kg) 
kg N/ha 
0–50 cm 

Colwell P 
(mg/kg) 

Colwell K 
(mg/kg) 

S 
(mg/kg) 

OC% EC 
(mS/m) 

pH 
(CaCl2) 

Al  
(CaCl2)  

(meq/100 g) 

ESP 
(%) 

GV3 Low 1 0–10 5 2  84 330 7.6 2.32 5.7 5.1 0.067 2 

 Low 2 0–10 6 3  57 374 7 2.7 6.4 5.2 0.077 1 

  20–50 1 1 16.9 <2 232 8.5 0.56 8.2 6.9 0.189 4 

 Low 3 0–10 5 3  36 252 7.9 1.27 5.0 4.8 0.198 3 

 High 1 0–10 3 4  49 254 7.8 1.43 9.6 6.4 0.095 7 

  20–50 <1 1 14.3 3 146 26.2 0.56 21.4 7.5 0.087 4 

 High 2 0–10 5 5  52 276 7.3 3.24 5.3 5.8 0.080 5 

  20–50 1 <1 18.2 <2 240 26.6 0.58 20.2 7.5 0.128 13 

 High 3 0–10 4 4  23 326 8.8 1.68 11.2 6.2 0.077 8 

  20–50 <1 <1  <2 254 40.1 0.66 38.2 7.7 0.103 18 

GV4 Med 1 0–10 6 3  53 311 5.6 1.71 6.5 6.0 0.040 5 

  10–50 2 2 22.1 3 273 13.1 0.71 17.3 7.3 0.103 13 

 Med 2 0–10 5 4  44 283 6.0 1.82 8.3 6.0 0.072 5 

  10–50 2 2 22.1 5 183 13.9 0.65 11.6 6.7 0.107 13 

 Med 3 0–10 9 2  67 399 5.3 1.93 7.8 6.0 0.036 3 

  10–50 3 2  24 216 6.0 0.83 6.0 6.0 0.078 9.2 

 High 1 0–10 5 2  62 368 5.8 1.70 10.5 7.2 0.088 5 

  10–50 2 <1 19.5 <2 342 30.8 0.44 39.5 8.0 0.113 16 

 High 2 0–10 4 4  66 228 9.1 2.02 6.8 5.9 0.060 6 

  10–50 <1 2 20.8 7 140 16.1 0.74 17.4 6.6 0.122 14 

 High 3 0–10 7 3  79 298 5.1 2.99 10.3 6.1 0.065 4 

  10–50 2 3 28.6 3 194 20.2 0.73 21.0 7.1 0.119 14 
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APPENDIX 11: SOIL TEST RESULTS FOR “GRANDVIEW” PADDOCKS GV8 AND GV39. 

Paddock Site Depth NO3 

(mg/kg) 
NH4 

(mg/kg) 
kg N/ha 
0–50 cm 

Colwell P 
(mg/kg) 

Colwell K 
(mg/kg) 

S 
(mg/kg) 

OC% EC 
(mS/m) 

pH 
(CaCl2) 

Al  
(CaCl2)  

(meq/100 g) 

ESP 
(%) 

GV8 Med 1 0–10 17 2  43 306 6.4 1.9 0.64 4.9 0.105 4 

  10–50 3 <1 27.3 6 254 5.0 0.6 0.58 6.4 0.128 10 

 Med 2 0–10 15 10  57 213 9.1 2.8 1.1 5.0 0.102 8 

  10–50 3 2 42.9 <2 206 14.9 0.69 2.4 7.2 0.130 15 

 Med 3 0–10 20 4  30 403 9.8 2.15 1.0 4.9 0.106 3 

  10–50 4 3 46.8 13 239 7.5 1.06 0.41 4.8 0.223 6 

 Low 1 0–10 25 7  74 506 8.5 3.98 1.58 5.2 0.071 5 

 Low 2 0–10 26 3  47 302 9.5 3.14 1.16 4.5 0.389 6 

  10–50 3 1 42.9 9 186 10.2 0.88 0.73 5.7 0.099 12 

 Low 3 0–10 18 7  58 240 7.4 2.97 0.94 5.2 0.061 5 

  10–50 4 3  23 140 5.6 1.76 0.64 4.9 0.171 9.7 

GV39 Low 1 0–10 15 3  51 631 15.4 3.7 0.98 5.9 0.024 1 

  10–50 3 2 33.8 18 399 3.1 1.7 0.29 5.1 0.072 1 

 Low 2 0–10 9 3  29 427 4.0 2.37 0.62 5.7 0.025 0 

  10–50 3 2 26 20 334 4.9 1.94 0.42 5.4 0.060 2 

 Low 3 0–10 15 12  43 612 11.4 4.06 1.2 6.1 0.027 0 

  10–50 4 1  16 523 4.3 2.37 0.4 5.3 0.060 0.5 

 High 1 0–10 7 4  72 467 28.1 3.49 1.2 6.3 0.045 3 

 High 2 0–10 7 6  43 420 7.3 3.13 1.0 5.2 0.059 5 

  10–50 3 4 37.7 7 325 8.2 1.11 0.96 6.4 0.064 12 

 High 3 0–10 16 4  32 468 5.6 3.26 0.76 5.2 0.055 4 

  10–50 4 4 46.8 14 324 4.1 1.91 0.58 4.8 0.443 10 
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APPENDIX 12: YIELD MAPS FOR “MILROY” PADDOCK M45 (A) 2007, (B) 2008 AND (C) 2010. 
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APPENDIX 13: YIELD MAPS FOR “GRANDVIEW” GV3 (A) 2005, (B) 2007, (C) 2009, (D) 2010 AND 

GV4 (E) 2007, (F) 2009 AND (G) 2010. 
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APPENDIX 14: MAPS OF NDVI SCANS FOR “MILROY” PADDOCK M45 IN (A) JULY 2012, (B) AUGUST 

(2012) AND (C) SEPTEMBER 2012. 
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APPENDIX 15: R SCRIPT FOR LEAVE ONE OUT CROSS VALIDATION. 

 

##LEAVE ONE OUT CROSS VALIDATION of EXPONENTIAL DATA#####  

library(boot) 

data <- read.delim("C:/R/Biomass_LOOCV/Pete_WA.txt") 

attach(data,pos = 2) 

head(data) 

trick.glm <- glm(Green.kg.ha~NDVI, family = gaussian(link = 'identity')) 

coeff.ests<-log(trick.glm$coefficients) 

print(coeff.ests) 

####MUST SET START LIST TO COEFFICIENTS PRINTED, NaN = 0###### 

dez.glm <- glm(Green.kg.ha~NDVI, family = gaussian(link = 'log'), start = c(0,12)) 

plot(Green.kg.ha~NDVI, pch = 16) 

pred.seq <- data.frame('NDVI' = sort(NDVI)) 

preds.glm <- predict(dez.glm,pred.seq,type = 'response') 

lines(y = preds.glm, x = pred.seq$NDVI, lty = 2, col = 'red') 

#### TOTAL ERROR OF FIT!!! #### 

pred.fit <- fitted.values(dez.glm) 

RMSE <- (mean((pred.fit-NDVI)^2))^0.5 

print(RMSE) 

#### LOOCV ERROR BAR #### 

dez.cv <- cv.glm(data,dez.glm, K = length(data)) 

cv.RMSE.raw.error <- dez.cv$delta[1]^0.5 

cv.RMSE.adj.error <- dez.cv$delta[2]^0.5 

print(cv.RMSE.raw.error) 

print(cv.RMSE.adj.error) 

detach(data,pos = 2) 
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APPENDIX 16: REGRESSION OF CROP CIRCLE NORMALISED DIFFERENCE VEGETATION INDEX (NDVI) 

VALUES AGAINST TOTAL GREEN DRY MATTER (TGDM) FOR (A) “MILROY” M45 IN 2012, (B) 

“GRANDVIEW” GV3 IN 2012 AND GV4 IN 2012. 
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APPENDIX 17: MAPS OF NDVI SCANS FOR “GRANDVIEW” PADDOCKS GV3 IN (A) AUGUST 2012, (B) 

SEPTEMBER (2012), GV4 IN (C) AUGUST 2012, (B) SEPTEMBER (2012), GV8 IN AUGUST 2012 

AND GV39 IN AUGUST 2012. 
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APPENDIX 18: MAPS OF TGDM FOR “MILROY” PADDOCK M45 IN SEPTEMBER 2012 (A) AND 

“GRANDVIEW” PADDOCK GV3 IN SEPTEMBER 2012 (B) AND GV4 IN SEPTEMBER 2012 (C). 
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APPENDIX 19: R SCRIPT FOR ANOVA AND KRUSKAL–WALLIS ANALYSIS. 

 

 N <- sum(grp.sizes <- table(groups)) 

 S.2 <- 1/(N–1) * (sum(rank(y)^2)–N/4 * (N + 1)^2) 

 R <- tapply(rank(y), groups, sum) 

 K <- 1/S.2 * (sum(R^2/grp.sizes)–N/4 * (N + 1)^2) 

 ret.val <- list(statistic = K, parameters = length(grp.sizes)–1, 

                  alternative = "two.sided", method = 

                    "Kruskal–Wallis rank sum test", data.name = 
paste(deparse(substitute(y)), " and ", deparse(substitute(groups)), sep ="")) 

 ret.val$p.value <- 1–pchisq(ret.val$statistic, ret.val$parameters) 

 names(ret.val$statistic) <- "Kruskal–Wallis chi-square" 

 names(ret.val$parameters) <- "df" 

 ret.val <- ret.val[c("statistic", "parameters", "p.value","alternative", "method", 
"data.name")] 

 number.of.observations <- table(groups) 

 grps <- length(grp.sizes) 

 group.medians <- round(tapply(y, groups, median,na.rm=T), 3) 

 names(group.medians) <- names(table(groups)) 

 if(ret.val$p.value < alpha) { 

    Mult <- qt(1–alpha/2, N–grps) * sqrt((S.2 * 

                                                (N–1–K))/(N–grps)) 

    LHS <- abs(rep((R/grp.sizes), rep(grps, grps))–rep((R/ 

                                                            grp.sizes), grps)) 

    RHS <- Mult * sqrt(rep((1/grp.sizes), rep(grps, grps)) 

                       + rep((1/grp.sizes), grps)) 

    pairwise.comparisons <- matrix(LHS > RHS, nrow = grps, 

                                   dimnames = list(names(table(groups)), 

                                                   names(table(groups)))) 

  } 

 attr(ret.val, "class") <- "htest" 

   if(ret.val$p.value >= alpha) 

  { 

    pairwise.comparisons<-"NIL. Kruskall-Wallis Test not significant" 

  } 

  pairwise.significance.comparisons<-pairwise.comparisons 

  names(number.of.observations)<-levels(factor(groups)) 

  return(list(number.of.observations=number.of.observations, 
group.medians=group.medians, ret.val=ret.val, 
pairwise.significance.comparisons=pairwise.significance.comparisons)) 

}  
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APPENDIX 20: “MILROY” M25 SOIL TEST RESULTS OVER STABILITY ZONES: COLWELL K (A)CROP, (B) 

PASTURE, COLWELL P (C) CROP, (D) PASTURE, EC (E) CROP, (F) PASTURE, PH CROP (G), PASTURE (H), 

PBI (I) CROP, (J) PASTURE AND TOTAL N (K) CROP AND (L) PASTURE. 
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APPENDIX 21: “MILROY” M25 SOIL TEST RESULTS OVER STABILITY ZONES: COLWELL K (A)CROP, (B) PASTURE, COLWELL P (C) CROP, (D) PASTURE, EC (E) CROP, (F) PASTURE, 

PH CROP (G), PASTURE (H), PBI (I) CROP, (J) PASTURE AND TOTAL N (K) CROP AND (L) PASTURE. 
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APPENDIX 22: “GRANDVIEW” GV8 SOIL TEST RESULTS OVER STABILITY ZONES: COLWELL P (A)CROP, 

(B) PASTURE, TOTAL N (C) CROP, (D) PASTURE, ESP (E) CROP, (F) PASTURE, AND S CROP (G), PASTURE 

(H). 
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APPENDIX 23: “GRANDVIEW” GV39 SOIL TEST RESULTS OVER STABILITY ZONES: COLWELL P (A)CROP, 

(B) PASTURE, TOTAL N (C) CROP, (D) PASTURE, ESP (E) CROP, (F) PASTURE, AND S CROP (G), PASTURE 

(H). 
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