
Nonovershooting state feedback and dynamic output feedback

tracking controllers for descriptor systems

Christina Kazantzidou, Robert Schmid and Lorenzo Ntogramatzidis ∗

Abstract

The use of linear multivariable feedback control to achieve a nonovershooting step response is

considered for multi-input multi-output (MIMO), linear, time-invariant (LTI) descriptor systems.

The use of dynamic output feedback control to improve the transient response to a step input

is also considered for MIMO and LTI descriptor systems. We design a state feedback controller

and a dynamic output feedback for MIMO and LTI descriptor systems to asymptotically stabilize

and track a step reference with zero overshoot and arbitrarily small rise time, under some mild

assumptions.

Keywords: Tracking control, step response, nonovershooting linear controllers and observers,

MIMO systems.

1 Introduction

In the past few decades, there has been an increasing interest in the study of descriptor systems,

also known as singular or differential-algebraic systems. Descriptor systems have many applications

in circuit theory, large-scale systems, constrained mechanical systems, robotics, aircraft modeling,

biological systems, see e.g. [6], [13], [17], [25]. Many classical control problems of standard linear time-

invariant (LTI) systems have been extended to descriptor systems, such as the pole and eigenstructure

assignment, observer design, optimal control, disturbance decoupling, the solution of the generalized

Sylvester matrix equation, robust stability and stabilization, see e.g. [1], [4], [5], [7], [10], [14], [18],

[20], [27]-[30]. The difficulties of extending results from standard LTI systems to descriptor systems

is due to their richer mathematical structure, see for example [26] or [6].

The problem of designing control laws to improve the transient response is important in sev-

eral applications such as manufacturing processes, where overshoot may compromise tolerances and

damage the product. The problem of improving transient response for standard LTI multi-input
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multi-output (MIMO) systems was investigated in the papers [22]-[24]. In particular, nonovershoot-

ing state feedback tracking controllers were designed in [23], nonovershooting and nonundershooting

state feedback tracking controllers were designed in [24], and nonovershooting dynamic output feed-

back tracking controllers were designed in [22]. However, to date there have been very few results

on the problem of improving transient response for descriptor systems. In [16], an output feedback

gain for descriptor systems was designed, which ensures that the closed loop has satisfactory transient

response with significantly reduced instantaneous jumps with random initial states. In [15] and [8],

the transient response of linear continuous-time and discrete-time descriptor systems, respectively,

with input saturation was improved via composite nonlinear feedback (CNF) control.

In this paper, we investigate the problem of designing nonovershooting state feedback tracking

controllers and dynamic output feedback tracking controllers of full order for linear MIMO descriptor

systems, generalizing the results of [23] and [22]. The design methods proposed here make use of

the eigenvalue and eigenvector assignment method given by Moore in [19] generalized for descriptor

systems. We give conditions under which a linear state feedback controller and a linear dynamic

output feedback can be obtained to asymptotically stabilize the descriptor system and track a step

reference with zero overshoot, with arbitrarily small rise time, from any initial condition. The results

of this paper are presented for continuous-time descriptor systems but are also applicable for discrete-

time descriptor systems, with only minor modifications.

The paper is structured as follows. In Section 2, we introduce the nonovershooting control problem

for continuous-time descriptor systems and provide some preliminary results on descriptor systems. In

Section 3, we design nonovershooting feedback controllers for square descriptor systems. In Section

4, we consider the nonovershooting problem for square descriptor systems via the use of dynamic

output feedback control based on a Luenberger observer. The methods are illustrated by an example

in Section 5 and conclusions are given in Section 6.

Notation. The origin of a vector space is denoted by {0}. The image and the kernel of a matrix A

are represented by imA and kerA, respectively. The Moore-Penrose pseudo-inverse of A is denoted by

A†. For convenience, a linear mapping between finite-dimensional spaces and a matrix representation

with respect to a particular basis are not distinguished notationally. The symbol ⊕ will stand for the

direct sum of subspaces. Finally, the symbol i represents the imaginary unit, i.e., i =
√
−1, while the

symbol α represents the complex conjugate of α ∈ C.

2 Problem formulation

Consider an LTI continuous-time descriptor system Σ governed by

E ẋ(t) = Ax(t) +B u(t), E x(0) = E x0 ∈ Rn, (1a)

y(t) = C x(t). (1b)

For all t ∈ R+, the symbol x(t) ∈ Rn denotes the state, u(t) ∈ Rm is the control input, y(t) ∈ Rp is

the output, and E,A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. We assume that B has full column rank



and C has full row rank. Let ` denote the rank of E, and we consider the general case where ` ≤ n.

In the case where ` = n, we say that the system is explicit.

The matrix pencil λE − A is said to be regular if det (λE − A) is not identically zero. The pair

(E,A) is said to be asymptotically stable if all the finite generalized eigenvalues of a regular matrix

pencil λE − A, i.e., the roots of det (λE − A), are in the open left-half complex plane C−. The

descriptor system Σ is called stabilizable if rank
[
λE − A B

]
= n for all {λ ∈ C |Re{λ} ≥ 0}; and

detectable if rank
[
λE−A
C

]
= n for all {λ ∈ C |Re{λ} ≥ 0}, see e.g. [6].

In this paper, we are concerned with the problem of designing a state-feedback controller and a

dynamic output feedback for (1) to asymptotically stabilize the descriptor system and track a given

constant reference r ∈ Rp without overshoot for any initial condition E x0. The descriptor system (1)

is said to have a nonovershooting response for r if the output y(t) arising from the initial condition

E x0 ∈ Rn yields a tracking error ε(t)
def
= r − y(t) that converges to 0 as t goes to infinity without

changing sign in any component, i.e., for all i ∈ {1, . . . , p}, the sign of εi(t) is constant for all t ∈ R+.

The descriptor system (1) is said to have a globally nonovershooting response for r if the output y(t)

is nonovershooting for all initial conditions E x0.

2.1 Preliminary results

We now present some results on descriptor systems that will be used in our analysis and design

methods, see e.g. [6]. First, using a singular value decomposition we may obtain nonsingular matrices

P and Q to write (1) in the dynamics decomposition form

QE P =

[
I` 0

0 0

]
, QAP =

[
A11 A12

A21 A22

]
, QB =

[
B1

B2

]
, C P =

[
C1 C2

]
(2)

with P−1 x(t) =
[
x̃(t)

x̂(t)

]
. Without loss of generality, we assume that Σ is already in the dynamics

decomposition form (2), i.e., we assume that Q = P = In.

Descriptor systems may exhibit impulsive behavior, which is typically not desired as it may cause

instantaneous jumps and damage or destroy an engineering system. A descriptor system is called

impulse-free if

deg
(
det (λE −A)

)
= rankE = `, (3)

i.e., it has ` finite generalized eigenvalues, or, equivalently, A22 is nonsingular. Clearly, an impulse-free

system is regular, because (3) implies that det (λE −A) 6= 0.

If there exists a matrix L of suitable size such that deg
(
det (λE − (A + LC))

)
= `, then the

descriptor system is called impulse observable. The descriptor system Σ is impulse observable if and

only if
(
A−1 im E

)
∩ kerE ∩ kerC = {0}, or, equivalently, if and only if rank

[
A22

C2

]
= n− `, see e.g.

[11], [6, Ch.4]. If Σ is impulse observable, partitioning L conformably with (2) as L =
[
L1

L2

]
, then L

can be constructed in such a way that det (A22 +L2C2) 6= 0; since L1 is arbitrary, it can be taken to

be equal to the zero matrix.



Descriptor systems are said to be impulse controllable if impulsive modes can be removed by

means of a state feedback, i.e., there exists a matrix H such that deg
(
det (λE − (A + BH))

)
= `.

The descriptor system Σ is impulse controllable if and only if rank [ E AE∞ B ] = n, where

E∞ is a basis matrix for kerE, or, equivalently, if and only if rank [ A22 B2 ] = n − `. Indeed,

if Σ is impulse controllable, we can apply any state feedback u(t) = H1 x̃(t) + H2 x̂(t) + v(t) such

that det (A22 + B2H2) 6= 0, i.e., in such a way that the closed-loop system is impulse-free. It is

clear that H1 is arbitrary and can be taken to be equal to the zero matrix. The closed-loop system

Σ̂ =
(
E, Â,B,C

)
, where Â

def
= A+BH, H

def
= [ 0 H2 ], is governed by

E ẋ(t) = Â x(t) +B v(t), (4a)

y(t) = C x(t), (4b)

where Â =

[
A11 Â12

A21 Â22

]
, Â12

def
= A12+B1H2, Â22

def
= A22+B2H2. Using a further change of coordinates,

we can bring the system into an equivalent impulse-free form as

Q̃E P̃ =

[
I` 0

0 0

]
, Q̃ Â P̃ =

[
Ã 0

0 In−`

]
, Q̃ B =

[
B̃

B2

]
, C P̃ =

[
C̃ C̃2

]
,

[
x̃(t)

x̌(t)

]
= P̃−1

[
x̃(t)

x̂(t)

]

where Q̃
def
=

[
I` −Â12 Â

−1
22

0 In−`

]
, P̃

def
=
[

I` 0

−Â−1
22 A21 Â−1

22

]
, P̃−1 =

[
I` 0

A21 Â22

]
and Ã

def
= A11 − Â12 Â

−1
22 A21,

B̃
def
= B1− Â12 Â

−1
22 B2, C̃

def
= C1 − C2 Â

−1
22 A21, C̃2

def
= C2 Â

−1
22 , x̌(t)

def
= A21 x̃(t) + Â22 x̂(t), see e.g. [27],

so that the descriptor system can be written as

˙̃x(t) = Ã x̃(t) + B̃ v(t), (5a)

0 = x̌(t) +B2 v(t), (5b)

y(t) = C̃ x̃(t) + C̃2 x̌(t). (5c)

Introducing x̂(t)
def
= x̌(t) +B2 v(t), we can rewrite the system (5) as

˙̃x(t) = Ã x̃(t) + B̃ v(t), (6a)

0 = x̂(t), (6b)

y(t) = C̃ x̃(t) + D̃ v(t). (6c)

where D̃
def
= −C̃2B2 ∈ Rp×m. Equations (6a) and (6c) form an explicit system, that we denote by

Σ̃
def
=
(
I`, Ã, B̃, C̃, D̃

)
.

The Rosenbrock system matrix pencil of the descriptor system Σ is defined as PΣ(λ)
def
=
[
A−λE B

C 0

]
.

The invariant zeros of Σ are the λ ∈ C for which rank PΣ(λ) < normrankPΣ(λ). For the regular

system Σ̂, the invariant zeros are the λ ∈ C for which rank PΣ̂(λ) < n+ normrankGΣ̂(λ), where

GΣ̂(λ)
def
= C

(
λE − Â

)−1
B, see e.g. [3, Ch.6]. The invariant zeros of Σ coincide with the invariant

zeros of Σ̂, because it is easy to see that PΣ̂(λ) = PΣ(λ)
[
In 0

H Im

]
, and with the invariant zeros of the

associated explicit system Σ̃, because C
(
λE − Â

)−1
B = C̃

(
λ I` − Ã

)−1
B̃ + D̃

def
= GΣ̃(λ), which is

the transfer function matrix of Σ̃.



The next proposition shows that PΣ(λ) is right invertible as a rational matrix if and only if PΣ̂(λ)

and PΣ̃(λ)
def
=
[
Ã−λ I` B̃

C̃ D̃

]
are right invertible as rational matrices.

Proposition 2.1 The Rosenbrock system matrix pencil PΣ(λ) has full row rank if and only if PΣ̂(λ)

and PΣ̃(λ) have full row rank.

Proof: This is a consequence of the decomposition

PΣ(λ) = PΣ̂(λ)

[
In 0

−H Im

]
= P1

[
PΣ̃(λ) 0

0 In−`

]
P2

[
In 0

−H Im

]
,

where P1, P2 are unimodular matrices, see Lemma 5.1 and Remark 5.1 in [12].

2.2 Solvability conditions for the tracking control problem

The following set of assumptions is essential to ensure that any given reference r can be tracked from

any given initial condition, [15].

Assumption 2.1 We assume that Σ is

(i) impulse controllable;

(ii) stabilizable;

(iii) right invertible and has no invariant zeros at λ = 0.1

Since we assume impulse controllability, the assumption of regularity of the pencil λE − A is not

required, because impulse controllability implies regularizability, see [12].

The method for designing a state-feedback tracking controller for a step reference signal is the

following. Assumption 2.1 (i) and (ii) imply the existence of a feedback gain matrix F such that (E,A+

B F ) is asymptotically stable and the matrix pencil λE− (A+B F ) is regular, while Assumption 2.1

(iii) ensures that for any r ∈ Rp there exist two vectors xss ∈ Rn and uss ∈ Rm that satisfy

0 = Axss +B uss,

r = C xss.
(7)

Applying the state feedback control law

u(t) = F (x(t)− xss) + uss (8)

to Σ and using the change of variable ξ(t)
def
= x(t)−xss, we obtain the closed-loop homogeneous system

E ξ̇(t) = (A+B F ) ξ(t), E ξ(0) = E (x0 − xss),

y(t) = C ξ(t) + r.
(9)

Since (E,A + B F ) is asymptotically stable, x converges to xss, y converges to r and ε converges to

zero as t goes to infinity.

1Following the terminology of [9], we recall that Σ is right invertible in the strong sense if and only if PΣ(λ) is right

invertible as a rational matrix. Since Σ is assumed to be impulse controllable, we have rank [ A22 B2 ] = n− `, so that

rank [ A− λE B ] = n, i.e., [ A− λE B ] is right invertible as a rational matrix. In that case, weak and strong right

invertibility are equivalent, see Corollary 4.13 in [9].



3 Design of nonovershooting feedback controllers

In [23], several methods were given to design a state-feedback matrix that yields a nonovershooting

step response for explicit systems. In this section, we consider how to adapt these methods to

descriptor systems.

3.1 Eigenstructure assignment of descriptor systems

The methods of [23] adapted the classic eigenstructure assignment result of [19] for the purposes of

the tracking controller design. We begin by extending the result of [19] to descriptor systems.

Proposition 3.1 Let (E,A,B) be an impulse controllable descriptor system described by (2). For

a given λ ∈ C, let the columns of
[
Sλ
Tλ

]
span ker

[
A− λE B

]
. Let L = {λ1, . . . , λ`} be a self-

conjugate set of distinct complex numbers. Let {v1, . . . , v`} be a set of vectors in Cn. There exists a

real F such that (A+B F ) vi = λiE vi and the closed-loop system (E,A + B F ) is impulse-free, so

that the matrix pencil λE − (A + B F ) is regular, if and only if for all i ∈ {1, . . . , `} the following

conditions are satisfied:

(i) The vectors E vi are linearly independent in Cn;

(ii) vj = vi whenever λj = λi;

(iii) vi ∈ im Sλi.

The above result is a special case of Theorem 2.1 in [20] for assigning ` = rankE finite generalized

eigenvalues, and a proof is given in Appendix A. The proof provides an algorithm for the construction

of a real matrix F with the desired properties. Since regularity is not assumed, the construction of

F will be carried out in two steps: first, find a preliminary state feedback H such that
(
E, Â,B

)
is impulse-free, where Â = A + BH. Then, construct a state-feedback matrix F̂ for the closed-loop

system
(
E, Â,B

)
, so that F = H + F̂ and (E,A + B F ) is impulse-free.2 Although we have proved

in Proposition 3.1 that we can construct a matrix F̂ in two ways, in the sequel we choose to use the

second method for numerical efficiency. The following corollary summarizes this procedure.

Corollary 3.1 Let
(
E, Â,B

)
be an impulse-free descriptor system as in (4). Let

[
Sλ

T̂λ

]
be a basis for

ker
[
Â − λE B

]
. Let L = {λ1, . . . , λ`} be a self-conjugate set of distinct complex numbers. Let

vi
def
= Sλi ki, ŵi

def
= T̂λi ki, i ∈ {1, . . . , `} and ki be parameter vectors of suitable dimension chosen

such that E vi
def
=
[
ṽi
0

]
are linearly independent and kj = ki whenever λj = λi. A matrix F̂ such that(

Â+BF̂
)
vi = λiE vi and the closed-loop system (E,A+B F ) is impulse-free, so that λE−

(
Â+B F̂

)
is regular, is computed by F̂ = Ŵ

[
Ṽ
0

]†
=
[
Ŵ Ṽ −1 0

]
=
[
F̃ 0

]
, where Ŵ =

[
ŵ1 . . . ŵ`

]
, Ṽ =[

ṽ1 . . . ṽ`
]
, F̃ = Ŵ Ṽ −1.

The next lemma will be an important tool in the development of an eigenstructure to obtain a

desirable tracking response.

2If Σ is not in the dynamics decomposition form (2), then F =
(
H + F̂

)
P−1.



Lemma 3.1 Let Σ be an impulse controllable descriptor system as in (2) and H = [ 0 H2 ] be a real

matrix such that the closed-loop system Σ̂ is impulse-free and described by (4). Let L = {λ1, . . . , λ`}
be a self-conjugate set of ` distinct complex numbers and S = {s1, . . . , s`} be a set of ` (not necessarily

distinct) vectors in Rp. Assume that the matrix equation[
Â− λiE B

C 0

][
vi

ŵi

]
=

[
0

si

]
(10)

has solutions sets V = {v1, . . . , v`} ⊂ Cn and Ŵ = {ŵ1, . . . , ŵ`} ⊂ Cm for each i ∈ {1, . . . , `}. If E V
is linearly independent, then a real feedback matrix F exists such that (E,A + B F ) is impulse-free,

λE − (A+B F ) is regular and for all i ∈ {1, . . . , `}

(A+B F ) vi = λiE vi,

C vi = si.
(11)

Proof: The sets L and V satisfy all the assumptions of Proposition 3.1 and therefore we can use

Corollary 3.1 to construct a real F̂ satisfying F̂ vi = ŵi for all i ∈ {1, . . . , `}, so that(
Â+B F̂

)
vi = λiE vi,

C vi = si

and
(
E, Â+B F̂

)
is impulse-free and λE −

(
Â+B F̂

)
is regular. Since Â = A+BH, we have(

A+B
(
H + F̂

))
vi = λiE vi,

C vi = si,

so that F = H + F̂ satisfies (11), (E,A+B F ) is impulse-free and λE − (A+B F ) is regular.

3.2 Descriptor systems with `− p stable invariant zeros

We now present the main result of this paper on the design of state feedback control laws to yield a

nonovershooting response for descriptor systems.

Assumption 3.1 The descriptor system Σ

(i) is square, i.e., p = m;

(ii) has at least `− p distinct invariant zeros in the open left-half complex plane.

The assumption p = m does not cause any significant loss of generality, see Remark 3.4 in the

sequel. Under Assumptions 2.1 and 3.1(i), the descriptor system Σ is invertible, which implies that

rank PΣ(λ) = n+ p = n+m if and only if λ ∈ C is not an invariant zero of Σ.

Let us choose the self-conjugate set L = {λ1, . . . , λ`} ⊂ C− of distinct stable finite generalized

eigenvalues of (E,A + B F ). We choose λi = zi, i ∈ {1, . . . , ` − p}, where {z1, . . . , z`−p} ⊂ C− is



freely chosen from the distinct stable invariant zeros of Σ. Since Σ is invertible, any uncontrollable

modes of Σ are also invariant zeros of Σ. Indeed, rank
[
λE −A B

]
< n implies that rankPΣ(λ) =

rankPΣ̂(λ) < n+p. Consequently, under the assumption of stabilizability, all the uncontrollable finite

generalized eigenvalues are included among the λi for i ∈ {1, . . . , `− p}, so that we can freely choose

λi, i ∈ {` − p + 1, . . . , `} to be any real distinct stable modes that are different from the invariant

zeros of Σ.

With this choice of L, we can solve (10) for all i ∈ {1, . . . , `}. Indeed, since λi, i ∈ {1, . . . , `− p}
are chosen to be equal to distinct invariant zeros, the null-spaces of PΣ̂(λi) are 1-dimensional subspaces

of Rn+p and
[
vi
ŵi

]
∈ ker PΣ̂(λi) satisfy (10) for si = 0. For λj = λi we need to ensure that vi and vj are

chosen to satisfy vj = vi. For i ∈ {`− p+ 1, . . . , `}, kerPΣ̂(λi) = {0}, because these λi are not chosen

from the set of invariant zeros. This fact and the right invertibility of Σ imply that rankPΣ̂(λi) =

rank
[
Â− λiE B

]
+ p, which guarantees that (10) can be solved for all i ∈ {` − p + 1, . . . , `} for

any si ∈ Rp.
Let now {e1, . . . , ep} be the canonical basis of Rp and let S = {s1, . . . , s`−p, s`−p+1, . . . , s`} ⊂ Rp

be such that

si =


0 i ∈ {1, . . . , `− p},
e1 i = `− p+ 1,
...

ep i = `.

Then the solution of (10) is
[
vi
ŵi

]
= P−1

Σ̂
(λi)

[
0

ei−(`−p)

]
. If we solve (10) for all the vectors in S,

we obtain V = {v1, . . . , v`} ⊂ Cn and Ŵ = {ŵ1, . . . , ŵ`} ⊂ Cp. If E V =
{[

ṽ1

0

]
, . . . ,

[
ṽ`
0

]}
or,

equivalently, {ṽ1, . . . , ṽ`} is linearly independent, then, from Lemma 3.1, we can use V and Ŵ to

construct a feedback matrix F such that the finite eigenstructure of (E,A+ B F ) is given by L and

V and there hold

(A+B F ) vi = λiE vi, i ∈ {1, . . . , `},

C vi =

{
0, i ∈ {1, . . . , `− p},
ei−(`−p), i ∈ {`− p+ 1, . . . , `}.

(12)

The following theorem shows that we can use the matrix F constructed above to obtain a state

feedback control law which gives rise to a closed-loop system response that converges to any given

step reference r ∈ Rp without overshoot, from all initial conditions E x0.

Theorem 3.1 Consider the descriptor system Σ in (2) satisfying Assumptions 2.1 and 3.1. Let L
be a set of desired closed-loop poles, and assume that the set E V is linearly independent, where V
is obtained from the solution of (10). Assume that F satisfies (12) with respect to L and V. Let

r ∈ Rp be any step reference and let E x0 =
[
x̃0

0

]
∈ Rn be any initial condition. Then, the output y(t)

obtained from applying u(t) = F (x(t)− xss) + uss to Σ tracks r asymptotically without overshoot.

Proof: Applying u(t) to Σ and employing the change of variable ξ(t)
def
= x(t) − xss, which is



partitioned as

[
ξ̃(t)

ξ̂(t)

]
def
=
[
x̃(t)−x̃ss

x̂(t)−x̂ss

]
, we obtain (9), or, equivalently,

[
I` 0

0 0

] ˙̃
ξ(t)
˙̂
ξ(t)

 =

[
Â11 Â12

Â21 Â22

][
ξ̃(t)

ξ̂(t)

]
=

[
A11 +B1 F̃ A12 +B1H2

A21 +B2 F̃ A22 +B2H2

][
ξ̃(t)

ξ̂(t)

]
,

y(t) = [ C1 C2 ]

[
ξ̃(t)

ξ̂(t)

]
+ r.

Using a further change of coordinates, we can bring (9) into an equivalent form as follows

Q̃E P̌ =

[
I` 0

0 0

]
, Q̃ (A+B F ) P̌ =

[
ÃF 0

0 In−`

]
, C P̌ =

[
C̃F C̃2

]
,

[
ξ̃(t)

ξ̌(t)

]
= P̌−1

[
ξ̃(t)

ξ̂(t)

]

where P̌
def
=
[

I` 0

−Â−1
22 Â21 Â−1

22

]
, P̌−1 =

[
I` 0

Â21 Â22

]
, ÃF

def
= Â11− Â12 Â

−1
22 Â21, C̃F

def
= C1−C2 Â

−1
22 Â21 and

ξ̌(t)
def
= Â21 ξ̃(t) + Â22 ξ̂(t), so that

˙̃
ξ(t) = ÃF ξ̃(t),

0 = ξ̌(t),

y(t) = C̃F ξ̃(t) + C̃2 ξ̌(t) + r.

The state response of the above descriptor system is given by

[
ξ̃(t)

ξ̌(t)

]
=
[
eÃF t ξ̃0

0

]
, see e.g. [20] and [6,

Ch.3], so that the state response of (9) is ξ(t) =

[
ξ̃(t)

ξ̂(t)

]
= P̌

[
eÃF t ξ̃0

0

]
=
[

I`

−Â−1
22 Â21

]
eÃF t ξ̃0.

The tracking error ε(t) = r − y(t) is

ε(t) = −[ C1 C2 ]

[
I`

−Â−1
22 Â21

]
eÃF t ξ̃0

= −
(
C1 − C2 Â

−1
22 Â21

)
eÃF t ξ̃0

= −
(
C̃ + D̃ F̃

)
e

(
Ã+B̃ F̃

)
t ξ̃0,

which coincides with the tracking error for the associated explicit system Σ̃ using the feedback control

law F̃ , see [23]. Since E V is linearly independent, the matrix Ṽ = [ ṽ1 . . . ṽ` ] is invertible.

Introducing α
def
=
[
α1 . . . α`

]>
= Ṽ −1 ξ̃0, from (12) and since

si = C vi = [ C1 C2 ]

[
ṽi

v̂i

]

= [ C1 C2 ]

[
ṽi

−Â−1
22

(
A21 +B2 F̃

)
ṽi

]
=
(
C1 − C2 Â

−1
22 Â21

)
ṽi =

(
C̃ + D̃ F̃

)
ṽi,

it follows that the tracking error can be expressed as

ε(t) = −
∑̀
i=1

(
C̃+D̃F̃

)
ṽi αi e

λit = −
∑̀

i=`−p+1

ei−(`−p) αi e
λit = −


α`−p+1 e

λ`−p+1t

...

α` e
λ`t

.



Thus, every component of ε(t) contains exactly one mode, i.e., εi(t) = −α`−p+i eλ`−p+i t, i ∈ {1, . . . , p}.
Since all the finite generalized eigenvalues are in the open left-half complex plane, the descriptor

system (9) is asymptotically stable and ε(t) converges to 0 as t goes to infinity. The λi for i ∈
{`− p+ 1, . . . , `} have been chosen so that eλit do not change sign. Thus, ε(t) does not change sign

in any component and y(t) converges to r without overshoot.

Remark 3.1 The transient response of the closed-loop system depends on the closed-loop finite

eigenvectors for a specified set of closed-loop finite generalized eigenvalues, given an initial condition.

The preliminary state feedback will not affect the transient response because it does not affect the

closed-loop finite eigenvectors. Indeed, from the proof of Proposition 3.1 in Appendix A, the closed-

loop finite eigenvectors are computed by vi = Sλi ki and im Ŝλi = im Sλi , i ∈ {1, . . . , `}. If we choose

another H ′, then we can write

0 = [ A+BH − λiE B ]

[
vi

ŵi

]

= [ A+BH ′ − λiE B ]

[
In 0

H −H ′ Im

][
vi

ŵi

]

= [ A+BH ′ − λiE B ]

[
vi

(H −H ′) vi + ŵi

]
for i ∈ {1, . . . , `}, which shows that the closed-loop finite eigenvectors are the same for distinct

closed-loop finite generalized eigenvalues.

3.3 Descriptor systems with `− 2 p stable invariant zeros

We now weaken the Assumption 3.1(ii) that the descriptor system Σ has at least `− p invariant zeros

in the open left-half complex plane with the following:

Assumption 3.2 The descriptor system Σ is square and has at least `− 2 p distinct invariant zeros

in the open left-half complex plane.

Let L = {λ1, . . . , λ`} denote the distinct stable finite generalized eigenvalues of (E,A + B F ) to

be chosen. We assume that the descriptor system Σ has exactly ` − 2 p distinct stable invariant

zeros, denoted by z1, . . . , z`−2 p. Mimicking the procedure in Section 3.2, we choose λi = zi for

i ∈ {1, . . . , ` − 2 p}, and λi for i ∈ {` − 2 p + 1, . . . , `} may be freely chosen to be any distinct real

stable modes. Let S = {s1, . . . , s`−2 p, s`−2 p+1, s`−2 p+2 . . . , s`−1, s`} ⊂ Rp be such that

si =



0 for i ∈ {1, . . . , `− 2 p},
e1 i ∈ {`− 2 p+ 1, `− 2 p+ 2},
e2 i ∈ {`− 2 p+ 3, `− 2 p+ 4},
...
ep i ∈ {`− 1, `}.

(13)

Solving (10) for all the vectors in S, we obtain V = {v1, . . . , v`} ⊂ Cn and Ŵ = {ŵ1, . . . , ŵ`} ⊂ Cp. If

E V =
{[

ṽ1

0

]
, . . . ,

[
ṽ`
0

]}
or, equivalently, Ṽ def

= {ṽ1, . . . , ṽ`} ⊂ C` is linearly independent, then, from



Lemma 3.1, we can use V and Ŵ to construct a feedback matrix F such that the finite eigenstructure

of (E,A+B F ) is given by L and V and there hold

(A+B F ) vi = λiE vi, i ∈ {1, . . . , `},

C vi =



0 i ∈ {1, . . . , `− 2 p},
e1 i ∈ {`− 2 p+ 1, `− 2 p+ 2},
e2 i ∈ {`− 2 p+ 3, `− 2 p+ 4},
...
ep i ∈ {`− 1, `}.

(14)

The following notation allows us to succinctly state Theorem 3.1 for descriptor systems satisfying

Assumption 3.2.

Notation 3.1 For each k ∈ {1, . . . , p}, let

(i) vk,1 and vk,2 denote the finite eigenvectors in V associated with ek in (13), partitioned as vk,1
def
=[

ṽk,1
v̂k,1

]
and vk,2

def
=
[
ṽk,2
v̂k,2

]
. Let Ṽ be the matrix formed by the columns of Ṽ. Then

Ṽ
def
= [ ṽ1 . . . ṽ`−2 p ṽ1,1 ṽ1,2 . . . ṽp,1 ṽp,2 ]; (15)

(ii) λk,1 and λk,2 be the finite generalized eigenvalues corresponding to vk,1 and vk,2, ordered such

that λk,1 < λk,2;

(iii) ξ(t) = x(t)−xss and Eξ(0) = E ξ0 = E (x0 − xss), which are partitioned respectively as
[
ξ̃(t)

ξ̂(t)

]
def
=[

x̃(t)−x̃ss

x̂(t)−x̂ss

]
and

[
ξ̃0

0

]
def
=
[
x̃0−x̃ss

0

]
;

(iv) α
def
= Ṽ −1 ξ̃0. Then we may write

α
def
= [α1 . . . α`−2 p α1,1 α1,2 . . . αp,1 αp,2 ]>; (16)

(v) Hk
def
= span{ṽk,1, ṽk,2};

(vi) Jk ⊆ Hk be the region Jk
def
= {γk,1 ṽk,1 + γk,2 (ṽk,1 − ṽk,2) | γk,1 γk,2 ≤ 0} ;

(vii) Let x̃k denote the orthogonal projection of x̃ onto Hk and let J ⊆ R` consist of those points in

x̃ ∈ R` for which x̃k ∈ Jk for all k ∈ {1, . . . , p}.

In Theorem 3.2 a set of initial conditions E x0 =
[
x̃0

0

]
∈ Rn is given from which, for a given

r ∈ Rp, the closed-loop system in (9) yields a nonovershooting response. The following lemma from

[23] is needed for the proof of the theorem and is included for completeness.

Lemma 3.2 ([23]) Let λ1 < λ2 < 0 and define f(t)
def
= α1 e

λ1 t + α2 e
λ2 t. Then, f(t) changes sign

for some t ∈ R+ if and only if (α1, α2) = (γ1 + γ2,−γ2) for some real numbers γ1 and γ2 such that

γ1 γ2 > 0.

Theorem 3.2 Consider the descriptor system Σ in (2) satisfying Assumptions 2.1 and 3.2. Let L
be a set of desired closed-loop poles, and assume that the set E V is linearly independent, where V
is obtained from the solution of (10) with si in (13). Assume that F satisfies (14) with respect to

L and V. Let r ∈ Rp be a given step reference and let E x0 =
[
x̃0

0

]
∈ Rn be an initial condition.

Then, the output y(t) obtained from applying u(t) = F (x(t)− xss) + uss = F
[
x̃(t)−x̃ss

x̂(t)−x̂ss

]
+ uss to Σ is

nonovershooting for E x0 if and only if x̃0 − x̃ss ∈ J .



Proof: Defining

εk(t)
def
= αk,1 e

λk,1 t + αk,2 e
λk,2 t, (17)

the tracking error can be expressed as

ε(t) = −
p∑

k=1

ek εk(t) = −


α1,1 e

λ1,1 t + α1,2 e
λ1,2 t

...

αp,1 e
λp,1 t + αp,2 e

λp,2 t

.
Since all the finite generalized eigenvalues are in the open left-half complex plane, the descriptor

system (9) is asymptotically stable and ε(t) converges to 0 as t goes to infinity. The signs of the

tracking errors remain unchanged if and only if εk(t) does not change sign for every k ∈ {1, . . . , p}
and for all t ∈ R+. From (15) and (16), we may represent ξ̃0 = x̃0 − x̃ss as

ξ̃0 =

`−2 p∑
i=1

αi ṽi +

p∑
k=1

(
αk,1 ṽk,1 + αk,2 ṽk,2

)
,

and thus the projection of ξ̃0 onto Hk, is

ξ̃0k = αk,1 ṽk,1 + αk,2 ṽk,2. (18)

(Sufficiency). Let ξ̃0 ∈ J . Since ξ̃0k ∈ Jk for every k ∈ {1, . . . , p}, we have γk,1 and γk,2 such that

ξ̃0k = γk,1 ṽk,1 + γk,2 (ṽk,1 − ṽk,2) (19)

and γk,1 γk,2 ≤ 0. Comparing (18) and (19), we find (αk,1, αk,2) = (γk,1+γk,2,−γk,2). From Lemma 3.2

and the assumption that λk,1 < λk,2 < 0, each εk(t) does not change sign for t ∈ R+. Consequently,

y(t) converges to r without overshoot.

(Necessity). If ξ̃0 /∈ J , for some κ ∈ {1, . . . , p} we have ξ̃0κ /∈ Jκ, and hence there exist γκ,1 and γκ,2

such that ξ̃0κ = γκ,1 ṽκ,1 +γκ,2 (ṽκ,1− ṽκ,2) and γκ,1 γκ,2 > 0. Applying Lemma 3.2 again, we conclude

that εκ(t) changes sign for some t ∈ R+, so that ε(t) changes sign in the κ-th component.

Remark 3.2 (i) In applying Theorem 3.2 to see if the descriptor system in (9) has nonovershooting

response for a given E x0 ∈ Rn, we may construct the matrix

P = [ ṽ1 . . . ṽ`−2 p ṽ1,1 ṽ1,1 − ṽ1,2 . . . ṽp,1 ṽp,1 − ṽp,2 ],

then calculate γ = [ γ1 . . . γ`−2 p γ1,1 γ1,2 . . . γp,1 γp,2 ]>, where γ = P−1 (x̃0 − x̃ss) and check if

γk,1 γk,2 ≤ 0 for all k ∈ {1, . . . , p}.

Remark 3.3 If the descriptor system Σ has `− 2p+ q stable invariant zeros, where 1 ≤ q < p, then

we may modify (13) so that the ek correspond to a unique si for i ∈ {`− 2p+ 1, . . . , `− 2p+ q} and

then pairs of si for i ∈ {`− 2p+ q + 1, . . . , `− 2p}. Then (17) will only contain a single exponential

term for k ∈ {1, . . . , q} and those output components will be nonovershooting for any initial condition

E x0 =
[
x̃0

0

]
.



Remark 3.4 When a descriptor system has more inputs than outputs, the design method can be

generalized as discussed in Section 4 of [23] by defining m− p fictitious outputs and placing as many

additional modes as required. Moreover, if the system has fewer than ` − 2 p invariant zeros in the

open left-half complex plane, then a similar method as in Section 3.4 of [23] can be used.

4 Nonovershooting dynamic output feedback tracking controllers

In this section, we deal with the problem of designing a dynamic output feedback control law for the

descriptor system Σ described by (2), such that the output y(t) tracks a step reference r with zero

steady-state error with no overshoot.

Assumption 4.1 The descriptor system Σ is:

(i) impulse controllable and impulse observable;

(ii) stabilizable and detectable;

(iii) right invertible and has no invariant zeros at λ = 0.

The Luenberger observer system Σo for Σ is described by

E ż(t) = Az(t) +B u(t)−G (y(t)− yo(t)), (20a)

yo(t) = C z(t), (20b)

with E z(0) = 0, where F is designed according to the scheme of the previous section, and G will be

defined subsequently. There exist vectors xss ∈ Rn and uss ∈ Rm that satisfy (7) for any r ∈ Rp and

we apply the output feedback control law

u(t) = F (z(t)− xss) + uss (21)

to the descriptor system (20), so that

E ż(t) = (A +B F +GC) z(t)− (A+B F )xss −Gy(t),

yo(t) = C z(t).
(22)

Our aim in this section is to choose suitable G such that the dynamic output feedback control law

(21) yields a nonovershooting response for the observer system (20) in all output components.

Substituting (21) in (1), we obtain

E ẋ(t) = Ax(t) +B F z(t)−B F xss +B uss,

y(t) = C x(t),

which, in view of (7), yields

E ẋ(t) = A (x(t)− xss) +B F z(t)−B F xss,

y(t) = C (x(t)− xss) + r



and changing coordinates as ξ(t) = x(t)− xss, we get

E ξ̇(t) = (A+B F ) ξ(t) +B F (z(t)− x(t)),

y(t)− r = C ξ(t).

Moreover, subtracting (20a) from (1a), we obtain

E(ẋ(t)− ż(t)) = (A+GC)(x(t)− z(t)).

Therefore we have the homogeneous closed-loop system[
E ξ̇(t)

E ė(t)

]
=

[
A+B F −B F

0 A+GC

][
ξ(t)

e(t)

]
,

ε(t) = −[ C 0 ]

[
ξ(t)

e(t)

]
,

(23)

where e(t)
def
= x(t)− z(t) is the estimation error, and ε(t) = r − y(t) is the tracking error.

Again using the decomposition (2), and the impulse observability of Σ, there exists an L =
[

0
L2

]
,

such that det (A22+L2C2) 6= 0. To ensure regularity of the matrix pencil λE−(A+B F+GC) of (22),

the matrix L2 must be constructed to satisfy also det (A22 +B2H2 +L2C2) = det
(
Â22 +L2C2

)
6= 0,

or, equivalently, det
(
Ip + C2 Â

−1
22 L2

)
6= 0.3 Let us choose the set Lo = {λ`+1, . . . , λ2`} of negative

real numbers such that µ0
def
= max{λ`+1, . . . , λ2`} satisfies

µ0 < min{λ`−p+1, . . . , λ`}. (24)

We shall refer to Lo as the observer poles. From the detectability of Σ and in view of Corollary 3.1, we

can obtain a real Ĝ> =
[
G̃> 0

]
for the dual impulse-free descriptor system

(
E>, A>+C> L>, C>

)
,

such that the closed-loop system
(
E>, A> + C> L> + C> Ĝ>, C>

)
has finite generalized eigenvalues

given by Lo. We then construct G in (20) using G = L+ Ĝ =
[
G̃
L2

]
.4 It follows that (E,A+GC) is

asymptotically stable. Thus, this choice of F and G makes the estimation and tracking errors vanish,

leading to asymptotic tracking.

3There holds det
(
Â22 + L2 C2

)
= det Â22 det

(
Ip + C2 Â

−1
22 L2

)
, see [2].

4If Σ is not in the dynamics decomposition form (2), then G = Q−1
(
L+ Ĝ

)
.



Next, we partition conformably the estimation error e(t)
def
=
[
ẽ(t)

ê(t)

]
and rewrite (23) as

˙̃
ξ(t)

0

˙̃e(t)

0

 =


Â11 Â12 B11 B12

Â21 Â22 B21 B22

0 0 Ǎ11 Ǎ12

0 0 Ǎ21 Ǎ22




ξ̃(t)

ξ̂(t)

ẽ(t)

ê(t)



=


A11 +B1 F̃ A12 +B1H2 −B1 F̃ −B1H2

A21 +B2 F̃ A22 +B2H2 −B2 F̃ −B2H2

0 0 A11 + G̃ C1 A12 + G̃ C2

0 0 A21 + L2C1 A22 + L2C2




ξ̃(t)

ξ̂(t)

ẽ(t)

ê(t)

,

ε(t) = −
[
C1 C2 0 0

]

ξ̃(t)

ξ̂(t)

ẽ(t)

ê(t)

,

or, equivalently, 
˙̃
ξ(t)

˙̃e(t)

0

0

 =


Â11 B11 Â12 B12

0 Ǎ11 0 Ǎ12

Â21 B21 Â22 B22

0 Ǎ21 0 Ǎ22




ξ̃(t)

ẽ(t)

ξ̂(t)

ê(t)

, (25)

ε(t) = −
[
C1 0 | C2 0

]

ξ̃(t)

ẽ(t)

ξ̂(t)

ê(t)

.

The above descriptor system is impulse-free, because Â22 and Ǎ22 are nonsingular. In order to

compute the state response, we rewrite (25) as

É

[ ˙̃Z(t)
˙̂
Z(t)

]
=

[
Á11 Á12

Á21 Á22

][
Z̃(t)

Ẑ(t)

]
,

where É
def
=
[
I2` 0

0 0

]
, Z̃(t)

def
=

[
ξ̃(t)

ẽ(t)

]
, Ẑ(t)

def
=

[
ξ̂(t)

ê(t)

]
, Á11

def
=
[
Â11 B11

0 Ǎ11

]
, Á12

def
=
[
Â12 B12

0 Ǎ12

]
, Á21

def
=[

Â21 B21

0 Ǎ21

]
, Á22

def
=
[
Â22 B22

0 Ǎ22

]
, and we compute

Q́
def
=

[
I2` −Á12 Á

−1
22

0 I2(n−`)

]
=


I` 0 −Â12 Â

−1
22 −

(
B12 − Â12 Â

−1
22 B22

)
Ǎ−1

22

0 I` 0 −Ǎ12 Ǎ
−1
22

0 0 In−` 0

0 0 0 In−`

,



Ṕ
def
=

[
I2` 0

−Á−1
22 Á21 Á−1

22

]
=


I` 0 0 0

0 I` 0 0

−Â−1
22 Â21 −Â−1

22

(
B21 −B22 Ǎ

−1
22 Ǎ21

)
Â−1

22 −Â−1
22 B22 Ǎ

−1
22

0 −Ǎ−1
22 Ǎ21 0 Ǎ−1

22

,

so that Q́

[
Á11 Á12

Á21 Á22

]
Ṕ =

[
Λ 0

0 I2(n−`)

]
, where

Λ
def
=

[
Â11 − Â12 Â

−1
22 Â21 B11 − Â12 Â

−1
22 B21 −

(
B12 − Â12 Â

−1
22 B22

)
Ǎ−1

22 Ǎ21

0 Ǎ11 − Ǎ12 Ǎ
−1
22 Ǎ21

]

=

[
Ã+ B̃ F̃ −B̃

(
F̃ −H2 Ǎ

−1
22 Ǎ21

)
0 ÃG + G̃ C̃G

]
,

and ÃG

def
= A11 −A12 Ǎ

−1
22 Ǎ21, C̃G

def
= C1 − C2 Ǎ

−1
22 Ǎ21. The state response of (25) is

[
Z̃(t)

Ẑ(t)

]
= Ṕ

[
eΛ tZ̃0

0

]
=


I` 0

0 I`

−Â−1
22 Â21 −Â−1

22

(
B21 −B22 Ǎ

−1
22 Ǎ21

)
0 −Ǎ−1

22 Ǎ21

 eΛ tZ̃0,

where Z̃0
def
=
[
ξ̃0

ẽ0

]
, so that the tracking error for any initial condition

[
Z̃(0)

0

]
∈ R2n is

ε(t) = −
[
C1 0 C2 0

]


I` 0

0 I`

−Â−1
22 Â21 −Â−1

22

(
B21 −B22 Ǎ

−1
22 Ǎ21

)
0 −Ǎ−1

22 Ǎ21

 eΛ tZ̃0

= −
[
C1 − C2 Â

−1
22 Â21 − C2 Â

−1
22

(
B21 −B22 Ǎ

−1
22 Ǎ21

) ]
eΛ tZ̃0

= −
[
C̃ + D̃ F̃ − D̃

(
F̃ −H2 Ǎ

−1
22 Ǎ21

) ]
eΛ tZ̃0,

or ε(t) = ΓeΛ tZ̃0, where Γ
def
= −

[
C̃ + D̃ F̃ − D̃

(
F̃ − H2 Ǎ

−1
22 Ǎ21

) ]
.5 Then Λ has eigenvalues

{λ1, . . . , λ2`}, which are the finite generalized eigenvalues of (E,A + B F ) and (E,A + GC), and

corresponding finite eigenvectors V̌ = {v̌1, . . . , v̌2`} =
{[

ṽ1

0`

]
, . . . ,

[
ṽ`
0`

]
, v̌`+1, . . . , v̌2`

}
⊂ C2`. The

set V̌ is linearly independent, so that the matrix V̌
def
=
[
v̌1 . . . v̌2`

]
is invertible. We introduce

α̌
def
=
[
α̌1 . . . α̌2`

]>
= V̌ −1 Z̃0. It follows that the tracking error can be expressed by

ε(t) = −
∑̀

i=`−p+1

ei−(`−p) α̌i e
λit +

2∑̀
i=`+1

Γ v̌i α̌i e
λi t,

because Γv̌i = −
[
C̃ + D̃ F̃ − D̃

(
F̃ −H2 Ǎ

−1
22 Ǎ21

) ][ ṽi
0

]
= −

(
C̃ + D̃ F̃

)
ṽi = −si for i ∈ {1, . . . , `}.

If we denote the j-th row of Γ by γ>j , for j ∈ {1, . . . , p}, then the j-th component of ε(t) is given by

εj(t) = −α̌`−p+j eλ`−p+jt +

2∑̀
i=`+1

γ>j v̌i α̌i e
λi t.

5If the descriptor system is impulse-free, then A22 is nonsingular and H2 = 0, L2 = 0. In such a case, we have

Â12 = A12, Â22 = Ǎ22 = A22, Ǎ21 = A21, so that Λ =
[
Ã+B̃ F̃ −B̃ F̃

0 Ã+G̃ C̃

]
, Γ = −

[
C̃ + D̃ F̃ − D̃ F̃

]
.



Since the observer poles satisfy (24), εj(t) will not change sign if

|α̌`−p+j | >

∣∣∣∣∣
2∑̀

i=`+1

γ>j v̌i α̌i

∣∣∣∣∣ eµ0−λj . (26)

It is clear that for any given initial state E x0, (26) will be satisfied for all j ∈ {1, . . . , p} if either the

magnitude of the initial estimation error |e(0)| is sufficiently small, or equivalently, |µ0| is sufficiently

large. We summarize the above as follows.

Theorem 4.1 Assume that the descriptor system Σ satisfies Assumptions 4.1 and has at least `− p
stable invariant zeros. Let F and G be defined as above, let r ∈ Rp be any step reference and let

E x0 ∈ Rn be any initial condition. Then, applying the output feedback control law u(t) in (21) to Σ,

we obtain an output y(t) asymptotically tracking r without overshoot, if the initial error e(0) satisfies

(26) for j ∈ {1, . . . , p}.

Remark 4.1 Since the λi for i ∈ {`− p+ 1, . . . , `} can be freely chosen to be any distinct real stable

modes, provided they are distinct from the stable invariant zeros of Σ and that the resulting E V is

linearly independent, the rate of convergence of the output to the target reference can be chosen to be

arbitrarily fast. Note that F is independent of r and E x0, so that the same F can be used to achieve

nonovershooting convergence for any r and any E x0. Moreover, the observer modes i ∈ {`+1, . . . , 2`}
can also be freely chosen to be any distinct real stable modes that satisfy (24). Hence we can ensure

that eµ0−λj is sufficiently small, and that (26) holds for any Ex0.

Remark 4.2 The bound in (26) is rather conservative. A less conservative bound may be obtained

as follows. For each j ∈ {1, . . . , p}, define kj to be the largest integer such that γ>j v̌i α̌i, i ∈
{`+ 1, . . . , `+ kj} have the same sign as α̌`−p+j . A sufficient condition to ensure that εj(t) does not

change sign is ∣∣∣∣∣∣−α̌`−p+j +

`+kj∑
i=`+1

γ>j v̌i α̌i

∣∣∣∣∣∣ >
∣∣∣∣∣∣

2∑̀
i=`+kj+1

γ>j v̌i α̌i

∣∣∣∣∣∣ eµ0−λj . (27)

Observe that kj may be equal to zero and then (26) and (27) coincide.

5 Numerical example

We consider the continuous-time descriptor system that appeared in [15]:



E =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 =

[
I2 0

0 0

]
, A =


2 1 0 0

0 1 1 0

1 0 0 0

0 0 1 1

 =

[
A11 A12

A21 A22

]
,

B =


0

0

1

0

 =

[
B1

B2

]
, C = [ 1 0 | 0 0 ] = [ C1 | C2 ], ` = 2, m = p = 1.

In [15], a composite nonlinear feedback (CNF) controller for (E,A,B,C) was designed, given a track-

ing reference r = 1 and an initial condition E x0 = [ 0 0 0 0 ]>. Considering the same r and E x0

as in [15], we design nonovershooting linear (NOSL) controllers and compare their performance with

the performance of the CNF controller designed in [15].

The descriptor system is square, invertible and stabilizable with no invariant zeros (`− 2 p = 0).

The matrix pencil λE − A is regular, because det (λE − A) = 1 6= 0, therefore we may design a

state feedback matrix F , which would yield a nonovershooting response, in one step. Let us choose

λ1 = −6, λ2 = −3 and solve (10) for s1 = s2 = e1. We obtain

V = [ v1 v2 ] =


1 1

−8 −5

56 20

−56 −20

, Ŵ = [ ŵ1 ŵ2 ] = [ −1 − 1 ]

and hence

F = Ŵ V † = [ −0.0828 0.2752 0.0115 − 0.0115 ].

To illustrate how we construct an F in two steps, we choose a state feedback matrix H = [ 0 H2 ]

such that det(A22 +B2H2) 6= 0. Let us choose for example H = [ 0 0 1 − 1 ] and compute:

Â = A+BH =


2 1 0 0

0 1 1 0

1 0 1 −1

0 0 1 1

 =

[
A11 Â12

A21 Â22

]
.

Since det Â22 6= 0, the system
(
E, Â

)
is impulse-free. We solve (10) for λ1 = −6, λ2 = −3 and

s1 = s2 = e1, and obtain

E V = E [ v1 v2 ] = E


1 1

−8 −5

56 20

−56 −20

 =


1 1

−8 −5

0 0

0 0

 =

[
ṽ1 ṽ2

0 0

]
, Ŵ = [ ŵ1 ŵ2 ] = [ −113 − 41 ].



Thus,

F̂ = Ŵ (EV )† = [ 79 24 0 0 ], F = H + F̂ = [ 79 24 1 − 1 ].

Let us now choose another state feedback matrix H = [ H1 H2 ] such that (E,A+BH) is impulse-

free, for example H = [ 12 5 1 0 ], which is the same as the linear state feedback matrix F designed

in the example of [15]. Solving (10) for λ1 = −6, λ2 = −3 and s1 = s2 = e1, we obtain

E V = E [ v1 v2 ] = E


1 1

−8 −5

56 20

−56 −20

 =


1 1

−8 −5

0 0

0 0

 =

[
ṽ1 ṽ2

0 0

]
, Ŵ = [ ŵ1 ŵ2 ] = [ −29 − 8 ],

and hence

F̂ = Ŵ (EV )† = [ 27 7 0 0 ], F = H + F̂ = [ 39 12 1 0 ].

Notice that v1 and v2 are the same in all the cases. To see if the initial condition E x0 yields

nonovershooting response for the particular choice of λ1, λ2, we compute

γ =

[
γ1

γ2

]
= [ ṽ1 ṽ1 − ṽ2 ]−1 (−x̃ss) =

[
1 0

−8 −3

]−1 [
−1

2

]
=

[
−1

2

]
.

Since γ1 γ2 = −2 < 0, the output obtained under the control law in (8) using the state feedback

controllers F designed above is nonovershooting.

The output response for the descriptor system under the control law in (8) using the three different

F , and the amplitude of the control input are shown in Figure 1 and they coincide as expected.
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Figure 1: Output response and control amplitude using state feedback F .

The response of the NOSL controllers F is very similar to the CNF controller designed in [15], as

they both avoid overshoot and have a 2% settling time of 1.5 seconds. The control amplitude curves

are also very similar, with the control amplitude smoothly increasing from 0 to 1 over 1.5 seconds.



However, by contrast, the NOSL design method is considerably simpler as it only involves the design

of up to two state feedback matrices.

To further compare the NOSL and CNF design methods, we follow the same procedure to obtain

three feedback matrices F ′ by choosing λ1 = −9, λ2 = −8. The state feedback matrix F ′ designed in

one step is

F ′ = [ −0.032 0.176 0.0044 − 0.0044 ].

Choosing H = [ 0 0 1 − 1 ], we obtain

F̂ ′ = [ 219 40 0 0 ], F ′ = H + F̂ ′ = [ 219 40 1 − 1 ].

Finally, choosing H = [ 12 5 1 0 ], we obtain

F̂ ′ = [ 97 15 0 0 ], F ′ = H + F̂ ′ = [ 109 20 1 0 ].

The initial condition E x0 yields nonovershooting response for the particular choice of λ1, λ2, because

γ =

[
γ1

γ2

]
= [ ṽ1 ṽ1 − ṽ2 ]−1 (−x̃ss) =

[
1 0

−11 −1

]−1 [
−1

2

]
=

[
−1

9

]
, γ1 γ2 = −9 < 0.

The output response for the descriptor system under the control law in (8) using the three different

F ′, and the amplitude of the control input are shown in Figure 2.
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Figure 2: Output response and control amplitude using state feedback F ′.

We observe that the NOSL controllers F ′ yield the same nonovershooting response and achieve a

2% settling time of 0.7 seconds. This faster response required the control amplitude to increase from

0 to 1 over approximately one second.

6 Concluding remarks and future work

In this paper, we investigated the problem of designing nonovershooting controllers for impulse con-

trollable MIMO descriptor systems via state feedback and dynamic output feedback based on a Luen-

berger observer scheme. A unified method to improve transient response was given for a linear state



feedback tracking controller and linear observer of full order, which may be applied to continuous-time

and discrete-time descriptor systems.

The design of nonovershooting and nonundershooting multivariable tracking controllers and the

extension of the NOUS toolbox of [21] to descriptor systems are natural topics for future work. We

envisage that with the current work, we will be able to conduct further research directly on descriptor

systems, in such a way that results will hold for explicit systems in a straightforward manner by

simply setting E = In.

Appendix A

The following lemma shows the relation between the kernel of
[
Â−λE B

]
for the descriptor system

as in (4a) with the kernel of
[
Ã − λ I` B̃

]
for the associated explicit system Σ̃ as in (6a). The

proof of the lemma, which we include for completeness, can be carried out along the same lines of the

proofs of Lemmas 5.1 and 5.2 in [12].

Lemma 6.1 Let
(
E, Â,B

)
be as in (4a), and let

(
I`, Ã, B̃

)
be the associated explicit system as in

(6a). Then
[
Â−λE B

]
= Q̃−1

[
Ã−λ I` B̃ 0

0 0 In−`

]
Π, where Q̃−1 =

[
I` Â12 Â

−1
22

0 In−`

]
, Π =

[
I` 0 0

0 0 Im

A21 Â22 B2

]
and ker

[
Â− λE B

]
= Π−1

(
ker
[
Ã− λ I` B̃

]
⊕ {0}

)
.

Proof: By direct computation, we have

Q̃−1

[
Ã− λ I` B̃ 0

0 0 In−`

]
Π = Q̃−1

[
Ã− λ I` 0 B̃

A21 Â22 B2

]
=

[
A11 − λ I` Â12 B1

A21 Â22 B2

]
.

Notice that ker
(
Q̃−1

[
Ã−λI` B̃ 0

0 0 In−`

])
= ker

[
Ã−λI` B̃

]
⊕{0}. Let

[
v′

w′

z′

]
∈ ker

(
Q̃−1

[
Ã−λI` B̃ 0

0 0 In−`

])
,

then

Q̃−1

[
Ã− λ I` B̃ 0

0 0 In−`

]
v′

w′

z′

 =

[
Ã− λ I` B̃ Â12 Â

−1
22

0 0 In−`

]
v′

w′

z′

 = 0,

from which it follows z′ = 0. Therefore
[
Ã − λ I` B̃

][ v′
w′

]
= 0 and ker

(
Q̃−1

[
Ã−λ I` B̃ 0

0 0 In−`

])
⊆

ker
[
Ã− λ I` B̃

]
⊕ {0}. Now let

[
v′

w′

z′

]
∈ ker

[
Ã− λ I` B̃

]
⊕ {0}. Then

[
v′

w′

]
∈ ker

[
Ã− λ I` B̃

]
and z′ = 0, so that

[
Ã−λ I` B̃ 0

0 0 In−`

][ v′
w′

z′

]
= 0. Also Q̃−1

[
Ã−λ I` B̃ 0

0 0 In−`

][ v′
w′

z′

]
= 0 and thus

[
v′

w′

z′

]
∈

ker
(
Q̃−1

[
Ã−λ I` B̃ 0

0 0 In−`

])
.

We show that ker
[
Â−λE B

]
⊆ Π−1

(
ker
[
Ã−λ I` B̃

]
⊕{0}

)
. Let

[
v̂
z
w

]
∈ ker

[
Â−λE B

]
, then

we have
[
Â − λE B

][ v̂
z
w

]
= 0 or, equivalently, Q̃−1

[
Ã−λ I` B̃ 0

0 0 In−`

]
Π

[
v̂
z
w

]
= 0, which is satisfied

for Π

[
v̂
z
w

]
∈ ker

(
Q̃−1

[
Ã−λ I` B̃ 0

0 0 In−`

])
and implies that

[
v̂
z
w

]
∈ Π−1 ker

(
Q̃−1

[
Ã−λ I` B̃ 0

0 0 In−`

])
=



Π−1
(
ker
[
Ã−λ I` B̃

]
⊕{0}

)
.We show the opposite inclusion. Let

[
v̂
z
w

]
∈ Π−1

(
ker
[
Ã−λ I` B̃

]
⊕{0}

)
.

Then

[
v̂
z
w

]
∈ Π−1 ker

(
Q̃−1

[
Ã−λ I` B̃ 0

0 0 In−`

])
or, equivalently, Π

[
v̂
z
w

]
∈ ker

(
Q̃−1

[
Ã−λ I` B̃ 0

0 0 In−`

])
.

Thus, Q̃−1
[
Ã−λ I` B̃ 0

0 0 In−`

]
Π

[
v̂
z
w

]
= 0, or, equivalently,

[
Â− λE B

][ v̂
z
w

]
= 0, so that

[
v̂
z
w

]
∈

ker
[
Â− λE B

]
.

Remark 6.1 Let

[
v̂
z
w

]
∈ ker

[
Â−λE B

]
. In view of Lemma 6.1, we have Π

[
v̂
z
w

]
=

[
v̂
w

A21v̂+Â22z+B2w

]
∈ ker

[
Ã− λ I` B̃

]
⊕ {0}. Let now

[
ṽ
w̃

]
∈ ker

[
Ã− λ I` B̃

]
. Comparing the above, it follows that[

v̂
w

]
=
[
ṽ
w̃

]
and A21 v̂ + Â22 z +B2w = 0. Thus,

ker
[
Â− λE B

]
=




ṽ

−Â−1
22 (A21 ṽ +B2 w̃)

w̃

:

[
ṽ

w̃

]
∈ ker

[
Ã− λ I` B̃

].

Proof of Proposition 3.1:

(Sufficiency) The proof will be given for two cases. First, we consider regular descriptor systems,

because in this case F can be computed in one step. Indeed, by impulse controllability, we can apply

a state feedback, so that the closed-loop system is impulse-free with finite generalized eigenvalues

λ1, . . . , λ`. If the descriptor system is not regular, to ensure closed-loop system regularity, the state

feedback F is computed in two steps: a preliminary state feedback is applied, so that the closed-

loop system is impulse-free and thus regular (regardless of its finite generalized eigenvalues) and

then another state feedback is applied to assign λ1, . . . , λ`. Without loss of generality, assume that

L = {λ1, . . . , λ2σ, λ2σ+1, . . . , λ`} are ordered in such a way that λ2 = λ1, . . . , λ2σ = λ2σ−1 and λi ∈ R
for all i ∈ {2σ + 1, . . . , `}.
(I) Regular matrix pencil λE −A
Suppose that vi

def
=
[
v́i
v̀i

]
, i ∈ {1, . . . , `} are chosen to satisfy conditions (i)-(iii). By condition (iii),

we can write vi = Sλi ki for some complex-valued vector ki of suitable size with ki+1 = ki for all

odd i < 2σ and a real-valued parameter ki, i ∈ {2σ + 1, . . . , `} of suitable size. It follows that

(A− λiE) vi +B Tλi ki = 0. Let wi
def
= Tλi ki and define V

def
=
[
v1 . . . v`

]
and W

def
=
[
w1 . . . w`

]
.

Since E vi =
[
v́i
0

]
are linearly independent, the vectors vi are also linearly independent. Thus, V is

full column-rank and there exists a matrix F satisfying F V = W . In order to show that this matrix

is real, define vectors

v̌i =


1
2 (vi + vi+1), if i < 2σ is odd,

1
2 (vi − vi−1) i, if i ≤ 2σ is even,

vi, if i > 2σ

and define w̌i similarly. By condition (ii), we conclude that v̌i and w̌i are real vectors. For all odd

i < 2σ, we have
[
vi vi+1

]
R =

[
v̌i v̌i+1

]
and

[
wi wi+1

]
R =

[
w̌i w̌i+1

]
, where R = 1

2

[
1 −i
1 i

]
.



Define the real matrices V̌
def
=
[
v̌1 . . . v̌`

]
and W̌

def
=
[
w̌1 . . . w̌`

]
. There holds V̌ = V U and

W̌ = W U , where U = diag{R, . . . , R, I`−2σ}. The vectors v̌i are linearly independent because the

vectors vi are linearly independent; thus V̌ is full column-rank and F = W V † = W U U−1 V † = W̌ V̌ †.

Consequently, F is a real matrix and there holds (A+ B F − λiE) vi = 0. Since we assigned ` finite

generalized eigenvalues to the regular open-loop system, so that the closed-loop system is impulse-

free, the matrix pencil λE − (A+B F ) is regular.

(II) Singular matrix pencil λE −A
Since the descriptor system is impulse controllable, there exists a state feedback u(t) = H x(t) + v(t),

such that the closed-loop system E ẋ(t) = Â x(t) +B v(t), is impulse-free and thus regular. Then we

can construct a real F̂ , such that
(
Â+B F̂

)
vi = λiE vi and λE −

(
Â+B F̂

)
is regular, in a similar

way as in (I). Indeed let the columns of

[
Ŝλ

T̂λ

]
span ker

[
Â− λE B

]
, so that

0 =
[
Â− λE B

] Ŝλ

T̂λ

 =
[
A− λE B

] In 0

H Im

 Ŝλ

T̂λ

 =
[
A− λE B

] Ŝλ

H Ŝλ + T̂λ


and thus im Ŝλ = im Sλ. It follows that

(
Â − λiE

)
vi + B T̂λi ki = 0. Define ŵi

def
= T̂λi ki and

Ŵ
def
=
[
ŵ1 . . . ŵ`

]
and compute F̂ = Ŵ V †, which satisfies F̂ V = Ŵ . Moreover, since the

descriptor system
(
E, Â,B

)
is impulse-free, there is an alternative way to compute F̂ . Indeed,

consider the associated explicit system described by
(
I`, Ã, B̃

)
as in (6a). Let the columns

[
S̃λ

T̃λ

]
span ker

[
Ã− λ I` B̃

]
and define ṽi

def
= S̃λi ki, w̃i

def
= T̃λi ki, i ∈ {1, . . . , `}. In view of Remark

6.1, we have that ṽi = v́i, w̃i = ŵi. Define Ṽ
def
=
[
ṽ1 . . . ṽ`

]
. Since E vi =

[
ṽi
0

]
are lin-

early independent, the vectors ṽi are also linearly independent and Ṽ is nonsingular. Applying

Moore’s algorithm for explicit systems, there exists a real F̃ such that F̃ Ṽ = Ŵ , which can be

rewritten as
[
F̃ 0

] [
Ṽ
0

]
= Ŵ or, equivalently,

[
F̃ 0

]
E V = Ŵ . Thus, F̃ = Ŵ Ṽ −1 and

F̂ = Ŵ (E V )† = Ŵ
[
Ṽ −1 0

]
=
[
F̃ 0

]
, which also satisfies F̂ V = Ŵ . It follows that(

Â+B F̂ − λiE
)
vi = 0 or, equivalently,

(
A+B

(
H + F̂

)
− λiE

)
vi = 0. Consequently, F = H + F̂ .

Since we assigned ` finite generalized eigenvalues to the regular closed-loop system Σ̂, the matrix

pencil λE −
(
Â+B F̂

)
= λE − (A+B F ) is regular.

(Necessity) Let F be a linear map such that λE− (A+B F ) is regular and (A+B F ) vi = λiE vi, i ∈
{1, . . . , `}. Since E,A,B are real matrices, then (ii) holds. The vectors E vi are linearly indepen-

dent, because vi, i ∈ {1, . . . , `} are the finite eigenvectors of (E,A + BF ), see e.g. [20], thus (i)

holds. Finally, if (A + B F ) vi = λiE vi, then (A − λiE) vi = −B F vi, which can be written as[
A− λiE B

][ vi
F vi

]
= 0. The columns of

[
Sλi
Tλi

]
form a basis for ker

[
A− λiE B

]
, which implies

(iii).



Appendix B

In this appendix we highlight the minor changes of the approach in the discrete-time case. Let Σ be

an LTI discrete-time descriptor system

E x(t+ 1) = Ax(t) +B u(t), E x(0) = E x0 ∈ Rn,
y(t) = C x(t).

The pair (E,A) is asymptotically stable if all the finite generalized eigenvalues of a regular matrix

pencil λE −A are in the unit disc. Assumption 2.1 becomes:

System Σ is:

(i) impulse controllable;

(ii) stabilizable, i.e., rank
[
λE −A B

]
= n for all {λ ∈ C | |λ| ≥ 1};

(iii) right invertible and has no invariant zeros at λ = 1.

Two vectors xss ∈ Rn and uss ∈ Rm exist that satisfy for any r ∈ Rp

0 = (A− In)xss +B uss,

r = C xss.

We apply the state feedback control law u(t) = F (x(t)− xss) + uss, where F =
[
F̃ H2

]
, to Σ and

employ the change of variable ξ(t)
def
= x(t)− xss to obtain the closed-loop homogeneous system

E ξ(t+ 1) = (A+B F ) ξ(t), E ξ(0) = E (x0 − xss),

y(t) = C ξ(t) + r.

Since (E,A + B F ) is asymptotically stable, x converges to xss and y converges to r as t goes to

infinity. The state response of the above system is ξ(t) =
[

I`

−Â−1
22 Â21

]
ÃtF ξ̃0 and the tracking error is

ε(t) = −
(
C̃ + D̃ F̃

) (
Ã+ B̃ F̃

)t
ξ̃0. Finally, the tracking errors can be expressed as

ε(t) = −
∑̀
i=1

(
C̃+D̃ F̃

)
ṽi αi λ

t
i = −

∑̀
i=`−p+1

ei−(`−p) αi λi
t = −


α`−p+1 λ

t
`−p+1

...

α` λ
t
`


and every component of ε(t) contains exactly one mode εi(t) = −α`−p+i λt`−p+i for i ∈ {1, . . . , p}.
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