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 Development of a model for particulate matter pollution in Australia with implications for 

other satellite-based models 

 

Abstract 

Estimating exposure to particulate matter (PM10) air pollution concentrations in Australia is 

challenging due to relatively few monitoring sites relative to the geographic distribution of the 

population.  We modelled daily ground-level PM10 concentrations for the period 2006-2011 for 

Australia using linear mixed models with satellite remote-sensed AOD, land-use and geographical 

variables as predictors.   The variation in daily PM10 explained by the model was 51% for Australia 

overall, and ranged from 51% for Tasmania to 78% for South Australia.  Cross-validation indicated 

that the models were most suitable for prediction in New South Wales and Victoria and least suitable 

for prediction in Western Australia, the Australian Capital Territory and Tasmania.  Most of the 

variation in PM10 concentrations was explained by temporal rather than spatial variation.  The 

inclusion of AOD and other predictors did not substantially improve model performance.  Temporal 

models were sufficient to account for daily PM10 variation recorded by statutory monitors.   

Key words:   particulate matter; PM10; AOD; air pollution; land-use regression. 

1.  Introduction 

Particulate matter (PM) air pollution is a major air quality issue 1.  In Australia, it is estimated that 

more than 3000 people die prematurely each year as a result of air pollution 2.  Studies have linked 

both PM10 (< 10µm aerodynamic diameter) and PM2.5 (<2.5µm aerodynamic diameter) with a range 

of health problems including respiratory and cardiovascular morbidity 3-5, adverse perinatal outcomes 

6, 7 and lung cancer 8.  Major sources of PM10 in Australia are bushfires 9, dust storms 10, and 

anthropogenic combustion emissions 11, which vary both geographically and seasonally.  To ascertain 

exposure, health studies generally require wide geographical coverage at sufficient temporal 

resolution.  This underscores the need for a spatiotemporal model with a daily resolution to estimate 

exposure to PM10. 
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A challenge in estimating exposure to ambient particulate matter is that in some countries, such as 

Australia, there are few regulatory ground monitoring sites relative to the geographic distribution of 

the population 12, which introduces considerable sample loss when populations who do not live close 

to a monitor are excluded to minimize exposure misclassification 13. This challenge can been 

addressed by use of land-use regression (LUR) 14 that first uses geographically varying predictors 

(e.g., proximity to major roads) to fit the model with measured pollutant concentrations, and next 

applies that model at unmonitored locations 15. The relatively recent addition of satellite remote 

sensing measurements of Aerosol Optical Depth (AOD) as a predictor to these models 16 has led to a 

putative improvement in their geographic accuracy. Consequently, models for PM air pollution 

covering large geographic regions have been developed for countries including the United States 17, 

Canada 18 and China 19.   

However, substantial uncertainties remain. Firstly, it is unclear as to whether equally reliable 

estimates can be obtained in settings with relatively lower concentrations due to the lower signal-to-

noise ratio. Moreover, the improvement in models for daily PM10 attributable to satellite remote-

sensed AOD has not been quantified.  It is also unknown as to the extent to which transient air 

pollution events (e.g., bushfire or dust storm events) affect the validity of these models. In this 

situation it is plausible that such events might inflate the proportion of variation explained by model 

(i.e. high R2) yet the model might not fit the non-event periods.  Finally, there is no such model for 

daily PM10 in Australia.   

In this study, we developed state-specific models for daily ground-level PM10 concentrations using 

satellite remote-sensed AOD and other geographic predictors for the period 2006-2011 in Australia, 

a country with relatively lower pollution levels. We investigated the influence of major air pollution 

events on model performance. We also quantified the value of including satellite remote-sensed 

AOD relative to more parsimonious models.  
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2. Methods 

2.1 Data Sources 

2.1.1 Ground-monitored PM10 

PM10 in Australia is measured daily (average 24 hour concentrations), in contrast with the United States and 

many other countries where it is measured every three to six days 20.  We obtained, from each state’s 

Environmental Protection Authority (EPA), daily ground-level PM10 measurements from 1st January 

2006 to 31st December 2011 (2191 days) from 75 monitoring sites across Australia (Table 1 and 

Supplementary Figure 1a-b).  The PM10 monitoring sites were concentrated in and around capital 

cities, which are located near the coast.  Continuous measurements of PM10 were obtained using 

Tapered Elemental Oscillating Microbalance (TEOM) monitors 21 . Since the TEOM heats air 

samples (to 50°C), it can underestimate PM10 levels when particles contain semi-volatile or volatile 

material 22. To account for this, PM10 measurements have an internal correction factor applied by the 

TEOM. While this method does not fully address sample loss in areas dominated by volatile particles 

23, it is widely-used in Australia and elsewhere for assessing compliance with regulations and in 

health studies. The EPA in each state runs their own quality assurance algorithms over the data 

before it is released.  We also performed additional checks to ensure that the data values were 

reasonable and that there were not too many missing values, before proceeding with the analysis. 

For the 75 sites over the six year period, there were 143 129 PM10 measurements available for 

analysis.  The highest PM10 concentrations were recorded during the Australian Dust Storm in New 

South Wales and Queensland between 22nd and 24th September 2009.  The highest daily PM10 

concentration was over 2400µg/m3 in Newcastle, New South Wales, on 23rd September 2009, with 

an average concentration of 1080µg/m3 across New South Wales and Queensland.  
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(Table 1 here) 

 

2.1.2 Satellite remote-sensed Aerosol Optical Depth  

Collection 6 MODIS AOD (Level 2; 10 km resolution) was obtained from the National Aeronautics 

and Space Administration (NASA)’s Earth Observing System (EOS) satellites, Terra (launched in 

2000) and Aqua (launched in 2002), over Australia for the period 2006-2011.  AOD is a measure of 

light extinction (i.e., scattering and absorption) by aerosols in the atmospheric column, which makes 

the AOD data useful for particle concentration prediction. MODIS AOD data are retrieved every one 

or two days at a global scale but only in cloud-free conditions.  The Terra and Aqua satellites cross the 

equator at 10.30am (descending orbit) and 1.30pm (ascending orbit) local sun times respectively with 

a scanning swath of 2330km (cross track) by 10km (along-track at nadir) 20.  Therefore, these two 

satellites provide the information of particle abundance at two different times, morning (Terra) and 

early afternoon (Aqua), indicating part of the diurnal variability in aerosol levels.  Despite the 

difference in overpass time, same retrieval algorithms are applied to both Aqua and Terra AOD data.  

To have the best spatial coverage of AOD retrievals, we used AOD data products, which merged Dark 

Target (DT) and Deep Blue (DB) algorithms 24-26.  The merged AOD data are useful for a country 

consisting of mixed land cover (i.e. vegetation, semi-arid, and desert areas) such as Australia.  Only 

AOD data with the quality assurance flag of 2 and 3 (scale of 0 – 3) were selected for high data quality.  

More details about the DT/DB AOD data can be found in Levy et al. 24, Hsu et al. 25, and Sayer et al. 

26.    

For each PM10 site, the AOD for each day was calculated as the average of the AOD values within a 

10km radius of the site (based on the 10km nominal resolution of MODIS).  AOD values were 

calculated separately for Aqua and Terra for each site and day.  The Aqua and Terra values had non-

equivalent distributions, most likely due to diurnal patterns of aerosols and calibration issues, 

particularly for Terra AOD 20.   
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2.1.3 Explanatory (X) variables 

For each PM10 measurement site, we obtained data on geographical and land-use variables that are 

potentially associated with PM10 concentrations.  There were 14 area-level explanatory variables 

calculated at 25 different circular areas (buffers), four area-level variables calculated at five buffers, 

and 25 point-level variables, resulting in 395 explanatory variables (Table 2).   

The variables related to bushfires (annual and monthly active fire and burnt area) had five buffers 

with radii from 10km to 250km (Supplementary Table 1) to give a total of 20 buffer variables (four 

variables calculated at five buffers each).  The land-use and geographical variables had 25 buffers 

from 100m to 100km (Supplementary Table 1) giving a total of 350 buffer variables (14 variables 

calculated at 25 buffers each).  Buffer variables were calculated using either the sum or the average 

of the variable within the buffer. 

The 25 point variables included meteorological, elevation and distance variables and were calculated 

at each monitoring point.  We also included a continuous variable day to account for longer term 

trend (Supplementary Figure 2) and a categorical variable season (Supplementary Figure 3) with 

autumn (fall) as the reference group.  Detailed information about the variables is contained in 

Supplementary Table 1.   

(Table 2 here) 

2.2 Analyses 

2.2.1 Aqua versus Terra AOD values 

Although Terra values can be used when Aqua is not available, in order to reduce missing values, this 

might introduce additional uncertainty due to the difference between the two satellite observations. 

Terra and Aqua AOD data reflect aerosol levels at two different time points (i.e., Terra in the morning 
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and Aqua in the afternoon).  Therefore, it may not be reasonable to use Terra AOD when Aqua AOD 

is not available because of the diurnal variability in aerosol levels influenced by emissions and local 

meteorology.  The calibration issue particularly for Terra AOD can also make such an approach less 

appropriate.  However, it is still worth testing the effect of using both Aqua and Terra AOD data on 

the model performance. To determine the benefit of using both the Aqua and Terra data versus Aqua 

only, we examined the AOD data for the state with the largest number of sites (New South Wales).  

There were 19 981 AOD values available in New South Wales out of a possible 56 966 values (one 

for each of the 26 sites and 2191 days).  Missing AOD data are mainly caused by cloud cover.  The 

available AOD values consisted of:  (1) 8193 observations with Aqua values only, (2) 7978 

observations with Terra values only, and (3) 3810 observations with both Aqua and Terra values.  

Analyses were performed using primarily Aqua values and Terra values when an Aqua value was not 

available.  The results were compared to an analysis performed using only the Aqua values to 

determine if it was beneficial to include the Terra data. 

For New South Wales, the Aqua AOD values had a mean of 0.05 (dimensionless) and a standard 

deviation of 0.08, while the Terra values had a mean of 0.08 and a standard deviation of 0.08.  It was 

therefore necessary to transform the Terra values so that they had the same distribution (mean and 

standard deviation) as the Aqua values.  For site i and day j, the transformed Terra value rij is given by  

rij = sd(A) × (tij – mean(T))/sd(T) + mean(A), 

where tij is the actual Terra value, and mean(A) and sd(A) are the mean and standard deviation 

respectively of all available Aqua values for New South Wales, and mean(T) and sd(T) are the mean 

and standard deviation of all available Terra values for New South Wales prior to transformation.   

2.2.2 Statistical models 

We modelled the daily relationship between PM10 and AOD using a linear mixed model with fixed 

and random effects.  For site i and day j, the general form of the full model was   
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PMij = (β0 + β1 AODij + β2 X2,ij +…+ βp Xp,ij) + (u0i + u1i AODij + v0j) + εij, 

where β’s represent fixed intercept and slopes, u0i and v0j are random intercepts and u1i is a random 

slope. The random effects were assumed to be independent and normally distributed with a mean of 

zero and variance-covariance matrix Σ.  The errors εij are assumed to be normally and independently 

distributed conditional on the random effects, with a mean of zero and variance σe
2.     

We constructed separate models for each state as well as a model for the entire data set (75 sites).  

The following models were fitted.   

Model 0 – Intercepts only 

The reference model consists of intercepts only: 

 

PMij = β0 + u0i + v0j + εij. 

Model 1 – Temporal model 

Model 1 consists of fixed effects for day and season plus random intercepts for site and day: 

 

PMij = β0 + β1 dayj + β2 seasonj + u0i + v0j + εij. 

Model 2 – Temporal model with AOD 

Model 2 consists of Model 1 above plus an additional covariate, AOD: 

 

PMij = β0 + β1 dayj + β2 seasonj +β3 AODij + u0i + v0j + εij. 

Model 3 – Temporal model with site-varying AOD effect 
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Model 3 consists of Model 2 above plus a random slope on AOD for each site: 

 

PMij = β0 + β1 dayj + β2 seasonj + β3 AODij + u0i + v0j + u1i AODij + εij. 

 

Model 4 – Spatiotemporal model with site-varying AOD effect 

Model 4 consists of Model 3 above plus explanatory variables (X variables). 

For each model, we calculated R2, root-mean-square-error (RMSE), BIC as well as estimates of the 

variance components (% of total variation) for the random effects.  The following R2 values 27,28 

were calculated:   

(1) pseudo R-squared (R2) - the squared correlation between the fitted and observed values, 

(2) marginal R-squared (R2
m) - the proportion of the variance explained by the fixed effects alone, 

and 

(3) conditional R-squared (R2
c) - the proportion of the variance explained by both the fixed and 

random effects.   

Although the pseudo R-squared is the most commonly used, marginal and conditional R2 values are 

useful measures for evaluating the contributions of the fixed and random effects 27.  These were 

obtained using the R package MuMIn and the command r.squaredGLMM().  All analyses were 

performed using R software.    

2.2.3 Variable selection 

The X variables were selected using a three stage process as follows.  In the first stage, each of the 

395 X variables were individually regressed against PM10 using the equation below. 

 

PMij = β0 + β1 dayj + β2 seasonj + β3 Xk,ij + u0i + v0j + εij,  k = 1,…,395. 
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This equation is equivalent to model 1 with an X variable included.  For each X variable, we 

obtained an estimate of the regression coefficient β3, its p-value and the AIC for the model.  A 

variable was a candidate for selection if: (1) p < 0.05 and, (2) AIC was less than that of Model 1 (the 

equivalent model without the X variable).  This ensured that the variables selected were significant 

predictors of PM10 and that their inclusion improved the fit of the model.  The variables remaining 

were then used in the second stage of selection.   

In the second stage, we identified variables with the same characteristics but different measurement 

periods, for example annual average active fire 20km and monthly active fire 20km, and eliminated 

the variable with the longer averaging period.  For buffer variables that were highly correlated, for 

example major roads 300m and major roads 400m, we selected the variable that provided the best fit 

(lowest AIC value).  The variables remaining after this process were used in the third stage of 

variable selection.   

The third stage involved selecting the final set of predictors from the variables in stage two.   

Standard methods of variable selection suffer from several drawbacks.  Subset selection methods, 

such as stepwise selection, are convenient but their results can be highly variable 29 .  We used the 

lasso method 29, a regression shrinkage and selection approach that combines the favorable aspects of 

subset selection and ridge regression. Lasso can select smaller models containing the most important 

predictors with a higher prediction accuracy when there is a large number of predictors that have 

small to moderate sized effects 29. For each lasso iteration, corresponding to values of the shrinkage 

parameter (λ), we calculated the model’s RMSE.  The final set of X variables was obtained from the 

lasso iteration that produced the lowest model RMSE provided that all the X variables in the model 

were significant (Satterthwaite approximation, p < 0.05).   

2.3 Validation  
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We performed leave-one-out cross-validation (LOOCV) to evaluate the performance of the 

spatiotemporal model (Model 4) for each region.  We used LOOCV since Tasmania and the 

Australian Capital Territory had only two sites and few observations, thus requiring as many samples 

as possible in the training set.  First, we separated the data for one observation (the test observation) 

and fitted the model using the remaining n-1 observations.  The model was then used to predict the 

PM10 concentration for the test observation.  This process was repeated for all n observations.  For 

each test observation, the error was defined as the difference between the measured and predicted 

PM10 values.  We calculated the root-mean-square-error (CV RMSE), the Pearson correlation 

between the measured and predicted PM10 values (CV R) and CV R2.   

3. Results 

3.1 Model performance was highly sensitive to outliers 

To examine the influence of outliers, we fitted the temporal model (Model 1) first with all data, and 

next using the subset with PM10 values within the 99th percentile.  Removal of the outliers resulted in 

slight changes: reduced pseudo R2 (39% to 31%), improved marginal R2 (1% to 5%). However, there 

was considerable decrease in RMSE (19µg/m3 to 7µg/m3) (Supplementary Tables 2-3), which 

indicated a high degree of sensitivity of the model to the inclusion of high concentration events.  

Next, we assessed whether this sensitivity was observable at a state-specific scale by repeating this 

outlier sensitivity analysis to New South Wales, the state in Australia with the largest number of sites 

that also experienced the dust storm in 2009 (Supplementary Tables 4-5). For New South Wales, 

removal of the outliers also reduced pseudo R2 (86% to 71%) and improved marginal R2 (1% to 

11%) and RMSE (14µg/m3 to 4µg/m3). Therefore, all subsequent analyses excluded these outliers. 

3.2 Model performance did not differ after addition of Terra AOD observations  

To ascertain whether the addition of AOD sourced from Terra improved model performance, we 

fitted the temporal model with AOD (Model 2) first using Aqua AOD, and next using Aqua AOD 
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and Terra AOD (Supplementary Table 6).  Despite an improvement in the number of measurements 

available for analyses (N=10,091 for Aqua AOD compared to N=16,813 for Aqua AOD and Terra 

AOD), there was a negligible difference in R2 (74% Aqua AOD, 73% Aqua AOD and Terra AOD) 

and no difference in RMSE (both 4µg/m3). All subsequent analyses used Aqua AOD. 

3.3 Model performance was largely attributable to ascertainment of temporal variation  

For the national model, 22% of variation in PM10 was attributed to between-day temporal variation, 

compared with 8% of variation in PM10 attributed to between-site spatial variation (Supplementary 

Table 7, Model 0).  In New South Wales, 62% of variation in PM10 was attributed to temporal 

variation compared with 9% of variation due to spatial variation.  The Australian Capital Territory, 

which had only two sites, had the highest percentage attributed to temporal variation (82% temporal 

versus 2% spatial).  Queensland had the highest percentage attributed to spatial variation (41% 

temporal versus 11% spatial). 

3.4 Model performance varied between regions 

To compare the performance of the model between regions, we fitted the spatiotemporal model 

(Model 4) to Australia overall as well as separately to each state and territory with at least two sites 

(Table 3).  To facilitate comparisons between regions, we included a relative measure of RMSE 

expressed as a percentage of mean PM10 concentrations.  

Marginal R2 did not vary substantially between regions (11% in Western Australia versus 19% in the 

Australian Capital Territory), indicating that the proportion of the variance explained by the fixed 

effects was similar for each region.  Pseudo R2 values were consistently higher than conditional R2, 

indicating that pseudo R2 (the most commonly reported statistic in similar studies) over-estimated the 

proportion of variation explained by the model.  The Australian Capital Territory and Tasmania, 

which had only two monitoring sites each, had high pseudo R2 values but relatively low conditional 

R2 values.  The conditional R2 for Australia overall (51%) was lower than the regional R2 values, 
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which ranged from 51% for Tasmania to 78% for South Australia.   

The RMSE for Australia overall (6µg/m3) was higher than for the regional models both in absolute 

and relative terms, indicating the value of sub-region (state) specific models.  The Australian Capital 

Territory, Tasmania and South Australia had the lowest absolute RMSE (3µg/m3) while Victoria had 

the lowest relative RMSE (18%).  Of the regional models, Queensland had the highest absolute and 

relative RMSE of 5µg/m3 and 27% respectively. 

(Table 3 here) 

3.5  Explanatory variables with greatest effects 

To facilitate comparisons of the regression coefficients, continuous predictor variables were 

standardized across regions to have a mean of zero and a variance of one.   

For all regions except New South Wales, the Australian Capital Territory and Western Australia, the 

variable AOD was the greatest predictor of PM10 concentrations (Table 4).   In New South Wales and 

the Australian Capital Territory, the variable day was the greatest predictor of PM10 concentrations 

and indicated a downward trend in PM10 concentrations in Australia during 2006 to 2011.    

(Table 4 here) 

3.6 Validation 

The results of cross-validation (LOOCV) for Model 4 for each region are shown in Supplementary 

Table 11.  New South Wales had the highest CV R2 (65%) and lowest CV RMSE (5µg/m3) followed 

by Victoria (CV R2 = 62%, CV RMSE = 5µg/m3). This corresponds to an approximate Pearson 

correlation coefficient of 0.8 between actual and predicted values.  Note that both New South 

Wales and Victoria had denser monitoring networks compared with the other regions.  

The performance of the model for Australia overall (CV R2 = 46%, CV RMSE = 6µg/m3) was 

generally lower than the regional models, except for Western Australia, the Australian Capital 
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Territory and Tasmania.  The model for the largest state, Western Australia, which had only six 

sites, performed poorly (CV R2 = 29%, CV RMSE = 7µg/m3).  The worst-performing models were 

for Tasmania (CV R2 = 20%, CV RMSE = 6µg/m3) and the Australian Capital Territory (CV R2 = 

25%, CV RMSE = 7µg/m3), which had only two sites each and relatively few observations. 

4.  Discussion  

To our knowledge, this is the first study to produce stochastic models for daily PM10 using satellite-

based measurements in Australia. Our results indicated that the temporal variables, rather than spatial 

variables, explained most of the variation in daily PM10. For New South Wales, the state with the 

most sites, 62% of variation in PM10 was attributed to between-day temporal variation and 9% was 

attributed to between-site spatial variation.  There was considerable geographic variation in the 

model fit, indicating the importance of sub-region (i.e. state) specific models. After accounting for 

both the fixed and random effects, the variation in daily PM10 explained by the model was 51% for 

Australia overall, and ranged from 51% for Tasmania to 78% for South Australia.  The implications 

of these findings for other studies are twofold.  Firstly, accounting for temporal variation in PM10 

levels can be critical to model fit.  Secondly, models are not necessarily generalizable to different 

regions within the same country, and in Australia regional models are necessary.   

The cross-validation results showed that the spatiotemporal model for Australia overall did not 

perform as well as the regional models except for Western Australia, the Australian Capital Territory 

and Tasmania.  The cross-validation results  indicated the models were relatively more appropriate 

for out-of-sample prediction for New South Wales and Victoria.  However, the models for Western 

Australia, the Australian Capital Territory and Tasmania, which had few sites and observations, had 

lower cross-validated R2 and high RMSE values, making them less reliable for prediction.   

A review of previous studies 30 found that AOD is, at best, a moderate predictor of particulate matter 

(R2 < 0.6).  However, a recent study by Lee et al. 20 in the New England region of the United States 
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found that satellite-based AOD predicted surface PM2.5 concentrations with an R2 of 0.83 using a 

mixed effects model.  Another study by Yap et al. 31 in peninsular Malaysia reported an R2 of 0.88.  

However, for those studies it is unclear as to how much R2 increased after adding AOD to the 

parsimonious temporal model.  

Meng et al. 32 used a linear mixed effects model that included satellite-based AOD as well as 

meteorological and land-use variables to predict daily PM10 concentrations in 2008 in Shanghai, 

China.  The results of land-use regression modelling indicated that green space was negatively 

associated with PM10 concentrations, whereas distance to the coast, PM10 emissions and length of 

major roads were positively associated with PM10 concentrations in Shanghai.  The cross-validated 

R2 was 0.87 for the full model compared to 0.86 for the model without AOD and 0.83 for the model 

without land-use and meteorological variables.  This is consistent with our results, which indicated 

that the inclusion of AOD and other predictor variables did not substantially improve model 

performance.  It is possible that AOD is an important predictor of PM at certain size fractions, rather 

than over the whole < 10µm range.  Because AOD exhibits both spatial and temporal variation, it is 

also plausible that including time-varying predictors accounts for some of the temporal effect of 

AOD on PM10.  

We note that previous studies using mixed effects models have generally used pseudo R2 values, 

which overstate the proportion of variation explained by the model.  Also, differences in the 

chemical composition of aerosols between regions mean that the relationship between PM and AOD 

will be location-specific 33.   

During the study period, 99% of PM10 concentrations were less than 50µg/m3.  For regional models, 

measurements that were >99th centile were inflated R2 at the cost of precision (inflated RMSE) i.e. 

RMSE decreased substantially when extreme values were excluded. For New South Wales, the 

RMSE decreased from 14µg/m3 to 4µg/m3. The most significant exposure event during the study 
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period was a dust storm from 22nd to 24th September 2009 in New South Wales and parts of 

Queensland. During this dust storm event, daily average PM10 concentrations reached 2400µg/m3.  

Sensitivity analyses to air pollution events is warranted for future studies, based on these results.  

Our results showed that the effect of the predictor variables differed considerably by region.  AOD 

was the largest predictor of PM10 concentrations for all regions except New South Wales, the 

Australian Capital Territory and Western Australia. The effect of AOD was highest in Queensland, 

where a standard deviation increase in AOD was associated with a 2µg/m3 increase in PM10.  

However, in the Australian Capital Territory, AOD was not statistically significant.  The effect of 

AOD on PM10 also differed by site within state, with 69% of variation explained by the site-varying 

random slope for AOD in New South Wales.   Effect estimates of other predictors differed by region 

and included variables such as active fires, burnt area, rainfall, wind speed, temperature and 

industrial land use (Victoria only).   Our results were consistent with a study by Johnston et al. 34, 

which reported that bushfires were a major source of particulate air pollution in Australia.  Seasonal 

effects also varied between regions.   

A limitation of this study was that we did not account for the boundary layer height 35. However, 

Australia is a low-lying continent and the spatial variation in altitude between monitoring sites is 

small.  In the capital cities, where monitoring sites are concentrated and where most of the 

population resides, the altitude was generally less than 100m.  A challenge for developing estimates 

for daily levels of PM10 in Australia is that the number of monitoring sites is limited. We accounted 

for this site-level variation by including random effect terms for sites 36. There was also a relatively 

large number of missing AOD values. A consequence of this for past studies is that those models 

could not be readily applied by others when AOD (or any other predictor) was missing. We 

addressed this by reporting results for the intercepts-only model, so that estimates can be obtained 

when AOD is not available. In fact, contrary to past studies, we found that the gain in model fit after 

including fixed effects (such as AOD) was minimal in Australia. Our interpretation was that the 
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intercept-only or temporal models are sufficient to account for daily PM10 variation recorded by 

statutory monitors.  Due to missing AOD values, we quantified model improvement after including 

the transformed Terra AOD to the Aqua AOD distribution. However, we found that the distribution 

of Terra AOD differed from the Aqua AOD distribution and the inclusion of the Terra AOD values 

did not improve model performance. 

The model choice for exposure calculation will depend on the research question of interest, but in all 

cases we recommend state-specific models. Cross-validation results imply that the models are best 

applied for out-of-sample prediction in New South Wales and Victoria. Our models are not 

appropriate for research questions that focus on effects of extreme PM events with concentrations 

>99th centile as these data were not included in model development as they increased RMSE 

considerably. However, by definition, such events occur at a rate <37 days per 10 years. The model 

remains applicable for events with concentrations <99th centile, and this argument is supported by the 

presence of active fire and burnt area variables in the models.  To our knowledge this was the first 

study to both partition the spatial and temporal variability and apply sequential models to ascertain 

the benefits of increasing model complexity. The fact that applying the simpler models would result 

in minimal reduction in model performance provides some reassurance if predictors are unavailable. 

In this situation, state specific temporal models (model 1) can be applied to estimate exposure.  State-

specific spatiotemporal models with site-varying AOD effects (model 4) can be applied to capture 

more spatial variation in exposure when those spatial data are available.  
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Supplementary Material 

Figure S1a: Australian states and site locations.  

 

  



Figure S1b: Site locations in the south-east of mainland Australia 

  



Figure S2: Time series of PM10 (µg/m3) concentrations during the study period (black lines) with linear trend (blue lines) for four sites.  

 

 

 

 



Figure S3: Boxplots of PM10 concentrations (µg/m3) by season and year for all sites. 

 



Table S1:  The type and source of independent land-use variables considered in the model. 

Variable (units) Resolution Point or 
buffer 
estimate 

Source (all websites accessed on 02-Apr-2014) 

elevation (m) 30 m point Geoscience Australia 1-second smoothed digital elevation model derived from SRTM 33 
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759 
 

distance to coast (km) - point Derived using 'Near' command in ArcGIS (excludes inland lakes) 

annual, seasonal & monthly mean 
rainfall (mm) 

2.5 km point Australian Bureau of Meteorology http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp 

annual, seasonal & monthly mean 
daily average temperature (°C)a 

2.5 km point Australian Bureau of Meteorology http://www.bom.gov.au/jsp/ncc/climate_averages/temperature/index.jsp 

annual, seasonal & monthly mean 
daily solar exposure (MJ/m2) 

5 km point Australian Bureau of Meteorology 
 http://www.bom.gov.au/jsp/ncc/climate_averages/solar-exposure/index.jsp 

annual and monthly mean wind 
speed (km/h) 

12.5 km point Australian Bureau of Meteorology Average monthly wind velocity grids (2004-2008) 
http://www.bom.gov.au/climate/averages/climatology/gridded-data-info/metadata/md_ave_windvelocity-2004-
2008.shtml 
 

*tree cover (%)  250 m bufferg  MODIS-derived vegetation continuous fields product for 2006 34 
http://www.landcover.org/data/vcf/ 
 

*impervious surfaces (%)  1 km bufferg NOAA constructed impervious surface area product 2000-2001 35 
http://ngdc.noaa.gov/eog/dmsp/download_global_isa.html 
 

*major roads (km)b#   - bufferg PSMA Australia Transport and Topography product** 36 
http://www.psma.com.au/?product=transport-topography 
 

*minor roads (km)c#  - bufferg " " 
*total roads (= major roads + 
minor roads) (km) 

- bufferg " " 

*unsealed roads (km)# - bufferg " " 

*population density 
(persons/km2) 

mesh blocke bufferf Australian Bureau of Statistics 2011 Census  
http://www.abs.gov.au/census 

*land use type (%)d mesh blocke bufferg " " 
 

*water cover (%) 250 m bufferg MODIS-derived vegetation continuous fields product for 2006 34 
http://www.landcover.org/data/vcf/  

*industrial point source PM10 
emissions (sites/km2) 

- bufferg Australia National Pollutant Inventory 2008/9  
http://www.npi.gov.au/ 

http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp
http://www.bom.gov.au/jsp/ncc/climate_averages/temperature/index.jsp
http://www.bom.gov.au/jsp/ncc/climate_averages/solar-exposure/index.jsp
http://www.bom.gov.au/climate/averages/climatology/gridded-data-info/metadata/md_ave_windvelocity-2004-2008.shtml
http://www.bom.gov.au/climate/averages/climatology/gridded-data-info/metadata/md_ave_windvelocity-2004-2008.shtml
http://www.landcover.org/data/vcf/
http://ngdc.noaa.gov/eog/dmsp/download_global_isa.html
http://www.psma.com.au/?product=transport-topography
http://www.abs.gov.au/census
http://www.landcover.org/data/vcf/
http://www.npi.gov.au/


 

*industrial point source PM10 
emissions (kg/year)  

- bufferg " " 

distance to nearest industrial 
PM10 point source (km) 

- point " " 

distance to nearest coal-fired 
power station (km) 

- point Geoscience Australia National Power Stations Database  
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_04661f51-82ee-144e-e054-
00144fdd4fa6/National+Power+Stations+Database 
 

distance to nearest power station 
(non-wind, water or solar) (km) 

- point Geoscience Australia National Power Stations Database  
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_04661f51-82ee-144e-e054-
00144fdd4fa6/National+Power+Stations+Database 
 

***active fires (annual and 
monthly average) (number of) 

1 km bufferg MODIS Collection 5 Monthly Fire Location Product (MCD14ML) †  37 
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data 
 

***burnt area (annual and 
monthly average) (km2) 

500 m bufferg MODIS Collection 5.1 Burned Area Product  (MCD45) ‡ 38 
http://modis-fire.umd.edu/pages/BurnedArea.php 
 

 
a average daily minimum and maximum temperature were also included in the model 
b major roads were defined as national/state highways, arterial roads (which are major connector roads for national and state highways) and sub-arterial roads (which are connectors between highways and/or arterial 

roads, or serve as an alternative for arterial roads) 36.  
c minor roads were defined as collector roads (which are connectors between sub-arterial roads, and distribute traffic to local roads) and local roads (which provide property access) 36. The distance to the nearest minor 

road was also included as a candidate variable. 
d four land use categories were examined – residential, commercial, industrial, and open space (which was the sum of water, parks and agricultural land 39) 
e  a mesh block is the smallest spatial unit used in the Australian census and their size varies - on average they contain 62 people. 
f average of variable within buffer 
g  sum of variable within buffer 
* 25 circular buffers were created with radii of 100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m, 800 m, 1000 m, 1200 m, 1500 m, 1800 m, 2000 m, 2500 m, 3000 m, 3500 m, 4000 m, 5000 m, 6000 m, 7000 m, 
8000 m, 10,000 m, 20,000m, 50,000m and 100,000m 40.      
** Positional accuracy is ±2 m in urban areas, ±10 m in rural and remote areas. Attribute accuracy is 99.09% for key attributes (name and unique identifier) 36 
*** For active fire and burnt area, 5 circular buffers were created with radii of 10km, 20km, 50km, 100km and 250km. 
† All active fire pixels with a detection confidence score ≥ 30 (nominal to high confidence range) 37. 
‡ All burnt area pixels with a quality assurance code of 1, 2, 3, or 4 38. 
# The distance (metres) to the nearest major, minor and unsealed roads was also included as a candidate variable.

http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_04661f51-82ee-144e-e054-00144fdd4fa6/National+Power+Stations+Database
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_04661f51-82ee-144e-e054-00144fdd4fa6/National+Power+Stations+Database
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_04661f51-82ee-144e-e054-00144fdd4fa6/National+Power+Stations+Database
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_04661f51-82ee-144e-e054-00144fdd4fa6/National+Power+Stations+Database
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
http://modis-fire.umd.edu/pages/BurnedArea.php


Table S2:  Results of models for daily PM10 fitted to all observations in Australia. 

 All days in study period 
n =143,129 

Days in study period with Aqua AOD available 
n=23,833  

Model R2 R2
m R2

c RMSE BIC R2 R2
m R2

c RMSE BIC 
0 39% 0% 37% 19 1266821 47% 0% 43% 15 203783 
1 39% 1% 37% 19 1266813 47% 2% 43% 15 203754 
2 - - - - - 48% 5% 45% 15 202985 
3 - - - - - 50% 5% 47% 15 202598 
4 - - - - - 50% 7% 48% 15 202364 
R2 = pseudo-R2      R2

m = marginal R2   R2
c = conditional R2   

 
 

Table S3:  Results of models fitted to observations in Australia with PM10 values within 
the 99th percentile. 

   All days in study period 
n=141,700  

Days in study period with Aqua AOD available 
n=23,472 

Model R2 R2m R2c RMSE BIC R2 R2m R2c RMSE BIC 
0 31% 0% 31% 7 945589 52% 0% 47% 6 156209 
1 31% 5% 31% 7 945094 52% 6% 47% 6 155925 
2 - - - - - 53% 10% 48% 6 155178 
3 - - - - - 54% 10% 50% 6 154959 
4 - - - - - 55% 11% 51% 6 154642 
R2 = pseudo-R2      R2

m = marginal R2   R2
c = conditional R2   

 
 

Table S4:  Results of models for daily PM10 fitted to all observations in NSW. 

 All days in study period 
n=49,633 

Days in study period with Aqua AOD available 
n=10,222 

Model R2 R2
m R2

c RMSE BIC R2 R2
m R2

c RMSE BIC 
0 86% 0% 85% 14 413959 91% 0% 96% 7 76509 
1 86% 1% 85% 14 413978 91% 1% 96% 7 76528 
2 - - - - - 91% 1% 96% 7 76373 
3 - - - - -  92% 1% 96% 6 75995 
4 - - - - - 92% 2% 96% 6 75849 
R2 = pseudo-R2      R2

m = marginal R2   R2
c = conditional R2   

 
 

Table S5:  Results of models fitted to observations in NSW with PM10 values within the 
99th percentile. 

   All days in study period 
n=49,140 

Days in study period with Aqua AOD available 
n=10,091 

Model R2 R2m R2c RMSE BIC R2 R2m R2c RMSE BIC 
0 71% 0% 71% 4 292402 74% 0% 70% 4 62825 
1 71% 11% 71% 4 292020 74% 11% 71% 4 62589 
2 - - - - - 74% 12% 71% 4 62493 
3 - - - - - 75% 13% 72% 4 62290 
4 - - - - - 75% 13% 72% 4 62271 
R2 = pseudo-R2      R2

m = marginal R2   R2
c = conditional R2   

 

  



Table S6:  Results of models fitted to NSW data with PM10 values within the 99th 
percentile – Aqua versus Terra AOD. 

 Days in study period with Aqua and/or Terra 
 n=16,813 

Days in study period with Aqua AOD available 
n=10,091 

Model R2 R2
m R2

c RMSE BIC R2 R2
m R2

c RMSE BIC 
0 73% 0% 71% 4 103589 74% 0% 70% 4 62825 
1 73% 10% 71% 4 103306 74% 11% 71% 4 62589 
2 73% 11% 71% 4 103221 74% 12% 71% 4 62493 
3 74% 11% 72% 4 102943 75% 13% 72% 4 62290 
4 74% 12% 72% 4 102842 75% 13% 72% 4 62271 
R2 = pseudo-R2      R2

m = marginal R2   R2
c = conditional R2   

 
 
Table S7:  Estimates of the variance components (% of total variation) for Model 0 
fitted to all observations with PM10 values within the 99th percentile by location. 

 All days in study period 
 σ2(v0j) σ2(u0i) σ2(residual) 
Australia 22% 8% 70% 
NSW 62% 9% 29% 
QLD 41% 11% 48% 
VIC 72% 3% 25% 
SA 68% 3% 29% 
WA 42% 10% 48% 
ACT 82% 2% 16% 
TAS 51% 2% 47% 
v0j = random intercept for day j,  u0i = random intercept for site i,   

 

Table S8:  Estimates of the variance components (% of total variation) for models fitted 
to all observations in Australia with PM10 values within the 99th percentile. 

 All days in study period 
n=141,700 

Days in study period with Aqua AOD available 
n=23,472 

Model σ2(v0j) σ2(u0i) σ2(residual) σ2(v0j) σ2(u0i) σ2(u1i) σ2(residual) 
0 22% 8% 70% 34% 13% - 53% 
1 18% 9% 73% 31% 13% - 56% 
2 - - - 30% 13% - 57% 
3 - - - 10% 5% 65% 20% 
4 - - - 12% 6% 61% 21% 
v0j = random intercept for day j,  u0i = random intercept for site i,  u1i = random slope for AOD for site i. 
 

 

Table S9:  Estimates of the variance components (% of total variation) for models fitted 
to all observations in NSW with PM10 values within the 99th percentile. 

  All days in study period 
n=49,140 

Days in study period with Aqua AOD available 
n=10,091 

Model σ2(v0j) σ2(u0i) σ2(residual) σ2(v0j) σ2(u0i) σ2(u1i) σ2(residual) 
0 62% 9% 29% 57% 13% - 30% 
1 57% 10% 33% 52% 15% - 33% 
2 - - - 50% 16% - 34% 
3 - - - 15% 6% 69% 10% 
4 - - - 16% 6% 68% 10% 
v0j = random intercept for day j,  u0i = random intercept for site i,  u1i = random slope for AOD for site  i. 
 

  



Table S10:  Means and standard deviations of standardized predictor variables from 
Table 4. 

Variable Mean SD 
AOD  0.06 0.10 
monthly active fire 250km (number of) 253 637 
monthly active fire 100km  50 128 
monthly active fire 50km  13 30 
monthly burnt area 250km  94 529 
monthly burnt area 50km  3 26 
monthly burnt area 10km 0.1 0.7 
monthly mean rainfall (mm) 74 46 
monthly mean wind speed (km/h) 5 3 
season mean daily max temp (°C)  22 5 
industrial 300m (%)  7 19 

 

 

Table S11:  Results of cross-validation for Model 4 for each region. 

Region Number 
of 

sites 

n R2  R2
c 

 CV R2  CV R RMSE CV RMSE 

Australia 75 23,472 55% 51% 46% 0.68 6 6 
NSW 26 10,091 75% 72% 65% 0.81 4 5 
QLD 18 4,692 67% 58% 48% 0.70 5 6 
VIC 11 3,825 78% 73% 62% 0.79 4 5 
SA 9 2,515 85% 78% 57% 0.76 3 6 
WA 6 1,165 74% 59% 29% 0.54 4 7 
ACT 2 611 90% 67% 25% 0.50 3 7 
TAS 2 496 78% 51% 20% 0.45 3 6 
R2 = pseudo-R2      R2

m = marginal R2   R2
c = conditional R2     CV RMSE = RMSE from LOOCV   

CV R = Pearson correlation from LOOCV  CV R2 = R2 from LOOCV    
 

 

 

 



Highlights 

 Accounting for temporal variation is critical to model fit. 

 The model was very sensitive to high-concentration air pollution events. 

 Satellite-based AOD and other predictor variables did not substantially improve model 

performance.   

 Model performance varied considerably between states and regional models were 

necessary.   

 Mixed effects models that use pseudo R2 values overstate the proportion of variation 

explained by the model. 
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