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Abstract

In PPP-RTK processing, the network corrections including the satellite clocks,
the satellite phase biases and the ionospheric delays are provided to the users to en-
able fast single-receiver integer ambiguity resolution. To solve the rank deficiencies
in the undifferenced observation equations, the estimable parameters are formed to
generate full-rank design matrix. In this contribution, we firstly discuss the interpre-
tation of the estimable parameters without and with a dynamic satellite clock model
incorporated in a Kalman filter during the network processing. The functionality of
the dynamic satellite clock model is tested in the PPP-RTK processing.

Due to the latency generated by the network processing and data transfer, the
network corrections are delayed for the real-time user processing. To bridge the
latencies, we discuss and compare two prediction approaches making use of the net-
work corrections without and with the dynamic satellite clock model, respectively.
The first prediction approach is based on the polynomial fitting of the estimated
network parameters, while the second approach directly follows the dynamic model
in the Kalman filter of the network processing and utilises the satellite clock drifts
estimated in the network processing. Using 1 Hz data from two networks in Aus-
tralia, the influences of the two prediction approaches on the user positioning results
are analysed and compared for latencies ranging from 3 to 10 s. The accuracy of
the positioning results decreases with the increasing latency of the network products.
For a latency of 3 s, the RMS of the horizontal and the vertical coordinates (with
respect to the ground truth) do not show large differences applying both prediction
approaches. For a latency of 10 s, the prediction approach making use of the satel-
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lite clock model has generated slightly better positioning results with the differences
of the RMS at mm-level. Further advantages and disadvantages of both prediction
approaches are also discussed in this contribution.

Keywords: Satellite clock modelling, Prediction, Latency, PPP-RTK

1. Introduction

The Precise Point Positioning (PPP) technique was introduced in the 1990s (Zum-
berge et al., 1997). By using precise external products for, i.e., the satellite orbits
and the satellite clock corrections, and forming linear combinations to eliminate er-
rors like the first-order term of the ionospheric delays, the accuracy of PPP can
reach cm-level in the kinematic mode (Yu and Gao, 2017). However, since the phase
ambiguities are not resolved to integers, long convergence time from tens of minutes
to a couple of hours is needed to reach such accuracy (Banville et al., 2014; Leandro
et al., 2011; Yu and Gao, 2017). The real-time kinematic (RTK) technique, in con-
trast to PPP, solves this problem by generating differential observations. A mm- to
cm-level accuracy can be reached within short convergence time after integer ambi-
guity resolution (IAR), however, only with restricted baseline length of a few tens of
kilometres, depending on the ionosphere activity (Janssen and Haasdyk, 2011).

The PPP-RTK technique, which was originally introduced by Wübbena et al.
(2005), integrates the advantages of PPP and RTK and enables the integer ambi-
guity resolution of the PPP. To enable single-receiver integer ambiguity resolution,
diverse studies have been performed in the last ten years. The ambiguities can be
resolved by providing users the precise satellite-related information like the orbits,
the satellite clocks and the satellite phase biases (Mervart et al., 2008; Teunissen
et al., 2010; Teunissen and Khodabandeh, 2015). To isolate and estimate undiffer-
enced GPS integer ambiguities, Collins (2008) has also discussed the application of
the decoupled clock model by separating the code and the phase clocks, so that the
code hardware biases are isolated from the phases and keeps thus the integer prop-
erty of the ambiguities. Based on the study of Ge et al. (2008), the integer feature of
the single-differenced ambiguities can be recovered by applying the single-difference
uncalibrated phase delays (UPD), which enables ambiguity resolution. Geng et al.
(2010) introduced a method to predict the ionospheric delays, and to accelerate
wide-lane and narrow-lane ambiguity resolution. Dau et al. (2003) have discussed
the temporal and spatial correlation characteristics of the atmospheric delays and
proposed prediction models of the atmospheric delays to resolve the ambiguities of
the network stations. In the present contribution we take the undifferenced and un-
combined approach (Odijk et al., 2016) to form network-derived estimable satellite
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clocks, satellite phase biases and ionospheric delays, providing them to PPP-RTK
users, thereby making single-receiver integer ambiguity resolution feasible.

As mentioned by Odijk et al. (2016), the undifferenced observations without linear
combination keeps all parameters in the observation equations and allows a more
flexible extension to, e.g., multi-frequency applications. To solve the problem of the
resulted rank deficiencies in the undifferenced and uncombined observation equations,
however, the estimated parameters need to be formed accordingly to generate a full-
rank design matrix with a set of S-basis parameters constrained (Teunissen et al.,
2010). Applying dynamic models on different sets of parameters may, based on Odijk
et al. (2016), change the selection of the S-basis parameters and the formulations of
the biased parameters. In this study, in addition to the temporal constraints on the
ambiguity parameters, the zenith tropospheric delays (ZTDs), the ionospheric delays,
the receiver and the satellite hardware biases, a dynamic model for the satellite clock
parameters is incorporated in the Kalman filter of the network processing.

During the last twenty years, investigations about latency of the RTK corrections
and their influences on the positioning results were performed in diverse studies.
According to Weber et al. (2005), the latency of the differential GPS (DGPS) and
RTK corrections is typically at the order of less than 3 to 4 s for communication
over internet, wired and wireless phone networks in Germany, and mostly less than
4 s in Europe. For a limited number of users, the latency in receiving the network
information in the network RTK (NRTK) is usually less than 3 s (El-Mowafy, 2012).
To bridge the latency, Vollath et al. (2012), e.g., have used the delta phase approach
to estimate the delta position (the rover position increments) by computing its delta
range (phase range changes) between the last synchronous epoch with the corrections
and the current epoch. The satellite clocks used for computing the range at the
current epoch are predicted at the user side with a 2-state Kalman filter assuming
a random-walk noise of the satellite clock drift. El-Mowafy and Al-Musawa (2009)
have, e.g., proposed a prediction method for the combined measurement corrections
of the network stations by employing a level and a trend component for short time
period, i.e., several minutes. Qu (2012) performed a study about the effects of
different correction data formats, transmission protocols and update frequency of the
correction data on the RTK positioning results. In case of a total latency of several
seconds, for GPS dual-frequency case, it was found that cm-level accuracy can still
be achieved for kinematic solution by using the prediction approach introduced by
El-Mowafy and Al-Musawa (2009).

Different from RTK, the PPP-RTK technique uses the State-Space Representa-
tion (SSR) (Wübbena et al., 2005) and provides the users individual GNSS-related
errors instead of the raw and/or corrected observations (RTCM, 2013). According to
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Leandro et al. (2011), a total correction latency for the Real Time Extended (RTX)
system via a satellite link is found to be smaller than 5.6 s in 99% of the cases for one
test week. In 2011, CNES developed a real-time integer PPP demonstrator with an
overall latency for the data collection, processing and transmission estimated between
6 to 8 s (Laurichesse et al., 2010; Laurichesse, 2011). The latency of the products will
of course influence the user solutions and as a result, to reduce the induced position-
ing errors by latency, a reasonable method for prediction of the network corrections
is required. In Leandro et al. (2011), e.g., the satellite orbits were estimated with
a Kalman filter using numerical integration of the equations of motion, so that the
prediction time by the user can last for a few minutes since the last filtering update.
Based on the descriptions in RTCM (2013) for the Radio Technical Commission for
Maritime Services (RTCM) SSR corrections, polynomial coefficients of the satellite
clocks (referred to broadcast satellite clocks) from degrees 0 to 2 can be provided
to the users, so that the latency can be bridged by utilising the clock polynomial
coefficients. El-Mowafy et al. (2016) has used, e.g., a satellite clock prediction model
for the real-time PPP applications that employs these polynomial coefficients and a
sinusoid term (Huang et al., 2014) to bridge correction outage from a few minutes to
hours, where the contributions of the clock drift rate (the second-order polynomial
coefficient) and the sinusoid term are found to be insignificant.

As mentioned by Bröderbauer and Weber (2003), for real-time applications, the
satellite clock polynomial coefficients provided by the network could differ in terms
of their degrees and the amount of data to fit them. Bröderbauer and Weber (2003)
have, e.g., used 48-hour International GNSS Service (IGS) ultra-rapid clock data to
estimate the coefficients of a quadratic polynomial and optionally also cyclic terms
in a least-squares adjustment for GPS satellite clocks. Wübbena et al. (2005), on
the other hand, estimate the satellite clocks dynamically as quadratic polynomial
with white noise process in a Kalman filter. Senior et al. (2008) have analysed the
stochastic processes of the GPS satellite clocks using the clock products from the IGS
with a sampling interval of 5 minutes and 30 s on the sub-daily regime. Different
noise processes were discovered for different generations of GPS satellites, and the
white frequency noise (WFN) is found to be dominant in the short-term stochastic
behaviours of the GPS IIR/IIR-M satellite clocks.

In this study, a 2-state dynamic satellite clock model is developed for undiffer-
enced and uncombined GPS observations based on the S-basis theory. The goal of
this contribution is to show the implementation and functionality of this satellite
clock model using undifferenced and uncombined observations. For real-time PPP-
RTK applications, we test and compare two different prediction approaches for the
biased terms of the satellite clocks, satellite phase biases and for fast user ambiguity
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resolution, also the slant ionospheric delays (Odijk et al., 2016). The first approach
is based on polynomial fits of the network corrections without the dynamic satellite
clock model applied in the network Kalman filter. The degrees of the polynomials
and the time span to fit the polynomials are studied for different parameters and
different prediction intervals in detail. The second approach employs the dynamic
model for GPS satellite clocks in the Kalman filter based on van Dierendonck et al.
(1984). Together with a general introduction of the processing strategies at the net-
work and the user part, the corresponding S-basis parameters and the biased forms
of the estimated parameters are studied for cases without and with the satellite clock
model in Sections 2 and 3, respectively. In Section 4, the influences of both predic-
tion approaches on the user positioning results are analysed, compared and discussed
using 1 Hz data for 2 networks in Australia with a latency ranging from 3 to 10 s.

2. Processing and prediction without satellite clock model

In the network processing, the f -frequency observed-minus-computed (O-C) terms
of the undifferenced phase (∆ϕs

r,j) and code measurements (∆psr,j) between the re-
ceiver r (r = 1, · · · , n) and the satellite s (s = 1, · · · ,m) on frequency fj (j =
1, · · · , f) can be formulated with (Hofmann-Wellenhof et al., 2008; Kleusberg and
Teunissen, 1996):

E(∆ϕs
r,j(ti)) = gsr(ti)τr(ti) + dtr(ti)− dts(ti)− µjι

s
r(ti) + δr,j(ti)− δs,j(ti) (1)

+λjz
s
r,j,

E(∆psr,j(ti)) = gsr(ti)τr(ti) + dtr(ti)− dts(ti) + µjι
s
r(ti) + dr,j(ti)− ds,j(ti), (2)

where m, n and f denote the number of the network stations, the number of the
satellites and the number of the frequencies, respectively. τr and gsr represent the
ZTD parameter and the troposphere mapping function, respectively. The symbols
dtr and dts denote the receiver and the satellite clock parameters in meters, and the
first-order term of the slant ionospheric delay on frequency f1 is represented by ιsr
with the corresponding ratio µj =

f2
1

f2
j
in front of it. The phase measurements contain

the receiver and the satellite phase biases, denoted by δr,j and δs,j, respectively, and
the code measurements contain the terms dr,j and ds,j, which denote the receiver and
the satellite code biases, respectively. zsr,j expressed in cycles stands for the phase
ambiguity parameter, and the wavelength λj converts it into meter-domain. The time
point at epoch i is denoted by ti, and E(.) denotes the expectation operator. As this
study is focused on the impact of the predicted satellite clocks, satellite phase biases
and ionospheric delays on the user positioning results, the precise station coordinates
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and the precise International GNSS Service (IGS) orbits (Dow et al., 2009; Griffiths
and Ray, 2009; IGS orbit, 2017) are assumed to be included in the network O-C
terms and are not estimated.

2.1. Estimability of the parameters

In Eqs. (1) and (2), rank deficiencies exist between the satellite and the receiver
clocks (size=1), between the satellite and the receiver hardware biases (size=2f),
between the clocks and the hardware biases (size=m+n−1), between the ambiguities
and the phase hardware biases (size=f(m + n − 1)) and between the ionospheric
delays, the clocks and the hardware biases (size=m + n − 1). It is necessary to
find linearly independent transformations of the parameters with a minimum set of
S-basis parameters constrained, so that full-rank design matrix can be generated
(Teunissen et al., 2010). With the phase ambiguity parameters assumed as constant
and the ionospheric delays and the hardware biases estimated as linked parameters
in time, to remove the rank deficiencies in the zero-difference observation equations,
the O-C terms ∆ϕs

r,j and ∆psr,j can be reformulated as:

E(∆ϕs
r,j(ti)) = gsr(ti)τr(ti) + dt̃r ̸=1(ti)− dt̃s(ti)− µj ι̃

s
r(ti) + δ̃r ̸=1,j(ti=1) (3)

+δ̃r,j(ti>1)− δ̃s,j(ti) + λj z̃
s ̸=1
r ̸=1,j,

E(∆psr,j(ti)) = gsr(ti)τr(ti) + dt̃r ̸=1(ti)− dt̃s(ti) + µj ι̃
s
r(ti) + d̃r ̸=1,j>2(ti=1) (4)

+d̃r,j(ti>1)− d̃s,j>2(ti=1)− d̃s,j(ti>1),

where the biased parameters and the S-basis parameters are formulated based on
the S-system theory (Baarda, 1981; Teunissen, 1985) and listed in Table 1. The
subscript r = 1 and the superscript s = 1 represent the reference station and satellite,
respectively. (.),IF and (.),GF in Table 1 represent the following formulations:

(.),IF =
µ2(.),1 − µ1(.),2

µ2 − µ1

, (5)

(.),GF =
(.),2 − (.),1
µ2 − µ1

. (6)

From Table 1 we see that the estimable satellite clock parameter dt̃s is a combina-
tion of the satellite clock dts, the satellite code bias ds,j, the receiver clock dt1 and the
receiver code bias d1,j of the reference station. Not only the original satellite clocks
dts, but also other parameters can influence the temporal behaviour of dt̃s. In case
of low-quality receiver clock of the reference station, the temporal behaviour of dt̃s

will be dominated by that of dt1.
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Table 1. Estimable parameters and S-basis parameters with the ionospheric delays and the hardware
biases linked in time. No satellite clock model was applied, see also (Odijk et al., 2016, 2017).

Parameter Formulation
dt̃r ̸=1(ti) dt1r(ti) + d1r,IF (t1)
dt̃s(ti) dts(ti) + ds,IF (t1)− (dt1(ti) + d1,IF (t1))
ι̃sr(ti) ιsr(ti) + dr,GF (t1)− ds,GF (t1)

δ̃r ̸=1,j(ti) δr,j(ti)− δ1,j(t1) + µjd1r,GF (t1)− d1r,IF (t1) + λjz
1
1r,j

δ̃1,j(ti>1) δ1,j(ti)− δ1,j(t1)

δ̃s,j(ti) δs,j(ti) + µj(d
s
,GF (t1)− d1,GF (t1))− (ds,IF (t1)− d1,IF (t1))

−δ1,j(t1)− λjz
s
1,j

d̃r ̸=1,j>2(ti) dr,j(ti)− d1,j(t1)− (d1r,IF (t1) + µjd1r,GF (t1))

d̃r,j=1,2(ti>1) dr,j(ti)− dr,j(t1)

d̃1,j>2(ti>1) d1,j(ti)− d1,j(t1)

d̃s,j>2(ti) ds,j(ti)− (ds,IF (t1) + µjd
s
,GF (t1))− (d1,j(t1)− (d1,IF (t1) + µjd1,GF (t1)))

d̃s,j=1,2(ti>1) ds,j(ti)− ds,j(t1)

z̃s ̸=1
r ̸=1,j zs1r,j − z11r,j
S-basis dt1(ti), δ1,j(t1), d1,j(t1), dr ̸=1,j=1,2(t1), d

s
,j=1,2(t1), z

s
1,j, z

1
r,j

7

The final version is published in Advances in Space Research (2017) 60(7):1463-1477, and is available under https:// 
www.sciencedirect.com/science/article/pii/S0273117717304696?via%3Dihub



With the rank deficiencies removed from the design matrix, the biased forms of the
network parameters (see Table 1) are estimated using the Curtin PPP-RTK Network
Software (Odijk et al., 2016, 2017). The flowchart of the Curtin PPP-RTK network
platform is shown in Figure 1a. In the network processing, after reading the input
and the observation files, the data go through an epoch-wise pre-processing step
with the geometry-free single-channel Detection-Identification-Adaptation (DIA) al-
gorithm (Odijk and Verhagen, 2007). Afterwards, the network parameters are pro-
cessed in a Kalman filter. The vector of the time-updated parameters ûi|i−1 and its
variance-covariance matrix Qi|i−1 can be described as:

ûi|i−1 = Φi|i−1ûi−1|i−1, Qi|i−1 = Φi|i−1Qi−1|i−1Φ
T
i|i−1 + Sui

, (7)

where ûi−1|i−1, Qi−1|i−1, Φi|i−1 and Sui
represent the vector of the corresponding

estimated parameters at the epoch i − 1, their variance-covariance matrix at the
epoch i−1, their transition matrix from the epoch i−1 to i and their noise variance-
covariance matrix at the epoch i, respectively.

To capture the structure of the observation equations at the epoch i, the design
matrix can be represented with a batch formulation (Odijk et al., 2016) with the
time-updated parameters in Eq. (7). The measurement update of the observation
equation and the variance-covariance matrix Qyy can be formulated as:

E

[
ûi|i−1

yi

]
=

[
Fi

Ai

]
xi, D

[
ûi|i−1

yi

]
=

[
Qi|i−1 0
0 Qyyi

]
(8)

where yi, Ai and xi represent the observations, the design matrix and the estimable
parameters at epoch i, respectively. Fi selects the parameters with dynamic models
from xi, and Qyyi denotes the variance-covariance matrix of the observations at epoch
i. D(.) denotes the dispersion operator.

In this contribution, we deal with dual-frequency observations in GPS-only sce-
nario (GPS L1 and L2). To enable fast PPP-RTK ambiguity resolution, the iono-
spheric delays need to be interpolated for each user station and provided to the users
together with the satellite clocks and the satellite phase biases (Odijk et al., 2016).
The least-squares collocation (Moritz, 1978), which considers the spacial correlation
of the network and the user stations, and the best linear unbiased prediction (BLUP)
model (Goldberger, 1962; Teunissen and Khodabandeh, 2013) are used for interpo-
lation of the user-specific ionospheric delays (Odijk, 2002) (see also Appendix Ap-

pendix A). The network corrections including the biased satellite clock estimates dˆ̃ts,

the biased satellite phase bias estimates ˆ̃δs,j and the interpolated user-specific biased

ionospheric delays ˆ̃ιsu are provided to the user with the O-C terms of the observation
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Fig. 1. Flowcharts of (a) the network and (b) the user platforms of the Curtin PPP-RTK soft-
ware (Odijk et al., 2017). PCV, DIA, SPP, PAR and ASR are short for Phase Center Variation,
Detection-Identification-Adaptation, single point positioning, partial ambiguity resolution and am-
biguity success rate, respectively.
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equations formulated as follows:

E(∆ϕs
u,j(ti) + dˆ̃ts(ti) +

ˆ̃δs,j(ti) + µj
ˆ̃ιsu(ti)) = ∆ρsu(ti) + dt̃u(ti) + δ̃u,j(ti) (9)

+λj z̃
s ̸=1
u,j ,

E(∆psu,j(ti) + dˆ̃ts(ti)− µj
ˆ̃ιsu(ti)) = ∆ρsu(ti) + dt̃u(ti) + d̃u,j(ti>1) (10)

−d̃s,j(ti>1),

where the term ∆ρsu contains the increment of the user station coordinate and the
ZTD in the slant direction. The code-based single point positioning (SPP) (see
Fig. 1b) is performed after the single-channel DIA procedure to compute, e.g., the
a priori receiver clocks and the a priori receiver coordinates (if not available). After
computing the ambiguity-float solutions, the partial ambiguity resolution is per-
formed based on a pre-defined ambiguity success rate (ASR) of 99.99%. The user
solutions are saved for both the ambiguity-float and the ambiguity-fixed cases.

For the network and the user processing, two networks in Australia (in Western
Australia and Tasmania) with the largest inter-station distance of around 580 and
295 km (see Fig. 2) were processed from 5:00 to 6:00, 11:00 to 12:00 and 17:00 to
18:00 in GPS Time (GPST) on January 1, 2017 using the Curtin PPP-RTK software
(Odijk et al., 2017). Dual-frequency GPS-only 1 Hz data are used for the processing
with an elevation mask of 10 degrees. Since the network is assumed to continuously
generate and provide products to users over a long time period, we start the network
processing one hour before the user processing. Due to the relatively low accuracy
of the regional network corrections for newly risen satellites at low elevation angles,
at the user side, the newly risen satellites during this hour with an elevation angle
smaller than 12 degrees at the start of the user processing are not used. For newly
risen satellites during the user processing, the network corrections of the first 8
minutes have low accuracy due to the filter initialization and are also not used at
the user side.

Having partial ambiguity resolution enabled, the absolute errors of the coordinate
estimates with respect to the ground truth are computed for all the user stations (in
both networks) in all the tested time intervals. The absolute errors are then sorted
with their amplitudes for each epoch. The maximal absolute errors that do not
exceed 90%, 75% and 50% of all the sorted absolute errors are used for the plotting
in Fig. 3.

Fig. 3 shows the convergence behaviours of the user positioning results with fixed
phase ambiguities. The 90%, 75% and 50% percentiles of the absolute positioning
errors with respect to the ground truth provided by the Geoscience Australia (GA,
ftp://ftp.ga.gov.au/) are plotted for the first 3 minutes in the North-, East-
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Fig. 2. Selected network and user stations of (a) the network A (in Western Australia) and (b) the
network B (in Tasmania) on January 1, 2017.

and Up-direction. The convergence time is defined as the minimal time required to
achieve a certain positioning accuracy for the rest of the processing time.

For the North- and the East-coordinates with fixed ambiguities, it takes 10 and 7 s
to let 90% of the absolute positioning errors converge to less than 1 dm, respectively.
75% of the absolute positioning errors get less than 5 cm within 9 s in the horizontal
directions, and the 50% percentile curves (see the green lines in Figures 3a and 3b),
which correspond to the median of the absolute positioning errors, need only 5 s to
reach such accuracy.

The vertical coordinates are in general less accurate than the horizontal coordi-
nates. For the 75% percentile curves in the kinematic height estimates (see the red
line in Figures 3c), 9 s and 17 s are needed for the fixed solutions to converge to
below 2 and 1 dm, respectively.

It is important to remark that although the data are processed in post-processing
mode, the data processing is set to mimic the real-time scenario. As shown in
Figure 1, Kalman filter is employed for recursive estimation of the parameters, while
the recursive DIA (Teunissen, 1990) is used to detect/identify mis-modelled effects
and adapt the model accordingly.
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Fig. 3. Convergence behaviours of the (a) North-, (b) East- and (c) Up-coordinates with fixed
ambiguities using all user stations from both networks and for all tested time intervals. The 90%
(blue lines), 75% (red lines) and 50% (green lines) percentiles of the absolute positioning errors
with respect to the ground truth are plotted using 1 Hz data for the networks A and B from 5:00
to 6:00, 11:00 to 12:00 and 17:00 to 18:00 (in GPST) on January 1, 2017.
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2.2. Approach 1: Prediction without satellite clock model

Due to the latency of the network products, prediction has to be performed to
bridge the time gap between the time point of the user positioning and that of the
delayed products. In this study, the network corrections are predicted with a latency
ranging from 3 to 10 s.

In the first approach, also called Approach 1, the prediction of the network cor-

rections is based on the estimated satellite clocks dˆ̃ts, the estimated satellite phase

biases ˆ̃δs,j and the interpolated ionospheric delays ˆ̃ιsu (see Section 2.1). For the predic-

tion, the satellite clocks dt̃s are modelled here as polynomials (in time) with degrees
1 and 2:

• P1: Linear polynomial,

• P2: Quadratic polynomial.

At the same time, the satellite phase biases δ̃s,j are modelled either as a constant or
a linear polynomial in time:

• B0: Constant,

• B1: Linear polynomial.

The prediction of the user-specific ionospheric delays ι̃su is performed separately
for each user station and each satellite and will be introduced later. As the first step,
we introduce the prediction strategy for the satellite clocks and the satellite phase
biases.

The polynomial coefficients of the biased satellite clocks dt̃s and the biased satellite
phase biases δ̃s,j are estimated together:

E(dt̃s(ti)) = asv(ti − t0)
v + · · ·+ as1(ti − t0) + as0, (11)

E(δ̃s,j(ti)) = bsp,j(ti − t0)
p + · · ·+ bs0,j, (12)

where ask (k = 0, · · · , v with v=1 or 2) and bsk,j (k = 0, · · · , p with p=0 or 1) stand
for the polynomial coefficients for the satellite clock and the satellite phase bias on
frequency j, respectively. Assuming that tN and tE represent the time point of the
network products and the time interval for estimating the polynomial coefficients,
respectively, t0 equals to tN − tE, and ti varies from tN − tE to tN . The biased
satellite clocks dt̃s and satellite phase biases δ̃s,j can then be predicted for the time
point tN + tP with the estimated polynomial coefficients.
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In Approach 1, the estimation interval tE and the model combination could vary
for different prediction intervals tP . Since the true values of the biased satellite clocks
dt̃s and biased satellite phase biases δ̃s,j are unknown, we take the estimated satellite

clocks dˆ̃ts and satellite phase biases ˆ̃δs,j at the time point tN + tP as the references
to compute the predictions errors. Since the users can eliminate the receiver-related
errors by generating between-satellite single-differences of the observations (Khoda-
bandeh and Teunissen, 2015), the prediction errors ω̃1s

,j are computed at the between-
satellite level, as the network corrections are effective at the between-satellite level
for the user positioning:

ω̃1s
,j = dˇ̃t1s + ˇ̃δ1s,j − (dˆ̃t1s + ˆ̃δ1s,j ), (13)

where dˇ̃t1s and ˇ̃δ1s,j represent the predicted satellite clocks and satellite phase biases on
the between-satellite level at the time point tN + tP using the polynomial coefficients
estimated with Eqs. (11) and (12), respectively.

The overall RMS of the prediction errors for the satellite clocks and the satellite
phase biases is then calculated as:

σω̃ =

√√√√√√√√
K∑
k=1

h∑
j=1

qk,j∑
i=1

ω̃(ti)
2

K∑
k=1

h∑
j=1

qk,j

, (14)

with

ω̃(ti) =

f∑
j=1

m∑
s=2

ω̃1s
,j (ti)

f(m− 1)
, (15)

where h and K represent the number of the tested time intervals and the number
of the networks, respectively. qk,j denotes the number of the epochs with predicted
corrections for the network k and the test interval j. The prediction starts when the
user processing starts. Data with gaps or cycle slips from tN − tE to tN are not used
for the evaluation.

The analysis is performed for both networks with different combinations of the
satellite clock models (P1 and P2) and the satellite phase bias models (B0 and B1).
The estimation intervals tE were tested for each model combination from 1 to 39 s.
The estimation interval tE that delivers the minimal σω̃ (for all the tested tE) are
plotted in Fig. 4a for each tP , and the corresponding minimal σω̃ are shown in Fig. 4b.
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Fig. 4. (a) The estimation interval tE that delivers the minimal σω̃ (see Eq. (14)) (for all the
tested tE from 1 to 39 s) and (b) the corresponding minimal σω̃ for the predicted satellite clocks
and satellite phase biases using different model combinations. P1 and P2 represent polynomials of
degrees 1 and 2 for the satellite clocks, and B0 and B1 represent polynomials of degrees 0 and 1 for
the satellite phase biases, respectively (see Eqs. (11) and (12)).

From Fig. 4 we see that the minimal σω̃ increases with the increasing prediction
interval tP . The model combination P1B1 (the red line in Fig. 4b) generates lower
prediction errors than other model combinations in most cases and will be used for
the analysis in Section 4. Fig. 4a also shows that for different prediction time tP the
selected tE used for polynomial fitting might be different. In general, a longer tE is
required for a longer prediction time tP . The selected tE in Fig. 4a are used as the
estimation intervals for the corresponding latencies.

A clear disadvantage of Approach 1 is that the post polynomial fitting is not
necessarily consistent with the earlier assumptions on the temporal behaviour of the
parameters that are placed in the network filter. For instance, if the clock parameters
are assumed unlinked in time in the filter, one would violate such assumption by
fitting polynomials to the time series of the clock solutions.

The ionospheric delays ι̃s are modelled as a linear or a quadratic polynomial in
time for each user station and each satellite:

• I1: Linear polynomial

• I2: Quadratic polynomial.

The polynomial coefficients for prediction of the ι̃su are represented by αs
k (k =
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0, · · · , g with g=1 or 2) and are determined with:

E(ι̃su(ti)) = αs
g(ti − t0)

g + · · ·+ αs
1(ti − t0) + αs

0, (16)

where ti varies from tN−tE to tN . The ionospheric delays ι̃
s
u at the time point tN+tP

can then be predicted with the estimated polynomial coefficients.
Similar as the satellite clocks and the satellite phase biases, the between-satellite

ionospheric prediction error ξ̃1su is formulated as:

ξ̃1su = ˇ̃ι1su − ˆ̃ι1su , (17)

where ˇ̃ι1su represents the predicted ionospheric delays on between-satellite level for
the user station u. The overall RMS of the ionospheric prediction errors can then be
calculated with:

σξ̃ =

√√√√√√√√
U∑

u=1

h∑
j=1

qu,j∑
i=1

ξ̃u(ti)
2

U∑
u=1

h∑
j=1

qu,j

, (18)

with

ξ̃u(ti) =

m∑
s=2

ξ̃1su (ti)

m− 1
, (19)

where U represents the number of the user stations for both networks, and qu,j
denotes the number of the epochs with predicted ionospheric delays for the user
station u and the test time interval j.

The selected estimation intervals tE that delivers the minimal σξ̃ (for all the tested
tE from 1 to 39 s) and the corresponding minimal σξ̃ are shown in Fig. 5 with the
prediction interval tP ranging from 3 to 10 s. According to Fig. 5b, the linear
polynomial is preferred for the prediction of the ionospheric delays and is used for
the analysis in Section 4.

3. Processing and prediction with satellite clock model

As mentioned in Odijk et al. (2016), the temporal behaviour of the satellite clocks
can, e.g., be modelled as random walk process during a satellite pass (Herring et al.,
1990; Pratt et al., 2013). In this study, we model the temporal behaviour of the
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Fig. 5. (a) The estimation interval tE that delivers the minimal σξ̃ (see Eq. (14)) (for all the tested
tE from 1 to 39 s) and (b) the corresponding minimal σξ̃ for the predicted ionospheric delays using
different models. I1 and I2 represent polynomials of degrees 1 and 2 for the ionospheric delays (see
Eq. (16)).

original satellite clocks dts with the help of a drift parameter ḋts (Krawinkel and
Schön, 2016): [

dts(ti)

ḋts(ti)

]
= Φs

i|i−1

[
dts(ti−1)

ḋts(ti−1)

]
+

[
ϵs(ti)
ϵ̇s(ti)

]
, (20)

with

Φs
i|i−1 =

[
1 t(i−1)i

0 1

]
, (21)

where ϵs and ϵ̇s denotes the system noise of the satellite clock and the satellite clock
drift on satellite s, and t(i−1)i stands for the time interval between the (i− 1)-th and
the i-th epoch. As in Greenhall (2001), we take two epochs to initialize the satellite
clock drift ḋt. The dts is considered as unlinked parameters at the first two epochs.

In order to properly determine the type of the clock noise, the overlapping Al-
lan deviation (ADEV) σA (Allan, 1987; Riley, 2008) is used for the clock stability
analysis:

σA(τ) =

√√√√√M−2l∑
i=1

(rsi+2l − 2rsi+l + rsi )
2

2τ 2(M − 2l)
, (22)

with
τ = lτ0, (23)
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Table 2. Slopes of the Allan deviations (ADEVs) for different process noise (Riley, 2008).

Type of noise Slope of ADEV
White Phase Noise (WPN) -1
Flicker Phase Noise (FPN) -1

White Frequency Noise (WFN) -0.5
Flicker Frequency Noise (FFN) 0

Random Walk Frequency Noise (RWFN) 0.5
Frequency Drift (FD) 1

where τ0 and τ represent the sampling interval and the averaging time, respectively,
and M and l denote the number of the input clock phase data and the averaging
factor, respectively. rsi stands for the input clock at epoch i in seconds. The slopes
of the ADEVs are related to the noise types as shown in Table 2 (Riley, 2008).

The satellite clock records with a sampling interval of 30 s, provided by the In-
ternational GNSS Service (IGS), are used to compute the overlapping ADEVs of
the GPS satellite clocks (IGS clock, 2017; Noll, 2010) as shown in Fig. 6. We see
that the stabilities and the noise types of the GPS satellite clock estimates differ
from each other due to the clock types, the individual clock behaviours and even
the processing errors generated by the GNSS processing. Due to the changes of the
onboard satellite clock behaviours, changing the settings of the clock noise process
according to different satellite types or individual satellites increases the complexity
and computational load for real-time usage (Hauschild and Montenbruck, 2009) and
is not attempted in this study. Based on the mean slope of the ADEVs of -0.5431,
we assume that the main noise type of the GPS satellite clocks is the White Fre-
quency Noise (WFN) (see Table 2). The σA with τ larger than 28800 s are not used
for calculating the mean slope due to the limited amount of data for generating the
corresponding σA.

According to van Dierendonck et al. (1984), the 2-state (clock and clock drift)
variance-covariance matrix for WFN in Kalman-filter is formulated as:

Sϵs(ti) =

[
h0

2
t(i−1)i 0
0 h0

2t(i−1)i

]
· c2 (24)

with the speed of light denoted by c, and the coefficient h0 formulated as (Barnes
et al., 1971):

h0 = σ2
A · 2τ. (25)
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Fig. 6. Overlapping Allan deviations (ADEVs) of the GPS satellite clock estimates on January 1,
2017 with a sampling interval of 30 s. The satellite clock estimates are provided by the International
GNSS Service (IGS) (IGS clock, 2017). WFN is short for White Frequency Noise, and qdts is defined
in Eqs. (24), (25) and (26).

In the network processing, the parameter qdts =
√
h0 · c (with the unit of meter) is

given as input parameter. If the ADEV is a straight line with a slope of -0.5, qdts
should be a constant. As a result, the variance matrix Sϵs in our satellite clock model
is formulated as:

Sϵs(ti) =

[
Stt Stv

Svt Svv

]
= q2dts

[
t(i−1)i

2
0

0 1
2t(i−1)i

]
(26)

Since the behaviours of different satellite clocks differ from each other, and in
order not to constrain the satellite clocks too strongly, we have tested the satellite
clock model with qdts varying from 1 to 7 mm√

s
(see the red and the green dashed lines

in Fig. 6) in Section 4. It should be noted that the possible clock model deficiencies
with respect to each satellite clock and the selection of qdts are sensitive to data with
low sampling rate. In this study, we concentrate on the usage of the 1 Hz data.

3.1. Estimability of the parameters

As mentioned in Section 2.1, the biased satellite clock parameter dt̃s without model
contains other terms like the reference receiver clock. When incorporating temporal
constraints on the satellite clock parameters, however, the formulation of the biased
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Table 3. Estimable parameters that are changed after imposing the satellite clock model in network
processing (see Eq. (29) and Table 1).

Parameter Formulation

d˜̃tr(ti) dtr(ti) + d1r,IF (t1)− dt1(t1)− t1iḋt1(t2)

{
r ̸= 1, i = 1, 2

∀r, i > 2

d˜̃ts(ti) dts(ti) + ds,IF (t1)− (dt1(t1) + d1,IF (t1))− t1iḋt1(t2)

ḋ˜̃ts(ti) ḋt
s
(ti)− ḋt1(t2)

satellite clock parameter changes. After applying the satellite clock model, the O-C
terms of the phase and the code observations can then be reformulated as:

E(∆ϕs
r,j(ti)) = gsr(ti)τr(ti) + d˜̃tr ̸=1(ti=1,2) + d˜̃tr(ti>2)− d˜̃ts(ti)− µj

˜̃ιsr(ti) (27)

+˜̃δr ̸=1,j(ti=1) +
˜̃δr,j(ti>1)− ˜̃δs,j(ti) + λj

˜̃zs ̸=1
r ̸=1,j,

E(∆psr,j(ti)) = gsr(ti)τr(ti) + d˜̃tr ̸=1(ti=1,2) + d˜̃tr(ti>2)− d˜̃ts(ti) + µj
˜̃ιsr(ti) (28)

+ ˜̃dr ̸=1,j>2(ti=1) +
˜̃dr,j(ti>1)− ˜̃ds,j>2(ti=1)− ˜̃ds,j(ti>1),

where the changed estimable parameters after applying the satellite clock model are
formulated in Table 3. The parameters not listed in Table 3 remain unchanged as
listed in Table 1. dt1(ti=1,2) remain as the S-basis parameters, while dt1(ti>2) are
removed. The initial receiver clock drift is defined as:

ḋt1(t2) :=
dt1(t2)− dt1(t1)

t12
. (29)

Based on the formulations in Tables 1 and 3, with the help of the Eq. (20), d˜̃ts
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and ḋ˜̃ts can be formulated with:

d˜̃ts(ti) = dts(ti) + ds,IF (t1)− (dt1(t1) + d1,IF (t1))− t1iḋt1(t2) (30)

= dts(ti−1) + t(i−1)iḋt
s(ti−1) + ϵs(ti) + ds,IF (t1)− (dt1(t1) + d1,IF (t1))

−(t1(i−1) + t(i−1)i)ḋt1(t2)

= dts(ti−1) + ds,IF (t1)− (dt1(t1) + d1,IF (t1))− t1(i−1)ḋt1(t2)

+t(i−1)i(ḋt
s(ti−1)− ḋt1(t2)) + ϵs(ti)

= d˜̃ts(ti−1) + t(i−1)iḋ
˜̃ts(ti−1) + ϵs(ti),

ḋ˜̃ts(ti) = ḋts(ti)− ḋt1(t2) (31)

= ḋts(ti−1) + ϵ̇s(ti)− ḋt1(t2)

= ḋ˜̃ts(ti−1) + ϵ̇s(ti).

The same clock model can thus be applied to the new estimable satellite clock
and drift: [

d˜̃ts(ti)

ḋ˜̃ts(ti)

]
= Φs

i|i−1

[
d˜̃ts(ti−1)

ḋ˜̃ts(ti−1)

]
+

[
ϵs(ti)
ϵ̇s(ti)

]
, (32)

3.2. Approach 2: Prediction with satellite clock model

As introduced in Section 3.1, the satellite clock d˜̃ts and the satellite clock drift ḋ˜̃ts

are estimated at the time point tN applying the dynamic satellite clock model. The

estimates (d
ˆ̃̃
ts and ḋ

ˆ̃̃
ts) are used to predict the satellite clock d

ˇ̃̃
ts at the time point

tN + tP :

d
ˇ̃̃
ts(tN + tP ) = d

ˆ̃̃
ts(tN) + ḋ

ˆ̃̃
ts(tN) · tP . (33)

If a satellite just newly arises at the time point ti, the corresponding satellite clock

drift ḋ
ˆ̃̃
ts is by definition already available at the time point ti+1. To avoid large

prediction errors due to the inaccurate satellite clock drift at its initialization phase,
we wait for 3 s to let it converge before it is used for the prediction.

In the meanwhile, the predicted
ˇ̃̃
δs,j at the time point tN + tP is set to be equal to

the estimated
ˆ̃̃
δs,j at the time point tN :

ˇ̃̃
δs,j(tN + tP ) =

ˆ̃̃
δs,j(tN). (34)
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Table 4. Approaches used for the prediction of the network corrections (see Sections 3 and 2).

Name Approach Model
1 1 P1,B1,I1
2− 2 qdts = 7 mm√

s

2 2 qdts = 3 mm√
s

2+ 2 qdts = 1 mm√
s

The estimated ionospheric delays are interpolated for the user station u as de-

scribed in Section 2.1, denoted as ˆ̃̃ιsu. The predicted user-specific ionospheric delays
ˇ̃̃ιsu at the time point tN + tP is set to be equal to ˆ̃̃ιsu at the time point tN :

ˇ̃̃ιsu(tN + tP ) =
ˆ̃̃ιsu(tN). (35)

4. Impact of the latency

As mentioned in Sections 2 and 3, the predicted satellite clocks, satellite phase
biases and user-specific ionospheric delays are provided to the users to enable integer
ambiguity resolution. Using Approach 1, data gaps shorter than a pre-defined limit
within the estimation interval tE are allowed for the predictions. In case of cycle slips
from tN−tE to tN , only the data after the last cycle slip are used for the prediction of
the combined satellite clocks and satellite phase biases. Tests are performed using the
GPS dual-frequency 1 Hz data. For the network and the user processing, the standard
deviation of the code and the phase observations are set to be 3 dm and 3 mm in the
zenith direction, respectively. The troposphere ZTDs and the ionospheric delays are
temporally constrained with a spectral density of 0.0001 and 0.01 m√

s
, respectively.

The receiver and the satellite hardware biases are assumed to be constant. The IGS
final orbits were used for both the network and the user processing (IGS orbit, 2017;
Noll, 2010).

The user positioning results are analysed for different latencies of the network
corrections using different prediction approaches. The approaches used in this section
are symbolized as listed in Table 4. The symbols 2−, 2 and and 2+ represent the
prediction approach using network corrections applying the dynamic satellite clock
models with qdts of 7, 3 and 1 mm√

s
, respectively.

As a representative example, the estimated North-, East- and Up-coordinate in-
crements for the user station DPRT using the estimated corrections without latency

22

The final version is published in Advances in Space Research (2017) 60(7):1463-1477, and is available under https:// 
www.sciencedirect.com/science/article/pii/S0273117717304696?via%3Dihub



0 1000 2000 3000

Time [Epoch]

-0.1

0

0.1

N
or

th
 [m

]

σ̂N=0.80cm
σ̂N=0.77cm

0 1000 2000 3000

Time [Epoch]

-0.1

0

0.1

E
as

t [
m

]

σ̂E=0.61cm
σ̂E=0.59cm

0 1000 2000 3000

Time [Epoch]

-0.2

0

0.2

U
p 

[m
] σ̂U=4.95cm

σ̂U=4.89cm
Prediction2−

Estimation2−

(a) tP=3 s

0 1000 2000 3000

Time [Epoch]

-0.1

0

0.1

N
or

th
 [m

]

σ̂N=1.07cm
σ̂N=0.77cm

0 1000 2000 3000

Time [Epoch]

-0.1

0

0.1

E
as

t [
m

]

σ̂E=0.75cm
σ̂E=0.59cm

0 1000 2000 3000

Time [Epoch]

-0.2

0

0.2

U
p 

[m
] σ̂U=5.02cm

σ̂U=4.89cm
Prediction2−

Estimation2−

(b) tP=10 s

Fig. 7. Increments of the coordinate estimates of the station DPRT using the estimated network
corrections without latency (blue lines) applying the satellite clock model (qdts = 7 mm√

s
) and the

predicted network corrections (red lines) with the prediction approach 2− (see Table 4) from the
network B between 17:00 and 18:00 in GPST on January 1, 2017. 1 Hz data were used for the
prediction interval of (a) 3 s and (b) 10 s. σ̂N , σ̂E and σ̂U represent the RMS of the estimated
increments of the North-, East- and Up-coordinates with respect to the ground truth, respectively,
excluding the first 10 epochs as the initialization time for the ambiguity-fixed solutions.

(see the blue lines) and the predicted corrections with a latency of 3 and 10 s (see
the red lines) are shown in Fig. 7. The prediction approach 2− was applied. The σ̂N ,
σ̂E and σ̂U are the RMS of the coordinate increments excluding the first 10 epochs as
the initialization time for the ambiguity-fixed solutions. The limits of the y-axis are
scaled to -1 and 1 dm and -2 and 2 dm for the horizontal and the vertical coordinates,
respectively.

Fig. 7 shows a clear difference between the user positioning results using the
estimated and the predicted network corrections for short and long latencies. In
Fig. 7a, for a latency of only 3 s, the horizontal coordinates using the estimated
corrections (see the blue lines) agree well with those using the predicted corrections
(see the red lines), i.e., with a degradation of the RMS at sub-mm level. In Fig. 7b,
with a longer latency of 10 s, the degradation of the RMS is increased to mm-level.
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Around e.g. the 2011-th and the 2924-th epoch, outliers can be observed in the
user positioning results in the red dots. This is a joint effect of the latency and the
discontinuities of the network corrections. In case of latencies, discontinuities of the
network corrections can only be reflected in the predicted corrections a few seconds
later. The resulted deviations between the predicted and the estimated network
corrections causes the outliers in the user positioning results. In Fig. 7, systematic
patterns can be observed in the coordinate estimates. The patterns repeat on the
second day and are assumed to be caused by the multipath effects.

To show and compare the impact of the predicted network corrections using dif-
ferent approaches on the user positioning results, the overall RMS of the coordinate
increments are computed for all user stations of both networks and all the tested
time intervals. The overall RMS of the coordinate increments with respect to the
ground truth are computed as follows:

ˆ̄σx =

√√√√√√√√
U∑

u=1

h∑
j=1

ve∑
i=v0

x(ti)
2

U∑
u=1

h∑
j=1

(ve − v0 + 1)

, (36)

where v0 and ve represent the starting and the ending epochs, and as before, U
and h stand for the number of the user stations for both networks and the tested
time intervals, respectively. x(ti) denotes the corresponding coordinate increments
with respect to the ground truth. Allowing 10 epochs as the initialization time, the
computation starts from v0 of the 11-th epoch.

Fig. 8 shows the overall RMS of the user coordinates increments with respect to
different latencies using different prediction approaches. tP in the x-axis represents
the prediction interval, i.e., the latency. tP = 0 s stands for the case without latency.
As shown in Fig. 8, the overall RMS of the coordinate increments increases as the
latency increases. Among different prediction approaches, we observe that Approach
2, i.e., the one making use of the dynamic satellite clock model in the Kalman filter
of the network processing, has provided slightly better positioning results. For a
latency up to 10 s, the RMS of the horizontal coordinates has increased by several
millimetres compared to the case without latency. The vertical coordinates are in
general less accurate than the horizontal coordinates. The RMS of the vertical coor-
dinates amount to several centimetres at tP = 0 s, i.e., without latency. For a latency
up to 10 s, the corresponding RMS are degraded by several millimetres. Using the
prediction approach 2, no obvious difference is detected when applying the different
satellite clock constraints in our tests within a latency up to 10 s.
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Fig. 8. The overall RMS of the coordinate increments for all user stations from both networks and
all tested time intervals (from 5:00 to 6:00, 11:00 to 12:00 and 17:00 to 18:00 in GPST) on January
1, 2017. The approaches used for the prediction of the network corrections are listed in Table 4.
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To further test the functionality of both the approaches on another day, all the user
stations in both networks are processed from 11:00 to 12:00 (in GPST) on January
6, 2017. The overall RMS applying Approach 2+ with a latency of 10 s is, e.g.,
slightly lower than that applying Approach 1 with a difference of 1.1 and 0.5 mm in
the North- and East-directions, and 1.3 mm in the vertical direction. We see that
the differences in the user positioning results using both approaches are not very
significant. However, Approach 1 (by fitting polynomials) is based on the estimated
parameters of the network processing. This does not only require additional time
for separate computation after the network processing, the selection of the networks,
the multipath effects, the satellite geometry and the ionospheric activity may all
affect the selection of the models and the estimation time tE for different latencies.
Compared to Approach 1, Approach 2 is a more general and efficient approach that
directly follows the dynamic models of the network Kalman filter.

5. Conclusions

In the PPP-RTK processing, to enable integer ambiguity resolution at the user
side, the network corrections including the satellite clocks, satellite phase biases and
for fast ambiguity resolution, the ionospheric delays are provided to the users. In
practical use, however, the network products are delayed due to the data collection,
the network processing and the data transfer. This latency extends to several seconds
and could influence the real-time user positioning. This contribution tries to find and
compare different solutions with regards to this problem.

To realise the real-time user positioning, predictions of the network corrections
cannot be avoided. Based on the characteristics of the temporal behaviour of the
GPS satellite clocks, a 2-state dynamic model based on undifferenced and uncom-
bined observations is incorporated into the network processing and thus, enables the
prediction of the satellite clocks with the drift parameter estimated in the Kalman-
filter. However, before applying the satellite clock model, we should be very careful
with the real contents of the estimated parameters. To solve the rank deficiencies in
the observation equations, linearly independent transformations of the parameters,
but not the original parameters, were estimated with a minimum set of the S-basis
parameters constrained. When estimating the satellite clocks as unlinked parame-
ters, e.g., the biased satellite clock parameter contains other terms like the satellite
code biases, the receiver code biases and the receiver clocks of the reference station.
In this contribution, also based on diverse previous studies, a dynamic satellite clock
model is incorporated into the network processing with this issue clarified in detail.

Using the 1 Hz data from 2 networks in Australia, we predicted the network
corrections with two different approaches based on the data without and with the
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satellite clock model, respectively. The tested prediction intervals vary from 3 to
10 s, which correspond to a range of possible latencies of the network corrections.
We see that the accuracy of the user coordinate solutions is related to the latency
itself. Longer latency, which also requires a longer prediction interval of the network
corrections, leads to larger RMS in the user positioning results. The degradation
of the RMS of the coordinates is generally at mm-level for a latency up to 10 s.
Comparing the two prediction approaches in our tests, we find that Approach 2,
namely the one making use of the satellite clock model at the network part, has
provided slightly better positioning results. Approach 1 based on polynomial fitting
of the estimated parameters does not only require separate computation after the
network processing, the polynomial degrees and the amount of the data used for
estimating the polynomial coefficients may also vary according to the selection of the
network, the measurement environment, the satellite geometry and the ionosphere
activity. Compared to Approach 1, Approach 2 directly follows the dynamic models
in the Kalman filter and is found to be a more efficient and general approach for
prediction of the network corrections in case of latencies.
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Appendix A. Interpolation of the ionospheric delays

For interpolation of the user-specific ionospheric delays, denoted as ι̃su, the best
linear unbiased prediction (BLUP) method (Teunissen and Khodabandeh 2013) can
be used as follows:

E(

[
ˆ̃ι
ι̃u

]
) =

[
C Cv

Im 0m×(n−1)

] [
ῑo
v

]
, W = S−1 =

[
S11 S12

S21 S22

]−1

, (A.1)
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with

ˆ̃ι = [ˆ̃ιT1 , · · · , ˆ̃ιTn ]
T
,where ˆ̃ιr = [ˆ̃ι1r, · · · , ˆ̃ιmr ]

T
, (A.2)

ι̃u = [ι̃1u, · · · , ι̃mu ]
T
, (A.3)

ῑo = [ῑ1o, · · · , ῑmo ]
T
, (A.4)

C = en ⊗ Im, (A.5)

Cv =

[
01×(n−1)

In−1

]
⊗ em, (A.6)

v = [d12,GF , · · · , d1n,GF ]
T , (A.7)

where I, e and 0 represent the identity matrix, the vector of ones and the matrix
of zeros, respectively, with the subscripts denoting their sizes. ˆ̃ιsr represents the
estimated biased ionospheric delays from the network processing for receiver r and
satellite s, and ῑso is the unknown spacial mean of the term ῑsr for all the network
stations and the satellite s, where the term ῑsr at ti is formulated as:

ῑsr(ti) = ιsr(ti) + d1,GF (t1)− ds,GF (t1). (A.8)

The inverse of the ionospheric variance matrix S (see Eq. A.1) is taken as the weight
matrix W for the interpolation, where S is computed as:

S = c2ι

[
R11 R12

RT
12 R22

]
⊗ Cs, (A.9)

with [
R11 R12

RT
12 R22

]
= [rij], i, j = 1, · · · , n, u, (A.10)

Cs = diag(c21, · · · , c2m), (A.11)

where diag(.) denotes the diagonal matrix of a vector. csι characterizes the overall
uncertainty of the ionospheric delays and will be eliminated in Eq. A.14. c2s character-
izes the satellite-specific dependency of the signals, which changes with the elevation
angle βs

E of the satellite s:

c2s =
1

sin2 βs
E

. (A.12)

The spacial correlation function rij increases with the decreasing between-antenna
distance lij as:

rij = exp(−(
lij
lo
)
2

), (A.13)
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where lo is a pre-defined applicable inter-station distance for ionospheric spacial
correlation, and exp(.) denotes the natural exponential function. The BLUP of ι̃u
can then be determined as (see Eq. A.1):

ˆ̃ιu = ˆ̄ιo + ST
12S

−1
11 (ˆ̃ι− Cˆ̄ιo − Cvv̂), (A.14)

with ˆ̄ιo and v̂ solved from[
CTS−1

11 C CTS−1
11 Cv

CT
v S

−1
11 C CT

v S
−1
11 Cv

] [
ˆ̄ιo
v̂

]
=

[
CTS−1

11
ˆ̃ι

CT
v S

−1
11
ˆ̃ι

]
. (A.15)
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