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Abstract
Microbially induced corrosion (MIC) is a complex problem that affects various industries.

Several techniques have been developed to monitor corrosion and elucidate corrosion

mechanisms, including microbiological processes that induce metal deterioration. We used

zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of

the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensisMR-1 on the

corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit cor-
rosion of steel with which that organism has direct contact. However, when a carbon steel

coupon in contact with S. oneidensis was electrically connected to a second coupon that

was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based mea-

surements indicated that current moved from the S. oneidensis-containing chamber to the

cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon

deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of

that electrode. Our results illustrate a novel mechanism for MIC in cases where metal sur-

faces are heterogeneously covered by biofilms.

Introduction
Microbiologically influenced corrosion (MIC) is one of the most insidious forms of corrosion
and results in nearly 50% of all corrosion costs, which can add up to as much as 140 billion
USD in the US alone [1, 2]. In general, MIC is controlled by reactions occurring within the
metal substrate or at the substrate/electrolyte interface in the response to microbial metabo-
lism. These metabolic activities can include but are not limited to, direct metabolism of metals/
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alloys, metabolism of corrosion-products on the metal/alloy, or secretion of ligands or other
metabolites that enhance metal dissolution and/or metal oxidation [3–15]. Of particular
importance in MIC is the development of biofilms [10–15]. Microbial activities in biofilms
may give rise to chemical conditions (e.g. pH, O2 or metabolite concentrations) that are dra-
matically different from those of the bulk fluid. These activities exert considerable control on
the chemistry of fluids immediately adjacent to the metal surface [10, 14, 16, 17]. Microbial
activities can also limit the contact between O2 or other corrosive compounds and the metal
surface, inhibiting corrosion processes [18–24]; however, heterogeneous biofilms may induce
corrosion through formation of differential aeration and concentration cells on the surface of
the metal [25–29]. Given the diversity of mechanisms by which microbial activities may
enhance and/or inhibit corrosion, it is necessary to develop a clear mechanistic understanding
of the factors involved in MIC. Ultimately, this information may be used to develop preventive
methods and monitoring tools for MIC.

In this work, we used Shewanella oneidensisMR-1 as an organism to model MIC processes
principally due to its metabolic versatility, including aerobic respiration and dissimilatory Fe
(III) reduction [18, 30, 31]. Additionally, while the influences of Shewanella species (as model
Fe(III) reducing bacteria) on carbon steel corrosion have been examined, evidence for these
influences remains equivocal [18, 27, 31]. On one hand, it has been suggested that Shewanella
may inhibit steel corrosion by reductively dissolving Fe(III) (hydr)oxide protective layers, with
the resultant dissolved Fe(II) scavenging O2, and limiting interaction between O2 and the metal
surface [18, 27]. On the other hand, Fe(III) respiration may serve to reductively dissolve the Fe
(III) (hydr)oxide protective layer, thus enhancing deterioration of the steel [27].

In order to electrochemically monitor corrosion of carbon steel, we used zero-resistance
amperometry (ZRA) in a split-cell (referred to as “split-chamber” hereafter) technique to eval-
uate the roles, potential mechanisms, and electrochemical signatures associated with MIC in
the presence/absence of Shewanella. Variations of this approach have been widely used to
interrogate mechanisms of corrosion, and have been proposed as monitoring tools for MIC
[32–37]. The ZRA split-chamber technique allows the measurement of current flow and cou-
pling potential (Ecoupl) between two identical or dissimilar materials [32–36, 38, 39]. In addi-
tion, the environmental conditions of each chamber can be manipulated independently. For
example, by including bacteria in one chamber and sterile medium in the other chamber of the
split-chamber assembly we are able to mimic the conditions of heterogeneous metal surface
coverage, which are believed to lead to localized corrosion [30, 31, 40, 41, 42]. Thus, the split-
chamber setup can provide mechanistic information that is impossible to obtain using conven-
tional electrochemical techniques (e.g. linear polarization, electrochemical impedance spectros-
copy) [39]. As such, the ZRA based measurements may provide mechanistic insights into the
role of dissimilatory Fe(III) reducing bacteria in corrosion of carbon steel.

ZRA-based current and potential measurements were correlated with other measurements,
such as changes in aqueous chemistry or metal properties, to elucidate corrosion and corrosion
inhibition mechanisms [25, 42]. Estimations of corrosion based on electrochemical measure-
ments were confirmed by weight loss analysis. As opposed to other split chamber-based
approaches to evaluate MIC [37, 39], in the experiments described here, no effort was made to
exclude O2 from either of the WE1 or WE2 chambers, in order to monitor aerobic reactions.
The only differences between the systems were the presence or absence of S. oneidensis, and a
microbiologically-induced redox gradient was allowed to develop. S. oneidensis ability to trans-
fer electrons was monitored under redox conditions [43–45]. As such, this work may provide a
mechanism for, and approach to monitoring corrosion of metals that span redox regimes, geo-
chemical conditions (e.g. pipes) or experience conditions of alternating O2 availability (e.g.
coastal structures).
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Materials and Methods

Bacterial cultivation
Shewanella oneidensisMR-1 was routinely grown on a solid or liquid tryptic soy media (TSA
and TSB, respectively) consisting of tryptic soy powder (20 g/L) and bacto agar (15 g/L for
solid medium). Experiments were conducted in a minimal medium used by Myers and Neal-
son [31] that included: 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonicacid (HEPES),
9.0 mM (NH4)2SO4, 5.7 mM K2HPO4, 3.3 mM KH2PO4, 2.0 mMNaHCO3, 1.0 mMMgSO4,
0.49 mM CaCl2, 0.05 g/L yeast extract, vitamins and trace metals [46], 15 mM sodium lactate,
casamino acids (0.1 g/L), L-arginine HCl (20 mg/L), and L-glutamate (20 mg/L). In some
cases, lactate was omitted from the medium. Cells were grown for approximately 24 hours in
TSB to late log phase at room temperature and shaking at 120 rpm. Cells were harvested by
centrifugation, washed with lactate-free minimal medium (above), and resuspended in the
same medium. S. oneidensis growth was determined based on optical density measurements at
600 nm in a Helios UV/VIS spectrophotometer. Biofilm development was observed in batch
corrosion incubations (described below) using confocal microscopy (Olympus, FV1000 Confo-
cal laser scanning microscope). Cells were stained using Life Technologies (ThermoFisher,
Waltham, MA) Bac-Light bacterial viability and counting kit reagents according to the manu-
facturer’s instructions [47].

Corrosion incubations
Carbon steel (UNS G10180) samples were ground using progressively finer SiC papers includ-
ing 240, 320, 400, and 600 grit, as described in ASTM standard E1558 [48]. Samples were steril-
ized by placing them in a glass chamber filled with non-reactive nitrogen. The chamber was
then placed in an oven at 160°C for 4 hours. This process sterilizes the metal while minimizing
alteration of the metal surface, which occurs during other standard sterilization approaches
(e.g. autoclaving) [49]. Briefly, flat steel coupons (for batch incubations) were placed in serum
tubes that were sealed with thick butyl rubber stoppers with aluminum crimp seals, while cylin-
drical coupons (for ZRA measurements) were placed in the split chamber assembly (described
below). Air was evacuated from serum tubes or split chamber assemblies, and replaced with
N2. Evacuation and N2 replacement were conducted three times, after which, the serum tubes
or cell assembly was placed in an oven at 160°C for four hours.

Batch corrosion experiments were conducted in 125 mL flasks containing 50 mL of minimal
medium, and sterilized coupons were added to the medium aseptically. A 10% volume inocu-
lum of TSB-grown S. oneidensis was added to minimal medium at an optical density of 0.912 at
600 nm, after being washed in minimal media three times. Cultures were incubated at 22°C
and with shaking (120 rpm). Samples were periodically recovered and growth was determined
based on the optical density of the cultures, which was determined as described above. Cells
were removed from suspension by centrifugation, and the supernatant was removed for subse-
quent measurements of dissolved Fe(II) and lactate concentrations (described below). Samples
intended for measurement of dissolved Fe(II) were preserved in 0.5 M HCl.

To evaluate steel corrosion in the split chamber format, two glass cells were assembled with
250 mL of minimal medium in both chambers, which were separated by a salt bridge consisting
of a cation exchange membrane (CMI-7000S; Membranes International Inc.; Ringwood, NJ)
that was primed in sterile 5% NaCl solution at 40°C for 24 hours prior to use. Primed mem-
branes were aseptically inserted into split chamber assemblies after sterilization of the assem-
blies (described above). Polished working electrodes (referred to as WE1 andWE2) were
included in the two cells, with a saturated calomel electrode (SCE) reference electrode deployed
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in the cell containing WE1. EachWE had an exposed area of 0.5 cm2. Current and potential
were recorded using a Gamry Reference 600 potentiostat/galvanostat in zero resistance ammeter
(ZRA) mode. In this configuration, a positive current represents flow of electrons fromWE1 to
WE2. To confirm the sign convention for current, experiments were conducted with Al (WE1)
and Cu (WE2) coupons in an identical configuration (S1 Fig). The resulting galvanic current
from this experiment was positive, verifying our sign convention based on electrochemical ther-
modynamics for this system (S2 Fig). Galvanic potential readings were collected at in two min-
ute intervals during operation of the split-chamber experiments. For experiments that included
cells, chamber WE1 received an inoculum of concentrated S. oneidensis cells that were prepared
as described above. Where appropriate, lactate was re-amended to theWE1 chamber from a
sterile 150 mM stock solution to achieve a concentration of approximately 8 mM. Samples were
periodically removed from both cells of the assembly as described above to measure cell density,
pH, dissolved Fe(II), and lactate. At the conclusions of batch and ZRA experiments, the steel
coupons were removed subjected to weight loss analysis (described below).

Corrosion rates were determined by weight loss analysis (WLA) using ASTMmethod G01-
03 [50]. Samples were rinsed in deionized water, wire brushed, and, then, immersed in Clarke’
Reagent (1000 mL 12.1 M HCl, 20 g antimony trioxide, and 50 g stannous chloride) for 30 sec-
onds to remove surface oxides. After the Clarke’s Reagent bath, the coupons were rinsed with
DI water, dried, and weighed. The Clarkes’ reagent wash, DI wash, and weighing were repeated
until no mass was lost between wash cycles, indicating that all oxides were removed [50]. The
total mass loss was recorded indicating the physical weight that was lost due to corrosivity of
the environment. Corrosion rate was calculated using Eq 1

ðCR ¼ ðW�KÞ=ðD�A�tÞÞ ð1Þ
where CR represents the corrosion rate in mm/yr, K (8.76 × 104) is a dimensionless constant,
W is the mass loss in grams, A is the exposed surface area in cm2, T is exposure time in hours
and D is the density of carbon steel UNS G10180 in g/cm3 [50].

Analytical techniques
Dissolved Fe(II) was quantified by ferrozine assay [51], and lactate was quantified by high-per-
formance liquid chromatography, using and a Shimadzu LC-10A HPLC system (Shimadzu Sci-
entific Instruments, Inc.; Columbia, MD) equipped with an Aminex HPX-87H column (300
mm × 7.8 mm; Bio-Rad Laboratories, Inc.; Hercules, CA) with UV (254 nm) detection (SPD-
10A). A mobile phase of 0.008 N H2SO4 was used at a flow rate of 0.6 mL/min.

Results

Batch experiments
Batch experiments were conducted to establish a baseline for corrosion rate in the absence and
presence of S. oneidensis. In experiments that included carbon steel coupons incubated under
static conditions, more extensive corrosion was observed in uninoculated medium than in
incubations that included S. oneidensis (Fig 1). In batch experiments, activity of S. oneidensis
was indicated by lactate depletion and accumulation of dissolved Fe(II) (Fig 1). pH increase
was indicative of reduction of Fe(III) (hydr)oxide phases (Fig 1). Addition of S. oneidensis to
incubations that did not initially receive inoculation arrested further corrosion (Fig 1). These
results indicate that the activities of S. oneidensis in direct contact with carbon steel limit corro-
sion of the carbon steel.
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Split-chamber incubations
A series of different environments along with biotic and abiotic controls were then tested to
determine the effect of bacteria on the corrosion of carbon steel coupons during ZRA testing
(Table 1). Corrosion rates of each coupon were reported as well as the ratio of corrosion rates
between WE2 andWE1 (Table 1). Similar rates and extents of corrosion were observed for
WE1 andWE2 during ZRA experiments that did not include cells in either chamber (Table 1)
and the corrosion rate ratio (CRWE2/CRWE1) was approximately one, indicating the same
redox reactions (i.e. Fe(0) oxidation coupled to O2 reduction, Reactions 1 and 2), were occur-
ring in both chambers. Likewise, when both chambers received inoculation with S. oneidensis,
minimal current was observed (Table 1), indicating little electron transfer between the two
chambers. Taken together, these results indicate that when both compartments were under
identical environmental conditions, there was not enough electrochemical driving force to
measure a net current between working electrodes. This scenario resembled the conditions
shown in electrochemical noise analysis (ENA) [52, 53].

When WE1 was inoculated with bacteria in the presence of lactate, however, the corrosion
rate ratio (CRWE2/CRWE1) was> 2.25, with a maximum coupled current approximately 10
times higher than control experiments. It should be noted that couple potentials were similar
to sterile controls. However, when WE1 was inoculated with bacteria in the absence of lactate,
the corrosion rate ratio (CRWE2/CRWE1) was between 1.4 and 2 (on par with the ZRA controls),
with minimum couple currents. In batch experiments the ratio of corrosion rate of uninocu-
lated samples compared to inoculated samples was approximately 1.5, indicating that connect-
ing the metal samples through a ZRA in a split-chamber format in the presence of lactate
caused an increase in corrosion on the biofilm-free WE2. Additionally, lactate was not con-
sumed and Fe(II) was not produced in environments without bacteria (S1 Table). The role of
lactate as a corrosion inhibitor was indicated by sterile controls supplied with lactate having
half the corrosion rate as non-lactate supplied controls (Table 1). The inhibitory properties of
lactate have been previously reported [54].

Fig 1. Mass loss from carbon steel coupons (A), lactate concentration (B), dissolved Fe(II)
concentration (C), and pH (D) in incubations that contained growthmedium and steel coupons, and
were (&) inoculated with S. oneidensis immediately, (●) inoculated with S. oneidensis after 2 day
preincubation of the coupon, or (▲) in uninoculated medium. Error bars represent one standard
deviation of triplicate incubations.

doi:10.1371/journal.pone.0147899.g001
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To better interpret these results, we evaluated the current over time during ZRA experi-
ments. In ZRA split-chamber tests, before inoculation, WE1 andWE2 were exposed to identi-
cal conditions and behaved similarly to control experiments (Fig 2). During this period, Fe(0)
oxidation (Reaction 1) and O2 reduction (Reaction 2) reactions occurred at the surface of both
electrodes. At near neutral pH, the Fe(II) formed via Reaction 1 was further oxidized via Reac-
tion 3. Coupled with the O2 reduction reaction, the reactions formed an amorphous iron
hydroxide layer with a mixed Fe(II)/Fe(III) oxidation state [54]. During this period (A), little
net electron exchange between chambers was observed, as evidenced by the limited galvanic
current (Fig 2).

Fe ¼ Fe2þ þ 2e�; E ¼ 0:44 V � 0:0295log10½Fe2þ� Reaction1

O2 þ 2H2Oþ 4e� ¼ 4OH�; E ¼ 1:23� 0:059pOH Reaction2

Fe2þ ¼ Fe3þ þ e�; E ¼ �0:77V � 0:059log10½Fe3þ=Fe2þ� Reaction3

Upon inoculation of WE1, an increase in positive galvanic current was observed concurrent
with lactate depletion and dissolved Fe(II) accumulation (Env 1, WE1; Fig 2). Little change in
lactate and dissolved Fe(II) concentration was observed in the uninoculated chamber (WE2).
Comparing these results to the increased corrosion rate suggests that the Fe2+ generated may
be part of an amorphous mixed valence (Fe2+/Fe3+) protective layer. During this period (B), S.

Table 1. Summary of split-chamber ZRA experimental conditions and electrochemical and corrosion characteristics during the incubations.

Environment Carbon Source Inoculation Inoculation Time (hr) CR (mm/yr) CRRa Imax (μA) ECoupl (mVSCE)

1 WE1 Lactate S. oneidensis 48 0.07 2.4 16 -720

WE2 Lactate Sterile N/A 0.17

WE1 Lactate S. oneidensis 48 0.08 2.23 12 -712

WE2 Lactate Sterile N/A 0.19

2 WE1 Lactate S. oneidensis 0 0.04 2.25 6.15 -720

WE2 Lactate Sterile N/A 0.1

3 WE1 None S. oneidensis 48 0.09 2 0.15 -708

WE2 None Sterile N/A 0.18

4 WE1 None S. oneidensis 0 0.07 1.3 0.91 -727

WE2 None Sterile N/A 0.09

5 WE1 Lactate (+) S. oneidensis 48 0.04 6.36 31 -690

WE2 Lactate Sterile N/A 0.23

C1 WE1 Lactate S. oneidensis 48 0.09 1.11 0.88 -730

WE2 Lactate S. oneidensis 48 0.1

C2 WE1 Lactate S. oneidensis 0 0.02 - 1.21 -718

WE2 Lactate S. oneidensis 0 0.06

C3 WE1 Lactate Sterile N/A 0.1 1.11 0.87 -690

WE2 Lactate Sterile N/A 0.11

WE1 Lactate Sterile N/A 0.08 1.1 0.97 -686

WE2 Lactate Sterile N/A 0.09

C4 WE1 None Sterile N/A 0.19 1.08 0.32 -740

WE2 None Sterile N/A 0.21

aCRR is corrosion rate ratio, calculated as CRWE2/CRWE1.

doi:10.1371/journal.pone.0147899.t001
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Fig 2. Galvanic current, lactate concentrations, and Fe(II) concentrationsmeasured in split-chamber incubations. Env. 1 indicates incubations that
received S. oneidensis in theWE1 chamber after 2 d of preincubation, and Control 3 indicates incubations that did not receive inoculation. Lactate and
dissolved Fe(II) concentrations are shown in both theWE1 andWE2 chambers. Panels A-C illustrate configuration of split-chamber incubations and ZRA
measurements, as well the proposed redox processes that are hypothesized to occur during different phases (A-C) of the incubations.

doi:10.1371/journal.pone.0147899.g002
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oneidensis reduced the Fe(III) formed on the surface of WE1 (Reaction 4). The Fe(II) formed
during lactate metabolism was then oxidized to reform iron hydroxide, with the excess Fe(II)
diffusing into the bulk solution (Fig 2). Coupling the electrochemical oxidation of Fe(II) with
biological reduction of Fe(III) and O2 created a sustainable iron oxidation/reduction cycle. O2

was depleted by both enzymatic activity and by reaction with Fe(II) at the surface of WE1, pro-
ducing a differential aeration scenario in which excess electrons produced during lactate oxida-
tion travel through the ZRA fromWE1 to WE2 (Fig 2). The electroneutrality of WE1 is
therefore maintained by the biological cycle, where lactate oxidation can proceed at a faster
rate due to the increase the O2 reduction reaction on WE2. As the O2 reduction reaction
increases, an increase in Fe(0) oxidation onWE2 occurs in order to maintain local electroneu-
trality in the WE2 chamber, leading to greater corrosion of WE2 compared to WE1 (as deter-
mined by weight loss; Table 1). Additionally, lactate consumption far exceeded that necessary
to produce the 60 μM Fe(II) observed, further indicating that lactate oxidation by S. oneidensis
was coupled to both O2 and Fe(III) reduction in the WE1 chamber. This activity has been pre-
viously suggested to limit corrosion of steel, whereby microbiological O2 respiration limits Fe
(0) oxidation (Fig 2B), while biogenic Fe(II) (from bioreduction of Fe(III) (hydroxide protec-
tive layer) further limits interaction between O2 and Fe(0) [18, 28].

CH3CHOHCO
� þ 2H2O ¼ CH3COO

� þ HCO3 þ 5Hþ þ 4e� Reaction4

Upon complete depletion of lactate, galvanic current became negative (Fig 2C) indicating
the flow of electrons was fromWE2 to WE1. During this period (C), the depletion of lactate
shut down the Fe oxidation/reduction cycle maintained by S. oneidensis (Reaction 4, Fig 2),
allowing O2 to return to the surface and participate in surface reactions. The bacterial biofilm
acted as a protective layer, inhibiting further Fe(0) oxidation causing electrons fromWE2 to be
drawn towards WE1 to participate in the O2 reduction reaction, cathodically protecting WE1
and leading to further corrosion of WE2.

To test the hypothesis that lactate metabolism in the WE1 chamber created a protective bar-
rier against O2 interactions with the steel surface of WE1, similar experiments were carried out
in which S. oneidensis was added to the WE1 chamber, but lactate was periodically replenished
in that chamber. Upon addition of S. oneidensis to the WE1 chamber, an increase in current
was observed (Fig 3A) in a fashion similar to that observed previously (Fig 2). The increase in
current was concurrent with lactate consumption and Fe(II) formation (Fig 3B and 3C). As lac-
tate was depleted, current again decreased, but upon amendment with additional lactate, cur-
rent again increased (Fig 3A). However, the increase in current was not of the same magnitude
as that observed with the initial addition of cells. The addition of lactate to the WE1 chamber
led to greater Fe(III) reduction than was observed during the initial period of lactate consump-
tion, and the Fe(II) concentration remained high after the second addition of lactate, which
again led to an increase in current (Fig 3A–3C). Replenishment of lactate enhanced microbial
metabolism on the WE1 side, enhanced current, and led to more corrosion of WE2, and
slightly less corrosion of WE1 resulting in a corrosion rate ratio of 6.4 (Table 1). These findings
support the hypothesis that microbial lactate oxidation in one chamber provided a driving
force for increased O2 reduction reaction in WE2, resulting in enhanced corrosion of WE2 and
inhibited corrosion of WE1 as explained above.

Based on the corrosion rate ratio numbers presented in Table 1, it is clear that the presence
of bacteria is necessary for corrosion enhancement of the uncovered WE2 compared to con-
trols. This corrosion enhancement is further accelerated in the presence of lactate. To ensure
that WE1 was covered by a uniform biofilm, confocal images indicated the presence of a robust
biofilm on steel coupons in the presence of lactate, while only minimal coverage of coupons
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Fig 3. Galvanic current, lactate concentrations, and Fe(II) concentrations (panels A-C, respectively)
measured in split-chamber incubations. Lactate and Fe(II) concentrations in WE1 (which received S.
oneidensis and lactate amendments) andWE2 chambers are depicted with& and●, respectively.

doi:10.1371/journal.pone.0147899.g003
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was observed in the absence of lactate (Fig 4), similar to previous results [55, 56]. Lactate [and
Fe(III)] metabolism, along with the magnitude and direction of current (fromWE1 to WE2)
suggest that activities of S. oneidensis biofilms lead to the development of excess reducing
power on the WE1 side of the split-chamber assembly, which migrated to, and reacted on
WE2, leading to greater oxidation of Fe(0) by O2 reduction (Fig 1B). Subsequently, corrosion
rate ratios (WE2/WE1) of>2.25 were consistently observed in the environments containing
both bacteria and lactate (Table 1), and similar increases in current were observed upon inocu-
lation of the WE1 chamber (maximum current, Table 1). In the absence of lactate, the bacteria
provided some corrosion protection via biofilm formation, indicating that the bacteria alone
may reduce Fe(III) on precorroded metal surfaces. This is further indicated by the low Fe(II)
concentration in solution (S1 Table). The corrosion protection in the presence of bacteria with-
out lactate was comparable to batch experiments not connected through a ZRA (Fig 1).

Discussion
Previous work to evaluate the influences of Fe(III) reducing bacteria on corrosion of carbon
steel are inconclusive. While some authors suggested that the activities of Shewanella species
may inhibit corrosion [16, 43, 57, 58] others have shown that Shewanella species enhanced cor-
rosion of steel [31, 32]. In the current work, we have observed that, depending on the presence
and distribution of biofilm, the activities of S. oneidensis both inhibit and enhance corrosion of
steel. When S. oneidensis has direct contact with steel, corrosion is inhibited, likely due to O2

scavenging by a combination of metabolic consumption and by reaction with biogenic Fe(II)
[16, 31, 32, 57]; however, when the steel surface in contact with S. oneidensis is electrically con-
nected to an uncovered portion of steel, the corrosion of the uncovered portion is enhanced by,
at least, a factor of 2. Such a scenario could be quite common in “real world” situations, where
biofilm coverage is likely to be heterogeneous [6]. This heterogeneous surface coverage by bio-
films and consequent development of regions of localized corrosion on the metal surface has
been suggested as the cause for localized corrosion [13, 26, 32, 37, 59], and in the experiments

Fig 4. Confocal laser scanningmicrographs of Bac-Light-stained S. oneidensis incubated for 72 h on carbon steel coupons in mediumwithout (A)
and with (B) lactate.

doi:10.1371/journal.pone.0147899.g004
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reported here, we have been able to illustrate this phenomenon experimentally and provide a
possible mechanism.

We have also shown that the activities of S. oneidensis induce conditions that enhance cor-
rosion of uncovered metal surfaces. Given that lactate oxidation was supported not only by bio-
logical activities but also by the O2 reduction reaction onWE2, iron dissolution in WE2
occurred at a faster rate than in the uncoupled scenario so that local charge neutrality was
maintained in the WE2 chamber. To further verify this mechanism, little current was observed
when no lactate was present. In the absence of lactate, there was less driving force for reduction
of the Fe(III) hydroxide layer (“Environment 4” in Table 1). However, the nature of this associ-
ation is not completely clear, since correspondingly greater current was not observed with the
high Fe(II) accumulation that resulted from lactate reamendment (Fig 3).

Implications
This work experimentally illustrates a mechanism for the localized corrosion of uncovered
metals at the biofilm/metal interface and it is different from what has been suggested previ-
ously. Similar ZRA based approaches have been exploited to elucidate mechanisms of MIC and
proposed as MIC detection and monitoring approaches [34, 35, 37, 60]. It is notable that in
many of these cases, a “preconditioning current” was applied to polarize the electrodes, and
introduce an artificial galvanic current between the cathode and anode such that the anode was
protected and only corroded slightly [35, 37]. Electrochemical noise analysis, which does not
involve preconditioning of electrodes and requires both identical electrodes and environments,
has been proposed as an MIC monitoring approach, whereby ZRA-measured electrochemical
noise is indicative of modification of metal surfaces [35, 37, 38, 58]. It has been proposed that
the observation of minimal “white noise” in ZRA measurements could be indicative of uniform
corrosion (i.e. our uninoculated incubations), while bursts of current (regardless of which
direction) could be indicative of localized corrosion [60]. By allowing the biofilm to protect the
metal in the inoculated chamber (WE1) and not preconditioning the metals, the split-chamber
setup has the advantage of separating different environments, and allowing us to monitor the
flow of electrons from an area protected by a biofilm to an uncovered area of metal. As such,
this work may provide mechanistic understanding and a monitoring method for corrosion of
metals that span redox regimes, geochemical conditions (e.g. pipes) or experience conditions of
alternating O2 availability (e.g. coastal structures).
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