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Abstract 

Confusion is an emotion that is likely to occur while learning complex information. 

This emotion can be beneficial to learners in that it can foster engagement, leading to 

deeper understanding. However, if learners fail to resolve confusion, its effect can be 

detrimental to learning. Such detrimental learning experiences are particularly 

concerning within digital learning environments, where a teacher is not physically 

present to monitor learner engagement and adapt the learning experience accordingly. 

However, with better information about a learner’s emotion and behaviour, it is 

possible to improve the design of interactive digital learning environments (IDLE) in 

promoting productive confusion but also in preventing overwhelming confusion. This 

article reviews different methodological approaches for detecting confusion, such as 

self-report, behavioural and physiological measures, and discusses their implications 

within the theoretical framework of a zone of optimal confusion. The specificities of 

several methodologies and their potential application in IDLEs are discussed. 

 

Keywords: confusion, interactive learning environments, interface design, 

learning, emotion 

Introduction 

Interactive digital learning environments (IDLE) are now ubiquitous in formal 

and lifelong learning contexts. These environments often provide access to a vast 

amount of comprehensive information, and a multitude of learning tasks that may be 

more or less structured. Moreover, depending on their implementation, they often 
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assume learners will work alone with limited or sporadic access to a teacher or 

facilitator. The complexity of learning activities in these environments may produce 

an emotional response in learners that may support or hinder their learning. For 

example, unexpected feedback can challenge students and interrupt the flow of a 

learning sequence. In the classroom teachers are most of the time able to assess the 

nature of the emotional states their students experience and the intensity of these 

states. Teachers can then react accordingly, for example by slowing down the pace of 

activities if students seem perplexed, or inversely by offering a challenge to solve if 

students seem disengaged from the learning task. In IDLEs, the emotional states of 

students are not easily monitored yet, despite a call for systems to be adaptive to 

emotional responses. 

The emerging field of affective computing focuses specifically on the 

influence of emotions in human-computer interactions, including learning 

interactions. This field considers ways of detecting users’ emotions and also the 

simulation of affective responses by computer systems (see Calvo, D’Mello, Gratch, 

& Kappas, 2014). In digital contexts, some basic emotions such as anger, disgust, 

happiness, sadness, and less obviously, surprise (Ekman, 1992) do not seem to be as 

relevant as is a set of more complex, academic emotions such as confusion, boredom, 

frustration, and flow (Pekrun, Goetz, Titz, & Perry, 2002; Pekrun & Stephens, 2012). 

This article focuses on one of these more complex emotions in IDLEs: confusion.   

Confusion is an emotion that is likely to occur while acquiring complex 

knowledge. This emotion can be beneficial to learners in that it assists in fostering 

engagement and can support the development of a deeper understanding. However, if 

learners fail to resolve confusion after a period of time, its effect can be detrimental to 

learning (Rodrigo et al., 2009). In these instances, learners can experience negative 
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feelings, such as frustration and then boredom, before giving up. Such detrimental 

learning experiences are particularly concerning within IDLEs if a teacher or the 

learning environment itself is not able to identify or monitor learner engagement and 

adapt the learning experience accordingly. 

With better information about learners’ emotions, it may be possible to design 

vthat effectively engage learners and/or support them with feedback or self-regulation 

strategies. However, individual differences among learners mean there are no 

universal rules about when and how to intervene on the basis of emotional responses 

to the learning experience. Hence, real-time and individual detection of confusion 

during learning could provide crucial information and improve the quality of adapting 

and scaffolding learning pathways. 

In this article, we firstly present a conceptual framework of confusion in 

IDLEs. We then review relevant methodological approaches for detecting confusion 

and provide insights for real-world applications of confusion detection. 

Understanding Confusion in Learning  

Among academic emotions, confusion is particularly interesting because of its 

complex nature. Confusion is an emotion that is thought to occur spontaneously 

during complex learning tasks (D’Mello, Lehman, Pekrun, & Graesser, 2014; Lipson, 

1992). A remarkable characteristic of confusion is that its impact on learning 

outcomes can be either beneficial or detrimental, depending of how confusion is 

handled by learners. It is hence important for educators to understand its process, 

maintenance and resolution. Because of its prevalence in learning situations, the 

present article aims to address the topic of detecting learners’ confusion with a 

particular focus on IDLEs. 
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A Conceptual Framework of Confusion in Interactive Digital Learning 

Environments 

In learning situations, a learner can experience confusion as an affective 

response to the cognitive processing of information, and as such has been considered 

an epistemic emotion (Pekrun, 2006). This concept of confusion is used in this article 

because it reflects situations in which a learner may respond to new information 

which might be inconsistent with their existing knowledge structures (D’Mello et al., 

2014). This experience is particularly relevant to IDLEs in which learners may have 

access to diverse information. 

When attempting to learn new material, learners may detect some 

inconsistencies within the information presented, or between the information 

presented and their own prior knowledge. These inconsistencies lead to a cognitive 

disequilibrium or impasse, which can also be brought about by an unexpected novel 

issue. The cognitive disequilibrium can for example be produced with what has been 

referred to as a ‘breakdown scenario’ that describes when the behaviour of a system 

(e.g., a key that does not turn in a lock anymore) is abnormal or does not go as 

expected (D’Mello & Graesser, 2012; Pekrun & Stephens, 2012). In this case, the 

cognitive disequilibrium can be caused by the perception of an unexpected response 

from a system (i.e., the system ceases to function properly or breaks down), which 

would be inconsistent with the prior understanding that learners have about it.  

Unexpected feedback to a learner’s response within a task can also be a source 

of cognitive disequilibrium. For example, a surprising outcome of an action (e.g., 

being told you have the ‘wrong answer’ as feedback in a quiz) or a disagreement with 

an intelligent tutoring agent (D’Mello & Graesser, 2006) can lead to a similar 

experience of disequilibrium. All these types of impasses are likely to provoke 
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confusion, which is interpreted as the affective signature of a cognitive disequilibrium 

(Craig, Graesser, Sullins, & Gholson, 2004a; Lehman, D’Mello, & Graesser, 2012; 

Sullins & Graesser, 2014). The results from several studies suggest that achievement 

of understanding of complex learning sequences is typically linked with impasses and 

consequently with confusion (D’Mello & Graesser, 2012; VanLehn, Siler, Murray, 

Yamauchi, & Baggett, 2003). Confusion can be regarded as a normal stage of the 

learning process and to understand associated benefits and risks is crucial for 

educators when designing effective IDLEs. 

The Benefits and the Risks Associated With Confusion 

Confusion can potentially be beneficial or detrimental in the learning process. 

This notion is supported by research focused on the dynamics of emotions within 

IDLEs, particularly intelligent tutoring systems. In a series of studies, researchers 

have asked participants to report the emotion that described best their current feeling 

at regular intervals (D’Mello & Graesser, 2012; D’Mello et al., 2014). Results from 

these studies have shown that: (1) emotions evoked during learning tasks are transient 

and (2) that the transitions between emotions follow typical patterns. The resulting 

model based on these observed patterns, called the model of affect dynamics, 

describes articulations between four emotional states: 

 

Flow/Engagement  ⇄  Confusion  ⇄  Frustration  ⇄  Boredom 

 

This model highlights that significant transitions from one emotion to another 

are only observed between immediate neighbours. For example, the immediate 

transition from flow to frustration, or from confusion to boredom, is observed only 

infrequently. 
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Progress in complex learning environments seems to be associated with 

experiencing confusion at some stage during the learning task. Indeed, because of the 

tight links between cognitive processes and confusion, the latter is likely to be present 

during any challenging learning sequence (Lehman et al., 2012). This can be 

explained by the physiological implications of disequilibrium for the learner. 

Mandler’s discrepancy theory (Mandler, 1984) likens cognitive disequilibrium to an 

interruption that breaks the continuous flow of acquisition of information in a learning 

sequence. An interruption can potentially produce a change of mood and 

physiological responses of learners such as heart rate and electrodermal activity 

(Macdowell & Mandler, 1989). These physiological changes are the indicators of a 

general increase of emotional arousal, which can be beneficial in promoting a greater 

cognitive engagement in the learning task. In such situations confusion is considered 

constructive because it leads to positive learning outcomes. That is learners are able to 

resolve confusion by engaging deeper cognitive activities (D’Mello & Graesser, 

2012). Empirical evidence consistent with a positive effect of confusion on learning 

performances has been collected in several studies (D’Mello & Graesser, 2014; 

D’Mello et al., 2014; Graesser & D’Mello, 2012; Lehman et al., 2012; Lehman, 

D’Mello, & Graesser, 2013). Therefore, experiencing confusion during learning is not 

necessarily unwelcome, and pedagogical interventions designed to induce confusion 

can sometimes be an effective way to facilitate learning.  

However, confusion can also be associated with negative learning experiences. 

According to the model of affect dynamics, confusion can lead to a state of frustration 

that eventually can lead to boredom (D’Mello & Graesser, 2012). When learners fail 

to resolve their confusion in IDLEs, where they maybe have less scaffolding or 

support, it can be detrimental, leading to frustration or boredom. This scenario is 
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likely to generate a negative experience for learners and might contribute to them 

giving up on the learning session altogether (Baker, D’Mello, Rodrigo, & Graesser, 

2010; D’Mello et al., 2014). In this case, confusion can be retrospectively labelled as 

‘non-constructive’, or ‘non-productive’, because of its detrimental effect on learning 

outcomes (Arguel & Lane, 2015). Hence, it may be reasonable to consider that 

detecting different types of confusion – constructive and non-constructive – would not 

be informative since the confusion experienced during learning is the same regardless 

of its outcome from the learner’s point of view. 

The effect – positive or negative – produced by confusion depends on whether 

a learner is able to resolve the confusion by engaging in in-depth processing of the 

source of confusion: a cognitive disequilibrium (Lehman & Graesser, 2015). The 

resolution of the cognitive disequilibrium is crucial: it leads the learner from 

confusion to an affective state of engagement/flow, whereas a failure to resolve might 

lead to frustration (D’Mello & Graesser, 2012). Because it seems impossible to 

distinguish constructive confusion from non-constructive confusion when confusion 

occurs, there is a need for mechanism or method to accurately detect confusion and its 

characteristics such as duration or intensity, which could allow the prediction of 

future positive or negative outcomes. 

The Zone of Optimal Confusion 

As described above, there are good reasons to think that confusion during 

learning can be beneficial when it produces a response by learners that engages them 

in deeper information processing. But it can also be detrimental when the resolution 

of the impasse is not successful. This area between a minimum level and a maximum 

level of confusion can be conceptualised as a zone of optimal confusion (D’Mello et 

al., 2014; Graesser, 2011). The zone of optimal confusion is related to individual 



 10 

characteristics of learners, such as their prior knowledge regarding the topic of the 

learning (Lodge & Kennedy, 2015). According to this conception, when learners 

detect an impasse during a learning sequence, they can move from a state of cognitive 

equilibrium to a state of cognitive disequilibrium. As a result they can begin to lose 

understanding of the learning material and start to experience confusion. The 

boundary between these two states can be modelled with the threshold Ta. From there, 

the learner can either resolve the impasse and return to an engaged learning, or they 

can stay stuck if they fail to revolve the impasse. From here, learners would move 

beyond a second threshold (Tb) and progress from confusion to frustration (see Figure 

1). 

 

– Insert Figure 1 here – 

 

IDLEs can be designed to support learners to positively navigate the zone of 

optimal confusion through the implementation of features that address two types of 

interventions (Arguel & Lane, 2015). Firstly, inducing confusion in order to cross the 

threshold Ta can be a useful technique to engage learners in a difficult learning task. 

This intervention can be achieved, for example, by highlighting some contradictions 

in the learning material, or by causing a cognitive conflict between new pieces of 

information and learner’s naïve conception (Limón, 2001). This is expected to induce 

a temporary confusion, which once resolved, should foster engagement in the learning 

activity. However, if learners fail to resolve their confusion, they are likely to drift 

towards frustration, passing the threshold Tb. To prevent this unwanted event, the 

learning environment can offer a second type of intervention, designed to manage the 

level of confusion below Tb. For example, some guidance can be provided in the form 
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of adaptive feedback messages, or by the induction of self-regulation strategies 

(Butler & Winne, 1995; Narciss, 2004). The main problem with interventions aiming 

to control trajectories of learners within the zone of optimal confusion is that the 

locations of the thresholds can be highly variable from one individual to another. This 

means that it is important to explore techniques that can individually detect the 

confusion of learners. 

Inter-Subject Variability and the Necessity of Detecting Confusion  

Around the zone of optimal confusion, the thresholds Ta and Tb are not fixed 

and their positions depend of several individual factors. For example, factors such as 

age, motivation, personality, confidence, level of prior knowledge, and learning 

approach are likely to have a moderating effect on the impact of confusion over 

learning outcomes (Lehman et al., 2013; Sullins & Graesser, 2014). Consequently, it 

does not seem reasonable to design learning situations in which the boundaries of 

confusion would be the same for all participants.  

Interventions aiming to induce or to manage the level of confusion, as 

described above, require accurate information about the learner’s real-time experience 

of confusion. In the face-to-face classroom settings, dealing with confusion is less 

problematic because teachers can observe physical and verbal cues that allow them to 

detect when students are experiencing confusion (Goleman, 1995). Hence, teachers 

may adjust learning activities to accommodate students’ different levels of confusion. 

In IDLEs, the individual learners’ level of confusion, and moreover, differences 

between learners’ confusion are more difficult to assess and thus may be overlooked. 

Consequently, the learning activity may be less adaptive than in a face-to-face 

learning experience facilitated by a teacher and it could be more difficult to avoid the 

negative effects of confusion. Implementing systems and strategies in IDLEs, which 
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could detect and control confusion could reduce the risks of frustration which is likely 

to happen when confusion is left unresolved (see Calvo et al., 2014). For this reason, 

numerous studies have attempted to develop methods to detect confusion in learning 

environments.  

The Detection of Confusion 

Self-Report 

If confusion is an emotion, it is possible that those who experience it would be 

able to report it. Hence, the simplest method of measurement is to ask participants to 

report their level of confusion during or after learning tasks. In some studies, 

confusion scores were reported from a binary choice (i.e., 0 = not confused, 1 = 

confused) at regular intervals during a learning session (Lehman et al., 2012). In 

others studies, a finer measurement was obtained using Likert-type scales, on which 

participants rated their level of experienced confusion, for example from 1 to 6 

(D’Mello & Graesser, 2014), or from 0 to 10 (Lehman et al., 2012). Another possible 

method consists of asking participants to choose from a list of emotions the one they 

felt the most appropriate to describe their emotional experience at specific points of 

the learning session (Baker et al., 2010; D’Mello & Graesser, 2014). Some 

experimenters have also asked participants to orally communicate their feelings 

during the interaction with a learning environment, in an emote-aloud protocol 

(D’Mello & Graesser, 2006; Sullins & Graesser, 2014). This was done synchronously 

at regular intervals (Baker et al., 2010), or retrospectively using video recordings of 

participants’ faces to cue recall and to rate their emotions after a learning task 

(D’Mello & Graesser, 2014). But despite its apparent ease-of-use, self-reporting of 

emotional states can be a problematic data collection method.  
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Self-reporting of emotions is understandably sub-optimal when the execution 

of this additional task interferes with the primary learning task and affects learning 

performance. Another issue with self-reporting is the lack of sensitivity, possibly due 

to social and cognitive biases such as honesty and willingness to report confusion. 

Moreover, it has been shown that some emotional intelligence is required from 

participants to be able to correctly label their emotions (V. Allen, MacCann, & 

Matthews, 2014; D’Mello & Graesser, 2014; Goleman, 1995). Furthermore, it seems 

that some elements of emotional behaviour are difficult for learners to consciously 

process (Calvo & D’Mello, 2010). For all these reasons, attempts to include different 

ways of measuring confusion have been employed in many studies. For example, 

patterns of observed behaviours from learners or physiological responses to confusion 

have been studied in an attempt to obtain objective and reliable indicators. 

Behavioural Responses 

The effort made by learners while resolving a cognitive disequilibrium can 

sometime be visible from specific facial expressions and more generally from some 

changes observable in behaviour. When engaged in an interactive learning task such 

effort may be observed from changes in postures, conversational cues, on-screen 

visual exploration, and from the interactions of learners with the interface. These 

possible indicators of confusion are addressed in the following sections. 

Facial expressions. 

Facial expressions represent an obvious way to detect emotions from others. 

Early research considered the expression of emotions from an evolutionary point of 

view, defining their origins from pragmatic responses to stimuli, which would be then 

associated with a broader range of situations (Darwin, Ekman, & Prodger, 1998). For 
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example, teachers are able to interpret facial expressions in order to detect when their 

students are confused (Apps, Lesage, & Ramnani, 2015; Lipson, 1992). Facial 

expressions are hence natural candidates to serve as indicators to determine emotions 

from other persons. 

Some studies have attempted to objectively identify the facial expression of 

confusion as an alternative to self-report approaches. The facial action coding system 

(FACS) is a tool designed to assist the detection of emotions from participants’ faces, 

using an observation grid to break down expressions into several action units (Cohn, 

Ambadar, & Ekman, 2007; Craig, D’Mello, Witherspoon, & Graesser, 2008). 

Although the FACS was initially created to detect only basic emotions (i.e., 

happiness, sadness, surprise, disgust, anger, and fear), it seems possible to extend its 

application to educational settings and to detect confusion as an academic emotion 

(Sullins & Graesser, 2014). This would however require determining which patterns 

of action units are involved in facial expressions specifically related to confusion. 

In IDLEs, the implementation of systems able to automatically detect 

confusion from video capture of facial expressions could provide a helpful indication 

of how a learner understands a particular task (Shan & Braspenning, 2010). Promising 

results have already been observed with such systems. For example the Computer 

Expression Recognition Toolbox (CERT) is a frame-by-frame tracker of facial 

expressions based on specific facial cues such as eyebrows, eyelids, and the mouth of 

learners, captured by a standard webcam (Grafsgaard, Wiggins, Boyer, Wiebe, & 

Lester, 2013; Littlewort et al., 2011). This system was developed and validated by 

human judges using FACS to determine the activation of specific facial action units 

for the detection of particular emotions. For confusion, the action unit 4 (AU4, ‘Brow 

Lowerer’) was empirically identified to be the best indicator (Craig, Graesser, Sullins, 
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& Gholson, 2004b; Grafsgaard, Boyer, & Lester, 2011). Recently, an automatic 

system for tracking confusion has been tested to detect potential risks taken by elderly 

users when misunderstanding medical information from instructional videos (Postma-

Nilsenová, Postma, & Tates, 2015). The results showed that the automatic detection 

software, which was based on CERT, was more precise than human observers, in both 

accuracy and sensitivity, demonstrating the promise of this type of technology for the 

future. 

Facial electromyography. 

Facial electromyography (EMG) is another technique that has been used to 

objectively identify facial expressions of confusion and goes beyond the visual 

observation of the face. An electromyogram measures the electric activity of 

contracting muscles with electrodes placed on the surface of the skin. Since facial 

expressions are produced by the activation of groups of muscles, specific to each 

emotion, using a facial EMG is assumed to reflect expressions, even when they are 

barely visible on the learner’s face (Bradley & Lang, 2000; Dimberg, 1990; 

Levenson, Ekman, & Friesen, 1990). The detection of confusion is typically 

performed by measuring some activation patterns of the muscles surrounding eyes 

and mouth of participants: the corrugator supercilii, the zygomaticus major, and the 

depressor anguli zoris muscles (Durso, Geldbach, & Corballis, 2012; Rozin & Cohen, 

2003; Sato, Fujimura, & Suzuki, 2008). Encouraging early results from the use of 

facial EMG have been already reported. 

Measurements from facial EMG have been used for detecting confusion in the 

field of aviation psychology (Durso et al., 2012). Confusion was equated with the loss 

of situation awareness as experienced by aircraft pilots (Durso & Gronlund, 1999). 

The study, carried out in a flight simulator, produced interesting findings: data from 
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facial EMG allowed detection of confusion even when changes in facial expressions 

were not visible. Facial EMG may represent a promising technique in terms of 

sensitivity for the measurement of confusion (Huang, Chen, & Chung, 2004) or the 

valence (i.e., positive vs. negative) of a broader range of emotions (Larsen, Norris, & 

Cacioppo, 2003; Mandryk & Atkins, 2007).  

The use of facial EMG to detect confusion is mildly intrusive because learners 

must wear several surface electrodes fixed on the face. This requires a considerable 

equipment setup, and the technique produces large sets of data that make analyses 

difficult to perform (Healey, 2014). Hence, facial EMG is currently only possible in 

lab-based research rather than in naturalistic studies or real world learning situations. 

However, potential findings resulting from lab-based work can be valuable for the 

validation of visual detection of expressions and for the development of predictive 

models of confusion during learning. 

Postures and conversational cues. 

Beyond facial expressions, it is plausible that confusion may be expressed in 

other ways. Some evidence suggests that the observation of the learners’ body 

language may provide indications about their affective emotional arousal (D’Mello & 

Graesser, 2007). Moreover, because body motions are relatively unintentional 

compared with facial expressions, identifying emotions based on body cues could 

consequently be less biased by social editing (Calvo & D’Mello, 2010). This offers 

the advantage of increasing the validity in this type of indicator of emotions. This 

approach to detecting specific emotions, such as confusion, has been used in studies 

employing observation grids and trained judges. For example, judges were able to 

code manifestations of confusion during a learning activity by reporting participants’ 

behaviours such as scratching their head and changes of upper body and head 
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position, in addition to some non-linguistic vocal expressions of confusion (e.g., 

“Huh?”) (Baker et al., 2010). However, this technique requires real-time observers 

and is hence difficult to implement in digital learning environments. 

In order to be deployed in IDLEs, independent systems for the detection of 

emotions from body postures or verbal cues need to be developed. Some research has 

attempted to quantify some behaviours in order to automatically measure confusion 

without any coding from observers (Kapoor, Mota, & Picard, 2001). For example, in 

a learning task on a computer, a video signal from a web camera was used to measure 

head poses and hand movements, in order to detect emotions such as frustration, 

engagement, distraction, and boredom (Asteriadis, Tzouveli, Karpouzis, & Kollias, 

2009). In another study, a wireless sensor tracking overall body movements was used 

to distinguish several emotional states including confusion and boredom, in order to 

provide automatic feedback to students in an IDLE (Caballe et al., 2014). Another 

possible methodology for measuring body postures is to use pressure sensor sheets 

placed on the seat and the backrest of the chair of participants (Tan, Lu, & Pentland, 

1997). This system is able to detect every change of body posture that can be used as 

an emotion indicator. For example, when learners move their body forward to get 

closer to the computer screen they may be confused, or inversely, when they lean on 

the backrest, that can possibly reflect a disengagement from the learning task. Data 

from a similar chair sensitive to body postures has been also used to detect negative 

and strong emotions like confusion (D’Mello & Graesser, 2012). However, in 

D’Mello and Graesser’s (2012) study, the sensitivity of the measuring instrument was 

significantly improved with the inclusion of cues extracted from participants’ 

dialogue. 



 18 

Conversational cues. 

Another way to detect “natural” expressions of confusion may be found in 

dialogue that learners can have, for example, with an intelligent tutoring agent. The 

agent can be a virtual representation of a character who guides students in a learning 

sequence using natural language (Soliman & Guetl, 2010). Indeed, when natural 

language is used to interact with the agent, some indicators of confusion can possibly 

be extracted from conversational cues. Of course, this kind of indicator can only be 

collected from learning situations that involve a conversation between learners and 

the system. However, as the ability of intelligent tutoring systems to interact with 

learners using natural language is improving constantly, using indicators from speech 

of learners could be a viable solution to detect confusion in IDLEs (D’Mello, Craig, 

Witherspoon, Mcdaniel, & Graesser, 2008). Despite the promise of natural language 

processing in this context, this method also presents the obvious limitation of being 

implementable only in learning tasks that include verbal interactions, which obviously 

reduces the range of applications.  

Visual exploration. 

Another opportunity to detect learners’ emotions is in the examination of their 

visual exploration through eye tracking techniques. Eye tracking is a method that 

dynamically measures the location of gaze on a scene or a computer screen by using, 

in most cases, the reflection of an infrared source of light on the cornea. The eye 

tracker identifies the locations and durations of visual fixations on the screen, which 

are thought to reflect the allocation of attention. This methodology is generally useful 

to study the strategies of visual exploration that participants employ during learning. 

Some researchers have also hinted that eye tracking could be helpful to assess the 

level of confusion experienced by learners. Data collected from eye tracking cannot 
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provide, by themselves, direct measures of confusion, but might nevertheless provide 

cues to infer it. This can be done because confusion is the emotional expression of a 

cognitive disequilibrium, and cognitive disequilibrium during learning can be 

reflected in changes in the visual exploration of the presented information (Graesser, 

Lu, Olde, Cooper-Pye, & Whitten, 2005). In certain learning situations, such as the 

solution of visual problems, the visual exploration strategies of students captured by 

eye tracking can also provide some operational cues for an early detection of 

confusion (Pachman, Arguel, Lockyer, Kennedy, & Lodge, in press). Similarly, gaze 

directions can be used as indicators of frustration and engagement with the learning 

task (Asteriadis et al., 2009). Others researchers have pointed out a possible link 

between mental workload and eye movements, which would tend to become more 

restricted when the workload is high (May, Kennedy, Williams, Dunlap, & Brannan, 

1990). Based on a similar hypothesis, a study has explored the association between 

eye movements patterns (i.e., fixations duration, total number of fixations) and 

subjective measures of confusion while performing task on a device emulated by a 

computer (DeLucia, Preddy, Derby, Tharanathan, & Putrevu, 2014). The results 

revealed some positive correlations between these variables, highlighting the potential 

of eye tracking to reflect levels of confusion while using a device.  

Eye tracking seems to be a useful methodology to collect information on focus 

of attention, motivation, and emotional status of learners. Real-time eye tracking 

could be used as a predictor of the confusion called retrospectively non-constructive, 

contributing to timely interventions in IDLEs (Hua Wang, Chignell, & Ishizuka, 

2006). However, in real-world IDLEs, one of the current challenges for implementing 

eye tracking-based interventions is the collection of usable data from remote students, 

due to the low quality of inexpensive solutions and the high cost of good quality 
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equipment. For this reason, in real-world applications, it would be more practical to 

avoid relying on techniques that involve additional equipment besides the computers 

that students use.  

Learner-computer interaction analysis. 

Detecting confusion, and more generally emotions, from learners’ behaviours 

may also be achieved from data automatically collected by the IDLE. An emerging 

field of research called learning analytics deals with the collection and analysis of 

data that learners produce when engaging with a digital learning platform (Siemens, 

2013). In its simplest form, learning analytics can focus on the on-screen behaviours 

of learners, for example mouse pointer movements, clicks and scrolls, the amount of 

time spent on webpages, opening of hyperlinks, etc. More elaborated indicators can 

also be collected from specific task completion such as the responses given in 

assessment questionnaires, social interactions in discussion forums, production of 

annotations, and the like. These interactions may allow the quantification of 

behaviours that participants manifest while learning with a computer, and may be 

potentially used to derive distinct behavioural patterns that align with and differentiate 

emotional states of participants engaged with a computerised learning environment. 

For example, in a study conducted with school students, researchers triangulated log 

files generated from a web-based system with the coding data of behavioural 

observations made at the same time (Pardos, Baker, San Pedro, Gowda, & Gowda, 

2013). The log files were reporting actions from learners such as requesting a hint, 

giving a correct or wrong answer, taking a pause after an answer, spending time with 

help, etc. The data collected from the observation of students’ behaviours allowed the 

training of classifiers based on machine learning algorithms and afforded the 

automatic classification of learner’s emotions (i.e., boredom, frustration, engagement, 
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confusion, off-task, and gaming). This approach offers the advantage that the 

collection of data from students’ interaction behaviours during learning is possible 

within most IDLEs. Learner-computer interaction data can be either analysed after 

learning, for research purposes, or in real-time during the learning session. In the 

latter case, predefined algorithms may trigger actions to manage learners’ confusion 

accordingly.  

The principle of learner-computer interaction analysis is to collect cues from 

behaviours while the learner engages with an interface that offers possibilities of 

interaction. These cues, such as recognisable patterns of actions, can be empirically 

linked to cognitive states and emotions such as confusion. However, there is another 

possibility for detecting confusion: rather than tracking subtle manifestation of 

confusion from the learning activity itself, learning interfaces can be designed to 

allow learners to self-report their emotions during an activity. For example, 

Emotcontrol is a tool developed to encourage learners to provide affective feedback in 

IDLEs (Feidakis et al., 2014; Feidakis, Daradoumis, Caballé, & Conesa, 2013). 

Emotcontrol consists of an on-screen window displaying a clickable wheel of 

emotions, associated with colours, and text fields in which students can indicate their 

feelings. Although this method is intrinsically related to the techniques of self-report 

previously mentioned, the fact of being embedded in the IDLE allows additional 

features. For example, the data are exploited in real-time to trigger interventions 

consisting of the scaffolding from an affective virtual agent. Another functionality of 

the system is to produce visualisations of data in the form of individual emotional 

cartography that can be used by instructors and/or peer students. Simpler solutions for 

collecting emotion awareness data are also possible, offering the advantage of being 

less disruptive to learning tasks. For example, the provision of an “I am confused” 
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button in a interface gives accurate indications about when learners get into trouble 

with the learning material (Conati, Hoque, Toker, & Steichen, 2013). Preliminary 

results of the latter study showed that participants were interested and can use the 

confusion button efficiently during a task that involves the use of an interactive 

visualisation supportive tool for decision-making. 

The techniques presented so far are based on the observation and measurement 

of learners’ behaviours. Because the subject is the detection of emotions, such as 

confusion during learning, it is conceivable that learning activities elicit changes in 

students’ emotional arousal and that these changes could be captured by monitoring 

particular physiological responses. 

Physiological Responses 

Beyond regarding the behavioural expressions of emotions, another possible 

approach would be to consider their effects on peripheral physiology. Some emotions 

including confusion are linked to an increase of general arousal that can be observed 

from changes in physiological responses (Healey, 2014). In this section, the most 

commonly used physiological measurements for detecting emotions are presented. 

Electrodermal activity. 

The electrodermal activity (EDA), also called galvanic skin response (GSR) or 

skin conductance, is the measurement of a change of the electric conductivity of the 

skin. Electrodes are placed generally on the palm of the hand or the tips of fingers, 

and variations of EDA are recorded during the completion of cognitive tasks. These 

variations of EDA are the reflection of a change of the activity of eccrine sweat 

glands and there is a consistent body of evidence that sweat secretion is correlated 

with emotional arousal (Fowles, 1980; van Dooren & Janssen, 2012). EDA has been 
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shown to have a relatively good sensitivity in detecting strong emotions (i.e., high 

arousal) but also a low ability to discriminate their valence, that is, between positive 

and negative emotions (Bradley & Lang, 2000). However, the development of a 

protocol targeting specific learning experiences can allow the linkage of an EDA 

signal to identify emotions resulting from cognitive processes. For example, 

Pecchinenda and Smith (1996) manipulated the difficulty of a problem-solving task 

consisting of the completion of anagrams and found a relationship between EDA and 

participants’ level of engagement in the task. A drop in skin conductance was 

observed when learners were confronted with extremely difficult problems, which led 

them to abandon any hope of success and consequently disengage from the task. Even 

if not discussed in these terms in the study, this situation can be interpreted as an 

instance of unresolved confusion producing an exit point from the zone of optimal 

confusion, which is required for the successful solving of the problem.  

EDA represents a promising technique to detect emotions during learning, 

such as engagement, boredom, or confusion (Shen, Wang, & Shen, 2009). Moreover, 

the recent development of wireless and wearable devices able to detect EDA could 

also be a facilitating factor for integrating this type of measurement in protocols 

designed to detect confusion. 

Heart rate and heart rate variability. 

Similar to EDA, heart rate and heart rate variability (HRV) can be used as 

physiological indicators of changes of emotional arousal and/or level of workload 

during learning or task achievement (Aasman, Mulder, & Mulder, 1987; Paas, Van 

Merriënboer, & Adam, 1994; Tattersall & Hockey, 1995). Heart rate reflects simple 

changes in cardiac chronotropy, increases and decreases in the number of heart beat 

per minute, whereas HRV captures the extent of variation within the signal, usually 
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over a period of several minutes. When assessed in the frequency domain HRV can 

provide estimates of parasympathetic and sympathetic drive to the heart (for a review 

see J. J. Allen, Chambers, & Towers, 2007) Because it is likely that learners’ 

confusion triggers physiological changes, confusion should produce some visible 

variations in both EDA and cardiac signals. Moreover, EDA and HR/HRV can be 

considered as objective ways of measuring confusion because they are the result of 

mostly unconscious and uncontrolled reactions of the autonomic nervous system 

(Bradley & Lang, 2000). However, the small effect size produced, as well as the 

difficulty of collecting a good signal in participants who work on a keyboard while 

interacting with a computer, is likely to lower the sensitivity and the accuracy of these 

physiological measurements (Paas et al., 1994). Nevertheless, recording HR/HRV is 

relatively easy when compared with other physiological indicators and the collected 

signal is quite robust to noise (Healey, 2014). Consequently, HRV could be a 

convenient measurement in laboratory-setting experiments, but other factors such as 

age, posture, level of fitness, and circadian cycle can modulate HRV. In addition, 

another limitation would be the relatively long recording intervals required for 

reliable estimates of HRV, which can limit its utility as an indicator of confusion.  

Brain imaging. 

Neuroimaging methods offer the possibility of detecting emotions from the 

observation of the working brain. Despite the cost and the complexity of experimental 

protocols involving brain imaging, the collected signals can be valuable in mapping 

the confusion events that occur during learning (Calvo & D’Mello, 2010). For 

example, functional magnetic resonance imaging (fMRI), a method that tracks 

changes in brain blood flow, has been used to observe changes in the neural activity 

of the posterior medial frontal cortex when learners were confronted with unexpected 
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feedback, which was likely to cause confusion (Hester, Barre, Murphy, Silk, & 

Mattingley, 2008). Another non-invasive way to monitor brain activity is the 

Electroencephalogram (EEG). This technique involves measuring electrical activity of 

the brain with a set of surface electrodes attached to the scalp of learners. EEG 

equipment is easier to operate, considerably cheaper, and offers better mobility than 

do fMRI scanners and past research suggested that EEG could be used to detect 

epistemic emotions such as frustration (Marosi et al., 2002). Moreover, a study on 

learning from instructional videos in a Massive Open Online Course (MOOC) showed 

that using EEG to detect students’ confusion was as efficient as trained human 

observers who rated confusion by monitoring the body language of students (Haohan 

Wang et al., 2013). In this study 20 online education videos assumed to be either 

confusing or not confusing (50:50 distribution ratio) were presented to university 

students. An EEG signal was measured with a single-channel system and electrodes 

placed over the frontal lobe of participants. Despite the positive, though weak, results 

of EEG to detect confusion, the authors also highlighted some limitations of using this 

measure in real-world setting. In particular, they mentioned the cost, the problems 

with confounding effects of other processes such as mental effort, and privacy 

concerns from participants who may be reluctant to share their brain activity data.  

Although brain imaging is a promising methodology for research on the 

neuroscience of emotions, this approach has yielded to date only limited success in 

discriminating emotions (Kemp, Krygier, & Harmon-Jones, 2014). Even if sometimes 

of use in laboratory-based studies, the difficulty of implementing brain imaging in 

real-world learning situations would probably hinder the application of this 

technology for the detection of learners’ confusion. Moreover, inferences from 
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findings of brain imaging studies would probably be difficult to apply to real-world 

learning sessions because of the dissimilarity between the two situations. 

Pupillometry. 

Many eye tracker systems capable of measuring pupil dilation with reasonable 

accuracy are now available, allowing the integration of this measure into experimental 

protocols. The change of the size of the pupil diameter has been studied in numerous 

domains and has been assumed to reflect some emotional states like, for example, the 

stress of guilty participants in deception detection studies (Elkins, Zafeiriou, Pantic, & 

Burgoon, 2015; Lubow & Fein, 1996). There is also some evidence that pupil 

dilatation could be an indicator of the level of cognitive load during learning; a larger 

pupil size reflecting a higher workload (Paas, Tuovinen, Tabbers, & Van Gerven, 

2003). In the domain of emotion detection, it may be that an increase in pupil 

diameter would be a valid indicator of emotional arousal. In a study measuring the 

pupil responses of participants to presentations of emotional pictures, an increase of 

pupil diameter when viewing emotional pictures (pleasant or unpleasant) has been 

observed relative to neutral pictures (Bradley, Miccoli, Escrig, & Lang, 2008). In 

another study, changes of pupil dilation during a learning task have been be used as a 

physiological indicator of surprise (Preuschoff, ’t Hart, & Einhäuser, 2011). Similar 

findings have been reported for the detection of confusion based on pupil size changes 

(Umemuro & Yamashita, 2003). Application of this measurement technique is 

promising, in particular because the progress of eye trackers available in the market 

might offer a wider range of devices capable of measuring pupil dilation in the future. 
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Discussion and Conclusion 

Confusion is an emotion that often occurs during the learning of complex 

material and can lead to negative effects when not resolved within a reasonable period 

of time. Therefore, timely interventions that aim to help learners resolve their 

confusion can help support quality learning. When a state of confusion is detected, 

interventions may consist of providing students with, for example, adaptive feedback 

or specific guidance. In the classroom, face-to-face interactions between students and 

teachers can allow teachers to recognise confusion and to modify and adapt their 

teaching approaches and strategies in response, such as slowing down the pace of the 

lesson or giving students hints for comprehension (Goleman, 1995). In IDLEs, the 

absence of teacher and/or the limitations of current technology may hinder the 

detection of confusion through digital interactions. Eventually, unresolved confusion 

is likely to contribute to learners abandoning the activity. Hence, a practical 

recommendation to developers and educators using IDLEs would be to elaborate 

techniques (e.g., based on observation of the behaviour or physiological responses) 

that allow real-time detection of students’ emotions, and particularly confusion, 

during learning. The implementation of such techniques in learning environments 

would support interventions that attempt to tackle excessive levels of confusion or, 

possibly, to inversely induce some moderate confusion to keep students engaged in 

their learning activity. 

For confusion detection, each measurement technique possesses its own 

strengths and limitations in terms of sensitivity, specificity, and time resolution, as 

well as cost and potential interference with the learning process. For this reason, a 

multimodal approach consisting of the integration of several indicators may be 

preferred to detect confusion (Hussain, Calvo, & Chen, 2014; Hussain, Monkaresi, & 
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Calvo, 2012). However, multimodal confusion detection requires multiple indicators 

of emotions from different sources such as behavioural observation, facial 

expressions, conversational cues, and physiological reactions (Pantic & Rothkrantz, 

2003). In addition, an automatic processing of data from a combination of several 

measurement methods is likely to require high-level computing techniques. The 

training of relevant classifiers to integrate diverse signals can enhance the quality of 

confusion detection (Hussain, AlZoubi, Calvo, & D’Mello, 2011). Indeed, detecting 

confusion requires the development of classification schemes and fusion methods for 

the integration and the treatment of multimodal data, which is creating new challenges 

(Castellano, Gunes, Peters, & Schuller, 2014). For example, in a multimodal system 

involving data from different sources such as video, speech, and gestures, the 

detection of confusion can be done in different ways (Wagner, Andre, Lingenfelser, & 

Kim, 2011). The detection can indeed be performed either by combining together all 

data and using a single classifier (feature-level fusion), or on the other hand by using 

classifiers for each source of data and merging the ensemble of decisions into a single 

one (decision-level fusion). Of course each of the techniques has their own 

advantages and issues in regard of the treatment of temporary missing data, the 

efficiency of classification or the application in different environments (Wagner et al., 

2011). However this effort seems worthwhile because it contributes to an increase in 

the power of detecting confusion since a fusion of multimodal indicators would 

outperform any form of detection based on single indicators (D’Mello & Kory, 2015).  

The major limitation of most of the methods presented in this review is that 

the reliable detection of confusion based on behavioural and physiological indicators 

is still almost entirely limited to abstract and laboratory-based learning situations. 

Many of the methods reviewed in this paper may not be practical within real-world 
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IDLEs. However, the potential outcomes from experimentation using these methods 

are likely to significantly improve our knowledge of the dynamics of confusion 

during learning. Moreover, future studies of the detection of confusion in real-world 

learning situations will be useful for validating the efficacy of each indicator, for 

improving their individual detection capacity, and for assessing their viability as 

classifiers for developing predictive modelling of confusion.  

Some techniques seem to be better candidates than others when considering 

their application by educators and developers in real-world learning settings. The 

ideal method would need to be technically available, be non-intrusive for learners 

(i.e., not imposing them to perform a additional competing task) and allow remote 

collection of data. The method that seems compliant with these constraints and that is 

already available would be the utilisation of the interaction data that participants 

generate when they are interacting with the interface of the learning system. 

Nevertheless, even if collecting activity log files from the system is technically 

simple, their interpretation as indicators of confusion requires further investigation. 

An outcome of an approach consisting of detecting confusion from several indicators 

during learning would be designing predictive models of the occurrence of confusion 

in IDLEs. The development of predictive models from log files is heavily reliant on 

having simultaneous external criterion measures of learners’ confusion upon which to 

validate the models. For this reason, some techniques based on learning analytics 

seem to be promising because of their ability to be derived in laboratory settings and 

implemented in ecological environments. Using this approach ultimately allows the 

use of data from students’ interactions within IDLEs to identify specific patterns 

linked to emotional states during learning, including confusion, without the need of 

any additional sensors (See Baker et al., 2012; Pedro, Baker, Gowda, & Heffernan, 
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2013). These are novel approaches that reflect advances in the research areas of 

learning analytics, educational data mining, machine learning, and more generally 

affective computing.  

The algorithms that will make possible a fast and accurate detection of 

learners’ confusion in their interactions with a IDLE could be developed and 

validated with the recording of physiological indicators of emotions. Even if most of 

the physiological measures presented in this article cannot be easily implemented in 

real-world learning environments, their potential valuable contribution to the 

challenging project of developing valid and reliable indicators for the detection and 

prediction of learners’ confusion should not be underestimated. In the future, it is 

conceivable that some predictive models will not only be able to detect the absence 

and presence of confusion, but also predict the extent to which experienced confusion 

will be subsequently productive in terms of learning outcomes.  If confusion could be 

reliably detected, adaptive interventions could be designed to support learners 

navigate within their zone of optimal confusion. Like a teacher in the classroom, 

IDLEs could detect when students are getting confused, bored or disengaged and 

produce an adaptive, tailored response to meet the individual needs of each learner at 

specific stages of the learning experience. 
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Figure 1: A representation of the zone of optimal confusion and possible external interventions (Arguel & Lane, 2015), 
reprinted with permission. 

 


