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Abstract

Many applications in surface mining have been solved by optimisation tech-
niques. These applications include finding the optimal ultimate pit limit,
scheduling the production or extraction plan, allocating or selecting equip-
ment or resources, routing and scheduling transportation systems, etc. Math-
ematical programming approaches, such as linear programming and integer
programming, are commonly used to solve these problems. In this research,
we focus on the use of mixed-integer programming to solve a logistics plan-
ning problem in iron ore mining.

In the iron ore mining industry, the logistics planning problem involves
a mining value chain that comprises stockpiles at multiple mines, a rail net-
work, stockpiles at multiple ports, and shipping. The use of mathematical
programming is crucial to provide a tool that plans and schedules the move-
ment of material from mine to port efficiently. The main objective of this
research is to provide an iron ore mining company with a logistics planning
model that can be applied to their medium to long term mining operation.

In this research, we extend the work of an existing model centred around
the mining operation in the Pilbara region, Western Australia, and based on
the existing literature. This model is discussed thoroughly in Chapter 3 of
this thesis. The model aims to allocate trains to mines such that the total
throughput of iron ore is maximised and various operational constraints are
satisfied. Furthermore, a blending process, which involves mixing different
types of materials, is considered for grade preservation purposes. The objec-
tive is to produce shipped products that are in compliance with the desirable
grade quality in accordance with the demand.

The mathematical formulation of this model uses the challenging mixed-
integer non-linear programming method. The non-linearity occurs due to
the existence of bilinear terms in the blending requirement constraints. Both
the integral and non-linear conditions complicate this problem, making it
extremely difficult to find a global solution. As a solution approach, an iter-
ative method was developed to estimate the values for the decision variables
appearing in the non-linear terms. Whilst reasonable solutions are obtained
with this approach, there is no rigorous basis for the methodology used. As
part of this research, we implement the model on a range of test cases and
identify the issues arising in the applications of this methodology.

Our main contributions are outlined in Chapter 4. In this chapter, we
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address the non-linearity issue by developing a reformulation of the existing
model that represents the same mining logistics operation, but is linear. In
this model, we generate a convex relaxation of the problem by providing
convex underestimating and concave overestimating functions for each non-
linear term. Unlike the other solution approach, this approach is developed
based on a sound optimisation theory. We implement the model on test
cases and present the results obtained. We analyse our results by comparing
the solutions obtained from the two models presented. Our computational
results on a range of test cases establish the effectiveness of the new model.

In addition to the test cases, two case studies are considered in this the-
sis based on two real life industry problems that represent iron ore mining
operations in the Pilbara region. The two data sets have different time in-
tervals in the sense that the first data set involves 12 periods, each of which
represents one month, whereas the second data set involves 52 periods in
which each period is typically a week. The descriptions of the case studies
are outlined in Chapter 5. We then implement the two different models to
both case studies and present the computational results.

Although a number of iterations are required, the first model generates
solutions in a faster CPU time. The second model, however, performs better
in minimising the grade deviations, hence maximising the total profit. As
our attempt to reduce the CPU time, we implement an aggregated model
to reduce the problem size. This has been proven as a useful way to cut
the solving time greatly while maintaining the quality of the solutions, thus
making the model more practical in real life.

All implementations are done in AIMMS 4.21 software with CPLEX
12.6.3 MIP solver.
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Chapter 1

Introduction

The mining industry is an important sector that contributes greatly to the
world’s economy (Walser, 2000). In Australia, mining is a significant industry
as it generates considerable revenue and employment, provides raw materials
for various products, and raises the level of living standard in the country
(McKay et al., 2000). Mining has contributed to Australia’s growing infras-
tructure and substantial increase of per capita income since the discovery of
gold.

Optimisation or operation research has been used in mining operations
in order to make better decisions, mainly in mine planning, scheduling, and
distributing. In this thesis, we focus on the problem of logistics planning
for iron ore mining which includes train scheduling and product blending for
maintaining the ore’s demanded quality.

In general, a logistics problem involves the movement of material from a
source location to a destination. The aim is to move the right amount of the
right material from the right source to the right destination effectively and
efficiently. In our operation, the mining logistics considers the value chain
from a mine to a shipping location. The optimal solution must satisfy the
operational and non-operational constraints specified in the problem.

Throughout this chapter, we will introduce some necessary background
and context for the iron ore mining and its operational research approaches.
The organisation of this chapter is as follows:

� We initiate the chapter by stating some facts to describe the significance
of iron ore mining in Section 1.1.

� We then describe the specific mining process at the Pilbara region in
Section 1.2. This process involves operations at the mines, rail network,
ports, and stockpiles.
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CHAPTER 1 Introduction

� Section 1.3 gives a brief background of general optimisation problems.
In this section, we will also describe some topics in optimisation which
are the focus of our research.

� Finally, the last section of this chapter (Section 1.4) presents an overview
of the whole thesis.

1.1 Iron ore

Iron is the fourth most abundant element in the Earth’s crust, preceded by
oxygen, silicon, and aluminium (Geoscience Australia, 2015). There is no
metal more commonly used in the world than iron. Iron is primarily used
as the key ingredient for steel production. About 98% of mined iron ore is
processed to produce steel. Iron can also be refined in the form of cast iron
or wrought iron. Iron in its various forms is widely used in everyday life. It is
used in the construction of buildings, railroads, tunnels, transport materials,
machine parts, pipelines, household appliances, and more.

Over the past 40 years, iron ore has also become one of Australia’s most
significant exports. The quantity of iron ore exported from Australia ex-
ceeded 390 million tonnes in 2009–2010, according to the latest Year Book
Australia (Australian Bureau of Statistics, 2012), earning around 35 billion
dollars and making iron ore the second largest Australian mineral export af-
ter black coal in that period. China, Japan, and South Korea were the major
destinations of Australian iron ore export.

In iron ore mining, the product is commonly classified as lump or fines
iron ore, depending on its size (Geoscience Australia, 2015). Lump iron ore
takes more than 6.3 mm in size, whereas fines ore is like a powder less than
6.3 mm in size. Mined lump products can go directly to blast furnace for
smelting process, while fines products must be sintered first.

1.2 Pilbara operations

The mines in the Pilbara region of Western Australia (location map shown
in Figure 1.1) have produced most of the iron ore exported from Australia
(Singh et al., 2014). In 2015, mining operations at the Pilbara produced
more than 300 million tonnes of iron ore. Rio Tinto Iron Ore (RTIO) is one
of the major miners of iron in this region. Its iron ore operations in the
Pilbara region currently have an annual capacity of 240 million tonnes with
possibility of further expansion. The mining value chain network of RTIO’s
Pilbara operation consists of 15 mines, a heavy freight rail network, and four

2



CHAPTER 1 Introduction

shipping terminals across two different ports. In addition, stockpiles are used
as storage locations at the mines and the ports.

Figure 1.1: Location map of iron ore mines in the Pilbara region
of Western Australia (Australian Mining, 2015)

RTIO’s mining operations at the Pilbara involve four stages, namely the
resource development stage, operations at the mines, the rail system, and
operations at the ports (Rio Tinto, 2009). This mining process is described
clearly in Figure 1.2. The resource development stage includes exploration,
evaluation, metallurgical assessment, and mine planning and scheduling. The
aim of this stage is to locate potential resources to be mined so that the
planners can come up with a production scheduling plan.

The operation at the mine starts with drilling and blasting the drill holes
using explosives to break the iron ore for digging. The mined ore is then
loaded onto trucks and hauled to the crushing and screening plants. The
processed product is stockpiled before it gets transported by a train to the
ports. Once arriving at port, the ore is transferred to stockpiles through ore
car dumpers and conveyors. Lastly, the final product is loaded onto ships
before it is delivered to the destination countries.

In 2008, RTIO launched Mine of the Future� which includes automated

3



CHAPTER 1 Introduction

drilling and operation systems. This new innovation enables the transporta-
tion and material handling systems in the Pilbara to be operated from the
operations centre in Perth, greatly improving efficiency and safety, as well
as reducing the total cost and negative impacts on the environment. More
information about this programme can be found in Rio Tinto (2014).

Figure 1.2: Rio Tinto’s mining process in the Pilbara (Rio
Tinto, 2009)

4
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1.2.1 Mines

RTIO’s current Pilbara operations involve 15 mines across several regions,
namely East Pilbara, West Pilbara, and North West Pilbara. Most of these
mines produce both lump and fines product types and normally separates
the two different types on different piles. Figure 1.3 shows a picture of an
iron ore mine in the Pilbara and Figure 1.4 shows the map of locations of
RTIO’s active mines in 2013.

Figure 1.3: An iron ore mine in the Pilbara region of Western
Australia (Mining-Technology, 2016b)

Haul trucks and overland conveyors are the transportation modes used
to move materials from the mine pits to the process plants. The processed
product is then moved to the stockpile before being loaded onto trains for
transport to the shipping ports. Most mines have two different types of
stockpiles with one being the main production line, and the other one serving
as storage.

5
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Figure 1.4: RTIO’s mine locations in the Pilbara (Rio Tinto,
2013)

Figure 1.5: Rio Tinto’s train operating in the Pilbara region of
Western Australia (Rio Tinto, 2016)
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1.2.2 Rail network

In the Pilbara region, RTIO owns the largest private freight rail network in
Australia with a total operating route length about 1,700 kilometres.

The company’s trains can be categorised into two different train fleets;
each of which serves specific mines. The Robe Valley fleet only serves the
mines in the north west region, whereas the pooled fleet serves all the other
mines. Figure 1.5 shows one of the trains operating in the Pilbara region.
The train goes from the mine to a specific port depending on the type of
product it carries.

1.2.3 Ports

The mining value chain of RTIO in the Pilbara involves four shipping ter-
minals. These terminals are located at two different ports, namely Dampier
and Cape Lambert. The two terminals at Dampier, namely Parker Point and
East Intercourse Island, are owned by Rio Tinto, whereas Cape Lambert A
and B terminals are owned by the joint venture between Rio Tinto and other
mining companies. Each terminal has its own facilities for train unloading,
material stockpiling, product blending, lump product re-screening, and ship
loading.

Figure 1.6: A car dumper operating at the port (Rio Tinto,
2013)
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A car dumper [Figure 1.6] is used as the mechanism for unloading the
train containing the iron ore product. The car dumper holds and rotates the
ore cars to dump out the material which will be discharged onto conveyors.
The material is then stacked onto the stockpile where the blending process
takes place. Before loading onto the ship, the lump product is re-screened
and a proportion of smaller ore is transferred to the fine product stockpile.

1.2.4 Stockpiles

In the mining logistics process, a stockpile is a pile of material which serves
different purposes: as storage, buffering, or material blending (Singh et al.,
2014). In the Pilbara region, most of the iron ore mines have two differ-
ent types of stockpile, namely live and bulk stockpiles. The live stockpile
normally serves as the main production line and blending, whereas the bulk
stockpile serves as a buffer. These two types of stockpile can also be found
at the ports as storage locations before shipping.

Figure 1.7: Stacking iron ore to stockpile at the Yandicoogina
iron ore mine in Western Australia (Mining-Technology, 2016a)
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A stacker and a reclaimer are normally used to pile and recover the mate-
rial respectively. The stacking process at one of the Pilbara mines is pictured
in Figure 1.7. There are at least three common methods to pile the material
into the stockpile. They are the Cone Shell, Windrow, and Chevron methods.

If the Cone Shell method is used, the material will be piled from a fixed
point to form a cone. When the required height of a cone is formed, the
material will be piled from the next position so that a cone is formed against
the first cone shell. This step continues in the longitudinal direction until all
mined material is piled or the stockpile reaches its capacity. In the Chevron
method, the stacker constantly moves backward and forward over the center
of the stockpile while depositing the material. The Windrow method is done
by depositing small separate piles across the stockyard. More piles are then
formed to fill in the gaps between the small piles until the stockpile is full.

The stockpile reclaiming process depends on the type of reclaimer being
used. There are portal scraper, bucket wheel, bridge scraper, and drum
reclaimers. The necessity of the blending effects is considered when choosing
the stacking and reclaiming methods. If a consistency of material grade
quality is required, the combination of chevron method with bridge scraper
or drum reclaimer is a better choice in the stockpiling process.

1.3 Optimisation

In mathematics, optimisation or operations research involves finding the best
amongst many possible solutions in solving quantitative decision problems
(Luenberger and Ye, 2008). Using a theoretical framework, optimisation
translates a problem to a mathematical model or formulation which can
be solved using mathematical algorithms. A simple optimisation problem
involves minimising (or maximising, depending on the problem) a single ob-
jective function, whose purpose is to be a measurement of the quality of
the decision, subject to a set of constraints which limit the selection of the
decision.

A general mathematical optimisation problem, also called the mathemat-
ical programming problem, can be formulated as follows:

Minimise f(x)

subject to hi(x) = 0, i = 1, 2, ...,m

gj(x) ≤ 0, j = 1, 2, ..., r

x ∈ S.

where x is an n-dimensional vector of unknown variables, that is, x =
(x1, x2, ...xn). A real function f(x) is known as the objective function, while
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real functions hi(x) and gj(x) are equality and inequality constraints respec-
tively. The set S is a subset of n-dimensional space.

If the objective function f(x), and all the constraints, hi(x) and gj(x)
are linear, we have a linear programming problem. Many simple linear
programming problems can be demonstrated graphically, but most practical
problems in industry require extensive computational effort to generate so-
lutions. Examples of linear programming include simple transportation and
network flow problems.

If the objective function and/or at least one of the constraints are non-
linear, the problem becomes a non-linear programming problem.

If all variables are restricted to be integers, the problem becomes an inte-
ger programming problem. The integer programming methods determine
the optimal solution among all discrete solutions in the continuous feasible
solution space (Taha, 1975). An integer programming problem can be either
linear or non-linear.

If the integrality condition is absent for at least one of the decision vari-
ables, we have a mixed integer programming problem. A mixed integer
programming problem can be at times computationally difficult due to the
integrality condition and formation of the constraint matrix. Similarly, a
mixed integer programming problem can be either linear or non-linear.

Optimisation methods have solved many problems in industries. The use
of optimisation methods is widespread in mining, manufacturing, utilities,
energy, logistics, transportation, financial services, government, defence, and
many other industries. This thesis focuses on the logistics part of the surface
mining industry.

1.3.1 Optimisation in surface mining

Surface mining is a process of extracting a mineral when it is found close
to the earth’s surface (less than 500m in depth), in contrast to underground
mining which is used when a mineral is excavated from well below the surface
(Kennedy, 1990). Minerals such as iron, coal, copper, and gold are extracted
in surface mines. In surface mining, there are five main methods that can
be used to remove the mineral. These include stripping, open-pit, mountain-
top removal, dredging, and highwall mining. The iron ore mines are usually
open-pit, where the ore is removed from a large open hole in the ground.

Optimisation methods have been applied to many areas of open-pit min-
ing, including the pit design problem, the block-sequencing problem, the
equipment allocation problem, and many others (Caccetta and Giannini,
1986, 1988, 1990). In this thesis, we focus on the logistics and supply chain
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problem which combines the movement of material from the mines to the
shipping facilities, train scheduling, inventory, and material blending.

1.3.2 Logistics and supply chain

A supply chain management involves a complex network of moving materials
from the suppliers to the customers (Christopher, 2011). A typical supply
chain features manufacturers, warehouses, distributors, and retailers in the
network. A supply chain network may also feature a transportation sys-
tem. In this case, the network allows the movement of materials through
road, rail, air, or sea while considering the availability, capacity, and cost of
transporting.

Logistics is the part of supply chain process that manages the flow and
movement of materials or services efficiently and effectively in between two
points so that the customers’ demands and requirements are satisfied (Christo-
pher, 2011). The objective of a typical logistics and supply chain problem is
to move the right materials in the right quantities and in the right quality
from the right source to the right destination at the right time.

Optimisation methods are often applied in solving logistics and supply
chain problems. Through mathematical models, it is easier to identify the
crucial features and parameters, evaluate the problem quantitatively, and
make decisions and policies to achieve the optimal results. There are many
optimisation problems arising in logistics and supply chain area, such as op-
timal fleet sizing problem, production or transportation scheduling problem,
vehicle routing problem, inventory or warehousing problem, etc.

1.3.3 Transportation problem

A simple transportation problem is an example of linear programming prob-
lem that arises from the logistics and supply chain process. According to
Williams (1967), the concern of this problem is to decide the most efficient
routes over which the materials are distributed from points of origin to points
of destination. The efficiency of the routes is usually determined by the dis-
tance, the price, or the time taken. In those cases, the most efficient route
is the shortest, the cheapest, or the quickest route. An instance of a sim-
ple transportation problem involves sending goods from factories where the
goods are being produced, to storage locations or customers.

Luenberger and Ye (2008) describe a general transportation problem in
mathematical terms. Suppose m is the number of origins and n is the num-
ber of destinations. In this problem, we assume that the total supply at
the origins is equal to the total demand at the destinations. The aim is to
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find the transportation schedule of sending the goods between origins and
destinations such that all the requirements are satisfied and the total cost is
minimised. The problem then can be expressed by the following mathemat-
ical formulation:

Minimise
m∑
i=1

n∑
j=1

cijxij

subject to
n∑

j=1

xij = ai , i = 1, 2, ...,m

m∑
i=1

xij = bj , j = 1, 2, ..., n

m∑
i=1

ai =
n∑

j=1

bj , for all i and j

xij ≥ 0 , for all i and j.

where xij is the amount of goods sent from origin i to destination j, cij is
the unit cost associated with sending the goods from origin i to destination
j, ai is the supply at origin i, and bj is the demand at destination j.

The problem stated above is a simple transportation problem which can
be solved by the simplex method. In this thesis, we model the more complex
transportation scheduling in mining which also involves integer restrictions
and non-linear constraints.

1.4 Thesis overview

In this thesis, we present two models that describe the optimisation of lo-
gistics planning in iron ore mining in the Pilbara region. The first model is
the existing model which was previously developed by CSIRO and currently
implemented by RTIO. The model is formulated as a mixed integer non-
linear programming problem and solved by applying an iterative algorithm
to estimate the non-linear terms.

As RTIO has been going through a major expansion for its mining op-
erations in the Pilbara, the current iterative approach has become more in-
consistent. Subsequently, there is a need to improve its mining logistics by
developing a more effective and efficient logistics planning model.

The objectives of this research, therefore, are outlined as follows:

� To evaluate the existing formulation and solution approach to the opti-
misation tool representing the Pilbara iron ore mining value chain and
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identify the arising issues.

� To develop an improved model and solution approach to represent the
medium to long term logistics planning in terms of a rail freight schedul-
ing problem in iron ore mining that maximises the total profit.

� To implement both models using AIMMS modelling software, linked
to the CPLEX optimisation solver; and make a thorough analysis and
comparison of the results from the two models.

In this first chapter, we have introduced some preliminary background
information which includes some facts about iron ore, the significance of
Australian iron ore mining, the iron ore mining operation in the Pilbara, and
some optimisation topics in surface mining. In regards to the Pilbara oper-
ations section, we described the iron ore mining value chain in detail. This
value chain involves the mines, a rail network, the ports, and the stockpiles
at both mines and ports.

Chapter 2 of this thesis reviews literature that includes substantive the-
ories and findings in the surface mining area. We initiate the chapter by
providing a review and consolidation of the literature in surface mining area
in general. The aim is to look at the applications and see the need of op-
timisation in the field before addressing the more particular problems. We
then pay particular attention to the focus of our research problem which in-
volves the transportation scheduling problem, the blending problem, and the
logistics planning problem. Some optimisation techniques associated with
our problem are also looked at in this chapter. This includes recent uses,
applications, and solution approaches of mixed integer linear and non-linear
programming in the relevant area.

Chapter 3 describes the existing logistics model that was developed by
Singh et al. (2014) in full detail. It covers the problem description and
formulation, the solution approach, our own implementations of the model
for model testing, and a discussion on the performance of the optimisation
tool and how it can be improved.

The major contribution of this thesis to the mining industry is presented
in Chapter 4. In this chapter, we develop a reformulated model which lin-
earises the problem formulation in Chapter 3 by providing a convex relax-
ation of the non-linear constraints. We outline the procedure of the convex
relaxation and an example, problem formulation, and implementation of test
cases. The results of these test cases are discussed to conclude the chapter.

After the two models in Chapter 3 and Chapter 4 are tested on various
test cases, we execute our implementations thereof using real life case studies
in Chapter 5. The aim of the case studies is to analyse and compare the
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performance of the two different tools presented in Chapter 3 and Chapter 4.
We consider two case studies; both of which are real data sets provided by
RTIO. Moreover, an aggregation approach is also implemented as an attempt
to reduce the solving time.

Finally, Chapter 6 concludes this thesis with a summary of our findings.
We highlight the main end results that include a comparative analysis of the
computational results and the effectiveness of the approaches; and state the
advantages and disadvantages of both models. In addition, we provide the
opportunities for future research in the relevant area.

In summary, the objectives of this thesis have been achieved in the fol-
lowing manner:

� The solving method of the existing model is tested and evaluated in
Chapter 3, and further in the discussion of our case studies in Chapter
5. Rather than dealing with the non-linearity in the formulation, the
approach in this model avoids it by completely ignoring it in the first
iteration and using the solutions gained to replace the non-linear terms
in the next iterations. We conclude that this approach is not reliable in
utilising the grade quality restrictions and does not have any theoretical
basis.

� An improved model is developed in Chapter 4. This model describes
the medium to long term logistics planning and has a strong theoretical
basis in dealing with the non-linearity. In this model, we utilise a convex
relaxation approach to provide a reformulation of the existing model.
That is, we remove the non-linear constraints in the problem and add
the convex and concave estimating functions of those constraints. A
global solution of the reformulated problem can be obtained by running
a MILP solver.

� Both models are implemented using AIMMS modelling software, linked
to the CPLEX solver, to solve test cases in Chapters 3 and 4, and full-
sized case studies in Chapter 5. Our implementation results show that
the iterations for the existing model do not lead to convergence of so-
lutions, but rather inconsistencies. It also does not reduce the grade
deviation cost as expected. The new model that we developed gener-
ates solutions with an improvement of 24–30% of the grade deviation
costs. As an exact method, of course, the improvement comes with a
significant increase in computational time. An aggregation technique
is developed to decrease the problem size greatly. The result of this
approach is that we are able to generate good quality solutions in a
suitable time frame.
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Chapter 2

Literature review

There is an almost limitless number of literature and sources on the appli-
cations and optimisation approaches of mining. In this chapter, we briefly
review some key literature on the mining problems in general before we look
at some specific problems that are relevant to our research problem. We will
focus on the use of mixed integer linear and mixed integer non-linear pro-
gramming to model and solve such problems.

2.1 Introduction

Based on the distance of the extracted material from the surface, the mining
process can be classified into two different methods; that is, surface and
underground mining. A combination of both methods is also possible when
the extraction depth increases.

Optimisation, or operations research, has been widely applied in mine
planning for at least the past 50 years. There are many areas of both surface
and underground mining in which optimisation has been applied. Early
work on potential areas of applications in mining are discussed in Topuz and
Duan (1989). Newman et al. (2010) provide a more recent and comprehensive
literature review on the applications of operations research in mine planning
problems. They categorise their problems in terms of the decision levels
(strategic, tactical, or operational) in both surface and underground mining.

Kozan and Liu (2011) did similar work on operations research method-
ologies in both surface and underground mining. The problems discussed are
classified into four categories, namely mine design, mine production, mine
transportation, and mine evaluation.

In this chapter, we review the literature on the operational research meth-
ods in surface or open-pit mining. We will briefly discuss some important
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mining problems in general and then focus on the transportation schedul-
ing, material blending, and logistics planning problems. These topics are
consolidated in Section 2.2. Subsequently in Section 2.3, we discuss some
optimisation techniques which focus on the applications of mixed integer
linear and non-linear programming in solving some problems in mining in-
dustries. Finally, in Section 2.4, we summarise and discuss our findings from
the literature review.

2.2 Optimisation in surface mining

Surface mining refers to the mining methods used to excavate minerals (usu-
ally hard rock or metal ore) that are found close to the surface of the Earth
(Kennedy, 1990). In surface mining, the overlying rock and waste, often
called overburden, are first removed before depositing the minerals. Iron
ore, coal, and gold are some examples of minerals that often utilise a surface
mining method when the minerals are found not too deep below the surface.

Optimisation methods have been applied to solve various problems that
arise in the surface mining area. Some of these applications include the ul-
timate pit limit problem, the production scheduling problem, the equipment
allocation problem, the blending problem, and many others (see Caccetta
and Giannini, 1986, 1988, 1990). More of these applications in the mining
industry are discussed in Weiss (1979)

2.2.1 Production scheduling problem

The optimum ultimate pit limit problem, also called the optimum open-pit
mine design problem (see Lerchs and Grossmann, 1965) is fundamental in the
mine planning process. This problem aims to determine the optimal contour
which is the result of extracting the volume of material that generates a
maximum total profit whilst considering the operational constraints. The
ultimate pit limit problem is crucial in the production scheduling problem in
mining.

The production scheduling, or the block sequencing problem, aims to
determine the sequence of blocks to be removed from the mine such that the
total profit is maximised and various constraints are satisfied. This problem
was initiated by Johnson (1968) who proposed an LP model to optimise the
timing of mineral extraction.

Fytas et al. (1993) present a computer package that generates alterna-
tive production scheduling strategies. Optimisation models and algorithms
to solve the long-term open-pit production scheduling problem are reviewed
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by Osanloo et al. (2008). Gershon (1983b) addresses the issues and compu-
tational difficulties arising in the open-pit production scheduling problem. In
addressing this problem, Caccetta and Hill (2003) propose an application of
the branch and cut method.

Ramazan and Dimitrakopoulos (2007) and Boland et al. (2008) extend
the open-pit production scheduling problem to a stochastic case with un-
certainty in the geological properties of the material. Kumral (2011) also
discusses a mine production scheduling problem which takes into account
the fluctuations in geo-metallurgical variability.

In regards to real applications, Rehman and Asad (2010) develop a model
to describe a production scheduling tool for a cement quarry. The model is
developed for short-term, rather than long-term. An application of produc-
tion scheduling problem in phosphate mining is considered by Busnach et al.
(1985).

2.2.2 Transportation problem

There are at least four different modes that are commonly used to distribute
goods in the logistics and supply chain. They are road (e.g. cars, trucks),
rail (e.g. trains), sea (e.g. ships), and air (e.g. planes). Intermodal freight
transport is an operations research area in which at least two modes of trans-
portation are used to move the goods without a handling operation in be-
tween.

Macharis and Bontekoning (2004) did a review of intermodal freight trans-
port research which focuses on inland transportation. Caris et al. (2008)
provide an overview of a planning decision problem in intermodal freight
transport which involves drayage operators, terminal operators, network op-
erators, and intermodal operators. Li and Tayur (2005) integrate both pricing
and operations planning aspects for their optimisation model in the context
of intermodal transportation.

In this thesis, we pay more particular attention to the rail transportation
mode. The most common problems in rail transportation are train routing
and scheduling problems. A survey on optimisation models for both of these
problems was done thoroughly by Cordeau et al. (1998). Although it is pos-
sible to integrate both problems into a single optimisation problem (Morlok
et al., 1970), the train routing and scheduling problems are commonly treated
separately.

The train routing problem produces an operation plan in terms of trans-
portation routes, the number of trains, and their frequency (Eidenbenz et al.,
2003) . The train scheduling problem generates a plan that specifies the
timetable of the planned trains. Higgins et al. (1996) present an optimisa-
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tion model to schedule trains on single line railroads. Extended works on
train scheduling may consider various constraints such as the elasticity of
the demand (Kuo et al., 2010). Newman and Yano (2000) note some com-
parisons between centralised and decentralised train scheduling methods for
an intermodal network.

In terms of ocean transportation, a survey on cargo ship routing and
scheduling problems are reported (Ronen, 1983; Christiansen et al., 2004).
Mehrez et al. (1995) provide a good example of an ocean cargo shipping
problem that includes shipping, unloading, and warehousing.

2.2.3 Blending problem

The quality of some mining products varies depending on various properties
in the products. Iron ore, for instance, contains different components such as
iron (Fe), silicon dioxide (SiO2), aluminium oxide (Al2O3), phosphorus (P),
etc. Iron ore buyers usually have specific demands on the target grade quality
to be achieved for each component in the product. This target grade quality
is typically 60% Fe, 4% SiO2, 2% Al2O3, and 0.1% P (Everett, 2007). In this
case, the blending process plays an important role in the whole operation to
maintain the desired grade quality.

The blending problem involves mixing products of different compositions
and grades in order to attain a reliable or required grades of products. The
pooling problem is a type of blending problem, normally in the petroleum
industry, where the products are sent to and blended in the intermediate
pools to satisfy given quality requirements. Many blending problems are
formulated as MILP. Nonetheless, according to Foulds et al. (1992), non-
linearity seems to be inevitable in the formulation of a classic pooling problem
due to the pooling restrictions. This is also shown in the earlier studies done
by Haverly (1978, 1979, 1980).

Figure 2.1: Simple network flow diagram for the pooling problem
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The pooling problem is analyzed at length by Greenberg (1995). It can
be described as a network flow problem in which both the quantities and
the attribute qualities of products are considered in each flow. A simple
network flow diagram for the pooling problem involves supplies at sources,
intermediate pools, and demands at destinations, described in Figure 2.1.

Suppose we have three different sets of nodes, namely the sources, the
pools, and the destinations. The network flow goes from a source to a pool
and ends at a destination. We may assume that each intermediate pool must
be connected with at least two sources and two destinations (Audet et al.,
2004). If this condition is not satisfied, the intermediate pool becomes redun-
dant as it is possible to merge the pool into either the source or destination.

We let Si be the supply for source i and Dk to be the demand for desti-
nation k. Let xij be the flow from source i to pool j and yjk be the flow from
pool j to destination k. Figure 2.2 below is an instance of a network flow
diagram for the pooling problem with 3 sources, 2 pools, and 2 destinations:

Figure 2.2: Network flow diagram for the pooling problem with
3 sources, 2 pools, and 2 destinations

To meet the supply and demand requirements, we have the following
constraints: ∑

j

xij ≤ Si , for all i∑
j

yjk = Dk , for all k
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As each pool assumes a flow balance, we also have:∑
i

xij =
∑
k

yjk , for all j.

The constraints above are the general constraints in a simple network flow
problem. In the pooling problem, however, we also consider the attribute
quality of the products.

Let aiq be the quality of attribute q in the product at source i, bjq be
the quality of attribute q in the product at pool j, and ckq be the quality of
attribute q in the product at source k. Then we define the attribute quality
bjq as follows:

bjq =

∑
i xijaiq∑
i xij

, for all j, q

when the flow into the pool exists, that is,
∑

i xij ≥ 0. Otherwise, bjq is
undefined. Similarly, we define the attribute quality ckq by:

ckq =

∑
j yjkbjq∑
j yjk

, for all k, q

when the flow from the pool exists, that is,
∑

j yjk ≥ 0. Otherwise, ckq is
undefined.

It is evident that the equations for the quality constraints are bilinear.
If the flow variables are restricted to be integers, we have a mixed-integer
non-linear programming problem. In addition to the above constraints, the
problem also requires the attribute quality of the products at the destinations
to meet the target demand quality. Suppose cLkq and cUkq are the lower and
upper bounds for the target demand quality. Thus, we have the bounds for
ckq:

cLkq ≤ ckq ≤ cUkq , for all k, q

.

The typical objective of the pooling problem is to minimise total costs.
We define Vij as the cost of moving goods from source i to pool j and Wjk

as the cost of moving goods from pool j to destination k. Therefore the
objective function is to minimise a linear function of xij and yjk. In summary,
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the problem is formulated as follows:

Minimise
∑
i

∑
j

Vijxij +
∑
j

∑
k

Wjkyjk

subject to
∑
j

xij ≤ Si, for all i∑
j

yjk = Dk, for all k∑
i

xij =
∑
k

yjk, for all j

bjq =

∑
i xijaiq∑
i xij

, for all j, q

ckq =

∑
j yjkbjq∑
j yjk

, for all k, q

cLkq ≤ ckq ≤ cUkq, for all k, q.

Audet et al. (2004) model the pooling problem through bilinear and non-
convex quadratic programming. They investigate the possibility of using
a branch and cut algorithm for solving the nonconvex quadratically con-
strained optimisation problem (Audet et al., 2000). In a more recent work,
Gupte et al. (2013) present new relaxations to the pooling problem and dis-
cretization methods to solve the general bilinear programming problem. Ul-
stein et al. (2007) formulate a model to describe the tactical planning of
petroleum production for a Norwegian oil and gas company. This problem
also involves a quality control of gas through blending and processing.

As we mentioned before, the problem of product blending is not limited
to the petroleum industry. Coal, gold, and iron ore are some instances of ores
that need blending of their multiple components as part of processing. The
optimisation problem that includes blending coal as part of the optimal plan
is presented by Liu and Sherali (2000). As this tool was developed for an
electric utility company, it must consider the supply and quality of coal and
the demand of electricity to find the optimal shipping and blending decisions
of coal. Shih (1997) did a similar planning model of fuel coal imports with
constrained power plants and harbours. Sandeman et al. (2010) provide a
case study in gold mining with blending requirements in which they integrate
optimisation within simulation models.

With regards to blending iron ore, Everett (2001) presents various analyt-
ical algorithms and simulation tools to improve the shipped material quality
in iron ore production scheduling. This work considers different stages in the
mining value chain to support the production scheduling decisions. Everett
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(2007) provides a computer based tool to aid the product quality manage-
ment in iron ore mining.

Other than ore mining and oil and gas, the blending process is also crucial
to other industries such as agriculture (Fishman and McInnes, 2005), food
processing (Kilic et al., 2013), etc.

2.2.4 Logistics planning problem

A logistics planning problem involves the movement of goods, typically from
the suppliers to the customers. Logistics planning may integrate production
scheduling, transportation, or blending problems into one model.

Mendez et al. (2006) present an optimisation model to describe the logis-
tics planning of oil refinery operations that includes scheduling and blending.
A model for planning and scheduling crude oil operations is also presented in
Karuppiah et al. (2008). Wenkai et al. (2002) model the short-term schedul-
ing problem for crude oil production that incorporates unloading, storing,
and processing the crude oil.

Fröhling et al. (2010) develop supply chain planning systems for the in-
tegrated transportion and blending for multiple recycling plants. To address
the blending requirements, their model derives linear input-output functions
by multiple linear regression analysis.

Bilgen and Ozkarahan (2007) address a logistics and supply chain problem
for bulk grain that involves shipping and blending. A logistics planning model
for iron ore which also involves rail transportation and blending of products
is developed in Garcıa-Flores et al. (2011), discussed more thoroughly in
Singh et al. (2014). Unlike the latter, the former formulate their blending
requirements linearly. We will present the model in Singh et al. (2014) in
more detail along with our implementations in the forthcoming chapter.

2.3 Optimisation techniques

Many mining problems are formulated as mathematical programs. In this
section, we review the use of mixed-integer linear and non-linear program-
ming in mining applications. Mixed-integer programs refer to mathematical
programming problems that involve both discrete (integer) and continuous
variables in the formulations. If the objective function and all constraints are
linear, the problem is a mixed-integer linear programming (MILP) problem.
If the problem includes a non-linearity, it is called a mixed-integer non-linear
programming (MINLP) problem.
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2.3.1 Mixed-integer linear program

The existence of the integer property in some of the variables makes MILP
problems more difficult to solve than the normal LP problems. Regardless,
the MILP type of mathematical modelling is considered significant in for-
mulating many optimisation problems in mining. The branch and bound
method is a general method in solving the IP or MIP problem (Land and
Doig, 2010; Ivanchev et al., 1976). This method can only be used to solve
the linear case of MIP (Taha, 1975), although the modified method can be
applied to solve some non-linear cases.

MILP is often used for solving long-term production scheduling in open
pit mining (Caccetta, 2007; Gershon, 1983a). Many solution strategies were
developed to solve such problem. A lagrangian relaxation was mentioned in
Caccetta et al. (1998). Gershon (1987) uses two heuristic approaches to ap-
proximate the results of the optimisation problem. A heuristic method, called
a sliding time window heuristic, was introduced by Cullenbine et al. (2011)
to solve a standard block sequencing problem. Caccetta and Hill (2003) pro-
pose a branch and cut method which generates a good set of solutions to the
problem.

While the number of binary variables becomes the major problem when
solving the problem, Ramazan and Dimitrakopoulos (2004) propose a method
to reduce the binary variables in the formulation. The reduction, however,
is usually not enough for very large open-pit mines. Ramazan (2007) then
develops a new algorithm called a fundamental tree algorithm to further
reduce the number of integers and constraints in the MILP formulation.

2.3.2 Mixed-integer non-linear program

If the MIP formulation involves a non-linearity in the objective function
and/or the constraints, the problem is classified as MINLP. The use of
MINLP in mining applications is also abundant. Several surveys of liter-
ature on the applications and algorithms for MINLP problems are reported
(Bussieck and Pruessner, 2003; Grossmann, 2002; Leyffer et al., 2009).

Depending on the complexity of the non-linear terms, a MINLP can be
addressed as a MILP problem by replacing the non-linear terms with individ-
ual variables. Lee et al. (1996) solve the crude oil scheduling and inventory
management problem with integers and bilinear equations involved in the
model. However, they maintain the problem as MILP by replacing the bilin-
ear terms with individual component flows.

Mendez et al. (2006) approximate their complex MINLP problem by a
sequence of MILP formulations. This method is often called the succes-
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sive linear programming (SLP), or sequential linear programming, method.
Wenkai et al. (2002) model their short-term scheduling problem for crude oil
production in MINLP formulation. Rather than solving the MINLP directly,
they also propose a solution algorithm that solves two MILPs and a NLP
model iteratively.

2.3.3 Non-convex MINLP

Solving MINLP problems requires a lot of work due to the combination of the
integrality condition and the non-linearity. Despite its challenges, there are
still methods available for solving convex MINLP problems, that is, MINLP
problems in which the functions involved in the objective and constraints are
all convex. The outer-approximation algorithm, for example, was developed
to solve such problems (Duran and Grossmann, 1986; Fletcher and Leyffer,
1994).

In the event where non-convexity is involved, finding a global solution
is much more difficult. Standard MINLP methods may only lead to sub-
optimal solutions or to no solution at all. Furthermore, some methods have
been developed mainly for academic purposes but are not computable in real
implementations.

The surveys on MINLP problems that have been reported (Bussieck and
Pruessner, 2003; Grossmann, 2002; Leyffer et al., 2009) cover both convex
and non-convex cases of MINLP. Adams and Sherali (1993) address more
specific MINLP problems classified as mixed-integer bilinear programming
problems. The integer variables in this paper are restricted to be binary
valued. Burer and Letchford (2012) have done a good survey that focuses on
non-convex MINLP problems.

The pooling problem is well known to be an application of the non-convex
quadratic problem (Audet et al., 2004; Misener and Floudas, 2009). Al-
though a standard pooling problem is generally only a bilinear program, some
complex pooling problems are expressed as mixed-integer bilinear programs.
Another application of non-convex MINLP is the transportation network de-
sign problem (Fügenschuh et al., 2010). The aim of this problem is to design
transportation routes such that the number of cars or trains and the travel
distances are minimised.

McCormick (1976) presents a general method for obtaining a global so-
lution to a factorable non-convex programming problem. In this paper, Mc-
Cormick outlines the details on how to generate underestimating convex and
overestimating concave functions for factorable functions, including bilinear
terms. These underestimators and overestimators are provided to relax the
non-convex MINLP formulations. We will show the procedure in Section 4.2.
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Karuppiah et al. (2008) present an outer approximation algorithm to
their non-convex MINLP model. They use the concept of convex relaxation
based on the work done by McCormick to obtain a rigorous lower bound on
the global optimal solution. The spatial decomposition method is used to
relax the MINLP problem in order to obtain the upper bound. The final
solution is attained once the gap between lower and upper bound falls within
a reasonable tolerance.

2.3.4 Heuristic methods

Heuristic methods are often developed to reduce the complexity of a math-
ematical programming problem, especially when the size of the problem is
too large and/or the formulation is too complicated. Heuristics methods
are commonly implemented as an attempt to shorten the solving time. In
this section, we provide examples of heuristics methods used in Singh et al.
(2014). These heuristic methods are useful when the size of the planning
periods are large. The methods use sequences of iterations over a number of
sub-intervals and are based on the sliding time window heuristic introduced
by Cullenbine et al. (2011).

Heuristic 1

Each iteration in the first heuristic method solves a full problem with a
complete time horizon. In the first iteration, the integer restrictions are
only considered in the first I periods. In the second iteration, the integer
restrictions are also considered in periods [I, 2I] and we use the solutions from
the first iteration for integer variables in periods [0, I] with some tolerance to
ensure feasibility. In general, in the ith iteration, we bring back the integer
constraints for periods [(i− 1)I, iI] and use the previous iteration’s solution
with tolerance. This step continues until the last period is reached.

Heuristic 2

Unlike the first heuristic, in every iteration in the second heuristic, we solve
the model for a limited time horizon with overlapping time horizons between
consecutive iterations. In the first iteration, we solve the problem only over
the first J periods. In the second iteration, we solve the model over the first
2J − J ′ periods where the solutions from the first iteration within tolerance
are used for the integer constraints in the first J − J ′ periods. In general, in
the jth iteration, we solve the model over intervals [0, J + (j − 1)(J − J ′)]
where the solutions from the previous iteration within tolerance are used for
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the integer variables for the first (j − 1)(J − J ′) periods. The additional
tolerance is again used to ensure feasibility. This step continues until the
last period is reached.

2.4 Discussion

It has been shown that there is a wide variety of problems that use the appli-
cations of optimisation in surface mining. Finding the optimum ultimate pit
limit plays a major role in mine production scheduling. Optimisation is also
used in routing and scheduling transportation system in order to distribute
goods or products effectively and efficiently. Blending requirements must be
considered to maintain the desired grade quality of products.

In this chapter, we have reported several medium-term planning problems
in mining. Although a lot of research has focused on the problems of mine
planning and blending separately, only a few have tried to integrate the
two problems. Bilgen and Ozkarahan (2007) report a model to determine
shipping schedules for the export of grain blends with blending requirements
as one of their constraints. Singh et al. (2014) develop a medium-term rail
scheduling for RTIO in iron ore mining which will be discussed at length in
Chapter 3 of this thesis.

In this chapter, we have also indicated the use of MILP and MINLP
in optimisation techniques in mining. We have seen that solving MINLP
is more challenging than MILP. The constraints representing the blending
requirements in Bilgen and Ozkarahan (2007) involve only two components
and are linear. Their whole model is then formulated as MILP. On the
contrary, the blending constraints in Singh et al. (2014) is non-linear, thus
making the problem MINLP. They apply the successive linear programming
approach to tackle the non-linearity (Mendez et al., 2006). To reduce the
problem size, they also introduce two heuristic methods based on the sliding
time window heuristic (Cullenbine et al., 2011).

In summary, we indicate the issues that arise from the relevant topic,
namely:

� the importance of the blending requirement in logistics planning for
minerals like iron ore to maintain the required grade quality;

� too little research has been focused on a logistics planning model that
integrates transportation scheduling and blending requirements in one
optimisation tool;

� evaluation of the solutions and the reliability of the effectiveness of the
SLP method to solve the MINLP problem; and
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� the need to implement the available methods to solve the challenging
MINLP problem to obtain better results.
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Chapter 3

Successive Linear Programming
for Logistics Planning

A good logistics planning model is crucial in order to make good decisions in
mining operations. Without one, the efficiency and optimality of the mining
logistics and supply chain would be much harder to achieve. Before any op-
timisation tool was developed, RTIO performed a computer-based calculation
using Excel spreadsheets for their mine planning process. The procedure re-
quired a lot of time and efforts and the results obtained from it were neither
reliable nor flexible, thus impeding the mine planning process. A few years
ago, CSIRO came up with a model which describes a logistics planning in iron
ore mining for the company (Singh et al., 2014). Although there have been
slight modifications since it was first developed due to requirement changes,
the model is still primarily used in RTIO’s current operation. In this chapter,
we present the tool that RTIO currently implements for optimising their min-
ing logistics. We model and implement the tool using AIMMS and present
the computational results on a range of test cases.

3.1 Introduction

A rail scheduling model for medium to long term planning has been developed
by CSIRO (Garcıa-Flores et al., 2011; Singh et al., 2014) for RTIO. This
optimisation tool aims to maximise the total throughput of iron ore and
manage the logistics and supply chain of Pilbara mining operations for a time
horizon of up to two years. The tool allocates trains to mines and manages
the mine-to-port value chain while considering various operational constraints
inbetween. This model ensures that both quantity and grade quality targets
of the shipped products are satisfied. Incentives are incorporated into the
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objective function to encourage a higher number of trains, hence undertaking
scenario analysis.

The problem is categorised as a mixed integer non-linear programming
problem due to the existence of both continuous and integer variables, as well
as non-linear constraints. One of its output variables, namely the number
of trains sent to each mine, is restricted to be integer, while other decision
variables remain continuous. Some binary variables are also introduced in or-
der to linearise maximisation and minimisation functions in the constraints.
The non-linearity appears in the grade quality requirement constraints. The
formulation for these constraints involve bilinear terms for the grade calcu-
lations.

As part of the optimisation tool, CSIRO developed a solution approach
which involves a multi-stage algorithm and is derived from the successive
linear programming (SLP) method. In the first stage, the integer restrictions
are relaxed and the grade constraints are omitted, making the problem a
simple linear programming problem. In the following stage, the grade con-
straints are brought back, but the solutions from the previous iteration are
used the estimate the value of the decision variables in the non-linear terms,
hence linearising the constraints. This step is repeated for a number of it-
erations until a reasonably good scheduling plan is attained. The tool has
been implemented and solely relied on by RTIO for their current operation.
It has produced better logistics plans than the traditional Excel spreadsheet
based approach.

In Section 3.2, we show the procedure to linearise maximisation and min-
imisation functions before we describe the problem. This linearisation pro-
cedure will be needed when formulating the iron ore grade calculations. We
then outline the full description of the problem in Section 3.3. The full for-
mulation of the model is presented in Section 3.4. This formulation is a
complete and extended version of the model developed for the current op-
eration. We firstly list the assumptions (Section 3.4.1), the set notations
(Section 3.4.2), then outline the objective function (Section 3.4.3), followed
by the operational constraints (Section 3.4.4) and grade constraints (Sec-
tion 3.4.5). The summary of notations is outlined in Section 3.4.6 and the
summary of formulation in Section 3.4.7.

We describe the solution method which involves a multi-stage algorithm
in Section 3.5. For validation purposes, we run test cases of problems with
small size periods, namely 5 and 11 periods. The results will be outlined
and discussed in Section 3.6. We implement all cases in AIMMS linked to
CPLEX 12.6.3 solver. Real case studies which involve a complete logistics
plan in iron ore mining will be considered in Chapter 5. Finally, we provide
the conclusion of this chapter in Section 3.7.
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3.2 Maximum and minimum functions

Before we present the problem description and formulation, it is necessary to
look at the linearisation procedure of maximum and minimum functions. A
maximum function of continuous variables returns the highest-valued vari-
able among the given set of variables. Similarly, a minimum function of
continuous variables returns the lowest-valued variable in the given set of
variables. Both maximum and minimum functions are non-linear. It is possi-
ble, however, to convert almost any maximum or minimum function of single
continuous variables into equivalent linear formulations by introducing some
binary variables.

Let y be a maximum function of continuous variables x1, x2, x3, . . . xn,
that is,

y = max{x1, x2, x3, . . . , xn}

It is assumed that the lower and upper bounds for x1, x2, x3, . . . xn are known.
Thus we have:

xL
i ≤ xi ≤ xU

i , for i = 1, 2, 3, . . . , n

Firstly, we introduce binary variables b1, b2, b3, . . . bn. The variable bi will
return the value 1 if xi is the maximum value and 0 otherwise. Let xU

max be
the highest value among the upper bounds, that is,

xU
max = max{xU

1 , x
U
2 , x

U
3 , . . . , x

U
n }

The generalisation of the MIP formulation to the maximum function is given
by:

xL
i ≤ xi ≤ xU

i , for i = 1, 2, 3, . . . , n

y ≥ xi, for i = 1, 2, 3, . . . , n

y ≤ xi + (xU
max − xL

i )(1− bi), for i = 1, 2, 3, . . . , n∑
i

bi = 1

Now we let z to be a minimum function of continuous variables x1, x2, x3, . . . xn,
that is,

z = min{x1, x2, x3, . . . , xn}

and we have:
xL
min = min{xL

1 , x
L
2 , x

L
3 , . . . , x

L
n}

We introduce binary variables ci such that ci is 1 if xi is the minimum
value and 0 otherwise for all i = 1, 2, 3, . . . , n. The generalisation of the MIP
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formulation to the minimum function is then given by:

xL
i ≤ xi ≤ xU

i , for i = 1, 2, 3, . . . , n

z ≤ xi, for i = 1, 2, 3, . . . , n

z ≥ xi − (xU
i − xL

min)(1− ci), for i = 1, 2, 3, . . . , n∑
i

ci = 1

This MIP generalisation procedure is needed in our model as we will deal
with some maximum and minimum functions in the iron ore grade calcula-
tions.

3.3 Problem description

This model aims to produce an optimal medium to long term plan for allo-
cating trains to mines and maximising total throughput of iron ore while sat-
isfying all the capacity, contractual obligation, and grade quality constraints.
In this section, we describe the main features of the problem.

RTIO currently services 15 mines and 4 shipping facilities across 2 ports
in their Pilbara mining operations. It owns the largest private rail network
in Australia with a total of 191 locomotives and 11,500 wagons. Figure 3.1
shows a single-network version of RTIO’s Pilbara operation process from
mine to port.

Stockpiling plays an important role in the production line of iron ore
mining operations. After the extraction process, the iron ore is stored in the
stockpiles before it gets loaded onto trains. Likewise, the stockpiles at ports
serve as storage before the product is loaded onto the ships. In addition, a
blending process takes place in the stockpiles to meet grade requirements.

Most of the mines and ports have two different types of stockpiles, namely
live and bulk stockpiles. Live stockpiles are used as the main production line,
whereas bulk stockpiles serve as buffering and storage. The live stockpile lev-
els have to meet the minimum and maximum capacity which are formulated
by both soft and hard constraints in the model. The soft constraints can be
violated, but penalties apply. The hard constraints of the stockpile capacity
are described as yard limits and cannot be violated. Only maximum capacity
hard constraints apply at the bulk stockpiles. The inloaders and outloaders
are used to transfer the products from/to bulk stockpiles. However, transfer-
ring material between live and bulk stockpiles is not preferable as it will incur
bulk handling costs. There are also maximum capacity limits for inloaders
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and outloaders. We have book keeping constraints to keep track of the in-
ventory levels in the stockpiles. To sum up, the constraints and penalties
involved within the stockpiling process are listed below:

� desirable capacities of minimum and maximum stockpile levels with
penalties if violated,

� maximum yard limit capacities,

� maximum inloader and outloader capacities,

� bulk handling penalties, and

� book keeping constraints.

Figure 3.1: RTIO’s Pilbara operations from mine to port
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The products are transferred from mines to ports by trains. Maximum
capacity and cycle time limits are expressed as hard and soft constraints
respectively. The number of trains cannot exceed the available trains in each
mine and region. Furthermore, there is also a maximum capacity for each
fleet. The cycle time of a train trip is defined as the time it takes for a train
to complete a port-mine-port journey. This cycle time also includes loading
and unloading the iron ore. Violating the maximum hours of cycle time will
result in penalties. For some of the mines, the number of trains must comply
with the contractual obligations with the joint ventures which are expressed
by annual quotas. Therefore, the constraints and penalties involved within
the rail operation are as follows:

� maximum number of trains in each mine,

� maximum number of trains in each region,

� maximum number of trains that belong to each fleet,

� maximum hours of available cycle time with penalties if violated, and

� maximum number of trains for mines restricted by the joint ventures.

Car dumpers are used to dump the material from the trains onto convey-
ors and to port stockpiles. In the formulation, we include the cost of using
the car dumping facilities. As some car dumpers are preferred to service
specific types of products, the costs vary depending on the car dumper be-
ing used and the product type. There are capacity limits for the number of
trains that can be serviced by the car dumpers. There is also an additional
capacity limit for total number of trains serviced by car dumping facilities in
the Cape Lambert-Western Creek region. The cost and constraints involving
the car dumping facilities at ports are as follows:

� cost of dumping material,

� maximum capacity of car dumpers, and

� maximum capacity of car dumpers in Cape Lambert-Western Creek
region.

The blending process takes place at the stockpiles. We include the calcu-
lations for the product grade for each component at each stockpile and train
in our formulation to maintain the desired quality. The blending process at
port stockpiles, in particular, is essential as it determines the final product
quality. We penalise the slack and excess variables when the target com-
position is off target within tolerance. Hence the following constraints and
penalty regarding the blending requirement are added to the formulation:
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� grade calculations of product component at each stockpile and train,
and

� grade deviation constraints with penalties if violated.

The final product is then transferred to the ships by the shiploaders.
The total amount of materials loaded onto a ship cannot be greater than
the shiploader capacity. Therefore this additional constraint in regards to
shipping is added:

� maximum shiploader capacities.

Another important operation at this stage is the lump re-screening pro-
cess, also called the return fines process. When the lump material is loaded
onto the ships, we return a proportion that is undersize back to the stock-
piles. This return fines product is mixed with the fines material and thus
will affect the book keeping and the grade composition of the fines product.

This model was designed for time horizons varying from two weeks to two
years. Each period represents a few days up to a week. In this thesis, we run
the model for time horizons of up to one year.

3.4 Problem formulation

Part of the problem formulation was presented in Garcıa-Flores et al. (2011)
and Singh et al. (2014). The literature, however, did not fully reflect RTIO’s
current operation as some details of the formulation were omitted. In this
section, we outline the extended version of the problem formulation based on
RTIO’s current operation.

The objective of the problem is to maximise the total profit which is
expressed by total revenue less total penalties. The revenue and all the cost
functions appear linearly. The problem is subject to operational capacity
constraints, contractual obligations, and grade quality requirements. The
grade quality constraints involve some non-linear terms. In addition, both
continuous and integer decision variables are involved, hence the problem is
a mixed integer non-linear program.

3.4.1 Assumptions

Although the model in Singh et al. (2014) describes a real case of mining
network, there are some assumptions and conditions that we need to apply
to uncomplicate the problem. The assumptions are listed in the following:
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Mine production amount is determined

The exploration process is scheduled separately and the amount of production
from each mine is estimated.

No rail operational cost

To make the best use of the available trains, we apply no operational cost
for running the trains. Nevertheless, we consider penalties for exceeding the
total allowed number of trains.

Estimated lump screening proportion

The parameters describing the proportion of lump products to be removed
and added to the fines stockpile at each port in each period are estimated.

Uniformity of grades

At each stockpile in the mines and ports, we assume that the grade compo-
sition of the product is uniform across the stockpile, that is, partial mixing
that occurs after transferring new materials is ignored.

3.4.2 Sets

Let the set of all mines be M and the set of all ports be R. Some of the mines
must comply with the joint ventures obligations. We use MJV to describe
the set of such mines where MJV ⊆ M . Let the set of all train fleets be F
and the set of all regions be G. Further, we let Mf and Mg ⊂ M denote the
set of all mines serviced by the fleet f ∈ F and belonging to region g ∈ G
respectively. As we have two different regimes for loading the trains, we
define MFF to be the set of mines whose regime is FIFO (first in first out)
and MLF to be the set of mines whose regime is LIFO (last in first out). It
is clear that MFF and MLF ⊂ M . The definition of these regimes will be
given in the coming section.

Each mine and port produces different types of iron ore. We let P be the
set of all mined products and S be the set of all shipped products. We also
let Pm be the set of all mined products produced in mine m ∈ M , Sr be the
set of all shipped products produced in port r ∈ R, and Smp be the set of
all shipped products for mine m ∈ M and product p ∈ P . Clearly, Pm ⊆ P
and Sr, Smp ⊆ S. It is also required to define SL and SF to be the set of
all lump and fines shipped products respectively, where SL, SF ⊂ S. As the
grade composition of iron ore is crucial in the problem, we also consider the
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various components in the iron ore products. We let C to be the set of all
different components in a product.

The logistics operation process involves the use of car dumpers at the
ports. Suppose D be the set of all car dumpers. We let Dmrp be the set
of all car dumpers at port r ∈ R receiving mined product p ∈ P from
mine m ∈ M where Dmrp ⊂ D. The car dumpers that belong to the Cape
Lambert-Western Creek region have special maximum capacity. Therefore,
it is necessary to let DWC be the set of car dumpers that serve the Cape
Lambert-Western Creek region where DWC ⊆ D. Finally, T is a set of
integers that represent the planning periods in the model. The length of the
time interval for each period is typically one week time horizon.

3.4.3 Objective function

The objective is to maximise the total revenue while minimising various
penalties from not complying with the operational constraints and the prod-
uct quality specification (Singh et al., 2014). Thus we consider the objective
function as maximising the total profit which is total revenue less total penal-
ties plus an incentive. All penalties are modelled as soft constraints in the
formulation. The motivation of adding an incentive is to encourage a higher
number of trains in the solutions. Therefore the objective function is defined
by:

Total profit = Total revenue - Cost of live stockpile violations - Cost of

bulk stockpile violations - Cost of bulk handling - Cost of

cycle time violations - Cost of dumping materials - Cost of

grade non-compliance + Incentive.

Total revenue

The mining operation in Pilbara ships different types of products, each of
which has different sale price. The total revenue is then given by:∑

s∈Sr

SPs

∑
t∈T

∑
r∈R

zrst(1 + I)1−t (3.1)

where SPs is the sale price dedicated to shipped product s and zrst is the
amount of product s shipped from port r in period t. We discount the revenue
to the present using a discount factor I.
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Cost of live stockpile violations

After the extraction process in a mine, the ore product is stored at a live
stockpile. The same type of stockpiling process also applies in the ports after
transferring iron ore from the mines. Each live stockpile at the mines and
ports has minimum and maximum storage capacities which are described as
both soft and hard constraints. For the soft capacity constraints, penalties
will occur if the closing live stockpile level does not fall within the target
limits. The cost of live stockpile limit violations is then formulated as:

∑
m∈M

∑
p∈Pm

[
MSLE

mp

∑
t∈T

αLE
mpt +MSLS

mp

∑
t∈T

αLS
mpt

]
+

∑
r∈R

∑
s∈Sr

[
PSLE

rs

∑
t∈T

βLE
rst + PSLS

rs

∑
t∈T

βLS
rst

]
(3.2)

where MSLE
mp and MSLS

mp represent the penalties when the respective maxi-
mum and minimum stockpile limits are violated at the live stockpiles in mine
m for product p, PSLE

rs and PSLS
rs are similar penalties for violation at the

live stockpiles at port r and of shipped product s, αLE
mpt and αLS

mpt are the ex-
cess and slack amounts of mined product p by which the live stockpile limits
at mine m are violated in period t, and βLE

rst and βLS
rst are similar excess and

slack variables for shipped product s at port r in period t.

Cost of bulk stockpile violations

Some of the mines and ports have bulk stockpiles whose purpose serve as
buffers and additional storage. Similar stockpile level violations also apply at
the bulk stockpiles. The bulk stockpiles, however, do not have any minimum
stockpile capacity, thus only maximum level violations apply. The cost of
bulk stockpile limit violations is as follows:∑

m∈M

∑
p∈Pm

MSBE
mp

∑
t∈T

αBE
mpt +

∑
r∈R

∑
s∈Sr

PSBE
rs

∑
t∈T

βBE
rst (3.3)

where MSBE
mp represents the penalties for maximum limit violation at bulk

stockpiles at mine m producing product p, PSBE
rs is the maximum limit

violation penalty for bulk stockpiles at port r and of shipped product s, αBE
mpt

the excess amount of mined product p by which the bulk stockpile limit at
mine m are violated in period t and βBE

rst is the similar excess variable for
shipped product s at port r in period t.
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Cost of bulk handling

The outloaders and inloaders are used to transfer materials between live and
bulk stockpiles. The occurrence of this process should be kept minimum as
it will incur some handling cost. The cost applies at stockpiles in both mines
and ports. The cost of moving material to and from bulk stockpiles is

∑
m∈M

∑
p∈Pm

[
MBout

mp

∑
t∈T

youtmpt +MBin
mp

∑
t∈T

yinmpt

]
+

∑
r∈R

∑
s∈Sr

[
PBout

rs

∑
t∈T

uout
rst + PBin

rs

∑
t∈T

uin
rst

]
(3.4)

whereMBout
mp ,MBin

mp, PBout
rs and PBin

rs are the handling costs of moving prod-
ucts to and from bulk stockpiles at mines and ports respectively, youtmpt and
yinmpt are the transfers to and from bulk stockpiles at mine m for product p
in period t, and uout

rst and uin
rst are similar variables for port r and product s

in period t.

Cost of cycle time violations

Violating the cycle time limits of train trips will incur penalties. The cost of
exceeding the cycle time of train trips is given by:∑

f∈F

CPf

∑
t∈T

µft (3.5)

where µft is the additional cycle time needed at fleet f in period t and CPf

is the corresponding penalty.

Cost of dumping materials

Some of the car dumpers are preferred to service specific material. We express
this by adding costs of dumping materials in the objective function. The cost
of dumping a product in a specific car dumper is∑

m∈M

∑
d∈Dm

DPmd

∑
p∈Pm

∑
f∈F

∑
t∈T

TSmpftxmpfdst (3.6)

where xmpfdst is the number of trains that serve mine m, mined product
p, fleet f , car dumper d, shipped product s and in period t, TSmpft is the
corresponding train capacity, and DPmd is the penalty for using the dumping
facility d for product from mine m.
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Cost of grade non-compliance

The final grade composition of the shipped products is required to fall within
the target composition range. We penalise any deviation to this target range.
The cost of target grade deviations of the shipped products is∑

c∈C

∑
r∈R

∑
s∈Sr

GPrsc

∑
t∈T

(sirsct + eirsct) (3.7)

where GPrsc is the penalty for violating the target grade of component c for
shipped product s at port r, sirsct and eirsct are the slack and excess variables
respectively when component c of product s at port r is off target in period
t.

Incentive

In order to enforce a higher number of trains sent to the mines, incentives
are proposed to the model. These incentives are included in the objective
function and expressed by the fraction of the total throughput of iron ore.
Mathematically, the incentives can be written as:

π
∑
s∈S

SPs

∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈D

∑
t∈T

TSmpftxmpfdst (3.8)

where π is the incentive fraction.

3.4.4 Operational constraints

In this section, we describe all operational constraints that are not related to
iron ore grade quality. These constraints include inventory levels at stock-
piles, transport capacities, transfer between live and bulk stockpiles, contrac-
tual obligation, and book keeping constraints.

Live stockpile levels

There are minimum and maximum desirable live stockpile capacity limits at
both mines and ports. These capacity limits are allowed to be violated but
penalties apply. These penalties have been described in (3.2). The capacity
constraints for live stockpile levels are expressed by the following inequalities:

SL
mpt − αLS

mpt ≤ smpt ≤ SU
mpt + αLE

mpt, ∀m ∈ M, p ∈ Pm, t ∈ T (3.9)

WL
rst − βLS

rst ≤ wrst ≤ WU
rst + βLE

rst , ∀r ∈ R, s ∈ Sr, t ∈ T (3.10)
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where smpt and wrst are the live stockpile levels of product p at mine m and of
product s at port r respectively in period t, SL

mpt and SU
mpt are the desirable

minimum and maximum live stockpile levels respectively of product p at
mine m in period t, WL

rst and WU
rst are the desirable minimum and maximum

live stockpile levels respectively of product s at port r in period t.

Bulk stockpile levels

The bulk stockpiles at both mines and ports only have maximum desirable
stockpile levels. The associated penalty is given by (3.3). The capacity
constraints are given by:

0 ≤ bmpt ≤ BU
mpt + αBE

mpt, ∀m ∈ M, p ∈ Pm, t ∈ T (3.11)

0 ≤ vrst ≤ V U
rst + βBE

rst , ∀r ∈ R, s ∈ Sr, t ∈ T (3.12)

where bmpt and vrst are the bulk stockpile levels of product p at mine m
and of product s at port r respectively in period t, BU

mpt is the desirable
maximum bulk stockpile level of product p at mine m in period t, and V U

rst

is the desirable maximum bulk stockpile of product s at port r in period t.

Yard limits

Besides the minimum and maximum desirable stockpile levels, each live
stockpile is also constrained by a yard limit. The yard limit capacity con-
straints are described as hard constraints. The closing stockpile level cannot
be greater than the site’s yard limit.

SU
mpt + αLE

mpt ≤ YMmpt, ∀m ∈ M, p ∈ Pm, t ∈ T (3.13)

WU
rst + βLE

rst ≤ Y Prst, ∀r ∈ R, s ∈ Sr, t ∈ T (3.14)

where YMmpt is the yard limit of live stockpile at mine m for product p in
period t and Y Prst is the yard limit of live stockpile at port r for product s
in period t.

Inloader and outloader capacities

Outloaders are used to tranport the iron ore from live to bulk stockpiles,
whereas inloaders is vice versa. There are maximum capacities specified for
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inloaders and outloader at both mines and ports.

0 ≤ youtmpt ≤ yout,Ump , ∀m ∈ M, p ∈ Pm, t ∈ T (3.15)

0 ≤ yinmpt ≤ yin,Ump , ∀m ∈ M, p ∈ Pm, t ∈ T (3.16)

0 ≤ uout
rst ≤ uout,U

rs , ∀r ∈ R, s ∈ Sr, t ∈ T (3.17)

0 ≤ uin
rst ≤ uin,U

rs , ∀r ∈ R, s ∈ Sr, t ∈ T (3.18)

where yout,Ump and yin,Ump are the maximum tonnes of product p that can be out-
loaded and inloaded between stockpiles at mine m. Similarly, uout,U

rs and uin,U
rs

are the maximum tonnes of product s that can be outloaded and inloaded
between stockpiles at port r.

Maximum number of trains

The maximum allowed number of trains to be sent from each mine cannot
be exceeded. Therefore, mathematically, we have the following inequality:∑

p∈Pm

∑
f∈F

∑
d∈Dmp

∑
s∈S

xmpfdst ≤ xU
mt, ∀m ∈ M, t ∈ T (3.19)

where xU
mt is the maximum number of allowed trains at mine m in period t.

Furthermore, the maximum allowed number of trains in a region also
cannot be exceeded. This constraint was initially modelled as a soft con-
straint in the original formulation. We modified it as a hard constraint in
our formulation.∑

m∈Mg

∑
p∈Pm

∑
f∈F

∑
d∈Dmrp

∑
s∈S

xmpfdst ≤ MTgt, ∀g ∈ G, t ∈ T (3.20)

where MTgt is the maximum number of allowed trains at region g in period t.

Fleet capacity

Each fleet has a maximum capacity by which the number of trains serviced
by that fleet in a given period cannot exceed.∑

m∈Mf

∑
p∈Pm

∑
d∈Dmrp

∑
s∈S

xmpfdst ≤ MFft, ∀f ∈ F, t ∈ T (3.21)

where MFft is the available consist numbers for fleet f in period t.
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Fleet hours capacity

Fleet hours capacity is defined by a soft constraint. The associated penalty
is given by (3.5). Hence the capacity constraint of fleet hours of the trains is
given by:∑

m∈Mf

∑
p∈Pm

CTmpt

∑
d∈Dmrp

∑
s∈S

xmpfdst ≤ PFft + µft, ∀f ∈ F, t ∈ T (3.22)

where CTmpt is the cycle time of the train sent to mine m carrying product
p in period t, PFft is the available pooled hours of fleet f in period t and µft

is the additional cycle time needed.

Joint ventures obligation

There is a contractual obligation between the joint ventures which some of
the mines must comply with. This obligation is expressed as maximum and
minimum capacity limits for cumulative number of trains to be sent to the
associated mines in each period. In the original model, this constraint is
described as both soft and hard constraints. In our formulation, only the
hard constraint is employed. At period t = n, the contractual obligation
constraint is defined by:

n∑
t=1

JV L
mt ≤

∑
p∈Pm

∑
f∈F

∑
d∈Dmp

∑
s∈S

n∑
t=1

xmpfdst ≤
n∑

t=1

JV U
mt, ∀m ∈ MJV , t ∈ T

(3.23)
where JV L

mt and JV U
mt are cumulative train delivery targets at mine m con-

strained by the joint venture in period t.

Car dumpers capacity

Each car dumper has a maximum capacity for the number of trains that
can be facilitated. This capacity constraints are expressed by the following
inequality: ∑

m∈M

∑
p∈Pm

∑
f∈F

∑
s∈S

xmpfdst ≤ DCdt, ∀d ∈ D, t ∈ T (3.24)

where DCdt is the maximum capacity of car dumper d in period t.
In addition, car dumpers serving the Cape Lambert-Western Creek region

are also constrained by per-period total dumping capacity.∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈DWC

∑
s∈S

xmpfdst ≤ WCt, ∀t ∈ T (3.25)
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where WCt is the total maximum capacity of car dumpers serving the Cape
Lambert-Western Creek region in period t.

Shipping capacity

The total amount of shipped product cannot exceed the maximum shipping
capacity.

0 ≤
∑
s∈Sr

zrst ≤ ZU
rt, ∀r ∈ R, t ∈ T (3.26)

where ZU
rt is the maximum tonnes of product that can be shipped at port r

in period t.

Book keeping

Book keeping constraints are designed to keep track of the closing stockpile
levels at each period. In a mine, the stockpile level at the end of a period is
equal to the opening stockpile level plus the quantity of products coming into
stockpile less the quantity of products going out of stockpile. The process of
stockpile book keeping at the mine is pictured in Figure 3.2.

Figure 3.2: Book keeping process at a mine

Hence for the book keeping of iron ore at mines, we have the following
equations:

smpt = smp,t−1 + IOPmpt + yinmpt − youtmpt −
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst,

∀m ∈ M, p ∈ Pm, t ∈ T (3.27)
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bmpt = bmp,t−1 + youtmpt − yinmpt, ∀m ∈ M, p ∈ Pm, t ∈ T (3.28)

where IOPmpt is a parameter that indicates the amount of product p pro-
duced at mine m in period t.

The book keeping constraint at a port live stockpile is more complex, tak-
ing into account the lump screening process. We describe the book keeping
process at the port in Figure 3.3. Before loading onto a ship, a certain pro-
portion of lump products which are too small are added into the associated
fines ore stockpile (see Section 1.1 for the definition of lump and fines ore).

Figure 3.3: Book keeping process at a port
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Therefore the book keeping constraint for lump products at a port live
stockpile is as follows:

wrst = wrs,t−1+
∑
m∈M

∑
p∈Pm

∑
f∈F

TSmpft

∑
d∈Dmrp

xmpfdst+uin
rst−uout

rst−
zrst

1−RFrst

,

∀r ∈ R, s ∈ SL, t ∈ T (3.29)

where and RFrst is the return fines proportion in percent for a lump product
s at port r in period t.

For fines product, the stockpile level also depends on the return fines
transferred from the associated lump stockpile.

wrst = wrs,t−1 +
∑
m∈M

∑
p∈Pm

∑
f∈F

TSmpft

∑
d∈Dmrp

xmpfdst

+ uin
rst − uout

rst − zrst +
z∗rstRF ∗

rst

1−RF ∗
rst

,

∀r ∈ R, s ∈ SF , t ∈ T (3.30)

where z∗rst is the shipping amount of associated lump product of fines product
s at port r in period t and RF ∗

rst is the return fines in percent of the associated
lump product.

The book keeping constraint at a port bulk stockpile is similar to that at
mines.

vrst = vrs,t−1 + uout
rst − uin

rst, ∀r ∈ R, s ∈ Sr, t ∈ T (3.31)

3.4.5 Iron ore grades

The blending process plays an important role in the entire model as it will
determine the final product grade quality. The aim is to achieve final grade
composition within target range. Any grade non-compliance will result in
penalty as shown in (3.7). This section outlines constraints associated with
the blending process which are expressed as grade calculations at the stock-
piles, trains, and ships. The constraints outlined in this section are in similar
fashion with equations (3.27)–(3.31), namely the book keeping constraints,
except that most terms are bilinear.

Live stockpile grades at mines

The iron ore grades at live stockpile in a mine are calculated by dividing the
total component of products left at the mine live stockpile at the end of the

46



CHAPTER 3 Successive Linear Programming for Logistics Planning

given period by the total stockpile level.

LMmpct =

LM live
mpc,t−1 + LM out

mpct + IOGmpctIOPmpt +BM in
mpct

−
∑

f∈F
∑

d∈Dmp

∑
s∈Smp

RGrail
mpcfdst

smpt

,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T (3.32)

where

LM live
mpct = LMmpctsmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T (3.33)

LM out
mpct = LMmpcty

out
mpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T (3.34)

BM in
mpct = BMmpcty

in
mpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T (3.35)

and

RGrail
mpcfdst = RGmpctTSmpftxmpfdst,

∀m ∈ M, p ∈ Pm, c ∈ C, f ∈ F, d ∈ Dmp, s ∈ Smp, t ∈ T (3.36)

LMmpct is the mine live grade quality of component c in product p at mine
m in period t, BMmpct is the mine bulk grade quality of component c in
product p at mine m in period t, IOGmpct is the grade quality of component
c in product p produced at mine m in period t and RGmpct is the grade
quality of component c in product p transported by trains from mine m in
period t.

Bulk stockpile grades at mines

The iron ore grades at bulk stockpile in a mine are calculated by dividing
the total component of products left at the mine bulk stockpile at the end of
the given period by the total stockpile level.

BMmpct =
BM bulk

mpc,t−1 −BM in
mpct + LM out

mpct

bmpt

,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T (3.37)

where

BM bulk
mpct = BMmpctbmpct, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T (3.38)
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Railed grades

The iron ore grades in a train are calculated by finding the fraction of the
total component of products in the train after loading process in the given
period.

RGmpct =
IOGmpctIOTmpt + LMmpc,t−1LTmpt +BMmpc,t−1BTmpt∑

f∈F
∑

d∈Dmrp

∑
s∈Smp

TSmpftxmpfdst

,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T (3.39)

where IOTmpt, LTmpt, and BTmpt are the total amount of product p taken
by trains from the main production line, the live stockpile, and the bulk
stockpile respectively at mine m in period t.

The order of train loading process depends on the mine’s regime. If the
mine’s regime is LIFO (last in first out), the train will prioritise on loading
the material produced from that mine first and the remaining amount will
be taken from the live stockpile. If there is still space in the train, the ore
from bulk stockpile will also be loaded until the train reaches its capacity.

Hence, if the regime is LIFO, the following applies:

IOTmpt = min
{∑

f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst, IOPmpt

}
,

∀m ∈ MLF , p ∈ Pm, t ∈ T (3.40)

LTMmpt = max
{
0,
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst − IOPmpt

}
,

∀m ∈ MLF , p ∈ Pm, t ∈ T (3.41)

LTmpt = min
{
smp,t−1, LTMmpt

}
, ∀m ∈ MLF , p ∈ Pm, t ∈ T (3.42)

BTmpt = max
{
0,
∑
f∈F

TSmpft

∑
d∈Dmrp

∑
s∈Smp

xmpfdst − IOPmpt − smp,t−1

}
,

∀m ∈ MLF , p ∈ Pm, t ∈ T (3.43)

If the mine’s regime is FIFO (first in first out), the train will load the
material from the live stockpiles before taking the produced material from
the mine. If there is still space in the train, the ore from bulk stockpile will
also be loaded until the train reaches its capacity.
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Hence, if the mine’s regime is FIFO, we have:

LTmpt = min
{∑

f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst, smp,t−1

}
,

∀m ∈ MFF , p ∈ Pm, t ∈ T (3.44)

IOTMmpt = max
{
0,
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst − smp,t−1

}
∀m ∈ MFF , p ∈ Pm, t ∈ T (3.45)

IOTmpt = min
{
IOPmpt, IOTMmpt

}
, ∀m ∈ MFF , p ∈ Pm, t ∈ T (3.46)

BTmpt = max
{
0,
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst − IOPmpt − smp,t−1

}
,

∀m ∈ MFF , p ∈ Pm, t ∈ T (3.47)

The railed grade calculations involve bilinear terms and max or min func-
tions in the equations, and thus, non-linear. While it is not easy to linearise
the bilinear terms, the max and min functions can be easily linearised by
applying the MIP generalisation described in Section 3.2. For some variables
which do not have minimum and/or maximum limits, we use 0 and high ar-
bitrary numbers, such as 10,000 or 20,000, as their minimum and maximum
limits respectively.

Following the procedure, we replace equation (3.40) with these inequali-
ties:

IOTmpt ≤ IOPmpt, ∀m ∈ MLF , p ∈ Pm, t ∈ T (3.48)

IOTmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst, ∀m ∈ MLF , p ∈ Pm, t ∈ T (3.49)

IOTmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − (10, 000− IOPmpt)IOT bin
mpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T (3.50)

IOTmpt ≥ IOPmpt − IOPmpt(1− IOT bin
mpt),

∀m ∈ MLF , p ∈ Pm, t ∈ T (3.51)
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where IOT bin
mpt is a binary variable which will return 1 if IOPmpt has a lower

value than
∑

f∈F TSmpft

∑
d∈Dmp

∑
s∈S xmpfdst at mine m for product p in

period t, or 0 otherwise.
We replace equation (3.41) with the inequalities below:

LTMmpt ≥ 0, ∀m ∈ MLF , p ∈ Pm, t ∈ T (3.52)

LTMmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − IOPmpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T (3.53)

LTMmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − IOPmpt + 10, 000LTM bin
mpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T (3.54)

LTMmpt ≤ 10, 000(1− LTM bin
mpt), ∀m ∈ MLF , p ∈ Pm, t ∈ T (3.55)

where LTM bin
mpt is a binary variable that will return 1 if

∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpftxmpfdst − IOPmpt is less than 0 at mine m for product p in period t,
or 0 otherwise.

We replace equation (3.42) with the inequalities below:

LTmpt ≤ smp,t−1, ∀m ∈ MLF , p ∈ Pm, t ∈ T (3.56)

LTmpt ≤ LTMmpt, ∀m ∈ MLF , p ∈ Pm, t ∈ T (3.57)

LTmpt ≥ smp,t−1 − IOPmpt − 20, 000LT bin
mpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T (3.58)

LTmpt ≥ LTMmpt − 20, 000(1− LT bin
mpt),

∀m ∈ MLF , p ∈ Pm, t ∈ T (3.59)

where LT bin
mpt is a binary variable that will return 1 if LTMmpt has a lower

value than smp,t−1 at mine m for product p in period t, or 0 otherwise.
We replace equation (3.44) with the inequalities below:

LTmpt ≤ smp,t−1, ∀m ∈ MFF , p ∈ Pm, t ∈ T (3.60)

LTmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst, ∀m ∈ MFF , p ∈ Pm, t ∈ T (3.61)
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LTmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − 10, 000LT bin
mpt,

∀m ∈ MFF , p ∈ Pm, t ∈ T (3.62)

LTmpt ≥ smp,t−1 − 20, 000(1− LT bin
mpt),

∀m ∈ MFF , p ∈ Pm, t ∈ T (3.63)

where LT bin
mpt in this case will return 1 if smp,t−1 has a lower value than∑

f∈F TSmpft

∑
d∈Dmp

∑
s∈S xmpfdst at mine m for product p in period t, or

0 otherwise.
We replace equation (3.45) with the inequalities below:

IOTMmpt ≥ 0, ∀m ∈ MFF , p ∈ Pm, t ∈ T (3.64)

IOTMmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst − smp,t−1,

∀m ∈ MFF , p ∈ Pm, t ∈ T (3.65)

IOTMmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst − smp,t−1 + 10, 000IOTM bin
mpt,

∀m ∈ MFF , p ∈ Pm, t ∈ T (3.66)

IOTMmpt ≤ 10, 000(1− IOTM bin
mpt),

∀m ∈ MFF , p ∈ Pm, t ∈ T (3.67)

where IOTM bin
mpt is a binary variable that will return 1 if

∑
f∈F TSmpft

∑
d∈Dmp∑

s∈Smp
xmpfdst − smp,t−1 is lower than 0 at mine m for product p in period t,

or 0 otherwise.
We replace equation (3.46) with the inequalities below:

IOTmpt ≤ IOPmpt, ∀m ∈ MFF , p ∈ Pm, t ∈ T (3.68)

IOTmpt ≤ IOTMmpt, ∀m ∈ MFF , p ∈ Pm, t ∈ T (3.69)

IOTmpt ≥ IOPmpt − (IOPmpt + 10, 000)IOT bin
mpt,

∀m ∈ MFF , p ∈ Pm, t ∈ T (3.70)
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IOTmpt ≥ IOTMmpt − (10, 000− IOPmpt)(1− IOT bin
mpt),

∀m ∈ MFF , p ∈ Pm, t ∈ T (3.71)

where IOT bin
mpt in this case will return 1 if IOTMmpt has a lower value than

IOPmpt at mine m for product p in period t, or 0 otherwise.
It is evident that the equations for calculating BTmpt for m ∈ MLF and

m ∈ MFF are the same equation. Therefore equations (3.43) and (3.47) can
be combined into one equation. As MLF ∪MFF = M , we have

BTmpt = max{0,
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst − IOPmpt − smp,t−1},

∀m ∈ M, p ∈ Pm, t ∈ T (3.72)

Finally we replace this equation with the inequalities below:

BTmpt ≥ 0, ∀m ∈ M, p ∈ Pm, t ∈ T (3.73)

BTmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst − IOPmpt − smp,t−1,

∀m ∈ M, p ∈ Pm, t ∈ T (3.74)

BTmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst − IOPmpt + 10, 000BT bin
mpt,

∀m ∈ M, p ∈ Pm, t ∈ T (3.75)

BTmpt ≤ 10, 000(1−BT bin
mpt), ∀m ∈ M, p ∈ Pm, t ∈ T (3.76)

where BT bin
mpt will return 1 if

∑
f∈F TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst − IOPmpt

is less than 0 at mine m for product p in period t, or 0 otherwise.

Live stockpile grades at ports

The iron ore grades at live stockpile in a port are calculated by dividing
the total component of products left at the port live stockpile in the given
period by the total stockpile level. The lump screening process also affects
the calculation of the grades. The constraints for live stockpile grades at
ports for lump product are as follows:

LPrsct =

LP live
rsc,t−1 − LP out

rsct +BP in
rsct

+
∑

m∈M
∑

p∈Pm

∑
f∈F

∑
d∈Dmrp

RGrail
mpcfdst

w#
rst

,

∀r ∈ R, s ∈ SL, c ∈ C, t ∈ T (3.77)
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where

LP live
rsct = LPrsctwrst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T (3.78)

LP out
rsct = LPrsctu

out
rst , ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T (3.79)

BP in
rsct = BPrsctu

in
rst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T (3.80)

and

w#
rst = wrs,t−1 − uout

rst + uin
rst +

∑
m∈M

∑
p∈Pm

∑
f∈F

TSmpft

∑
d∈Dmrp

xmpdst,

∀r ∈ R, s ∈ Sr, t ∈ T (3.81)

LPrsct is the port live grade quality of component c in shipped product s at
port r in period t and BPrsct is the port bulk grade.

For fines product, the live stockpile grades also depends on the grades of
return fines from the associated lump product.

LPrsct =
ZG#

rsct + LP rf
rsct

w#
rst +

z∗rstRF ∗
rst

1−RF ∗
rst

, ∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T (3.82)

where

ZG#
rsct = ZGrsctw

#
rst, ∀r ∈ R, s ∈ SF , t ∈ T (3.83)

LP rf
rsct = LP ∗

rsct

z∗rstRF ∗
rst

1−RF ∗
rst

, ∀r ∈ R, s ∈ SF , t ∈ T (3.84)

and ZGrsct is the grade quality of component c in shipped product s at port
r in period t.

Bulk stockpile grades at ports

The iron ore grades at bulk stockpile in a port are calculated by dividing
the total component of products left at the port bulk stockpile in the given
period by the total stockpile level.

BPrsct =
BP bulk

rsc,t−1 −BP in
rsct + LP out

rsct

vrst
,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T (3.85)

where

BP bulk
rsct = BPrsctvrsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T (3.86)
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Shipped grades

The materials to be shipped are taken directly from the live stockpiles at
the ports before any return fines material is added. For all lump and fines
products, we define ZGrsct as below.

ZGrsct =

LP live
rsc,t−1 − LP out

rsct +BP in
rsct

+
∑

m∈M
∑

p∈Pm

∑
f∈F

∑
d∈Dmrp

RGrail
mpcfdst

w#
rst

,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T (3.87)

Note that for lump product, the shipped grades are equal to its live stockpile
grades at ports since there is no additional material from the return fines
process.

Grade deviations

The shipped grades should fall within the target range. These grade devi-
ations are formulated as soft constraints and any violation will incur some
penalties as shown in (3.7)

(TGrsct − TGtol
rsc)zrst − sirsct ≤ ZGshipped

rsct ≤ (TGrsct + TGtol
rsc)zrst + eirsct

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T (3.88)

where TGrsct is the target grade for component c of shipped product s at
port r, TGtol

rsc is the target grade tolerance, and

ZGshipped
rsct = ZGrsctzrst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T (3.89)
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3.4.6 Summary of notations

Sets

C The set of all components of a product.
D The set of all car dumpers.

Dmrp The set of all car dumpers in port r ∈ R receiving mined product
p ∈ P from mine m ∈ M .

DWC The set of all car dumpers that serve the Cape Lambert-Western
Creek region, DWC ⊆ D.

F The set of all train fleets.
G The set of all regions.
M The set of all mines.
Mf The set of all mines serviced by the fleet f ∈ F , Mf ⊂ M .
Mg The set of all mines belonging to region g ∈ G, Mg ⊂ M .

MFF The set of all mines whose regime is FIFO, MFF ⊂ M .
MJV The set of all mines that have to comply with the joint ventures

obligations, MJV ⊆ M .
MLF The set of all mines whose regime is LIFO, MLF ⊂ M .

P The set of all mined products.
Pm The set of all mined products for mine m ∈ M , Pm ⊆ P .
R The set of all ports.
S The set of all shipped products.
Sr The set of all shipped products from port r ∈ R, Sr ⊆ S.

Smp The set of all shipped products sent from mine m ∈ M and product
p ∈ P , Smp ⊆ S.

SF The set of all fines shipped products, SF ⊂ S
SL The set of all lump shipped products, SL ⊂ S
T The set of planning periods.

55



CHAPTER 3 Successive Linear Programming for Logistics Planning

Model parameters

π Fraction of sales price and number of trains for incentive.
BU

mpt Maximum bulk stockpile level at minem ∈ M for product p ∈ P
in period t ∈ T .

CPf Cost for exceeding maximum train cycle time of fleet f ∈ F .
CTmpt Cycle time of a train used at mine m ∈ M carrying mined

product p ∈ Pm in period t ∈ T .
DCdt Maximum capacity of car dumper d ∈ D in period t ∈ T .
DPmd Cost of dumping products coming from minem ∈ M in a specific

car dumper d ∈ Dm.
GPrsc Cost of grade deviation for component c ∈ C in shipped product

s ∈ Sr at port r ∈ R.
I Discount factor.

IOGmpt Grade of mined product p ∈ Pm produced at mine m ∈ M in
period t ∈ T .

IOPmpt Amount of product p ∈ Pm produced at mine m ∈ M in period
t ∈ T .

JV L
mt Minimum cumulative number of trains to be sent from mine

m ∈ M v constrained by joint ventures in period t ∈ T .
JV U

mt Maximum cumulative number of trains to be sent from mine
m ∈ M v constrained by joint ventures in period t ∈ T .

MBin
mp Cost of transferring mined product p ∈ Pm at mine m ∈ M from

bulk to live stockpiles.
MBout

mp Cost of transferring mined product p ∈ Pm at mine m ∈ M from
live to bulk stockpiles.

MFft Available number of trains in fleet f ∈ F in period t ∈ T .
MSBE

mp Cost for violating maximum bulk stockpile limit for product
p ∈ Pm at mine m ∈ M .

MSLE
mp Cost for violating maximum live stockpile limit for product p ∈

Pm at mine m ∈ M .
MSLS

mp Cost for violating minimum live stockpile limit for product p ∈
Pm at mine m ∈ M .

MTgt Maximum capacity of trains in region g ∈ G at period t ∈ T .
PBin

rs Cost of transferring shipped product s ∈ Sr at port r ∈ R from
bulk to live stockpiles.

PBout
rs Cost of transferring shipped product s ∈ Sr at port r ∈ R from

live to to bulk stockpiles.
PFft Available pooled hours of fleet f ∈ F in period t ∈ T .
PSBE

rs Cost for violating maximum bulk stockpile limit for product
s ∈ Sr at port r ∈ R.
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PSLE
rs Cost for violating maximum live stockpile limit for product s ∈

Sr at port r ∈ R.
PSLS

rs Cost for violating minimum live stockpile limit for product s ∈
Sr at port r ∈ R.

RFrst Percentage of lump product s ∈ SL returned to fines stockpile
at port r ∈ R in period T .

RF ∗
rst Percentage of the associated lump product of fines product s ∈

SF at port r ∈ R in period T .
SL
mpt Minimum live stockpile level at minem ∈ M for product p ∈ Pm

in period t ∈ T .
SU
mpt Maximum live stockpile level at minem ∈ M for product p ∈ Pm

in period t ∈ T .
SPs Sale price per tonne of shipped product s ∈ S.

TGrsct Target quality for component c ∈ C of shipped product s ∈ Sr

at port r ∈ R in period t ∈ T .
TGtol

rsc Target quality tolerance for component c ∈ C of shipped prod-
uct s ∈ Sr at port r ∈ R.

TSmpft Capacity of a train in tonnes used at mine m ∈ M transporting
mined product p ∈ Pm belonging to fleet f ∈ F in period t ∈ T .

uin,U
rs Maximum amount of product s ∈ Sr that can be inloaded at

port r ∈ R.
uout,U
rs Maximum amount of product s ∈ Sr that can be outloaded at

port r ∈ R.
V U
rst Maximum bulk stockpile level at port r ∈ R for product s ∈ Sr.

WL
rst Minimum live stockpile level at port r ∈ R for product s ∈ Sr.

WU
rst Maximum live stockpile level at port r ∈ R for product s ∈ Sr.

WCt Maximum capacity of car dumpers in Cape Lambert-Western
Creek region in period t ∈ T .

xU
mt Maximum number of trains allowed at mine m ∈ M in period

t ∈ T .
yin,Ump Maximum tonnes of product p ∈ Pm that can be inloaded at

mine m ∈ M .
yout,Ump Maximum tonnes of product p ∈ Pm that can be outloaded at

mine m ∈ M .
YMmpt Yard capacity limit of live stockpile at mine m ∈ M for product

p ∈ Pm in period t ∈ T .
Y Prst Yard capacity limit of live stockpile at port r ∈ R for product

s ∈ Sr in period t ∈ T .
ZU

rt Maximum capacity of amount shipped at port r ∈ R in period
t ∈ T .
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Decision variables

αBE
mpt Amount by which maximum bulk stockpile limits were vio-

lated at mine m ∈ M for mined product p ∈ Pm in period
t ∈ T .

αLE
mpt Amount by which maximum live stockpile limits were violated

at mine m ∈ M for mined product p ∈ Pm in period t ∈ T .
αLS
mpt Amount by which minimum live stockpile limits were violated

at mine m ∈ M for mined product p ∈ Pm in period t ∈ T .
βBE
rst Amount by which maximum bulk stockpile limits were vio-

lated at port r ∈ R for shipped product s ∈ Sr in period
t ∈ T .

βLE
rst Amount by which maximum live stockpile limits were violated

at port r ∈ R for shipped product s ∈ Sr in period t ∈ T .
βLS
rst Amount by which minimum live stockpile limits were violated

at port r ∈ R for shipped product s ∈ Sr in period t ∈ T .
µft Additional cycle time of fleet f ∈ F required at period t ∈ T .
bmpt Bulk stockpile level at minem ∈ M for mined product p ∈ Pm

in period t ∈ T .
BMmpct Bulk stockpile grade of component c ∈ C in product p ∈ Pm

at mine m ∈ M in period t ∈ T .
BM bulk

mpct Product of BMmpct and bmpct.
BM in

mpct Product of BMmpct and yinmpct.
BPrsct Bulk stockpile grade of component c ∈ C in product s ∈ Sr

at port r ∈ R in period t ∈ T .
BP bulk

rsct Product of BPrsct and vrsct.
BP in

rsct Product of BPrsct and uin
rsct.

BTmpct Amount of component c ∈ C of product p ∈ P transported
from the bulk stockpile at mine m ∈ M in period t ∈ T .

BT bin
mpct A binary variable that will return 1 if

∑
f∈F TSmpft

∑
d∈Dmp∑

s∈Smp
xmpfdst − IOPmpt is less than 0 at mine m ∈ M for

product p ∈ Pm in period t ∈ T , or 0 otherwise.
eirsct Excess variable to penalise when grade of component c ∈ C

of shipped product s ∈ Sr from port r ∈ R at time t ∈ T is
off target.

IOTmpct Amount of component c ∈ C in mined product p ∈ P pro-
duced from mine m ∈ M that is transported by trains in
period t ∈ T .
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IOT bin
mpt If the mine regime is LIFO, it is a binary variable that will

return 1 if IOPmpt is lower than
∑

f∈F TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst at mine m ∈ MLF for product p ∈ Pm in period t ∈ T ,
or 0 otherwise.
If the mine regime is FIFO, it is a binary variable that will
return 1 if IOTMmpt has a lower value than IOPmpt at mine
m ∈ MFF for product p ∈ Pm in period t ∈ T , or 0 otherwise.

IOTMmpt A variable representing max{0,
∑

f∈F
∑

d∈Dmp

∑
s∈Smp

TSmpft

xmpfdst − smp,t−1}.
IOTM bin

mpt A binary variable that will return 1 if
∑

f∈F TSmpft

∑
d∈Dmp∑

s∈Smp
xmpfdst−smp,t−1 is lower than 0 at mine m ∈ MFF for

product p ∈ Pm in period t ∈ T , or 0 otherwise.component
c ∈ C in product p ∈ Pm at mine m ∈ M in period t ∈ T .

LM live
mpct Product of LMmpct and smpct.

LM out
mpct Product of LMmpct and youtmpct.

LPrsct Live stockpile grade of component c ∈ C in product s ∈ Sr at
port r ∈ R in period t ∈ T .

LP live
rsct Product of LPrsct and wrsct.

LP rf
rsct Product of LP ∗

rsct and z∗rstRF ∗
rst.

LP out
rsct Product of LPrsct and uout

rsct.
LP ∗

rst Live stockpile grade of component c ∈ C in the associated
lump product of fines product s ∈ SF at port r ∈ R in period
t ∈ T .

LTmpct Amount of component c ∈ C of product p ∈ P transported
from the live stockpile at mine m ∈ M in period t ∈ T .

LT bin
mpt If the mine regime is LIFO, it is a binary variable that will

return 1 if LTMmpt has a lower value than smp,t−1 at mine
m ∈ MLF for product p ∈ Pm in period t ∈ T , or 0 otherwise.
If the mine regime is FIFO, it is a binary variable
that will return 1 if smp,t−1 has a lower value than∑

f∈F TSmpft

∑
d∈Dmp

∑
s∈S xmpfdst at mine m ∈ MFF for

product p ∈ Pm in period t ∈ T , or 0 otherwise.
LTMmpct A variable representing max{0,

∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpft

xmpfdst − IOPmpt}.
LTM bin

mpt A binary variable that will return 1 if
∑

f∈F
∑

d∈Dmp∑
s∈Smp

TSmpftxmpfdst − IOPmpt is less than 0 at mine m ∈
MLF for product p ∈ Pm in period t ∈ T , or 0 otherwise.

RGmpct Railed grade of component c ∈ C in product p ∈ Pm from
mine m ∈ M in period t ∈ T .
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RGrail
mpcfdst Product of RGmpct and TSmpftxmpfdst.
smpt Live stockpile level at mine m ∈ M for mined product p ∈ Pm

in period t ∈ T .
sirsct Slack variable to penalise when grade of component c ∈ C of

shipped product s ∈ Sr from port r ∈ R at time t ∈ T is off
target.

uin
rst Amount transferred from bulk to live stockpiles at port r ∈ R

for shipped product s ∈ Sr in period t ∈ T .
uout
rst Amount transferred from live to bulk stockpiles at port r ∈ R

for shipped product s ∈ Sr in period t ∈ T .
vrst Bulk stockpile level at port r ∈ R for shipped product s ∈ Sr

in period t ∈ T .
wrst Live stockpile level at port r ∈ R for shipped product s ∈ Sr

in period t ∈ T .

w#
rst Live stockpile level at port r ∈ R for shipped product s ∈ Sr

before lump screening and return fines process in period t ∈ T .
xmpfdst Number of trains used at mine m ∈ M for mined product

p ∈ Pm of fleet f at car dumper d ∈ Dmrp for shipped product
s ∈ Smp in period t ∈ T .

yinrst Amount transferred from bulk to live stockpiles at mine m ∈
M for mined product p ∈ Pm in period t ∈ T .

youtrst Amount transferred from live to bulk stockpiles at mine m ∈
M for mined product p ∈ Pm in period t ∈ T .

zrst Amount of product s ∈ S shipped from port r ∈ R in period
t ∈ T .

z∗rst Amount of product from the associated lump stockpile of fines
product s ∈ SF shipped from port r ∈ R in period t ∈ T .

ZGrsct Shipped grade of component c ∈ C in product s ∈ Sr from
port r ∈ R in period t ∈ T .

ZGshipped
rsct Product of ZGrsct and zrst.

ZG#
rsct Product of ZGrsct and w#

rst.
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3.4.7 Complete formulation

Maximise: ∑
s∈Sr

SPs

∑
t∈T

∑
r∈R

zrst(1 + I)1−t

−
∑
m∈M

∑
p∈Pm

[
MSLE

mp

∑
t∈T

αLE
mpt +MSLS

mp

∑
t∈T

αLS
mpt

]
−

∑
r∈R

∑
s∈Sr

[
PSLE

rs

∑
t∈T

βLE
rst + PSLS

rs

∑
t∈T

βLS
rst

]
−

∑
m∈M

∑
p∈Pm

MSBE
mp

∑
t∈T

αBE
mpt +

∑
r∈R

∑
s∈Sr

PSBE
rs

∑
t∈T

βBE
rst

−
∑
m∈M

∑
p∈Pm

[
MBout

mp

∑
t∈T

youtmpt +MBin
mp

∑
t∈T

yinmpt

]
−

∑
r∈R

∑
s∈Sr

[
PBout

rs

∑
t∈T

uout
rst + PBin

rs

∑
t∈T

uin
rst

]
−

∑
f∈F

CPf

∑
t∈T

µft

−
∑
m∈M

∑
d∈Dm

DPmd

∑
p∈Pm

∑
f∈F

∑
t∈T

TSmpftxmpfdst

−
∑
c∈C

∑
r∈R

∑
s∈Sr

GPrsc

∑
t∈T

(sirsct + eirsct)

+ π
∑
s∈S

SPs

∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈D

∑
t∈T

TSmpftxmpfdst

subject to:

SL
mpt − αLS

mpt ≤ smpt ≤ SU
mpt + αLE

mpt, ∀m ∈ M, p ∈ Pm, t ∈ T

WL
rst − βLS

rst ≤ wrst ≤ WU
rst + βLE

rst , ∀r ∈ R, s ∈ Sr, t ∈ T

0 ≤ bmpt ≤ BU
mpt + αBE

mpt, ∀m ∈ M, p ∈ Pm, t ∈ T

0 ≤ vrst ≤ V U
rst + βBE

rst , ∀r ∈ R, s ∈ Sr, t ∈ T

SU
mpt + αLE

mpt ≤ YMmpt, ∀m ∈ M, p ∈ Pm, t ∈ T

WU
rst + βLE

rst ≤ Y Prst, ∀r ∈ R, s ∈ Sr, t ∈ T
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0 ≤ youtmpt ≤ yout,Ump , ∀m ∈ M, p ∈ Pm, t ∈ T

0 ≤ yinmpt ≤ yin,Ump , ∀m ∈ M, p ∈ Pm, t ∈ T

0 ≤ uout
rst ≤ uout,U

rs , ∀r ∈ R, s ∈ Sr, t ∈ T

0 ≤ uin
rst ≤ uin,U

rs , ∀r ∈ R, s ∈ Sr, t ∈ T∑
p∈Pm

∑
f∈F

∑
d∈Dmp

∑
s∈S

xmpfdst ≤ xU
mt, ∀m ∈ M, t ∈ T

∑
m∈Mg

∑
p∈Pm

∑
f∈F

∑
d∈Dmrp

∑
s∈S

xmpfdst ≤ MTgt, ∀g ∈ G, t ∈ T

∑
m∈Mf

∑
p∈Pm

∑
d∈Dmrp

∑
s∈S

xmpfdst ≤ MFft, ∀f ∈ F, t ∈ T

∑
m∈Mf

∑
p∈Pm

CTmpt

∑
d∈Dmrp

∑
s∈S

xmpfdst ≤ PFft + µft, ∀f ∈ F, t ∈ T

n∑
t=1

JV L
mt ≤

∑
p∈Pm

∑
f∈F

∑
d∈Dmp

∑
s∈S

n∑
t=1

xmpfdst ≤
n∑

t=1

JV U
mt, ∀m ∈ MJV , t ∈ T

∑
m∈M

∑
p∈Pm

∑
f∈F

∑
s∈S

xmpfdst ≤ DCdt, ∀d ∈ D, t ∈ T∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈DWC

∑
s∈S

xmpfdst ≤ WCt, ∀t ∈ T

0 ≤
∑
s∈Sr

zrst ≤ ZU
rt, ∀r ∈ R, t ∈ T

smpt = smp,t−1 + IOPmpt + yinmpt − youtmpt −
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst,

∀m ∈ M, p ∈ Pm, t ∈ T

wrst = wrs,t−1+
∑
m∈M

∑
p∈Pm

∑
f∈F

TSmpft

∑
d∈Dmrp

xmpfdst+uin
rst−uout

rst−
zrst

1−RFrst

,

∀r ∈ R, s ∈ SL, t ∈ T

wrst = wrs,t−1 +
∑
m∈M

∑
p∈Pm

∑
f∈F

TSmpft

∑
d∈Dmrp

xmpfdst + uin
rst − uout

rst

− zrst +
z∗rstRF ∗

rst

1−RF ∗
rst

,

∀r ∈ R, s ∈ SF , t ∈ T
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w#
rst = wrs,t−1 − uout

rst + uin
rst +

∑
m∈M

∑
p∈Pm

∑
f∈F

TSmpft

∑
d∈Dmrp

xmpdst,

∀r ∈ R, s ∈ Sr, t ∈ T

bmpt = bmp,t−1 + youtmpt − yinmpt, ∀m ∈ M, p ∈ Pm, t ∈ T

vrst = vrs,t−1 + uout
rst − uin

rst, ∀r ∈ R, s ∈ Sr, t ∈ T

LMmpct =

LM live
mpc,t−1 + LM out

mpct + IOGmpctIOPmpt +BM in
mpct

−
∑

f∈F
∑

d∈Dmp

∑
s∈Smp

RGrail
mpcfdst

smpt

,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BMmpct =
BM bulk

mpc,t−1 −BM in
mpct + LM out

mpct

bmpt

,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

RGmpct =
IOGmpctIOTmpt + LMmpc,t−1LTmpt +BMmpctBTmpt∑

f∈F
∑

d∈Dmrp

∑
s∈Smp

TSmpftxmpfdst

,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LPrsct =

LP live
rsc,t−1 − LP out

rsct +BP in
rsct

+
∑

m∈M
∑

p∈Pm

∑
f∈F

∑
d∈Dmrp

RGrail
mpcfdst

w#
rst

,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LPrsct =
ZG#

rsct + LP rf
rsct

w#
rst +

z∗rstRF ∗
rst

1−RF ∗
rst

, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BPrsct =
BP bulk

rsc,t−1 −BP in
rsct + LP out

rsct

vrst
, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

ZGrsct =

LP live
rsc,t−1 − LP out

rsct +BP in
rsct

+
∑

m∈M
∑

p∈Pm

∑
f∈F

∑
d∈Dmrp

RGrail
mpcfdst

w#
rst

,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T
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LM live
mpct = LMmpctsmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM out
mpct = LMmpcty

out
mpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM in
mpct = BMmpcty

in
mpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM bulk
mpct = BMmpctbmpct, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LP live
rsct = LPrsctwrst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP out
rsct = LPrsctu

out
rst , ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP rf
rsct = LP ∗

rsct

z∗rstRF ∗
rst

1−RF ∗
rst

, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BP in
rsct = BPrsctu

in
rst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BP bulk
rsct = BPrsctvrsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

ZGshipped
rsct = ZGrsctzrst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

ZG#
rsct = ZGrsctw

#
rst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

RGrail
mpcfdst = RGmpctTSmpftxmpfdst,

∀m ∈ M, p ∈ Pm, c ∈ C, f ∈ F, d ∈ Dmp, s ∈ Smp, t ∈ T

IOTmpt ≤ IOPmpt, ∀m ∈ MLF , p ∈ Pm, t ∈ T

IOTmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst, ∀m ∈ MLF , p ∈ Pm, t ∈ T

IOTmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − (10, 000− IOPmpt)IOT bin
mpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T

IOTmpt ≥ IOPmpt − IOPmpt(1− IOT bin
mpt),

∀m ∈ MLF , p ∈ Pm, t ∈ T

LTMmpt ≥ 0, ∀m ∈ MLF , p ∈ Pm, t ∈ T

LTMmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − IOPmpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T

LTMmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − IOPmpt + 10, 000LTM bin
mpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T
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LTMmpt ≤ 10, 000(1− LTM bin
mpt), ∀m ∈ MLF , p ∈ Pm, t ∈ T

LTmpt ≤ smp,t−1, ∀m ∈ MLF , p ∈ Pm, t ∈ T

LTmpt ≤ LTMmpt, ∀m ∈ MLF , p ∈ Pm, t ∈ T

LTmpt ≥ smp,t−1 − IOPmpt − 20, 000LT bin
mpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T

LTmpt ≥ LTMmpt − 20, 000(1− LT bin
mpt),

∀m ∈ MLF , p ∈ Pm, t ∈ T

IOTMmpt ≥ 0, ∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTMmpt ≤ 10, 000(1− IOTM bin
mpt), ∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTMmpt ≥
∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpftxmpfdst − smp,t−1,

∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTMmpt ≤
∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpftxmpfdst − smp,t−1 + 10, 000IOTM bin
mpt,

∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTmpt ≤ IOPmpt, ∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTmpt ≤ IOTMmpt, ∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTmpt ≥ IOPmpt − (IOPmpt + 10, 000)IOT bin
mpt,

∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTmpt ≥ IOTMmpt − (10, 000− IOPmpt)(1− IOT bin
mpt),

∀m ∈ MFF , p ∈ Pm, t ∈ T

LTmpt ≤ smp,t−1, ∀m ∈ MFF , p ∈ Pm, t ∈ T

LTmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst, ∀m ∈ MFF , p ∈ Pm, t ∈ T

LTmpt ≥ smp,t−1 − 20, 000(1− LT bin
mpt), ∀m ∈ MFF , p ∈ Pm, t ∈ T
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LTmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − 10, 000LT bin
mpt,

∀m ∈ MFF , p ∈ Pm, t ∈ T

BTmpt ≥ 0, ∀m ∈ M, p ∈ Pm, t ∈ T

BTmpt ≤ 10, 000(1−BT bin
mpt), ∀m ∈ M, p ∈ Pm, t ∈ T

BTmpt ≥
∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpftxmpfdst − IOPmpt − smp,t−1,

∀m ∈ M, p ∈ Pm, t ∈ T

BTmpt ≤
∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpftxmpfdst − IOPmpt + 10, 000BT bin
mpt,

∀m ∈ M, p ∈ Pm, t ∈ T

ZGshipped
rsct ≥ (TGrsct − TGtol

rsc)zrst − sirsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

ZGshipped
rsct ≤ (TGrsct + TGtol

rsc)zrst + eirsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T
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3.5 Solution approach

Solution approaches have been developed to tackle the non-linearities in the
model (Singh et al., 2014). These approaches include an iterative method
which is based on the SLP method and two heuristics methods (see Sec-
tion 2.3.4), based on sliding time window heuristic. In their current opera-
tion, RTIO completely relies on the iterative method, which will be discussed
at length in this section and applied in our implementation for the case prob-
lems.

The iterative method involves multi-stage algorithm where the number
of iterations is determined beforehand. Figure 3.4 describes the flowchart of
the step-by-step iterative method.

Figure 3.4: Flowchart of the iterative method

We firstly determine the number of iterations for which we run the algo-
rithm. Note that the number of iterations N has to be greater than one. In
the first iteration, we solve the problem where we relax the integer restric-
tions and grade constraints which are non-linear. In this stage, the problem
is a simple linear programming.

In the next iterations, we include the grade constraints with the solutions
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from the previous iteration are used as estimates of the non-linear terms. This
approach will linearise the non-linear constraints and simplify the model to
linear programming. We repeat this step for a number of iterations and bring
back the integer restrictions in the last iteration.

3.6 Test cases

In order to ensure the reliability of our implementation of the model, we
run test cases using a real data set given by RTIO. Two small problems are
considered; both are taken from the same data set. The first test case problem
describes 5 periods of planning, while the second describes 11 periods. As
each period represents few days to one week, the problems then consider
approximately one and two months of planning respectively. Problems of
larger size will be attempted as case studies in Chapter 5. We run our
implementations in AIMMS 4.21 software with linkage to CPLEX 12.6.3
solver using 1% MIP relative tolerance gap as the termination criterion.

3.6.1 Preliminary

In this section, we define the phrases that will come up in the results analysis.
Note that these definitions apply in the results analysis in Chapter 4 and 5
as well.

� Solving time is defined as the amount of time taken to run the im-
plementation. We measure the solving time in seconds.

� Gap is the percentage of the MIP gap achieved.

� Number of trains is defined as the number of trains in total required
over the full period.

� Total amount of shipping is the amount of material in kt shipped
over the full period.

� Total profit is defined as the amount of profit in total over the full
period. The total profit is also the objective function to be maximised
in the problem.

� Grade deviation cost is defined as the amount of grade deviation
cost in total over the full period.

� Number of iterations is defined as the number of iterations applied
in the iterative method.
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3.6.2 5-period case

We firstly solve the 5-period case without the grade quality requirements.
In this case, the grade deviation cost (3.7) and the grade constraints (3.32)–
(3.89) are omitted when running the optimisation tool. The results obtained
are then used to calculate the grade deviation cost. As the problem involves
no non-linear constraints, the iterative method is not needed. The results
are displayed in the table below.

Solving time (seconds) 0.27
Gap (%) 0.7
Number of trains 873
Total amount of shipping (kt) 22,939.01
Total profit ($) 1,141,752.31
Grade deviation cost ($) 187,995.58

Table 3.1: Summary of results for the 5-period case without
grade constraints

We then include the grade deviation cost in the objective function and
all the grade constraints to the problem. This means, the full formulation of
the model is considered. As the problem is MINLP, we apply the iterative
algorithm outlined in Section 3.5 with up to 8 iterations.

As the size of the problem is very small, the solver found solutions within
1% of gap tolerance instantly, even with the highest number of iterations.
This results can be seen in Table 3.2.

Table 3.3 displays the summary of results for the number of trains, total
amount of shipping, total profit, and grade deviation cost for the 5-period
case problem incorporating the grade constraints. The total number of trains
needed to transport the iron ore from the mines to the ports remains un-
changed across different number of iterations. Meanwhile, the total amount
of shipping, total profit, and grade deviation cost fluctuate as different num-
ber of iterations are applied.

3.6.3 11-period case

The second test case problem is taken from the same data set with 11 periods
and the same start of planning period. This problem then is an extension
to the the previous 5-period case. Similarly as the first test case, we start
our implementations by solving the problem without the grade quality con-
straints and the grade deviation cost in the objective function. Again, the
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Number of Solving time Gap
iterations (seconds) (%)

2 0.48 0.83
3 0.53 0.89
4 0.61 0.90
5 0.72 0.84
6 0.77 0.92
7 0.90 0.92
8 0.93 0.92

Table 3.2: Solving time and solution gap for the 5-period case
using iterative method

Number of Number Total Total Grade deviation
iterations of trains shipping (kt) profit ($) cost ($)

2 873 22,939.01 1,116,346.80 213,401.10
3 873 22,962.15 1,106,949.13 222,289.41
4 873 22,962.15 1,105,820.45 223,418.09
5 873 22,939.01 1,101,512.85 228,234.63
6 873 22,954.91 1,105,522.72 223,418.34
7 873 22,954.91 1,105,522.90 223,418.16
8 873 22,954.91 1,105,522.90 223,418.16

Table 3.3: Number of trains, total amount of shipping, total
profit, and grade deviation cost for the 5-period case using

iterative method
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iterative method is not needed as the problem is a regular MILP problem.
The summary of the results is shown in the table below.

Solving time (seconds) 3.60
Gap (%) 0.27
Number of trains 1,842
Total amount of shipping (kt) 45,754.34
Total profit ($) 1,969,437.50
Grade deviation cost ($) 663,727.37

Table 3.4: Summary of results for the 11-period case without
grade constraints

We then bring the grade deviation cost and grade constraints back to the
problem and apply the iterative algorithm outlined in Section 3.5 with up to
8 iterations. The solving times and gaps are listed in Table 3.5 below.

Number of Solving time Gap
iterations (seconds) (%)

2 4.21 0.32
3 4.87 0.36
4 5.01 0.36
5 5.04 0.26
6 5.39 0.40
7 6.00 0.47
8 5.93 0.23

Table 3.5: Solving time and solution gap for the 11-period case
using iterative method

The number of trains, shipping amount, total profit, and grade deviation
cost for the full problem of 11-period test case are summarised in Table 3.6.
Similarly as the previous case problem, the results show random fluctuation
as different number of iterations are used.

3.6.4 Discussion

Solving time and solution gap

The solving times and solution gaps for the first and second test cases are
summarised in the table below:
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Number of Number Total Total Grade deviation
iterations of trains shipping (kt) profit ($) cost ($)

2 1,841 45,725.14 2,011,251.97 622,513.45
3 1,842 45,753.84 1,991,286.42 641,707.59
4 1,842 45,753.84 2,017,672.63 615,321.39
5 1,841 45,724.90 2,023,004.68 611,922.11
6 1,840 45,697.84 1,983,886.56 648,300.45
7 1,840 45,699.69 2,018,881.57 611,922.21
8 1,842 45,756.45 2,023,559.72 611,922.08

Table 3.6: Number of trains, total amount of shipping, total
profits, and grade deviation costs for the 11-period case using

iterative method

Number of Solving time (s) Gap (%)
iterations 5 periods 11 periods 5 periods 11 periods

Without grades - 0.27 3.60 0.7 0.27

With grades

2 0.48 4.21 0.83 0.32
3 0.53 4.87 0.89 0.36
4 0.61 5.01 0.90 0.36
5 0.72 5.04 0.84 0.26
6 0.77 5.39 0.92 0.40
7 0.90 6.00 0.92 0.47
8 0.93 5.93 0.92 0.23

Table 3.7: Summary of solving times and solution gaps for the
5-period and 11-period case problems
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The problem size of both test cases are considered small, and hence it
does not take long for the AIMMS to find solutions within small solution
gaps. In this case, both models without and with the grade constraints are
reliable in terms of finding solutions within reasonable times.

Number of trains and total shipping

As shown in Table 3.8 below, it is not clear whether the grade constraints have
any effect on the total number of trains and the total amount of shipping.
On average, solving the full problems with the iterative method leads to very
small changes (in some cases, no change) in the number of trains and amount
of shipping, compared to the same problems without the grade constraints.

Number of Number of trains Total shipping (kt)
iterations 5 periods 11 periods 5 periods 11 periods

Without grades - 873 1,842 22,939.01 45,754.34

With grades

2 873 1,841 22,939.01 45,725.14
3 873 1,842 22,962.15 45,753.84
4 873 1,842 22,962.15 45,753.84
5 873 1,841 22,939.01 45,724.90
6 873 1,840 22,954.91 45,697.84
7 873 1,840 22,954.91 45,699.69
8 873 1,842 22,954.91 45,756.45

Table 3.8: Summary of number of trains and total shipping
amount for the 5-period and 11-period case problems

Total profit

We put more attention to the total profit when comparing our results since
it is our objective function in the model’s formulation. The results for the
total profit for the 5-period and 11-period problems (both without and with
the grade constraints) are summarised in Figures 3.5 and 3.6.

Figure 3.5 shows that adding the grade constraints to the 5-period prob-
lem reduces the objective function by the average of 3%. On the contrary,
Figure 3.6, indicates an increase of objective function by the average of 2%
when the grade constraints are added to the 11-period problem. It is inter-
esting to see the results of implementing much bigger problems in our case
studies in Chapter 5.
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Figure 3.5: Total profit for the 5-period case using iterative
method

74



CHAPTER 3 Successive Linear Programming for Logistics Planning

Without grades

With grades

Number of iterations

To
ta
l p
ro
fit

Figure 3.6: Total profit for the 11-period case using iterative
method

75



CHAPTER 3 Successive Linear Programming for Logistics Planning

The solutions achieved by applying different number of iterations for both
case problems are also observed. The results fluctuate and do not indicate
any convergence.

Grade deviation cost

Apart from maximising the total throughput and sales with minimum op-
erational costs, meeting the target demands of the iron ore grades is also
important in RTIO’s operations. This is reflected in the grade deviation cost
as part of the objective function. Figures 3.7 and 3.8 shows the comparison
of results of the grade deviation costs without and with the grade constraints
for the 5 and 11-period problems.

We can see that adding the grade constraints results in higher grade
deviation costs for the 5-period problem. On average, the increase is 18%
of the cost generated by the model without the grade constraints. As the
problem size gets larger, however, lower grade deviation costs are attained
by the problem with the grade constraints. This is indicated by the results
for the 11-period problem where the average of 6% decrease in the grade
deviation cost is achieved by incorporating the grade constraints. Moreover,
the solutions do not appear to converge for both case problems, as more
iterations are used.

3.7 Conclusions

In this chapter, we have extended the optimisation model and solution ap-
proach presented in (Garcıa-Flores et al., 2011) based on RTIO’s current
operation. We have implemented the model in AIMMS optimisation mod-
elling software with CPLEX solver to solve the MILP problems.

This model involves allocating trains to mines such that operational costs
are minimised and total throughput is maximised, taking into account the
grade quality demands of the products. In addition, the incentives in the
objective function encourages higher number of trains, hence increasing the
total throughput.

We have run our own implementation on two test case problems of small
size as validation tests. Both cases are extracted from a real data set given
by RTIO. We apply the iterative method presented in Section 3.5 since it has
been solely relied on by RTIO as their approach of tackling the non-linear
constraints in the formulation. The method relaxes the problem so that
the original MINLP problem can be run in CPLEX solver as some MILP
problems.
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Figure 3.7: Total cost of grade deviations for the 5-period case
using iterative method
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Figure 3.8: Total cost of grade deviations for the 11-period case
using iterative method
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For each test case, two different models were implemented; one without
the grade constraints, and the other one with the grade constraints. We
solved the problem without the grade constraints prior to solving the full
problem in order to analyse the impacts of adding the non-linear constraints.
For the full problems, we considered up to eight iterations and 1% gap of
tolerance. The results have been shown in Tables 3.1–3.6.

All solutions achieved are reasonable, and hence the model is validated.
Including the grade constraints presents very small impacts on the solving
time, the number of trains, and the total amount of shipping. In regards to
the total profit and the grade deviation cost, however, the model shows some
inconsistencies. Adding the grade constraints generates worse solutions for
the 5-period problem, in comparison to the same problem without the grade
constraints; but performs better for the 11-period problem. Furthermore,
the results do not show any convergence as more iterations are used; making
it difficult to decide the number of iterations that should be used.

In the forthcoming chapter, we will present a new model of the same
mining operation, along with some implementations.
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Chapter 4

Convex Relaxation for Global
Optimisation

The optimisation tool developed by Singh et al. (2014) and presented in the
previous chapter produces plans that find the allocation of trains to mines and
assist in medium to long term planning of logistics operations. It has per-
formed consistently better than the former computer-based approach in terms
of the quality of the results obtained and the time taken to solve the problem.
The solution approach to tackle the non-linear constraints, however, is not
reliable as the results of our implementation showed some inconsistencies in
terms of the significance of including the grade constraints. Furthermore,
there is no rigorous way of determining the number of iterations that should
be used in applying the iterative method. As the company’s plan to increase
their capacity takes place, there is a need to develop a new solution approach,
primarily on how it handles the non-linearity occurring in the formulation.
A more effective approach with a more solid and rigorous theory behind it
is needed to solve the optimisation models representing medium to long term
logistics planning in iron ore mining. In this chapter, we introduce a different
approach to relax the MINLP problem and present the implementations.

4.1 Introduction

The problem formulation of the optimisation model for logistics planning in
mining described in Chapter 3 uses a mixed integer non-linear programming
approach. A solution approach which uses iterations has been developed
to approximate the non-linearity arising in the model. In this chapter, we
present an alternative approach by solving a convex MILP relaxation of the
original MINLP model. The relaxed model is obtained by using the concept
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of convex and concave envelopes (see McCormick, 1976) to replace the non-
linear terms appearing in the formulation.

The convex envelope of a function over a non-empty convex set is the
highest convex underestimator of the function. In a similar way, the concave
envelope of a function over a non-empty convex set is the lowest concave
overestimator of the function.

In Section 4.2, we present a procedure for obtaining the convex underes-
timators and concave overestimators of factorable functions. We outline the
derivation of the convex and concave envelopes for bilinear terms and use
one of the bilinear terms in our problem formulation to provide an example.

The new problem formulation is presented in Section 4.3. This problem
formulation is a MILP relaxed version of the formulation in the previous
chapter. As non-linearity only appears in grade quality constraints, only
such constraints are replaced. In brief, this section includes the assumptions
(Section 4.3.1), the objective function (Section 4.3.2), operational constraints
(Section 4.3.3), constraints on iron ore grades (Section 4.3.4), the summary
of notations (Section 4.3.5), and the complete summary of the problem for-
mulation (Section 4.3.6).

Some test cases have been implemented for validation purposes. We use
the same cases as in Section 3.6. We also use AIMMS optimisation software
to build the model and link the software to CPLEX 12.6.3 solver. The results
will be outlined and discussed in Section 4.4. The conclusion of the chapter
is presented in Section 4.5.

4.2 Convex relaxation

The arising of non-linearity in the model formulation described in Chapter 3
is due to the appearance of bilinear terms in iron ore grade quality constraints.
A MILP relaxation can be obtained by replacing those non-linear terms with
individual terms and adding the convex functions that underestimate and
concave functions that overestimate the corresponding terms everywhere in
the domain of interest. This method was initiated by McCormick (1976).

4.2.1 Procedure

In this section, we outline the procedure of obtaining the underestimating
convex and overestimating concave functions for factorable functions, as also
summarised in McCormick (1976).

Suppose we have a continuous function of a single variable F
(
f(x)

)
where

f(x) is a continuous function of one or multi-variables. We assume that for
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all x in a convex set S, there exist a convex function cf (x) and a concave
function Cf (x) such that

cf (x) ≤ f(x) ≤ Cf (x)

and also

fL ≤ f(x) ≤ fU

where fL and fU are some scalars.
It is also assumed that the generation of the convex envelope and concave

envelopes for the function F
(
f(x)

)
in the interval [fL, fU ], denoted by eF

and EF respectively, is always possible. The convex envelope of a function is
defined as the highest underestimating convex function over a closed convex
set, while the concave envelope is the lowest overestimating concave function
over a closed convex set.

Next, it is required to find points yFmin and yFmax which are the points at
which the infimum and supremum of function F (y) are achieved. That is,
we want to compute yFmin and yFmax such that

F (yFmin) = inf
fL≤y≤fU

F (y)

F (yFmax) = sup
fL≤y≤fU

F (y).

Finally the convex underestimating function of F [f(x)] is given by

F [f(x)] ≥ eF
(
mid{cf (x), Cf (x), y

F
min}

)
, for x ∈ S ∩ {x|fL ≤ f(x) ≤ fU}

where the mid function returns the middle value of the specified scalars.
Similarly, the concave overestimating function of F [f(x)] is given by

F [f(x)] ≤ EF

(
mid{cf (x), Cf (x), y

F
max}

)
, for x ∈ S ∩ {x|fL ≤ f(x) ≤ fU}.

Using the same procedure, we can obtain the convex underestimating and
concave overestimating functions for a bilinear term. Suppose our function
is in the following form:

G
(
g(x)

)
H
(
h(x)

)
where G and H are continuous functions of a single variable and g and h are
continuous functions of multi-variables.
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We can assume that for all x in a convex set S, there exist convex functions
cg(x) and ch(x), and concave functions Cg(x) and Ch(x) such that

cg(x) ≤ g(x) ≤ Cg(x)

ch(x) ≤ h(x) ≤ Ch(x)

and also

gL ≤ g(x) ≤ gU

hL ≤ h(x) ≤ hU

where gL, hL, gU , and hU are some scalars.
For the intervals GL ≤ G ≤ GU and HL ≤ H ≤ HU , the respective

convex and concave envelopes for the product term are given by

max
{
HUG+GUH −GUHU , HLG+GLH −GLHL

}
min

{
HLG+GUH −GUHL, HUG+GLH −GLHU

}
.

The computation of these envelopes is detailed in the subsequent section.
We compute yGmin and yGmax, as well as y

H
min and yHmax such that

G(yGmin) = inf
gL≤y≤gU

G(y)

G(yGmax) = sup
gL≤y≤gU

G(y)

H(yHmin) = inf
hL≤y≤hU

H(y)

H(yHmax) = sup
hL≤y≤hU

H(y).

Therefore, it follows that the convex underestimating function of the
product term G

(
g(x)

)
H
(
h(x)

)
is given by

G
(
g(x)

)
H
(
h(x)

)
≥max

{
HUeG

(
mid{cg(x), Cg(x), y

G
min}

)
+

GUeH
(
mid{ch(x), Ch(x), y

H
min}

)
−GUHU ,

HLeG
(
mid{cg(x), Cg(x), y

G
min}

)
+

GLeH
(
mid{ch(x), Ch(x), y

H
min}

)
−GLHL

}
for x ∈ S ∩ {x|gL ≤ g(x) ≤ gU , hL ≤ h(x) ≤ hU}.

Similarly, the concave overestimating function of G[g(x)]H[h(x)] is given
by

G[g(x)]H[h(x)] ≤min
{
HLEG

(
mid{cg(x), Cg(x), y

G
max}

)
+

GUEH

(
mid{ch(x), Ch(x), y

H
max}

)
−GUHL,

HUEG

(
mid{cg(x), Cg(x), y

G
max}

)
+

GLEH

(
mid{ch(x), Ch(x), y

H
max}

)
−GLHU

}
84



CHAPTER 4 Convex Relaxation for Global Optimisation

for x ∈ S ∩ {x|gL ≤ g(x) ≤ gU , hL ≤ h(x) ≤ hU}.

4.2.2 Envelopes for bilinear terms

The convex and concave envelopes for a bilinear term is derived in this sec-
tion. Suppose we have a bilinear term z = xy. Variables x and y have
xL, xU , yL, and yU as their lower and upper bound values respectively such
that

xL ≤ x ≤ xU

yL ≤ y ≤ yU .

Let p and q be the non-negative difference between the variables and their
lower bounds. We have

p = (x− xL)

q = (y − yL)

As p and q are non-negative, the product of p and q is also non-negative.
That is, pq ≥ 0. Thus, we have

pq = (x− xL)(y − yL)

= xy − xLy − yLx+ xLyL ≥ 0

xy ≥ xLy + yLx− xLyL

Now we let r and s be the non-negative difference between the variables
and their upper bounds. Therefore, we have

r = (xU − x)

s = (yU − y)

We then have the following equation for the product of r and s:

rs = (xU − x)(yU − y)

= xy − xUy − yUx+ xUyU ≥ 0

xy ≥ xUy + yUx− xUyU .

Consequently, we obtain the convex envelopes as follows:

z ≥ xLy + yLx− xLyL

z ≥ xUy + yUx− xUyU .
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By following the same steps for the product terms rq and ps, we obtain
the following concave envelopes:

z ≤ xUy + yLx− xUyL

z ≤ xLy + yUx− xLyU .

4.2.3 Example

In this section, we provide an example of creating the convex underestimating
and concave overestimating functions using a non-linear term arising in our
model formulation. For interested readers, more examples can be found in
Horst and Tuy (1993) and Tawarmalani and Sahinidis (2002).

We choose the non-linear term in equation (3.33) as an example. The
term is bilinear as it involves multiplication of two decision variables, namely
the live stockpile grade at a mine and the stockpile level:

LM live
mpct = LMmpctsmpt.

To create the underestimating and overestimating functions, we firstly
need to introduce new parameters, namely the lower and upper bounds for
the grade composition variables. The lower and upper bounds for the live
stockpile grade quality of component c in product p at mine m are given by
LML

mpct and LMU
mpct respectively. The live stockpile level smpt has existing

bounds, namely zero as the lower bound and the stockpile yard limit as its
upper bound. Both LMmpct and smpt must lie within their specified bounds,
that is:

LML
mpct ≤ LMmpct ≤ LMU

mpct,

0 ≤ smpt ≤ Y LMmpt.

By following the procedure in Section 4.2.1, we obtain the following in-
equalities for convex underestimators:

LM live
mpct ≥ LML

mpctsmpt,

LM live
mpct ≥ Y LMmptLMmpct + LMU

mpctsmpt − Y LMmptLM
U
mpct.

Similarly, we also obtain the following inequalities for concave overestimators:

LM live
mpct ≤ LML

mpctsmpt + Y LMmptLMmpct − LML
mpctY LMmpt,

LM live
mpct ≤ LMU

mpctsmpt.

In the new formulation, the equation (3.33) is removed and the corre-
sponding inequalities describing convex and concave envelopes are added.
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We apply the same procedure to every bilinear term in iron ore grade con-
straints. As the convex and concave envelope functions are all linear, this
procedure will relax non-linearities in the formulation.

4.3 Problem formulation

This section presents a modified version of the problem formulation described
in the previous chapter. The nature of the problem is still the same. The
objective is to maximise the total profit which is expressed by total revenue
less total penalties subject to operational capacity constraints, contractual
obligations, and grade quality requirements.

Following the convex relaxation procedure outlined in Section 4.2.1, all
non-linear terms are replaced w single variables, making the problem of con-
vex MILP. Consequently, the solution approaches developed in Chapter 3 are
not needed for this model.

4.3.1 Assumptions

All assumptions made in the previous model still apply in this model. In
addition, the lower and upper bounds for iron ore grades are estimated based
on the grades of products coming in to each stockpile. In summary, the
assumptions made for this model are listed below:

Bounds for stockpile grades

The iron ore grade at each stockpile cannot be lower than the minimum of
the stockpile grade in the previous period and the grades of products coming
into that stockpile. A similar assumption also applies for the maximum limits
of the grades.

Bounds for railed grades

We assumed that the lower and upper bounds for iron ore grades in the trains
are to be equal to the lower and upper bounds for the live stockpile grades
respectively at the associated mines.

Bounds for shipped grades

We assumed that the lower and upper bounds for iron ore grades for shipping
are to be equal to the lower and upper bounds for the live stockpile grades
respectively at the associated ports.
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Mine production amount is determined

The exploration process is scheduled separately and the amount of production
from each mine is estimated.

No rail operational cost

To make the best use of the available trains, we apply no operational cost
for running the trains. Nevertheless, we consider penalties for exceeding the
total allowed number of trains.

Estimated lump screening proportion

The parameters describing the proportion of lump products to be removed
and added to the fines stockpile at each port in each period are estimated.

Uniformity of grades

At each stockpile in the mines and ports, we assume that the grade compo-
sition of the product is uniform across the stockpile, that is, partial mixing
that occurs after transferring new materials is ignored.

4.3.2 Objective function

As the objective function in the previous model is linear, we consider the same
objective function in this model. Therefore, the objective of the problem is
to maximise the total profit, described as follows:

Total profit = Total revenue - Cost of live stockpile violations - Cost of

bulk stockpile violations - Cost of bulk handling - Cost of

cycle time violations - Cost of dumping materials - Cost of

grade non-compliance + Incentive.

The total revenue, all the penalties and the incentive are defined in equa-
tions (3.1)–(3.8).

4.3.3 Operational constraints

None of the operational constraints in the previous model are non-linear.
For the two models to be comparable, we keep all the linear constraints
unchanged. Thus, we keep equations (3.9)–(3.31) in the new formulation.
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4.3.4 Iron ore grades

In the new formulation, we introduce lower and upper bounds for all the
grade quality variables. The value for these bounds are estimated based on
the grades at the previous period and of products coming in. All non-linear
terms appearing in the previous model are substituted by single linear terms.
This section also outlines the convex and concave envelopes added into the
new formulation.

Live stockpile grades at mines

Suppose LML
mpct and LMU

mpct are lower and upper bounds respectively for
live stockpile grades of component c of mined product p at mine m in period
t. Thus, we have

LML
mpct ≤ LMmpct ≤ LMU

mpct, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T. (4.1)

LML
mpct is estimated by determining the minimum value between the live

stockpile grades at mines in the previous period and the iron ore grades of
products coming in to that stockpile. In similar fashion, LMU

mpct is estimated
by determining the maximum value between the live stockpile grades at mines
in the previous period and the iron ore grades of products coming in to that
stockpile.

We replace equation (3.32) with the following equation:

LM live
mpct = LM live

mpc,t−1 + LM out
mpct + IOGmpctIOPmpt

+BM in
mpct −

∑
f∈F

∑
d∈Dmrp

∑
s∈Smp

RGrail
mpcfdst,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T (4.2)

and remove equations (3.33)–(3.36) in the new formulation.

Bulk stockpile grades at mines

Suppose BML
mpct and BMU

mpct are lower and upper bounds respectively for
bulk stockpile grades of component c of mined product p at mine m in period
t. Thus, we have

BML
mpct ≤ BMmpct ≤ BMU

mpct, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T. (4.3)

BML
mpct is estimated by determining the minimum value between the bulk

stockpile grades at mines in the previous period and the iron ore grades of
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products coming in to that stockpile. In similar fashion, BMU
mpct is estimated

by determining the maximum value between the bulk stockpile grades at
mines in the previous period and the iron ore grades of products coming in
to that stockpile.

We replace equation (3.37) with the following equation:

BM bulk
mpct = BM bulk

mpc,t−1 −BM in
mpct + LM out

mpct, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T
(4.4)

and remove equation (3.38) in the new formulation.

Railed grades

The lower and upper bounds for the railed grades are assumed to be equal
to the lower and upper bounds for the live stockpile grades respectively at
the corresponding mines. Thus, we have

LML
mpct ≤ RGmpct ≤ LMU

mpct, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T. (4.5)

We then replace equation (3.39) with the following equation:∑
f∈F

∑
d∈Dmrp

∑
s∈Smp

RGrail
mpcfdst = IOTmptIOGmpct + LM rail

mpct +BM rail
mpct,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T (4.6)

where LM rail
mpct replaces LMmpc,t−1LTmpt andBM rail

mpct replacesBMmpc,t−1BTmpt

in equation (3.39).
The two different mine regimes, namely LIFO and FIFO, are still relevant

in the new formulation. If the mine’s regime is LIFO (last in first out), the
trains will load the material produced in that mine first and the remaining
amount will be taken from the live stockpiles. If there is still space in the
train, the product from the bulk stockpile will also be loaded.Hence, if the
regime is LIFO, equations (3.40)–(3.43) apply.

If the mine’s regime is FIFO (first in first out), the trains will load the
material from the live stockpiles before taking the produced material from the
mine. If there is still space in the train, the product from the bulk stockpile
will also be loaded. Hence, if the mine’s regime is FIFO, equations (3.44)–
(3.47) apply.

Live stockpile grades at ports

Suppose LPL
rsct and LPU

rsct are lower and upper bounds for live stockpile
grades at ports respectively. Thus, we have

LPL
rsct ≤ LPrsct ≤ LPU

rsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T. (4.7)
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LPL
rsct is estimated by determining the minimum value between the live

stockpile grades at ports in the previous period and the iron ore grades of
products coming in to that stockpile. In similar fashion, LPU

rsct is estimated
by determining the maximum value between the live stockpile grades at ports
in the previous period and the iron ore grades of products coming in to that
stockpile.

The following equation replaces the calculation of the live stockpile grades
for lump products at ports described as equation (3.77):

LP#
rsct = LP live

rsc,t−1 − LP out
rsct +BP in

rsct +
∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈Dmrp

RGrail
mpcfdst,

∀r ∈ R, s ∈ SL, c ∈ C, t ∈ T (4.8)

where LP#
rsct replaces the non-linear term LPrsctw

#
rst in the original equation.

Meanwhile equation (3.82) which describes the live stockpile grades for
fine products at ports is substituted with:

LP##
rsct = ZG#

rsct + LP rf
rsct, ∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T (4.9)

where LP##
rsct replaces the non-linear term LPrsct(w

#
rst +

z∗rstRF ∗
rst

1−RF ∗
rst

) in the orig-

inal equation. We remove constraints (3.78)–(3.80) and (3.83)–(3.84) in the
new formulation.

Bulk stockpile grades at ports

Suppose BPL
rsct and BPU

rsct are lower and upper bounds for bulk stockpile
grades at ports respectively. Thus, we have

BPL
rsct ≤ BPrsct ≤ BPU

rsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T. (4.10)

BPL
rsct is estimated by determining the minimum value between the bulk

stockpile grades at ports in the previous period and the iron ore grades of
products coming in to that stockpile. In similar fashion, BPU

rsct is estimated
by determining the maximum value between the bulk stockpile grades at
ports in the previous period and the iron ore grades of products coming in
to that stockpile.

We replace equation (3.85) with the following equation:

BP bulk
rsct = BP bulk

rsc,t−1 −BP in
rsct + LP out

rsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T (4.11)

and remove equation (3.86) in the new formulation.
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Shipped grades

The lower and upper bounds for the shipped grades are assumed to be equal
to the lower and upper bounds for the live stockpile grades respectively at
the corresponding ports. Thus, we have

LPL
rsct ≤ ZGrsct ≤ LPU

rsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T. (4.12)

The shipped grades are equal to its live stockpile grades at ports. Thus,
we replace equation (3.87) with the following equation:

ZG#
rsct = LP live

rsc,t−1 − LP out
rsct +BP in

rsct +
∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈Dmrp

RGrail
mpcfdst

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T. (4.13)

Grade deviations

The grades of the shipped products must fall within the target range. This
constraint was described in inequality (3.88). We remove equation (3.89)
from the problem formulation.

Convex and concave envelopes

In the new formulation, for every substitute variable that replaces a non-
linear term, we add four constraints containing two convex and two concave
envelopes.

Consequently, for all m ∈ M , p ∈ Pm, c ∈ C, and t ∈ T , equation (3.33)
is replaced by the following inequalities:

LM live
mpct ≥ LML

mpctsmpt, (4.14)

LM live
mpct ≥ YMmptLMmpct + LMU

mpctsmpt − YMmptLM
U
mpct, (4.15)

LM live
mpct ≤ LML

mpctsmpt + YMmptLMmpct − LML
mpctYMmpt, (4.16)

LM live
mpct ≤ LMU

mpctsmpt. (4.17)

For all m ∈ M , p ∈ Pm, c ∈ C, and t ∈ T , equation (3.34) is replaced by
the following inequalities:

LM out
mpct ≥ LML

mpcty
out
mpt, (4.18)

LM out
mpct ≥ yout,Ump LMmpct + LMU

mpcty
out
mpt − yout,Ump LMU

mpct, (4.19)

LM out
mpct ≤ LML

mpcty
out
mpt + yout,Ump LMmpct − LML

mpcty
out,U
mp , (4.20)

LM out
mpct ≤ LMU

mpcty
out
mpt. (4.21)
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For all m ∈ M , p ∈ Pm, c ∈ C, and t ∈ T , equation (3.38) is replaced by
the following inequalities:

BM bulk
mpct ≥ BML

mpctbmpt, (4.22)

BM bulk
mpct ≥ BU

mptBMmpct +BMU
mpctbmpt −BU

mptBMU
mpct, (4.23)

BM bulk
mpct ≤ BML

mpctbmpt +BU
mptBMmpct −BML

mpctB
U
mpt, (4.24)

BM bulk
mpct ≤ BMU

mpctbmpt. (4.25)

For all m ∈ M , p ∈ Pm, c ∈ C, and t ∈ T , equation (3.35) is replaced by
the following inequalities:

BM in
mpct ≥ BML

mpcty
in
mpt, (4.26)

BM in
mpct ≥ yin,Ump BMmpct +BMU

mpcty
in
mpt − yin,Ump BMU

mpc, (4.27)

BM in
mpct ≤ BML

mpcy
in
mpt + yin,Ump BMmpct −BML

mpcy
in,U
mp , (4.28)

BM in
mpct ≤ BMU

mpcy
in
mpt. (4.29)

For all m ∈ M , p ∈ Pm, c ∈ C, f ∈ F , d ∈ Dmp, s ∈ Smp, and t ∈ T ,
equation (3.36) is replaced by the following inequalities:

RGrail
mpcfdst ≥ LML

mpctTSmpftxmpfdst, (4.30)

RGrail
mpcfdst ≥

TSmpftx
U
mtRGmpct + LMU

mpctTSmpftxmpfdst

− TSmpftx
U
mtLM

U
mpct,

(4.31)

RGrail
mpcfdst ≤

LML
mpctTSmpftxmpfdst + TSmpftx

U
mtRGmpct

− LML
mpctTSmpftx

U
mt,

(4.32)

RGrail
mpcfdst ≤ LMU

mpctTSmpftxmpfdst. (4.33)

For all m ∈ M , p ∈ Pm, c ∈ C, and t ∈ T , we obtain the following
inequalities for the equation LM rail

mpct:

LM rail
mpct ≥ LML

mpctLTmpt, (4.34)

LM rail
mpct ≥ YMmptLMmpct + LMU

mpctLTmpt − YMmptLM
U
mpct, (4.35)

LM rail
mpct ≤ LML

mpctLTmpt + YMmptLMmpct − LML
mpctYMmpt, (4.36)

LM rail
mpct ≤ LMU

mpctLTmpt. (4.37)

For all m ∈ M , p ∈ Pm, c ∈ C, and t ∈ T , we obtain the following
inequalities for the equation BM rail

mpct:

BM rail
mpct ≥ BML

mpctBTmpt, (4.38)

BM rail
mpct ≥ BU

mptBMmpct +BMU
mpctBMmpt −BU

mptBMU
mpct, (4.39)

BM rail
mpct ≤ BML

mpctBTmpt +BU
mptBMmpct −BML

mpctB
U
mpt, (4.40)

BM rail
mpct ≤ BMU

mpctBTmpt. (4.41)
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For all r ∈ R, s ∈ Sr, c ∈ C, and t ∈ T , equation (3.78) is replaced by
the following inequalities:

LP live
rsct ≥ LPL

rsctwrst, (4.42)

LP live
rsct ≥ Y PrstLPrsct + LPU

rsctwrst − Y PrstLP
U
rsct, (4.43)

LP live
rsct ≤ LPL

rsctwrst + Y PrstLPrsct − LPL
rsctY Prst, (4.44)

LP live
rsct ≤ LPU

rsctwrst. (4.45)

For all r ∈ R, s ∈ SF , c ∈ C, and t ∈ T , equation (3.84) is replaced by
the following inequalities:

LP rf
rsct ≥ LPL

rsct

z∗rstRF ∗
rst

1−RF ∗
rst

, (4.46)

LP rf
rsct ≥

ZU
rtRF ∗

rst

1−RF ∗
rst

LPrsct + LPU
rsct

z∗rstRF ∗
rst

1−RF ∗
rst

− ZU
rtRF ∗

rst

1−RF ∗
rst

LPU
rsct, (4.47)

LP rf
rsct ≤ LPL

rsct

z∗rstRF ∗
rst

1−RF ∗
rst

+
ZU

rtRF ∗
rst

1−RF ∗
rst

LPrsct − LPL
rsct

ZU
rtRF ∗

rst

1−RF ∗
rst

, (4.48)

LP rf
rsct ≤ LPU

rsct

z∗rstRF ∗
rst

1−RF ∗
rst

. (4.49)

For all r ∈ R, s ∈ Sr, c ∈ C, and t ∈ T , equation (3.79) is replaced by
the following inequalities:

LP out
rsct ≥ LPL

rsctu
out
rst , (4.50)

LP out
rsct ≥ uout,U

rs LPrsct + LPU
rsctu

out
rst − uout,U

rs LPU
rsct, (4.51)

LP out
rsct ≤ LPL

rsctu
out
rst + uout,U

rs LPrsct − LPL
rsctu

out,U
rs , (4.52)

LP out
rsct ≤ LPU

rsctu
out
rst . (4.53)

For all r ∈ R, s ∈ SF , c ∈ C, and t ∈ T , we obtain the following
inequalities for LP##

rst :

LP##
rsct ≥ LPL

rsct

(
w#

rst +
z∗rstRF ∗

rst

1−RF ∗
rst

)
, (4.54)

LP##
rsct ≥

(Y Prst + ZU
rst)LPrsct + LPU

rsct

(
w#

rst +
z∗rstRF ∗

rst

1−RF ∗
rst

)
− (Y Prst + ZU

rst)LP
U
rsct,

(4.55)

LP##
rsct ≤

LPL
rsct

(
w#

rst +
z∗rstRF ∗

rst

1−RF ∗
rst

)
+ (Y Prst + ZU

rst)LPrsct

− LPL
rsct(Y Prst + ZU

rst),

(4.56)

LP##
rsct ≤ LPU

rsct

(
w#

rst +
z∗rstRF ∗

rst

1−RF ∗
rst

)
. (4.57)
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For all r ∈ R, s ∈ Sr, c ∈ C, and t ∈ T , equation (3.86) is replaced by
the following inequalities:

BP bulk
rsct ≥ BPL

rsctvrst, (4.58)

BP bulk
rsct ≥ V U

rstBPrsct +BPU
rsctvrst − V U

rstBPU
rsct, (4.59)

BP bulk
rsct ≤ BPL

rsctvrst + V U
rstBPrsct −BPL

rsctV
U
rst, (4.60)

BP bulk
rsct ≤ BPU

rsctvrst. (4.61)

For all r ∈ R, s ∈ Sr, c ∈ C, and t ∈ T , equation (3.80) is replaced by
the following inequalities:

BP in
rsct ≥ BPL

rsctu
in
rst, (4.62)

BP in
rsct ≥ uin,U

rs BPrsct +BPU
rsctu

in
rst − uin,U

rs BPU
rsct, (4.63)

BP in
rsct ≤ BPL

rsctu
in
rst + uin,U

rs BPrsct −BPL
rscu

in,U
rs , (4.64)

BP in
rsct ≤ BPU

rscu
in
rst. (4.65)

For all r ∈ R, s ∈ Sr, c ∈ C, and t ∈ T , equation (3.89) is replaced by
the following inequalities:

ZGshipped
rsct ≥ LPL

rsctzrst, (4.66)

ZGshipped
rsct ≥ ZU

rtZGrsct + LPU
rsctzrst − ZU

rtLP
U
rsct, (4.67)

ZGshipped
rsct ≤ LPL

rsctzrst + ZU
rtZGrsct − LPL

rsctZ
U
rt, (4.68)

ZGshipped
rsct ≤ LPU

rsctzrst. (4.69)

For all r ∈ R, s ∈ Sr, c ∈ C, and t ∈ T , equation (3.83) is replaced by
the following inequalities:

ZG#
rsct ≥ LPL

rsctw
#
rst, (4.70)

ZG#
rsct ≥

(Y Prst + ZU
rst)ZGrsct + LPU

rsctw
#
rst

− (Y Prst + ZU
rst)LP

U
rsct,

(4.71)

ZG#
rsct ≤

LPL
rsctw

#
rst + (Y Prst + ZU

rst)ZGrsct

− LPL
rsct(Y Prst + ZU

rst),
(4.72)

ZG#
rsct ≤ LPU

rsctw
#
rst. (4.73)
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4.3.5 Summary of notations

Sets

C The set of all components of a product.
D The set of all car dumpers.

Dmrp The set of all car dumpers in port r ∈ R receiving mined product
p ∈ P from mine m ∈ M .

DWC The set of all car dumpers that serve the Cape Lambert-Western
Creek region, DWC ⊆ D.

F The set of all train fleets.
G The set of all regions.
M The set of all mines.
Mf The set of all mines serviced by the fleet f ∈ F , Mf ⊂ M .
Mg The set of all mines belonging to region g ∈ G, Mg ⊂ M .

MFF The set of all mines whose regime is FIFO, MFF ⊂ M .
MJV The set of all mines that have to comply with the joint ventures

obligations, MJV ⊆ M .
MLF The set of all mines whose regime is LIFO, MLF ⊂ M .

P The set of all mined products.
Pm The set of all mined products for mine m ∈ M , Pm ⊆ P .
R The set of all ports.
S The set of all shipped products.
Sr The set of all shipped products from port r ∈ R, Sr ⊆ S.

Smp The set of all shipped products sent from mine m ∈ M and product
p ∈ P , Smp ⊆ S.

SF The set of all fines shipped products, SF ⊂ S
SL The set of all lump shipped products, SL ⊂ S
T The set of planning periods.
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Model parameters

BU
mpt Maximum bulk stockpile level at minem ∈ M for product p ∈ P

in period t ∈ T .
BML

mpct Minimum bulk stockpile grade of component c ∈ C in product
p ∈ Pm at mine m ∈ M in period t ∈ T .

BMU
mpct Maximum bulk stockpile grade of component c ∈ C in product

p ∈ Pm at mine m ∈ M in period t ∈ T .
BPL

rsct Minimum bulk stockpile grade of component c ∈ C in product
s ∈ Sr at port r ∈ R in period t ∈ T .

BPU
rsct Maximum bulk stockpile grade of component c ∈ C in product

s ∈ Sr at port r ∈ R in period t ∈ T .
IOGmpt Grade of mined product p ∈ Pm produced at mine m ∈ M in

period t ∈ T .
IOPmpt Amount of product p ∈ Pm produced at mine m ∈ M in period

t ∈ T .
LML

mpct Minimum live stockpile grade of component c ∈ C in product
p ∈ Pm at mine m ∈ M in period t ∈ T .

LMU
mpct Maximum live stockpile grade of component c ∈ C in product

p ∈ Pm at mine m ∈ M in period t ∈ T .
LPL

rsct Minimum live stockpile grade of component c ∈ C in product
s ∈ Sr at port r ∈ R in period t ∈ T .

LPU
rsct Maximum live stockpile grade of component c ∈ C in product

s ∈ Sr at port r ∈ R in period t ∈ T .
RFrst Percentage of lump product s ∈ SL returned to fines stockpile

at port r ∈ R in period T .
RF ∗

rst Percentage of the associated lump product of fines product s ∈
SF at port r ∈ R in period T .

TSmpft Capacity of a train in tonnes sent to mine m ∈ M transporting
mined product p ∈ Pm belonging to fleet f ∈ F in period t ∈ T .

uin,U
rs Maximum amount of product s ∈ Sr that can be inloaded at

port r ∈ R.
uout,U
rs Maximum amount of product s ∈ Sr that can be outloaded at

port r ∈ R.
V U
rst Maximum bulk stockpile level at port r ∈ R for product s ∈ Sr.

xU
mt Maximum number of trains allowed at mine m ∈ M in period

t ∈ T .
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yin,Ump Maximum tonnes of product p ∈ Pm that can be inloaded at
mine m ∈ M .

yout,Ump Maximum tonnes of product p ∈ Pm that can be outloaded at
mine m ∈ M .

YMmpt Yard capacity limit of live stockpile at mine m ∈ M for product
p ∈ Pm in period t ∈ T .

Y Prst Yard capacity limit of live stockpile at port r ∈ R for product
s ∈ Sr in period t ∈ T .

ZU
rt Maximum capacity of amount shipped at port r ∈ R in period

t ∈ T .
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Decision variables

bmpt Bulk stockpile level at minem ∈ M for mined product p ∈ Pm

in period t ∈ T .
BMmpct Bulk stockpile grade of component c ∈ C in product p ∈ Pm

at mine m ∈ M in period t ∈ T .
BM bulk

mpct Substitute variable for non-linear term BMmpctbmpt.
BM in

mpct Substitute variable for non-linear term BMmpcty
in
mpt.

BM rail
mpct Substitute variable for non-linear term BMmpctBTmpt.

BPrsct Bulk stockpile grade of component c ∈ C in product s ∈ Sr

at port r ∈ R in period t ∈ T .
BP bulk

rsct Substitute variable for non-linear term BPrsctvrsct.
BP in

rsct Substitute variable for non-linear term BPrsctu
in
rst.

BTmpct Amount of component c ∈ C of product p ∈ P transported
from the bulk stockpile at mine m ∈ M in period t ∈ T .

IOTmpct Amount of component c ∈ C in mined product p ∈ P pro-
duced from mine m ∈ M that is transported by trains in
period t ∈ T .

LMmpct Live stockpile grade of component c ∈ C in product p ∈ Pm

at mine m ∈ M in period t ∈ T .
LM live

mpct Substitute variable for non-linear term LMmpctsmpt.
LM out

mpct Substitute variable for non-linear term LMmpcty
out
mpt.

LM rail
mpct Substitute variable for non-linear term LMmpctLTmpt.

LPrsct Live stockpile grade of component c ∈ C in product s ∈ Sr at
port r ∈ R in period t ∈ T .

LP live
rsct Substitute variable for non-linear term LPrsctwrst.

LP rf
rsct Substitute variable for non-linear term LP ∗

rsctz
∗
rstRF ∗

rst.
LP out

rsct Substitute variable for non-linear term LPrsctu
out
rsct.

LP ∗
rst Live stockpile grade of component c ∈ C in the associated

lump product of fines product s ∈ SF at port r ∈ R in period
t ∈ T .

LTmpct Amount of component c ∈ C of product p ∈ P transported
from the live stockpile at mine m ∈ M in period t ∈ T .

LP#
rsct Substitute variable for non-linear term LMmpctw

#
rst.

LP##
rsct Substitute variable for non-linear term LPrsct

(
w#

rst+
z∗rstRF ∗

rst

1−RF ∗
rst

)
.

RGmpct Railed grade of component c ∈ C in product p ∈ Pm from
mine m ∈ M in period t ∈ T .

RGrail
mpcfdst Substitute variable for non-linear term RGmpctTSmpftxmpfdst.
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smpt Live stockpile level at mine m ∈ M for mined product p ∈ Pm

in period t ∈ T .
uin
rst Amount transferred from bulk to live stockpiles at port r ∈ R

for shipped product s ∈ Sr in period t ∈ T .
uout
rst Amount transferred from live to bulk stockpiles at port r ∈ R

for shipped product s ∈ Sr in period t ∈ T .
vrst Bulk stockpile level at port r ∈ R for shipped product s ∈ Sr

in period t ∈ T .
wrst Live stockpile level at port r ∈ R for shipped product s ∈ Sr

in period t ∈ T .

w#
rst Live stockpile level at port r ∈ R for shipped product s ∈ Sr

before lump screening and return fines process in period t ∈ T .
xmpfdst Number of trains used at mine m ∈ M for mined product

p ∈ Pm of fleet f at car dumper d ∈ Dmrp for shipped product
s ∈ Smp in period t ∈ T .

yinrst Amount transferred from bulk to live stockpiles at mine m ∈
M for mined product p ∈ Pm in period t ∈ T .

youtrst Amount transferred from live to bulk stockpiles at mine m ∈
M for mined product p ∈ Pm in period t ∈ T .

zrst Amount of product s ∈ S shipped from port r ∈ R in period
t ∈ T .

z∗rst Amount of product from the associated lump stockpile of fines
product s ∈ SF shipped from port r ∈ R in period t ∈ T .

ZGrsct Shipped grade of component c ∈ C in product s ∈ Sr from
port r ∈ R in period t ∈ T .

ZGshipped
rsct Substitute variable for non-linear term ZGrsctzrst.

ZG#
rsct Substitute variable for non-linear term ZGrsctw

#
rst.
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4.3.6 Complete formulation

Maximise: ∑
s∈Sr

SPs

∑
t∈T

∑
r∈R

zrst(1 + I)1−t

−
∑
m∈M

∑
p∈Pm

[
MSLE

mp

∑
t∈T

αLE
mpt +MSLS

mp

∑
t∈T

αLS
mpt

]
−

∑
r∈R

∑
s∈Sr

[
PSLE

rs

∑
t∈T

βLE
rst + PSLS

rs

∑
t∈T

βLS
rst

]
−

∑
m∈M

∑
p∈Pm

MSBE
mp

∑
t∈T

αBE
mpt +

∑
r∈R

∑
s∈Sr

PSBE
rs

∑
t∈T

βBE
rst

−
∑
m∈M

∑
p∈Pm

[
MBout

mp

∑
t∈T

youtmpt +MBin
mp

∑
t∈T

yinmpt

]
−

∑
r∈R

∑
s∈Sr

[
PBout

rs

∑
t∈T

uout
rst + PBin

rs

∑
t∈T

uin
rst

]
−

∑
f∈F

CPf

∑
t∈T

µft

−
∑
m∈M

∑
d∈Dm

DPmd

∑
p∈Pm

∑
f∈F

∑
t∈T

TSmpftxmpfdst

−
∑
c∈C

∑
r∈R

∑
s∈Sr

GPrsc

∑
t∈T

(sirsct + eirsct)

+ π
∑
s∈S

SPs

∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈D

∑
t∈T

TSmpftxmpfdst

subject to:

SL
mpt − αLS

mpt ≤ smpt ≤ SU
mpt + αLE

mpt, ∀m ∈ M, p ∈ Pm, t ∈ T

WL
rst − βLS

rst ≤ wrst ≤ WU
rst + βLE

rst , ∀r ∈ R, s ∈ Sr, t ∈ T

0 ≤ bmpt ≤ BU
mpt + αBE

mpt, ∀m ∈ M, p ∈ Pm, t ∈ T

0 ≤ vrst ≤ V U
rst + βBE

rst , ∀r ∈ R, s ∈ Sr, t ∈ T

SU
mpt + αLE

mpt ≤ YMmpt, ∀m ∈ M, p ∈ Pm, t ∈ T

WU
rst + βLE

rst ≤ Y Prst, ∀r ∈ R, s ∈ Sr, t ∈ T
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0 ≤ youtmpt ≤ yout,Ump , ∀m ∈ M, p ∈ Pm, t ∈ T

0 ≤ yinmpt ≤ yin,Ump , ∀m ∈ M, p ∈ Pm, t ∈ T

0 ≤ uout
rst ≤ uout,U

rs , ∀r ∈ R, s ∈ Sr, t ∈ T

0 ≤ uin
rst ≤ uin,U

rs , ∀r ∈ R, s ∈ Sr, t ∈ T∑
p∈Pm

∑
f∈F

∑
d∈Dmp

∑
s∈S

xmpfdst ≤ xU
mt, ∀m ∈ M, t ∈ T

∑
m∈Mg

∑
p∈Pm

∑
f∈F

∑
d∈Dmrp

∑
s∈S

xmpfdst ≤ MTgt, ∀g ∈ G, t ∈ T

∑
m∈Mf

∑
p∈Pm

∑
d∈Dmrp

∑
s∈S

xmpfdst ≤ MFft, ∀f ∈ F, t ∈ T

∑
m∈Mf

∑
p∈Pm

CTmpt

∑
d∈Dmrp

∑
s∈S

xmpfdst ≤ PFft + µft, ∀f ∈ F, t ∈ T

n∑
t=1

JV L
mt ≤

∑
p∈Pm

∑
f∈F

∑
d∈Dmp

∑
s∈S

n∑
t=1

xmpfdst ≤
n∑

t=1

JV U
mt, ∀m ∈ MJV , t ∈ T

∑
m∈M

∑
p∈Pm

∑
f∈F

∑
s∈S

xmpfdst ≤ DCdt, ∀d ∈ D, t ∈ T∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈DWC

∑
s∈S

xmpfdst ≤ WCt, ∀t ∈ T

0 ≤
∑
s∈Sr

zrst ≤ ZU
rt, ∀r ∈ R, t ∈ T

smpt = smp,t−1 + IOPmpt + yinmpt − youtmpt −
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈Smp

xmpfdst,

∀m ∈ M, p ∈ Pm, t ∈ T

wrst = wrs,t−1+
∑
m∈M

∑
p∈Pm

∑
f∈F

TSmpft

∑
d∈Dmrp

xmpfdst+uin
rst−uout

rst−
zrst

1−RFrst

,

∀r ∈ R, s ∈ SL, t ∈ T

wrst = wrs,t−1 +
∑
m∈M

∑
p∈Pm

∑
f∈F

TSmpft

∑
d∈Dmrp

xmpfdst + uin
rst − uout

rst

− zrst +
z∗rstRF ∗

rst

1−RF ∗
rst

,

∀r ∈ R, s ∈ SF , t ∈ T
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w#
rst = wrs,t−1 − uout

rst + uin
rst +

∑
m∈M

∑
p∈Pm

∑
f∈F

TSmpft

∑
d∈Dmrp

xmpdst,

∀r ∈ R, s ∈ Sr, t ∈ T

bmpt = bmp,t−1 + youtmpt − yinmpt, ∀m ∈ M, p ∈ Pm, t ∈ T

vrst = vrs,t−1 + uout
rst − uin

rst, ∀r ∈ R, s ∈ Sr, t ∈ T

LML
mpct ≤ LMmpct ≤ LMU

mpct, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BML
mpct ≤ BMmpct ≤ BMU

mpct, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LML
mpct ≤ RGmpct ≤ LMU

mpct, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LPL
rsct ≤ LPrsct ≤ LPU

rsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BPL
rsct ≤ BPrsct ≤ BPU

rsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LPL
rsct ≤ ZGrsct ≤ LPU

rsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LM live
mpct = LM live

mpc,t−1 + LM out
mpct + IOGmpctIOPmpt +BM in

mpct

−
∑
f∈F

∑
d∈Dmrp

∑
s∈Smp

RGrail
mpcfdst,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM bulk
mpct = BM bulk

mpc,t−1 −BM in
mpct + LM out

mpct,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T∑
f∈F

∑
d∈Dmrp

∑
s∈Smp

RGrail
mpcfdst = IOTmptIOGmpct + LM rail

mpct +BM rail
mpct,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LP#
rsct = LP live

rsc,t−1 − LP out
rsct +BP in

rsct +
∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈Dmrp

RGrail
mpcfdst,

∀r ∈ R, s ∈ SL, c ∈ C, t ∈ T

ZG#
rsct = LP live

rsc,t−1 − ZGout
rsct +BP in

rsct +
∑
m∈M

∑
p∈Pm

∑
f∈F

∑
d∈Dmrp

RGrail
mpcfdst,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP##
rsct = ZG#

rsct + LP rf
rsct, ∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T

BP bulk
rsct = BP bulk

rsc,t−1 −BP in
rsct + LP out

rsct, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T
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IOTmpt ≤ IOPmpt, ∀m ∈ MLF , p ∈ Pm, t ∈ T

IOTmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst, ∀m ∈ MLF , p ∈ Pm, t ∈ T

IOTmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − (10, 000− IOPmpt)IOT bin
mpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T

IOTmpt ≥ IOPmpt − IOPmpt(1− IOT bin
mpt),

∀m ∈ MLF , p ∈ Pm, t ∈ T

LTMmpt ≥ 0, ∀m ∈ MLF , p ∈ Pm, t ∈ T

LTMmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − IOPmpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T

LTMmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − IOPmpt + 10, 000LTM bin
mpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T

LTMmpt ≤ 10, 000(1− LTM bin
mpt), ∀m ∈ MLF , p ∈ Pm, t ∈ T

LTmpt ≤ smp,t−1, ∀m ∈ MLF , p ∈ Pm, t ∈ T

LTmpt ≤ LTMmpt, ∀m ∈ MLF , p ∈ Pm, t ∈ T

LTmpt ≥ smp,t−1 − IOPmpt − 20, 000LT bin
mpt,

∀m ∈ MLF , p ∈ Pm, t ∈ T

LTmpt ≥ LTMmpt − 20, 000(1− LT bin
mpt),

∀m ∈ MLF , p ∈ Pm, t ∈ T

IOTMmpt ≥ 0, ∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTMmpt ≥
∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpftxmpfdst − smp,t−1,

∀m ∈ MFF , p ∈ Pm, t ∈ T
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IOTMmpt ≤
∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpftxmpfdst − smp,t−1 + 10, 000IOTM bin
mpt,

∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTMmpt ≤ 10, 000(1− IOTM bin
mpt),

∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTmpt ≤ IOPmpt, ∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTmpt ≤ IOTMmpt, ∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTmpt ≥ IOPmpt − (IOPmpt + 10, 000)IOT bin
mpt,

∀m ∈ MFF , p ∈ Pm, t ∈ T

IOTmpt ≥ IOTMmpt − (10, 000− IOPmpt)(1− IOT bin
mpt),

∀m ∈ MFF , p ∈ Pm, t ∈ T

LTmpt ≤ smp,t−1, ∀m ∈ MFF , p ∈ Pm, t ∈ T

LTmpt ≤
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst, ∀m ∈ MFF , p ∈ Pm, t ∈ T

LTmpt ≥
∑
f∈F

TSmpft

∑
d∈Dmp

∑
s∈S

xmpfdst − 10, 000LT bin
mpt,

∀m ∈ MFF , p ∈ Pm, t ∈ T

LTmpt ≥ smp,t−1 − 20, 000(1− LT bin
mpt),

∀m ∈ MFF , p ∈ Pm, t ∈ T

BTmpt ≥ 0, ∀m ∈ M, p ∈ Pm, t ∈ T

BTmpt ≥
∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpftxmpfdst − IOPmpt − smp,t−1,

∀m ∈ M, p ∈ Pm, t ∈ T

BTmpt ≤
∑
f∈F

∑
d∈Dmp

∑
s∈Smp

TSmpftxmpfdst − IOPmpt + 10, 000BT bin
mpt,

∀m ∈ M, p ∈ Pm, t ∈ T
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BTmpt ≤ 10, 000(1−BT bin
mpt), ∀m ∈ M, p ∈ Pm, t ∈ T

LM live
mpct ≥ LML

mpctsmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM live
mpct ≤ LMU

mpctsmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM live
mpct ≥ YMmptLMmpct + LMU

mpctsmpt − YMmptLM
U
mpct,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM live
mpct ≤ LML

mpctsmpt + YMmptLMmpct − LML
mpctYMmpt,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM out
mpct ≥ LML

mpcty
out
mpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM out
mpct ≤ LMU

mpcty
out
mpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM out
mpct ≥ yout,Ump LMmpct + LMU

mpcty
out
mpt − yout,Ump LMU

mpct,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM out
mpct ≤ LML

mpcty
out
mpt + yout,Ump LMmpct − LML

mpcty
out,U
mp ,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM bulk
mpct ≥ BML

mpctbmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM bulk
mpct ≤ BMU

mpctbmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM bulk
mpct ≥ BU

mptBMmpct +BMU
mpctbmpt −BU

mptBMU
mpct,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM bulk
mpct ≤ BML

mpctbmpt +BU
mptBMmpct −BML

mpctB
U
mpt,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM in
mpct ≥ BML

mpcty
in
mpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM in
mpct ≤ BMU

mpcy
in
mpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM in
mpct ≥ yin,Ump BMmpct +BMU

mpcty
in
mpt − yin,Ump BMU

mpc,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM in
mpct ≤ BML

mpcy
in
mpt + yin,Ump BMmpct −BML

mpcy
in,U
mp ,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T
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RGrail
mpcfdst ≥ LML

mpctTSmpftxmpfdst, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

RGrail
mpcfdst ≤ LMU

mpctTSmpftxmpfdst, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

RGrail
mpcfdst ≥ TSmpftx

U
mtRGmpct + LMU

mpctTSmpftxmpfdst

− TSmpftx
U
mtLM

U
mpct,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

RGrail
mpcfdst ≤ LML

mpctTSmpftxmpfdst + TSmpftx
U
mtRGmpct

− LML
mpctTSmpftx

U
mt,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM rail
mpct ≥ LML

mpctLTmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM rail
mpct ≤ LMU

mpctLTmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM rail
mpct ≥ YMmptLMmpct + LMU

mpctLTmpt − YMmptLM
U
mpct,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LM rail
mpct ≤ LML

mpctLTmpt + YMmptLMmpct − LML
mpctYMmpt,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM rail
mpct ≥ BML

mpctBTmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM rail
mpct ≤ BMU

mpctBTmpt, ∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM rail
mpct ≥ BU

mptBMmpct +BMU
mpctBMmpt −BU

mptBMU
mpct,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

BM rail
mpct ≤ BML

mpctBTmpt +BU
mptBMmpct −BML

mpctB
U
mpt,

∀m ∈ M, p ∈ Pm, c ∈ C, t ∈ T

LP live
rsct ≥ LPL

rsctwrst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP live
rsct ≤ LPU

rsctwrst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP live
rsct ≥ Y PrstLPrsct + LPU

rsctwrst − Y PrstLP
U
rsct,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP live
rsct ≤ LPL

rsctwrst + Y PrstLPrsct − LPL
rsctY Prst,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

107



CHAPTER 4 Convex Relaxation for Global Optimisation

LP rf
rsct ≥ LPL

rsct

z∗rstRF ∗
rst

1−RF ∗
rst

, ∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T

LP rf
rsct ≤ LPU

rsct

z∗rstRF ∗
rst

1−RF ∗
rst

, ∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T

LP rf
rsct ≥

ZU
rtRF ∗

rst

1−RF ∗
rst

LPrsct + LPU
rsct

z∗rstRF ∗
rst

1−RF ∗
rst

− ZU
rtRF ∗

rst

1−RF ∗
rst

LPU
rsct,

∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T

LP rf
rsct ≤ LPL

rsct

z∗rstRF ∗
rst

1−RF ∗
rst

+
ZU

rtRF ∗
rst

1−RF ∗
rst

LPrsct − LPL
rsct

ZU
rtRF ∗

rst

1−RF ∗
rst

,

∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T

LP out
rsct ≥ LPL

rsctu
out
rst , ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP out
rsct ≤ LPU

rsctu
out
rst , ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP out
rsct ≥ uout,U

rs LPrsct + LPU
rsctu

out
rst − uout,U

rs LPU
rsct,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP out
rsct ≤ LPL

rsctu
out
rst + uout,U

rs LPrsct − LPL
rsctu

out,U
rs ,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

LP##
rsct ≥ LPL

rsct

(
w#

rst +
z∗rstRF ∗

rst

1−RF ∗
rst

)
, ∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T

LP##
rsct ≤ LPU

rsct

(
w#

rst +
z∗rstRF ∗

rst

1−RF ∗
rst

)
, ∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T

LP##
rsct ≥ (Y Prst + ZU

rst)LPrsct + LPU
rsct

(
w#

rst +
z∗rstRF ∗

rst

1−RF ∗
rst

)
− (Y Prst + ZU

rst)LP
U
rsct,

∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T

LP##
rsct ≤ LPL

rsct

(
w#

rst +
z∗rstRF ∗

rst

1−RF ∗
rst

)
+ (Y Prst + ZU

rst)LPrsct

− LPL
rsct(Y Prst + ZU

rst),

∀r ∈ R, s ∈ SF , c ∈ C, t ∈ T
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BP bulk
rsct ≥ BPL

rsctvrst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BP bulk
rsct ≤ BPU

rsctvrst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BP bulk
rsct ≥ V U

rstBPrsct +BPU
rsctvrst − V U

rstBPU
rsct,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BP bulk
rsct ≤ BPL

rsctvrst + V U
rstBPrsct −BPL

rsctV
U
rst,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BP in
rsct ≥ BPL

rsctu
in
rst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BP in
rsct ≤ BPU

rscu
in
rst, ∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BP in
rsct ≥ uin,U

rs BPrsct +BPU
rsctu

in
rst − uin,U

rs BPU
rsct,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

BP in
rsct ≤ BPL

rsctu
in
rst + uin,U

rs BPrsct −BPL
rscu

in,U
rs ,

∀r ∈ R, s ∈ Sr, c ∈ C, t ∈ T

ZGshipped
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4.4 Test cases

In this section, we run test cases to validate the new model. The same 5-
period and 11-period problems solved in Section 3.6 are considered in order to
analyse the comparison of results. We have solved the two problems without
and with the grade constraints previously. For the problems with the grade
constraints, the iterative method was used to run the problem in AIMMS
as MILP problems. In this section, we run the full problems using convex
relaxation presented in this chapter.

Several new parameters are added, namely the lower and upper bounds for
each of the grade composition variables. Similarly as before, we use 1% MIP
relative tolerance gap as the termination criterion for all cases. Problems of
larger size will be considered as case studies in Chapter 5.

4.4.1 5-period case

We run our implementations in AIMMS software with linkage to CPLEX
12.6.3 solver. The summary of results of the problem is displayed in the
Table 4.1. This includes the time taken, the gap achieved, the total number of
trains, the total amount of shipping, the total profit, and the grade deviation
cost.

Solving time (seconds) 69.64
Gap (%) 0.82
Number of trains 873
Total amount of shipping (kt) 22,786.89
Total profit ($) 1,241,528.16
Grade deviation cost ($) 57,610.40

Table 4.1: Summary of results for the 5-period case using convex
relaxation

The time taken for the model to find solutions within 1% of solution gap
is approximately one minute, which is reasonable for the problem of small
size. From the table above, the quality of the solutions clearly validate this
model.

4.4.2 11-period case

The results of the full problem using the convex relaxation approach are
displayed in Table 4.2. This includes the time taken, the gap achieved, the
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total number of trains, the total amount of shipping, the total profit, and
the grade deviation cost.

Solving time (seconds) 696.62
Gap (%) 0.50
Number of trains 1,842
Total amount of shipping (kt) 45,477.48
Total profit ($) 2,269,630.05
Grade deviation cost ($) 294,210.95

Table 4.2: Summary of results for the 11-period case using
convex relaxation

As expected, the time taken for the tool to solve the problem increases to
over 11 minutes. The remaining results show that the model is still reliable
to solve problems of larger size.

4.4.3 Discussion

Solving time and solution gap

Table 4.3 below provides comparisons of solving times and solution gaps
generated by the test case problems without the grade constraints, using the
iterative method, and using the convex relaxation.

Number of Solving time (s) Gap (%)
iterations 5 periods 11 periods 5 periods 11 periods

Without grades - 0.27 3.60 0.7 0.27

Iterative method

2 0.48 4.21 0.83 0.32
3 0.53 4.87 0.89 0.36
4 0.61 5.01 0.90 0.36
5 0.72 5.04 0.84 0.26
6 0.77 5.39 0.92 0.40
7 0.90 6.00 0.92 0.47
8 0.93 5.93 0.92 0.23

Convex relaxation - 69.64 696.62 0.82 0.50

Table 4.3: Summary of solving times and solution gaps for the
5-period and 11-period case problems
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It has been shown that solving the problems using the convex relaxation
approach takes much longer than the iterative approach, taking over 1 minute
for the 5-period problem and 11 minutes for the 11-period problem. This is
due to the increase of problem size caused by the additional variables and
constraints. In reality, however, 11 minutes is still a reasonable solving time,
albeit much longer compared to the time taken by the iterative method.

Number of trains and total shipping

The solutions for the total throughput, expressed by the number of trains
and the total shipping amount, are summarised in Table 4.4.

Number of Number of trains Total shipping (kt)
iterations 5 periods 11 periods 5 periods 11 periods

Without grades - 873 1,842 22,939.01 45,754.34

Iterative method

2 873 1,841 22,939.01 45,725.14
3 873 1,842 22,962.15 45,753.84
4 873 1,842 22,962.15 45,753.84
5 873 1,841 22,939.01 45,724.90
6 873 1,840 22,954.91 45,697.84
7 873 1,840 22,954.91 45,699.69
8 873 1,842 22,954.91 45,756.45

Convex relaxation - 873 1,842 22,786.89 45,477.48

Table 4.4: Summary of number of trains and total shipping
amount for the 5-period and 11-period case problems

The results obtained by the convex relaxation method for the number of
trains are consistent with those obtained by the problems without grades and
with grades using iterative method. Slight decrease can be seen in the total
shipping, nevertheless. Based on the two case problems, the iterative method
performs slightly better than the convex relaxation approach in regards to
generating higher iron ore throughput.

Total profit

As mentioned previously in Chapter 3, we pay more attention to the total
profit as the objective function is weighted to maximising it. We present
Figures 4.1 and 4.2 to help with the analysis of the total profit.

The total profits for the 5 and 11-period problems produced by the convex
relaxation method increase by approximately 9% and 15% in respective order;
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Figure 4.1: Total profit for the 5-period case
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Figure 4.2: Total profit for the 11-period case
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compared to -3% and 2% produced by the iterative method. Based on the two
small case problems, we can conclude that the new model is more effective
in producing better objective values.

Grade deviation cost

Since the two models differ in how they handle the grade constraints, it is
necessary to note the difference in the results for the grade deviation cost.
We present the summary of these results in Figure 4.3 and 4.4.
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Figure 4.3: Total cost of grade deviations for the 5-period case

It is obvious that the new model is more consistent in producing minimum
grade deviation cost, hence meeting the target quality demands. The new
model decrease the grade deviation by 69% and 56% for the 5 and 11-period
problems respectively; compared to -18% and 6% produced by the iterative
method.
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Figure 4.4: Total cost of grade deviations for the 11-period case
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4.5 Conclusions

In the previous chapter, we considered an optimisation model for logistics
planning in iron ore mining developed by CSIRO as well as the solution
approach to tackle the non-linearity. In this chapter, we have introduced a
new model which has had changes in the problem formulation but essentially
portrays an equivalent problem.

The nature of the problem remains the same as the model described in
Chapter 3, which is to allocate trains to mines such that operational and
other costs are minimised and total throughput is maximised, taking into
account the grade quality requirements. The incentives whose purpose are
to encourage a higher number of trains still apply in this model.

We have implemented the new model using the same 5-period and 11-
period test cases from the previous chapter in AIMMS 4.21 software for val-
idation purpose. We solved the MILP problem using CPLEX 12.6.3 version.
We have compared the results obtained by the model without the grade con-
straints, the model with iterative approach, and the new model with convex
relaxation approach.

The new model requires a much longer time to solve the MILP problems
compared to the previous model due to a higher number of decision variables
and constraints. The new model, however, indicates a better performance in
terms of producing a higher objective value and lower grade deviation cost
for both the 5-period and 11-period cases.

In the following chapter, we will discuss some case studies of a larger size.
The two models we have presented so far will be applied and the results will
be analysed and compared.
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Chapter 5

Case studies

Two different approaches have been presented to deal with the non-linear
constraints occurring in the logistics planning problem in mining. They have
also been implemented and validated using the same test cases with 5 and 11
periods. This chapter discusses two case studies based on real life problems
in the mining industry. The two models have been implemented to solve each
case and the results will be analysed.

5.1 Introduction

Our industry partner provided us with two different data sets of real life
cases. The first data set involves a monthly logistics operation in iron ore
mining over a one year time horizon, whereas the second data set is a 10-
month problem in which the periods vary from one day to one week. Despite
a shorter time horizon, we consider the second case study to be more difficult
to solve due to a higher number of periods, and hence a higher number of
constraints and variables in the mathematical formulation.

Both cases were solved in AIMMS 4.21 with linkage to CPLEX 12.6.3
solver using the two models we outlined in prior chapters. We used certain
values of relative MIP gap tolerance as the termination criterion for the solver
when implementing the model. A lower percentage of gap tolerance is prefer-
able as it will lead to better performance and therefore closer to optimality.
However, provided that the solution is reasonably good, a higher percentage
of gap tolerance may practically be more advantageous to generate a solution
more quickly.

For convenience, we introduce some notations as follows:

� We refer to the first and second case studies as problems P1 and P2
respectively.
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� The model that omits iron ore grade constraints is referred to as model
MO. This model involves maximising the objective function without
the grade deviation penalty subject to constraints (3.9)–(3.31).

� The first model with iron ore grade constraints described in Chapter 3
is referred to as modelM1. The complete formulation of this model has
been presented in Section 3.4.7. We use the iterative method described
in Section 3.5 as the solution approach.

� The second model with iron ore grade constraints described in Chap-
ter 4 is referred to as model M2. The complete formulation of this
model has been presented in Section 4.3.6.

In terms of numerical results, we discuss the quality of our solutions based
on several aspects:

� For each implementation, we provide the solving time and the solution
gap achieved. As we seek a model which is practical and applicable in
real life industry problems, the time taken to implement the model is
aimed at being reasonable. Furthermore, the MIP gap achieved will
tell us how close our solutions are to optimality.

� RTIO seeks maximum utilisation from their trains. In order to do this,
we have assumed that no cost for operating trains is involved and added
incentives in the objective function to encourage a higher number of
trains. We show the results by providing the total number of trains
obtained from each implementation.

� As this model aims to maximise the total throughput of iron ore, we
provide the total tonnes of shipping in our results.

� The normal way to measure the quality of solutions in an optimisation
problem is by looking at the optimised objective value. In our model,
the objective value represents the total profit obtained from the logistics
plan during the given periods.

� The blending requirement constraints in this model were added to
maintain the grade quality within target range and therefore minimise
the grade deviations of the shipped products from the target grade
quality. We indicate the total cost of grade deviation for each case in
our results.

We present the first case study (problem P1) in Section 5.2. This section
includes the main features of the problem, the computational results obtained
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from the implementations, and the discussion. In the computational results
section, we will show our results obtained by implementing the model M0,
then M1 and M2.

We describe the second case study (problem P2) in Section 5.3. Similarly
to problem P1, this section is divided into three subsections. They are the
main features, the computational results, and the discussion sections. We
have also modified problem P2 in order to reduce the solving time. The
description and the computational results are presented in Section 5.4. The
concluding remarks of our case studies are presented in Section 5.5.

5.2 Case study 1

Problem P1 looks at a monthly iron ore mining operation for a time horizon
of one year. Although RTIO prefers a weekly schedule to monthly, this case
study is implemented to show the flexibility of the optimisation models.

5.2.1 Main features

Some important characteristics of problem P1 are outlined as follows:

� We consider 12 periods where each period represents one month.

� The logistics operation involves 15 mines in the Pilbara with 21 pits in
total considered in the formulation.

� Most of the mines produce two different types of mined products,
namely lump and fines, based on the size of the ore. In addition,
we separate the high grade lump from the low grade lump product
produced at the Tom Price mine.

� Most of the mines have a FIFO regime. The Paraburdoo mine is the
only one with a LIFO regime.

� 5 mines are constrained by the joint venture contract obligations in
which the number of trains must comply with the cumulative target.

� The mines are located within 7 mine regions.

� The rail network consists of 2 different fleets.

� The logistics operation involves 4 shipping terminals located at 2 dif-
ferent ports in the Pilbara; all of which have car dumping facilities.
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� This case considers 9 different shipped products at the ports.

� Typically, each product type contains 10 different components, includ-
ing iron (Fe), silicon dioxide (SiO2), aluminium oxide (Al2O3), phos-
phorus (P), etc. Some product types contain only 6 different compo-
nents.

� The return fines ratio at each port is fixed across the periods.

� A high percentage of incentive is used in the objective function to
optimise the use of the trains, thus maximising the total throughput.
This incentive is described in the constraint (3.8).

5.2.2 Computational results

We modeled the MILP formulations of problem P1 in AIMMS 4.21 software.
After some trials, we decided to use the CPLEX solver within AIMMS as
it generates solutions considerably faster than Gurobi. We use the relative
MIP gap tolerance of 1%, which means the solving procedure will terminate
once the integer feasible solution is achieved within 1% of optimality.

Without grade constraints (M0)

We firstly solved a simpler version of problem P1, that is, without the grade
constraints (model M0). The model generates 99,476 variables, including
7,284 integer variables, and 92,108 constraints in the AIMMS formulation.
Table 5.1 shows the summary of the solutions of problem P1 solved using
model M0.

Solving time (seconds) 32.43
Gap (%) 0.01
Number of trains 13,119
Total amount of shipping (kt) 351,886.63
Total profit ($) 2,221,475,479.82
Grade deviation cost ($) 2,589,899.96

Table 5.1: Summary of results for problem P1 using model M0

The solver found the optimal solution in 32.43 seconds. Using a 1%
relative MIP gap tolerance, the feasible solution is obtained within 0.01% of
optimality.
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With grade constraints (M1)

ModelM1 is applied to problem P1. In this case, the model contains 119,997
variables; 7,284 of which are integer variables, and 115,349 constraints in the
AIMMS formulation. We applied the solution algorithm outlined in Sec-
tion 3.5 for up to 8 iterations. The results for problem P1 solved using
model M1 are indicated in Tables 5.2 and 5.3 below.

Number of Solving time Gap
iterations (seconds) (%)

2 39.11 0.01
3 38.77 0.01
4 14.05 0.08
5 39.33 0.07
6 41.14 0.08
7 49.79 0.01
8 34.28 0.01

Table 5.2: Solving times and solution gaps for problem P1 using
model M1

Number of Number Total Total Grade deviation
iterations of trains shipping (kt) profit ($) cost ($)

2 13,121 351,881.37 2,221,690,532.07 2,404,653.05
3 13,125 351,959.05 2,221,702,427.48 2,432,709.99
4 13,039 349,919.51 2,219,626,892.31 2,938,064.75
5 13,040 349,997.30 2,220,001,367.53 2,621,906.36
6 13,042 350,050.11 2,220,024,872.55 2,529,651.17
7 13,120 351,875.90 2,221,951,441.04 2,161,661.07
8 13,122 351,924.28 2,221,564,201.58 2,552,459.32

Table 5.3: Number of trains, total amount of shipping, total
profits, and grade deviation costs for problem P1 using model

M1

The results obtained indicate that as we use more iterations, the results do
not appear to converge. Instead, the solving time, the MIP gap, the number
of trains, the total shipping quantity, the total profit, and the grade deviation
cost fluctuate as more iterations are used. Based on the final objective values
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and the grade deviation costs, we conclude that the model with 7 iterations
produces the best logistics plan.

With grade constraints (M2)

We apply model M2 which uses convex relaxation to solve problem P1.
This model generates 247,773 variables; 10,644 of which are integer variables,
and 368,941 constraints in the AIMMS formulation. Table 5.4 displays the
summary of the results.

Solving time (seconds) 6,074.94
Gap (%) 0.02
Number of trains 13,121
Total amount of shipping (kt) 352,047.85
Total profit ($) 2,221,755,738.40
Grade deviation cost ($) 1,961,060.92

Table 5.4: Summary of results for problem P1 using model M2

For this implementation, we found a good solution within 0.02% of op-
timality in approximately two hours. While the solving time taken is much
longer, the quality of the solutions is reasonably good. We will discussed this
further in the next section.

5.2.3 Discussion

In this case study, we have produced solutions from implementing models
M0, M1, and M2 derived from the previous chapters to problem P1. We
aimed to produce an optimal plan that represents monthly logistics in iron
ore mining operation over a year in the Pilbara.

Solving time and solution gap

We present Table 5.5 to show the comparison of solving times and solution
gaps obtained for problem P1 using three different models. We also include
the number of variables and constraints in the table to compare the problem
size.

To find solutions within the specified gap, we expected the time taken to
implement model M1 to increase as we used more iterations. It has been
shown, nonetheless, that the associated solving times rise and fall irregularly
across different numbers of iterations. Furthermore, the time achieved with

124



CHAPTER 5 Case Studies

Model No. of No. of No. of No. of Solving Gap
applied variables integers constraints iterations time (s) (%)
M0 99,476 7,284 92,108 - 32.43 0.01

M1 119,997 7,284 115,349

2 39.11 0.01
3 38.77 0.01
4 14.05 0.08
5 39.33 0.07
6 41.14 0.08
7 49.79 0.01
8 34.28 0.01

M2 247,773 10,644 368,941 - 6,074.94 0.02

Table 5.5: Summary of solving times and solution gaps for
problem P1

4 iterations is less than half of the time taken by applying model M0, which
is supposedly easier to solve. Despite the inconsistency, all of the solving
times achieved by model M1 are very good when it comes to solving a full
mining logistics problem with one year time horizon.

We have seen that model M2 generates around twice as many variables
and 3 times as many constraints as model M1. Due to the great difference
in size, we have expected the solving time to rise greatly. It is shown that
M2 solves problem P1 in more than 6,074.94 seconds, or approximately 1
hour 40 minutes. This makes model M2 less efficient in terms of the time
taken to implement.

Number of trains and total shipping

The summary of results for number of trains and total amount of shipping
for problem P1 can be seen in Table 5.6.

The irregular pattern in the solutions for model M1 also occurs in the
total number of trains and total shipping amount. The results show that
applying 4 iterations generates the lowest total throughput, while 3 iterations
generate the highest. In general, model M1 produces good solutions when
the number of iterations is less than 4 or greater than 6. This again shows
the instability of the results for model M1.

Based on the results, we conclude that model M2 produces the best total
throughput overall with small difference, despite model M1 with 3 iterations
showing a higher number of trains.
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Model Number of Number Total
applied iterations of trains shipping (kt)
M0 - 13,119 351,886.63

M1

2 13,121 351,881.37
3 13,125 351,959.05
4 13,039 349,919.51
5 13,040 349,997.30
6 13,042 350,050.11
7 13,120 351,875.90
8 13,122 351,924.28

M2 - 13,121 352,047.85

Table 5.6: Summary of number of trains and total shipping
amount for problem P1

Total profit

In analysing the total profit, we note that the objective function in our
problem is weighted to maximising the total profit. The results are indicated
in Figure 5.1.

We observed a similar trend from the previous analysis occuring in the
total profits. The results for modelM1 show improvements when the number
of iterations used is less than 4 or greater than 6. Based on the results
for the total profits, model M1 performs the best when 7 iterations are
used. However, taking into account all the results of model M1 with various
numbers of iterations, the objective value has decreased by 0.02% overall.

Model M2 performs better than model M1 overall, with an increase of
total profit by 0.01% from model M0. The highest total profit, nevertheless,
is still achieved by model M1 with 7 iterations, followed by model M2.
Based on the proximity from the result of model M0, we accept the solutions
produced by model M1 with any number of iterations less than 4 or greater
than 6, as well as model M2, as being good and reasonable solutions.

Grade deviation cost

Although the grade deviation cost is not the sole cost involved in the objective
function, it is still an important aspect in our result analysis because the
models differ in how we treat the grade requirement constraints. One way to
assess the effectiveness of the methods is to seek the model which gives the
biggest impact in minimising the grade deviation cost. The results for total
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Figure 5.1: Total profits for problem P1

costs of grade deviations are compared side by side in Figure 5.2.
It is observed that two results, obtained by model M1 with 4 and 5

iterations, generate higher grade deviation costs than model M0. In this
case, it is pointless to include the grade constraints whose purpose it to sat-
isfy grade quality requirements, and hence minimising the grade constraints.
Overall, with 2 to 8 iterations, model M1 has managed to decrease the grade
deviation cost by 2.69%.

We can see that model M2 performs substantially better than model M1
in terms of minimising the grade deviations. It produces the lowest grade
deviation cost among all implementations, with a decrease of 24.28% from
the same cost associated with model M0.
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Figure 5.2: Total costs of grade deviation for problem P1

5.3 Case study 2

Case study 2 (P2) considers a real life mining logistics operation over ten
months. Instead of looking at a monthly schedule, this problem examines
shorter length periods, ranging from daily to weekly. This case study is the
closest to mining schedule that is implemented in real life.

5.3.1 Main features

Some of the features of problem P2 are the same as problem P1. Some
differences have been observed since the data for this case study is less re-
cent than the previous one. The main differences that problem P2 has in
comparison to problem P1 are listed below:

� Each period in problem P2 represents between one and seven days (one
week). In total, problem P2 considers 52 number of periods.
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� Only 18 pits in total are considered in the problem formulation with
the same number of mines.

� Only 2 mines are constrained by the joint venture contract obligations
in which the number of trains must comply with the cumulative target.

� The problem only considers 4 mine regions at which all the mines are
located.

� This problem only considers 7 different shipped products at the ports.

� A low percentage of incentive is used in the objective function. This
incentive is described in the constraint (3.8).

5.3.2 Computational results

The CPLEX solver within AIMMS 4.21 optimisation software is again used to
solve the MILP formulations of problem P2. Due to a larger size than prob-
lem P1, we use a higher relative MIP gap tolerance of 2%. This means the
solving procedure will terminate once the integer feasible solution is achieved
within 2% of optimality.

Without grade constraints (M0)

We apply model M0 to problem P2. The AIMMS formulation of this model
generates 32,312 variables, which include 9,580 integer variables, and 22,411
constraints. The summary of the solutions is shown in Table 5.7.

Solving time (seconds) 31.92
Gap (%) 0.55
Number of trains 9,639
Total amount of shipping (kt) 243,089.55
Total profit ($) 11,447,396.63
Grade deviation cost ($) 2,509,051.87

Table 5.7: Summary of results for problem P2 using model M0

AIMMS found the solution with 0.55% gap from optimality within 31.92
seconds.
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With grade constraints (M1)

Model M1 is implemented to solve problem P2. For this case, the model
generates 117,233 decision variables; 9,580 of which are integer, and 124,282
constraints in the AIMMS formulation. The summary of the results is shown
in Tables 5.8 and 5.9.

Number of Solving time Gap
iterations (seconds) (%)

2 39.22 1.73
3 39.12 1.56
4 29.19 1.68
5 44.99 1.30
6 76.59 1.02
7 144.91 1.35
8 63.18 0.89

Table 5.8: Solving time and solution gap for problem P2 using
model M1

Number of Number Total Total Grade deviation
iterations of trains shipping (kt) profit ($) cost ($)

2 9,634 242,987.11 11,386,766.54 2,449,318.58
3 9,638 243,096.52 11,456,755.38 2,397,552.30
4 9,636 242,998.09 11,400,364.75 2,443,000.22
5 9,636 242,985.40 11,477,094.46 2,406,542.94
6 9,645 243,247.93 11,502,252.78 2,413,139.25
7 9,640 243,126.64 11,455,772.94 2,421,513.94
8 9,639 243,071.73 11,549,710.54 2,380,311.35

Table 5.9: Number of trains, total amount of shipping, total
profits, and grade deviation costs for problem P2 using model

M1

Similar to problem P1, the solutions for problem P2 show irregular pat-
terns when model M1 is used with various numbers (up to 8) of iterations.
The irregularity is reflected in the solving times, total number of trains, total
shipping amount, total profits, and the grade deviation costs. The model
with 6 iterations produces a plan with the most throughput, whereas, the
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model with 8 iterations produces the best objective value and minimum grade
deviation cost.

With grade constraints (M2)

We solve problem P2 using model M2. The model generates a MILP for-
mulation in AIMMS with 414,189 variables, which include 21,956 integer
variables, and 976,630 constraints. We display the summary of results in
Table 5.10.

Solving time (seconds) 43,976.99
Gap (%) 1.87
Number of trains 9,639
Total amount of shipping (kt) 243,043.52
Total profit ($) 11,936,461.06
Grade deviation cost ($) 1,761,146.72

Table 5.10: Summary of results for problem P2 using model M2

This model requires more than 12 hours to complete the solving procedure
and obtains a solution within 1.87% of optimality. The quality of results will
be discussed in the immediate section.

5.3.3 Discussion

We have utilised models M0, M1 and M2 to find solutions for problem
P2. This problem is aimed to determine an optimal logistics plan for iron
ore mining operations in the Pilbara over a 10 month time horizon on a
weekly basis. Similarly as previous problem, we emphasis our analysis on
the solving times, total number of trains, total amount of shipping, total
profits, and grade deviation costs.

Solving time and solution gap

The summary of solving times and solution gaps for problem P2 is shown
in Table 5.11. This summary includes the number of variables, number of
integer variables, number of constraints, number of iterations, solving times,
and solution gaps obtained by models M0, M1, and M2.

Although the problem size of model M1 increased greatly due to the in-
clusion of the grade constraints, it does not affect the solving times to a large
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Model No. of No. of No. of No. of Solving Gap
applied variables integers constraints iterations time (s) (%)
M0 32,312 9,580 22,411 - 31.92 0.55

M1 117,233 9,580 124,282

2 39.22 1.73
3 39.12 1.56
4 29.19 1.68
5 44.99 1.30
6 76.59 1.02
7 144.91 1.35
8 63.18 0.89

M2 414,189 21,956 976,630 - 43,976.99 1.87

Table 5.11: Summary of solving times and solution gaps for
problem P2

extent. The longest time taken by model M1 is 144.91 seconds, or approxi-
mately 2 minutes 25 seconds, obtained by applying 7 iterations. The solving
times generally increase as more iterations are used, with the exceptions of 4
and 8 iterations where the solving times decline. The inconsistency occurs,
and yet model M1 remains efficient in terms of the solving time taken.

Model M2 incorporates additional variables and constraints for the grade
requirements, generating 3.5 times as many variables and almost 8 times
as many constraints as model M1. While the problem is still solvable by
AIMMS, the time taken substantially rise to 43,976.99 seconds, or over 12
hours.

Number of trains and total shipping

Table 5.12 displays the summary of results for the number of trains and total
amount of shippig for problem P2.

The solutions obtained by model M1 rise and fall irregularly with no
convergence. The lowest and highest numbers of trains are achieved by 2
and 6 iterations respectively; while the lowest and highest shipping amounts
are achieved by 5 and 6 iterations respectively.

Comparing the results of the three different models, we conclude that
the inclusion of the grade constraints does not bring a large effect on the
total throughput in this case study, as all models produce the similar total
throughput overall.
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Model Number of Number Total
applied iterations of trains shipping (kt)
M0 - 9,639 243,089.55

M1

2 9,634 242,987.11
3 9,638 243,096.52
4 9,636 242,998.09
5 9,636 242,985.40
6 9,645 243,247.93
7 9,640 243,126.64
8 9,639 243,071.73

M2 - 9,639 243,043.52

Table 5.12: Summary of number of trains and total shipping
amount for problem P2

Total profit

We present the total profits obtained by models M0, M1, and M2 side by
side in Figure 5.3 for comparison and analysis.

An inconsistency has been again shown in the solutions for model M1
where some results are higher than model M0 and some are lower. Overall,
this model produces a higher total profit by only 0.12% from model M0.

The improvement that model M2 shows in terms of the objective value
(total profit) in this case study is much more obvious. With the result shows
the highest total profit obtained, model M2 increase the total profit by
4.27%. We consider this a significant growth as it means a $500,000 increase
in value.

Grade deviation cost

Figure 5.4 demonstrates the comparison of results for the grade deviation
costs generated by models M0, M1, and M2 for problem P2.

As predicted, the costs of grade deviations produced by models M1 and
M2 are less in value than the cost produced by model M0. This indicates
that our results are more consistent in this case study than previously.

When model M1 is used, we analyse that 8 iterations gives the minimum
grade deviation, albeit no convergence is observed. Overall, model M1 im-
proves the cost of grade deviation with a decrease of 3.71%, which is more
than $90,000 in value.

It can be seen, nevertheless, that model M2 produces the best grade
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Figure 5.3: Total profits for problem P2

deviation cost in the results. The model drops the cost of grade deviation by
29.81%, which is equivalent to almost $750,000 in value. This improvement
of results is significant in comparison to that shown by model M1.

134



CHAPTER 5 Case Studies

MODEL M0

MODEL M1

MODEL M2

Number of iterations

G
ra
de
 d
ev
ia
tio
n 
co
st

Figure 5.4: Total costs of grade deviation for problem P2
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5.4 Case study 2 (aggregated)

Based on the results of the two case studies, we have seen that model M2
has consistently performed better than model M1 in generating optimal so-
lutions. In terms of the time taken to implement the model, however, the
model is less practical as it takes a significant amount of time to solve. In
order to reduce the solving time, we amend the data set of problem P2 given
by RTIO in this section. We take this approach as the attempt to produce
a logistics plan with similar quality of solutions as model M2 but is more
efficient and reasonable in terms of the solving time.

In this model, the planning periods in problem P2 have been aggregated
such that the mining operation is solved as per normal (between daily and
weekly) for a certain number of periods and monthly for the remaining peri-
ods. The approach taken is based on the idea that the optimisation schedule
for the later periods is not as critical as the immediate ones and hence can
be implemented monthly. This approach will reduce the number of periods
greatly, and hence reducing the problem size.

5.4.1 Main features

We provide 3 different aggregations to problem P2, referred to as problems
P2.1, P2.2, and P2.3. These modifications reduce the problem size greatly,
thus reducing the solving time. We describe each problem discussed in this
section as below:

� The original problem P2 contains 52 periods over a 10 month time
horizon.

� In problem P2.1, we leave the data in problem P2 unchanged for the
first 27 periods, that is, 5 months. We then combine the data for the
remaining into a 5 month set. The total number of periods in this
problem is therefore 27 + 5 = 32.

� In problem P2.2, we leave the data in problem P2 unchanged for the
first 16 periods, that is, 3 months. We then combine the data for the
remaining into a 7 month set. The total number of periods in this
problem is therefore 16 + 7 = 23.

� In problem P2.3, we leave the data in problem P2 unchanged for the
first 6 periods, that is, 1 month. We then combine the data for the
remaining into a 9 month set. The total number of periods in this
problem is therefore 6 + 9 = 15.

All other features for problems P2.1, P2.2, and P2.3 remain the same.
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5.4.2 Computational results

We perform model M2 on problems P2.1, P2.2, and P2.3, in addition to
the results for problem P2 obtained in the prior section. Each problem is
solved in AIMMS 4.21 linked to CPLEX 12.6.3 solver with 2% MIP gap
tolerance.

Table 5.13 below shows the solving times and the gaps achieved in solving
the 4 different cases of problem P2, along with the number of variables,
integer variables, and constraints.

Problem Number of Number of Number of Solving Gap
type variables integers constraints time (s) (%)
P2 414,189 21,956 976,630 43,976.99 1.87
P2.1 254,485 13,456 601,258 10,382.63 1.23
P2.2 182,961 9,679 432,355 4,097.72 0.69
P2.3 119,367 6,279 282,206 1,536.86 0.50

Table 5.13: Problem sizes, solving times and solution gaps for
problems P2, P2.1, P2.2, and P2.3 using model M2

As anticipated, the amendments of the data set reduce the solving time
greatly due to the significant decrease in the problem size. It takes 2.88
hours, 1.14 hours, and 0.43 hours to solve problems P2.1, P2.2, and P2.3
respectively; in comparison to the original problem P2 which take more or
less 12 hours.

Table 5.14 displays the summary of the number of trains for the 4 different
problems. For each problem, we show the detail of the number of trains used
in each period and month, and the total in the whole operation. We can see
that the numbers of trains are similar in the earlier periods but slightly differ
in the later periods. The total number of trains overall increases as more
aggregations are implemented.
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Month Period
Number of trains

P2 P2.1 P2.2 P2.3

1

1 61 62 62 62
2 177 177 177 177
3 210 211 210 209
4 207 206 207 206
5 224 224 224 224
6 30 30 30 30

Total 909 910 910 908

2

7 182 182 182

932

8 220 220 220
9 216 216 216
10 225 225 225
11 89 89 89

Total 932 932 932 932

3

12 109 109 109

928

13 223 223 223
14 204 204 204
15 226 226 226
16 162 162 162

Total 924 924 924 928

4

17 33 32

946 946

18 226 226
19 219 219
20 226 227
21 205 205
22 32 33

Total 941 942 946 946

5

23 194 194

978 976

24 201 202
25 227 227
26 219 219
27 129 129

Total 970 971 978 976

6

28 97

968 968 968

29 223
30 227
31 198
32 223
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Total 968 968 968 968

7

33 209

946 946 946

34 227
35 221
36 228
37 61

Total 946 946 946 946

8

38 161

989 988 989

39 234
40 213
41 233
42 146

Total 987 989 988 989

9

43 69

1026 1026 1026

44 241
45 232
46 243
47 234

Total 1019 1026 1026 1026

10

48 252

1048 1048 1048

49 219
50 214
51 253
52 105

Total 1043 1048 1048 1048
Total number of trains 9639 9656 9666 9667

Table 5.14: Summary of number of trains for problems P2,
P2.1, P2.2, and P2.3 using model M2

The total profits and total costs of grade deviations are outlined in Ta-
ble 5.15. We have noted, however, that the total profits and the costs across
the 4 different problems are not comparable since altering the data set means
that some of the costs for problems P2.1, P2.2, and P2.3 are incurred
monthly instead of weekly. The alteration will reduce the total costs in-
curred and increase the total profits, and hence not comparable with the
original problem.
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Model
Total Grade deviation

profit ($) cost ($)
P2 11,936,461.06 1,761,146.72
P2.1 11,822,554.74 2,659,115.67
P2.2 12,699,320.97 2,363,204.05
P2.3 13,559,373.30 2,163,877.71

Table 5.15: Total profits, and grade deviation costs for problems
P2, P2.1, P2.2, and P2.3 using model M2

5.4.3 Discussion

As the solving procedure of model M2 takes too long to conclude, we have
aggregated the planning periods in the data set of problem P2. The alter-
ation has reduced the problem size down to 29% of the original size. This
causes the solving time to reduce from 12 hours down to 26 minutes.

The results show the impact of aggregating the problem periods on the
total number of trains over the time horizon. Some interesting results have
been observed. We initially predicted the total number of trains to decrease
or remain the same in relation to the original problem. The results, however,
have shown the opposite. As the problem size decreases, the total number of
trains increases.

To explain this phenomena, we need to observe the models in a broader
perspective. As the periods get aggregated, the problem becomes less re-
stricted. Subsequently, this lesser amount of restriction encourage a higher
number of trains.

Although a higher number of trains is preferred, using too many trains
may be wasteful. To analyse how well the trains are utilised, we observe the
number of trains in each period, as well as the total for each month. We can
see that, in spite of the big difference in the total, the numbers of trains used
per period do not differ significantly, especially in the earlier periods.

We have also shown the results for the total profits. We observed that
the different amounts of restrictions also impact the total profits. As we
aggregate the problem periods, some of the costs are incurred monthly instead
of weekly. This greatly declines the total costs and consequently increase the
total profits. We conclude then that the total profits for the three aggregated
problems and the original problem are not comparable. We also observe that
the quality of solutions for the aggregated models is still reasonably good,
albeit not being comparable.

A disadvantage of the aggregated versions is that they do not produce
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weekly logistics schedules, as preferred by the company. Nonetheless, it does
well in maintaining good solutions that model M2 achieves.

5.5 Conclusions

In this chapter, we have considered case studies based on two different data
sets provided by RTIO. Both case studies describe real life mining logistics
problems; in which the first one (problem P1) looks at a monthly plan for one
year time horizon, and the second (problem P2) looks at an, approximately,
weekly plan for a 10 month time horizon. Although the monthly plan has
managed to reflect the reliability and flexibility of the optimisation tools
provided, a weekly plan is still preferred in real life for practical reasons.

Based on the results from the two case studies, we analyse that the it-
erative method (model M1) does not necessarily solve the minimum grade
deviation problem. Therefore, the objective values, as well as the grade devi-
ation costs generated, do not differ much from those generated by the model
without the grade constraints (model M0).

Moreover, we observed some inconsistencies in results of model M1. In
our implementations, 4 iterations perform the best for both problems in case
of the time efficiency. However, our result analysis shows that 3 and 6 itera-
tions produce the most total throughput for problem P1 and P2 respectively;
and 7 and 8 iterations perform the best in producing the highest total profit
and the lowest grade deviation cost for problem P1 and P2 respectively.
These inconsistencies in results indicate that there is not a way to determine
which number of iterations should be used.

The model with the convex relaxation approach (model M2) works con-
sistently better in producing results with good quality. The total throughput
produced is similar to other models, while the total profit and grade deviation
cost show significant improvements.

Despite being more effective in optimising the logistics plan, this model
is less efficient in terms of the time taken to a large extent. We altered the
data set of problem P2 as an attempt to reduce the problem size greatly,
and hence reducing the solving times. The model reduction is undertaken by
aggregating the planning periods. This approach has effectively solved the
problems in reasonably good solving times while maintaining the solution
quality of the total throughput.
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Chapter 6

Conclusions and
Recommendations

In this thesis, we have addressed the optimisation problem of medium to
long term logistics planning in iron ore mining. This chapter provides the
summary of our findings and some recommendations for future research.

6.1 Conclusions

The overview of this thesis has been as follows:

� In Chapter 1, we described the problem and the key issues that we
addressed in this research. We provided some preliminary background
and context necessary to understand the problem.

� In Chapter 2, we collated a literature review that includes substantive
findings and theories in the area of surface mining. We briefly started
with open-pit mining problems in general, then focused on logistics and
transportation scheduling problems as well as the use of mixed-integer
linear and non-linear programming in mining applications.

� In Chapter 3, we presented the first model which is an extended work
of the current model done in Garcıa-Flores et al. (2011) and Singh
et al. (2014). This model produces an optimisation plan of logistics
and train scheduling in the iron ore mining operation of the Pilbara
region. We contributed by putting the formulation together, making
some changes based on the current operation, implementing the model
in the optimisation solver software, and analysing the results, thus
identifying the issues.
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� In Chapter 4, we proposed a new model that represents the same logis-
tics problem as in Chapter 3. We outlined the changes in the formula-
tion, completed some implementations, and analysed the results.

� In Chapter 5, we considered two case studies based on real-life problems
provided by our industry partner, RTIO. The two models we presented
in the prior chapters were applied and the results from both models
were analysed and compared.

This section presents our concluding remarks of the whole thesis. It
comprises of two parts; namely our contributions to mining industry and the
comparative analysis of the models presented in this thesis.

6.1.1 Our contribution

In this thesis, we have observed the use of mixed-integer programming in
one of the applications of surface mining, namely logistics planning. As the
material is being transported, a blending process takes place in order to
comply with grade quality requirements. The logistics operation, therefore,
is not only concerned with the quantity, but also the quality of the materials
being produced. The problem formulation seeks to maximise total profit
and involves both integer variables and non-linear constraints; making the
problem mixed-integer non-linear programming.

The models we presented and utilised in this thesis incorporate both
transportation scheduling and blending problems into one logistics planning
problem. While the model in Chapter 3 (model M1) was developed by
CSIRO, our main contribution includes the model in Chapter 4 (model M2);
as well as implementation and result analysis of case studies in Chapter 5.

Model M1, which was developed by CSIRO and presented in Chapter
3, was proven to perform more reliably than the traditional Excel-based ap-
proach. An iterative method is undertaken to avoid the non-linearity in the
formulation. The procedure of this method involves ignoring the non-linear
constraints in the first iteration and approximating the non-linear terms in
the next iterations using the solutions gained in the preceding iteration.
While the implementation of test cases validates the model, the approxi-
mation technique is derived to avoid the non-linearity in the formulation
without any underlying theory behind it. Moreover, the solutions obtained
have become more inconsistent as the components of the mining operation
expand.

As a response to the need of an improved model, we have developed a
new model (model M2) in Chapter 4. Unlike model M1, this model deals
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with the non-linearity by using a convex relaxation approach to linearise the
non-linear constraints in the formulation. Global optimal solutions can be
obtained by solving the convex MILP reformulation of the problem.

Our contribution also includes the implementation of both models to solve
case studies and the comparative analysis of the results in Chapter 5. In
addition, we have performed a model reduction by aggregating the planning
periods in order to reduce the problem size, thus cutting the solving time.
The summary of our comparative analysis will be outlined in the subsequent
section.

6.1.2 Comparative analysis

We have presented our result analysis of the case studies in terms of the
solving time, the total throughput, the total profit, and the total cost of
grade deviation. In all cases, we analyse the results obtained by models M1
and M2 by comparing them to the results of model M0, which is defined
as the model without the complication of grade requirements. This analysis
can be summarised as follows:

� In terms of the solving times, model M1 is clearly more practical in
real life than model M2 as it can generate solutions in much faster
solving time. This can be seen in Table 6.1 below, where all solving
times displayed are in seconds. Note that the overall times for model
M1 are calculated by taking the average of the times taken by the
model with 2 to 8 iterations.

Model Problem P1 Problem P2
M0 32.43 31.92
M1 36.64 62.46
M2 6,074.94 43,976.99

Table 6.1: The summary of solving times of models M0, M1,
and M2

� Although modelM2 generates the greatest amount of throughput over-
all, the difference is insignificant. We conclude, therefore, that both
models have no effect on the quantity of the material shipped.

� The summary of the models’ impacts on the total profits and grade
deviation costs is described in Tables 6.2 and 6.3 respectively. Positive
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values represent an increase in percentage from the results obtained by
model M0, while negative values represent a decrease.

Model Problem P1 Problem P2
M1 -0.02% +0.12%
M2 +0.01% +4.27%

Table 6.2: The summary of total profit improvement for models
M1 and M2

Model Problem P1 Problem P2
M1 -2.69% -3.71%
M2 -24.28% -29.81%

Table 6.3: The summary of grade deviation cost improvement
for models M1 and M2

The more desirable total profits and grade deviations costs in all our
implementations are achieved by model M2; implying that model M2
performs significantly better than model M1 in terms of the overall
results.

� An aggregated approach has been utilised to the planning periods in
order to reduce the problem size. By applying this approach, we have
obtained good quality solutions in more suitable time frames. The
summary of the solving times for the modified problems is as follows.

Problem Solving
type time (s)
P2 43,976.99
P2.1 10,382.63
P2.2 4,097.72
P2.3 1,536.86

Table 6.4: Summary of solving times for the problems with
aggregated periods

Based on the results analysis above, we summarise our findings about the
two models as follow:
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Model M1

Model M1 is relatively fast when it comes to implementation. Small gaps
of MIP tolerance were easily achieved in all our case studies. However, some
issues have been identified. An inconsistency in solutions was clearly seen
as we progressed with different numbers of iterations. As a result, it is
difficult to choose the number of iterations to be applied as there is no way
of determining which number of iterations gives the best solutions.

The main issue of model M1, nonetheless, lies in the quality of solutions.
This model does not significantly affect the total profits and the grade devi-
ation costs generated. As a result of altering the grade constraints to avoid
the non-linearity, this model fails to restrict the grade requirements and in-
crease the objective value. We therefore question the reliability of applying
the iterative method to handle the grade constraints.

Model M2

Model M2, which we have developed, has been more consistent in producing
a better quality of numerical results. All of the solutions we obtained showed
a substantially higher profit and lower grade deviation cost. We therefore
recommend this model to be applied if better solutions are sought.

An evident disadvantage of the model is the great increase of the problem
size due to additional variables and constraints. This causes a significant
jump in the time required to implement the model, thus making the model
less practical when solving real life industry problems.

Aggregation technique

To address the slow implementation issue, we have performed a model re-
duction by aggregating the planning periods in the data set to reduce the
problem size. The same model was then applied to the modified problem
and a much shorter solving time was obtained (see Table 6.4).

Implementing the aggregation technique will reduce the number or pe-
riods and will not produce a weekly schedule, as preferred by RTIO. The
company, nevertheless, has the flexibility to decide on the number of peri-
ods to be aggregated in applying this technique. We have provided three
different applications of the technique with different numbers of aggregated
periods. Furthermore, we suggest aggregating later periods in order to pro-
vide a weekly schedule for immediate periods.
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6.2 Recommendations

This research has met its objectives which are to identify the issues in the
current logistics model at the Pilbara mining operation and develop a new
model to solve the problem. We realise, however, that there are some issues
arising from this work which can potentially be of interest to extend the
research. Our recommendations for further research are listed as follows:

� Although the optimisation tool that we developed generates a better
set of solutions in terms of the objective function, we still question the
practicality of the tool due to the big jump in the time required to run
the solving procedure. We have seen that the increase in solution time
is simply due to a large number of additional variables and constraints.
We believe that there are ways to speed up the solution process while
maintaining the quality of the solutions, such as the aggregation tech-
nique that we implemented in one of our case studies. Other approaches
may be considered for future research. One may look at possibilities
of applying a decomposition method to divide the problem into sub-
problems or adding cutting planes to reduce the solution time. Due to
the large size of the problem, utilising these approaches may require a
great amount of time and effort, but is still possible.

� We applied our optimisation tool to real iron ore mining operations in
the Pilbara region. Further research may consider applying this model
to other case studies from other different mining operations to show
the flexibility of the model.
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Appendix

The following is the AIMMS text representation for our models described
in Chapter 3 and 4. This text representation excludes the codes for excel
linkage to retreive the input data from the data file.

Model Main_AIMMS {

DeclarationSection sets {

Set Periods {

SubsetOf: Integers;

Index: t; }

Set Mines {

Index: m; }

Set MinedProducts {

Index: p; }

Set MineToProducts {

IndexDomain: m;

SubsetOf: MinedProducts; }

Set Ports {

Index: r; }

Set ShippedProducts {

Index: s, ss; }

Set LumpProducts {

SubsetOf: ShippedProducts; }

Set LumpToFinePairs {

IndexDomain: s;

SubsetOf: ShippedProducts; }

Set PortToProducts {

IndexDomain: r;

SubsetOf: ShippedProducts; }

Set MinePortToProducts {

IndexDomain: (m,p)|p in MineToProducts(m);

SubsetOf: ShippedProducts; }

Set PortToMine {
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IndexDomain: r;

SubsetOf: Mines; }

Set ShippedProductToProduct {

IndexDomain: (m,s);

SubsetOf: MinedProducts; }

Set Components {

Index: c; }

Set Fleets {

Index: f; }

Set FleetToMines {

IndexDomain: f;

SubsetOf: Mines; }

Set MinesToFleet {

IndexDomain: m;

SubsetOf: Fleets; }

Set RobeValleyMines {

SubsetOf: Mines; }

Set BrockmanLoopMines {

SubsetOf: Mines; }

Set Regions {

Index: g; }

Set RegionToMines {

IndexDomain: g;

SubsetOf: Mines; }

Set JVMines {

SubsetOf: Mines; }

Set CarDumpers {

Index: d; }

Set PortToDumpers {

IndexDomain: r;

SubsetOf: CarDumpers; }

Set MineToDumpers {

IndexDomain: (m,p)|p in MineToProducts(m);

SubsetOf: CarDumpers; }

Set DumpersInWC {

SubsetOf: CarDumpers; }

}

DeclarationSection Penalties {

Parameter SP {

IndexDomain: s; }

Parameter MSVLMax {
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IndexDomain: (m,p)|p in MineToProducts(m); }

Parameter MSVLMin {

IndexDomain: (m,p)|p in MineToProducts(m); }

Parameter PSVLMax {

IndexDomain: (r,s)|s in PortToProducts(r); }

Parameter PSVLMin {

IndexDomain: (r,s)|s in PortToProducts(r); }

Parameter MSVBMax {

IndexDomain: (m,p)|p in MineToProducts(m); }

Parameter PSVBMax {

IndexDomain: (r,s)|s in PortToProducts(r); }

Parameter BPMToBulk {

IndexDomain: (m,p)|p in MineToProducts(m); }

Parameter BPMFromBulk {

IndexDomain: (m,p)|p in MineToProducts(m); }

Parameter BPRToBulk {

IndexDomain: (r,s)|s in PortToProducts(r); }

Parameter BPRFromBulk {

IndexDomain: (r,s)|s in PortToProducts(r); }

Parameter CTP;

Parameter PP {

IndexDomain: (m,d); }

Parameter GPI {

IndexDomain: (s,c); }

}

DeclarationSection Objective_Function {

Variable Revenue {

Range: free;

Definition: {

sum((r,s,t)|s in PortToProducts(r),SP(s)*zPlus

RF(r,s,t)*(1-PercentLump(r,s,t))/(1+Discount)^

(t-FirstPeriod)); } }

Parameter Discount { }

Variable TotalLiveStockPenalty {

Range: nonnegative;

Definition: {

sum((m,p,t)|p in MineToProducts(m),MSVLMax(m,p

)*AlphaMax(m,p,t)+MSVLMin(m,p)*AlphaMin(m,p,t)

)+sum((r,s,t)|s in PortToProducts(r),PSVLMax(r

,s)*BetaMax(r,s,t)+PSVLMin(r,s)*BetaMin(r,s,t)

); } }
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Variable TotalBulkStockPenalty {

Range: nonnegative;

Definition: {

sum((m,p,t)|p in MineToProducts(m),MSVBMax(m,p

)*AlphaBulk(m,p,t))+sum((r,s,t)|s in PortToPro

ducts(r),PSVBMax(r,s)*BetaBulk(r,s,t)); } }

Variable TotalBulkHandlingCost {

Range: free;

Definition: {

sum((m,p,t)|p in MineToProducts(m),BPMtoBulk(m

,p)*yToBulk(m,p,t)+BPMfromBulk(m,p)*yFromBulk(

m,p,t))+sum((r,s,t)|s in PortToProducts(r),BPR

toBulk(r,s)*uToBulk(r,s,t)+BPRfromBulk(r,s)*uF

romBulk(r,s,t)); } }

Variable CycleTimePenalty {

Range: free;

Definition: {

sum((f,t),CTP*Mu(f,t)); } }

Variable DumperPreference {

Range: free;

Definition: {

sum((m,f,p,d,s,t),TS(m,f,p,t)*x(m,f,p,d,s,t)*P

P(m,d)); } }

Variable GradeDeviationsPenalty {

Range: free;

Definition: {

sum((r,s,c,t)|s in PortToProducts(r),GPI(s,c)*

(EI(r,s,c,t)+SI(r,s,c,t))); } }

Variable Incentives {

Range: free;

Definition: {

2*sum((m,f,p,d,s,t),SP(s)*TS(m,f,p,t)*x(m,f,p,

d,s,t)); } }

Variable Profit {

Range: free;

Definition: {

Revenue-TotalLiveStockPenalty-TotalBulkStockPe

nalty-TotalBulkHandlingCost-CycleTimePenalty-D

umperPreference-GradeDeviationsPenalty+Incenti

ves; } }

Set WithoutGradeVariables {
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SubsetOf: AllVariables;

Definition: {

data { Revenue, TotalLiveStockPenalty, TotalBu

lkStockPenalty, TotalBulkHandlingCost, CycleTi

mePenalty, DumperPreference, Incentives, Profi

t, sLevel, bLevel, wLevel, wBeforeZ, wBeforeZP

lusLump, vLevel, yToBulk, yFromBulk, uToBulk,

uFromBulk, zPlusRF, x,AlphaMin, AlphaMax, Alph

aBulk, BetaMin, BetaMax,BetaBulk, FleetX, Mu,

xCumulative } } }

Set SLPGradeVariables {

SubsetOf: AllVariables;

Definition: {

data { Revenue, TotalLiveStockPenalty, TotalBu

lkStockPenalty, TotalBulkHandlingCost, CycleTi

mePenalty, DumperPreference, GradeDeviationsPe

nalty, Incentives, Profit, sLevel, bLevel, wLe

vel, wBeforeZ, wBeforeZPlusLump, vLevel, yToBu

lk, yFromBulk, uToBulk, uFromBulk, zPlusRF, x,

AlphaMin, AlphaMax, AlphaBulk, BetaMin, BetaMa

x, BetaBulk, FleetX, Mu, xCumulative, LMGrade,

BMGrade, LPGrade, BPGrade, RGrade, ZG, SI, EI

} } }

Set GradeVariables {

SubsetOf: AllVariables;

Definition: {

data { Revenue, TotalLiveStockPenalty, TotalBu

lkStockPenalty, TotalBulkHandlingCost, CycleTi

mePenalty, DumperPreference, GradeDeviationsPe

nalty, Incentives, Profit, sLevel, bLevel, wLe

vel, wBeforeZ, wBeforeZPlusLump, vLevel, yToBu

lk, yFromBulk, uToBulk, uFromBulk, zPlusRF, x,

RFromIOP, RFromL, RFromB, RFromBBinary, RFromI

OPFIFO, RFromIOPFIFOBinary, TSxMinusSPos, TSxM

inusSPosBinary, RFromLFIFO, RFromLFIFOBinary,

RFromIOPLIFO, RFromIOPLIFOBinary, TSxMinusIOPP

os, TSxMinusIOPPosBinary, RFromLLIFO, RFromLLI

FOBinary, AlphaMin, AlphaMax, AlphaBulk, BetaM

in, BetaMax, BetaBulk, FleetX, Mu, xCumulative

, LMGrade, BMGrade, LPGrade, BPGrade, RGrade,

ZG, LMxS, LMxYToBulk, BMxB, BMxYFromBulk, RGxX
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, LMxRL, BMxRB, LPxW, ZGxWBeforeZ, LPxWBeforeZ

PlusLump, ZGxUToBulk, BPxV, BPxUFromBulk, ZGxZ

} } }

Set RealGradesVars {

SubsetOf: AllVariables;

Definition: data { RealLM, RealBM, RealRG, RealLP,

RealBP, RealZG, RealSI, RealEI, RealGradePenal

ty }; }

Set WithoutGradeConstraints {

SubsetOf: AllConstraints;

Definition: {

data { Revenue, TotalLiveStockPenalty, TotalBu

lkStockPenalty, TotalBulkHandlingCost, CycleTi

mePenalty, DumperPreference, Incentives, Profi

t, sLevel, bLevel, wLevel, wBeforeZ, wBeforeZP

lusLump, vLevel, MineLiveStockpileLevelMin, Mi

neLiveStockpileLevelMax, MineBulkStockpileLeve

l, MineYardLimit, RegionBulkInMax, RegionBulkO

utMax, PortLiveStockpileLevelMin, PortLiveStoc

kpileLevelMax, PortBulkStockpileLevel, PortYar

dLimit, PortBulkInMax, PortBulkOutMax, MaxTrai

ns, MaxTrainsInRegion, FleetX, FleetCapacity,

FleetHourCapacity, DumperCapacity, CLWCCapacit

y, ShipCapacity, xCumulative, JVCummulativeMin

, JVCummulativeMax } } }

Set SLPGradeConstraints {

SubsetOf: AllConstraints;

Definition: {

data { Revenue, TotalLiveStockPenalty, TotalBu

lkStockPenalty, TotalBulkHandlingCost, CycleTi

mePenalty, DumperPreference, GradeDeviationsPe

nalty, Incentives, Profit, sLevel, bLevel, wLe

vel, wBeforeZ, wBeforeZPlusLump, vLevel, MineL

iveStockpileLevelMin, MineLiveStockpileLevelMa

x, MineBulkStockpileLevel, MineYardLimit, Regi

onBulkInMax, RegionBulkOutMax, PortLiveStockpi

leLevelMin, PortLiveStockpileLevelMax, PortBul

kStockpileLevel, PortYardLimit, PortBulkInMax,

PortBulkOutMax, MaxTrains, MaxTrainsInRegion,

FleetX, FleetCapacity, FleetHourCapacity, Dump

erCapacity, CLWCCapacity, ShipCapacity, xCumul
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ative, JVCummulativeMin, JVCummulativeMax, SLP

MineLiveGrades, SLPMineBulkGrades, SLPRailedGr

ades, SLPPortLiveGrades, SLPPortLiveGradesForF

ines, SLPPortBulkGrades, SLPGradeDeviationsMin

, SLPGradeDeviationsMax } } }

Set GradeConstraints {

SubsetOf: AllConstraints;

Definition: {

data { Revenue, TotalLiveStockPenalty, TotalBu

lkStockPenalty, TotalBulkHandlingCost, CycleTi

mePenalty, DumperPreference, GradeDeviationsPe

nalty, Incentives, Profit, sLevel, bLevel, wLe

vel, wBeforeZ, wBeforeZPlusLump, vLevel, Raile

dQuantity, RFromIOP, RFromL, RFromBInq1, RFrom

BInq2, RFromBInq3, RFromIOPFIFOInq1, RFromIOPF

IFOInq2, RFromIOPFIFOInq3, TSxMinusSPosInq1, T

SxMinusSPosInq2, TSxMinusSPosInq3, RFromLFIFOI

nq1, RFromLFIFOInq2, RFromLFIFOInq3, RFromLFIF

OInq4, RFromIOPLIFOInq1, RFromIOPLIFOInq2, RFr

omIOPLIFOInq3, TSxMinusIOPPosInq1, TSxMinusIOP

PosInq2, TSxMinusIOPPosInq3, RFromLLIFOInq1, R

FromLLIFOInq2, RFromLLIFOInq3, RFromLLIFOInq,

MineLiveStockpileLevelMin, MineLiveStockpileLe

velMax, MineBulkStockpileLevel, MineYardLimit,

RegionBulkInMax, RegionBulkOutMax, PortLiveSto

ckpileLevelMin, PortLiveStockpileLevelMax, Por

tBulkStockpileLevel, PortYardLimit, PortBulkIn

Max, PortBulkOutMax, MaxTrains, MaxTrainsInReg

ion, FleetX, FleetCapacity, FleetHourCapacity,

DumperCapacity, CLWCCapacity, ShipCapacity, xC

umulative, JVCummulativeMin, JVCummulativeMax,

BMGradeAndQuantity, LPGrade, BPGradeAndQuantit

y, LMxS, LMxSConvex1, LMxSConvex2, LMxSConcave

1, LMxSConcave2, LMxYToBulkConvex1, LMxYToBulk

Convex2, LMxYToBulkConcave1, LMxYToBulkConav2,

BMxB, BMxBConvex1, BMxBConvex2, BMxBConcave1,

BMxBConcave2, BMxYFromBulkConvex1, BMxYFromBul

kConvex2, BMxYFromBulkConcave1, BMxYFromBulkCo

ncave2, RailedGrades, RGxXConvex1, RGxXConvex2

, RGxXConcave1, RGxXConcave2, LMxRL, LMxRLConv

ex1, LMxRLConvex2, LMxRLConcave1, LMxRLConcave
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2, BMxRB, BMxRBConvex1, BMxRBConvex2, BMxRBCon

cave1, BMxRBConcave2, LPxW, LPxWConvex1, LPxWC

onvex2, LPxWConcave1, LPxWConcave2, ZGxWBefore

Z, ZGxWBeforeZConvex1, ZGxWBeforeZConvex2, ZGx

WBeforeZConcave1, ZGxWBeforeZConcave2, LPxWBef

oreZPlusLump, LPxWBeforeZPlusLumpConvex1, LPxW

BeforeZPlusLumpConvex2, LPxWBeforeZPlusLumpCon

cave1, LPxWBeforeZPlusLumpConcave2, ZGxUToBulk

Convex1, ZGxUToBulkConvex2, ZGxUToBulkConcave1

, ZGxUToBulkConcave2, BPxV, BPxVConvex1, BPxVC

onvex2, BPxVConcave1, BPxVConcave2, BPxUFromBu

lkConvex1, BPxUFromBulkConvex2, BPxUFromBulkCo

ncave1, BPxUFromBulkConcave2, ZGxZConvex1, ZGx

ZConvex2, ZGxZConcave1, ZGxZConcave2, LPxZLump

Convex1, LPxZLumpConvex2, LPxZLumpConcave1, LP

xZLumpConcave2, GradeDeviationsMin, GradeDevia

tionsMax } } }

Set RealGradesCons {

SubsetOf: AllConstraints;

Definition: {

data { LMConstraint, BMConstraint, RGConstrain

t, RealLP, LPConstraint, BPConstraint, ZGConst

raint, RealGradeDevMin, RealGradeDevMax, RealG

radePenalty } } }

Parameter relative_optimality_gap { }

MathematicalProgram Model_WithoutGrades {

Objective: Profit;

Direction: maximize;

Constraints: WithoutGradeConstraints;

Variables: WithoutGradeVariables;

Type: MIP; }

MathematicalProgram Model1_WithoutGradesNoInteger {

Objective: Profit;

Direction: maximize;

Constraints: WithoutGradeConstraints;

Variables: WithoutGradeVariables;

Type: RMIP; }

MathematicalProgram Model1_WithGradesNoInteger {

Objective: Profit;

Direction: maximize;

Constraints: SLPGradeConstraints;
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Variables: SLPGradeVariables;

Type: RMIP; }

MathematicalProgram Model1_WithGrades {

Objective: Profit;

Direction: maximize;

Constraints: SLPGradeConstraints;

Variables: SLPGradeVariables;

Type: MIP; }

MathematicalProgram Model2_WithGrades1 {

Objective: Profit;

Direction: maximize;

Constraints: GradeConstraints;

Variables: GradeVariables;

Type: MIP; }

MathematicalProgram Model2_WithGrades2 {

Objective: Profit;

Direction: maximize;

Constraints: RealGradesCons;

Variables: RealGradesVars;

Type: LP; }

}

DeclarationSection Mass_Variables_and_Initials {

Variable sLevel {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN sInitial(m,p)+IOP(m,p,t)

+yFromBulk(m,p,t)-yToBulk(m,p,t)-sum((f,d,s),T

S(m,f,p,t)*x(m,f,p,d,s,t))

ELSE slevel(m,p,t-1)+IOP(m,p,t)+yFromBulk(m,p,

t)-yToBulk(m,p,t)-sum((f,d,s),TS(m,f,p,t)*x(m,

f,p,d,s,t))

ENDIF; } }

Parameter sInitial {

IndexDomain: (m,p)|p in MineToProducts(m); }

Variable bLevel {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN bInitial(m,p)+yToBulk(m,

p,t)-yFromBulk(m,p,t)
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ELSE blevel(m,p,t-1)+yToBulk(m,p,t)-yFromBulk(

m,p,t) ENDIF; } }

Parameter bInitial {

IndexDomain: (m,p)|p in MineToProducts(m); }

Variable wLevel {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative;

Definition: {

wBeforeZPlusLump(r,s,t)-zPlusRF(r,s,t); } }

Parameter wInitial {

IndexDomain: (r,s)|s in PortToProducts(r); }

Variable wBeforeZ {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN wInitial(r,s)+uFromBulk(

r,s,t)-uToBulk(r,s,t)+sum((m,f,p in MineToProd

ucts(m),d in PortToDumpers(r)),TS(m,f,p,t)*x(m

,f,p,d,s,t))

ELSE wlevel(r,s,t-1)+uFromBulk(r,s,t)-uToBulk(

r,s,t)+sum((m,f,p in MineToProducts(m),d in Po

rtToDumpers(r)),TS(m,f,p,t)*x(m,f,p,d,s,t))

ENDIF; } }

Variable wBeforeZPlusLump {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: free;

Definition: {

wBeforeZ(r,s,t)+sum(ss in LumpToFinePairs(s),

PercentLump(r,ss,t)*zPlusRF(r,ss,t)); } }

Variable vLevel {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN vInitial(r,s)+uToBulk(r,

s,t)-uFromBulk(r,s,t)

ELSE vlevel(r,s,t-1)+uToBulk(r,s,t)-uFromBulk(

r,s,t) ENDIF; } }

Parameter vInitial {

IndexDomain: (r,s)|s in PortToProducts(r); }

Variable yToBulk {

IndexDomain: (m,p,t)|p in MineToProducts(m);
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Range: [0, MineBulkOutRates(m, p, t)]; }

Variable yFromBulk {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: [0, MineBulkInRates(m, p, t)]; }

Variable uToBulk {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative; }

Variable uFromBulk {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative; }

Parameter IOP {

IndexDomain: (m,p,t)|p in MineToProducts(m); }

Variable zPlusRF {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative; }

Parameter PercentLump {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: (0, 1); }

}

DeclarationSection Railed_Quantity {

Parameter TrainTonnesPerCar {

IndexDomain: (m,p,t)|p in MineToProducts(m); }

Parameter CarsPerTrain {

IndexDomain: (f,t); }

Parameter TS {

IndexDomain: (m,f,p,t)|m in FleetToMines(f) and p

in MineToProducts(m);

Definition: {

TrainTonnesPerCar(m,p,t)/1000*CarsPerTrain(f,t

); } }

Variable x {

IndexDomain: (m,f,p,d,s,t)|m in FleetToMines(f) an

d p in MineToProducts(m) and s in MinePortToPr

oducts(m,p) and d in MineToDumpers(m,p);

Range: {

{xMin(m, t)..xMax(m, t)} }

RelaxStatus: RelaxX(m, t); }

Parameter RelaxX {

IndexDomain: (m,t);

Range: binary;

Definition: {
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IF m in RobeValleyMines THEN 1 ELSE 0 ENDIF; }

}

Constraint RailedQuantity {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

sum((f,d,s),TS(m,f,p,t)*x(m,f,p,d,s,t))=RFromI

OP(m,p,t)+RFromL(m,p,t)+RFromB(m,p,t); } }

Parameter MineRegime {

IndexDomain: m;

Range: binary; }

Variable RFromIOP {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF MineRegime(m)=1 THEN RFromIOPFIFO(m,p,t)

ELSE RFromIOPLIFO(m,p,t) ENDIF; } }

Variable RFromL {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF MineRegime(m)=1 THEN RFromLFIFO(m,p,t)

ELSE RFromLLIFO(m,p,t) ENDIF; } }

Variable RFromB {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative; }

Variable RFromBBinary {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: binary; }

Constraint RFromBInq1 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN RFromB(m,p,t)>=sum((f,d,

s),TS(m,f,p,t)*x(m,f,p,d,s,t))-IOP(m,p,t)-sIni

tial(m,p)

ELSE RFromB(m,p,t)>=sum((f,d,s),TS(m,f,p,t)*x(

m,f,p,d,s,t))-IOP(m,p,t)-sLevel(m,p,t-1)

ENDIF; } }

Constraint RFromBInq2 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromB(m,p,t)<=sum((f,d,s),TS(m,f,p,t)*x(m,f,p
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,d,s,t))-IOP(m,p,t)+10000*RFromBBinary(m,p,t);

} }

Constraint RFromBInq3 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromB(m,p,t)<=10000*(1-RFromBBinary(m,p,t));

} }

Parameter SLP_RFromIOP {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF MineRegime(m)=1 THEN SLP_RFromIOPFIFO(m,p,t

) ELSE SLP_RFromIOPLIFO(m,p,t) ENDIF; } }

Parameter SLP_RFromL {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF MineRegime(m)=1 THEN SLP_RFromLFIFO(m,p,t)

ELSE SLP_RFromLLIFO(m,p,t) ENDIF; } }

Parameter SLP_RFromB {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN max(0,sum((f,d,s),TS(m,f

,p,t)*OT_x(m,f,p,d,s,t))-IOP(m,p,t)-sInitial(m

,p))

ELSE max(0,sum((f,d,s),TS(m,f,p,t)*OT_x(m,f,p,

d,s,t))-IOP(m,p,t)-OT_sLevel(m,p,t-1))

ENDIF;} }

}

DeclarationSection Railed_Quantity_FIFO {

Variable RFromIOPFIFO {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: [0, IOP(m, p, t)]; }

Variable RFromIOPFIFOBinary {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: binary; }

Constraint RFromIOPFIFOInq1 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromIOPFIFO(m,p,t)<=TSxMinusSPos(m,p,t); } }
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Constraint RFromIOPFIFOInq2 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromIOPFIFO(m,p,t)>=IOP(m,p,t)-(IOP(m,p,t)+10

000)*RFromIOPFIFOBinary(m,p,t); } }

Constraint RFromIOPFIFOInq3 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromIOPFIFO(m,p,t)>=TSxMinusSPos(m,p,t)-(1000

0-IOP(m,p,t))*(1-RFromIOPFIFOBinary(m,p,t));}}

Variable TSxMinusSPos {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative; }

Variable TSxMinusSPosBinary {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: binary; }

Constraint TSxMinusSPosInq1 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN TSxMinusSPos(m,p,t)>=sum

((f,d,s),TS(m,f,p,t)*x(m,f,p,d,s,t))-sInitial(

m,p)

ELSE TSxMinusSPos(m,p,t)>=sum((f,d,s),TS(m,f,p

,t)*x(m,f,p,d,s,t))-sLevel(m,p,t-1) ENDIF; } }

Constraint TSxMinusSPosInq2 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN TSxMinusSPos(m,p,t)<=sum

((f,d,s),TS(m,f,p,t)*x(m,f,p,d,s,t))-sInitial(

m,p)+10000*TSxMinusSPosBinary(m,p,t)

ELSE TSxMinusSPos(m,p,t)<=sum((f,d,s),TS(m,f,p

,t)*x(m,f,p,d,s,t))-sLevel(m,p,t-1)+10000*TSxM

inusSPosBinary(m,p,t) ENDIF; } }

Constraint TSxMinusSPosInq3 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

TSxMinusSPos(m,p,t)<=10000*(1-TSxMinusSPosBina

ry(m,p,t)); } }

Variable RFromLFIFO {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative; }
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Variable RFromLFIFOBinary {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: binary; }

Constraint RFromLFIFOInq1 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromLFIFO(m,p,t)<=sum((f,d,s),TS(m,f,p,t)*x(m

,f,p,d,s,t)); } }

Constraint RFromLFIFOInq2 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN RFromLFIFO(m,p,t)<=sInit

ial(m,p) ELSE RFromLFIFO(m,p,t)<=sLevel(m,p,t-

1) ENDIF; } }

Constraint RFromLFIFOInq3 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromLFIFO(m,p,t)>=sum((f,d,s),TS(m,f,p,t)*x(m

,f,p,d,s,t))-10000*RFromLFIFOBinary(m,p,t);} }

Constraint RFromLFIFOInq4 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN RFromLFIFO(m,p,t)>=sInit

ial(m,p)-20000*(1-RFromLFIFOBinary(m,p,t))

ELSE RFromLFIFO(m,p,t)>=sLevel(m,p,t-1)-20000*

(1-RFromLFIFOBinary(m,p,t)) ENDIF; } }

Parameter SLP_RFromIOPFIFO {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN min(IOP(m,p,t),max(0,sum

((f,d,s),TS(m,f,p,t)*OT_x(m,f,p,d,s,t))-sIniti

al(m,p)))

ELSE min(IOP(m,p,t),max(0,sum((f,d,s),TS(m,f,p

,t)*OT_x(m,f,p,d,s,t))-OT_sLevel(m,p,t-1)))

ENDIF; } }

Parameter SLP_RFromLFIFO {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN min(sum((f,d,s),TS(m,f,p
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,t)*OT_x(m,f,p,d,s,t)),sInitial(m,p))

ELSE min(sum((f,d,s),TS(m,f,p,t)*OT_x(m,f,p,d,

s,t)),OT_sLevel(m,p,t-1)) ENDIF; } }

}

DeclarationSection Railed_Quantity_LIFO {

Variable RFromIOPLIFO {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: [0, IOP(m, p, t)]; }

Variable RFromIOPLIFOBinary {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: binary; }

Constraint RFromIOPLIFOInq1 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromIOPLIFO(m,p,t)<=sum((f,d,s), TS(m,f,p,t)*

x(m,f,p,d,s,t)); } }

Constraint RFromIOPLIFOInq2 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromIOPLIFO(m,p,t)>=sum((f,d,s), TS(m,f,p,t)*

x(m,f,p,d,s,t))-(10000-IOP(m,p,t))*RFromIOPLIF

OBinary(m,p,t); } }

Constraint RFromIOPLIFOInq3 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromIOPLIFO(m,p,t)>=IOP(m,p,t)-IOP(m,p,t)*(1-

RFromIOPLIFOBinary(m,p,t)); } }

Variable TSxMinusIOPPos {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative; }

Variable TSxMinusIOPPosBinary {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: binary; }

Constraint TSxMinusIOPPosInq1 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

TSxMinusIOPPos(m,p,t)>=sum((f,d,s), TS(m,f,p,t

)*x(m,f,p,d,s,t))-IOP(m,p,t); } }

Constraint TSxMinusIOPPosInq2 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {
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TSxMinusIOPPos(m,p,t)<=sum((f,d,s), TS(m,f,p,t

)*x(m,f,p,d,s,t))-IOP(m,p,t)+10000*TSxMinusIOP

PosBinary(m,p,t); } }

Constraint TSxMinusIOPPosInq3 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

TSxMinusIOPPos(m,p,t)<=10000*(1-TSxMinusIOPPos

Binary(m,p,t)); } }

Variable RFromLLIFO {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative; }

Variable RFromLLIFOBinary {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: binary; }

Constraint RFromLLIFOInq1 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN RFromLLIFO(m,p,t)<=sInit

ial(m,p) ELSE RFromLLIFO(m,p,t)<=sLevel(m,p,t-

1) ENDIF; } }

Constraint RFromLLIFOInq2 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromLLIFO(m,p,t)<=TSxMinusIOPPos(m,p,t); } }

Constraint RFromLLIFOInq3 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN RFromLLIFO(m,p,t)>=sInit

ial(m,p)-20000*RFromLLIFOBinary(m,p,t)

ELSE RFromLLIFO(m,p,t)>=sLevel(m,p,t-1)-20000*

RFromLLIFOBinary(m,p,t) ENDIF; } }

Constraint RFromLLIFOInq4 {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

RFromLLIFO(m,p,t)>=TSxMinusIOPPos(m,p,t)-20000

*(1-RFromLLIFOBinary(m,p,t)); } }

Parameter SLP_RFromIOPLIFO {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

min(sum((f,d,s),TS(m,f,p,t)*OT_x(m,f,p,d,s,t))
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,IOP(m,p,t)); } }

Parameter SLP_RFromLLIFO {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN min(sInitial(m,p),max(0,

sum((f,d,s),TS(m,f,p,t)*OT_x(m,f,p,d,s,t))-IOP

(m,p,t)))

ELSE min(OT_sLevel(m,p,t-1),max(0,sum((f,d,s),

TS(m,f,p,t)*OT_x(m,f,p,d,s,t))-IOP(m,p,t)))

ENDIF; } }

}

DeclarationSection Mine_Stockpile_Capacities {

Parameter SMin {

IndexDomain: (m,p,t)|p in MineToProducts(m); }

Parameter SMax {

IndexDomain: (m,p,t)|p in MineToProducts(m); }

Variable AlphaMin {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative; }

Variable AlphaMax {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative; }

Constraint MineLiveStockpileLevelMin {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

SMin(m,p,t)-AlphaMin(m,p,t)<=sLevel(m,p,t);} }

Constraint MineLiveStockpileLevelMax {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

sLevel(m,p,t)<=SMax(m,p,t)+AlphaMax(m,p,t);} }

Parameter BMax {

IndexDomain: (m,p,t)|p in MineToProducts(m); }

Variable AlphaBulk {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative; }

Constraint MineBulkStockpileLevel {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

bLevel(m,p,t)<=BMax(m,p,t)+AlphaBulk(m,p,t);}}

Parameter YLM {
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IndexDomain: (m,p,t)|p in MineToProducts(m);

Range: nonnegative; }

Parameter YLB {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

max(bInitial(m,p),BMax(m,p,t)); } }

Constraint MineYardLimit {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

SMax(m,p,t)+AlphaMax(m,p,t)<=YLM(m,p,t); } }

Parameter MineBulkInRatesPerDay {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

IF m in BrockmanLoopMines THEN 20 ELSE MineBul

kInRatesDummy(m,p,t) ENDIF; } }

Parameter MineBulkInRatesDummy {

IndexDomain: (m,p,t)|p in MineToProducts(m); }

Parameter MineBulkInRates {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

days(t)*MineBulkInRatesPerDay(m,p,t); } }

Parameter RegionBulkInRatesPerDay {

IndexDomain: (g,t);

Definition: IF RegionBulkInDummy(g,t) <> 0 THEN Re

gionBulkInDummy(g,t) ELSE 100 ENDIF; }

Parameter RegionBulkInDummy {

IndexDomain: (g,t); }

Parameter RegionBulkInRates {

IndexDomain: (g,t);

Definition: {

days(t)*RegionBulkInRatesPerDay(g,t); } }

Constraint RegionBulkInMax {

IndexDomain: (g,t);

Definition: {

sum((m in RegionToMines(g), p in MineToProduct

s(m)), yFromBulk(m,p,t))<=RegionBulkInRates(g,

t); } }

Parameter MineBulkOutRatesPerDay {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

IF m in BrockmanLoopMines THEN 20 ELSE MineBul
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kOutRatesDummy(m,p,t) ENDIF; } }

Parameter MineBulkOutRatesDummy {

IndexDomain: (m,p,t)|p in MineToProducts(m); }

Parameter MineBulkOutRates {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

days(t)*MineBulkOutRatesPerDay(m,p,t); } }

Parameter RegionBulkOutRatesPerDay {

IndexDomain: (g,t);

Definition: IF RegionBulkOutDummy(g,t) <> 0 THEN R

egionBulkOutDummy(g,t) ELSE 100 ENDIF; }

Parameter RegionBulkOutDummy {

IndexDomain: (g,t); }

Parameter RegionBulkOutRates {

IndexDomain: (g,t);

Definition: {

days(t)*RegionBulkOutRatesPerDay(g,t); } }

Constraint RegionBulkOutMax {

IndexDomain: (g,t);

Definition: {

sum((m in RegionToMines(g), p in MineToProduct

s(m)), yToBulk(m,p,t))<=RegionBulkOutRates(g,t

); } }

}

DeclarationSection Port_Stockpile_Capacities {

Parameter WMin {

IndexDomain: (r,s,t)|s in PortToProducts(r); }

Parameter WMax {

IndexDomain: (r,s,t)|s in PortToProducts(r); }

Variable BetaMin {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative; }

Variable BetaMax {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint PortLiveStockpileLevelMin {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Definition: {

WMin(r,s,t)-BetaMin(r,s,t)<=wLevel(r,s,t); } }

Constraint PortLiveStockpileLevelMax {

IndexDomain: (r,s,t)|s in PortToProducts(r);
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Definition: {

wLevel(r,s,t)<=WMax(r,s,t)+BetaMax(r,s,t); } }

Parameter VMax {

IndexDomain: (r,s,t)|s in PortToProducts(r); }

Variable BetaBulk {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint PortBulkStockpileLevel {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Definition: {

vLevel(r,s,t)<=VMax(r,s,t)+BetaBulk(r,s,t);} }

Parameter YLP {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint PortYardLimit {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Definition: {

WMax(r,s,t)+BetaMax(r,s,t)<=YLP(r,s,t); } }

Parameter PortBulkInTotalRatesPerDay {

IndexDomain: (r,t); }

Parameter PortBulkInTotalRates {

IndexDomain: (r,t);

Definition: {

days(t)*PortBulkInTotalRatesPerDay(r,t); } }

Parameter PortBulkInRates {

IndexDomain: (r,s,t);

Definition: {

PortBulkInTotalRates(r,t); } }

Constraint PortBulkInMax {

IndexDomain: (r,t);

Definition: {

sum(s,uFromBulk(r,s,t))<=PortBulkInTotalRates(

r,t); } }

Parameter PortBulkOutTotalRatesPerDay {

IndexDomain: (r,t); }

Parameter PortBulkOutTotalRates {

IndexDomain: (r,t);

Definition: {

days(t)*PortBulkOutTotalRatesPerDay(r,t); } }

Parameter PortBulkOutRates {

IndexDomain: (r,s,t);
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Definition: {

PortBulkOutTotalRates(r,t); } }

Constraint PortBulkOutMax {

IndexDomain: (r,t);

Definition: {

sum(s,uToBulk(r,s,t))<=PortBulkOutTotalRates(r

,t); } }

}

DeclarationSection Train_and_Fleet_Capacities {

Parameter xMin {

IndexDomain: (m,t);

Range: integer; }

Parameter xMax {

IndexDomain: (m,t);

Range: integer;

Definition: {

IF m in RobeValleyMines THEN sum(f in MinesToF

leet(m), MFT(f,t)) ELSE xMaxDummy(m,t) ENDIF;

} }

Parameter xMaxDummy {

IndexDomain: (m,t);

Range: integer; }

Parameter MT {

IndexDomain: (g,t);

Range: integer; }

Constraint MaxTrains {

IndexDomain: (m,t);

Definition: {

sum((f,p,d,s),x(m,f,p,d,s,t))<=xMax(m,t); } }

Constraint MaxTrainsInRegion {

IndexDomain: (g,t);

Definition: {

sum((m in RegionToMines(g),f,p in MineToProdu

cts(m),d,s),x(m,f,p,d,s,t))<=MT(g,t); } }

Parameter MFT {

IndexDomain: (f,t);

Range: integer; }

Variable FleetX {

IndexDomain: (f,t);

Range: integer;

Definition: {
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sum((m in FleetToMines(f),p in MineToProducts(

m),d,s),x(m,f,p,d,s,t)); } }

Constraint FleetCapacity {

IndexDomain: (f,t);

Definition: {

sum((m in FleetToMines(f),p in MineToProducts(

m),d,s),x(m,f,p,d,s,t))<=MFT(f,t); } }

Parameter CT {

IndexDomain: (m,p,t)|p in MineToProducts(m); }

Parameter PFT {

IndexDomain: (f,t); }

Variable Mu {

IndexDomain: (f,t);

Range: nonnegative; }

Constraint FleetHourCapacity {

IndexDomain: (f,t);

Definition: {

sum((m in FleetToMines(f),p in MineToProducts(

m),d,s), CT(m,p,t)*x(m,f,p,d,s,t))<=PFT(f,t)+M

u(f,t); } }

}

DeclarationSection Car_Dumper_Capacities {

Parameter DC {

IndexDomain: (d,t);

Range: integer; }

Constraint DumperCapacity {

IndexDomain: (d,t);

Definition: {

sum((m,f,p,s),x(m,f,p,d,s,t))<=DC(d,t); } }

Parameter CLWC {

IndexDomain: t; }

Constraint CLWCCapacity {

IndexDomain: t;

Definition: {

sum((m,f,p,d in DumpersInWC,s),x(m,f,p,d,s,t))

<=CLWC(t); } }

}

DeclarationSection Shipping_Capacities {

Parameter ZMax {

IndexDomain: (r,t); }

Constraint ShipCapacity {
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IndexDomain: (r,t);

Definition: sum(s in PortToProducts(r),zPlusRF(r,s

,t)*(1-PercentLump(r,s,t)))<=ZMax(r,t); } }

DeclarationSection Joint_Ventures {

Parameter JVTarget {

IndexDomain: (m,t)|m in JVMines; }

Parameter JVCummulative {

IndexDomain: (m,t)|m in JVMines; }

Parameter JVTolerance {

IndexDomain: (m,t)|m in JVMines; }

Variable xCumulative {

IndexDomain: (m,f,p,d,s,t)|m in JVMines;

Range: free;

Definition: {

IF t=FirstPeriod THEN x(m,f,p,d,s,t) ELSE xCum

ulative(m,f,p,d,s,t-1)+x(m,f,p,d,s,t) ENDIF;}}

Constraint JVCummulativeMin {

IndexDomain: (m,t)|m in JVMines;

Definition: {

sum((f,p,d,s),xCumulative(m,f,p,d,s,t))>=JVCum

mulative(m,t)-JVTolerance(m,t); } }

Constraint JVCummulativeMax {

IndexDomain: (m,t)|m in JVMines;

Definition: {

sum((f,p,d,s),xCumulative(m,f,p,d,s,t))<=JVCum

mulative(m,t)+JVTolerance(m,t); } }

}

DeclarationSection Other_Parameters {

Parameter days {

IndexDomain: t; }

Parameter FirstPeriod;

}

DeclarationSection Grade_Variables_and_Initials {

Parameter IOPGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m); }

Variable LMGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: [LMMin(m, p, c, t), LMMax(m, p, c, t)]; }

Parameter LMInitial {

IndexDomain: (m,p,c)|p in MineToProducts(m);

Range: nonnegative; }
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Variable BMGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: [0, BMMax(m, p, c, t)]; }

Constraint BMGradeAndQuantity {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

BMGrade(m,p,c,t)<=10000*bLevel(m,p,t); } }

Parameter BMInitial {

IndexDomain: (m,p,c)|p in MineToProducts(m); }

Variable LPGrade {

IndexDomain: (r,s,c,t)| s in PortToProducts(r);

Range: [0, LPMax(r, s, c, t)];

Definition: {

IF s in LumpProducts THEN ZG(r,s,c,t) ELSE LPG

rade(r,s,c,t) ENDIF; } }

Parameter LPInitial {

IndexDomain: (r,s,c)|s in PortToProducts(r); }

Variable BPGrade {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: [0, BPMax(r, s, c, t)]; }

Constraint BPGradeAndQuantity {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

BPGrade(r,s,c,t)<=10000*vLevel(r,s,t); } }

Parameter BPInitial {

IndexDomain: (r,s,c)|s in PortToProducts(r); }

Variable RGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: [0, RGMax(m, p, c, t)]; }

Variable ZG {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: [0, LPMax(r, s, c, t)]; } }

DeclarationSection Grade_Limits {

Parameter LMMin {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN IF sInitial(m,p)=0 and I

OP(m,p,t)=0 and bInitial(m,p)=0 THEN 0 ELSE mi

n(IF sInitial(m,p)<>0 THEN LMInitial(m,p,c) EL

SE 100 ENDIF,IF IOP(m,p,t)<>0 THEN IOPGrade(m,

p,c,t) ELSE 100 ENDIF, IF bInitial(m,p)<>0 THE
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N BMInitial(m,p,c) ELSE 100 ENDIF) ENDIF

ELSE min(IF IOP(m,p,t)=0 THEN LMMin(m,p,c,t-1)

ELSE IOPGrade(m,p,c,t) ENDIF,LMMin(m,p,c,t-1))

ENDIF; } }

Parameter LMMax {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN max(LMInitial(m,p,c),IOP

Grade(m,p,c,t),BMInitial(m,p,c))

ELSE max(IOPGrade(m,p,c,t),LMMax(m,p,c,t-1))

ENDIF; } }

Parameter BMMin {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF BMax(m,p,t)=0 or bInitial(m,p)=0 THEN 0

ELSE LMMin(m,p,c,t) ENDIF; } }

Parameter BMMax {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF BMax(m,p,t)=0 THEN 0

ELSE LMMax(m,p,c,t) ENDIF; } }

Parameter LPMin {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF t=FirstPeriod THEN min(IF wInitial(r,s)<>0

THEN LPInitial(r,s,c) ELSE 100 ENDIF, IF vInit

ial(r,s)<>0 THEN BPInitial(r,s,c) ELSE 100 END

IF,min((m in PortToMine(r),p in ShippedProduct

ToProduct(m,s)),IF sInitial(m,p)=0 and IOP(m,p

,t)=0 and bInitial(m,p)=0 THEN 0 ELSE LMMin(m,

p,c,t) ENDIF))

ELSE min(min((m in PortToMine(r),p in ShippedP

roductToProduct(m,s)),IF sInitial(m,p)=0 and I

OP(m,p,t)=0 and bInitial(m,p)=0 THEN 0

ELSE LMMin(m,p,c,t) ENDIF),LPMin(r,s,c,t-1))

ENDIF; } }

Parameter LPMax {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF t=FirstPeriod THEN max(LPInitial(r,s,c), BP

Initial(r,s,c),max((m in PortToMine(r),p in Sh
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ippedProductToProduct(m,s)),LMMax(m,p,c,t)))

ELSE max(max((m in PortToMine(r),p in ShippedP

roductToProduct(m,s)),LMMax(m,p,c,t)),LPMax(r,

s,c,t-1)) ENDIF; } }

Parameter BPMin {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF VMax(r,s,t)=0 or vInitial(r,s)=0 THEN 0

ELSE LPMin(r,s,c,t) ENDIF; } }

Parameter BPMax {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF VMax(r,s,t)=0 THEN 0

ELSE LPMax(r,s,c,t) ENDIF; } }

Parameter RGMin {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

LMMin(m,p,c,t); } }

Parameter RGMax {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

LMMax(m,p,c,t); } }

}

DeclarationSection Mine_Grade_Constraints {

Variable LMxS {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN LMInitial(m,p,c)*sInitia

l(m,p)-LMxYToBulk(m,p,c,t)+IOP(m,p,t)*IOPGrade

(m,p,c,t)+BMxYFromBulk(m,p,c,t)-sum((f,d,s),RG

xX(m,f,p,d,s,c,t))

ELSE LMxS(m,p,c,t-1)-LMxYToBulk(m,p,c,t)+IOP(m

,p,t)*IOPGrade(m,p,c,t)+BMxYFromBulk(m,p,c,t)-

sum((f,d,s),RGxX(m,f,p,d,s,c,t)) ENDIF; } }

Constraint LMxSConvex1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

LMxS(m,p,c,t)>=LMMax(m,p,c,t)*sLevel(m,p,t)+YL

M(m,p,t)*LMGrade(m,p,c,t)-LMMax(m,p,c,t)*YLM(m

,p,t); } }
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Constraint LMxSConvex2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

LMxS(m,p,c,t)>=LMMin(m,p,c,t)*sLevel(m,p,t);}}

Constraint LMxSConcave1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

LMxS(m,p,c,t)<=LMMax(m,p,c,t)*sLevel(m,p,t);}}

Constraint LMxSConcave2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

LMxS(m,p,c,t)<=LMMin(m,p,c,t)*sLevel(m,p,t)+YL

M(m,p,t)*LMGrade(m,p,c,t)-LMMin(m,p,c,t)*YLM(m

,p,t); } }

Variable LMxYToBulk {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: nonnegative; }

Constraint LMxYToBulkConvex1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF m in RobeValleyMines THEN LMxYToBulk(m,p,c,

t)>=IOPGrade(m,p,c,t)*yToBulk(m,p,t)

ELSE LMxYToBulk(m,p,c,t)>=MineBulkOutRates(m,p

,t)*LMGrade(m,p,c,t)+LMMax(m,p,c,t)*yToBulk(m,

p,t)-MineBulkOutRates(m,p,t)*LMMax(m,p,c,t)

ENDIF; } }

Constraint LMxYToBulkConvex2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF m in RobeValleyMines THEN LMxYToBulk(m,p,c,

t)>=IOPGrade(m,p,c,t)*yToBulk(m,p,t)

ELSE LMxYToBulk(m,p,c,t)>=LMMin(m,p,c,t)*yToBu

lk(m,p,t) ENDIF; } }

Constraint LMxYToBulkConcave1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF m in RobeValleyMines THEN LMxYToBulk(m,p,c,

t)<=IOPGrade(m,p,c,t)*yToBulk(m,p,t)

ELSE LMxYToBulk(m,p,c,t)<=MineBulkOutRates(m,p

,t)*LMGrade(m,p,c,t)+LMMin(m,p,c,t)*yToBulk(m,

p,t)-MineBulkOutRates(m,p,t)*LMMin(m,p,c,t)
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ENDIF; } }

Constraint LMxYToBulkConcave2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF m in RobeValleyMines THEN LMxYToBulk(m,p,c,

t)<=IOPGrade(m,p,c,t)*yToBulk(m,p,t)

ELSE LMxYToBulk(m,p,c,t)<=LMMax(m,p,c,t)*yToBu

lk(m,p,t) ENDIF; } }

Variable BMxB {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN BMInitial(m,p,c)*bInitia

l(m,p)-BMxYFromBulk(m,p,c,t)+LMxYToBulk(m,p,c,

t) ELSE BMxB(m,p,c,t-1)-BMxYFromBulk(m,p,c,t)+

LMxYToBulk(m,p,c,t) ENDIF; } }

Constraint BMxBConvex1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

BMxB(m,p,c,t)>=BMMax(m,p,c,t)*bLevel(m,p,t)+YL

B(m,p,t)*BMGrade(m,p,c,t)-BMMax(m,p,c,t)*YLB(m

,p,t); } }

Constraint BMxBConvex2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

BMxB(m,p,c,t)>=BMMin(m,p,c,t)*bLevel(m,p,t);}}

Constraint BMxBConcave1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

BMxB(m,p,c,t)<=BMMin(m,p,c,t)*bLevel(m,p,t)+YL

B(m,p,t)*BMGrade(m,p,c,t)-BMMin(m,p,c,t)*YLB(m

,p,t); } }

Constraint BMxBConcave2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

BMxB(m,p,c,t)<=BMMax(m,p,c,t)*bLevel(m,p,t);}}

Variable BMxYFromBulk {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: nonnegative; }

Constraint BMxYFromBulkConvex1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);
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Definition: {

BMxYFromBulk(m,p,c,t)>=BMMax(m,p,c,t)*yFromBul

k(m,p,t)+MineBulkInRates(m,p,t)*BMGrade(m,p,c,

t)-BMMax(m,p,c,t)*MineBulkInRates(m,p,t); } }

Constraint BMxYFromBulkConvex2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

BMxYFromBulk(m,p,c,t)>=BMMin(m,p,c,t)*yFromBul

k(m,p,t); } }

Constraint BMxYFromBulkConcave1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

BMxYFromBulk(m,p,c,t)<=BMMin(m,p,c,t)*yFromBul

k(m,p,t)+MineBulkInRates(m,p,t)*BMGrade(m,p,c,

t)-BMMin(m,p,c,t)*MineBulkInRates(m,p,t); } }

Constraint BMxYFromBulkConcave2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

BMxYFromBulk(m,p,c,t)<=BMMax(m,p,c,t)*yFromBul

k(m,p,t); } }

}

DeclarationSection Railed_Grade_Constraints {

Variable RGxX {

IndexDomain: (m,f,p,d,s,c,t) | m in FleetToMines(f

)and p in MineToProducts(m) and d in MineToDum

pers(m,p) and s in MinePortToProducts(m,p);

Range: nonnegative; }

Constraint RailedGrades {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN sum((f,d,s),RGxX(m,f,p,d

,s,c,t))=RFromIOP(m,p,t)*IOPGrade(m,p,c,t)+LMI

nitial(m,p,c)*RFromL(m,p,t)+BMinitial(m,p,c)*R

FromB(m,p,t)

ELSE sum((f,d,s),RGxX(m,f,p,d,s,c,t))=RFromIOP

(m,p,t)*IOPGrade(m,p,c,t)+LMxRL(m,p,c,t)+BMxRB

(m,p,c,t) ENDIF; } }

Constraint RGxXConvex1 {

IndexDomain: (m,f,p,c,t)|p in MineToProducts(m);

Definition: {

sum((d,s),RGxX(m,f,p,d,s,c,t))>=RGMax(m,p,c,t)
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*sum((d,s),TS(m,f,p,t)*x(m,f,p,d,s,t))+TS(m,f,

p,t)*xMax(m,t)*RGrade(m,p,c,t)-TS(m,f,p,t)*xMa

x(m,t)*RGMax(m,p,c,t); } }

Constraint RGxXConvex2 {

IndexDomain: (m,f,p,c,t)|p in MineToProducts(m);

Definition: {

sum((d,s),RGxX(m,f,p,d,s,c,t))>=RGMin(m,p,c,t)

*sum((d,s),TS(m,f,p,t)*x(m,f,p,d,s,t))+TS(m,f,

p,t)*xMin(m,t)*RGrade(m,p,c,t)-TS(m,f,p,t)*xMi

n(m,t)*RGMin(m,p,c,t); } }

Constraint RGxXConcave1 {

IndexDomain: (m,f,p,c,t)|p in MineToProducts(m);

Definition: {

sum((d,s),RGxX(m,f,p,d,s,c,t))<=RGMax(m,p,c,t)

*sum((d,s),TS(m,f,p,t)*x(m,f,p,d,s,t))+TS(m,f,

p,t)*xMin(m,t)*RGrade(m,p,c,t)-TS(m,f,p,t)*xMi

n(m,t)*RGMax(m,p,c,t); } }

Constraint RGxXConcave2 {

IndexDomain: (m,f,p,c,t)|p in MineToProducts(m);

Definition: {

sum((d,s),RGxX(m,f,p,d,s,c,t))<=RGMin(m,p,c,t)

*sum((d,s),TS(m,f,p,t)*x(m,f,p,d,s,t))+TS(m,f,

p,t)*xMax(m,t)*RGrade(m,p,c,t)-TS(m,f,p,t)*xMa

x(m,t)*RGMin(m,p,c,t); } }

Variable LMxRL {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=’1’ THEN LMInitial(m,p,c)*RFromL(m,p,t)

ELSE LMxRL(m,p,c,t) ENDIF; } }

Constraint LMxRLConvex1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN LMxRL(m,p,c,t)>=LMInitia

l(m,p,c)*RFromL(m,p,t)

ELSE LMxRL(m,p,c,t)>=LMMax(m,p,c,t)*RFromL(m,p

,t)+YLM(m,p,t)*LMGrade(m,p,c,t-1)-LMMax(m,p,c,

t)*YLM(m,p,t) ENDIF; } }

Constraint LMxRLConvex2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {
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IF t=FirstPeriod THEN LMxRL(m,p,c,t)>=LMInitia

l(m,p,c)*RFromL(m,p,t)

ELSE LMxRL(m,p,c,t)>=LMMin(m,p,c,t)*RFromL(m,p

,t) ENDIF; } }

Constraint LMxRLConcave1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN LMxRL(m,p,c,t)<=LMInitia

l(m,p,c)*RFromL(m,p,t)

ELSE LMxRL(m,p,c,t)<=LMMax(m,p,c,t)*RFromL(m,p

,t) ENDIF; } }

Constraint LMxRLConcave2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN LMxRL(m,p,c,t)<=LMInitia

l(m,p,c)*RFromL(m,p,t)

ELSE LMxRL(m,p,c,t)<=LMMin(m,p,c,t)*RFromL(m,p

,t)+YLM(m,p,t)*LMGrade(m,p,c,t-1)-LMMin(m,p,c,

t)*YLM(m,p,t) ENDIF; } }

Variable BMxRB {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN BMInitial(m,p,c)*RFromB(

m,p,t) ELSE BMxRB(m,p,c,t) ENDIF; } }

Constraint BMxRBConvex1 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN BMxRB(m,p,c,t)>=BMInitia

l(m,p,c)*RFromB(m,p,t)

ELSE BMxRB(m,p,c,t)>=BMMax(m,p,c,t)*RFromB(m,p

,t)+YLB(m,p,t)*BMGrade(m,p,c,t-1)-BMMax(m,p,c,

t)*YLB(m,p,t) ENDIF; } }

Constraint BMxRBConvex2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN BMxRB(m,p,c,t)>=BMInitia

l(m,p,c)*RFromB(m,p,t)

ELSE BMxRB(m,p,c,t)>=BMMin(m,p,c,t)*RFromB(m,p

,t) ENDIF; } }

Constraint BMxRBConcave1 {
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IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN BMxRB(m,p,c,t)<=BMInitia

l(m,p,c)*RFromB(m,p,t)

ELSE BMxRB(m,p,c,t)<=BMMin(m,p,c,t)*RFromB(m,p

,t)+YLB(m,p,t)*BMGrade(m,p,c,t-1)-BMMin(m,p,c,

t)*YLB(m,p,t) ENDIF; } }

Constraint BMxRBConcave2 {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN BMxRB(m,p,c,t)<=BMInitia

l(m,p,c)*RFromB(m,p,t)

ELSE BMxRB(m,p,c,t)<=BMMax(m,p,c,t)*RFromB(m,p

,t) ENDIF; } }

}

DeclarationSection Port_Grade_Constraints {

Variable LPxW {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative;

Definition: {

IF s in LumpProducts THEN ZGxWBeforeZ(r,s,c,t)

-ZGxZ(r,s,c,t)-LPxZLump(r,s,c,t) ELSE LPxW(r,s

,c,t) ENDIF; } }

Constraint LPxWConvex1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxW(r,s,c,t)>=LPMax(r,s,c,t)*wLevel(r,s,t)+YL

P(r,s,t)*LPGrade(r,s,c,t)-LPMax(r,s,c,t)*YLP(r

,s,t); } }

Constraint LPxWConvex2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxW(r,s,c,t)>=LPMin(r,s,c,t)*wLevel(r,s,t);}}

Constraint LPxWConcave1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxW(r,s,c,t)<=LPMax(r,s,c,t)*wLevel(r,s,t);}}

Constraint LPxWConcave2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxW(r,s,c,t)<=LPMin(r,s,c,t)*wLevel(r,s,t)+YL
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P(r,s,t)*LPGrade(r,s,c,t)-LPMin(r,s,c,t)*YLP(r

,s,t); } }

Variable ZGxWBeforeZ {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN LPInitial(r,s,c)*wInitia

l(r,s)-ZGxUToBulk(r,s,c,t)+BPxUFromBulk(r,s,c,

t)+sum((m,f,p,d in PortToDumpers(r)),RGxX(m,f,

p,d,s,c,t))

ELSE LPxW(r,s,c,t-1)-ZGxUToBulk(r,s,c,t)+BPxUF

romBulk(r,s,c,t)+sum((m,f,p,d in PortToDumpers

(r)),RGxX(m,f,p,d,s,c,t)) ENDIF; } }

Constraint ZGxWBeforeZConvex1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxWBeforeZ(r,s,c,t)>=LPMax(r,s,c,t)*wBeforeZ(

r,s,t)+(YLP(r,s,t)+ZMax(r,t))*ZG(r,s,c,t)-LPMa

x(r,s,c,t)*(YLP(r,s,t)+ZMax(r,t)); } }

Constraint ZGxWBeforeZConvex2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxWBeforeZ(r,s,c,t)>=LPMin(r,s,c,t)*wBeforeZ(

r,s,t); } }

Constraint ZGxWBeforeZConcave1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxWBeforeZ(r,s,c,t)<=LPMax(r,s,c,t)*wBeforeZ(

r,s,t); } }

Constraint ZGxWBeforeZConcave2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxWBeforeZ(r,s,c,t)<=LPMin(r,s,c,t)*wBeforeZ(

r,s,t)+(YLP(r,s,t)+ZMax(r,t))*ZG(r,s,c,t)-LPMi

n(r,s,c,t)*(YLP(r,s,t)+ZMax(r,t)); } }

Variable LPxWBeforeZPlusLump {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative;

Definition: {

ZGxWBeforeZ(r,s,c,t)+sum(ss in LumpToFinePairs

(s),LPxZLump(r,ss,c,t)); } }
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Constraint LPxWBeforeZPlusLumpConvex1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxWBeforeZPlusLump(r,s,c,t)>=LPMax(r,s,c,t)*w

BeforeZPlusLump(r,s,t)+(YLP(r,s,t)+ZMax(r,t))*

LPGrade(r,s,c,t)-LPMax(r,s,c,t)*(YLP(r,s,t)+ZM

ax(r,t)); } }

Constraint LPxWBeforeZPlusLumpConvex2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxWBeforeZPlusLump(r,s,c,t)>=LPMin(r,s,c,t)*w

BeforeZPlusLump(r,s,t); } }

Constraint LPxWBeforeZPlusLumpConcave1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxWBeforeZPlusLump(r,s,c,t)<=LPMax(r,s,c,t)*w

BeforeZPlusLump(r,s,t); } }

Constraint LPxWBeforeZPlusLumpConcave2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxWBeforeZPlusLump(r,s,c,t)<=LPMin(r,s,c,t)*w

BeforeZPlusLump(r,s,t)+(YLP(r,s,t)+ZMax(r,t))*

LPGrade(r,s,c,t)-LPMin(r,s,c,t)*(YLP(r,s,t)+ZM

ax(r,t)); } }

Variable ZGxUToBulk {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint ZGxUToBulkConvex1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxUToBulk(r,s,c,t)>=LPMax(r,s,c,t)*uToBulk(r,

s,t)+PortBulkOutTotalRates(r,t)*ZG(r,s,c,t)-LP

Max(r,s,c,t)*PortBulkOutTotalRates(r,t); } }

Constraint ZGxUToBulkConvex2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxUToBulk(r,s,c,t)>=LPMin(r,s,c,t)*uToBulk(r,

s,t); } }

Constraint ZGxUToBulkConcave1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {
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ZGxUToBulk(r,s,c,t)<=LPMin(r,s,c,t)*uToBulk(r,

s,t)+PortBulkOutTotalRates(r,t)*ZG(r,s,c,t)-LP

Min(r,s,c,t)*PortBulkOutTotalRates(r,t); } }

Constraint ZGxUToBulkConcave2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxUToBulk(r,s,c,t)<=LPMax(r,s,c,t)*uToBulk(r,

s,t); } }

Variable BPxV {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative;

Definition: {

IF t=FirstPeriod THEN BPInitial(r,s,c)*vInitia

l(r,s)-BPxUFromBulk(r,s,c,t)+ZGxUToBulk(r,s,c,

t) ELSE BPxV(r,s,c,t-1)-BPxUFromBulk(r,s,c,t)+

ZGxUToBulk(r,s,c,t) ENDIF; } }

Constraint BPxVConvex1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

BPxV(r,s,c,t)>=BPMax(r,s,c,t)*vLevel(r,s,t)+VM

ax(r,s,t)*BPGrade(r,s,c,t)-BPMax(r,s,c,t)*VMax

(r,s,t); } }

Constraint BPxVConvex2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

BPxV(r,s,c,t)>=BPMin(r,s,c,t)*vLevel(r,s,t);}}

Constraint BPxVConcave1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

BPxV(r,s,c,t)<=BPMin(r,s,c,t)*vLevel(r,s,t)+VM

ax(r,s,t)*BPGrade(r,s,c,t)-BPMin(r,s,c,t)*VMax

(r,s,t); } }

Constraint BPxVConcave2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

BPxV(r,s,c,t)<=BPMax(r,s,c,t)*vLevel(r,s,t);}}

Variable BPxUFromBulk {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint BPxUFromBulkConvex1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);
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Definition: {

BPxUFromBulk(r,s,c,t)>=BPMax(r,s,c,t)*uFromBul

k(r,s,t)+PortBulkInTotalRates(r,t)*BPGrade(r,s

,c,t)-BPMax(r,s,c,t)*PortBulkInTotalRates(r,t)

; } }

Constraint BPxUFromBulkConvex2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

BPxUFromBulk(r,s,c,t)>=BPMin(r,s,c,t)*uFromBul

k(r,s,t); } }

Constraint BPxUFromBulkConcave1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

BPxUFromBulk(r,s,c,t)<=BPMin(r,s,c,t)*uFromBul

k(r,s,t)+PortBulkInTotalRates(r,t)*BPGrade(r,s

,c,t)-BPMin(r,s,c,t)*PortBulkInTotalRates(r,t)

; } }

Constraint BPxUFromBulkConcave2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

BPxUFromBulk(r,s,c,t)<=BPMax(r,s,c,t)*uFromBul

k(r,s,t); } }

Variable ZGxZ {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint ZGxZConvex1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxZ(r,s,c,t)>=ZMax(r,t)*ZG(r,s,c,t)+LPMax(r,s

,c,t)*zPlusRF(r,s,t)*(1-PercentLump(r,s,t))-ZM

ax(r,t)*LPMax(r,s,c,t); } }

Constraint ZGxZConvex2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxZ(r,s,c,t)>=LPMin(r,s,c,t)*zPlusRF(r,s,t)*(

1-PercentLump(r,s,t)); } }

Constraint ZGxZConcave1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxZ(r,s,c,t)<=ZMax(r,t)*ZG(r,s,c,t)+LPMin(r,s

,c,t)*zPlusRF(r,s,t)*(1-PercentLump(r,s,t))-ZM
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ax(r,t)*LPMin(r,s,c,t); } }

Constraint ZGxZConcave2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxZ(r,s,c,t)<=LPMax(r,s,c,t)*zPlusRF(r,s,t)*(

1-PercentLump(r,s,t)); } }

Variable LPxZLump {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint LPxZLumpConvex1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxZLump(r,s,c,t)>=PercentLump(r,s,t)*ZMax(r,t

)*LPGrade(r,s,c,t)+LPMax(r,s,c,t)*PercentLump(

r,s,t)*zPlusRF(r,s,t)-PercentLump(r,s,t)*ZMax(

r,t)*LPMax(r,s,c,t); } }

Constraint LPxZLumpConvex2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxZLump(r,s,c,t)>=LPMin(r,s,c,t)*PercentLump(

r,s,t)*zPlusRF(r,s,t); } }

Constraint LPxZLumpConcave1 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxZLump(r,s,c,t)<=PercentLump(r,s,t)*ZMax(r,t

)*LPGrade(r,s,c,t)+LPMin(r,s,c,t)*PercentLump(

r,s,t)*zPlusRF(r,s,t)-PercentLump(r,s,t)*ZMax(

r,t)*LPMin(r,s,c,t); } }

Constraint LPxZLumpConcave2 {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPxZLump(r,s,c,t)<=LPMax(r,s,c,t)*PercentLump(

r,s,t)*zPlusRF(r,s,t); } }

}

DeclarationSection Grade_Deviations {

Parameter TG {

IndexDomain: (s,c,t); }

Parameter GradeTolerance {

IndexDomain: (s,c); }

Variable SI {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);
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Range: nonnegative; }

Variable EI {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint GradeDeviationsMin {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

(TG(s,c,t)-GradeTolerance(s,c))*zPlusRF(r,s,t)

*(1-PercentLump(r,s,t))-SI(r,s,c,t)<=ZGxZ(r,s,

c,t); } }

Constraint GradeDeviationsMax {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZGxZ(r,s,c,t)<=(TG(s,c,t)+GradeTolerance(s,c))

*zPlusRF(r,s,t)*(1-PercentLump(r,s,t))+EI(r,s,

c,t); } }

}

DeclarationSection SLP_Grade_Constraints {

Constraint SLPMineLiveGrades {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN LMGrade(m,p,c,t)*OT_sLev

el(m,p,t)=LMInitial(m,p,c)*sInitial(m,p)-LMGra

de(m,p,c,t)*OT_MineBulkOut(m,p,t)+IOP(m,p,t)*I

OPGrade(m,p,c,t)+BMGrade(m,p,c,t)*OT_MineBulkI

n(m,p,t)-sum((f,d,s),RGrade(m,p,c,t)*TS(m,f,p,

t)*OT_x(m,f,p,d,s,t))

ELSE LMGrade(m,p,c,t)*OT_sLevel(m,p,t)=LMGrade

(m,p,c,t-1)*OT_sLevel(m,p,t-1)-LMGrade(m,p,c,t

)*OT_MineBulkOut(m,p,t)+IOP(m,p,t)*IOPGrade(m,

p,c,t)+BMGrade(m,p,c,t)*OT_MineBulkIn(m,p,t)-s

um((f,d,s),RGrade(m,p,c,t)*TS(m,f,p,t)*OT_x(m,

f,p,d,s,t)) ENDIF; } }

Constraint SLPMineBulkGrades {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN BMGrade(m,p,c,t)*OT_bLev

el(m,p,t)=BMInitial(m,p,c)*bInitial(m,p)-BMGra

de(m,p,c,t)*OT_MineBulkIn(m,p,t)+LMGrade(m,p,c

,t)*OT_MineBulkOut(m,p,t)

ELSE BMGrade(m,p,c,t)*OT_bLevel(m,p,t)=BMGrade
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(m,p,c,t-1)*OT_bLevel(m,p,t-1)-BMGrade(m,p,c,t

)*OT_MineBulkIn(m,p,t)+LMGrade(m,p,c,t)*OT_Min

eBulkOut(m,p,t) ENDIF; } }

Constraint SLPRailedGrades {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF t=FirstPeriod THEN sum((f,d,s),RGrade(m,p,c

,t)*TS(m,f,p,t)*OT_x(m,f,p,d,s,t))=SLP_RFromIO

P(m,p,t)*IOPGrade(m,p,c,t)+LMInitial(m,p,c)*SL

P_RFromL(m,p,t)+BMinitial(m,p,c)*SLP_RFromB(m,

p,t)

ELSE sum((f,d,s),RGrade(m,p,c,t)*TS(m,f,p,t)*O

T_x(m,f,p,d,s,t))=SLP_RFromIOP(m,p,t)*IOPGrade

(m,p,c,t)+LMGrade(m,p,c,t-1)*SLP_RFromL(m,p,t)

+BMGrade(m,p,c,t-1)*SLP_RFromB(m,p,t) ENDIF;}}

Constraint SLPPortLiveGrades {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF t=FirstPeriod THEN ZG(r,s,c,t)*OT_wBeforeZ(

r,s,t)=LPInitial(r,s,c)*wInitial(r,s)-ZG(r,s,c

,t)*OT_PortBulkOut(r,s,t)+BPGrade(r,s,c,t)*OT_

PortBulkIn(r,s,t)+sum((m,f,p,d in PortToDumper

s(r)),RGrade(m,p,c,t)*TS(m,f,p,t)*OT_x(m,f,p,d

,s,t))

ELSE ZG(r,s,c,t)*OT_wBeforeZ(r,s,t)=LPGrade(r,

s,c,t-1)*OT_wLevel(r,s,t-1)-ZG(r,s,c,t)*OT_Por

tBulkOut(r,s,t)+BPGrade(r,s,c,t)*OT_PortBulkIn

(r,s,t)+sum((m,f,p,d in PortToDumpers(r)),RGra

de(m,p,c,t)*TS(m,f,p,t)*OT_x(m,f,p,d,s,t))

ENDIF; } }

Constraint SLPPortLiveGradesForFines {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPGrade(r,s,c,t)*OT_wBeforeZPlusLump(r,s,t)=ZG

(r,s,c,t)*OT_wBeforeZ(r,s,t)+sum(ss in LumpToF

inePairs(s),LPGrade(r,ss,c,t)*PercentLump(r,ss

,t)*OT_zPlusRF(r,ss,t)); } }

Constraint SLPPortBulkGrades {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF t=FirstPeriod THEN BPGrade(r,s,c,t)*OT_vLev
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el(r,s,t)=BPInitial(r,s,c)*vInitial(r,s)-BPGra

de(r,s,c,t)*OT_PortBulkIn(r,s,t)+ZG(r,s,c,t)*O

T_PortBulkOut(r,s,t)

ELSE BPGrade(r,s,c,t)*OT_vLevel(r,s,t)=BPGrade

(r,s,c,t-1)*OT_vLevel(r,s,t-1)-BPGrade(r,s,c,t

)*OT_PortBulkIn(r,s,t)+ZG(r,s,c,t)*OT_PortBulk

Out(r,s,t) ENDIF; }

Constraint SLPGradeDeviationsMin {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

(TG(s,c,t)-GradeTolerance(s,c))*OT_zLevel(r,s,

t)-SI(r,s,c,t)<=ZG(r,s,c,t)*OT_zLevel(r,s,t);

} }

Constraint SLPGradeDeviationsMax {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

ZG(r,s,c,t)*OT_zLevel(r,s,t)<=(TG(s,c,t)+Grade

Tolerance(s,c))*OT_zLevel(r,s,t)+EI(r,s,c,t);

} }

}

DeclarationSection Mine_Output_Variables {

Parameter OT_sLevel {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

sLevel(m,p,t); } }

Parameter OT_bLevel {

IndexDomain: (m,p,t)|p in MineToProducts(m);

Definition: {

bLevel(m,p,t); } }

Parameter OT_MineBulkIn {

IndexDomain: (m,p,t);

Definition: {

yFromBulk(m,p,t); } }

Parameter OT_MineBulkOut {

IndexDomain: (m,p,t);

Definition: {

yToBulk(m,p,t); } }

}

DeclarationSection Port_Output_Variables {

Parameter OT_wLevel {

IndexDomain: (r,s,t)|s in PortToProducts(r);
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Definition: {

wLevel(r,s,t); } }

Parameter OT_wBeforeZ {

IndexDomain: (r,s,t);

Definition: {

wBeforeZ(r,s,t); } }

Parameter OT_wBeforeZPlusLump {

IndexDomain: (r,s,t);

Definition: {

wBeforeZPlusLump(r,s,t); } }

Parameter OT_vLevel {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Definition: {

vLevel(r,s,t); } }

Parameter OT_PortBulkIn {

IndexDomain: (r,s,t);

Definition: {

uFromBulk(r,s,t); } }

Parameter OT_PortBulkOut {

IndexDomain: (r,s,t);

Definition: {

uToBulk(r,s,t); } }

Parameter OT_zLevel {

IndexDomain: (r,s,t)|s in PortToProducts(r);

Definition: {

zPlusRF(r,s,t)*(1-PercentLump(r,s,t)); } }

Parameter OT_zPlusRF {

IndexDomain: (r,s,t);

Definition: {

zPlusRF(r,s,t); } }

Parameter OT_ReturnFines {

IndexDomain: (r,s,t);

Definition: {

PercentLump(r,s,t)*OT_zPlusRF(r,s,t); } }

}

DeclarationSection Rail_Output_Variables {

Parameter OT_x {

IndexDomain: (m,f,p,d,s,t)|p in MineToProducts(m)

and s in MinePortToProducts(m,p) and d in Mine

ToDumpers(m,p);

Definition: {
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x(m,f,p,d,s,t); } }

Parameter OT_RFromIOP {

IndexDomain: (m,p,t);

Definition: {

RFromIOP(m,p,t); } }

Parameter OT_RFromL {

IndexDomain: (m,p,t);

Definition: {

RFromL(m,p,t); } }

Parameter OT_RFromB {

IndexDomain: (m,p,t);

Definition: {

RFromB(m,p,t); } }

}

DeclarationSection Grade_Output_Variables {

Parameter OT_LMGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

LMGrade(m,p,c,t); } }

Parameter OT_sGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF OT_sLevel(m,p,t)=0 THEN 0 ELSE RealLM(m,p,c

,t) ENDIF; } }

Parameter OT_MineBulkOutGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF OT_MineBulkOut(m,p,t)=0 THEN 0 ELSE RealLM(

m,p,c,t) ENDIF; } }

Parameter OT_BMGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

BMGrade(m,p,c,t); } }

Parameter OT_bGrade {

IndexDomain: (m,p,c,t);

Definition: {

RealBM(m,p,c,t); } }

Parameter OT_MineBulkInGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF OT_MineBulkIn(m,p,t)=0 THEN 0 ELSE RealBM(m
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,p,c,t) ENDIF; } }

Parameter OT_LPGrade {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

LPGrade(r,s,c,t); } }

Parameter OT_wGrade {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF OT_wLevel(r,s,t)=0 THEN 0 ELSE RealLP(r,s,c

,t) ENDIF; } }

Parameter OT_PortBulkOutGrade {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF OT_PortBulkOut(r,s,t)=0 THEN 0 ELSE RealLP(

r,s,c,t) ENDIF; } }

Parameter OT_BPGrade {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

BPGrade(r,s,c,t); } }

Parameter OT_vGrade {

IndexDomain: (r,s,c,t);

Definition: {

RealBP(r,s,c,t); } }

Parameter OT_PortBulkInGrade {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF OT_PortBulkIn(r,s,t)=0 THEN 0 ELSE RealBP(r

,s,c,t) ENDIF; } }

Parameter OT_RGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

RGrade(m,p,c,t); } }

Parameter OT_xGrade {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Definition: {

IF sum((f,d,s),OT_x(m,f,p,d,s,t))=0 THEN 0

ELSE RealRG(m,p,c,t) ENDIF; } }

Parameter OT_zGrade {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

RealZG(r,s,c,t); } }
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Parameter OT_GradeDev {

IndexDomain: (r,s,c,t);

Definition: {

IF OT_zLevel(r,s,t)=0 THEN 0 ELSE TG(s,c,t)-OT

_zGrade(r,s,c,t) ENDIF; } }

Parameter OT_ZGxZ {

IndexDomain: (r,s,c,t);

Definition: {

ZGxZ(r,s,c,t); } }

}

DeclarationSection Objective_Function_Output {

Parameter OT_GradeDeviationsPenalty {

Definition: {

GradeDeviationsPenalty ; } }

}

DeclarationSection Real_Grades {

Variable RealLM {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: free; }

Constraint LMConstraint {

IndexDomain: (m,p,c,t);

Definition: {

IF t=FirstPeriod THEN RealLM(m,p,c,t)*OT_sLeve

l(m,p,t)=LMInitial(m,p,c)*sInitial(m,p)-RealLM

(m,p,c,t)*OT_MineBulkOut(m,p,t)+IOP(m,p,t)*IOP

Grade(m,p,c,t)+RealBM(m,p,c,t)*OT_MineBulkIn(m

,p,t)-sum((f,d,s),RealRG(m,p,c,t)*TS(m,f,p,t)*

OT_x(m,f,p,d,s,t))

ELSE RealLM(m,p,c,t)*OT_sLevel(m,p,t)=RealLM(m

,p,c,t-1)*OT_sLevel(m,p,t-1)-RealLM(m,p,c,t)*O

T_MineBulkOut(m,p,t)+IOP(m,p,t)*IOPGrade(m,p,c

,t)+RealBM(m,p,c,t)*OT_MineBulkIn(m,p,t)-sum((

f,d,s),RealRG(m,p,c,t)*TS(m,f,p,t)*OT_x(m,f,p,

d,s,t)) ENDIF; }

Variable RealBM {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: free; }

Constraint BMConstraint {

IndexDomain: (m,p,c,t);

Definition: {

IF t=FirstPeriod THEN RealBM(m,p,c,t)*OT_bLeve
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l(m,p,t)=BMInitial(m,p,c)*bInitial(m,p)-RealBM

(m,p,c,t)*OT_MineBulkIn(m,p,t)+RealLM(m,p,c,t)

*OT_MineBulkOut(m,p,t)

ELSE RealBM(m,p,c,t)*OT_bLevel(m,p,t)=RealBM(m

,p,c,t-1)*OT_bLevel(m,p,t-1)-RealBM(m,p,c,t)*O

T_MineBulkIn(m,p,t)+RealLM(m,p,c,t)*OT_MineBul

kOut(m,p,t) ENDIF; } }

Variable RealRG {

IndexDomain: (m,p,c,t)|p in MineToProducts(m);

Range: free; }

Constraint RGConstraint {

IndexDomain: (m,p,c,t);

Definition: {

IF t=FirstPeriod THEN sum((f,d,s),RealRG(m,p,c

,t)*TS(m,f,p,t)*OT_x(m,f,p,d,s,t))=OT_RFromIOP

(m,p,t)*IOPGrade(m,p,c,t)+LMInitial(m,p,c)*OT_

RFromL(m,p,t)+BMinitial(m,p,c)*OT_RFromB(m,p,t

) ELSE sum((f,d,s),RealRG(m,p,c,t)*TS(m,f,p,t)

*OT_x(m,f,p,d,s,t))=OT_RFromIOP(m,p,t)*IOPGrad

e(m,p,c,t)+RealLM(m,p,c,t-1)*OT_RFromL(m,p,t)+

RealBM(m,p,c,t-1)*OT_RFromB(m,p,t) ENDIF; } }

Variable RealLP {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: free;

Definition: {

IF s in LumpProducts THEN RealZG(r,s,c,t)

ELSE RealLP(r,s,c,t) ENDIF; } }

Constraint LPConstraint {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

RealLP(r,s,c,t)*OT_wBeforeZPlusLump(r,s,t)=Rea

lZG(r,s,c,t)*OT_wBeforeZ(r,s,t)+sum(ss in Lump

ToFinePairs(s),RealLP(r,ss,c,t)*PercentLump(r,

ss,t)*OT_zPlusRF(r,ss,t)); } }

Variable RealBP {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: free; }

Constraint BPConstraint {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF t=FirstPeriod THEN RealBP(r,s,c,t)*OT_vLeve
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l(r,s,t)=BPInitial(r,s,c)*vInitial(r,s)-RealBP

(r,s,c,t)*OT_PortBulkIn(r,s,t)+RealZG(r,s,c,t)

*OT_PortBulkOut(r,s,t)

ELSE RealBP(r,s,c,t)*OT_vLevel(r,s,t)=RealBP(r

,s,c,t-1)*OT_vLevel(r,s,t-1)-RealBP(r,s,c,t)*O

T_PortBulkIn(r,s,t)+RealZG(r,s,c,t)*OT_PortBul

kOut(r,s,t) ENDIF; } }

Variable RealZG {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: free; }

Constraint ZGConstraint {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

IF t=FirstPeriod THEN RealZG(r,s,c,t)*OT_wBefo

reZ(r,s,t)=LPInitial(r,s,c)*wInitial(r,s)-Real

ZG(r,s,c,t)*OT_PortBulkOut(r,s,t)+RealBP(r,s,c

,t)*OT_PortBulkIn(r,s,t)+sum((m,f,p,d in PortT

oDumpers(r)),RealRG(m,p,c,t)*TS(m,f,p,t)*OT_x(

m,f,p,d,s,t))

ELSE RealZG(r,s,c,t)*OT_wBeforeZ(r,s,t)=RealLP

(r,s,c,t-1)*OT_wLevel(r,s,t-1)-RealZG(r,s,c,t)

*OT_PortBulkOut(r,s,t)+RealBP(r,s,c,t)*OT_Port

BulkIn(r,s,t)+sum((m,f,p,d in PortToDumpers(r)

),RealRG(m,p,c,t)*TS(m,f,p,t)*OT_x(m,f,p,d,s,t

)) ENDIF; } }

Variable RealSI {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint RealGradeDevMin {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

(TG(s,c,t)-GradeTolerance(s,c))*OT_zLevel(r,s,

t)-RealSI(r,s,c,t)<=RealZG(r,s,c,t)*OT_zLevel(

r,s,t); } }

Variable RealEI {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Range: nonnegative; }

Constraint RealGradeDevMax {

IndexDomain: (r,s,c,t)|s in PortToProducts(r);

Definition: {

RealZG(r,s,c,t)*OT_zLevel(r,s,t)<=(TG(s,c,t)+
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GradeTolerance(s,c))*OT_zLevel(r,s,t)+RealEI(r

,s,c,t); } }

Variable RealGradePenalty {

Range: free;

Definition: {

sum((r,s,c,t)|s in PortToProducts(r),GPI(s,c)*

(RealEI(r,s,c,t)+RealSI(r,s,c,t))); } }

Parameter OT_RealGradePenalty {

Definition: {

RealGradePenalty; } }

Parameter RealProfit {

Definition: {

Profit-RealGradePenalty+OT_GradeDeviationsPen

alty; } }

}

Procedure MainInitialization;

Procedure M0_WithoutGrades {

Body: {

solve Model_WithoutGrades where MIP_Relative_Optim

ality_Tolerance:=(relative_optimality_gap);; } }

Procedure M1_WithoutGradesNoInteger {

Body: {

solve Model1_WithoutGradesNoInteger where MIP_Rela

tive_Optimality_Tolerance:=(relative_optimality_ga

p);; } }

Procedure M1_WithGradesNoInteger {

Body: {

solve Model1_WithGradesNoInteger where MIP_Relativ

e_Optimality_Tolerance:=(relative_optimality_gap);

; } }

Procedure M1_WithGrades {

Body: {

solve Model1_WithGrades where MIP_Relative_Optimal

ity_Tolerance:=(relative_optimality_gap);; } }

Procedure M2_WithGrades1 {

Body: {

solve Model2_WithGrades1 where MIP_Relative_Optima

lity_Tolerance:=(relative_optimality_gap);; } }

Procedure M2_WithGrades2 {

Body: {
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solve Model2_WithGrades2 where MIP_Relative_Optima

lity_Tolerance:=(relative_optimality_gap);; } }

Procedure MainTermination {

Body: {

return DataManagementExit(); } }

}
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book keeping, 33, 44

car dumper, 8
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concave overestimator, 82
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convex envelope, 83
convex relaxation, 82
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heuristic, 25

integer programming, 10
intermodal freight, 17
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iterative method, 67

linear programming, 10

Mine of the Future�, 3
mines, 5
mixed integer programming, 10

multi-stage, 30, 67

non-linear programming, 10

open-pit, 10
open-pit mine design, 16
overburden, 16

pooling, 18
ports, 7

rail, 7
re-screening, 35
resource development, 3
return fines, 35

sliding time window, 23, 25
stockpile, 32

train routing, 17
train scheduling, 17

ultimate pit limit, 16

windrow, 9

209


