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Abstract 

Total organic carbon (TOC) estimation is significantly crucial for shale reservoir 

characterization. Traditional TOC estimation methods (such as Passey and Schmoker 

method) do not provide accurate TOC predictions in shale gas reservoirs especially 

for the self-generated and self-stored reservoirs. This study proposes, for the first time, 

a new TOC prediction method based on Gaussian Process Regression (GPR) bridging 

geostatistics and machine learning technique. The method utilizes a non-parametric 

regression approach in shale TOC predictions, and not only provides the expert 

solutions in high-dimension processing, small samples and non-linear problems, but 

also has a better adaptation and generalization ability compared with other machine 

learning methods. The approach accounts for all the well logging attributes and 

chooses the relevant logs to build TOC estimation model, and 7 different kernel 

functions and 5 attributes groups are analyzed to get the optimized hyperparameters in 

practice. Application of the developed model to two shale gas reservoirs showed that 

the model predicted TOC matched well with that from the laboratory measurements. 

The proposed model based on GPR method provides an accurate way for the TOC 

prediction in the tight shale gas reservoirs. 

 

 

 

Key words: Total organic carbon; Gaussian Process Regression; shale gas; wireline 

logs; machine learning. 
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1. Introduction 

Tight shale gas/oil has gained massive attention all over the world in the past decades 

as supplement energy in the energy shortages (Jarvie 2012, Jarvie et al. 2007). Total 

Organic Carbon (TOC) is one of the crucial parameters in shale gas reservoir 

assessments and is also regarded as one of the key variables that directly influences 

the rock quality, hydraulic fracturing design, and shale gas-in-place estimations 

(Passey et al. 2010, Sondergeld et al. 2010). As a part of the rock matrix, organic 

matter also strongly affects the geomechanical properties of shales (Altowairqi et al. 

2015). In addition, organic carbon content and maturity are important factors 

impacting organic porosity, and controlling the absorbed gas in the shale gas 

reservoirs (most of the absorbed gas is occurred on organic matter) (Montgomery et al. 

2005, Ross and Bustin 2007). Moreover, TOC controls the micro structure, texture, 

porosity, permeability and wettability of the shale reservoirs (Altowairqi et al. 2015, 

Sondergeld et al. 2010, Sone and Zoback 2013, Zhang et al. 2012). Thus, a reliable 

method for the characterization of shale organic matter and for the accurate prediction 

of TOC is crucial for hydrocarbon exploration and production from these 

unconventional reservoirs (Ding et al. 2015, Wang et al. 2016).  

 

Generally, the presence of organic matter could be identified from well logging and 

several methods have been proposed in the former study for TOC calculation. For 

instance, Schmoker and Hester (1983) established a model which calculates TOC 

using the reciprocal of bulk density. Although the method requires small amount of 

input data, it may not work well in the situations when the bulk density is affected by 

reservoir/geological parameters (Schmoker 1979, Schmoker and Hester 1983). Passey 

et al. (1990) proposed a TOC estimation model based on porosity logs (e.g. sonic, 

neutron and density) and resistivity log (Passey et al. 1990). This method is relatively 

universal and can be used once the representative baselines for the logs are properly 

defined. However, the associated shortcoming is that the log-baseline may 

significantly vary from well-to-well and also across the formations and different 
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depositional environments. Fortunately, such limitations nowadays could be overcome 

by machine learning approaches. The Machine learning approach, such as Neural 

Network method has been applied for shale TOC estimation (Alizadeh et al. 2012, 

Khoshnoodkia et al. 2011, Tan et al. 2015).  The method utilizes laboratory 

measurement of shale organic matter, and combines the measured TOC with well logs, 

followed by the data calibration for machine learning. Recently, Tan et al. (2015) used 

Support Vector Regression Machine approach to estimate TOC in various organic 

shales using a variety of Kernel Functions. However, Neural Network ignores the 

generalization and always results in overfitting. Moreover, the possible functions of 

prior probability of Support Vector Regression Machine are an unlimited dataset, 

which will cost long time for training and calculating.  

 

Thus, in this paper we propose a new method based on Gaussian Process Regression 

(GPR), which utilizes a non-parametric regression approach in shale TOC predictions. 

Such method can provide expert solutions in high-dimension processing, small 

samples, and non-linear problems, and has a better adaptation and generalization 

ability. We first developed a workflow for the GPR to estimate TOC. In order to find 

the best way to estimate TOC, we tested a total of 7 kernel functions for 5 attribute 

groups to obtain the optimized function and attributes in the machine training. The 

method was then applied to predicting TOC in two different shale gas reservoirs (one 

with high TOC shale from Ordos basin, China; and the other with low TOC shale 

from Canning Basin, Western Australia). The obtained TOC was finally compared 

with the results from the traditional methods to show the effectiveness of our present 

method. 
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2. Background 

2.1. The traditional TOC estimation methods 

2.1.1. Schmoker’s method  

Schmoker and Hester (1983) proposed that TOC has a positive linear correlation with 

the reciprocal of bulk density (Schmoker 1979, Schmoker and Hester 1983):  

1
( )TOC A B


                                                     (1) 

The values of A and B are calculated based on the organic matter density, matrix 

density and the ratio of weight percentages of organic matter to organic carbon. Hence, 

equation (1) is simplified as: 

1
(154.497 ) 57.261TOC


                                            (2) 

 

2.1.2. Modified Schmoker’s method  

The constants A and B in the traditional Schmoker’s method (equation 1) are 

sometimes not suitable for some basins. Therefore, the constants are usually obtained 

from the linear regression of TOC test and density log, with the equation given as: 

1
( * ) *TOC A B


                                                   (3) 

 

2.1.3. Passey’s method   

Passey et al (1990) developed a practical method which uses the overplaying of sonic 

logs and deep resistivity log in a proper scale. They suggested the logs should be 

overlain in the water-saturated and organic lean interval, and this overlain is defined 

as the baseline. If the organic matter is present, a separation from the two curves will 

be observed. Thus, the separation can be calculated as follows: 

   log R 0.02 -baseline baselineD lg RD RD Δt Δt                             (4) 

Then, TOC can be calculated using the equation below: 

2.297-0.1688log 10 LOMTOC D R                                          (5) 
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Where, RD is the deep resistivity of rock and RDbaseline is the deep resistivity of 

baseline, Ω.m; and △t, △tbaseline is the transit time of rock and baseline respectively, 

us/m; LOM is the level of organic maturity. 

 

2.2. Gaussian Process Regression (GPR) method 

2.2.1. Principle 

The Machine learning tools are now popular in the petroleum exploration and 

production (Ahmadi et al. 2014, Al-Anazi and Gates 2010, Hasebe and Nagayama 

2002, Kuo et al. 2007, Lukoševičius and Jaeger 2009, Rasmussen 2006, Witten and 

Frank 2005). The Machine learning method can be based on either of the two possible 

processes (Chen et al. 2005, Hammen 2003, Kotsiantis et al. 2007, Michalski et al. 

2013): (1) Parametric regression, which is based on the determination of a suitable set 

of parameters that can show the mapping (like Polynomial Regression and Neural 

Network), and (2) the Bayesian Regression, which defines one function distribution 

and gives a prior probability to each possible function to compensate for the first 

approach that ignores the generalization and thus results in overfitting. However, 

these possible functions in Bayesian Regression are an unlimited dataset, e.g. the 

infinite possible functions lead to a new question – how to select the possible function 

in a limited time? For the functions selection in such unlimited dataset, GPR is the 

best choice (Rasmussen, 2006; Silversides and Melkumyan, 2016).  

 

Gaussian Process (GP) theory is well established for predictions in various research 

areas including reservoir engineering (Silversides and Melkumyan 2016), electric 

engineering (Yuan et al., 2008), and Spectroscopic (Chen et al. 2007). GP is very 

powerful and leverages on many convenient properties of the Gaussian distribution to 

enable tractable inference. Gaussian Process Regression (GPR) is a professional 

regression method in processing high-dimension, small samples, and non-linear 

problems (Dudley 2010). Compared to Neural Network and Support Vector Machine, 

GPR is simple to implement, and is flexible and fully probabilistic using 
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hyperparameters, and hence, has higher adaptation and generalization ability (Bonilla 

et al. 2008, Datta et al. 2016, Lawrence 2004, Tonner et al. 2017, Wang et al. 2008).  

 

Mathematically, GPR is a collection of random variables. Any finite number of 

variables have a joint Gaussian distribution. GPR is completely specified by a mean 

function and a positive definite covariance function (Paciorek and Schervish 2004).  

 

For a given set of inputs:   ,  ,  1,  2,  ,i iD x y i n   , d

ix R  and iy R .  

The mean function is given by:  

 ( ) ( )m x E f x                                                      (6) 

The covariance function is given by:  

' ' '( , ) ( ( ) ( ))( ( ) ( ))k x x E f x m x f x m x      where 
', dx x R                  (7) 

We need to predict *( )f x  for the test data *x , first, the process is defined as: 

'( ) ~ ( ), ( , )f x GP m x k x x                                                (8) 

For the regression problem, the model is as follows: 

( )y f x                                                           (9) 

Once hypothesized that the noise 
2~ (0, )noiseN   where, 2

noise  is the variance of the 

noise. 

As distribution, we defined   and  , 

( )i im x                                                           (10)

( , )ij i jk x x                                                        (11) 

Hence, we get priori distribution of observed value y as: 

 2~ ,y N I                                                    (12) 

Where, I is the identify matrix. 

And the combination priori distribution of noisy y and predicted *( )f x  is: 
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2

*

( )
~ ,

y I
N

f








 

       
         

                                      (13) 

Where: ( )im x  , i=1, 2, ... , n for the training means;  , the test means; Σ, the 

covariances for training set; Σ∗, training-test set covariances; Σ∗∗, test set covariances.  

 

Then the Posteriori Distribution of predicted value *( )f x  is obtained as follows: 

 1 2 2 1

* *| ~ ( )( ), ( )f y N I y I      

                             (14) 

* , *  is the mean and covariance of *( )f x .All above equations are the main 

equations for Gaussian Process Regression prediction.  

 

2.2.2. Kernel Function Selection 

GPR is parameterized by a mean function and a Kernel (covariance) Function. The 

Kernel Functions are powerful tools which control the algorithm of GPR’s accuracy. 

They provide a bridge to manipulate data as though they are projected into a higher 

dimensional space, instead of operating on their original space (Mierswa and Morik 

2005). The function transfers from linearity to non-linearity for algorithms which can 

be expressed in terms of dot products between two vectors (Sahami and Heilman 

2006). Some sets of data hardly build regression in the lower dimensional space with 

linear algorithm (Figure 1a), while, it is very easy to build regression model in the 

higher dimensional space with non-linear algorithm (Figure 1b). Hence, Kernel 

functions make the regression more efficient during the model building. 

 

 

Figure 1. Schematic of the kernel functions: (a) Original space; (b) Projected space 

(higher dimensional). 
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3. Material and Methodology 

3.1. Characteristics of the shale formations used 

Two shale formations were considered for TOC estimation in this work: 1) High TOC 

content (4 wt% to 10 wt%, average is 6 wt%) shale gas reservoir in Yanchang 

Formation of Ordos Basin at northwest of China (see Figure 2a), and 2) Low TOC 

(0.1 wt% to 4 wt%, average is 0.7 wt%) shale gas reservoir of Goldwyer Formation of 

Canning Basin in Western Australia (see Figure 2b). The locations of the basins are 

marked in the dotted rectangle in Figure 2. These two shale gas reservoirs are 

significantly different in organic matter characteristic showing decent range of TOC 

variation (Figure 3). The important geological features of the two formations are 

described in Table 1. 
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Figure 2. Research area location map: (a) Ordos Basin China (high TOC shale 

formation); (b) Canning Basin, Western Australia (low TOC shale formation)  

 

Table 1. Geological features of the two shale formations considered. 

Feature Yanchang Formation, 

China 

Goldwyer Formation, 

WA 

Basin name Ordos basin Canning basin 

Deposit environment Deep lake or Semi-Deep shallow marine and 
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lake subtidal 

System Triassic Ordovician 

Biological 

reproduction 

High Fair 

Organic matter content Organic rich Low to fair 
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Figure 3. Stratigraphy for the research areas: (a) Ordos basin shale with TOC (wt %); 

(b) Canning basin shale with TOC (wt %). 

 

3.2. Gaussian Process Regression flow chart  

We developed a work flow for Gaussian Process Regression, involving six basic steps 

as shown in Figure 4.  

 

Samples 

data

Feature

Weights
Model

Performance

Measurement

Select by 

Weights

Modeling: X-

Validation

Gaussian Process 

Regerssion

 

Figure 4. Gaussian Process Regression flow chart. 

 

(1) The first step is the data collection which includes the well-log responses and TOC 
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pyrolysis experiment data. 

 

(2) The next step, seen as ‘Feature Weights’, computes the weights of the wireline 

logs relative to the core derived TOC – based on the weighting algorithms. The 

quality of features has a significant impact on the performance of a learning algorithm 

for the regression tasks. For Machine learning, adding, cutting or exchanging 

unlabeled (regular) attributes will alter the structure of the dataset (Miller 2002). The 

accuracy can be reduced if there are irrelevant or redundant features in the training 

dataset. Hence, different subsets will establish different models. We select 4 types of 

feature weighting algorithms including: Correlation, Support Vector Machine (SVM), 

Principal Component Analysis (PCA), and Deviation weighting algorithm in order to 

get a more accurate subset.  

 

(3) Next, we select the relevant attributes using the cut-threshold (set as 0.1) in the 

weights ranking which is calculated in step 2 for future regression. I. e., if the weight 

of the attribute is higher than 0.1, then this attribute will be selected in the regression 

modeling.  

 

(4) The fourth step is ‘modeling’ where GPR is building model and X-validation is 

used to train and test the model. X-validation (cross-validation), which is a model 

evaluation method, is also important during the modeling (Picard and Cook, 1984). 

Without using X-validation, the model would have a perfect score with the training 

data but would fail to predict other data which it hasn’t seen before. For validation, 

the newest and most common approach is “Leave-One-Out Cross Validation (LOO 

CV)” which is a special case of k-fold cross validation (Rodriguez et al. 2010, Triba et 

al. 2015). LOO CV uses all the samples except the one in creating the model, and the 

remaining one is employed for testing. For a ‘n points’ dataset, each of the data should 

be used to test the performance of the learned model on the new data once (Figure 5). 

Then, n different training sets are generated. Thus, the GPR learner can learn n times 

from different type of datasets to correct the regression models.  
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(5) ‘Performance Measurement’ tests the accuracy and error of the model. 

 

(6) In the final step ‘model formation’, the model is established. 

 

 

Figure 5. Schematic of Leave-one-out cross-validation. 

 

Usually, different Kernel functions provide different transferred ways from low 

dimensional space to high dimensional space. Also, the distribution of different class 

samples is different; therefore it is uncertain to use a single scale kernel function for 

all samples. The performance of kernel method will be improved by selecting 

different scale kernel functions based on the sample features. In this study, a number 

of 7 Kernel functions (as shown in Table 2) were chosen in order to get a more 

accurate model. These Kernel functions are major functions for continuous target 

data. 

 

Table 2. Kernel functions used in this work. 

Kernel function title Equation Equation number 

Exponential (RBF) 

 
2

( , ) exp( )
2

x y
K x y




   (15) 

Cauchy Kernel 
2

2

1
( , )

1
2

K x y
x y








 
(16) 
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Laplace Kernel ( , ) exp( )
x y

K x y



   (17) 

Polynomial Kernel ( , ) ( )T dK x y x y c   (18) 

Sigmoid Kernel ( , ) tan( )TK x y x y c   (19) 

Gaussian Kernel 

2

2
( , ) exp( )

2

x y
K x y




   (20) 

Multiquadric Kernel 
2 2( , )K x y x y c    (21) 

 

4. Results and discussion 

4.1. TOC computation by conventional methods  

4.1.1. Schmoker and modified Schmoker methods 

The Schmoker method, equation (2), was used to generate continuous TOC data 

which were validated with Rock Eval analysis data from two research fields 

respectively. For the high TOC gas shale of the Ordos basin, TOC from core test and 

from the model prediction are in general good fit with each other (as shown in Figure 

6) with the root mean square error (RMSE) of 1.5472. The greater predicted TOC than 

the core results is basically due to the fact that the variables A and B are not suitable 

for the Ordos basin. Hence, we recalculated A* and B* with the tested TOC and well 

logging data using linear regression method. Then, the equation was modified as 

following: 

1
(133.44 ) 49.679TOC


                                            (22) 

Equation (22) was also applied to the Ordos basin for predicting TOC. The resulted 

RMSE (with the value of 1.1163) was significantly improved compared to the original 

Schmoker equation (Figure 7). 
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Figure 6. Correlation between core-derived TOC and original Schmoker prediction for 

Ordos basin with RMSE value of 1.5472. 
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Figure 7. Correlation between core-derived TOC and modified Schmoker prediction 

for Ordos basin with RMSE value of 1.1163. 

 

We also calculated TOC using Schmoker’s method in the low TOC gas shale of 

Canning basin. The results are show in Figure 8, where the predicted TOC is 

significantly different from the laboratory-core derived TOC with poor RMSE of 7.8, 

thus such Schmoker’s method is not suitable for TOC estimation in low TOC shales 

of the Canning Basin. The possible reason for this could be that the lower organic 

matter is not usually captured by the density logs. The relationship between the core 

derived TOC and the reciprocal of density was found to be not very clear. And even 

worse we could not re-calculate A* and B* with the TOC core data and well logging 

data because of their poor correlation.  
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Figure 8. Correlation between core-derived TOC and Schmoker’s prediction for 

Canning basin with RMSE value of 7.8. 

 

4.1.2. Passey method 

Passey method has more widely selected parameters than Schmoker method (Bolandi 

et al. 2017, Kim et al. 2017, Zhao et al. 2016) Firstly, we defined the baseline of 

resistivity and sonic logs, then we got DLogR from equation (4). Here, LOM (level of 

organic maturity) in equation (5) is a parameter about maturity which can be obtained 

from the TOC-DlogR plot. The average of LOM in the high TOC shale of Ordos basin 

was 10.5 (Figure 9). The calculated TOC using Passey method is in RMSE of 1.0579 

with the core data (Figure 10), which shows a little bit improved accuracy compared 

to the Schmoker’s method. 
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Figure 9. Relation between TOC and DlogR (LOM Chart) for Ordos basin.  

 

 

Figure 10. Correlation between core-derived TOC and Passey prediction for Ordos 

basin with RMSE value of 1.0579. 
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Passey method is shown in Figure 11, with the average LOM of 13 for the Canning 

basin. The results of the predicted TOC from equation (5) versus that from the core 

measurement are given in the Figure 12. Although the correlation between the 

predicted and the core derived TOC is better than the corresponding results from the 

Schmoker method as shown in Figure 8 for Canning basin, yet the match is still not 

good enough, with RMSE of 1.37. 

 

Figure 11. Relationship between TOC and DlogR (LOM chart) for Canning basin 
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Figure 12. Correlation between core-derived TOC and Passey prediction for Canning 

basin with RMSE value of 1.37. 

 

4.2. TOC computation by Gaussian Process Regression method 

To calculate TOC using the GPR method, the first step is the training Dataset 
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gamma-ray logs (Uranium (U), Thorium (Th), and Potassium (K)), K-Th (the 

uranium-free gamma ray curve), sonic log (DT), density log (RHOB), photoelectric 
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subset set up by PCA algorithm has the highest accuracy among all the 5 groups, in 

the meanwhile, Cauchy Kernel function has better accuracy compared to the other 6 

Kernel Functions. Therefore, we found that the subset chosen by PCA weights with 

Cauchy Kernel demonstrated a best performance, with an RMSE of 0.344. As a 

consequence, the correlation between the predicted TOC and the Rock Eval TOC 

values was significantly improved when compared to the traditional methods (Figure 

13). 

 

Table 3. Attributes selection based on weight algorithms for Ordos basin. 

Weights algorithm Attributes groups 

ALL GR, DT, RHOB, NPHI, PEF, RD,KTh, U, Th, K 

Correlation GR, DT, RD, RHOB, NPHI, KTh, U, Th 

SVM GR, DT, RD, RHOB, NPHI, KTh, U 

PCA GR, DT, KTh  

Deviation GR, DT, RD, PEF, NPHI, KTh, U, Th, K 

 

Table 4. RMSE of Kernel Functions of different distribution groups from final models 

performance for Ordos basin. 

Kernel RBF Cauchy Laplace Polynomial Sigmoid Gaussian Multiquadric 

ALL 1.013 0.440 0.891 72.764 5.605 5.605 2.052 

Correlation 1.275 0.520 1.124 singular 5.621 5.621 1.968 

SVM 1.054 0.398 0.878 singular 5.513 5.513 1.891 

PCA 0.924 0.344* 0.717 singular 5.443 5.443 1.868 

Deviation 1.047 0.446 0.924 73.473 5.682 5.682 1.906 
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Figure 13. Correlation between core derived TOC and GPR prediction for Ordos basin 

with RMSE value of 0.344. 

 

The dataset for Canning basin includes natural gamma-ray (GR), caliper log (CAL), 

sonic log (DT), density log (RHOB), neutron log (NPHI), deep lateral resistivity 
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algorithm has the highest accuracy among the 5 groups, and Cauchy Kernel function 
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reservoir and low TOC reservoir. Cauchy Kernel function, coming from the Cauchy 

distribution, has multi-scale representation ability. It is a long-tailed kernel and can be 

used to give long-range influence and sensitivity over the high dimension space. Also, 

it is suitable to classify the samples with smooth distribution no matter in small or big 

variance of the noise. 

  

Table 5. Attributes selection based on weight algorithms for Canning basin. 

Weights algorithm Attributes groups 

All GR, DT, RHOB, NPHI, LLD, LLS, MSFL, CALI 

Correlation GR, DT, RHOB, CALI 

SVM GR, DT, RHOB, NPHI, LLD, LLS 

PCA GR, DT, LLD, LLS 

Deviation GR, DT, LLD, LLS, MSFL 

 

Table 6. RMSE of Kernel Functions of different distribution groups from final models 

performance for Canning basin. 

Kernel RBF Cauchy Laplace Polynomial Sigmoid Gaussian Multiquadric 

ALL 0.17 0.087 0.152 7.994 0.5 0.184 0.495 

Correlation 0.127 0.108 0.092 singular 0.5 0.194 0.329 

SVM 0.165 0.079* 0.140 singular 0.5 0.185 0.496 

PCA 0.221 0.218 0.155 singular singular 0.710 0.499 

Deviation 0.169 0.087 0.151 8.734 0.5 0.184 0.495 
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Figure 14. Comparison of core TOC and GPR predicted TOC for Canning basin with 

RMSE value of 0.079. 

 

4.3. Validation 

The results presented above are obtained when the model is trained and compared 

with the same set of data, and this sometimes leads to overfitting as the model only 

suits the modeling data but does not has the ability to predict the data it has not seen 

before. Therefore, the model should be validated with new data. Then, GPR method 

was also applied in new wells of Ordos basin and Canning Basin (these wells are not 

in the training data) for validation and the results including Traditional methods are 

shown in Figure 15 and Figure 16. It is observed that the results from GPR showed 

better correlations than the other methods in both high TOC and the low TOC gas 

shale reservoirs. Passey and Schmoker methods gave the results that are larger than 

the laboratory data, especially in the low TOC reservoir. The reason could be 

explained by the fact that they only utilize parameters from one or two well logs and 
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thus the responses of these logs do not representatively reflect the TOC trend in the 

whole reservoir. We also found that the gas content and TOC may have similar impact 

on the logs, especially in formation with high gas content, therefore, traditional 

methods based on the simple logs may give incorrect results, e.g. the logs showing 

low density and high resistivity in the interval from 900 m to 950 m (Figure 16) do 

not represent high TOC, but are a results of high gas content. However, GPR 

approach fixes this problem and chooses well logs which mainly reflect TOC, and 

then these well logs will be used for training the model between mean and covariance 

functions. Hence, GPR method is much more accurate in TOC prediction.  

  

 

Figure 15. A comparison of prediction TOC using different methods of Yanchang 

Formation of Ordos basin. 
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Figure 16. A comparison of prediction TOC using different methods of Goldwyer 

Formation of Canning basin. 

4.4. Discussion 

In this work, we have presented a method to apply Gaussian Process Regression 

technique in calculating TOC in tight shale gas reservoirs. Traditional methods only 

consider one or two logs, thus can’t reflect the true TOC characteristics in the 

complicated shale gas reservoirs, especially in the low TOC shale gas reservoirs. GPR 

method, on the other hand, accounts for all the well logging attributes and chooses the 

relevant logs to build TOC estimation model. Compared to the artificial neural 

network and support vector machine approach, GPR is more liable to process the 

complicated regression problem as high dimension, nonlinear and small size samples. 

Further, the prediction of GPR is probabilistic so that empirical confidence intervals 

can be calculated, and based on these information, the prediction can be refitted in 

some region of interest. Finally, this method can specify different kernels; as an 

example, we selected 7 different kernel functions and 5 attributes groups to get the 

optimized hyperparameters for GPR techniques to be of value in practice. Overall, the 

above points make the GPR model more accurate than traditional methods. 
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5. Conclusions 

We have proposed a new method for the TOC prediction based on the machine 

learning technique – Gaussian Process Regression (GPR) and compared the modeling 

results with those from the traditional method (Schmoker and Passey method) in two 

different shale gas reservoirs (Ordos basin – high TOC and canning basin – low TOC). 

A workflow to predict TOC using GPR was developed that chose a total of 7 kernel 

functions and 5 attribute groups coming from 4 weighting algorithms. The results 

showed that the traditional methods can not accurately estimate TOC for shale gas 

reservoirs, especially for low the TOC formation. Schmoker and Passey methods 

tended to overestimate the TOC in high gas content reservoirs. Machine learning 

results of TOC obtained from GPR for Canning basin and Ordos basin were much 

close to the laboratory test results even in the low TOC content reservoir. Further, we 

also found that the Cauchy Kernel function showed lower error than the others kernel 

functions for each attributes groups in both reservoirs. Because such GPR method 

accounted for a variety of well log data of the corresponding formation for TOC 

computation, thus, high accuracy and low error model was obtained. It was found that 

the proposed GPR method demonstrated high accuracy and generalization compared 

to the traditional methods. 

 

We thus conclude that the GPR method is an efficient and accurate tool for TOC 

estimations in tight shale gas reservoir and the result is more reliable in comparison 

with the traditional methods.  
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