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ABSTRACT 

 
The increasing penetration of rooftop photovoltaic generation systems (PVs) in the 

residential networks has encouraged many researchers and electric utilities to 

investigate their limitations, advantages and impacts on distribution systems. One of 

the main limitations of rooftop PVs is the dependency of their output power to 

environmental factors such as sun radiation, panel temperature, passing clouds and 

shading. In addition, the net output power delivered to the grid will also depend on 

the household loads which may significantly change during hot summer days due to 

air conditioning usage. These dependencies will result in sudden output power 

variations of rooftop PVs particularly during cloudy days with passing clouds.  

In this thesis, the application and control of a battery storage (BS) system at the point 

of common coupling (PCC) is introduced and developed to compensate for output 

power changes of rooftop PVs due to variations in the environmental conditions and 

household loads.  This approach will also have an important role in mitigating the 

intermittent behaviour and uncertainties associated with PV systems. A relatively 

simple and practical battery storage energy management strategy (BS-EMS) for 

operating small scale grid-connected rooftop PVs will be proposed such that the net 

delivered output power to the grid at PCC (PGrid-ref) is constant under various 

operating conditions. To do this, the power balance between rooftop PV, battery and 

grid is considered by dynamic control of the battery converter while a PI controller is 

also implemented to reduce voltage variations at PCC. In addition, a simple approach 

based on BS-EMS is also developed to estimate the battery rating.  

Detailed simulations are performed for a 24-hour period using developed codes in 

PSCAD to demonstrate the performance of BS-EMS under various grid, load and 
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environmental conditions. In particular, impacts of battery size, passing clouds and 

short PV outages, as well as duration and magnitude of PGrid-ref on system 

performance are investigated. 
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CHAPTER ONE 
INTRODUCTION 

 

Currently, most of the world’s electrical energy consumption is generated through 

non-renewable fossil fuel resources such as coal, natural gas and oil. These sources 

of energy are limited and produce emissions with detrimental environmental 

greenhouse effects. Therefore, it is essential to look to the future and move toward 

very high penetration of pollution free and renewable energy sources for generating 

electricity.  Most renewable energy sources are plentiful and naturally unlimited. 

They do not produce any environmentally harmful carbon emissions and do not 

contribute to the problem of global warming.  

Unfortunately, there are still a few difficulties and challenges associated with the 

applications of renewable energy such as their stochastic nature, dependency to 

environmental factors and the economic justification due to their high initial capital 

investments and long payback periods. It is currently difficult to change from fossil 

sources to renewable energy sources as renewable sources of energy generation are 

significantly more expensive. However, the cost of fossil fuel based energy is 

increasing in many countries as these resources are becoming more depleted and 

with technology improvements renewable energy production costs are gradually 

reducing. Therefore, it is very likely that at some point in the future the cost of fossil 

fuel based power will reach a point where it is more expensive than renewable 

energy based power. With the increasing world’s population and concerns about the 
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important environmental factors, it is clear that the use of renewable and clean 

energy sources must be a priority for the future. 

There are many available renewable energy sources such as biomass, hydropower, 

wave power, geothermal, ocean thermal, solar thermal, solar photovoltaic (PV), wind 

power and tidal power. However, current technology shows that only solar PV, wind 

energy, biomass and solar thermal electricity can provide large quantities of 

sustainable electricity with a reasonable (greater than 10%) overall efficiency. 

Among these green resources, only solar PV and wind power have been efficiently 

utilized on a small scale. The present renewable energy technology can be classified 

into two categories: 

• Large scale renewable technology- There are currently many renewable energy 

plants such as relatively large wind farms around the world that produce clean 

electricity. However, these systems require significant capital outlay and 

infrastructure.  

• Small scale distributed renewable technology. There is now significant interest 

utilization of small scale electricity generators with limited infrastructure 

requirements such as PV systems (PVs) and small wind power plants. This will 

allows a much larger number of operators to invest in such plants and contribute 

to increasing the proportion of electricity generated from renewable energy 

resources. 

In recent years, there has been a growing interest by the residential customers to 

install single-phase grid-connected rooftop PVs due to new energy and incentive 

polices in several countries such as Australia [1]. The most important characteristic 

of the present rooftop PV technologies is that their injected output power to the grid 
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is not controlled and dependents on the amount of sun radiation that changes over the 

24 hours [2]. In addition, there are several technical problems associated with these 

systems such as harmonic distortion, voltage regulation, voltage imbalance and 

power loss that have been significantly investigated in the literature [3-5]. One of the 

main power quality concerns with the increasing number of rooftop PV applications 

in residential loads, which are usually distributed randomly among the customers of 

the network, is the impacts of their penetration level, random locations and ratings on 

voltage magnitude and voltage imbalance. Reference [6] have investigated the 

maximum allowable number of grid connected PVs in European and UK distribution 

networks based on voltage imbalance standard limitations. References [7, 8] have 

performed sensitivity analysis of voltage imbalance in distribution networks with 

rooftop PVs. References [9] investigates the impacts of high PV penetration on LV 

distribution network. 

It is anticipated that the sophisticated structure and communication backbone of 

emerging smart grid systems will allow easy, safe and reliable integration of these 

distributed renewable energy resources at very high penetration levels while 

significantly limiting  their detrimental impacts on voltage profile and system losses. 

However, it could take years before smart grid infrastructure is ready.  

1.1. Research Objectives  

The main objective of this research is to investigate the application of a battery 

storage (BS) system at the output terminals of an existing rooftop PV for constant 

output power production during daylight while regulating the voltage profile at the 

point of common coupling (PCC). The specific objectives of the study are: 
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1. Simulation of a typical residential system with an existing rooftop PV connected 

to the power grid and analyzing the injected output power and PCC voltage over 

the 24 hour period. 

2. Connection of BS system at the terminals of the existing rooftop PV and 

propping a BS-EMS to achieve constant net output power production (Pref,grid) 

during daylight while regulating the PCC voltage. 

3. Proposing a simple and practical approach to estimate battery rating. 

4. Investigating the impacts of battery size, constant output power level (Pref,grid) 

and duration on the performance of BS-EMS. 

5. Investigating BS-EMS performance with passing clouds and PV outages. 

1.2. Thesis Contributions  

In this research the main contributions are as follow: 

• Development of a relatively simple and practical BS-EMS for existing grid-

connected rooftop PVs that will deliver constant net output power under different 

grid, load and environmental conditions. 

• Development of a simple approach based on BS-EMS to estimate battery rating.  

• Mitigating for the intermittent behaviour and uncertainties associated with 

rooftop PVs and compensating output variations due to passing clouds and short 

PV outages. 

• Exploring impacts of battery characteristics such its rating, minimum and 

maximum state of charge (SOC). 
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1.3. Thesis Outline 

This thesis is organized into six chapters. Chapter 2 presents technical aspects of PV 

and rooftop PVs. It considers the application of PV in residential networks. Chapter 3 

presents different types of BS systems. In addition, it emphasizes the importance of 

BS technologies for PV application. Chapter 4 investigates a house with rooftop PV 

and BS for constant output power production by implementing a BS-EMS. Chapter 5 

consists of all simulation results performed for rooftop PV and BS which produces 

constant output power to the grid. Simulations are based on PV generation in Perth 

(Western Australia) in different weather and environmental conditions while 

considering the household load. Conclusions and recommendations for future 

research directions are presented in Chapter 6. 
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CHAPTER TWO 

TECHNICAL ASPECTS OF PHOTOVOLTAIC AND 

ROOFTOP PV SYSTEMS 
The demand, consumption and price of electricity are rapidly increasing in many 

developing countries such as Australia. To meet current and future energy 

requirements, more electric power plants have to be introduced or the structure of 

energy production needs to be changed with different approaches such distributed 

generation (DG) sources at distribution feeders or directly at the consumer 

(residential) side [10]. Among DG technologies, renewable energy resources have 

found more applications mainly due to the increasing concern about environmental 

issues and adopted feed-in tariffs for grid-connected PVs. Within various renewable 

energy resources, wind power and PVs have found more applications in distribution 

and residential networks [11].  

2.1. Renewable Energy Resources  

All renewable energy sources are primarily originated from the sun’s radiation. The 

incoming solar radiation totals to over 5.4 million exajoules (EJ) per year of which 

only about 30% is reflected back into space. In principle, the remaining 70% 

(approximately 3.8 million EJ/year) is available for use on Earth which is more than 

10 thousand times the rate of fossil fuel and nuclear consumption of [12]. Solar 

energy is generally classified into two categories: 

• Direct Solar Energy- such as solar thermal and solar PV where the solar radiation 

is directly converted into useful energy using various methods and technologies. 
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• Indirect Solar Energy- such as hydropower, wind power, wave power and 

bioenergy where the solar radiation is converted into useful energy through other 

energy forms. 

Considering innovations and high interests in DG and smart grid technology, the 

future power systems will be populated with both types of the above mentioned 

green energy resources. 

2.2. Solar Energy  

Solar energy is generated when energy from the sunlight is converted into electricity. 

Solar energy can also be used to heat air, water or other fluids as illustrated in Fig. 

2.1. There are two main approaches of generating electricity from the sun: 

• Thermal Energy Systems- using the infra-red radiation (heat) of sunlight, usually 

to heat water into steam that runs a turbine to generate electricity.  

• Photovoltaic Systems (PVs) - generating electricity directly from sunlight by 

transforming solar energy into DC electricity.  

      

                           Figure 2.1: Two types of solar energy technology [13] 
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The term “Photovoltaic” is derived from combining the Greek word for light, photos, 

with volt, the unit of electromotive force that causes the motion of electrons 

otherwise known as current. The discovery of the PV effect is generally credited to 

the French physicist Edmond Becquerel who published the effect in 1839. The first 

report of the PV effect in a solid state substance appeared in 1877 by two Cambridge 

scientists. In 1883, an electrician constructed a low efficiency (less than 1%) 

selenium solar cell which was similar to the silicon solar cells of today.  However, it 

wasn't until the 1950's that the a breakthrough occurred in the development of 

modern, high efficiency solar cells by bell labs while researching the effects of light 

on semiconductors. In 1953 the Chapin-Fuller Pearson team produced 'doped' silicon 

slices that were much more efficient than earlier devices in producing electricity 

from light [14]. They successfully increased the conversion efficiency of their silicon 

solar cells to 6%. The first application of solar cells was in 1958 to power a small 

radio transmitter in the US space satellite Vanguard I. Following this successful 

demonstration, the utilization of PVs as power sources for spacecraft became almost 

universal which resulted in rapid progress in increasing their efficiency and reducing 

their cost over the past few decades. Their terrestrial applications of PVs are now 

widespread, particularly in providing power for telecommunications, lighting and 

other electrical appliances in remote locations where a more conventional electricity 

supply would be too costly.  

With the current researches that have been done in DG and the growing desires for 

smart grid technology and renewable energy resources, it is expected that the future 

power systems will be populated with many rooftop PVs and solar power plants. 

Presently, a growing number of domestic, commercial and industrial buildings in 
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Australia have rooftop PV arrays providing a substantial proportion of their energy 

needs. The efficiency of the best single-junction silicon solar cells has now reached 

over 24% in laboratory test conditions. The best silicon PV modules that are now 

commercially available have an efficiency of over 17% which is expected to rise to 

over 20% in the next decade. This thesis will mostly consider the PV energy in form 

of rooftop PVs distributed in the residential networks. 

2.3. Photovoltaic Cells  

A solar cell is an electronic device that generates electricity directly from sunlight. 

The output PV electricity is proportional to both the intensity and the direction of the 

light and will be at maximum when rays of sunlight are perpendicular to the PV 

modules. PV uses the energy of the light itself to create electric current. Moreover, 

the electrons are freed by the combination of the semiconductor materials in the cells 

and electric current is generated by sunlight. PV produces electricity from a free, 

clean and infinite resource and produces no pollution or noise.  

2.3.1. Construction of PV Cells 

PV cells are small, square shaped semiconductors manufactured in thin film layers 

from silicon and other conductive materials. PV cells are manufactured in different 

types depending on the efficiency, price and quality. The efficiency is measured as 

the fraction of sunlight energy falling on the cell that is converted into electricity. 

There are different types of PV cells including [15]:  

• Single Crystalline Silicon (Monocrystalline) - is the first material used for 

making PV cells and is still popular. The conversion efficiency is 14-18%.  
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• Polycrystalline and Semi Crystalline Silicon- are cheaper to produce; however, it 

has a lower efficiency compared to Single crystalline Silicon. 

• Thin Film Cell- is a good absorber of light and is very thin at only 1 micron 

which reduces the material cost compared to the high cost associated with 

crystalline Silicon. 

• Amorphous Silicon- is the most popular cell in the thin film cell technology. It 

uses only 1% of the material compared to crystalline silicon, therefore it is much 

cheaper. However, it has about 50% less efficiency.   

• Spheral cell- with a silicon thickness of 2um, it has a higher conversion 

efficiency of 16 to 20%.  

• Concentrator Cell- has a higher efficiency and is suitable for small areas. 

However, it requires expensive focusing optics to operate. 

• Multifunction Cell- generates electricity from red and infrared light. Other colors 

such as blue and ultraviolet wavelengths are not converted. It has an efficiency of 

around 34%; however, the cost is also high. 

2.3.2. PV Arrays 

A single solar cell cannot produce enough energy for most practical applications.  

Therefore, PV cells are usually joined together to make PV modules while for higher 

power applications, multiple PV modules are combined and interconnected to form a 

PV array (Fig. 2.2). The electricity produced by PV cells in an array are 

interconnected and combined to produce direct current (DC) power at selected 

voltage and current ratings. For most applications, the DC power is converted into 

AC power using an inverter. The power is then directly useable by individual homes 

and businesses or can be connected into the bulk electricity grid.   
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                                                 Figure 2.2: Photovoltaic cell [16]                

2.3.3. Impact of Sun Angle and Sun Tracking on PV Cells 

An important issue in practical utilization of PV generators is the angle of the sun 

radiation since it has a direct impact on the solar cell electric output power. The DC 

output current (Icell) of a PV array can be completed as Icell=Iocosα where Io is the 

current with vertical sun impinging and α is the angle from the vertical. This relation 

holds for sun angles up to 50 degrees while for angles larger than 50 degrees the 

current significantly decreases. In addition, for angles more than 85 degrees from the 

perpendicular cell position, there is almost no significant output current.  

There are various options to increase the output power of the cell such as the 

inclusion of a sun tracking system that will actively adjust the position of the cell 

throughout the day. For example, a PV module installed on a motorized arm can 

track the sun and thus more energy is collected. Sun trackers can operate on one axis 

or two axes to follow the suns motion [17]. Tracking may be either simple tilt axis or 

single/dual axis tracking. Simple tilt will orientate the module to the latitude angle or 

close to it. Variations to the tilt angle can serve to maximize output at load peaks or to 

maximise the summer or winter PV outputs. A static orientation angle is the least 

efficient with the least cost, followed by single, then dual axis tilting. 
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Another option for increasing the conversion efficiency of the PVs is to include an 

electrical Maximum Power Point Tracking (MPPT) unit [14]. In this approach, the 

effective impedance of the load is actively adjusted to get maximum possible output 

power from the solar cell [17]. 

2.3.4. Geographic Conditions  

The amount of electricity that can potentially be produced by PV solar cells varies 

around the world as the intensity of solar radiation varies depending of the location, 

temperature and climate. In particular, the sunny and temperate climates especially 

along the equator can generate more PV electricity in a given area than other 

climates where the weather is cloudy and overcast.  

The suns radiation is measured in kW per square meter of space (kW/m2).  Just 

outside the earth's atmosphere, the suns radiation has a power density of about 1.365 

kW/m2 while the standard insolation level is 1 kW/m2. Fig. 2.3 shows the average 

daily solar exposure hours in Australia [18].  According to these figure, the average 

annual daily global solar radiation and sunlight hours in Western Australia are 18 to 

21 MJ/m2. However, highly efficient PV panels, large solar power plants, and high 

partition of rooftop PVs will be required to effectively capture this gifted, renewable 

and pollution energy and convert it to usable electrical energy.  
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                       Figure 2.3: Average annual daily solar exposure in Australia [18]  

 2.3.5. Efficiency and De-Rating of PV Cells  

De-rating and efficiency of PV cells and PV panels are affected by many 

environmental factors including dust, temperature and aging. PV panels should be 

periodically cleaned for dust as the cells may lose up to 10% of their output from 

dusty environments. In this direction periodic rain provides a convenient means to 

clean the modules from dust. Furthermore, temperature is the largest de-rating factor 

and has an important effect on the power output of the cell. The most significant is 

the temperature dependence of the PV cell voltage which decreases with increasing 

temperature. The voltage decrease of a silicon cell is typically 2.3mV per degree C. 

Therefore, the temperature variation of the current or the fill factor are less 

pronounced and are usually neglected in the PVs design. In space applications, aging 
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of PV cells is the one of the most important factors to consider in estimating power 

ratings over the spaceship life time due to the harsh environmental conditions.   

Efficiency of solar cells under high insolation conditions (e.g., over 1 kW/m2) may 

be smaller than anticipated. Datasheets will typically not quote above this standard 

limit. Sites in Western Australia are among the highest performing in the world and 

during the summer may reach insolation levels as much as1.2 kW/m2. 

2.4.    Solar Cell Model  

Solar cells are fabricated from thin layer of semiconductor materials containing P-N 

junction as shown in Fig. 2.4. When the sunlight (photons) hits the solar cell the 

electrons (located in the valence band) acquire energy and move from the valence 

band to the conduction band [19]. This allows the electrons to flow freely through the 

material and produce electricity. Complementary positive charges (holes) are created 

at the same time and flow in the direction opposite of the electrons. Electric circuit is 

then formed by attaching electrical loads to the positive and negative sides and the 

photon excited electrons form the photocurrent (Iph).  

The amount of solar energy (photons) absorbed by the solar cell determines its 

efficiency. If a photon has energy lower than the band gap energy of the 

semiconductor it is unable to create an electron-hole pair and if photon energy is 

more than the band gap energy, the excess is dissipated as heat. Some 

semiconductors are manufactured with several layers, each layer having a different 

band gap to maximise absorption of photon.  
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                   Figure 2.4: A PV cell showing the lifecycle of the PV effect [20] 

2.4.1. Generalized Model of Solar Cell  

Figure 2.5 shows the generalized model of a solar cell consists of series (Rs) and 

shunt (Rsh) resistances and takes into consideration the effects of recombination 

diodes [17].  Rs have a large impact on cell short-circuit current Isc. Rsh alters the 

cells open-circuit voltage Voc. However, for most applications, this model is 

complicated to implement as it is difficult to obtain its circuit parameters for analysis 

and simulation. Thus, a simplified equivalent of solar cell model is required.  

                     

phI v

+

shR

2di isR
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                            Figure 2.5: Generalize model of a solar cell [17] 

2.4.2. Simplified Solar Cell Model  

For most applications, the simplified equivalent one diode circuit of a solar cell as 

shown in Fig. 2.6 can be used. The ideal solar cell is modelled as a current source in 
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parallel with a diode. The current source models the level of solar irradiance and the 

diode represents the p-n junction of a solar cell. Clearly this model is dependent on 

the photon current (Iph) and the diode (D1) characteristics. Iph (known as the short-

circuit current) varies in direct proportion to the solar irradiance. The operation of 

diode D1 is heavily dependent on the reverse saturation current (I0) and both Iph and 

I0 depend on the structure of the device. However, it is the value of I0 which can 

vary by many orders of magnitude, depending on the device geometry and 

processing. The maximum solar output power (Pmax) is reached at a point (on the i-v 

characteristic) where the product IV is maximum.  

phI v

+i

1D
1diphi

sR

 

                                               Figure 2.6: Simplified model of a solar cell [17] 

The behaviour of an ideal diode can be described by the Shockley diode equation:  

)1e(Ii )TnV/1dv(
01d −=                                                                                       (2-1) 

where id1 and vd1 are the diode current and voltage, respectively, I0 is the reverse bias 

saturation current, Vd is the voltage across the diode, VT is the thermal voltage 

(given by VT=kT/q), n is the emission coefficient (that can vary from about 1 to 2 

depending on the fabrication process and semiconductor material and in many cases 

is assumed to be 1), q (=1.602×10−19 C) is electron charge, k (=1.38065×10−23 JK−1) 

is Boltzmann's constant, and T is the absolute temperature of the p-n junction in 

kelvins (oK= oC + 273). 
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Given id1= Iph – i (where i is the solar cell current as shown in Fig. 2.6), the diode 

voltage (vd1) can be found by re-arranging the Shockley diode equation: 

)
I

IiI
ln(nVv

0

0ph
T1d

+−
=                                                                                    (2-2) 

Considering effect of cell series resistance (v= vd1 - i RS), the cell output voltage is:  

s
0

0ph
T iR)

I
IiI

ln(nVv −
+−

=                                                                              (2-3) 

Figure 2.7 shows the power-voltage (P-V) and current-voltage (I-V) characteristics 

of an ideal solar cell [14]. 

 

Figure 2.7: Simulated power-voltage (P-V) and current-voltage (I-V) characteristics of 12 series 

solar cells [14]               

2.5. Solar Module Model  

In commercial and residential applications, solar cells are rarely used individually. 

Instead, cells with similar characteristics are connected and encapsulated to form 

modules. Furthermore, as the maximum voltage from a single cell is limited (e.g., 

about 600mV for a silicon cell), cells are usually connected in series to obtain the 

desired voltage. This is usually about 36 series cells used for a normal 12V charging 
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system. Under peak sunlight (1000 mW/cm2), the maximum current delivered by a 

cell is approximately 30mA/cm2. Cells can also be paralleled to obtain the desired 

current. 

2.5.1. Mismatched Cells  

In practice, the cells in a module will not exhibit identical characteristics and the 

module i-v curve would not have the same shape as that of the individual cells. 

Mismatched cells within a module can result in some cells generating and some 

dissipating power. In the worst case, the output powers of the normally operating 

cells can be dissipated in the low output cell. Dissipation of power in poor cells can 

lead to breakdown in localized regions of the cell p-n junction, may cause enormous 

power dissipation in a small area leading to local overheating, or “hotspots”, which 

in turn leads to destructive effects, such as cell or glass cracking or melting of solder.  

2.5.2. Bypass Diodes  

Bypass diodes are added to overcome problems associated with mismatched cells.  

Under normal conditions, with no shading, each diode is reverse-biased and all cells 

generate power. When a cell is shaded, it ceases to generate, acts as a high resistance 

and tends to be reverse-biased by the other cells, causing the diode across the cell to 

conduct, bypassing the shaded cell. 

The internal resistance of the diode is greater than that of a PV cell when exposed to 

sunlight. The current follows the path of least resistance and flows through each 

consecutive cell in the string. When a cell in the series string is shaded, cell 

resistance increases significantly, making the bypass diode the path of least 

resistance. The current naturally follows the path of least resistance, shunting the 

power through the bypass diode. For modules in parallel, an additional problem, 
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thermal runaway, can occur when bypass diodes are exercised. When one string of 

bypass diodes becomes hotter than the rest, they take up a larger share of the current, 

hence becoming even hotter. Diodes should be rated to handle the parallel module 

current. 

2.5.3. Shading and Its Effects on PV Operation 

Shading of solar cells not only reduces the cell power but also changes the open 

circuit voltage, the short circuit current and the efficiency.  Partial shading condition 

is a common situation due to the shadow of buildings, trees, clouds, and dirties, etc. 

Under partial shading condition, only one of the series strings of PV modules is less 

irradiated and which then has to disperse some of the power generated by the rest of 

the modules. In the other word, the current available in a series connection of PV 

modules is measured by the current of the PV module which is less illuminated. This 

can be eliminated by placing bypass diodes across the PV module [21].  

The current available in a series string is limited by the current of the solar cell with 

the lowest level of illumination. This can be avoided by including bypass diodes 

across every solar cell or across part of the series string. 

Since short circuit current density of a solar cell is proportional to the value of the 

irradiance, shading can easily be linked to the short circuit current of the cell 

(Isc=Iph) as: 

)
100

Shading%1)(m/W1000(II 2
SCph −=                                                             (2-4) 

To illustrate the effect of shading, Fig. 2.8 shows the characteristics of a PV array 

that consists of 2 strings connected in parallel. Each string includes four series 

module under identical conditions. On the other hand, Fig. 2.9 shows the 
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characteristics of the same PV array while two modules of one string are partially 

shaded. In this case, the output PV curve contains multiple peaks. This will affect the 

performance of the PV converter and may reduce the amount of output power 

particularly if the controller is incorporating a MPPT scheme. 

 

(a) 

            

                                    (b)                                                                                (c) 

Figure 2.8: Characteristics of PV array under identical condition; (a) PV array configuration, 

(b) P-V characteristics, (c) I-V characteristics [21] 
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(a) 

           

                                          (b)                                                                          (c) 

  Figure 2.9: Characteristics of PV array under partially shaded condition; (a) PV array     

configuration, (b) P-V characteristics, (c) I-V characteristics [21]                                               

To overcome the effects of partial shading in a series string, a bypass diode can be 

connected across the cell which is experiencing shading. Fig. 2.10 shows the 

schematic of n solar cells connected in series, with cell 1 having its bypass diode 
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activated. Note that the bypass current dependents on both the current from the 

unshaded cell and the level of shading: 

)ii()II(
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                        Figure 2.10: Two cell schematic incorporating bypass diodes [17]          

2.6. Rooftop PV Systems (PVs) 

Figure 2.11 shows the main components of a typical grid connected PVs consisting 

of PV module, inverter and smart meter. There are other auxiliary components such 

as fuse box (to control the input and output), wiring circuits (between equipment and 

fuse box) and isolating switches (to isolate components to perform maintenance or to 

upgrade the system). Currently, most PV generators are designed with MPPT 

abilities to justify their relatively high investment cost. That is the main task of the 

PV converter is to extract the maximum possible energy from the sun and deliver it 
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to the power grid to increase the profit. However, due to the stochastic nature of the 

solar cell power output, large developments of grid-connected PVs involve large 

fluctuations of the frequency, power, and voltage in the grid. Utilities are beginning 

to detect these problems in both the distribution (due to moderate and large PV 

power plants) and residential networks (caused by large penetrations of rooftop PVs).   

 
Figure 2.11: Residential grid connected PVs [47] 

Rooftop PVs are growing in popularity as low emission modes of distributed energy 

generations in many developing countries including Australia. Utilities are concerned 

about the potential effects of these distributed energy resources on the residential and 

commercial networks. Integration of rooftop PVs in residential networks at moderate 

penetration levels is becoming a reality in many countries including Australia. 

However, the present state of rooftop PV technology causes detrimental effects on 

the grid at high PV penetrations that have not fully explored to most power utilities. 

The main limitations of rooftop PVs are: 

• The dependency of output power on the environmental factors such as sun 

radiation, panel temperature, passing clouds and shading. This dependency may 

result in sudden output power variations of rooftop PVs during cloudy periods. 
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• The dependency of output power on loading that will change the operating point 

on their nonlinear v-i characteristics and reduce the overall efficiency. 

•  Difficulties in optimal design, modelling, control of rooftop PVs due to the 

intermittent behavior and uncertainties associated with their output power. 

• Rooftop PVs are generally expensive compared with the conventional energy 

resources and have a relatively long payback time. However, as the electricity 

price rises steadily; their cost efficiency becomes more attractive particularly for 

residential applications. 

• Rooftop PVs can force unbalance operating conditions as the majority of their 

applications are randomly distributed single-phase residential systems.  

• Rooftop PVs will cause reversed power flow conditions particularly under during 

high sun radiation and low residential periods. This may cause disturbances to the 

power grid.         
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CHAPTER THREE 

ENERGY STORAGE TECHNOLOGIES FOR PV APPLICATIONS  
 

The unpredictable and stochastic nature of renewable energy sources such as wind 

and PV is becoming a serious issue in controlling the grid balance under different 

operating conditions [22-24]. In this term, energy storage (ES) units such as 

researchable batteries [24, 26], ultra-capacitor and fuel cells [22, 23] can be used to 

balance the lack of power during peak load hours while storing the extra power 

during the off-peak hours. Reference [23] presents an economic EMS based on time 

of use (TOU) rating for grid-connected PV with BS system that will increase cost 

efficiency. Similarly, reference [27] investigates the design of an optimal 

charge\discharge algorithm for distributed BS systems connected to PVs that also 

consider cost analysis. Reference [25, 26] presents grid-connected distributed energy 

systems in combination with lithium-ion (Li-ion) battery as the storage element. 

References [28] show advantages of Li-ion battery technology compared to lead-acid 

batteries and nickel-metal hydride batteries, such as high power and energy density, 

high working cell voltage, low self-discharge rate and high charge-discharge 

efficiency. 

 Reference [29] explains how batteries interconnected to distributed systems can be 

utilized to expand the energy production of conventional grid-connected PV power 

plants, mostly under mismatching operating conditions. Apart from these works, 

Hector ei al. proposed an EMS for large-scale power plants operating with different 

ES ratings [22]. On the other hand, some researches have considered application of 

ES in isolated PVs. In this regard, [30] investigates the performance and energy 
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supplies of different types of battery technology suitable for usage in isolated power 

systems. While, there are a few literatures in terms of PV sources combined with ES 

[22], more research is required to evaluate the application and capacity of BS in grid-

connected PVs particularly with consideration of real-time weather and load 

conditions.  

3.1. Energy Storage Systems (ESS) 

Electrical energy in an alternating current (AC) system cannot be stored electrically, 

and must typically be generated at the time of demand. However, energy can be 

stored by converting the electrical energy and storing it electromagnetically, 

electrochemically, kinetically or as potential energy. Each ES technology usually 

requires an energy conversion unit to convert the energy from one form into another 

and back again. 

There are many applications of ES in utility systems including transmission 

enhancement, power oscillation damping, dynamic voltage stability, tie-line control, 

short-term spinning reserve, load levelling, sub-synchronous resonance damping and 

power quality improvement. The four leading ES technologies are briefly introduced 

in the following sections.   

3.1.1. Superconducting Magnetic Energy Storage (SMES)  

The main element of an SMES unit is a superconducting coil of high inductance 

(LCoil in Henrys) at the cryogenic temperature which is controlled by a power 

electronic conversion system. SMES stores the energy in the magnetic field 

generated by DC current ICoil. The stored energy (E in Joules) and the rated power (P 

in Watts) are the common parameters and specifications of the SMES device. Power 
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conversion may be achieved through two main power electronic converter 

topologies. One approach is to  employ a current source converter (CSC) to 

interface to the AC system and charge/discharge the coil. The other another 

approach is instead o f CSC select  a voltage source converter (VSC) along with 

a DC-DC chopper. In the later approach, the VSC and DC-DC chopper share a 

common DC bus. The charge, discharge, and standby modes are obtained by 

controlling the voltage across the SMES coil (Vcoil). Several factors need to be 

considered in designing the SMES coil to achieve the best and most economic 

performance such as coil configuration, energy capacity, structure, and operating 

temperature.  

3.1.2. Super Capacitor (SC) 

An electric double-layer capacitor (EDLC) is known as super-capacitor (SC) or ultra-

capacitor. The rating of a super-capacitor can be much greater than an electrolytic 

capacitor. SC ratings can reach up to 5000 farads. The highest energy density in 

production is 30 Wh/kg, which is slightly below the density of rapid-charging 

Lithium-titanate batteries. However, due to the high permeability and close 

proximity of the electrodes, SCs have a low-voltage-withstand capability (typically 

2–3V) [31]. SC store energy by physically separating positive and negative charges 

which has profound implications on cycle life, efficiency, energy, and power density. 

Envisaging the fact that ideally there are no chemical changes on the electrodes 

under normal operating conditions, SCs have a long cycle life and high efficiency. 

They also provide exceptional power density, since the charges are physically stored 

on the electrodes. On the other hand, energy density is low since the electrons are not 

bounded by chemical reactions. This also implies that the SCs can be completely 
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discharged and create larger voltage swings as a function of the SOC. Therefore, SC 

cannot totally replace the battery. However, hybrid SC-battery system improves 

storage performance and battery life time. This hybrid SC energy storage option can 

be useful for electric vehicle and wind energy applications. 

3.1.3. Flywheel Energy Storage (FES) 

Flywheel energy storage (FES) operates by accelerating a rotor (flywheel) to a very 

high speed and maintaining the energy in the system in form of rotational energy 

[32]. When energy is removed from the system, the flywheel's rotational speed is 

reduced as a result of the principle of conservation of energy. The speed of the 

flywheel is increased by adding energy to the system. Furthermore, a bidirectional 

AC to AC converter can be used for wind turbine applications to accelerate and 

decelerate the motor/generator connected to the flywheel. The speed of flywheels can 

be varied from 20,000 to over 50,000 rpm [33]. FES has many attractive 

characteristics including high energy efficiency (as high as 90%), long lifetime, high 

energy densities (100-130 Wh/kg) and large maximum power outputs with typical 

capacities range from 3 kWh to 133 kWh.  Rapid charging of a system occurs in less 

than 15 minutes [37]. The energy flows in a FES system is usually controlled by a 

three-phase AC motor/generator unit attached to the flywheel. It can also be used for 

frequency regulation and power quality improvement in power grids with large scale 

wind penetration.   

3.1.4. Battery Energy Storage System (BESS) 

A battery consists of one or more electrochemical cells that convert stored chemical 

energy into electrical energy. Batteries are the most popular and widely used ES 

technology because of their portability and ruggedness. There are many types of 
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battery technologies including lead acid, Li-ion, Nickel Cadmium (NiCd), Nickel 

Metal Hydride (NiMH), Sodium-Sulfur (NaS), Zinc Bromide, Vanadiom Redox 

(VRB), Polysulphide Bromide, Zinc-Air, Li polymer, Zebra, and Flow batteries 

(FBs) (Table 3.1). 

Lead acid batteries have been used since mid-1800s and still prevalent in cost-

sensitive applications such as automotive starting, lighting, ignition, 

and uninterruptible power supply (UPS). However, most batteries have 

comparatively low energy density and limited life cycle. Recent research intends to 

replace lead with lighter materials such as carbon to increase battery power and 

energy density. Li-ion batteries are more expensive than the conventional lead-acid 

technology; however, they have more advantages such as higher energy-to-weight 

ratios, lower self-discharge and no memory effects [35]. Main applications of Li-ion 

batteries are laptops, cameras, mobiles phones, and other portable electronic devices. 

They may become the most promising battery technology in future due to their high 

energy density for applications like plug in hybrid/electric vehicle and wind energy 

power generations. NiCd batteries have a higher energy density and longer cycle life 

than lead acid batteries but are inferior to chemistries such as Li-ion and NiMH 

batteries. Other disadvantages of NiCd batteries compared to NiMH are shorter life 

cycle, memory effect, lower energy density, flat discharge curve, and toxicity of Cd 

that requires a complex recycling procedure, as well as negative temperature 

coefficient that may cause thermal runaway in voltage-controlled charging.  

Relatively high power density, proven safety, good abuse tolerance, and very long 

life at a partial SOC have recently made NiMH batteries more applicable over NiCd 

batteries. The disadvantages of NiMH battery are the relatively high self-discharge 
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rate, although the introduction of novel separators has alleviated this problem. When 

overcharged, NiMH batteries use excess energy to split and recombine water. 

Therefore, the batteries are maintenance free. However, hydrogen build up can 

rupture the cell when batteries are charged at an excessively high charge rate. If the 

battery is over discharged, the cell can be reverse-polarized, leading to capacity 

reduction.   

NaS batteries exhibit several advantages including high power and high energy 

density, high efficiency, good temperature stability, long cycle life, low cost, and 

good safety. NaS batteries are made of low-cost materials, making them suitable for 

high-volume mass production. NaS batteries can be used for load leveling, 

emergency power supply, or UPS applications. They are also suitable for utility 

applications and wind energy systems [36-37].  

FB is an encouraging technology that decouples the total stored energy from the 

rated power. The rated power depends on the reactor size while the stored capacity is 

determined by the auxiliary tank volume. These characteristics make the FB suitable 

for providing large amounts of power and energy required by most electrical utilities. 

The main advantages of the FBs are long life due to easy electrolyte replacement, 

fast recharge by replacing exhaust electrolyte, high power and energy capacity, full 

discharge capability, use of non-corrosive materials, and low-temperature operation. 

In contrast, the disadvantage of FBs is the need for moving mechanical parts such as 

pumping systems that make system miniaturization difficult. The main technologies 

used currently are summarized in Table 3.1 [38]. 

References [39] indicate that it is necessary to have a good understanding of battery 

characteristics and SOC for efficient storage management of the batteries.. The SOC 
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of a battery is defined as its available capacity expressed as a percentage of its 

maximum available capacity:  

)(
)(

AhcapacityavailableMaximum
AhcapacityAvailableSOC =  

                            (3-1) 

Battery SOC can also be defined from the perspective of energy as shown in Eq. 4-7. 

Life cycle of a battery decreases with increased depth of discharge (DOD) and cell 

chemistries of battery in many cases does not tolerate deep discharge which may lead 

to permanent damage. Consequently, to improve the life cycle of a battery and to 

protect it from permanent damage, it is necessary to set a minimum level of 

discharge it terms of SOC, which is usually expressed as SOCmin. 

Most batteries provide quick response for charging and discharging. However, the 

discharge rate depends on the battery type and the associated chemical reaction. 

Table 3.2 provides a comparison of different types of batteries. According to this 

table, Li-ion battery technology shows many advantages compared to lead-acid and 

nickel-metal hydride batteries such as high power, energy density, high working cell 

voltage, low self-discharge rate and high charge-discharge efficiency, which makes it 

suitable for DG connected and grid connected applications. 

                                      Table 3.1: Flow battery characteristic 

Technology Potential Efficiency 
Zinc Bromide  1.8 70% 
Vanadiom Redox (VRB)  1.2-1.6 80% 
Polysulphide Bromide 1.5 - 
Zinc-Air  1.6 50% 
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Table 3.2: Comparison of different types of batteries 

 Lead Acid Li-ion Li polymer Ni-MH Ni-Cd NaS Zebra 
Voltage (V) 2.1 3.6 3.7 1.2 1.2 - 2.58 
Energy Density 
(Wh/Kg) 

30-40 150-
250 

130-200 30-80 40-60 150 120 

Power (W/Kg) 180 1800 3000 250-1000 150 - 400 
Charge/Discharge 
Efficiency (%) 

70-90 80-90 - 66 70-90 90 100 

Self-discharge 
(%/month) 

3-4 5-10 - 30 20 - - 

Durability Cycle 500-800 1200 500-1000 500-1000 1500 - 1000 
Durability (Yr) 5-10 2-3 2-3 - - - - 
 

3.1.5. Hybrid Energy Storage System 

There are a few factors to be considered in selecting an appropriate ES device for a 

given application including energy rating, response time, weight, volume, and 

operating temperature. Most practical applications require a combination of these 

factors in terms of power rating, energy density, cost and life cycle that is not 

attainable from a single ES technology; therefore, a hybrid ES system may be 

considered to fulfil the requirement. In a hybrid system, two or more different types 

of the above-mentioned ES devices (SMES, SC, FES, and BESS) with 

complementary characteristics are electronically combined together to achieve 

superior performance. Some hybrid storage systems include battery and SC [40], 

battery and flywheels, battery and SMES, fuel cell and battery and compressed air 

energy storage and battery or super-capacitor [41]. The selection of an appropriate 

ES technology will significantly depend on the application; however, the following 

main criteria should be carefully considered: 

• Reliability- The ability of the system to meet the load at all times.  

• Efficiency- The ability to use the components in a way as to minimize losses. 
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• Cost- The lifecycle cost of the system including the initial investment plus 

running costs over the lifespan of the system.  

• Technical maturity- Commercial availability and proven reliability of the 

technologies used. 

• Life span- The length of time that the system will be able to operate. 

3.2. ES Technologies for PV Applications  

 Integration of an storage device in PVs provide a combination of financial, 

operational and environmental benefits to the utilities and consumers through peak 

shaving, load shifting,  grid support, reliability improvement and demand response, 

as well as compensating for the unpredictable power production of renewable DG 

systems such as PV and wind [42](Table 3.3).  

3.2.1. Peak Shaving 

The purpose of peak shaving is minimising demand charges for a commercial 

customer or reducing peak loads experienced by the utility. Peak shaving for PV 

applications requires the storage device to provide the essential power above a 

specified threshold in lack of PV availability. Failure of peak shaving can have 

economic consequences in cases where customers’ rates are based on monthly peak 

demand. 

3.2.2. Load Shifting  

Technically, load shifting is similar to peak shaving, but its application is useful to 

customers purchasing utility power on a time-of-use basis. Many peak loads occur 

late in the day, after the peak for PV generation has passed. Storage can be 

combined with PV to reduce the demand for utility power during late-day, higher-
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rate times by charging a storage system early in the day to support a load later in 

the day. In [43] a study of peak shaving and load shifting on a PVs at Public Service 

Company of New Mexico is presented. The project combines both residential and 

commercial loads on a dedicated feeder, with high PV penetration ratio, equipped 

with a 0.5MW substation-sited PVs and large-scale utility storage. The unique 

aspect of the BS system being used is that both slow (load-shifting) and fast 

(intermittency-mitigation) power discharge modes are possible. Smart meters and 

customer demand response management, along with some customer-owned storage 

are all being implemented. This program targets a minimum of 15% peak-load 

reduction at a specific feeder through a combination of these devices and measures.  

3.2.3. Demand Response  

Demand response allows the utility to control selected high-load devices such as 

heating, ventilation, air conditioning and water heating, in a progressing type of 

operation during high-demand periods. For both residential and small commercial 

customers, using an appropriately sized PV-storage system should allow the 

implementation of demand response strategies with little or no effect on local 

operations. At least one-way communications between the PV-storage site and the 

utility will be required by control systems for demand response systems. In [44] an 

optimization approach to determine operational planning of power output for large 

PV/battery system is proposed. This approach includes the determination method 

of charge/discharge amount for battery of electric vehicle as a demand response. 

The method targets to obtain more benefit deal with electrical power selling. The 

optimization method applies genetic algorithm (GA) to smooth the fluctuating 

power output due to PVs, and also to determine the initial SOC of battery. The 
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validity of proposed method is confirmed by simulation results. 

3.2.4. Outage Protection   

A possible application of PV-storage system is to provide power to a residential or 

small commercial customer when utility power is unavailable (i.e., during outages). 

To offer this type of protection it is necessary to intentionally island the residence 

or commercial customer with utility. There is a number of safety regulations 

designed to prevent the back-feeding of power onto transmission and distribution 

lines during islanding or blackout. Islanding is beneficial to both the utility and the 

customer, because it allows the utility to shed loads during high demand periods 

while protecting the customer’s loads if the utility fails. 

3.2.5. Grid Power Quality Control  

In addition to outage protection, storage systems can be utilized to improve grid 

power quality by regulating bus voltages, adjusting phase angles and eliminating 

harmonic distortions from the electric grid. This function is currently supplied by 

UPS devices, on the customer side. Deviations in the AC power being supplied and 

then corrected by UPS within milliseconds. Integration of small ES can be 

effectively reduced by the overvoltage caused by reverse power flow. Furthermore, 

by introducing reactive power compensation and harmonic cancellation, grid power 

quality can be improved by battery-integrated PVs. 
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                                       Table 3.3: Different applications of ESS in PVs 

Applications 

of ESS for PV 
Definition 

Peak Shaving The goal is to counteract the power intermittency from PV by controlling 

the charge/discharge rate of the energy from the fast ultra-battery. 

Load Shifting  Many peak loads occur late in the day, after the peak for PV generation 

has passed. Storage can be combined with PV to reduce the demand for 

utility power during late-day by charging a storage system with PV-

generated energy during the day to support the load during the peak 

load hours. 

Demand 

Response  

This allows the utility to control selected high-load devices during high-

demand periods.  

Outage 

Protection   

An important benefit of a PV-storage system is the ability to provide 

power to the residential or small commercial customer when utility 

power is unavailable. 

Grid Power 

Quality 

Control  

Battery-integrated PV systems can improve grid power quality by 

introducing reactive power compensation and/or harmonic cancellation. 

 

 

3.2.6. Solar Output Power Smoothing  

A recent application of BS is for output power smoothing of rooftop PVs as 

investigated in Chapters 4 and 5 of this thesis. The idea aim is to investigate the 

application and control of BS technology on an existing rooftop PVs to overcome the 

sudden output power change of rooftop PVs due to variations in the environmental 

conditions.  This approach can also have an important role in mitigating the 

intermittent behaviour and uncertainties associated with PV systems. A practical 

EMS approach for operating small scale grid-connected rooftop PVs with BS 

connected at PCC will be presented such that the delivered output power to the grid 

is constant under various operating conditions. The power balance between rooftop 

PV, battery and grid is considered by dynamic control of the battery converter such 
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that the output power to the grid is constant during the day. Simulation results for a 

24-hour period will be presented and analysed for a system comprising of a single 

phase rooftop PV with BS connected to an infinite bus using PSCAD software. 
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CHAPTER FOUR 

ROOFTOP PV WITH BATTERY STORAGE SYSTEM FOR 
CONSTANT OUTPUT POWER PRODUCTION 

 

This chapter aims to attain constant-production periods in grid-connected rooftop 

PVs under different operative and environmental operating conditions by including a 

BS unit. An EMS is proposed to consider the power balance between rooftop PV, 

BS, household load and grid to dynamically control BS converter such that the 

output power to the grid is constant during daylight. Simulation results generated in 

PSCAD will be presented and analyzed to investigate the performance of BS-EMS 

for a system consisting of single-phase rooftop PV with BS and linear load connected 

to power grid.  

4.1.     Rooftop PV and Battery Storage System  

Distributed PVs are being accepted as possible alternatives to the conventional 

contaminating energy resources. These environmentally friendly renewable energy 

systems are currently representing only a low percentage of the global electricity 

production. However, their applications in residential and industrial networks are 

rapidly growing since the peaks of most industrial and some residential loads usually 

coincide with the maximum output of the PV modules. Fig. 4.1 shows typical 

configuration of a house with linear loads and rooftop PV connected to the power 

grid at PCC.   
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                 Figure 4.1:  Typical house with grid-connected rooftop PV and BS system 

One of the main limitations of rooftop PVs is the dependency of their output power 

to environmental factors such as sun radiation, panel temperature, passing clouds and 

shading, as well as loading level (operating point on their nonlinear v-i 

characteristics). This dependency may result in sudden output power variations of 

rooftop PVs during cloudy periods. Fig. 4.1 also shows a practical solution to 

overcome this limitation by including a shunt-connected BS system at PCC to ensure 

constant output power production to the grid during daylight. This configuration 

allows the consumer to store the excess generated energy in PV storage elements 

during off-peak hours and return it back to the grid at appropriate times. It can also 

offer a few advantages: 

• Mitigating the stochastic nature of PV production. 

• Offer profit by selling/purchasing electricity to/from grid. 

• Overcome sudden output power changes of rooftop PVs. 

Figure 4.2 represents typical (measured) household daily load curve and daily 

average summer and winter rooftop PV generation in Perth, WA.  According to this 

figure, there is about 50% reduction in PV output power during winter that can 

dramatically change the amount of power delivered to the grid. In addition, 

household loads must also be considered in the storage controller as their type, 
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duration and levels will change depending on the season, temperature, cloud 

coverage, social activities and standard working hours, etc.  Inclusion of the load is 

very important as its variations will have impacts on the performance of BS-EMS. 

Several factors influence the load in the electrical network including the weather 

situation (e.g., temperature, cloud coverage, etc.), social activities (such as holidays), 

standard working hours, etc.  
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Figure 4.2: Household load curve, constant daily output power to grid (PGrid-ref), typical 

rooftop PV generation for typical summer (a) and typical winter (b) days in Perth, WA [45] 
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The BS can store unused energy locally and utilize it in the evening peak load period 

to reduce the voltage rise problem during peak PV generation by injecting less power 

to the grid. It can also support the voltage during evening peak hours by serving local 

household loads and hence reducing stress on the grid. 

 

4.2. Battery Storage Energy Management Strategy (BS-EMS) For   Constant 

Output Power Production  

Installed rooftop PVs in residential networks can cause power fluctuations due to the 

presence of passing cloud and PV outages. To overcome this problem, an EMS in 

conjunction with a BS system will be implemented to support the rooftop PV (Fig. 

1) in providing constant power production during different periods throughout the 

day. The entire PVs will work according to the BS-EMS. Constant output PV power 

(PPV) will be produced as a result of dynamically controlling the BS converter under 

various operating conditions. In this sense, the control scheme of the total system 

(rooftop PV, BS, household load and grid) is based on the following power balance 

equation: 

)]()()([)( tPtPtPtP LBS
t

PV
t

refGrid −∑ +=∑ −                                                          (4-1) 

where hours24t2tt ...,, ∆∆=  and t∆  is the time interval. PGrid-ref, PPV, PBS and PL 

are the instantaneous desired (requested) constant power to be injected into the grid,  

the instantaneous power provided by rooftop PV panels (which mainly depends on 

the site location and weather conditions), the current power exchanged by the BS and 

the instantaneous household load, respectively  (Fig. 4.2). The operation of BS 
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system will be dynamically controlled based on the following charge and discharge 

characteristics:  

Charge: If )()( cP
dt

tEd0P BS
BS

BS ε−=⇒<                                              (4-2) 

Discharge: If 
d

P
dt

tEd0P BSBS
BS ε

−
=⇒>

)(                                              (4-3) 

where BES, εc and εd are the current stored (available) energy of BS system, 

charging efficiency and discharging efficiency, respectively.  

According to Eq. 4-1, the desired constant output power level to the grid (PGrid-ref) 

can be changed for each time interval ( t∆ ). In this paper t∆  is assumed to be 15 

min. Therefore, the power production patters can have up to 24x4=96 different 

durations Pattern= {p1 , p2, ..., p96}. However, in this paper a single constant output 

power level is considered during daylight (e.g., 0600h-18:00h) as by the PGrid-ref, 

waveform in Fig. 4.2.   

The PV, load and BS energy profiles during the 24 hour period can be calculated as 

follows: 
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where PPV, k∆t,max, PL, k∆t,max, PBS, and  k∆t,max are the maximum values of PV, 

load and BS power during time interval k∆t, respectively.  

The objective of using the BS-EMS is to utilize the energy stored in the battery and 

control its  charge an discharge rates such that the net output power injected to the 
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grid (after feeding the household loads) is constant during daylight. BS-EMS 

measures changes in the PV output power and adjust the battery power injection or 

absorption level to mitigate output power fluctuations and maintain it at a pre-

defined level (PGrid-ref). In Fig. 4.3, PV output power, sum of the PV and BS output 

and BS power are shown in red, blue and green colours, respectively.     
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                                                      Figure 4.3: Operation of BS-EMS 

4.2.1. Flow Chart of the Proposed BS-EMS   

A charge/discharge controller limits the amount at which current is added to or 

drawn from the battery. By applying a close-loop control to monitor the power 

exchange, the charge controller prevents overcharging and protects the battery 

against overvoltage, which can reduce battery performance or lifespan. In order to 

protect the battery and increase its lifetime, BS-EMS is designed to limit the 
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minimum and maximum levels of the battery state-of-charge (SOC) to SOCmin and 

SOCmax, respectively. The battery SOC can be defined from the perspective of 

energy as follows [45]: 

                                                                (4-7) 

where Wremain and Winitial are the remaining and initial power of the battery, 

respectively. In practice, the definition and determination of SOC is more complex. 

There are few established approaches to estimate SOC based on discharge test, 

ampere hour measurement, open circuit voltage, constant current voltage, internal 

resistance, linear model, neural networks, Kalman filter etc. The set points for the 

charge controller are provided through BS-EMS. 

Figure 4.4 shows flowchart of the proposed algorithm for BS-EMS that will 

dynamically control the battery charge/discharge process according to Eqs. (4-2, 4-3) 

 

                   
Figure 4.4: Flowchart of the proposed BS-EMS algorithm for battery charge/discharge 

management to attain constant output power to grid [45]                 
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At each time interval (e.g., t∆ =15 min in this paper), BS-EMS will upgrade the 

status of rooftop PV based on solar radiation, feed the household loads and based on 

the weather condition (sunny, cloudy) decides to either charge or discharge the 

battery. This process will continue for 24 hours until reaching the final time interval 

at t= 96∆t=96(15 min) = 24 hours. 

In order to utilize the battery more efficiently, BS-EMS will also try to utilize it to 

supply the household loads during peak load hours when the price of electricity is 

high (e.g., 19:00-24:00) and will buy cheap electricity from the grid during off-peak 

hours (00:00-7:00) to recharge it for the next day. This is done by considering the 

battery capacity (BCAP) and selecting a relatively small value for PGrid-ref, during 

peak load hours and a relatively large value during off-peak load hours as shown in 

Fig. 4.2. 

4.2.2. Dynamic Control of the Battery Converter  

A typical house with grid-connected rooftop PV and BS system investigated in this 

paper is shown in Fig. 4.5. A dc–ac converter is used for transferring maximum 

power from the PV array to the bus. The bidirectional BS converter is a single-phase 

full-bridge unit used to connect the dc bus to the ac utility grid, which enables 

bidirectional power flow. The battery with a bidirectional dc/ac converter is used to 

balance the power differences between PV, household loads and grid.  
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Figure 4.5: PSCAD model the grid-connected rooftop PV and household linear load combined         

with BS system 

A PSCAD computer program (Fig. 4.5) is developed to model the grid-connected 

rooftop PV and household linear load combined with the shunt connected BS system 

which is dynamically controlled over a 24 hour period based on the proposed BS-

EMS algorithm of Fig. 4.5. PSCAD is selected due to its robustness in transient 

analysis and relative ease in defining custom nonlinear models.  The detailed model 

for grid connected rooftop PVs and BS which is suitable for load flow calculations is 

shown in Fig. 4.6.   
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Figure 4.6: Detailed simulated PSCAD model of grid-connected rooftop PV and BS 

 

 

 

                                Figure 4.7: Schematic diagram of a BS connection to grid 

Figure 4.7 shows the schematic diagram of a BS connection to grid at bus k, along 

with the definitions of bus voltages and line powers. and  are the BS 
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voltage and impedance connected to the kth bus. In this equation, the controlling 

constant β is equal to 1 when there is a BS connected to the kth bus, otherwise, it is 

zero [46]. Based on Fig. 4.7, as follow: 
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                                                            (4-8) 
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V

Q −−= δδ                                                              (4-9)           

where kBSP ,  and kBSQ ,  are the active and reactive power output of the BS connected 

to kth bus, respectively. Assuming kBSP ,  and kBSQ ,  to be constant and kV~  and kδ  are 

known, then kBSV ,
~  and kBS ,δ  can be calculated. It must be noted that since the 

rooftop BS is operating at unity power factor, 0Q kBS =, .  

To calculate kV~  from Eqs. (4-8, 4-9), an iterative method is required. Starting with a 

set of initial values, the entire network is solved to determine kV~ .  

The aim of converter control is to generate a switching function that can take on +1 

or -1 values depending on the status of the (IGBT) switches [46]. A state space 

approach will be used to implement the converter control. The input state vector is:  

].[ fcf
T iVx =                                                                                                      (4-10)                                                                                                                                                              

The state space model and the output state vector are defined as: 

cuBAxx +=                                                               (4-11) 

x01Vy cf ][==                                                               (4-12) 

where cu  is the continuous-time version of switching function u . 



 

49 

 

A hysteresis band approach will be used to turn on/off the (IGBT) switches. The 

inverter switching logic is  





−=≤
+=>

1uthenhuif
1uthenhuif

c

c                                                               (4-13) 

where h  is a small positive constant that defines the hysteresis band.   

4.2.3. Voltage and Reactive Power Controls  

A PI controller is also implemented to reduce voltage variations at PCC (Fig. 4.8). 

One of the major grid supporting applications of BS is to provide fast (dynamic) 

reactive power compensation in response to sudden changes (transients) introduced 

in the system following faults, non-linear load variations, and/or other type of system 

switching. The dynamic VAR compensation capability may also be used to perform 

voltage regulation at PCC. To achieve dynamic VAR compensation and voltage 

regulation, the BS power conversion system should be able to supply a wide range of 

reactive power.  In this thesis, BS is utilized to provide fast reactive power to 

compensate for variation sin PV output power due to fluctuations in sun radiations, 

passing clouds and PV outrages. 

                         

                                          Figure 4.8: PSCAD model of PI controller 
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4.3.    Proposed Practical Approach for Estimating Battery Capacity  

As the performance of BS-EMS and the cost of the total system will significantly 

depend on the rating of the battery; a relatively simple and practical approach is 

presented to estimate its size. The approach is as follows (Fig. 4.9): 

• Step 1- Select a typical (winter) rooftop PV generation profile Fig. 4.2, and a 

small estimated battery capacity (BCAPestim).                       

• Step 2- Perform BS-EMS of Fig. 4.4: Calculate and plot battery energy profile 

EBS(t), (Eq. 4-6). 

• Step 3- If the peak of EBS(t), is flat during daylight, increase battery capacity (e.g., 

BCAPestim= 1.05BCAPestim) as it is too small to fully store the excess PV 

energy after feeding the load and grid. 

• Step 4- Repeat steps 2-3 until EBS(t), has a single distinct maximum value during 

daylight.  

• Step 5- Select BCAP =0.95BCAPestim. 

 

BS-EMS estimates the rate of change in real-time and determines contribution from 

the ES unit to limit the rate of variations for the total power injected to the grid. The 

difference between PPV and the power actually injected to the grid (PGrid-ref,) is 

supplied (if negative) or absorbed (if positive) by the BS. 
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                                       Figure 4.9: The proposed flowchart for estimating BS capacity 
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CHAPTER FIVE 

SIMULATIONS RESULTS AND ANALYSES 
 

In this chapter, performance of the proposed BS-EMS of Fig. 4.4 is investigated for 

the grid-connected rooftop PV and BS system shown in Fig. 5.1. A PSCAD 

computer program is developed to model the system and BS-EMS. The selected PV 

rating is 1.6kW, estimated battery capacity is 6.0kWh and minimum and maximum 

battery state-of-charges are set to SOCmin=0.20 and SOCmin=0.80, respectively. The 

desired consonant output power delivered to the grid during the daylight (0600h-

18:00h) for summer and winter periods are assumed to 0.50kW and 0.13kW, 

respectively. The average computing times for performing each simulation over the 

24 hour period is about 24 sec.  

      Detailed simulations are presented under different grid, battery and rooftop PV 

operating conditions over the 24 hour period to demonstrate: 

• Performance of BS-EMS under normal operating condition for typical summer 

and winter days in Perth, WA, Australia (Figs. 5.2-5.3).  

• Application of the proposed simple and practical approach (Fig. 4.6) to estimate 

battery rating (Fig. 5.4, Table 5.1).  

• Effect of battery rating on performance of BS-EMS (Fig. 5.5, Table 5.2).  

• Impact of changing the constant output power (PGrid-ref) on performance of BS-

EMS (Fig. 5.6, Table 5.3).  

• Ability of BS-EMS to deliver constant output power during periods of passing 

clouds (Figs. 5.7, Table 5.4).  
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• Ability of BS-EMS to deliver constant output power for short periods of PV 

outage (Figs. 5.8, Table 5.5). 

• Impact of reducing the duration of constant output power (Figs. 5.9, Table 5.6). 

Battery
Converter

PV
Converter

Household 
Loads

  

       Figure 5.1: Simulated grid-connected residential house with rooftop PV and BS system 

 

5.1. Performance of BS-EMS under Normal Operating Condition 

Figures 5.2(a) and 5.3(a) shows detailed simulation results without the BS system for 

typical winter and sunny days. As expected, the net rooftop PV output power of 

system delivered to the grid during daylight is not contact and is strongly influenced 

by the environment conditions (sun radiations). Simulations are repeated with a BS 

system of 6.0kWh and presented in Fig. 5.2(b) and 5.3(b). Clearly, BS-EMS is 

keeping the injected output power constant (PGrid-ref) from 06:00h to 16:00h at 

0.5kWh and 0.13kWh for summer and winter days, respectively. 

According to Fig. 5.2(b), BS-EMS has successfully managed to take advantage of the 

BS to deliver contest power of 0.13kW to the grid from 0600h to 1800h while also 

supporting the household loads after daylight until 18:30h. Note that the grid is 

feeding the load and charging the battery during early morning hours (0000h-0600h). 

This is justified as the price of electricity will be cheap during off-peak load hours. 
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Examination of the battery energy profile indicates that when necessary, the stores 

energy will be released to the grid through the day (0600h-1030h and 1600h-1800h) 

to achieve the requested constant output power. However, the excess PPV during high 

sun radiation hours (1200h-1300h) will be used to recharge the battery. For the 

situation of Fig. 5.2(b), the battery is nearly discharged during the day at 1800h; 

therefore it will continue feeding the load until reaching SOCmin at 1830h. Note that 

the BS-EMS has also managed to firmly regulate the PCC voltage regardless of the 

load and solar variations. 
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Figure 5.2: Simulation results without (a) and with (b) BS system for a typical winter day 
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   Figure 5.3: Simulation results without (a) and with (b) BS system for a typical summer day 
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5.2. Estimation of Battery Rating 

The battery size is estimated using the proposed simple and practical approach of 

Fig. 4.7. Battery sizing is performed for typical sunny and cloudy days in summer 

and winter (Table 5.1). The selected battery eating should be based on the worse 

operating condition (for example, a typical cloudy winter day). Figs. 5.4(a) and (b) 

show fine performances of BS-EMS with the selected batter size of 6.0kWh for 

typical cloudy summer and winter days, respectively. 

 

Table 5.1: Estimated battery size based on the proposed simple approach of Fig. 4.9 

 Estimated Battery Size [kWh] 

Sunny Day Cloudy Day 

Summer 4.3 5.0; Fig. 5.4(a) 

Winter 5.5 6.0*; Fig. 5.4(b) 

*) The selected battery size based on the worse operating conditions (typical cloudy winter day. 
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Figure 5.4: Simulation results for typical cloudy summer (a) and winter (b) days used to 

estimate the battery rating (Table 5.1) 
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5.3. Impact of Battery Rating on Performance of BS-EMS 

To explore the impacts of battery rating on the performance of BS-EMS, detailed 

simulations are performed for typical sunny and cloudy days in summer and winter 

with different battery sizes. The summary of results are presented and compared in 

Table 5.2. The performance of BS-EMS is significantly influenced by the battery 

rating. According to Table 5.2, the practical and moderate battery rating to fully 

support the grid within the daylight in both summer and winter seasons while also 

providing partial support to the household loads after 1800h is 6kWh.  

As expected, it will not be possible to support the grid with constant output power if 

the battery is too small (Table 5.2: rows 4-5, 12-14). On the other hand, it will not be 

beneficial to select a large battery rating. The only benefit in increasing the battery 

size beyond the moderate practical rating (6kWh) is to increase the duration of load 

support in the evenings. However, as demonstrated in Table 5.2 (rows 8-9 and 16-

17), the duration of load support is mainly determined by the amount of available 

solar energy. For example, changing the battery size from 6kWh to 7kWh will only 

extend the load support period by 15min while a further increase to 8kWh will not 

have any impact.  

Figure 5.5(a) shows system operation in a typical sunny summer day with a large BS 

of 8kWh (Table 5.2: row 9, columns 1-3) while Fig. 5.5(b) presents operation in 

cloudy winter with a small BS of 2kWh (Table 5.2: row 12, columns 4-5). 
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Table 5.2: Impact of battery size on performance of BS-EMS 

BS Size 

[kWh] 

Durations of 

Constant PGrid-ref 

Duration of Load 

Support after 6pm 

Durations of 

Constant PGrid-ref 

Duration of Load 

Support after 6pm 

 
Summer (PGrid-ref =0.5kW) 

Sunny Cloudy 

2 

6:00-7:45, 

10:15-18:00 no support 

6:00-7:30, 

10:15-17:30 no support 

4 6:00-18:00 18:00-18:30 6:00-17:45 no support 

5 6:00-18:00 18:00-19:30 6:00-18:00 18:00-18:45 

6* 6:00-18:00 18:00-20:00 6:00-18:00 18:00-19:30 

7 6:00-18:00 18:00-20:30 6:00-18:00 18:00-19:45 

8 

6:00-18:00 

Fig. 5.5(a) 

18:00-20:30           

Fig. 5.5(a) 6:00-18:00 18:00-19:45 

 

Winter (PGrid-ref =0.13kW) 

Sunny Cloudy 

2 6:00-8:30 no support 

6:00-8:30 

Fig 5.5(b) 

no support 

Fig 5.5(b) 

4 6:00-16:45 no support 6:00-16:30 no support 

5 6:00-17:45 no support 6:00-17:30 no support 

6* 6:00-18:00 18:00-19:00 6:00-18:00 18:00-18:45 

7 6:00-18:00 18:00-19:15 6:00-18:00 18:00-19:00 

8 6:00-18:00 18:00-19:15 6:00-18:00 18:00-19:00 

*) Recommended battery rating.  
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Figure 5.5: Simulation results for typical sunny summer with BS 8kWh (a) and cloudy winter 

with BS 2kWh (b) days used to estimate the battery rating (Table 5.2) 
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5.4. Impact of Constant Output Power (PGrid-ref) on Performance of BS-EMS 

PV owners would like to have high output power levels (PGrid-ref) to increase their 

profits by selling more electricity to the grid. However, the maximum possible value 

of PGrid-ref is primarily determined by the available daily PPV that will considerably 

decrease during winter and cloudy days. It will also depend on the selected size of 

the BS. To explore the impacts of PGrid-ref on the performance of BS-EMS, 

simulations are performed for typical sunny and cloudy winter days with PGrid-ref  

increased from 0.13kW to 0.20kW and summarized in Table 5.3. Clearly, if an 

unrealistic high PGrid-ref value is selected, the rooftop PVs will not be able to fully 

support the grid with content power regardless of the battery rating. Fig 5.6(b) shows 

that by increasing PGrid-ref from 0.5kW to 0.7kW (during summer), the PV-battery 

system will not be able to fully support the grid . 

 

Table 5.3: Impact of increasing constant output power during winter from 0.13kW to 0.20kW 

dBS Size 

[kWh] 

Durations of 

Constant PGrid-ref 

Duration of Load 

Support after 6pm 

Durations of  

Constant PGrid-ref 

Duration of Load 

Support after 6pm 

Winter with High Constant Output Power (PGrid-ref =0.20kW) 

 Sunny Cloudy 

2 6:00-8:00 no support 6:00-8:00 no support 

4 6:00-15:00 no support 6:00-10:30 no support 

5 6:00-16:30 no support 6:00-15:30 no support 

6 
6:00-17:10 

Fig 5.6(a) 
no support 6:00-17:15 no support 

7 6:00-17:45 no support 6:00-17:30 no support 

8 6:00-17:45 no support 6:00-17:30 no support 
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 Figure 5.6: Simulation results for typical sunny winter with PGrid-ref =0.20kW (a) and sunny    

summer with PGrid-ref =0.70kW (b) days used to impact of increase output power (Table 5.3) 
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5.5. Ability of BS-EMS to Deliver Constant Output Power During Periods of 

Passing Clouds 

To examine the ability of BS-EMS in delivering constant output power in the 

presence of passing clouds, simulations are repeated for typical sunny winter and 

sunny summer days with passing cloud periods of 30 minutes, one hour and two 

hours (Table 5.4). Fig. 5.7(a) illustrates the impact of having passing cloud for 

duration of one hour (12:00h-13:00h) during a typical sunny summer day. Clearly, 

the proposed BS-EMS has successfully taken advantage of the energy stored in the 

6kWh battery to keep the output power constant at PGrid-ref=0.13kW for the requested 

12 hours (0600h-1800h). Note that BS-EMS has also managed to continue feeding 

the household load until 19:15h when the battery reaches its minimum SOC.  

 

Table 5.4: Impact of passing clouds on performance of BS-EMS 

Durations of 
Passing 
cloud 

 

Durations of 

Constant PGrid- ref 

 

Duration of Load 

Support after 6pm 

Durations of 

Constant PGrid-ref 

Duration of Load 

Support after 6pm 

Sunny Summer (PGrid-ref =0.5kW) Sunny Winter (PGrid-ref =0.13kW) 

No cloud 6:00-18:00 18:00-19:75 6:00-18:00 18:00-18:20 

30 minutes 6:00-18:00 18:00-19:56 6:00-18:00 no support 

1 hour 6:00-18:00 
18:00-19:15 

Fig. 5.7(a) 
6:00-17:78 

no support 

Fig. 5.7(b) 

2 hours 6:00-18:00 no support 6:00-17:35 no support 
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Figure 5.7: Simulation results for typical sunny summer (a) and sunny winter (b) days 

considering significant passing cloud for a duration of one hour 
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5.6. Ability of BS-EMS in Deliver Constant Output Power for Short Periods 

of PV Outage 

Table 5.5 summaries the ability of BS-EMS in providing constant output power with 

no PPV that will depend on the duration of PV outage and the battery rating. As 

expected, it will be possible to support the grid with constant output power during 

PV outages for longer periods as the size of battery is increased. On the other hand, it 

will not be advantageous to select a very large battery rating. The only benefit in 

increasing the battery size beyond the moderate practical rating (6kWh) is increased 

the duration of load support in the evenings. However, as demonstrated in Table 5.5 

(rows 10 and 12), the duration of grid support is mainly determined by the amount of 

available BS energy. For example, changing the battery size from 6kWh to 7kWh 

will only extend the grid support period by 33min from 12:00h-14:37h (with the 

battery size of 6kWh) to 12:00h-15:20h (with the battery size of 7KWh).  Simulation 

results for a typical sunny winter day considering PV outage after 12:00h are shown 

in Fig. 5.8 (a) and (b) for battery rating of 6kWh and 0.13kW, respectively. 

Table 5.5: Grid support during short periods of PV outage 

BS Size 

[kWh] 

Duration of Grid Support with PV Outage 

After 

10:00h 

After  

12:00h 

After 

14:00h 

After 

10AM 

After 

12PM 

After 

14PM 

 

Summer (PGrid-ref =0.5kW) 

Sunny Cloudy 

6 1:16 1:37 2:15 1:11 1:33 2:00 

6.5 1:26 2:00 2:33 1:27 1:52 2:24 

7 1:39 2:00 2:45 1:38 2:00 2:37 

 

Winter (PGrid-ref =0.13kW) 

Sunny Cloudy 

6 2:25 2:37; Fig. 5.8(a) 3:00 2:31 2:13 2:30 

6.5 2:48 3:00 3:32 3:00 2:43 3:00 

7 3:05 3:10; Fig. 5.8(b) 3:43 3:09 2:51 3:07 
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Figure 5.8: Simulation results for a typical sunny winter day considering PV outage after 12:00h 

with battery rating of; (a) 6kWh, (b) 7kWh 
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5.7. Impact of Reducing the Duration of Constant Output Power 

According to Table 5.4, BS-EMS cannot fully support the grid with constant output 

power for long periods of passing clouds practically during sunny winter days as 

shown in Table 5.4 (rows 4-6, column 5). To overcome the problem, we can either 

decrease the level of constant output power (PGrid-ref) or reduce the duration of grid 

support. Table 5.6 demonstrates the impact of reducing the duration of grid support 

from 6:00-18:00 to 8:00-16:00. Compression of Tables 5.4 and 5.6 reveals that BS-

EMS can not only support the grid with constant power, but also feed the household 

loads after day light for a much longer period. This is demonstrated in Figs. 5.9 (a) 

and (b) for sunny winter and cloudy summer days with one hour of passing clouds, 

respectively. 

Table 5.6: Impact of reducing duration of constant output power (8:00-16:00) on performance 

of BS-EMS considering passing cloud 

Durations of 
Passing 
cloud 

 

Durations of 

Constant PGrid- ref 

 

Duration of Load 

Support after 6pm 

Durations of 

Constant PGrid-ref 

Duration of Load 

Support after 6pm 

Sunny Summer (PGrid-ref =0.5kW) Sunny Winter (PGrid-ref =0.13kW) 

No clouds 8:00-16:00 16:00-22:15 800-16:00 16:00-20:10 

30 minutes 8:00-16:00 16:00-22:53 8:00-16:00 16:00-19:80 

1 hour 8:00-16:00 
16:00-22:00 

Fig. 5.9(a) 
8:00-16:00  

16:00-19:73 

Fig. 5.9(b) 

2 hours 8:00-16:00 16:00-21:30 8:00-16:35 16:19:50 
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Figure 5.9: Simulation results showing improved performance of BS-EMS considering one hour 

passing clouds with a shorter period of grid support (8:00-16:00) for a; (a) sunny summer day, 

(b) sunny winter day 
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                                                      qCHAPTER SIX 

SUMMARY AND CONCLUSIONS 
 

This thesis introduces application and control of BS systems at terminals of an 

exciting residential house with rooftop PVs to deliver constant net output power 

(PGrid-ref) to the grid during daylight. System operation is based on the power balance 

between rooftop PV, BS and grid by dynamic control of the battery converter while a 

PI controller is also implemented to reduce voltage variations at PCC. Detailed 

simulations are performed for a grid-connected rooftop PV and BS over the 24-hour 

period using developed codes in PSCAD to demonstrate system performance under 

various grid, load and environmental conditions. Impacts of battery size, passing 

clouds and short PV outages, as well as duration and magnitude of PGrid-ref on system 

performance are investigated. 

6.1. Thesis Conclusions 

Based on detailed simulations and analyses under different operating scenarios, the 

main conclusions of this research work are: 

• BS-EMS can effectively manage to take advantage of the BS to deliver constant 

output power PGrid-ref to the grid during daylight and regulate PCC voltage. 

• BS-EMS is designed to increase befit and reduce cost of purchasing electricity by 

charging the battery during early morning off peak load hours, utilizing the 

excess PV energy to deliver constant output power during daylight while 

maintaining high SOC to continue feeding household load after day light without 

purchasing expensive electricity from the grid during the peak load hours.   



 

71 

 

• PV owners would like to have high PGrid-ref to increase their profits by selling 

more electricity to the grid. However, the maximum possible value of PGrid-ref  

significantly depends on the available daily PPV (that will decrease during winter 

and cloudy days) and to some extent rating of the battery.  

• The performance of BS-EMS is significantly influenced by the battery rating. For 

a moderate increase in the battery size, BS-EMS can also support the household 

loads during the evening peak load hours to further increase the profit. However, 

the duration of load support is mainly determined by the amount of available 

solar energy not the size of the battery.  

• With large PGrid-ref values and/or small battery capacities, BS-EMS will not work 

properly for the entire day as the battery will quickly reach SOCmin.  

• With small PGrid-ref values and/or large battery capacities, BS-EMS will work 

properly; however, the available battery capacity may not be fully utilized. 

• BS-EMS can also maintain constant output power during periods of passing 

clouds and short term PV outages.   

6.2. Thesis Contributions 

The main contributions of this research can be summarized as follows: 

• Application of battery storage unit to control the output power profile of an 

existing rooftop PV system. 

• Developing a practical BS-EMS to deliver constant output power to the grid 

during daylight. 

• Development of a simple approach to estimate battery rating.  
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The proposed BS-EMS will also compensate for the intermittent behaviour and 

uncertainties associated with rooftop PVs particularly during cloudy days and PV 

short outages. 

6.3. Future Work 

Future work in this field may be performed considering the following research areas: 

1. Practical design, implementation and testing of BS-EMS. 

2. Improving the BS converter control and PI voltage regulator with faster and 

more efficient artificial intelligence (AI) based controllers.    

3. Performing cost analysis over system life considering the high price of ES 

devices. Determining reasonable solar feed-in-tariffs to guarantee consumer 

profit and make BS-EMS implementation affordable.  
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