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An important dissipation mechanism for waves in randomly inhomogeneous poroelastic media is
the effect of wave-induced fluid flow. In the framework of Biot’s theory of poroelasticity, this
mechanism can be understood as scattering from fast into slow compressional waves. To describe
this conversion scattering effect in poroelastic random media, the dynamic characteristics of the
coherent wavefield using the theory of statistical wave propagation are analyzed. In particular, the
method of statistical smoothing is applied to Biot’s equations of poroelasticity. Within the accuracy
of the first-order statistical smoothing an effective wave number of the coherent field, which
accounts for the effect of wave-induced flow, is derived. This wave number is complex and involves
an integral over the correlation function of the medium’s fluctuations. It is shown that the known
one-dimensional~1-D! result can be obtained as a special case of the present 3-D theory. The
expression for the effective wave number allows to derive a model for elastic attenuation and
dispersion due to wave-induced fluid flow. These wavefield attributes are analyzed in a companion
paper. © 2005 Acoustical Society of America.@DOI: 10.1121/1.1871754#
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I. INTRODUCTION

Understanding elastic wave attenuation and dispers
in porous fluid-saturated materials is important in such
verse applications as architectural acoustics, soil and r
mechanics, and exploration seismology. One major caus
elastic wave attenuation is viscous dissipation due to the fl
of the pore fluid induced by the passing wave. Wave-indu
fluid flow occurs as a passing wave creates local pres
gradients within the fluid phase and the resulting fluid flow
accompanied with internal friction until the pore pressure
equilibrated. The fluid flow can take place on various len
scales: for example, from compliant fractures into the equ
pores~so-called squirt flow1–3!, or between mesoscopic he
erogeneities like fluid patches in partially saturated rocks4–7

Theoretical studies of the elastic wave attenuation du
wave-induced flow go back to the 1970s. In such stud
wave propagation in an inhomogeneous porous medium
usually analyzed using Biot’s equations of poroelastic
with spatially varying coefficients.8 The first models of at-
tenuation due to wave-induced flow considered flow cau
by a regular assemblage of inhomogeneities of ideal sh
such as two concentric spheres or flat slabs.9–11 A general
theory of wave propagation in heterogeneous porous m
using the double-porosity approach was recently develo
by Pride and Berryman12 and Prideet al.13 In the case of
patchy saturation, the results of this theory coincide w
those obtained earlier by Johnson14 using a slightly different
method. Although mathematical formulations in the theor
Pride and Berryman12 and Johnson14 allow for arbitrary ge-
ometry of the inhomogeneities, closed-form expressions

a!Electronic mail: tobias.muller@geophy.curtin.edu.au
b!Electronic mail: boris.gurevich@geophy.curtin.edu.au
c!URL: http://www.geophysics.curtin.edu.au
1796 J. Acoust. Soc. Am. 117 (4), Pt. 1, April 2005 0001-4966/2005/1
n
i-
ck
of
w
d
re

s
h
nt

to
s
is

d
pe

ia
d

h

s

r

attenuation and phase velocity can only be obtained fo
regular system of simple geometrical shapes such as con
tric spheres.

In real rocks heterogeneities are more likely to be s
tially distributed in a random fashion. Therefore, it is des
able, as suggested by Lopatnikov and Gurevich,15 to model
wave-induced flow using the theory of waves in rando
media.16 For one-dimensional~1-D! porous media, Gurevich
and Lopatnikov17 showed that elastic wave attenuation in
randomly layered porous medium differs significantly fro
attenuation in periodically layered porous media.10,18 This
suggests that the effects of three-dimensional inhomoge
ities on elastic wave wave attenuation and dispersion in
rous media may also be different for random and perio
spatial configurations. One approach to this problem is
consider a homogeneous porous medium with randomly
tributed discrete, regularly shaped 3-D inclusions. Howev
so far only the attenuation due to conversion scattering
spherical inclusions from fastP waves into Biot’s slowP
wave is known.19

Our purpose in this paper is to analyze the effect
wave-induced fluid flow on the dynamic characteristics
coherent elastic waves propagating in a porous med
whose properties are continuous random functions of p
tion. Our approach is based on the statistical wave theory
applied to Biot’s equations of poroelasticity.8 We restrict our
analysis to the case of mesoscopic inhomogeneities, tha
inhomogeneities whose characteristic sizea is much larger
than the typical size of pores or grainsapore but, at the same
time, much smaller than the wavelength of the propagat
elastic wave,l:

apore!a!l. ~1!

In other words, we ignore pore-scale heterogeneities, wh
17(4)/1796/10/$22.50 © 2005 Acoustical Society of America
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allows the application of Biot’s equations for a poroelas
continuum.8 We model wave propagation in the inhomog
neous porous medium using Biot’s equations of poroelas
ity with randomly varying coefficients~see Fig. 1!. By using
a Green’s function approach, these partial differential eq
tions transform into a system of integral equations. This
ter system is solved by means of the method of statist
smoothing which is widely used in problems of electroma
netic, acoustic, and elastic wave propagation.20–22More pre-
cisely, we employ a first-order statistical smoothing appro
mation that sometimes is referred to as a Bour
approximation.16,23 For poroelastic media, this method wa
earlier employed to computeP-wave attenuation and dispe
sion due to conversion scattering from fastP waves into
Biot’s slow waves in a randomly layered porous medium17

We follow this strategy and analyze the conversion scatte
from fast P waves into Biot’s slow wave in 3-D randoml
inhomogeneous porous media. Biot’s slow wave is a hig
dissipative wave mode. Therefore, the use of the first-or
statistical smoothing approximation to the conversion sc
tering problem in Biot’s equations of poroelasticity quantifi
the dissipation of wave field energy due to energy trans
from the coherent component of the fastP wave into the
dissipative slowP-wave mode. This is different from th
usual application of the method of smoothing to energy c
serving wave systems, where an apparent dissipation~so-
called scattering attenuation! results from the energy transfe
from the coherent component of the wave field into the
coherent component.

In light of previous results for randomly layered poro
media, it is useful to introduce some simplifications from t
outset. First of all, we restrict our analysis to low freque
cies. Specifically, we assume that frequencyv is much

FIG. 1. Sketch of a heterogeneous porous medium where only the
modulus of the drained-framework-of-grains fluctuates. The homogen
background medium is characterized by the bulk modulusKd

B . There are
inhomogeneities with higher bulk moduli, that isKd

(1).Kd
B , and other in-

homogeneities with lower bulk modulus,Kd
(2),Kd

B . The inhomogeneities
have a length scale ofa that is much larger than the typical pore scaleapore.
During the compression cycle of a wave there will be fluid flow from inh
mogeneities withKd

(2) into the background and flow from the backgroun
into inhomogeneities withKd

(1) . During the extension cycle of the wave th
fluid flow becomes reversed.
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 T. M. Müller a
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smaller than the critical Biot frequencyvB5fh/k0r f :

v!vB , ~2!

wheref andk0 denote the porosity and permeability of th
composite material, whiler f andh are the density and vis
cosity of the pore fluid. Condition~2! implies that the stan-
dard Biot’s viscoinertial attenuation and dispersion~the so-
called Biot’s global flow mechanism! is neglected and theP
wave numberkp is real. Furthermore, at low frequencies th
slow wave is much slower than the fastP wave and therefore
the ratio ofkp to slowP wave numberkps is a small param-
eter:

ukpu
ukpsu

!1. ~3!

Wherever applicable we make use of relation~3!, being
aware of the underlying low-frequency assumption.

The strategy of this paper is as follows. First, we app
the method of Green’s functions to Biot’s equations of p
roelasticity in order to represent the wavefield due to po
source excitation~Sec. II!. Next, we derive an integral wave
field representation for the case when the coefficients
Biot’s equations exhibit a randomly fluctuating compone
This wavefield representation~also called the scattering
equation! is then converted into an integral equation f
Green’s function for the inhomogeneous medium. In Sec.
we apply a perturbation method to compute an approxim
tion for the mean of the Green’s function. From this Gree
function we derive and analyze an explicit expression for
effective, complexP wave number that accounts for the co
version scattering fromP into slow P waves. The range o
applicability of our theory is analyzed in Sec. IV. Finally, i
Sec. V we show how the results of the aforementioned 1
theory can be recovered as a limiting case of the more g
eral 3-D theory. A detailed analysis of attenuation and d
persion as functions of frequency and the potential appl
bility of these wavefield signatures to interpret the effect
wave-induced flow in real rocks is presented in a compan
paper.24

II. FORMULATION OF THE POROELASTIC
SCATTERING PROBLEM

A. Green’s function approach for Biot’s equations
of poroelasticity

In order to study dynamic effects of elastic wave prop
gation in porous media, we base our analysis on Biot’s eq
tion of poroelasticity.8 Using index notation—summation
over repeated indices is assumed and partial derivatives
denoted as,i or ] i—we can write the equations of motio
in the frequency domain~the time-harmonic dependenc
exp(2ivt) is omitted!,

rv2ui1r fv
2wi1t i j , j50, ~4!

r fv
2ui1qv2wi2p,i50, ~5!

wheret i j is the total stress tensor,p the fluid pressure, while
ui andwi are the components of the solid and relative flu
displacement vectors, respectively. The relative fluid d
placement is defined aswi5f(Ui2ui), where is Ui the

lk
us
1797nd B. Gurevich: Statistical smoothing in porous random media
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fluid displacement. The densities of the solid and fluid ph
are denoted byrg andr f so that the bulk density is given b
r5fr f1(12f)rg , wheref is porosity. The parameterq is
defined asq5 ih/(vk0), whereh is viscosity andk0 perme-
ability. We note that this definition ofq is a consequence o
the low-frequency assumption~2!.

In order to obtain a closed system of wave equations
the displacementsui andwi , we complement the equation
of motion with the stress–strain relations for an isotro
poroelastic medium,8

t i j 5G@ui , j1uj ,i22d i j uj , j #1d i j @Huj , j1Cwj , j #, ~6!

p52Cuj , j2Mwj , j . ~7!

Here G is the porous-material shear modulus, andH is the
undrained, low-frequencyP-wave modulus given by Gas
smann’s equation:

H5Pd1a2M , ~8!

where

M5@~a2f!/Kg1f/K f #
21. ~9!

In Eqs. ~8!–~9!, Pd5Kd14/3G is the P-wave modulus of
the drained frame,a512Kd /Kg is the Biot–Willis coeffi-
cient,C5aM , andKg , Kd , andK f denote the bulk modul
of the solid phase, the drained frame, and the fluid pha
respectively. Symbold i j is Kronecker’s delta~the identity
tensor!.

It is expedient to write the above system of coupl
wave equations in matrix form:

FLik
~1! Lik

~2!

Lik
~3! Lik

~4!G•F uk

wk
G50, ~10!

where we defined the linear differential operators as follo

Lik
~1!5rv2d ik1] jG@d jk] i1d ik] j22d i j ]k#1] iH]k ,

~11!

Lik
~2!5r fv

2d ik1] iC]k , ~12!

Lik
~3!5Lik

~2! , ~13!

Lik
~4!5qv2d ik1] iM]k . ~14!

Note that in inhomogeneous media all the poroelastic par
eters are functions of position. In the presence of po
sources, the right-hand side of Eq.~10! can be written as

2FFi
0d~r i2r i8!

f i
0d~r i2r i8! G , ~15!

whereFk
0 and f k

0 represent constant forces applied to the b
and fluid phase, respectively, andd(r i2r i8) denotes the
Dirac delta function. The response of system~10! to point
sources of the form~15! can be formulated as25

F ui

wi
G5FGik

F Gik
f

Gik
f Gik

w G•FFk
0

f k
0 G , ~16!

whereGik
F , Gik

f , andGik
w denote the Green’s tensors. Thu

the point source response of system~10! in an isotropic un-
bounded medium is described by three Green’s tensors.
plicit expressions for theGik’s for a homogeneous medium
1798 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 T. M. M
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are given by Pride and Haartsen25 and reproduced in Appen
dix A. The wavefields observed at positionr due to arbitrary
point sourcesFi and f i , applied at positionr 8, can be ex-
pressed by a convolution equation of the form

F ui~r !

wi~r !G5E
V8

d3r 8FGik
F ~r2r 8! Gik

f ~r2r 8!

Gik
f ~r2r 8! Gik

w ~r2r 8!
G•FFk~r 8!

f k~r 8! G .
~17!

On the basis of Eq.~17!, we now derive a wavefield repre
sentation in a randomly inhomogeneous medium.

B. The basic scattering equation

In randomly inhomogeneous porous media, all poroel
tic parameters can be presented as random fieldsX(r ). To be
more specific, we assume that each of these poroelastic
rameters is the sum of a constant background value,X̄, and a
fluctuating part,X̃(r ), so that

X5X̄1X̃5X̄~11«X!, ~18!

where«X5X̃/X̄ denotes the relative fluctuations. The ave
age over the ensemble of the realizations~denoted bŷ •&! of
«X is assumed to be zero:^«X&50. The spatial correlation
function of two random fields is defined as

BXX~dr !5^«X~r1dr !«X~r !&, ~19!

where the dependence ofB on the difference vectordr only
is a consequence of the assumption of statistically homo
neous random fields,16 which we use throughout this pape
The variance of the random process«X will be denoted as
BXX(0)5^«X

2&5sXX
2 . Using ~18!, the differential operators

Lik can be also decomposed as21

Lik5L̄ ik1L̃ ik , ~20!

where the perturbing operatorL̃ ik satisfies^L̃ ik&50. As is
typical for statistical wave problems, in the following w
assume that the constant partX̄ and statistical properties o
the fluctuations«X are known. Therefore, rather than seeki
the solution of Eq.~17! for a given realization«X , we seek
statistical moments of the solution for given statistical pro
erties of fluctuations.

The substitution of~20! into matrix equation~10! yields

F L̄ ik
~1! L̄ ik

~2!

L̄ ik
~2! L̄ ik

~4!G •F uk

wk
G52F L̃ ik

~1! L̃ ik
~2!

L̃ ik
~2! L̃ ik

~4!G •F uk

wk
G , ~21!

In the most general case, the perturbing operatorsL̃ ik contain
fluctuations of all poroelastic moduli and densities. T
right-hand side of~21! can be thought of as a source term
the homogeneous system~10! due to the presence of inho
mogeneities~so-called secondary sources!. Thus, Eq.~21!
can be understood as an inhomogeneous equation with
stant coefficients, whose formal solution can be written
substituting the source term into Eq.~17!:

F ui

wi
G5F ui

0

wi
0G1E

V
dVFGi j

F Gi j
f

Gi j
f Gi j

wG•F L̃ jk
~1! L̃ jk

~2!

L̃ jk
~2! L̃ jk

~4!G •F uk

wk
G .
~22!
üller and B. Gurevich: Statistical smoothing in porous random media
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Equation ~22! is the basic poroelastic scattering equatio
The total wavefieldsui and wi are composed of wavefield
propagating in the homogeneous background mediumui

0

andwi
0, and scattered wavefields~the second term!. By defi-

nition, ui
0 and wi

0 satisfy the homogeneous equation~10!.
The scattered wavefields are represented by volume inte
whose kernels involve the Green’s tensors and the secon
sources. The scattered wavefields vanish if there are no
tuations in the medium parameters. The integration volu
encompasses the inhomogeneous part of the medium, w
in our case is the whole 3-D space. We note that Eq.~22! is
closely related to the representation integral of the scatte
field in an unbounded medium~for the poroelastic formula-
tion of this theorem we refer to Norris26 and Pride and
Haartsen25!. According to Eq.~17!, the wavefields can be
represented as a convolution of Green’s tensors with
source function. Let us denote Green’s tensors for the ho
geneous background medium by0Gik

F, f ,w and for the inhomo-
geneous medium byGik

F, f ,w . Substituting these wavefiel
representations into Eq.~22!, we obtain an equation for th
Green’s tensors of the inhomogeneous medium,

FGim
F Gim

f

Gim
f Gim

w G5F 0Gim
F 0Gim

f

0Gim
f 0Gim

w G1E
V
dVF 0Gi j

F 0Gi j
f

0Gi j
f 0Gi j

wG
•F L̃ jk

~1! L̃ jk
~2!

L̃ jk
~2! L̃ jk

~4!G •FGkm
F Gkm

f

Gkm
f Gkm

w G . ~23!

In order to simplify the equations that follow, we introduce
shorthand notation. The latter equation can be symbolic
rewritten as

G5G01E G0L̃G, ~24!

whereG, G0, andL̃ represent matrices, whose elements
tensors of rank two, and matrix multiplication rules apply.
~24! we also omitted the integration volume for brevity.

III. FIRST-ORDER STATISTICAL SMOOTHING
OF BIOT’S EQUATIONS OF POROELASTICITY

A. Mean Green’s tensor

We will now analyze Eq.~24! using a statistical ap
proach. Since the matrix of perturbing operatorsL̃ in Eq.
~24! contains fluctuating medium parameters, the result
matrix of Green’s tensors also contains randomly fluctuat
elements. Because individual realizations of the rand
wavefields are never known, it is natural to analyze the
tistical moments ofG. Solving Eq.~24! by iteration we ob-
tain the scattering series

G5G01E G0L̃G01E E G0L̃G0L̃G01E E E ¯ .

~25!

Averaging this equation by the ensemble of realizations
regrouping the scattering terms yields

Ḡ5G01E E G0QḠ, ~26!
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 T. M. Müller a
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whereḠ5^G& is the matrix of mean Green’s tensors, andQ
is the matrix operator defined as

Q5FQik
~1! Qik

~2!

Qik
~3! Qik

~4!G5 K L̃G0L̃1E L̃G0L̃G0L̃1E ¯ L .

~27!

OperatorQ given by Eq.~27! corresponds to the kernel-of
mass operator in the acoustic formulation.16 The linear inte-
gral equation inḠ @Eq. ~26!# is the poroelastic analog of th
Dyson equation~see also Gurevich and Lopatnikov,27 where
an analogous equation for the mean field is derived!. It is not
possible to obtain an exact solution of Eq.~26!. A first-order
statistical smoothing consists in the first-order truncation
the infinite series expression for the operatorQ. Then, we
obtain the following approximation for the mean Green
tensor:

Ḡ5G01E E G0^L̃G0L̃ &Ḡ ~28!

5G01E E G0QBḠ. ~29!

The truncation of the series~27! implies that the first-order
statistical smoothing is valid whenu«Xu!1, i.e., when the
absolute value of the relative fluctuations ofX is a small
parameter. Note also that the elements of matrix operatorQB

only contain terms involving the second statistical mom
of the fluctuating parts of theL̃ ik’s, that is, they are of the
orderO(«2). Higher-order correlations are neglected with
the accuracy of the first-order statistical smoothing appro
mation.

Since Eq.~29! contains a double volume convolution,
is expedient to work with its spatial Fourier transform:

ḡ5g01~8p3!2g0qḡ, ~30!

whereḡ, g0, andq denote the spatial Fourier transforms
Ḡ, G0, andQB, respectively~see Appendix A for a definition
of the Fourier transform pair!. Equation~30! is of the same
form as the equation for the mean Green’s function in aco
tic random media. However, in contrast to the acoustic ca
Eq. ~30! is not a simple algebraic equation for the me
Green’s tensors, but a system of four tensorial equations
the three unknown mean Green’s tensors. Formally, we
express the solution of~30! in the form ḡ5W21g0, where
W21 is the inverse of the matrixW5I2(8p3)2g0q with the
identity tensorI . However, the computation ofW21 is cum-
bersome. Instead, we are looking for a more feasible wa
compute some elements ofḡ. Carrying out the necessar
matrix multiplications in~30!, we find that this system splits
up into two pairs of coupled equations. Since we are o
interested in the characteristics of the fastP wave, which are
exclusively contained in the Green’s tensorḡF @see also Eqs.
~16! and ~A1!#, we analyze only those two equations th
involve ḡik

F . We obtain

ḡF5gF1~8p3!2@gFq~1!ḡF1gFq~2!ḡf1gfq~3!ḡF

1gfg~4!ḡf #, ~31!
1799nd B. Gurevich: Statistical smoothing in porous random media
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ḡf5gf1~8p3!2@gfq~1!ḡF1gfq~2!ḡf1gwq~3!ḡF

1gwq~4!ḡf #, ~32!

where we omitted subscripts for brevity. The quantitiesg
without an upper bar denote the background space Gre
tensors. Since all quantitiesq( i ) ( i 51,...,4) are of the orde
O(«2), ḡf is also of the orderO(«2). Inserting the expres
sion for ḡf @Eq. ~32!# into Eq. ~31! and neglecting terms o
higher order thanO(«2), we obtain

ḡF5gF1~8p3!2@qFq~1!ḡF1gFq~2!gf1gfq~3!ḡF

1gfq~4!gf #. ~33!

Equation~33! is an implicit equation for the mean Green
tensorḡF. Because of its tensorial character, an explicit
lution for ḡF is still difficult to construct. Note, however, tha
we are not interested in the mean Green’s tensor itself
only in a meanP wave number contained inḡF.

B. Effective wave number of the fast P-wave

In order to extract an effective wave number from E
~33! we have to introduce further simplifications. Because
the assumption of small fluctuations in the medium para
eters («!1), we can expect that the fluctuations of t
wavefield are also small if the wavelengths are much lar
than the size of the inhomogeneities. Then, we can ass
that mean Green’s tensorḡik

F (K ) is of the same functiona
form as a background Green’s tensorgik

F (K ) given by Eq.
~A8!, however, involving some effectiveP-wave number
~and also effective bulk density!.

Let us construct a simple case, where most of
Green’s tensor components vanish. This can be achieved
ing the following procedure: We consider an incoming, pla
P wave propagating in thex3 direction ~i.e., only the dis-
placement componentu3 is nonzero!. The resulting coheren
P wave in the inhomogeneous medium will also propagate
the x3 direction. Therefore, only the tensor componenti
5 j 53 of gi j

F need to be analyzed. Noting that in this ca
the Green’s tensorgik

F (K ) yields the largest contribution fo
the spatial wave numberK5kp , we can approximate the ful
Green’s tensor~A8! by

g33
F '

21

8p3rv2 S 11
K2

kp
22K2D . ~34!

We assume that the mean Green’s tensor component is g
by

ḡ33
F '

21

8p3r̄v2 S 11
K2

k̄p
22K2D , ~35!

wherek̄p is the searched-for effectiveP wave number. Sub-
stituting Eq.~34! for gF and Eq.~35! for ḡF into Eq.~33! we
obtain, after algebraic manipulations,

k̄p'kpS 11
4p3

rv2 q33
~1!D . ~36!

Here we neglected terms that contain combinations of
tensor componentsq33

( i ) . This introduces no additional inac
1800 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 T. M. M
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curacy because higher-order correlations are negle
within the accuracy of the first-order statistical smoothi
O(«2).

The remaining problem is the evaluation ofq33
(1) in ~36!,

or equivalently, ofQ33
(1) in space domain. In explicit form

from the first term in the expansion ofQ as given by Eq.
~27!, we obtain

Qik
~1!~r 82r 9!5^L̃ i j

~1!~r 8!Gjl
F ~r 82r 9!L̃ lk

~1!~r 9!

12L̃ i j
~1!~r 8!Gjl

f ~r 82r 9!L̃ lk
~2!~r 9!

1L̃ i j
~2!~r 8!Gjl

w~r 82r 9!L̃ lk
~2!~r 9!&, ~37!

where for statistically homogeneous random media bothQik

and Gik depend only on the difference vectorr 82r 9. It is
interesting to note that in the elastic limit, only the first ter
of Qik

(1) is nonzero. In the poroelastic case we have to anal
all three terms. Expression~37! involves the perturbing op-
eratorsL̃ i j

(1) and L̃ i j
(2) ~but not L̃ i j

(4)). Let us now specify the
perturbing operators resulting from~11! and ~12!,

L̃ ik
~1!5 r̃v2d ik1] j G̃@d jk] i1d ik] j22d i j ]k#1] i H̃]k ,

~38!

L̃ ik
~2!5 r̃ fv

2d ik1] i C̃]k , ~39!

for a particular situation in which we can find an explic
analytical expression for the right-hand side of Eq.~37!. In
the following, we neglect fluctuations of the densitiesr and
r f . This is possible because of the restriction to low frequ
cies. It can be shown that incorporation of density fluctu
tions yields a correction to the backgroundP wave number
@the second term in Eq.~36!#, which scales withv3, whereas
the other fluctuations result in av2 dependence, as show
below. This simplification is also in accordance with the 1
result,17 where the density fluctuations do not appear in
final expression for the effectiveP wave number though
these fluctuations were not neglecteda priori. These simpli-
fications yield

L̃ ik
~1!5]kG̃] i1] jd ikG̃] j22] i G̃]k1] i H̃]k , ~40!

L̃ ik
~2!5] i C̃]k . ~41!

A detailed computation of the threeQik
(1) terms in Eq.

~37! using the perturbing operators~40! and~41! is provided
in Appendix B. The result in the wave number domain can
represented as

q33
~1!5qHH1qHG1qHC1qGG1qGC1qCC, ~42!

where

qHH5
1

8p3 kp
2S H2

Pd
BHH~0!

1
C2

N
kps

2 E
0

`

rBHH~r !exp@ ikpsr #dr D , ~43!
üller and B. Gurevich: Statistical smoothing in porous random media
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qHG52
1

3p3 kp
2S GH

Pd
BHG~0!

1
a2MG

Pd
kps

2 E
0

`

rBPM~r !exp@ ikpsr #dr D , ~44!

qHC52
1

4p3

C2

N
kp

2S BHC~0!

1kps
2 E

0

`

rBHC~r !exp@ ikpsr #dr D , ~45!

qGG5
1

15p3

G

NH2 kp
2S @4C2G14NHG1NH2#BGG~0!

14C2Gkps
2 E

0

`

rBGG~r !exp@ ikpsr #dr D ~46!

qGC5
1

3p3

a2MG

Pd
kp

2S BGC~0!

1kps
2 E

0

`

rBGC~r !exp@ ikpsr #dr D , ~47!

qCC51
1

8p3

C2

N
kp

2S BCC~0!

1kps
2 E

0

`

rBCC~r !exp@ ikpsr #dr D . ~48!

Here,BHH , BHC , BHG , BGG , BGC , BCC denote the~cross-!
correlation functions of the random fieldsH̃, G̃, andC̃ de-
fined by Eq.~19!. In the derivation of theQik

(1) terms we
assumed that the random media realizations are statisti
isotropic and therefore the correlation functions depend o
on r. The upper bar denoting the background propertie
omitted. It is important to note that Eqs.~43!–~48! will pro-
vide a correction term to the backgroundP wave number
@see Eq.~36!#, which exclusively accounts for conversio
scattering into Biot’s slow wave. The separation of terms
the operatorQik

(1) that describe the scattering process fro
fast into Biot’s slowP wave and all other scattering pro
cesses is possible because of the low-frequency assum
@Eq. ~3!#. In other words, because of the large separat
between the two characteristic frequencies for ordinary e
tic scattering and conversion scattering into Biot’s slo
wave, we can distinguish between the different scatter
processes, using the frequency dependency of the co
sponding terms in the scattering equation~see also Appendix
B!.

We will now assume that all correlation functions are
the same functional form and only differ by theirs varianc
i.e., BXY5sXY

2 B(r ) with B(0)51 andB(`)50. Substitut-
ing then expressions~43!–~48! into Eq. ~36! we obtain the
final result for the effectiveP wave number,

k̄p5kpS 11D21D1kps
2 E

0

`

rB~r !exp@ ikpsr #dr D , ~49!

with the dimensionless coefficients
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D15
a2M

2Pd
S sHH

2 22sHC
2 1sCC

2 1
32

15

G2

H2 sGG
2

2
8

3

G2

H
sHG

2 1
8

3

G

H
sGC

2 D , ~50!

5
a2M

2Pd
S K S «H2

4

3

G

H
«G2«CD 2L 1

16

45

G2

H2 sGG
2 D ,

~51!

D25D11
1

2
sHH

2 2
4

3

G

H
sHG

2 1S 4G

H
11D 4

15

G

H
sGG

2 .

~52!

The structure of the effectiveP wave number can be ex
plained as follows: Due to the presence of random inhom
geneities, there are two terms added to the background w
numberkp . The first term,D2 , is frequency independent an
consists in a weighted sum of the variances of the rand
fieldsH̃, G̃, andC̃. The second term is frequency depende
and contains an integral over the correlation function mu
plied by a weighted sum of the variances,D1 . It is important
to note that the expression fork̄P describes only the proces
of conversion scattering from fast into slowP waves. The
contribution of purely elastic scattering is left out. The co
responding result would include additional terms involvi
the correlation functionsBHH , BGG , andBHG that describe
the elastic scattering~P to P andS waves! and produces the
typical Rayleigh frequency dependence for attenuation.23 In
other words, the second and third terms of the effectiveP
wave number~49! correspond to the mechanism of wav
induced fluid flow only. Therefore, an analysis of the pro
erties of k̄p gives insight into the relationship between th
properties of elastic waves and wave-induced flow. By d
nition, the real part ofk̄p is related to the phase velocityv
throughv(v)5v/R$k̄p%, whereas the imaginary part yield
the attenuation coefficientg: g(v)5T$k̄p%. From the struc-
ture of Eq.~49!, it can be seen that the phase velocity of t
coherent wave in an equivalent medium is smaller than in
background medium. By inspection we find thatg.0, that
is, the coherent wave is exponentially damped. A deta
analysis of attenuation and velocity dispersion in an equi
lent medium is presented in a companion paper.

IV. RANGE OF APPLICABILITY

The derivation of the dispersion relation~49! and the
associated results on attenuation and phase velocity dis
sion are based on several assumptions that restrict their r
of applicability. The main restriction on our results is due
the use of the first-order statistical smoothing approximati
In the acoustic case the applicability condition of this a
proximation can be written as16

sn
2~ka!2!1, ~53!

wheresn
2 denotes the variance of the velocity fluctuationsk

is the wave number of a wave propagating in the homo
neous background, anda is a characteristic length scale a
sociated with the size of the inhomogeneities. Condition~53!
ensures that the correction terms to the background w
1801nd B. Gurevich: Statistical smoothing in porous random media
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number@similar to those in Eq.~49!# are small. More pre-
cisely, this condition was obtained by analyzing the n
term in the equation for the kernel-of-mass operatorQ and
requiring that the difference between the correction ter
from the first-order statistical smoothing and that of the ne
higher-order approximation is small. It is natural to assu
that a similar condition must hold in the poroelastic case

Using the first-order statistical smoothing the kernel-
mass operatorQ can be approximated byQB'^L̃G0L̃ & @Eq.
~29!#. The next term in the infinite series forQ reads as

Q~2!5^L̃ ḠL̃ &, ~54!

where Ḡ is the matrix of the mean Green’s tensors fou
from the first-order statistical smoothing. To computeQ(2),
we assume that there is no multiple scatter of slowP waves
into slow P waves and, therefore, the mean Green’s ten
componentḡ33

F is still of the form ~35!. Then we can derive
from Eq. ~33! an equation for the effectiveP wave number
similar to~36!, but now involvingq33

(1) determined from~54!.
The computation ofq33

(1) according to~54! is analogous to
that shown in the previous section and results in an effec
P wave numberk̄p2 :

k̄p2'kp1D2kp1D1k̄pkps
2 E

0

`

rB~r !exp@ ikpsr #dr, ~55!

with k̄p given by ~49!. Let us compare this result with th
result for the effective wave number using first-order sta
tical smoothing@Eq. ~49!#. Assuming thatk̄p can be repre-
sented as a sum of background wave numberkp and a cor-
rection term Dk, the difference between~55! and ~49!
becomes

k̄p22 k̄p5DkD1kps
2 E

0

`

rB~r !exp@ ikpsr #dr. ~56!

A necessary condition for the significance of the correct
term using the first-order statistical smoothingDk is the
smallness of the difference~56! compared toDk:

U k̄p22 k̄p

Dk
U!1. ~57!

Using for instance the correlation functionB(r )
5exp(2uru/a), we obtain, from~56! and ~57!,

max$D1~ ukpsua!2,D2%!1. ~58!

Relation ~58! gives an estimate of the applicability of th
first-order statistical smoothing approximation. That is, o
results can be used in the case of weak-contrast media
weak wavefield fluctuations.

Physically, the existence of slowP waves is associate
with the equilibration of pore pressure that at low freque
cies is controlled by the diffusion equation with diffusio
length18 lD5Ak0N/vh. Therefore, the interplay betwee
lD and the correlation lengtha defines two different re-
gimes. IflD.a then the wave-induced pressure disturban
is equilibrated. This relation holds for low frequencies a
thus defines the low-frequency or relaxed regime. C
versely, iflD,a then there is not enough time for the po
1802 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 T. M. M
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pressure to relax. This unrelaxed case occurs at high freq
cies. A characteristic frequency that separates these low-
high-frequency regimes can be written as

vc5
k0N

a2h
. ~59!

Note that this characteristic frequency is identical to the f
quency where maximal attenuation occurs.24 The existence
of both regimes within our wavefield approximation, whic
is based on the low-frequency approximation of Biot’s equ
tions, is only possible if

vc!vB , ~60!

which imposes the additional condition for the average s
of the mesoscopic inhomogeneities,

a2@
k0N

hvB
. ~61!

Conditions~58! and~61! define the range of applicability o
our results. Whereas condition~60! is a necessary condition
for the validity of our results, there exists another conditi
for the observability of wave-induced flow. Only ifvc is
sufficiently different from the characteristic frequency, whe
elastic scattering of the fast wave modes dominates~i.e., P
→P andP→S), it is possible to distinguish between the tw
processes. Elastic scattering will dominate at frequencyvS

5c/a, where c is the phase velocity of the fastP-wave
mode. Therefore, the observability conditionvS:vc im-
posesa2:k0

2Nr/(h2H).

V. REDUCTION TO THE 1-D CASE

In order to further substantiate our results, we analy
their connection with the known 1-D result. For a system
randomly layered porous media an effective, complexP
wave number was obtained earlier by Gurevich a
Lopatnikov;17 see their equation~56!. This 1-D result is also
based on the method of~first-order! statistical smoothing. If
only the parameterM fluctuates, the 1-D result can be rewri
ten as

k̄p
1D5kp* F11

1

2
i
a2M

Pd
kps* E

0

`

dz BMM~z!exp@ ikps* z#G ,
~62!

where kp* and kps* denote effective wave numbers that i
volve effective parametersH* , N* , and effective densities
r* , q* . These effective parameters can be computed acc
ing to the so-called poroelastic Backus averaging.17,18,28By
neglecting terms higher thanO(e2)—which is the overall
precision of the weak-fluctuation approximation—we can
placekps* with kps . The effective parameterH* is computed
according to

H* 5Pd1a2M* 5Pd1a2K 1

M L 21

'HF12
a2M

H
BMM~0!G .

~63!

Then the effectiveP wave numberkp* can be expressed as
üller and B. Gurevich: Statistical smoothing in porous random media
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kp* 5vAr*

H*
'kpF11

1

2

a2M

H
BMM~0!G . ~64!

Using ~64! Eq. ~62! can be written in the form

k̄p
1D5kpF11

a2M

2H
BMM~0!

1
1

2
i
a2M

Pd
kpsE

0

`

dz BMM~z!exp@ ikpsz#G . ~65!

We will now show that the 1-D result~65! can be recov-
ered from the 3-D result. To do so, we analyze the expres
for the Qik tensor component in the wave number dom
q33 that is of the form@cf. Eq. ~B5!#

q33}E d3r B~r !
exp@ ikpsR#

R
exp@2 iK "r #, ~66!

where we used only the poroelastic part ofGi j ,i j
F and R

5ur u. Note that in order to obtain Eq.~66! it is not necessary
to assume statistical isotropy. We are now considering
following limiting situation.

~a! To degenerate the 3-D random medium into a 1
random medium we stretch the correlation lengths perp
dicular to the direction of wave propagation,a' , to infinity
so that the correlation function becomes only a function oz
with parameterai , i.e., the correlation length parallel to th
direction of wave propagation. Obviously, if the wave prop
gates mainly in thez direction we can also write the spati
wave vector asK'(0,0,kp)T.

~b! Since in such a 1-D random medium there are o
two directions of wave propagation (6z), we can use the
small-angle approximation16 ~or Fresnel approximation! of
the propagator-like term exp@ikpsR#/R:

exp@ ikpsR#

R
'

exp@ ikpsz#

z
expF ikpsr t

2

2z G , ~67!

wherer t denotes the absolute value of the transverse coo
nate vectorr t5(x,y)T. Introducing the simplifications pro
posed in~a! and ~b! into Eq. ~66! and using cylindrical co-
ordinatesd3r5dz drt df r t , we obtain

q33}4pE
0

`

dz B~z!
exp@ ikpsz#

z
exp@2 ikpz#

3E
0

`

drt r t expF ikpsr t
2

2z G . ~68!

The low-frequency conditionkp /kps!1 means that we can
replace the exponential exp@2ikpz# by 1. The integral with
respect tor always converges becausekps is complex and
produces an exponential decreasing multiplier. After p
forming the integration and substituting the result into E
~36!, we obtain

k̄p5kpF11
a2M

2H
BMM~0!

1
1

2
i
a2M

Pd
kpsE

0

`

dz BMM~z!exp@ ikpsz#G , ~69!
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which is identical to Eq.~65!.
In conclusion, the 1-D effectiveP wave number can be

exactly obtained from the 3-D result. We note that we ha
only considered the particular case ofM fluctuations. How-
ever, the approach can be also applied in the case of o
parametrizations.

VI. CONCLUSIONS

In the framework of the theory of wave propagation
random media we analyzed the properties of the cohe
wave propagating in poroelastic random media. Neglect
the ordinary elastic scattering, we only accounted for conv
sion scattering from fastP into Biot’s slow P wave. This
process of conversion scattering is equivalent to the mec
nism of pore-pressure relaxation due to wave-induced per
bations. Thus, our results describe the relationship betw
the dynamic properties of the coherent wavefield and
mechanism of wave-induced fluid flow. In particular, w
have derived an explicit expression for the effectiveP wave
number@Eq. ~49!# by applying first-order statistical smooth
ing of Biot’s equations of poroelasticity with randomly vary
ing coefficients. This wave number is complex and involv
an integral over the correlation properties of the medi
fluctuations. From this result it can be seen that the ass
ated phase velocity is smaller than in the homogeneous b
ground medium and that the wave is exponentially damp
We have shown that the previously reported effectiveP wave
number for randomly layered media17 can be derived from
the more general 3-D result.

Our approach is limited to the case of weak-contra
mesoscopic inhomogeneities@conditions ~58! and ~61!#. In
this paper we focused the analysis to wave propagation
statistically isotropic random media. However, the resu
can be probably generalized to the case of statistically an
tropic random media. An advantage of the statistical
proach is its flexibility to handle complex geometrical dist
butions of the inhomogeneities. Only the spatial correlat
of the fluctuations need to be known in order to compute
dynamic wavefield attributes. A detailed analysis of fr
quency dependencies of attenuation and dispersion du
wave-induced fluid flow and the potential applicability of th
results to real rocks will be the subject of a compani
paper.24
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APPENDIX A: POROELASTIC GREEN’S TENSORS

The complete set of Green’s tensors for a homogene
and isotropic poroelastic continuum—including electrose
mic coupling—was derived by Pride and Haartsen.25 We re-
produce only those parts of the Green’s tensors, which
related to poroelastic wave propagation. Furthermore, we
simplify these tensors for low frequencies withukpu/ukpsu
!1. We obtain
1803nd B. Gurevich: Statistical smoothing in porous random media
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Gi j
F ~r2r0!5

1

4prv2 S @ks
2d i j 1] i] j #

eiksR

R
2] i] j

eikpR

R D
2

C2

H2

1

4pqv2 ] i] j

eikpsR

R
, ~A1!

Gi j
f ~r2r0!5

C

H

1

4pqv2 ] i] j

eikpsR

R
~A2!

Gi j
w~r2r0!52

1

4pqv2 ] i] j

eikpsR

R
, ~A3!

whereR5ur2r0u. In homogeneous and isotropic media t
Green’s tensors only depend onR. In the low-frequency ver-
sion of Biot’s equations, the wave numbers of fastP, S, and
slow P waves are defined as

kp5vAr

H
, ks5vAr

G
, kps5Aivh

k0N
5vAq

N
,

~A4!

whereN5M Pd /H. Note that the first three terms ofGi j
F are

formally identical to the elastodynamic Green’s tensor.29 In-
deed, in the elastic limit (Kd→Kg , a→0 and f→0, k0

→0), the set of Green’s tensors~A1!–~A3! reduces to the
single elastodynamic Green’s tensor,

Gi j
elast~r2r0!5

1

4prv2 S @ks
2d i j 1] i] j #

eiksR

R
2] i] j

eikpR

R D ,

~A5!

where the P wave number is now given bykp

5vAr/(Kd14/3G).
We define the spatial Fourier transform pair in the f

lowing way:

Gi j ~r2r 8!5E d3K gi j ~K !exp@ iK•~r2r 8!#, ~A6!

gi j ~K !5
1

~2p!3 E d3~r2r 8!Gi j ~r2r 8!exp@2 iK•~r2r 8!#.

~A7!

In the wave number domain the Green’s tensors~A1!–~A3!
read as

gi j
F ~K !52

1

8p3

1

rv2 S ks
2d i j 2KiK j

ks
22K2 1

KiK j

kp
22K2D

2
1

8p3

C2

H2

1

qv2

KiK j

kps
2 2K2 , ~A8!

gi j
f ~K !5

1

8p3

C

H

1

qv2

KiK j

kps
2 2K2 , ~A9!

gi j
w~K !52

1

8p3

1

qv2

KiK j

kps
2 2K2 . ~A10!

APPENDIX B: COMPUTATION OF THE OPERATOR
Qik

„1…

In this appendix we compute the kernel-of-mass ope
tor Qik

(1)(r 82r 9) defined in Eq.~37!. First we note that the
three terms in Eq.~37! are of the same structure,
1804 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 T. M. M
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Qik~r 82r 9!5^~Li j
~X!!8 Gjl

Z ~r 82r 9! ~Llk
~Y!!9&, ~B1!

where X51,2, Y51,2, Z5F, f ,w while single and double
primes indicate whether in the differential operatorLi j dif-
ferentiation is with respect tor 8 or r 9. It is therefore suffi-
cient to present the detailed manipulations only for one te
For example, for the differential operators (Li j

(1))85] i8H̃8] j8

and (Li j
(2))95] l9C̃9]k9 , we have

Qik5^] i8H̃8] j8 Gjl
Z ~r 82r 9! ] l9C̃9]k9&. ~B2!

We now use partial integrations to shift the spatial d
rivatives] j8 and] l9 to the Green’s function@and make use of
the propertyGZ(R→`)50]. Averaging Eq.~B2! yields

Qik5] i8 „BHC~r 82r 9! Gjl , j l
Z ~r 82r 9!… ]k9 , ~B3!

where we made use of the assumption of statistically hom
geneous random fields@Eq. ~19!#. The Fourier transform of
Qik is defined as

qik~K !5
1

8p3 E d3~r 82r 9!Qik~r 82r 9!exp@2 iK•~r 8

2r 9!#. ~B4!

Noting that spatial derivatives correspond to multiplicatio
in the wave number domain (] j↔ iK j ), we can expressqik

as

qik~K !5
2KiKk

8p3 E d3r BHC~r !Gjl , j l
Z ~r !exp@2 iK•r #.

~B5!

Next, we need to compute the spatial derivatives of
Green’s tensors. The poroelastic part of Green’s tensor in
~A1! as well as Green’s tensors in Eqs.~A2! and~A3! are of
the form Gi j

poro}] i] j (e
ikpsR/R). After differentiation we ob-

tain

Gi j ,i j
poro~r !}2kps

2 S kps
2 eikpsR

R
14pd~r ! D . ~B6!

Analogously, for the derivatives of the elastic part of Gree
tensor~A1! given by equation~A5! we find

Gi j ,i j
elast~r !}2kp

2S kp
2 eikpR

R
14pd~r ! D . ~B7!

Note that the derivatives in~B6! and ~B7! are of the same
functional form, despite the fact thatGi j

elast includesS wave
contributions. These contributions, however, cancel out w
Gi j ,i j

elast is computed. The parts of the differential operatorLik
(1)

involving fluctuations of the shear modulus require the co
putation of the termsG33,33

elast andG3 j ,3j
elast . It can be shown that

these derivatives can be expressed in terms ofGi j ,i j :

G33,335Gi j ,i j S 1

2 E0

p

du sinu cos4 u1O~kp
2R2! D . ~B8!

5Gi j ,i j S 1

5
1O~kp

2R2! D . ~B9!

Analogously,

G3 j ,3j5Gi j ,i j ~
1
3 1O~kp

2R2!!. ~B10!
üller and B. Gurevich: Statistical smoothing in porous random media
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Neglecting terms of the orderO(kp
2R2) will produce no ad-

ditional inaccuracy because of the restriction to low frequ
cies. Because of the same argument, we also neglect the
term in ~B7!. It is this term that is responsible for dynam
effects of elastic scattering and that is left out in the pres
analysis.

Inserting expressions~B6! and~B7! into Eq.~B5!, intro-
ducing spherical coordinates, assuming statistical isotr
@B(r )5B(ur u)#, and integrating over the angular coord
nates, we obtain

q3352
1

4p3

C2

N S kp
2BHC~0!

1kpkps
2 E

0

`

dr BHC~r !exp@ ikpsr #sin~kpr ! D . ~B11!

In accordance with our low-frequency assumption, we
place the sine function by its argument and obtain Eq.~45!.
Repeating these computations for the remaining terms
volving correlations and cross-correlation between the r
dom fields ofH,G, andC yields Eqs.~43!–~48!.
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