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An important dissipation mechanism for waves in randomly inhomogeneous poroelastic media is
the effect of wave-induced fluid flow. In the framework of Biot's theory of poroelasticity, this
mechanism can be understood as scattering from fast into slow compressional waves. To describe
this conversion scattering effect in poroelastic random media, the dynamic characteristics of the
coherent wavefield using the theory of statistical wave propagation are analyzed. In particular, the
method of statistical smoothing is applied to Biot's equations of poroelasticity. Within the accuracy
of the first-order statistical smoothing an effective wave number of the coherent field, which
accounts for the effect of wave-induced flow, is derived. This wave number is complex and involves
an integral over the correlation function of the medium’s fluctuations. It is shown that the known
one-dimensional1-D) result can be obtained as a special case of the present 3-D theory. The
expression for the effective wave number allows to derive a model for elastic attenuation and
dispersion due to wave-induced fluid flow. These wavefield attributes are analyzed in a companion
paper. ©2005 Acoustical Society of AmericaDOI: 10.1121/1.1871754
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I. INTRODUCTION attenuation and phase velocity can only be obtained for a

. . . . ._regular system of simple geometrical shapes such as concen-
Understanding elastic wave attenuation and d|sperS|oE}iC spheres

in porous fluid-saturated materials is important in such di-

licati hitectural i i and In real rocks heterogeneities are more likely to be spa-
Verse applications as architectural acoustics, soil an rOc%ftally distributed in a random fashion. Therefore, it is desir-

mechanics, and exploration seismology. One major cause Yple. as suggested by Lopatnikov and Gurevictn model
elastic wave attenuation is viscous dissipation due to the flo avé-induced flow using the theory of waves in random

of the pore fluid induced by the passing wave. Wave-induce edial® For one-dimensiondl-D) porous media, Gurevich

fluid .ﬂOW oceurs as a passing wave createg Iocal_ Pressulfing Lopatniko¥’ showed that elastic wave attenuation in a
gradients within the fluid phase and the resulting fluid flow is

randomly layered porous medium differs significantly from

accompanied with internal friction until the pore pressure IS, ttenuation in periodically layered porous metia® This

equilibrated. The fluid flow can t_ake place on various lengthsuggests that the effects of three-dimensional inhomogene-
scales: for example, from compliant fractures into the equa

: - : ties on elastic wave wave attenuation and dispersion in po-
pores(sq—_callgd squm flow), or betvyeen mesoscopic het- rous media may also be different for random and periodic
erogeneme; like fluuj patches in p"?““a”y saturated.rd‘CIZs. spatial configurations. One approach to this problem is to

Theoretlcal studies of the elastic wave attenuation dugt onsider a homogeneous porous medium with randomly dis-
wave-induced flow go back to the 1970s. In such studie

tion i h i Tributed discrete, regularly shaped 3-D inclusions. However,
wave propagation in an ini o’mogene_ous porous medium Iz, ¢, only the attenuation due to conversion scattering at
usually analyzed using Biot's equations of poroelastlcnyspherical inclusions from fad® waves into Biot's slowP
with spatially varying coefficient$.The first models of at- wave is known

tenuation due to wave-induced flow considered flow caused Our purpose in this paper is to analyze the effect of

Riave-induced fluid flow on the dynamic characteristics of
coherent elastic waves propagating in a porous medium
hose properties are continuous random functions of posi-
on. Our approach is based on the statistical wave theory, as
applied to Biot’s equations of poroelasticityVe restrict our
analysis to the case of mesoscopic inhomogeneities, that is,
inhomogeneities whose characteristic sizés much larger

such as two concentric spheres or flat sl A general
theory of wave propagation in heterogeneous porous med
using the double-porosity approach was recently develope,
by Pride and Berrymdnh and Prideet al® In the case of
patchy saturation, the results of this theory coincide with
those obtained earlier by Johndbnsing a slightly different

method. Although mathematical formulations in the theories,[han the typical size of pores or graiag, but, at the same
re 1

Pride and Berr_ymdﬁ and Jp_hnso]ﬁ allow for arbltrary_ge— time, much smaller than the wavelength of the propagating
ometry of the inhomogeneities, closed-form expressions foélastic waven:
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smaller than the critical Biot frequeneyz= ¢ 7/ kops :

PESS w<og, (2)
S5 Q pore . -
22 where ¢ and x, denote the porosity and permeability of the

R composite material, whilg; and » are the density and vis-
K 2 & S 2 - cosity of the pore fluid. Conditiof2) implies that the stan-
"""" S E dard Biot's viscoinertial attenuation and dispersitime so-
2Ky B 2 a called Biot's global flow mechanishis neglected and th@

3 wave numbek,, is real. Furthermore, at low frequencies the
SRS slow wave is much slower than the fastvave and therefore
55 the ratio ofk, to slow P wave numbek is a small param-
S Al eter:
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Wherever applicable we make use of relati(), being
it o e e oo o s T hcgersadWAIE of the Underlying low- fequency assumption
background medium is characterized ?Jy the bulk modifs There gre The strategy of this papgr IS as fo_”OWS' FIrSF’ we apply
inhomogeneities with higher bulk moduli, that k§”>KE2, and other in- the method of Green’s functions to Biot's equations of po-
homogeneities with lower bulk modulu&®<K?2. The inhomogeneities ~roelasticity in order to represent the wavefield due to point
have a length scale @fthat is much larger than the typical pore scajg. source excitatioiSec. I). Next, we derive an integral wave-
During thg compreg)sipn cycle of a wave there will be fluid flow from inho- field representation for the case when the coefficients in
mogeneities WithKg™ into t(f;)e background and flow from the background gipg aquations exhibit a randomly fluctuating component.
into inhomogeneities witl ;" . During the extension cycle of the wave the . . . .
fluid flow becomes reversed. This wavefield representatiofalso called the scattering

equation is then converted into an integral equation for

Green’s function for the inhomogeneous medium. In Sec. llI
allows the application of Biot's equations for a poroelasticWe apply a perturbation method to compute an approxima-
continuum® We model wave propagation in the inhomoge- tion for the mean of the Green'’s function. From this Green’s
neous porous medium using Biot's equations of poroe|astictunction we derive and analyze an explicit expression for the
ity with randomly varying coefficientésee Fig. 1 By using ~ €ffective, complexP wave number that accounts for the con-
a Green’s function approach, these partial differential equaversion scattering fron® into slow P waves. The range of
tions transform into a system of integral equations. This lat2Pplicability of our theory is analyzed in Sec. IV. Finally, in
ter system is solved by means of the method of statisticaPec. V we show how the results of the aforementioned 1-D
smoothing which is widely used in problems of electromag-theory can be recovered as a limiting case of the more gen-
netic, acoustic, and elastic wave propagatioiZMore pre- eral 3-D theory. A detailed analysis of attenuation and dis-
cisely, we employ a first-order statistical smoothing approxi-Persion as functions of frequency and the potential applica-
mation that sometimes is referred to as a Bourrebility of these wavefield signatures to interpret the effect of
approximation:®2% For poroelastic media, this method was wave-induced flow in real rocks is presented in a companion
earlier employed to compufe-wave attenuation and disper- paper’
sion due to conversion scattering from fd3twaves into
Biot's slow waves in a randomly layered porous meditim. !l. FORMULATION OF THE POROELASTIC
We follow this strategy and analyze the conversion scatterin&C'A‘TTER''\IG PROBLEM
from fastP waves into Biot’s slow wave in 3-D randomly A. Green’s function approach for Biot's equations
inhomogeneous porous media. Biot's slow wave is a highlyof poroelasticity
dissipative wave mode. Therefore, the use of the first-order In order to study dynamic effects of elastic wave propa-
statistical smoothing approximation to the conversion scat- _,. . . : .

X T : " —__gation in porous media, we base our analysis on Biot's equa-
tering problem in Biot's equations of poroelasticity quantifies

the dissipation of wave field energy due to energy transfepon of poroelasticity. Using index notation—summation

from the coherent component of the fatwave into the over repeated indices is assumed and partial derivatives are

dissipative slowP-wave mode. This is different from the denoted as; or g—we can write the equations of motion

usual application of the method of smoothing to energy con” the frequency domairithe time-harmonic dependency

serving wave systems, where an apparent dissipason exp(i) is omitted,

called scattering attenuatipresults from the energy transfer pw?U;+ prww;+ 7j,; =0, (4)
from the coherent component of the wave field into the in-
coherent component.

In light of previous results for randomly layered porous wherer;; is the total stress tensqu.the fluid pressure, while
media, it is useful to introduce some simplifications from theu; andw; are the components of the solid and relative fluid
outset. First of all, we restrict our analysis to low frequen-displacement vectors, respectively. The relative fluid dis-
cies. Specifically, we assume that frequeneoyis much placement is defined as;,= #(U;—u;), where isU; the
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prw?U;+qw?w;—p;=0, (5
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fluid displacement. The densities of the solid and fluid phasare given by Pride and Haart$emnd reproduced in Appen-

are denoted by, andp; so that the bulk density is given by dix A. The wavefields observed at positiomiue to arbitrary

p=¢pi+(1—¢)py, Wheree is porosity. The parameteyis point sourced=; and f;, applied at positionr’, can be ex-

defined agj=17/(wk), Wherenis viscosity andc, perme-  pressed by a convolution equation of the form

ability. We note that this definition af is a consequence of Fov o fon ,

the low-frequency assumptidg). ui((r))} :f 43 Gi(r=r")  Gy(r—r’") _[Fk(f )}
Ww;(r ’ !

In order to obtain a closed system of wave equations in Gifk(r—r’) Giu(r—r’) fi(r’)
the displacements; andw;, we complement the equations 17
of motion with the stress—strain relations for an isotropicop the basis of Eq(17), we now derive a wavefield repre-
poroelastic mediurfi, sentation in a randomly inhomogeneous medium.
T”:G[UMJ"’U“—Z(S”UJ'J]‘F 5|][HUJ'J+CWJ’J], (6)
p=-Cuj;—Mw; ;. (7) B. The basic scattering equation
Here G is the porous-material shear modulus, ahds the In randomly inhomogeneous porous media, all poroelas-
undrained, low-frequency-wave modulus given by Gas- tic parameters can be presented as random fi(ds To be
smann’s equation: more specific, we assume that each of these poroelastic pa-
H=Pgy+ a?M, ®) rameters is thefum of a constant background va{uend a
fluctuating partX(r), so that
where .
_ X=X+X=X(1+¢ey), 18
M=[(a—$)/Ky+ /K] . © (1+ex) (18

In Egs. (8)=(9), Py=K4+4/3G is the P-wave modulus of wheresx=7(lf denotes the relati\{e fI_uctuations. The aver-
the drained frameq=1—K4/Ky is the Biot—Willis coeffi- ~ 89€ OVer the ensemble of the realizatiédenoted by-)) of
cient,C=aM, andK,, Kq, andK; denote the bulk moduli €x is assumed to be ze_r«ﬁex>.=0. The spatial correlation
of the solid phase, the drained frame, and the fluid phasdunction of two random fields is defined as

respectively. Symbob;; is Kronecker’s deltathe identity Byx(8r)=(ex(r+ r)ex(r)), (19

tensoy. .
It is expedient to write the above system of coupledWhere the dependence Bfon the difference vectosr only

is a consequence of the assumption of statistically homoge-

neous random field®¥, which we use throughout this paper.
The variance of the random procesg will be denoted as

=0, (100 By, (0)=(e2)=02,. Using (18), the differential operators
L, can be also decomposedas

where we defined the linear differential operators as follows:

wave equations in matrix form:
1 2)
Lic’ Lig
3) 4)
LK Lk

Uy
Wy

Lix=Lix+Lik, (20)

Li(d'):pwzéik‘f' a]G[5lk(9|+ 5”((9]' _25ij‘9k]+‘9iHaki ) - o - )
(1))  where the perturbing operatdr, satisfies(L;)=0. As is

typical for statistical wave problems, in the following we

2) __ 2
Lic'=prw®Sict Cox, (12 assume that the constant pXrtand statistical properties of
LY=L, (13)  the fluctuations:x are known. Therefore, rather than seeking
the solution of Eq(17) for a given realizatiorex, we seek
Lic'=qw? S+ ;M dy. (14)  statistical moments of the solution for given statistical prop-

Note that in inhomogeneous media all the poroelastic param‘%rties of fluctu_atic_)ns. _ . . .
eters are functions of position. In the presence of point The substitution of20) into matrix equation(10) yields

sources, the right-hand side of E40) can be written as Ulkl) U”f) J [§k1> Ei(f) Uy »
Fo(ri—r{) L2 (@l w  |T@ T@]| [w)’ 2Y)
—| .0 ol (15) ik ik ik ik
fro(ri—r{)

0 o ) In the most general case, the perturbing operdigrsontain
whereF andf, represent constant forces applied to the bulkfyctyations of all poroelastic moduli and densities. The
and fluid phase, respectively, an®{r;—r{) denotes the jghthand side of21) can be thought of as a source term in
Dirac delta function. The response of systéhQ) to point e homogeneous systef0) due to the presence of inho-
sources of the forn(15) can be formulated 43 mogeneities(so-called secondary sourgedhus, Eq.(21)

u G, Gl] [EO can be understood as an inhomogeneous equation with con-
wl- :{ ¢ W}. fk , (16)  stant coefficients, whose formal solution can be written by
! Gik ik k substituting the source term into Ed.7):

whereGl,, G, andGY. denote the Green’s tensors. Thus,

i inan i i ul [u? GI Gl [LW TP ru
the point source response of systé€hd) in an isotropic un- "=l +f dv 'fJ i | ik jke 1 Yk '
bounded medium is described by three Green’s tensors. Ex- (Wil [Wj v Gj G}’jv L}E) L};U Wy
plicit expressions for th&;,’s for a homogeneous medium (22
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Equation (22) is the basic poroelastic scattering equation.Where€:<G> is the matrix of mean Green'’s tensors, &d
The total wavefieldss; andw; are composed of wavefields s the matrix operator defined as

propagating in the homogeneous background mediui?n,

andw?, and scattered wavefieldthe second terin By defi- Q¥ Qi ~ o~ ~ om0

nition, u’ and w? satisfy the homogeneous equatiiD). Q¥ Q¥ :<LG L+J LG'LG L+j >

The scattered wavefields are represented by volume integrals K K (27)
whose kernels involve the Green’s tensors and the secondary

sources. The scattered wavefields vanish if there are no flu§peratorQ given by Eq.(27) corresponds to the kernel-of-
tuations in the medium parameters. The integration volumé&ass operator in the acoustic formulatiGrithe linear inte-
encompasses the inhomogeneous part of the medium, whigral equation inG [Eq. (26)] is the poroelastic analog of the
in our case is the whole 3-D space. We note that(8) is  Dyson equatior{see also Gurevich and Lopatnikbwhere
closely related to the representation integral of the scatterean analogous equation for the mean field is denivids not
field in an unbounded mediuiffior the poroelastic formula- possible to obtain an exact solution of E86). A first-order
tion of this theorem we refer to Norfs and Pride and statistical smoothing consists in the first-order truncation of
Haartsef®). According to Eq.(17), the wavefields can be the infinite series expression for the operafr Then, we
represented as a convolution of Green’s tensors with thebtain the following approximation for the mean Green’s
source function. Let us denote Green'’s tensors for the homdensor:

geneous background medium Trgi':kvaw and for the inhomo-
geneous m_edium by;iFk,f,W. Substitgting these_wavefield gZGoJrJ' f GO(EGng (29)
representations into Eq22), we obtain an equation for the
Green's tensors of the inhomogeneous medium,
Gh, G| [°Gf, °Gl, oG5 oG] =G+ J J G°Q%G. (29
f w=0fOW+JdVof0w
Gim  Gim Gim “Gim v Gij "G The truncation of the serie®7) implies that the first-order
T 1@] [6F. &f statistical smoothing is valid whejey|<1, i.e., when the
I N (23  absolute value of the relative fluctuations Xfis a small
L}? L}ﬁ) Gkm Gkm parameter. Note also that the elements of matrix opetafor

In order to simplify the equations that follow, we introduce aonly contain terms involving the second statistical moment

shorthand notation. The latter equation can be symbolicall?f the fluctuating parts of the;’s, that is, they are of the

rewritten as orderO(&?). Higher-order correlations are neglected within
the accuracy of the first-order statistical smoothing approxi-
G=G°+f GLG, 24) ~ Mation. . .
(24) Since EQ.(29) contains a double volume convolution, it

whereG, G°, and[ represent matrices, whose elements ardS expedient to work with its spatial Fourier transform:

tensors of rank two, and matrix multiplication rules apply. In 9=+ (87%)%¢%g, (30)
(24) we also omitted the integration volume for brevity.
whereg, ¢°, andq denote the spatial Fourier transforms of
G, G° andQ?®, respectivelysee Appendix A for a definition
lll. FIRST-ORDER STATISTICAL SMOOTHING of the Fourier transform pair Equation(30) is of the same
OF BIOT'S EQUATIONS OF POROELASTICITY form as the equation for the mean Green’s function in acous-
tic random media. However, in contrast to the acoustic case,
Eqg. (30) is not a simple algebraic equation for the mean
We will now analyze Eq.(24) using a statistical ap- Green's tensors, but a system of four tensorial equations for
proach. Since the matrix of perturbing operattrsn Eq.  the three unknown mean Green’s tensors. Formally, we can
(24) contains fluctuating medium parameters, the resultingexpress the solution df30) in the formg=W g°, where
matrix of Green’s tensors also contains randomly fluctuatinghV ~* is the inverse of the matrit/ = — (87°)2g°q with the
elements. Because individual realizations of the randonidentity tensor. However, the computation & ~* is cum-
wavefields are never known, it is natural to analyze the stabersome. Instead, we are looking for a more feasible way to
tistical moments ofs. Solving Eq.(24) by iteration we ob- compute some elements gf Carrying out the necessary
tain the scattering series matrix multiplications in(30), we find that this system splits

up into two pairs of coupled equations. Since we are only
G:G°+f GOEG°+J f GOEGOEG°+f f f interested in the characteristics of the fRsvave, which are
(25)

A. Mean Green'’s tensor

exclusively contained in the Green’s tengpr[see also Egs.

_ _ _ o (16) and (A1)], we analyze only those two equations that
Averaging this equation by the ensemble of realizations an‘ﬂqvolveﬁfk. We obtain

regrouping the scattering terms yields
g =g +(87*)[g"a"Vg" +9"q?'g" +¢'q'¥g"

€=G°+J f G°QG, (26) +g'g"g"], 3D
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g'=g"+(87%7g'q¥g" +g'q@g +g“qg" curacy because higher-order correlations are neglected
within the accuracy of the first-order statistical smoothing
+9"q“g'], 32 O(e?).
where we omitted subscripts for brevity. The quantities The remaining problem is the evaluationadf; in (36),
without an upper bar denote the background space Green® equivalently, ofQ$Y in space domain. In explicit form,
tensors. Since all quantitieg” (i=1,...,4) are of the order from the first term in the expansion @ as given by Eq.
0(&?), g' is also of the ordeD(e?). Inserting the expres- (27), we obtain
sion forg’ [Eq. (32)] into Eq. (31) and neglecting terms of

higher order tharD(&?), we obtain QR (r' = =(LP(rHGH(r =L
gF=g"+(87°)%q"qV'g"+g"q?g'+g'q*g" +2LM ()Gl (r =L
+ f~y(4)yf . T ’ ’ my "
g'a”g’] (33 +T@EeNr —mTRm), @7

Equation(33) is an implicit equation for the mean Green'’s
tensorg™. Because of its tensorial character, an explicit so-where for statistically homogeneous random media lth
lution for gF is still difficult to construct. Note, however, that and G;, depend only on the difference vector—r". It is
we are not interested in the mean Green’s tensor itself butiteresting to note that in the elastic limit, only the first term
only in a mearP wave number contained ig©. of Qi(kl) is nonzero. In the poroelastic case we have to analyze
all three terms. Expressiai37) involves the perturbing op-

. eratorsL M andL{?) (but notL{"). Let us now specify the

B. Effective wave number of the fast P-wave perturbing operators resulting frofa1) and (12),
In order to extract an effective wave number from Eq. _ _

(33) we have to introduce further simplifications. Because of  L\¢' =pw?8y+ ,G[ 8jxd; + didj— 28 ]+ diH dy.,

the assumption of small fluctuations in the medium param- (38
eters £<1), we can expect that the fluctuations of the ~ 5
wavefield are also small if the wavelengths are much larger L@ =pw?8y+ d;Cdy, (39)

than the size of the inhomogeneities. Then, we can assume
that mean Green’s tens@f, (K) is of the same functional for a particular situation in which we can find an explicit
form as a background Green’s tensgif(K) given by Eq.  analytical expression for the right-hand side of Egj7). In
(A8), however, involving some effectiv®-wave number the following, we neglect fluctuations of the densitjeand
(and also effective bulk density pi - This is possible because of the restriction to low frequen-
Let us construct a simple case, where most of thecies. It can be shown that incorporation of density fluctua-
Green's tensor components vanish. This can be achieved ugons yields a correction to the backgrouRdvave number
ing the following procedure: We consider an incoming, plandthe second term in E¢36)], which scales witho®, whereas
P wave propagating in thes direction (i.e., only the dis- the other fluctuations result in @* dependence, as shown
placement component; is nonzerg. The resulting coherent below. This simplification is also in accordance with the 1-D
P wave in the inhomogeneous medium will also propagate irfesult;” where the density fluctuations do not appear in the
the x5 direction. Therefore, only the tensor componeits final expression for the effectiv® wave number though
=j=3 of 95 need to be analyzed. Noting that in this casethese fluctuations were not neglectegriori. These simpli-
the Green’s tensagfy (K) yields the largest contribution for fications yield
the spatial wave numbé=k,, we can approximate the full

Green’s tenSO(AS) by ’I:I(kl)=(9k’é(9|+ﬁj §ik(~38j—2&i(~30k+ 0iﬁ&k| (40)
AU P 34 (Y

033~ 87w’ k,zj— K2 (34) Lix' = 3;Cd. (41)
We assume that the mean Green'’s tensor component is given A detailed computation of the thre@{}) terms in Eq.
by (37) using the perturbing operato{40) and(41) is provided

1 K2 in Appendix B. The result in the wave number domain can be
o~ — 1+ , (35) represented as
87 pw Ke—K?2 )

Where?p is the searched-for effectii@ wave number. Sub-
stituting Eq.(34) for g™ and Eq.(35) for g© into Eq.(33) we  where
obtain, after algebraic manipulations,

1 H?2
— 473 HH=_— k2| — By (0
kp=kp| 1+ p—wzq(313)>- (36) T "8 p( pg Brn(0)
. . . C2 o
Here we neglected(i}ermg that contain combmgﬂon; of the n _kgsf (Bn(r)exdik e 1dr |, (43)
tensor componentgys . This introduces no additional inac- N 0
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1 GH a*M 32G?
qHG=—ﬁk§(P—dBHG(0) Alzz_Rj(UaH_szac+U%c+l_5mUéG
a’MG o 8 G2 8G
5 _ %2 - 9% 5
+P—dkpsf0 erM(r)exmkpsr]dr), (44) 3 “Het 3 %c); (50
1 c2 M 4G 2\ 16G* ,
g"C=— 5 K| Byc(0) “2Pg |\ | "3 R%eT %] | T g2 ee):
473 NP ¢ (51)
e | - 1 4G 4G 4G
1 G (52
qeezl—%a Wkg([4C2G+4NHG+NHZ]BGG(O) The structure of the effectiv® wave number can be ex-

plained as follows: Due to the presence of random inhomo-
oo [ ) geneities, there are two terms added to the background wave
+4C kasfo rBGG(r)qu'kpSr]dr) (46)  numberk,. The first termA ,, is frequency independent and
consists in a weighted sum of the variances of the random

cc. 1 MG , fieldsH, G, andC. The second term is frequency dependent
a T340 Py Kp| Bec(0) and contains an integral over the correlation function multi-
plied by a weighted sum of the variances,. It is important
. kﬁsferGc(r)eXriikpsf]dr , 47 to note tha_t the expre_ssion fap des<_:ribes only the process
0 of conversion scattering from fast into slowwaves. The

contribution of purely elastic scattering is left out. The cor-
responding result would include additional terms involving
the correlation function8,, Bgg, andB, ¢ that describe
the elastic scatterin(P to P and Swaves and produces the
+kﬁsfwacc(f)eXliikpsf]df)- (49) typical Rayleigh frequency depepdence for attenugtidn.

0 other words, the second and third terms of the effecBve
wave numbern(49) correspond to the mechanism of wave-
induced fluid flow only. Therefore, an analysis of the prop-
erties ofk, gives insight into the relationship between the
Properties of elastic waves and wave-induced flow. By defi-

1 C?
qC=+ 83 Wkﬁ( Bcc(0)

Here,Byn » Buc, Bug s Bee, Bee, Bec denote thécross)
correlation functions of the random fieltts, G, andC de-
fined by Eq.(19). In the derivation of theQ{}) terms we
assumed that the random media realizations are statistically, . — X
isotropic and therefore the correlation functions depend only ition, the real partgkp is related to the phase velocity

on r. The upper bar denoting the background properties i$hroughv (w)=w/R{ky}, whereas the imaginary part yields
omitted. It is important to note that Eqel3)—(48) will pro-  the attenuation coefficient. y(w)=%{kp}. From the struc-
vide a correction term to the backgroumdwave number ture of Eq.(49), it can be seen that the phase velocity of the
[see Eq.(36)], which exclusively accounts for conversion coherent wave in an equivalent medium is smaller than in the
scattering into Biot's slow wave. The separation of terms inbackground medium. By inspection we find that-0, that

the operatorQ{Y) that describe the scattering process fromis, the coherent wave is exponentially damped. A detailed
fast into Biot's slowP wave and all other scattering pro- analysis of attenuation and velocity dispersion in an equiva-
cesses is possible because of the low-frequency assumptitgnt medium is presented in a companion paper.

[Eqg. (3)]. In other words, because of the large separation

between the two characteristic frequencies for ordinary elasV. RANGE OF APPLICABILITY

tic scattering and conversion scattering into Biot’'s slow
wave, we can distinguish between the different scatteringclss
processes, using the frequency dependency of the corrgs
sponding terms in the scattering equatieae also Appendix
B).

We will now assume that all correlation functions are of
the same functional form and only differ by theirs variances
i.e., Byy=0%yB(r) with B(0)=1 andB(s)=0. Substitut-
ing then expressiongt3)—(48) into Eq. (36) we obtain the Uﬁ(ka)2< 1, (53
final result for the effectivd® wave number,

The derivation of the dispersion relatiqd9) and the
ociated results on attenuation and phase velocity disper-
n are based on several assumptions that restrict their range
of applicability. The main restriction on our results is due to
the use of the first-order statistical smoothing approximation.
In the acoustic case the applicability condition of this ap-
proximation can be written &%

whereo? denotes the variance of the velocity fluctuatioks,

_ , [” . is the wave number of a wave propagating in the homoge-
Kp=Kp| 1+ A5+ Askpe . rB(r)expikpr]dr|, (49 neous background, aralis a characteristic length scale as-
sociated with the size of the inhomogeneities. Condi(&Es)
with the dimensionless coefficients ensures that the correction terms to the background wave
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number[similar to those in Eq(49)] are small. More pre- pressure to relax. This unrelaxed case occurs at high frequen-
cisely, this condition was obtained by analyzing the nexicies. A characteristic frequency that separates these low- and
term in the equation for the kernel-of-mass oper&oand  high-frequency regimes can be written as

requiring that the difference between the correction terms

from the first-order statistical smoothing and that of the next, wC:@_ (59)
higher-order approximation is small. It is natural to assume an

that a similar condition must hold in the poroelastic case. Nqte that this characteristic frequency is identical to the fre-
Using the first-order statlsycal smootmagNthoeNkerneI-of-Cluency where maximal attenuation occiftdhe existence

mass operatoQ can be approximated b@"~(LG"L) [Eq.  of both regimes within our wavefield approximation, which

(29)]. The next term in the infinite series f@ reads as is based on the low-frequency approximation of Biot's equa-

Q(2)=([€E), (54) tions, is only possible if
— ) w.<wg, (60)
where G is the matrix of the mean Green’s tensors found
from the first-order statistical smoothing. To comp@€, which imposes the additional condition for the average size
we assume that there is no multiple scatter of skwaves Of the mesoscopic inhomogeneities,
into slow P waves and, therefore, the mean Green'’s tensor
componeniy; is still of the form (35). Then we can derive a’s :
from Eq. (33) an equation for the effectivB wave number @8
similar to(36), but now involvingg$y' determined fron{54).  Conditions(58) and (61) define the range of applicability of
The computation ofj$y according to(54) is analogous to  our results. Whereas conditid60) is a necessary condition
that shown in the previous section and results in an effectivéor the validity of our results, there exists another condition
P wave numbeEpzz for the observability of wave-induced flow. Only b, is

. sufficiently different from the characteristic frequency, where

sz% Ko+ Aok, + Al_pkpz)sf rB(r)exdik & 1dr, (55) elastic scattering of the fast wave modes dominéites, P
0 —P andP—Y9), it is possible to distinguish between the two

T . . processes. Elastic scattering will dominate at frequengy
with k, given by (49). Let us compare this result with the —cla, wherec is the phase velocity of the fagt-wave

result for the effective wave number using first-order statis, 4. Therefore, the observability conditians=w, im-
tical smoothing[Eq. (49)]. Assuming thak, can be repre- posesa?= x2Np/(72H).

sented as a sum of background wave nunieand a cor-

rection term Ak, the difference betweert55) and (49)

becomes

KoN

(61)

V. REDUCTION TO THE 1-D CASE

kp2_kp:AkA1k;2)sfo rB(r)exdikpsr]dr. (56) In order to further substantiate our results, we analyze
their connection with the known 1-D result. For a system of

A necessary condition for the significance of the correctiorrandomly layered porous media an effective, compRex
term using the first-order statistical smoothiddk is the  wave number was obtained earlier by Gurevich and

smallness of the differena@®6) compared ta\k: Lopatnikov}’ see their equatiof66). This 1-D result is also
- — based on the method dfirst-ordey statistical smoothing. If
Kp2—Kp only the paramete¥ fluctuates, the 1-D result can be rewrit-
—— <1. (57)
Ak ten as

1.a°M , (= .
1+ Elp_dkpSJO dz Bym(z)exfdikgez] |,
max{A;(|kpda)? A}<1. (58) (62)

Relation (58) gives an estimate of the applicability of the Whereky andky, denote effective wave numbers that in-
first-order statistical smoothing approximation. That is, ourvolve effective parameters™, N*, and effective densities
results can be used in the case of weak-contrast media amd . 9*. These effective parameters can be computed accord-
weak wavefield fluctuations. ing to the so-called poroelastic Backus averadin:?®By

Physically, the existence of slof waves is associated heglecting terms higher tha@®(e?)—which is the overall
with the equilibration of pore pressure that at low frequen-Precision of the weak-fluctuation approximation—we can re-
cies is controlled by the diffusion equation with diffusion placekyswith k,¢. The effective parametéd* is computed
lengtht® \p=\/koN/w7. Therefore, the interplay between according to

Ap and the correlation lengtla defines two different re- <

Using for instance the correlation functionB(r)

=exp(—|r|/a), we obtain, from(56) and (57), E)D: kS

1\t M
gimes. If\p>a then the wave-induced pressure disturbanced* = Py+ a’M* = P4+ o? M> ~ H[l— %BMM(O) .
is equilibrated. This relation holds for low frequencies and 63
thus defines the low-frequency or relaxed regime. Con-

versely, ifA\p<a then there is not enough time for the pore Then the effective® wave numbeky can be expressed as
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p* 1 a2M which is identical to Eq(65).
ko =w \/ g~k 1+ 5 =~ Bum(0)|. (64) In conclusion, the 1-D effectiv® wave number can be
exactly obtained from the 3-D result. We note that we have
Using (64) Eq. (62) can be written in the form only considered the particular case Mffluctuations. How-
oM ever, the approach can be also applied in the case of other
ElljD: kp| 1+ —a By (0) parametrizations.

VI. CONCLUSIONS
1l «a

ZM 0
+ Elp_dkpsfo dz BMM(Z)eXF{'kpsZ]} (65) In the framework of the theory of wave propagation in
random media we analyzed the properties of the coherent
We will now show that the 1-D resuf65) can be recov- wave propagating in poroelastic random media. Neglecting
ered from the 3-D result. To do so, we analyze the expressiothe ordinary elastic scattering, we only accounted for conver-
for the Q; tensor component in the wave number domainsion scattering from fasP into Biot's slow P wave. This

0as that is of the form[cf. Eq. (B5)] process of conversion scattering is equivalent to the mecha-
exdik,R] nism of pore-pressure relaxation due to wave-induced pertur-
qssocj d®r B(r) Tpsexp[—iKﬂ, (66) bations. Thus, our results describe the relationship between

the dynamic properties of the coherent wavefield and the

where we used only the poroelastic part @,ﬁ, ; and R mechani;m of Wave.-ir.1duced flgid flow. In particular, we
=|r|. Note that in order to obtain E¢66) it is not’necessary have derived an explicit expression for the effectivgvave
to assume statistical isotropy. We are now considering th8umber Eq. (49)] by applying first-order statistical smooth-
following limiting situation. ing of Biot’s equations of poroelasticity with randomly vary-

(a) To degenerate the 3-D random medium into a 1-ping coefficients. This wave number is complex and involves
random medium we stretch the correlation lengths perper@n integral over the correlation properties of the medium
dicular to the direction of wave propagatica, , to infinity fluctuations. From this result it can be seen that the associ-
so that the correlation function becomes only a functiom of ated phase velocity is smaller than in the homogeneous back-
with parameter,, i.e., the correlation length parallel to the 9round medium and that the wave is exponentially damped.
direction of wave propagation. Obviously, if the wave propa-YVe have shown that the previously reported effeciueave
gates mainly in the direction we can also write the spatial number for randomly layered medlacan be derived from
wave vector a$<~(0,0kp)T. the more general 3-D result.

(b) Since in such a 1-D random medium there are only Our approach is limited to the case of weak-contrast,
two directions of wave propagation(z), we can use the Mesoscopic inhomogeneiti¢sonditions (58) and (61)]. In

small-angle approximatidf (or Fresnel approximationof  this paper we focused the analysis to wave propagation in
the propagator-like term ek, R]/R: statistically isotropic random media. However, the results

can be probably generalized to the case of statistically aniso-
exfikpR]  explikpz]  [ikpd{ tropic random media. An advantage of the statistical ap-
R = z X0z | 67) proach is its flexibility to handle complex geometrical distri-
butions of the inhomogeneities. Only the spatial correlation

wherer, denotes the absolute value of the transverse coordbf the fluctuations need to be known in order to compute the
nate vejctorrtz(x,y).T. Introducing the ;implifigatiqns Pro- dynamic wavefield attributes. A detailed analysis of fre-
posed m(ag and (b) into Eq. (66) and using cylindrical co- g1 ency dependencies of attenuation and dispersion due to
ordinatesd”r =dz dr,d¢ r,, we obtain wave-induced fluid flow and the potential applicability of the

- exlik,Z] results to real rocks will be the subject of a companion
q330c477f0 dz B(z) Texp{— ikpZ] paper?
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The low-frequency conditiok,/k,s<1 means that we can
replace the exponential expik,z] by 1. The integral with
respect tor always converges becaukg is complex and

produces an exponential decreasing multiplier. After per,ppeENDIX A POROELASTIC GREEN'S TENSORS
forming the integration and substituting the result into Eq.

(36), we obtain The complete set of Green’s tensors for a homogeneous
and isotropic poroelastic continuum—including electroseis-
mic coupling—was derived by Pride and HaartéekVe re-
produce only those parts of the Green’s tensors, which are
) related to poroelastic wave propagation. Furthermore, we can
i Eﬂk fmd (2)exdik (69) simplify these tensors for low frequencies witky|/|kp|
2Py P%Jq 2 Bum(2)exilikpez] <1. We obtain

a’M
1+ <5 Bum(0)

kp=kp
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ikgR eikpR
F 2
Gij(r_ro):W [ksij+ 0] —g——didj——
C2 1 e'kpsR
_24qu2(%(91' R (AL)
‘ C 1 e'kpsR
N 1 e'kpSR

Qi(r'=r")=((L{")" Gi(r'=r") (LK)"), (BY

where X=1,2, Y=1,2, Z=F,f,w while single and double
primes indicate whether in the differential operatgy dif-
ferentiation is with respect to’ or r”. It is therefore suffi-
cient to present the detailed manipulations only for one term.

For example, for the differential operators{)'=a/H'd/
and L{P)"=a/C"4, we have

Qu=(d/H"a Gfi(r'—r") (B2)

We now use patrtial integrations to shift the spatial de-

ﬁlr/"c’rrai(!

whereR=|r—r,|. In homogeneous and isotropic media therivativesd; andd|’ to the Green’s functiofand make use of

Green’s tensors only depend Bnlin the low-frequency ver-
sion of Biot's equations, the wave numbers of fBstS, and
slow P waves are defined as

P P [iwn q
kp=w\/;, k= \/g, Kps= —KONZw\/%,
(A4)

whereN=MP4/H. Note that the first three terms & are
formally identical to the elastodynamic Green'’s ten’sbdn-
deed, in the elastic limitK4—Ky, a—0 and ¢—0, «q
—0), the set of Green’s tensofAl)—(A3) reduces to the
single elastodynamic Green’s tensor,

elksR elkpR

2
([ks5ij+07it91]T—07iﬁjT ,
(A5)

is now given byk,

elas —
Gij Er—ro)—rpwz

where the P wave number

= w+pl(Kq+4/3G).

We define the spatial Fourier transform pair in the fol-

lowing way:

Gij(r—r’)zfd3Kgij(K)exp{iK~(r—r’)], (AB)
1 ,
g”(K):WJ d3(r—r")Gyj(r—r")exd —iK-(r—r")].

(A7)

In the wave number domain the Green’s tengéys)—(A3)
read as

2

+
ki—K?  ki—K?
1 c2 1 KK
KiK;
K2’

87° pw?
(A8)

1 C1

f
9;(K=g=§ qo? 2, (A9)
1 1 KK,

87° go? Ko K2 (A10)

gij(K)=—

APPENDIX B: COMPUTATION OF THE OPERATOR
Q(l)

In this appendix we compute the kernel-of-mass opera

tor Q{)(r’ —r") defined in Eq.(37). First we note that the
three terms in Eq(37) are of the same structure,
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the propertyGZ(R—>00) 0]. Averaging Eq.(B2) yields
Q=3 (Buclr'—r") Gf,(r'=r") d, (B3

where we made use of the assumption of statistically homo-
geneous random field&€q. (19)]. The Fourier transform of
Qi is defined as

il

1 3¢ " ’ " ; ’
qik(K):WJ d>(r" —r")Qp(r' —r")exd —iK-(r

-] (B4)

Noting that spatial derivatives correspond to multiplications
in the wave number domaini(—iK;), we can express;y
as

- KKy
oy f d°r BHc(f)Gn j(rexd —iK-r].
(B5)

Next, we need to compute the spatial derivatives of the
Green'’s tensors. The poroelastic part of Green'’s tensor in EqQ.
(A1) as well as Green'’s tensors in E§82) and(A3) are of
the form G« g,9;(e™»s*/R). After differentiation we ob-
tain

Qik(K)=

ikpsR

ij,ij (BB)

GPIR(r) o — kb d (k2 +4775(I’)>

Analogously, for the derivatives of the elastic part of Green’s

tensor(Al) given by equatiorfA5) we find

k2 eikpR
PR

Gelastr)oc o klzJ

ij,ij (87)

+4775(r)).

Note that the derivatives ifB6) and (B7) are of the same
functional form, despite the fact thﬁiﬁ'aStincludesS wave
contributions. These contributions, however, cancel out when
G5 %tis computed. The parts of the differential operat@l
mvolvmg fluctuations of the shear modulus require the com-
putation of the term$§55;and G575 . It can be shown that
these derivatives can be expressed in term&;of; :

Gaz 3= Gii --(3Fdosin0co§‘ 0+O(k2R2)) (B8)
) 1],1) 2 0 p :

1 2n2
:Gij,ij §+O(kpR) . (Bg)
Analogously,
GSj,Sj:Gij,ij(%+O(k,2)R2))- (B10)
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