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Abstract

Following advances in compressed sensing and high-dimensional statistics, many

pattern recognition methods have been developed with ℓ1 regularization, which

promotes sparse solutions. In this work, we instead advocate the use of ℓp (2 ≥
p > 1) regularization in a group setting which provides a better trade-off between

sparsity and algorithmic stability. We focus on the simplest case with squared loss,

which is known as group bridge regression. On the theoretical side, we prove that

group bridge regression is uniformly stable and thus generalizes, which is an im-

portant property of a learning method. On the computational side, we make group

bridge regression more practically attractive by deriving provably convergent and

computationally efficient optimization algorithms. We show that there are at least

several values of p over (1,2) at which the iterative update is analytical, thus it

is even suitable for large-scale settings. We demonstrate the clear advantage of

group bridge regression with the proposed algorithms over other competitive al-

ternatives on several datasets. As ℓp-regularization allows one to achieve flexibil-

ity in sparseness/denseness of the solution, we hope that the algorithms will be

useful for future applications of this regularization.

Keywords: ℓp regularization, convex optimization algorithms, ADMM, FISTA,

algorithmic stability, Lasso, group Lasso, bridge regression, group bridge

regression, splice detection

1. Introduction

Regularization is an important issue in pattern recognition for developing learn-

ing algorithms with high predictive power. In this work, we consider algorithms
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for solving a regularization problem of the following form

min
x

1

2
‖y−Ax‖2

2 +g(x). (1)

Here, we restrict our attention to the squared loss function and norm-based regu-

larization g(x). Extensions to other convex loss functions, such as logistic, may

be obtained similarly.

In learning theory, such a regularization is known to avoid over-fitting and

thus it allows the developed algorithm to generalize. Regularization has been an

important principle in machine learning and statistics [1], especially when one

is faced with increasing challenges of massive data-sets wherein the dimension

can be very large [2]. Recently, with the explosive growth of interest in com-

pressed sensing [3, 4] and high-dimensional statistics [2], a great deal of litera-

ture has been devoted to study the learning problem with ℓ1 regularization, i.e.

g(x) = λ‖x‖1 = λ ∑i |xi|. The theoretical arguments for such a choice have been

put forward in, for example, [3, 4, 5, 6]. It is known that ℓ1 regularization pro-

motes sparsity, which is conceived to be desirable in many learning problems.

As such, optimization algorithms have been specifically developed to solved the

Lasso-type problem [5] efficiently. The compressed sensing repository1 contains

numerous references on optimization algorithms for solving compressed sensing

recovery via ℓ1 regularization. Consequently, the literature has seen an increasing

number of applications of ℓ1 regularization, such as face recognition [7], graph

optimization [8], object categorization [9].

As structure constraints are shown to be beneficial to learning algorithms [10],

the statistics literature has also seen an extension of the basic Lasso scheme to

situations where grouped variables are available, known as group Lasso [11], [12],

[2]. In this setting, the variable vector x is naturally divided into G groups

x = [x1; x2; . . . ; xG] A = [A1 A2 . . . , AG] (2)

Ax =
G

∑
i=1

Aixi. (3)

Encouraging applications that exploits the group information can be found in a

wide range of problems from image tagging [13] to face recognition [6].

However, there are cases where ℓ1 regularization does not achieve competi-

1http://dsp.rice.edu/cs
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tive results as other dense regularization [14]. Theoretically, Xu et al. [15] has

established that certain sparse algorithms, including Lasso and group Lasso, are

not algorithmically stable, an important property of a good learning algorithm.

Whilst not being algorithmically stable does not mean that sparsity algorithms do

not generalize, it implies that they can potentially have poor predictive perfor-

mance in the worst case scenarios. More recently, it has been shown in [16] in the

context of multiple kernel learning that dense solution via ℓp-norm performs better

than sparse solutions and achieves state-of-art performance over a wide range of

problems. Likewise, [17] found that ℓp regularization with group settings attains

best compromise between prediction and robustness for p ∈ [1.5,2]. It appears

that ℓp regularization is an alternative that provides a natural trade-off between

sparsity and stability [15]. However, ℓp regularization is still of infrequent use

in practice, especially in the group setting. This could be of two reasons, both

theoretically and computationally. On the theoretical side, though there are some

published works in the statistics literature such as [18, 19], little is known about

the generalization property of group bridge regression. On the computational side,

efficient algorithms for ℓp regularization in general, especially in large-scale prob-

lems, seem to be lacking compared with ℓ1 regularization. We note that ℓp regu-

larization is strictly convex for p > 1, and thus gradient techniques can be used.

However, they tend to have rather poor convergence property especially when p

is close to 1 (which we demonstrate subsequently).

In this work, we further advocate the use of ℓp regularization in a group set-

ting. For the squared loss, this is known as group bridge regression [18]. Though

it is not new, we revisit this powerful regression method in the large-scale pat-

tern recognition context and make two contributions. Theoretically, we prove

that group bridge regression is also algorithmically stable, and thus it general-

izes. Computationally, we develop the novel and efficient algorithms under two

powerful optimization frameworks: alternative directions method of multipliers

(ADMM) [20] and fast iterative shrinkage thresholding (FISTA) [21]. We show

that there are values of p distributed over the range [1,2] where group bridge re-

gression have analytical solutions for the iterative updates, just like the Lasso.

This implies one can achieve varying degrees of sparseness in the solution effi-

ciently with the proposed algorithms. This is particularly useful in cases where

compressible data is present [22]. When analytical updates are not available, we

propose an algorithm to compute the updates with an efficient warm-start strategy.

Whilst the studied examples in this work subsequently show the advantage of ℓp

regularization over ℓ1, note that we do not claim it is always better. There will

be cases where ℓ1 might be more suitable. What we try to convey here is an al-
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ternative method for pattern recognition, which clearly allows flexibility between

achieving sparse or dense solutions with the most desirable property of a learning

algorithm.

The paper is organized as follows. Section II establishes the algorithmic sta-

bility of ℓp regularization in group bridge regression settings. In Section III, we

derive efficient ADMM- and FISTA-based algorithms for solving group bridge

regression. Section IV examines the numerical properties of the proposed algo-

rithms and demonstrate the competitive advantage of group bridge regression over

other sparse alternatives on a synthetic dataset and a real-world splice detection

problem. Finally, Section V concludes.

The Matlab implementation of all developed methods is made publicly avail-

able at the following website https://sites.google.com/site/dspham.

2. Algorithmic Stability with ℓp-norm Regularization

Algorithmic stability [23] is one powerful concept for assessing the predictive

power of a supervised learning method. We now show that group bridge regres-

sion of problem (1) with

g(x) = λ
G

∑
i=1

‖xi‖p
2 = λ‖x‖ℓ2/ℓp

, p ∈ (1,2], (4)

is indeed algorithmically stable. Our approach is based on the key result in [24],

and we tailor it to the group setting.

First, we briefly revisit the common setting in supervised learning, where a set

of data points z = {(a1,y1), . . . ,(an,yn)}, and ai ∈ R
d . The aim is to learn a func-

tion f from z that allow us to predict y given a future a. Here, for the formulation

(1) the function to be learnt is linear f (a;x) = aT x and the squared loss function

V (y1,y) = 1
2
(y1 − y)2. Up to a scaling by a factor of 1/n, the formulation (1) is

known in learning theory as empirical risk minimization where the first term es-

sential represents the empirical risk Rz = 1
n ∑n

i=1V (aT
i x,yi). An algorithm is said

to be consistent if the empirical risk converges asymptotically to the risk, i.e.

lim
n→∞

Rz = R = Ea(1/2)(y−aT x)2,

assuming bounded risk. For the finite sample case, the learning theory is interested

in the bound on the deviation of the empirical risk from the risk. In algorithmic

stability theory[23], an algorithm is said to be uniformly β -stable if there exists a
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finite β that upper bounds the maximum deviation in the loss due to replacement

of the sample z with any possible z′ from the same distribution. Under regularity

conditions on the loss function, including convexity, boundedness at 0, and L-

Lipschitz in the first variable (which are met by the actual squared loss considered

here), [23] showed that the bound is

|Rz −R| ≤ β +(2nβ +L
√

κτ +B)

√

log(1/δ )

2n
. (5)

with the probability of at least 1− δ . Here, κ is an upper bound on the feature

functions in the functional space of f , i.e. κ = sup‖x‖2
2, and B is an upper bound

on the loss function when the first variable is zero, i.e. B = 1
2

maxy2, and L is

the Lipschitz constant of the lost function V (y1,y) in terms of the first variable

y1 subject to the regular conditions, i.e. L = ymax − ymin. Detail can be found

in [23, 24]. Clearly, when β = o(n−1/2) then stability implies generalization.

Though uniform stability appears rather strict, it requires no further assumptions

on the data than other weaker notion of stability in the literature [24].

Though algorithmic stability is a powerful tool to characterize a learning al-

gorithm, there was not an easy way to verify uniform stability for a particular

method until recently when Wibisono et al. [24] discovered a sufficient condition

to do so. Consider the class of norm regularization where g(x) = λP(x) where

λ is regularization parameter and P(x) is some suitable norm. Denote as xz and

xz j respectively the solution of the regularized empirical risk minimization on

original data z and when the jth sample is replaced with another from the same

distribution. It was established in [24] that:

Theorem 2.1. Suppose that for some constant C > 0 and ξ > 1, the penalty func-

tion satisfies

P(xz)+P(xz j)−2P

(

xz +xz j

2

)

≥C‖xz −xz j‖ξ
2

then the regularization is uniformly β -stable with β =
(

Lξ κξ/2

nλC

)
1

ξ−1
.

Using this important result and following the strategy in [24], we also establish

algorithmic stability for group bridge regression as follows:
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Theorem 2.2. For group bridge regression, there holds

P(xz)+P(xz j)−2P

(

xz +xz j

2

)

≥ p(p−1)

4

(

B

λ

)

p−2
p

‖xz −xz j‖2
2

thus it is uniformly β -stable with β = 4L2κ
nλ p(p−1)

(

λ
B

)

p−2
p

.

The proof of this result is detailed in the Appendix. Complementing the ex-

isting knowledge in the statistics literature [18] in estimation context, this results

further justifies group bridge regression in the prediction context.

3. Optimization Algorithms

We now derive ADMM and FISTA algorithms to solve group bridge regres-

sion. Despite the differences between the frameworks, we show that there is a

fundamental and common convex optimization sub-problem. For some values of

the bridge order p, this sub-problem has analytical solution just like Lasso, which

implies computational advantage. For other cases, we exploit properties of the

sub-problem to construct an efficient algorithm.

3.1. ADMM algorithm

Alternating direction method of multipliers (ADMM) is a simple but powerful

framework in optimization, which is suited for today’s large-scale problems aris-

ing in machine learning and signal processing. The method was in fact developed

a long ago before advanced computing power was available, and re-discovered

many times under different perspectives. Recently, [20] has unified the frame-

work in a simple and concise explanation. Consider the problem (1) with ℓp reg-

ularization. As the variables are coupled due to the smooth loss, this makes it

even harder when combine with the regularization term. In principle, the problem

is easier to tackle if the variables can be decoupled, so that the problem can be

solved element-wise or group-wise. Using a clever trick, the ADMM framework

suggests to separate the regularization term from the smooth term by introduc-

ing an additional variable z, which is tied to the original variable via an affine

constraint:

minx,z f (x)+h(z) s.t x− z = 0. (6)
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Here, for group bridge regression we have f (x)= 1
2
‖y−Ax‖2

2, and h(z)= λ ∑G
i=1 ‖z‖p

2 .

For this type of regularized objective function, ADMM considers the following

augmented Lagrangian

Lρ(x,z,y) = f (x)+h(z)+yT (x− z)+
ρ

2
‖x− z‖2

2. (7)

Here, ρ is the parameter associated with the augmentation
ρ
2
‖x− z‖2

2, and this is

to improve the numerical stability of the algorithm. The strategy for minimizing

this augmented Lagrangian is iterative updating of the primal and dual variables.

With a further normalization on the dual variable u = (1/ρ)y, it is shown [20] that

the updates for the parameters are

xk+1 = argmin
x

{

f (x)+
ρ

2
‖x− zk +uk‖2

2

}

(8)

zk+1 = argmin
z

{

h(z)+
ρ

2
‖xk+1 − z+uk‖2

2

}

(9)

uk+1 = uk +xk+1 − zk+1. (10)

The iterative updates are repeated until the following primal and dual residuals are

sufficiently small

rk
p = xk − zk (11)

rk
d = ρ(zk − zk−1). (12)

For the squared loss being considered, it is noted that the update step for x is exact

xk+1 = (AT A+ρI)−1
(

AT y+ρ(zk −uk)
)

. (13)

Furthermore, AT A + ρI is fixed and thus its inversion can be pre-computed for

better efficiency. The remaining challenge is to find the update step for z via the

following sub-problem

zk+1 = argmin
z

{

1

2
‖v− z‖2

2 +
λ

ρ

G

∑
g=1

‖zg‖p
2

}

(14)

= argmin
z

G

∑
g=1

{

λ

ρ
‖zg‖p +

1

2
|vg − zg‖2

}

(15)
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where v = xk+1 +uk for the ADMM case. Here, we have dropped the subscript for

notational simplicity. Note that this cannot be decomposed further into element-

wise form due to the coupling induced by ‖z‖p
2 . We now discuss how to solve this

problem for 2 ≥ p > 1. We have the following result.

Lemma 3.1. Let e = v
‖v‖2

be the direction of v, and let v = ‖v‖2. Then the solution

of (15) has the form z = ηe where η ≥ 0 is the minimizer of

λ

ρ
|η |p +

1

2
(v−η)2. (16)

The significance of this result is that it converts a multidimensional optimization

problem (15) to an univariate optimization problem (16). This result can be proved

by simple geometrical arguments. Indeed, denote z∗ as the solution of (15), then

we consider all points z such that ‖v−z‖2 = ‖v−z∗‖2 = R. It turns out that these

points are lying on the ball with center at v and radius R. Among these points,

only the point that satisfies z = ηe, i.e. intersection of the ball and the vector v,

will have minimum ℓ2 norm, which minimizes the second term in (15), then (16)

follows immediately.

We shall discuss numerical algorithms for solving (16) subsequently. Next,

we show that (16) is also a central problem in the FISTA algorithm.

3.2. FISTA algorithm

Another approach to effectively decouple the variables when solving bridge

regression optimization problems is to directly approximate the loss function by

a decoupled quadratic function. This approach was proposed by [21], which also

shares the same philosophy as an unpublished work of [25]. The name of the

method is actually motivated from the Lasso problem, but its general principle

can be used for the more general case of bridge regression. FISTA exploits two

key strategies:

• Decoupling variables: Instead of dealing with the original loss function
1
2
‖y−Ax‖2

2 where variables are coupled through A, it iteratively solves a

series of decoupled problems of the form

min
x

1

2
‖v−x‖2

2 +λ
G

∑
g=1

‖xg‖p
p. (17)

where v = zk − (AT Azk −AT y)/L, L = λmax(A
T A). Although being sim-

ilar to the z step in ADMM, FISTA always works on the original primal
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variables. This is similar to (14) and thus shares the same core problem (16)

with ADMM.

• History update: FISTA also uses historical points to speed up convergence

zk+1 = xk +

(

tk −1

tk+1

)

(xk −xk−1), (18)

tk+1 =
1+
√

1+4(tk)2

2
(19)

For further detail of FISTA, please see [21]. Next, we discuss technical aspects of

solving (16).

3.3. Solving the sub-problem (16)

As the problem is strictly convex for 2 ≥ p > 1, the solution of (16) satisfies

z+ γ p|z|p−1sign(z) = v, (20)

where γ = λ/ρ for ADMM algorithms and γ = λ/L for FISTA algorithms. De-

notes as z∗ = Ω(v, p;γ) the solution of this problem as a function of v, p and γ .

We note that the left hand side of (20) is a monotonically increasing function of

z, and hence for a given v it has exactly one solution. For some values of p,

(20) has analytical solutions. Otherwise, (20) needs to be solved numerically with

one-dimensional techniques such as bi-section. To facilitate fast one-dimensional

search, one needs to specify a suitable interval for the search. A tight interval or a

starting point close to the true solution is the key to speeding up (20) when solved

numerically. In what follows, we describe properties of the solution Ω(v, p;γ) and

their implications to search strategies:

• Sign consistency: The solution must have the same sign as vi, i.e. Ω(v, p;γ)=
sign(v)Ω(|v|, p;γ), with a note that Ω(0, p;γ) = 0. This implies that when

solving for each zi, we can consider the magnitude of vi for simplicity,

and adjust the sign latter. Consequently, this also implies that Ω(v, p;γ) =
−Ω(−v, p;γ).

• Monotonicity: The function λ p|z|p−1sign(z)+ρz is monotonically increas-

ing and odd-symmetric. Thus, if |vi| ≤ |v j| then Ω(|vi|, p;γ)≤ Ω(|v j|, p;γ).
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• Bounded range: Due to the monotonicity property, it is easy to show that

0 < Ω(|vi|, p;γ) < min

{

|vi|,
(

ρ|vi|
λ p

)
1

p−1

}

.

We shall improve the bound subsequently.

• Analytical solution: for few cases where the equilibrium equation can be

posed as finding roots of a polynomial. This happens when k = 1/(p− 1)
is an integer and thus the following form is equivalent to (20) with variable

t ≥ 0 such that z = sign(v)tk :

tk + pγt −|v| = 0. (21)

For some small values of k, we can derive analytical solution as follows:

p = 2: t = |v|
1+2γ .

p = 3/2: t = −3γ
4

+ 1
2

√

9γ2

4
+4|v| .

p = 4/3: t =

(

|v|
2

+

√

|v|2
4

+ 64γ3

729

)1/3

+

(

|v|
2
−
√

|v|2
4

+ 64γ3

729

)1/3

.

p = 5/4: t =
√

|v|
2
√

2t0
− t0

2
−
√

t0
2

, t0 =

(

25γ2

128
+

√

625γ4

65536
+ |v|2

27

)1/3

+

(

25γ2

128
−
√

625γ4

65536
+ |v|2

27

)1/3

.

It is also noted that the limiting Lasso case, i.e. p = 1, is not governed by

(20), but also has analytical solution z = sign(v)max(|v| − γ,0), i.e. soft-

thresholding.

• Continuity: It is easy to verify that for |vi|> 0 limε→0,δ→0 Ω(|vi|+δ , p,γ)=
Ω(|vi|, p,γ). The continuity property implies that for a fix p, if δ is suf-

ficiently small and we know Ω(|vi|, p,γ) then Ω(|vi|, p,γ) should also be

close to Ω(|vi|, p;γ). This implies that an effective warm-up strategy can

be exploited by using Ω(|vi|, p;γ;λ ) as a starting point for finding Ω(|vi|+
δ , p;γ). Indeed, if δ is sufficiently small, one may use linear approximation
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to the equilibrium equation and show that

Ω(|vi|+δ , p;γ) ≈ Ω(|vi|, p;γ)

+

(

1+
λ p(p−1)

ρΩ(|vi|, p;γ)p−2

)−1

δ .

Similarly, for a given |vi|, Ω(|vi|, p;γ) ≈ Ω(|vi|, p0;γ) where p0 is the near-

est value of p that has an analytical solution. Furthermore, it is easily shown

by taking the derivative of h(p) = z + γ pzp−1 for z > 0, we can show that

for pl ≤ p ≤ pu it holds

Ω(|vi|, pl;γ) ≤ Ω(|vi|, p;γ) ≤ Ω(|vi|, pu;γ) (22)

for z > e−1/p and the reverse inequalities if z < e−1/p.

The above discussion suggests that if the user can select p to be one of the above

special values in the range (1,2] then the core problem in both ADMM and FISTA

can be solved analytically, and thus group bridge regression can be solved as fast

as Lasso-type problem. The special values of p in the range cover a wide range

of sparse/dense models and may be sufficient for most cases. In the discussion to

follow subsequently, we further outline other special values of p close to 1 that can

be obtained almost nearly analytically. It is only when the value of p is not one

of the special values, the core problem has to be solved numerically. Note that we

need to solve a number of entries in the form of (16). Denote as vk = xk+1 + uk.

The following effective warm-up strategy is suggested when solving (16) for all

entries.:

• Step 1: Sort the entries vk in the increasing order of magnitude, ignoring the

sign.

• Step 2: Identify the best upper pu and lower pl bounds on p that are known

to have analytical solutions (the known values are 1, 5/4, 4/3, 3/2, 2).

• Step 3: Compute Ω(|vi|, p;γ) for the smallest |vi|. Note that Ω(0, p;γ) = 0

• Step 4: Suppose that |vi+1| is the next entry in the sorted list. If |vi+1| = |vi|
then Ω(|vi+1|, p;γ) = Ω(|vi|, p;γ). Otherwise, we check if δ = |vi+1|− |vi|
is sufficiently larger than a designed threshold ∆. If so, we search over

the range [Ω(|vi+1|, pl;γ),Ω(|vi+1|, pu;γ)]. Otherwise, we can improve the
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lower bound of the ranger further with

Ω(|vi|, p;γ)+

(

1+
λ p(p−1)

ρΩ(|vi|, p;γ)p−2

)−1

δ .

• Step 5: Repeat Step 4 until all entries are computed.

• Step 6: Adjust the sign of the solution if necessary.

3.4. Discussion

• There are certainly cases where group selection is a clear-cut choice, in

which case sparse group selection like group Lasso might be better used.

Thus, group bridge regression is useful when there are no clear subsets of

dominant groups that influence predictivity.

• There are other flexible regularization alternatives to bridge regression, one

of which is Elastic-net [26]. From a computational viewpoint, we note that

Elastic-net can be posed as a special Lasso problem, and hence ADMM and

FISTA algorithms for solving bridge regression is readily applied.

• We have shown that analytical solution is available for polynomial up to

order 4 at p = 5/4. In principle, it is possible to extend this, at least approx-

imately to higher-order polynomials, i.e. smaller values of p. Considering

equation (20) with p = 1+1/k. We note that it is always possible to convert

it to a form

sk +Cs = b (23)

for some fixed coefficient C > 0 and b = C|v|
(1+1/p)γ via the transformation

t =
(

(1+1/k)γ
C

)
1

k−1
s. Thus, it is possible to study the polynomial sk +Cs for

given k,C so that the non-negative root of (23) may be pre-computed for a

given accuracy. This is particular useful when p is close to one, i.e. when

k is very large. For example, we can set C = 1 and consider (23) for a very

large value of k, i.e. sk + s = b. We observe that this function is dominated

by s when s ∈ [0,1) and by sk if s > 1. The transition region at s = 1 can be

approximated smoothly by a second-order polynomial for example.

• Under the ADMM framework, it also appears that extensions to include

other popular constraints, such as non-negative or affine, are possible. These
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constraints may improve further the performance of machine learning meth-

ods based on ℓp regularization.

• Finally, we note that numerical algorithms for group bridge regression are

not discussed in sufficient depth in the literature. The original work [18]

does not outline such an algorithm but only concentrates on asymptotic

analysis. The only exception is [27] where a discussion of the non-group is

presented but for the case where p < 2 as the interest is on variable selection.

4. Experiments

This section consists of two parts: first we study the numerical properties of

the proposed algorithms, then we illustrate the usefulness of ℓp regularization on

some learning problems with the proposed algorithms. For completeness, we also

compare group bridge regression with its non-group counter part, i.e. bridge re-

gression, which is a very special case when the group size is actually 1. Two

other flexible regularization non-group methods are also considered for compari-

son, including Elastic-net [26] and ℓp-norm multiple kernel learning (MKL) [16].

For ℓp-MKL, we select the linear, RBF, 2nd- and 3rd-order polynomials, and tanh

kernels as the kernel set.

For 2 ≥ p > 1, the objective function of both bridge and group bridge regres-

sion is strictly convex. Hence, unconstrained convex optimization methods can

be used. For example, [28] suggested the classic Newton-Raphson method bridge

regression. However, as the second-derivative of the regularization term does not

exist for when p < 2, this will run into numerical problems, especially when the

solution is sparse, i.e. p close to 1. Another method to iteratively solve a number

of Lasso sub-problem is proposed in [18] but only for the case p < 1. Thus, for

large-scale learning problem, gradient methods with backtracking line-search [29]

is often considered, for example [16]. For group bridge regression, the group-wise

derivative is

∇ = (AT
g A+λ p‖x‖p−1

2 I)xg −AT
g y,

where |x|p−1 denotes a vector with the ith entry being |xi|p−1 and Ag is the sub-

matrix of A that correspond to the group variable xg.

All algorithms are implemented in Matlab, and roughly optimized. The exper-

iments are carried out on a Duo-core 3.3GHz 32-bit desktop computer.
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4.1. Numerical properties

We generate synthetic data from the compressed sensing model y = Ax, where

A ∈ R
m×n is a Gaussian random matrix with variance 1/m. We set n = 256,m =

64 and divide x into G = 16 groups, each of dimension ng = 16. In the first

experiment, we set the coefficients of group 2 all to 1, and other to zero. A small

Gaussian noise with standard deviation of 0.05 is injected to y. We then examine

the convergence behavior of different ℓp algorithms for p = 5/4 and we set λ =
0.1λmax where λmax = ‖AT y‖∞.

To best compare different optimization algorithms, we study two aspects. One

is the reduction of the error against the iterations ‖xk − xtrue‖2. Here, xtrue is the

true value of x and k is the iteration number. Note that xtrue is not necessarily

the optimizer of the corresponding problem, as different formulations have dif-

ferent optimizers. Measuring the error with reference to the true value not only

reveal convergence properties, but also indicates which formulation give better

results. The other related aspect is the actual computational time taken to reach a

certain accuracy. Whilst this is intuitively closely related to the former, different

algorithms have different complexities at each iteration. Hence, the number of

iterations is not the actual indication of how fast an algorithm is.

We study the numerical properties of the FISTA, ADMM, and gradient algo-

rithms for both bridge and group bridge formulations in two cases: p = 5/4 where

the FISTA and ADMM algorithms have analytical updates, and p = 1.2 where the

FISTA and ADMM algorithms need to solve the update step numerically. Results

for reduction of the error versus iterations are shown in Figures 1 and 3, whilst

results for the computational time taken to reach certain accuracy are shown in

Figures 2 and 4. We make the following observations:

• Under the group bridge formulation, the ADMM and FISTA produce the

best convergence and reach good final error. On the contrary, it appears that

the gradient algorithm converges to some other value which has much larger

error.

• In both group and non-group formulations, the ADMM algorithm tends to

require less iterations and time to reach a specific accuracy than the FISTA

algorithm, though both of them should reach the same value eventually.

• Compared with the exact case, both ADMM and FISTA algorithms take

approximately the same number of iterations to reach a similar accuracy,

but are about ten times slower due to the need to solve the update step nu-

merically. The tolerance for the numerical update is set presently at 10−4.
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Figure 1: Absolute convergence in an exact case p = 5/4
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Figure 2: Computational time in an exact case p = 5/4

16



10
0

10
1

10
2

1

1.5

2

2.5

3

3.5

4

iterations

a
b

s
o

lu
te

 e
rr

o
r

absolute convergence to true value, p = 1.2

 

 

fista bridge

fista group bridge

admm bridge

admm group bridge

gradient bridge

gradient group bridge

Figure 3: Absolute convergence in an inexact case p = 1.2
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Optimizing this might lead to reduced time, but it would be a matter of

preference in each specific application.

• Clearly, the bridge formulation is inferior to the group bridge formulation

as it does not exploit the information about the structure of the data. Con-

sequently, this leads to larger errors, regardless of which algorithm used to

solve it.
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Figure 5: Convergence example of different algorithms

Such a result is shown in Fig. 5, which is a typical pattern that we observe

over a wide range of settings. It is observed that overall ADMM achieves the

best performance in terms of both convergence rate and accuracy. We found that

FISTA converges more slowly but eventually reaches the accuracy of ADMM for

a reasonable number of iterations. Gradient method is shown to have inferior

accuracy to the other FISA and ADMM algorithms. We also note that the group

bridge formulation yields more accurate result than bridge formulation, which is

as expected due to the group constraint.

With the same settings, we also measure the average running time of the com-

pared algorithms with p = 5/4 (analytical update) and p = 1.2 (numerical update)
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Table 1: Running time comparison

Bridge regression Group bridge regression

p ADMM FISTA Gradient ADMM FISTA Gradient

5/4 0.58±0.04 0.53±0.05 0.52±0.06 0.14±0.02 0.11±0.03 0.07±0.05

1.2 8.40±0.23 4.74±0.70 0.55±0.05 0.54±0.02 0.57±0.11 0.08±0.05

over 10 random repetitions. All algorithms are implemented in Matlab and ini-

tialized with a zero vector and the same convergence criterion of 0.001, i.e. they

are terminated when ‖xk+1 −xk‖2 ≤ 0.001‖xk‖2. The result is shown in Table. 1.

As expected, gradient algorithms are relatively independent of the bridge order,

whilst for both FISTA and ADMM algorithms, the analytical case is much faster

than the numerical case. It is of interest to note that both ADMM and FISTA are

competitive against the gradient alternative for the analytical case. Finally, the

group formulation yields much better computational advantage as the effective

problem size is reduced.

We note that whilst the gradient is fast (when relative change is used as a con-

vergence criterion), we observe that its accuracy is always a problem, especially

when p is close to 1. In many learning problems, it often fails to generate consis-

tent performance when p varies. As a result, the ADMM and FISTA implemen-

tations are recommended. In what follows, we select the ADMM implementation

for its accuracy.

4.2. Sparse-dense flexibility

Next, we demonstrate the effectiveness of ℓp regularization for compressible

data. To do so, we revisit the above example and consider a decaying pattern

of the form xi = exp{−η i} (see Fig. 6). Such a pattern may be a more faith-

ful description of real-world data [22]. We select the ADMM algorithm as the

representative implementation for ℓp regularization and vary p between 1 and 2.

For each value of p, we select the regularization parameter λ such that it yields

the minimum error ‖x̂− x‖2
2. The result is shown in Fig. 6. We observe that the

selected values of p = 4/3 gives the most accurate recovery result. In this par-

ticular case, it shows that ℓp regularization is indeed effective in addressing the

underlying characteristics of the data.

4.3. Regression and prediction

The above experiments are conducted in the compressed sensing flavor. Now,

we consider experiments in a true machine learning perspective, i.e. attention is
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Figure 6: ℓp recovery error for an exponentially-decaying pattern

now paid to the predictive performance rather than recovery aspects. Like previ-

ous works on group Lasso [30, 31, 11], the Pearson score on the test set is used

to compare different methods. The regularization parameter λ is optimized by se-

lecting solution corresponding to the best Pearson score of the validation set over

the search grid λ ∈ [0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5]λmax where

λmax = maxg∈G ‖XT
g y‖ [30]. The column of the design matrix is normalized to

unit norm.

4.3.1. Synthetic learning problem

First, we consider a synthetic learning problem mentioned in [31] where we

can control the group sparseness. The true vector x has 100 dimensions and is di-

vided into 10 blocks of ten. The variables the first Ng blocks have random weights

±1, whilst the rest is zero. The data points are generated by ai = Lvi where vi’s

are sampled from the distribution N (0,I), and L the Cholesky decomposition of

a correlation matrix Σ with the i, jth entry being 0.2|i− j|. Then each ai is normal-

ized to unit norm. Then we generate yi = sign(aT x+ε) where ε is Gaussian noise

with variance of 0.1.

Three sets, training, validation, and test, are generated with equal size N =
1000. We vary the number of active groups Ng from 1 to 10, and collect the

average Pearson score. For ℓp regularization, we consider both bridge and group

bridge settings. The values for p are selected to cover the range [1,2]. Note that

when p = 1 it is the Lasso/group Lasso, and when p = 2 both the group and

non-group setting is the same (i.e. ridge regression).

The best Pearson scores and standard deviations for all methods are tabulated

in Table 2. Clearly, bridge regression appears to be the best method for this prob-

lem and consistently outperforms other compared methods. Between bridge and
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Table 2: Results on synthetic data.

Ng GROUP BRIDGE BRIDGE ELASTIC-NET ℓp MKL

1 0.495 ± 0.021 0.476 ± 0.021 0.474 ± 0.021 0.375 ± 0.020

2 0.580 ± 0.021 0.567 ± 0.021 0.563 ± 0.021 0.471 ± 0.033

3 0.645 ± 0.026 0.630 ± 0.026 0.625 ± 0.023 0.520 ± 0.015

4 0.673 ± 0.025 0.648 ± 0.025 0.651 ± 0.025 0.554 ± 0.032

5 0.686 ± 0.014 0.676 ± 0.014 0.668 ± 0.019 0.566 ± 0.022

6 0.708 ± 0.024 0.693 ± 0.024 0.687 ± 0.014 0.600 ± 0.024

7 0.718 ± 0.023 0.701 ± 0.023 0.701 ± 0.022 0.591 ± 0.029

8 0.735 ± 0.023 0.723 ± 0.023 0.717 ± 0.027 0.600 ± 0.022

9 0.726 ± 0.021 0.717 ± 0.021 0.717 ± 0.023 0.615 ± 0.026

10 0.741 ± 0.030 0.741 ± 0.030 0.730 ± 0.036 0.623 ± 0.033

group bridge, we can see a minor improvement when group information is ex-

ploited. Elastic-net is quite close to bridge regression, which hints that the flex-

ibility in both methods probably have the similar effect. The only method that

performs rather inferior in this case is ℓp-MKL.

Table 2 only shows the best scores for ℓp regularization methods. To illustrate

of the dependence of the Pearson score on the actual p, we show the error bar

plot of the Pearson score’s variation against p for group bridge, bridge, and ℓp-

MKL in Fig. 7 for two cases: 1 (sparse) and 7 (dense) active groups. We observe

that the top scores for both bridge and group bridge are attained within the range

[1,4/3], and reduced when p → 2. We also see a clear gap between bridge and

group bridge in both cases. For ℓp-MKL, we observe that it tends to favor dense

solution regardless of the active group number.

4.3.2. Real-world learning problem

The splice detection on the MEMset data-set 2 has been considered as a real-

world application of group Lasso in previous works [30, 31, 11]. This is one

important genomic problem in computational biology.

A gene is a very long sequence which contains exons (coding) and introns

(non-coding) segments. Exons are those sequence which remain after RNA splic-

ing which removes introns. Splice sites are the regions between exons and in-

2genes.mit.edu/burgelab/maxent/ssdata
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Figure 7: Performance on synthetic problem

Figure 8: Examples of true and false donor sites in the splice detection problem
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trons. There are two types of splice sites: donor and acceptor. We only consider

the donor site detection problem. A donor site typically begins with the canoni-

cal ‘GT’ letters. The problem is to distinguish between the real and false splice

sites, so this is essentially a binary classification problem. In a real splice donor

site, the first subsequence corresponds to the last three bases of the preceeding

exon, whilst the last subsequence corresponds to the six bases of the following

intron, separated from the former by the consensus ‘GT’. False splice donor sites

are subsequences of the DNA which also have the 4th and 5th positions as the

consensus ‘GT’. It is typically hypothesized that there is a hidden structure in the

DNA sequence that distinguishes between real and false splice sites.

The original training and testing sets are quite imbalanced. We follow the

methodology in previous work and randomly divide the data to obtain a balanced

training with 5,610 true and 5,610 false donor sites, and an unbalanced valida-

tion set with 2,805 true and 59,804 false donor sites, which has the same ratio of

true/false as the original test set. After the pre-processing step that removes the

consensus “GT”, each data instance is a sequence of length 7 with 4 levels {A,

C, G, T}. To extract the feature for each data instance, we consider modeling the

co-occurance of level at different positions up to the second-order, which gener-

ates a binary feature vector of dimension 2604. Then we divide the feature vector

into 63 groups, each corresponding to interactions for the same set of locations

regardless of the levels. There are: 7 zero-order groups of size 4, 21 first-order

groups of size 16, and 35 second-order groups of size 64. For each data instance,

a feature vector is sparse and has only has 63 active entries (1), whilst the rest is

inactive (0).

The best scores for all methods are shown in the left subplot of Fig. 9. The

best method is group bridge (0.6633 at p = 1.2), followed by bridge (0.6609 at

p = 4/3), ℓp-MKL (0.6471 at p = 1.8), and elastic-net (0.5562). To the best of

our knowledge, the score for group bridge regression here is the best result ever

reported for this splice detection problem setting. Further detailed results on the

dependence of the score on p are shown in the right subplot of Fig. 9. Here, we

see again two characteristics: one is the advantage of the group formulation, and

the other is the optimal range of p for bridge and group bridge regression.

5. Conclusion

As learning with ℓp regularization is a more flexible alternative and algorith-

mically stable than the ℓ1 counter part, we have developed efficient algorithms

for solving the associated challenging problem. Under the powerful ADMM and
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Figure 9: Performance on splice detection problem

FISTA frameworks, we have demonstrated that there is a common sub-problem

that is the key for ℓp regularized optimization. Interestingly, we found that like

Lasso, ℓp regularization can have analytical updates for a number of values of

p over the range [1,2], and thus the developed algorithms provide both flexibil-

ity in the sparsity-stability trade-off and computational efficiency. For any other

value of p, the warm-start strategy is proposed to solve the common sub-problem

numerically and efficiently. We have demonstrated the numerical properties of

the proposed algorithms, consistent with optimization theory. The applications of

the proposed algorithm on several machine learning problems have revealed their

potential to achieve state-of-the-art performance against other alternatives.

Appendix A. Proof of Theorem 3

We prove Theorem 3 by extending the proof technique in [24] to the group

bridge regression case with. We note the following:

• While the sufficient condition would be met by a strongly convex regular-

ization, it is not necessary to be so. The sufficient condition only requires

the inequality to hold at the minimizers, which mean that strong convexity

on bounded domain is sufficient.

• For the class of norm regularization, it was shown that P(xz)≤ (B/λ ) where

B = supyV (0,y) (see Lemma 3.1 in [24]). Consequently ‖xz‖2 is bounded

by some τ = (B/λ )1/p [24].
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• The sufficient condition does not make any specific assumptions about the

loss function as long as it satisfies the general conditions, so the focus is on

the regularization term.

For notational simplicity, we prove that for two vectors x and y such that their

magnitude are bounded by τ1/p where τ = (B/λ ), i.e. ‖x‖2,‖y‖2 ≤ τ1/p, and that

1 < p ≤ 2, then there exits a constant ρ such that

‖x‖p
2 +‖y‖p

2 −2‖x+y

2
‖p

2 ≥ ρ‖x−y‖2
2. (A.1)

For group bridge regression, the constant is precisely

ρ = (1/4)p(p−1)τ
p−2

p = (1/4)p(p−1)(B/λ )
p−2

p

.

For the case when x and y are scalar quantities, the proof in [24] uses the

second-order mean value theorem, which essentially says that for a convex func-

tion f on the bounded domain with continuous derivative up to the second order,

then there exists c, where min{x,y} ≤ c ≤ max{x,y} such that

f (x)+ f (y)−2 f (
x+ y

2
) =

1

4
f ′′(c)

Here, f ′′ denotes the second-order derivative. In [24], the convex function f (t) =

|t|p is used to derive the result and that |x|p+|y|p−2| x+y
2
|p = (y−x)2

4
p(p−1)|c|p−2.

We also use the same technique, but instead consider the function f (t) = ‖x+
tu‖p

2 where u = y = x. We note that

f (0) = ‖x‖p
2 , f (1) = ‖y‖p

2 , f (1/2) = ‖y+x

2
‖p

2 .

So according to the second-order mean value theorem, there exists some c ∈ [0,1]
such that

f (0)+ f (1)−2 f (1/2) =
1

4
f ′′(c).

We now evaluate f ′′(c). To do so, we explicitly write

f (t) =

(

∑
i

(xi + tui)
2

)p/2

.
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It is straightforward to show that

f ′(t) = p‖x+ tu‖p−2
2

(

(x+ tu)T u
)

f ′′(t) = p(p−2)
(

(x+ tu)T u
)

‖x+ tu‖p−4
2

(

(x+ tu)T u
)

+ p‖x+ tu‖p−2
2 ‖u‖2

2.

Denote as z = x+ cu, then

f ′(c) = p‖z‖p−2
2 zT u, f ′′(c) = p(p−2)zT u‖z‖p−4

2 zT u+ p‖z‖p−2
2 ‖u‖2

2.

Now let θ be the angle between z and u so that zT u = ‖z‖2‖u‖2 cos(θ), then we

can simplify the second-order derivative as

f ′′(c) = ‖u‖2
2‖z‖p−2

2 (p(p−2)cos2(θ)+ p).

Next, we obtain a lower bound of f ′′(c). As ‖x‖2 and ‖y‖2 ≤ τ1/p and that 1 <
p ≤ 2, it follows that p−2 < 0 and hence

‖z‖p−2
2 ≥ supmax{‖x‖p−2

2 ,‖y‖p−2
2 }.

This yields ‖z‖p−2
2 ≥ τ

p−2
p . Meanwhile, note that p(p−2) < 0 and cos2(θ) ≤ 1,

hence

p(p−2)cos2(θ)+ p ≥ p(p−2)+ p = p(p−1) > 0.

Noting that u = y−x, then these results yield

f ′′(c) ≥ p(p−1)τ
(p−2)

p ‖y−x‖2
2,

and thus an application of the second-order mean value theorem immediately

completes the proof.
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