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ABSTRACT

A point pattern (PP) is a set or multi-set of unordered points, where each point

is a (fixed-length) vector representing the state or features of the object of study.

PP data are abundant in nature and applications. For example, locations of

trees, positions of stars and galaxies, neurons in brain tissue can be considered

as PPs. In machine learning, where PP data are more commonly known as

bags or multiple instance data, many data sources are indeed PP data or can

be represented by PPs, such as point cloud data, transactional data, text data

(in bag-of-words representation), images (bag-of-visual-words), audio signals

(bag-of-audio-words), and sparse data.

Despite the abundance of PP data, the fundamental machine learning prob-

lems for PPs — including classification (supervised learning), novelty detection

(semi-supervised learning), and clustering (unsupervised learning) — have not

received much attention. In classification, of the three approaches for this

learning task, namely the Instance-Space, Embedded-Space, and Bag-Space

paradigm, only the Bag-Space paradigm solves PP classification at its funda-

mental level. The other approaches (i.e., Instance-Space, and Embedded-Space)

attempt to convert the PP learning problem into a point (or vector) learning

problem, hence the potential for information loss and additional computation.

In clustering, only two algorithms have been developed for PP data, namely

BAMIC and M3IC, but none of them are model-based, hence they lack the abil-

ity to exploit statistical trends in the data, not to mention computational prob-

lems with high dimensional inputs and large datasets. For novelty detection,

there are no solutions for PP data in the literature.

In this work, we solve three fundamental learning problems, namely classi-

fication, novelty detection, and clustering, for PP data using two approaches:

one with knowledge of the underlying data model (model-based approach),
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and one without (distance-based approach). In particular, for model-based

classification, we propose to model PP data using point processes and apply the

maximum likelihood estimation method to learn the data model. For distance-

based classification, we use the Optimal Sub-Pattern Assignment (OSPA) dis-

tance with the k-nearest neighbour (k-NN) algorithm to classify PP data.

For model-based novelty detection, the likelihood evaluation of PP data is

fundamentally different from that of point data. To this end, we propose a

novel ranking function for PP data based on the IID-cluster point process den-

sity. This ranking function outperforms the naive Bayes likelihood as well as

the IID-cluster point process probability density in PP novelty detection. For

distance-based novelty detection, we propose a solution based on the set dis-

tance between the candidate PP and its nearest neighbour in the normal train-

ing set.

For model-based clustering, we propose to model PP clusters by mixture of

point processes. Then the expectation-maximization (EM) technique is applied

to learn the mixture and cluster the data. For distance-based clustering, we

combine the Affinity Propagation (AP) clustering algorithm with set distances

as dissimilarity measures. The proposed learning methods perform well for

both simulated and real data.
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CHAPTER 1

INTRODUCTION

Chapter’s key points:

∎ Importance of fundamental learning tasks

∎ Importance of point pattern data

∎ Problem formulation of point pattern learning

∎ Example of learning point patterns

using point learning method

∎ Contributions of this research

∎ Structure of this thesis

In this chapter, we first describe the problems of interest — fundamental ma-

chine learning problems for point pattern data: what they are and why they

matter. Then we summarize our key contributions in solving these problems.

Finally, a roadmap of the thesis is given.

1.1 Brief review of machine learning

Letting computers learn from experience without the need for detailed pro-

gramming (Samuel, 1959) is considered to be one of the first broad descriptions

of machine learning in its rudimentary stage, as proposed by Arthur Samuel,

a pioneer in the field. In 1983, in an attempt to clarify the machine learning

concept, Herbert Simon defined learning as changes in a system (e.g., an an-

imal, a human, or a machine) which allow the system to perform the same task

(or other tasks drawn from the same population) better the next time (Simon,

1



2 CHAPTER 1. INTRODUCTION

1983, p. 28).1 This definition was then stated more formally by Tom Mitchell:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E” (Mitchell, 1997, p. 2).

Nowadays, machine learning has become a vast field of study and devel-

opment, therefore, it is even more difficult for authors to agree on one defin-

ition. Some, such as Ethem Alpaydin2, retain the definition by Simon (1983)

or Mitchell (1997), whereas others prefer a definition which relates to the par-

ticular field to which it applies, such as Kevin Murphy, who defined machine

learning as a set of automated methods for data analysis (Murphy, 2012). Oth-

ers neglect the need for a (theoretical or philosophical) definition for machine

learning and see machine learning as a practical tool to solve problems of in-

terest, such as Ian Witten and Eibe Frank, who stated that data mining (their

field of interest) is involved with machine learning in a practical sense and left

the question “What is machine learning?” for philosophers (Witten and Frank,

2005).

Although the debate on the definition of machine learning continues, there

is widespread agreement that machine learning has increased in importance in

many fields with a plethora of useful applications. In the field of computer net-

work, a well-known example is web search services (such as Google, Bing, or

Baidu) which enable us to find what we want from over 130 trillion web pages

on the Internet (Google, 2017). This kind of tool makes use of many machine

learning techniques (Boyan et al., 1996; Agichtein et al., 2006; Yoganarasimhan,

2016). Another example is recommender systems (Adomavicius and Tuzhilin,

2005; Pazzani and Billsus, 2007) which can recommend things in which we may

be interested, e.g., video recommendations on YouTube, Netflix, and product

1 Interestingly, this definition, to some extent, agrees with a widely accepted definition of
human learning in psychology: “Learning is a relatively permanent change in behavior due to
experience.” (Coon and Mitterer, 2007; Gross, 2014).

2 In his book, Alpaydin defined machine learning as follows: “Machine learning is program-
ming computers to optimize a performance criterion using example data or past experience”
(Alpaydin, 2004, p. 3).
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Figure 1.1: Examples of machine learning applications. Image
sources: toptal.com, wikimedia.org, logonoid.com, mybluemix.net, wat-
son.devpost.com, medicaldaily.com, economist.com.
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suggestions on Amazon, eBay. In contrast, spam filters (or information filters

in general) (Guzella and Caminhas, 2009; Lee et al., 2010) can be considered as

information doormen, keeping us away from redundant or unwanted inform-

ation, e.g., junk email filters in Gmail, Hotmail, social spam filters on Facebook,

Twitter.

In natural language processing, machine learning is applied to many import-

ant tasks, e.g., speech recognition which is the task of translating spoken lan-

guage into text (Hinton et al., 2012), handwriting recognition which provides

computers with the ability to interpret a handwritten document (LeCun et al.,

1989), machine translation serving the needs of language translation (Bah-

danau et al., 2014), and question answering which aims at building systems

to answer questions posed in human language (Ferrucci et al., 2010).

Medicine is another field where machine learning is playing an increasingly

important role, for example, it is applied in medical diagnosis (Kononenko,

2001), drug design (Burbidge et al., 2001), and disease prognosis (Cruz and

Wishart, 2006). In business, there are even more machine learning applications,

such as in customer relationship management (Ngai et al., 2009), customer

segmentation (Cheng and Chen, 2009), fraud detection (Bolton and Hand,

2002), stock trading (Kuo et al., 2001), and online advertising (Graepel et al.,

2010).

The aforementioned is a non-exhaustive list of the applications of machine

learning. With the rise of the Internet as well as the growth in data storage and

computing power, undoubtedly, machine learning will play an even more im-

portant role in many fields in the future. One example of this trend can be seen

in the field of information retrieval: in the 1990s, people preferred information

given by other people rather than by information retrieval systems, however,

nowadays most people prefer and are satisfied (most of the time) with inform-

ation provided by web search engines (Manning et al., 2008).

Although there are a plethora of applications of machine learning, they all
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are based on or make use of a small number of fundamental machine learning

tasks. These tasks are also the focus of this research and will be presented in

the next section.

1.1.1 Research scope: fundamental machine learning tasks

Figure 1.2: Fundamental machine learning tasks divided into 3 broad categor-
ies: supervised learning, semi-supervised learning, and unsupervised learning.
The bold tasks (namely classification, novelty detection, and clustering) are the
focus of this research.

The fundamental tasks of machine learning include classification, regres-

sion, clustering, density estimation, dimensionality reduction, and novelty de-

tection (Bishop, 2006; Markou and Singh, 2003). The first two tasks, i.e., clas-

sification, and regression, belong to a class of machine learning problems called

supervised learning which aims to find a function mapping between given

inputs and outputs (called training data and labels, respectively) (Russell and

Norvig, 2003). When the outputs are discrete and finite, the task is called clas-

sification, when the outputs are continuous, it is called regression (Bishop,

2006; Murphy, 2012).

The next three tasks, i.e., clustering, density estimation, and dimensionality

reduction, are unsupervised learning tasks which, as opposed to supervised

learning tasks, are not provided with the outputs (Russell and Norvig, 2003).

The unsupervised tasks differ in their targets. Clustering aims at finding the

structure of input data, whereas density estimation learns the distribution

representing the input data, and dimensionality reduction compresses high-

dimensional data for the sake of visualization (Bishop, 2006) or feature extrac-
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tion (Guyon et al., 2008).

The last task, novelty detection, belongs to semi-supervised learning, which

is an area of emerging interest in machine learning (Chapelle et al., 2006). In

semi-supervised learning, only a part of the training data is labeled, in other

words, it is halfway between unsupervised learning (where labels are com-

pletely absent) and supervised learning (where labels are fully observed in

training data) (Chapelle et al., 2006). Specifically, in novelty detection, training

data consist of only normal data and the task is to infer some ‘characterization’

of these data which is then used to identify novel data.

In this research, we focus on the most common tasks in three learning cat-

egories, namely classification in supervised learning, clustering in unsuper-

vised learning, and novelty detection in semi-supervised learning. These tasks

are briefly described in Table 1.1. More details on these learning tasks will be

given in Chapter 2.

TASK TYPE OBJECTIVE
TRAINING
DATA

Classification
Supervised
learning

Assign each observation
to a category ‘

Labeled data

Clustering
Unsupervised
learning

Find groups in data Non-labeled data

Novelty
detection

Semi-supervised
learning

Detect novel observations Normal data only

Table 1.1: Three learning tasks which are the focus of this research.

1.2 Importance of point pattern data

A point pattern (PP) is a set or multi-set3 of unordered points, where each point is

a (fixed-length) vector representing the state or features of the object of study

(Moller and Waagepetersen, 2003). Note that PPs is a mathematical term whereas

among the machine learning community, terminology such as bags (Joachims,

3 Note that a set does not contain repeated elements while a multi-set can.



IMPORTANCE OF POINT PATTERN DATA 7

1996; Csurka et al., 2004) and multiple instance data (Dietterich et al., 1997;

Amores, 2013) are commonly used. Bag is a synonym of multi-set (Knuth, 1998,

p. 694). A multiple instance datum is defined as a (multi-)set of instances (Foulds

and Frank, 2010; Amores, 2013), where the term instance (proposed by Diet-

terich et al. (1997)) is equivalent to the term point in point pattern.

PPs are ubiquitous in nature. For example, in the field of statistical eco-

logy, a set of coordinates of objects, such as trees, bird nests in a forest (Fig-

ure 1.3a), houses in a city, or people in a crowd, is a PP (Diggle, 1983). Other

examples of PPs can be found in various fields, such as the positions of stars

and galaxies (Figure 1.3b) (astrostatistics (Babu and Feigelson, 1996)); neurons

in brain tissue (Figure 1.3c); blood cells in a haemocytometer square; point-like

defects in a silicon crystal wafer (Figure 1.3d) (materials science (Ohser and

Mücklich, 2000)); or the home addresses of individuals diagnosed with a rare

disease (spatial epidemiology (Elliot et al., 2000)). Example datasets of these

types include: significant tree point of Hobart (City-of-Hobart, 2016), hickory

trees, Norwegian spruces, weed plants, mucous membrane cells (Moller and

Waagepetersen, 2003); amacrine cells, gastroenteric disease (Diggle, 2014); and

longleaf pines (Cressie and Wikle, 2011).

In machine learning, many data sources are indeed PP data or can be rep-

resented by PPs. As the first example, point cloud data (Figure 1.4) are sets of

points mainly used to represent three-dimensional (3D) objects’ surfaces (Lin-

sen, 2001). A point cloud is a basic and frequently used format for 3D object

representations (Ioannou et al., 2012). With the development of 3D sensing

hardware and 3D data processing techniques, 3D perception has become of

increasing importance in robotics and other fields (Rusu and Cousins, 2011).

There are many point cloud datasets which are publicly available, such as Ro-

botic 3D Scan Repository (Nüchter and Lingemann, 2016), Canadian Planet-

ary Emulation Terrain 3D Mapping Dataset (Tong et al., 2013), Stanford 3D

Scanning Repository (Stanford Graphics Laboratory, 2014), ISPRS Test On Ex-

tracting DEMs From Point Clouds (ISPRS, 2006). Point cloud data are used in
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(a) Locations of street trees (Source: Sig-
nificant tree point, City of Hobart, Aus-
tralia, www.data.gov.au)

(b) Locations of stars (Image: Constella-
tion Pisces, www.nasa.gov)

(c) Neurons in a brain (Image:
See-through brains clarify connections,
www.nature.com)

(d) Defects on a wafer (Image: De-
fect/Yield Analysis and Metrology, micro-
magazine.fabtech.org)

(e) SIFT keypoints of an image (Photo:
A rice field in Vietnam, by Huan Minh)

(f) Market basket data are sets
of transaction items (Image:
www.expeditiongoodlife.com)

(g) Web usage logs are sets of user
transactions (Image: YARN Hadoop
clusters, www.ibm.com)

(h) Sparse data can be stored by sets of
indices and values.

(i) A document can be represented by a set of words.

Figure 1.3: Examples of point pattern data.
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various applications, for example: medical imaging (Sitek et al., 2006), environ-

ment modeling (Rusu et al., 2008; Rusu, 2010), 3D object benchmarking (Geiger

et al., 2012), 3D object recognition (Zhong, 2009; Garstka and Peters, 2015), 3D

object retrieval (Mian et al., 2010), reverse engineering (Woo et al., 2002; Schna-

bel et al., 2007).

The second example of PP data in machine learning is transactional data, in-

cluding market basket data (Figure 1.3f) (Guha et al., 1999; Yang et al., 2002b),

web log data (Figure 1.3g) (Cadez et al., 2000; Iváncsy and Vajk, 2006), sur-

veys and contests (Rygielski et al., 2002). Each datum in this data type is a set

or multi-set of transaction records, such as sets of shopping items from cus-

tomers at a supermarket or an online store, sets of requests from a web client,

and maintenance data of a web server, etc. With the expeditious growth in

data storage and computing power, these data are being increasingly collected

and analyzed and are growing in importance in relation to business decision-

making processes. Public sources of this data type can be found at, e.g., Retail

Market Basket Data (Brijs et al., 1999), Online Retail Data (Chen et al., 2012),

UNIX User Data (Aeberhard et al., 1994), Wikipedia Page Traffic Statistics (Sko-

moroch, 2009). This type of data is used in a wide range of applications, such as

product recommendation (Liu and Shih, 2005), customer profiles building (Ad-

omavicius and Tuzhilin, 2001), customer relationship management (Rygielski

et al., 2002), marketing communication (Zahay et al., 2004), users’ interests ex-

traction (Murata and Saito, 2006), online advertising (Nanopoulos and Manolo-

poulos, 2000), and server performance improvement (Iváncsy and Vajk, 2006).

A common type of data which can be represented by PPs is documents or

text data. In particular, a document (or a part of it such as a sentence or a para-

graph) can be treated as a collection (i.e., multi-set) of its words (Figure 1.3i).

This representation is known as the bag-of-words model (Joachims, 1996; Mc-

Callum and Nigam, 1998; Maron, 1961). This model can be considered as a

special case of a more general model used in language modeling – the n-gram

model (Cavnar et al., 1994; Fürnkranz, 1998). In the (word-level) n-gram model,
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Figure 1.4: Examples point cloud data. Left: real objects, Right: point cloud
representation. From top to bottom: Stanford Bunny, Stanford Dragon, Happy
Buddha (Source: Stanford 3D Scanning Repository (Stanford Graphics Laborat-
ory, 2014)).
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Figure 1.5: Example of 2-gram model. Left: the document; Right: some 2-
word phrases and the number of their occurrences in the document (2-gram
representation).

a document (or a part of it) is treated as a multi-set of n-word phrases (Fig-

ure 1.5). When n = 1, the n-gram model is equivalent to the bag-of-words.

Examples of bag-of-words and n-gram datasets include: Farm Ads (Mester-

harm and Pazzani, 2011), DBWorld e-mails (Filannino, 2011), Amazon Com-

merce reviews (ZhiLiu, 2011a), Reuter 50 50 (ZhiLiu, 2011b), and Google Books

Ngrams (Google, 2016). There are many applications with bag-of-words and n-

gram data, including text categorization (Joachims, 1996; McCallum and Nigam,

1998; Cavnar et al., 1994), information retrieval (Ruch et al., 2002), spam filter-

ing (Delany et al., 2005; Cormack et al., 2007), file type categorization (Li et al.,

2005), malicious code detection (Abou-Assaleh et al., 2004), authorship attribu-

tion (Kešelj et al., 2003), machine translation evaluation (Papineni et al., 2002),

and automated summarization evaluation (Lin and Hovy, 2003).

In computer vision, the well-known bag-of-visual-words representation —

an analogue of bag-of-words — treats images as PPs of their key patches (Csurka

et al., 2004; Fei-Fei and Perona, 2005). Depending on the application, the key

patches can be extracted from images by various feature detection methods,

such as edge detection, corner detection, ridge detection, and scale-invariant

feature transform (SIFT) (Lowe, 2004). The bag-of-visual-words representa-

tion is used in numerous applications, including image categorization (Csurka

et al., 2004; Tirilly et al., 2008; Uijlings et al., 2009), scene recognition (Fei-Fei

and Perona, 2005; Li et al., 2011; Botterill et al., 2008), image retrieval (Shekhar

and Jawahar, 2012; Lavoué, 2011), target detection (Sun et al., 2012), image an-
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notation (Wu et al., 2010), 3D object categorization (Toldo et al., 2009), object

segmentation (Larlus et al., 2010), and facial expression recognition (Li et al.,

2009; Ionescu et al., 2013).

Another example, audio signals, can be also treated as PPs with the bag-of-

audio-words (Pancoast and Akbacak, 2012) or the bag-of-frames (Aucouturier

et al., 2007) model. In these representations, a signal is decomposed into a set of

local features such as mel-frequency cepstral coefficients (MFCC) (Aucouturier

et al., 2007; Pancoast and Akbacak, 2012) or octave-scale spectral contrast (West

and Cox, 2004). Note that this can be considered as a special case of a more

general model: the audio-word n-grams where an audio signal is treated as a

multi-set of sequences of n audio words (Pancoast and Akbacak, 2013). The

bag-of-audio-words model has been proved very effective in soundscape clas-

sification (Ma et al., 2003; Aucouturier et al., 2007) that classifies audio signals

into environmental scenes such as railway stations, streets, lectures, offices, etc.

This representation for audio data has also been used in many other applica-

tions, such as acoustic event classification (Pancoast and Akbacak, 2012; Plinge

et al., 2014), musical genre classification (West and Cox, 2004; Zeng et al., 2009),

audio retrieval (Chechik et al., 2008), video retrieval (Jin et al., 2012), audio-

video copy detection (Ngo et al., 2009; Liu et al., 2010), and artist identifica-

tion (Mandel and Ellis, 2005).

Another example is sparse data which has attracted considerable interest in

recent years. Sparse data are data in the form of arrays with most elements tak-

ing the same value(s) (Chickering and Heckerman, 1999; Jing et al., 2007), e.g.,

the arrays in the left table of Figure 1.3h of which most elements are zeros. This

data can be efficiently represented by PPs, for example, a sparse array can be

treated as a set of non-zero values and their indices (Figure 1.3h). The sparse-

ness of data is commonly found in text data (and the like), for example, when

a document is represented by a N -dimensional array of the numbers of word

occurrence (i.e., its word histogram), with N is the dictionary size (Joachims,

1996). Since a dictionary usually contains many more words than those used by
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a document, the array representing the document is usually sparse, i.e., most

elements are zeros. Instead of the full (sparse) array, we can store only pairs

(word ID, number of occurrence), i.e., a multi-set of word IDs.4 In many mod-

ern applications, high-dimensional data, such as gene data (Carvalho et al.,

2012), and recommendation data (Pavlov and Pennock, 2002), are also often

sparse (Jing et al., 2007) and thus are promisingly treated as PPs.

The aforementioned is a non-exhaustive list of examples of PP data, other

examples can be found in books such as (Moller and Waagepetersen, 2003; Da-

ley and Vere-Jones, 2003; Diggle, 2014) as well as from many sources on the

Internet.

1.3 Problem formulation

In this section, we define our problem of study — point pattern learning5 —

and compare it with a traditional learning problem — point learning — in

order to point out their differences and the significance of developing point

pattern learning.

As introduced in Section 1.2, a point is a single (fixed-length) vector, which

is also named as an instance or a single-instance datum to differentiate from

multiple instance datum (Foulds and Frank, 2010). Learning data consisting

of independent points — so-called single-instance learning — is a traditional

and well-studied learning framework (Foulds and Frank, 2010; Amores, 2013;

Cheplygina et al., 2015), whereas learning PP data — so called point pattern

learning, or more commonly known as multiple instance learning6 — is a

developing field of research and receives growing interest in machine learning

(Wang and Zucker, 2000).

Formally, if we denote the point space by X and the set of all finite multi-

4 This is indeed the aforementioned bag-of-words representation.
5 In particular, we focus on three fundamental learning tasks for PP, namely clustering, clas-

sification, and novelty detection (see Section 1.1.1).
6 Named by Dietterich et al. (1997).
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subsets of X byM(X), we can define a point learning task7 as fP ∶X → L, and

a PP learning task as fPP ∶M(X) → L, where L is the set of labels (Foulds and

Frank, 2010).8

Figure 1.6: Point learning versus point pattern learning (based on a similar
illustration in (Foulds and Frank, 2010)).

INPUT DATA INPUT LABEL9 OUTPUT

Point learning
Points
(single-instance data)

Point-level labels
Point-level
labels

PP learning
PPs
(multiple-instance data)

PP-level labels
PP-level
labels

Table 1.2: Point learning versus PP learning.

There are three main differences between point learning and PP learning.

First, the input of PP learning are (multi-)sets of dependent points, i.e., each

input observation of PP learning should to be treated as a whole object rather

than independent points as in point learning (see Figure 1.6 for an illustration).

Second, while (supervised) point learning requires labels of individual points,

PP learning can use only labels of PPs rather than labels of their constituent

points.10 Third, the output of PP learning are labels of whole PPs, not indi-

7 Restricted in our learning tasks of interest, i.e., clustering, classification, and novelty detec-
tion.

8 In (Foulds and Frank, 2010), MI learning is defined as fPP ∶NX → L, where NX is the set
of all multi-subsets of X , however, in practiceM(X)— set of all finite multi-subsets of X — is
enough for real datasets.

9 (for supervised learning)
10 There are also approaches to PP learning requiring point labels, however, since obtaining

point labels not only is expensive but also can break the label structure of PP data (Cheplygina
et al., 2015), we do not consider them in this work.
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vidual points as in point learning.11 Table 1.2 summarizes these differences

between point learning and PP learning.

The original (and currently popular) approach for PP learning is to exploit

the point-level labels together with some assumption between point-level and

PP-level labels to infer the PP labels (Dietterich et al., 1997; Foulds and Frank,

2010). This approach allows point learning techniques to be used directly for PP

learning, however, it omits a nice property of PP learning: using only PP-level

labels which helps to reduce the extensive cost of labeling individual points. In

addition, there are some undesirable properties of this approach, as discussed

through the following example.

Consider an example of image classification where the input images are rep-

resented as PPs of their key points. The target is to classify whether an image

includes tree(s) (called a positive image) or not. To apply the approach using

point-level labels, it is first required (a possibly computational expensive pro-

cess) to label all the key points in the training images as either belonging to

trees (called positive key points) or not. Using these key points and their labels,

we train a point classifier assessing a key point as either positive or not (i.e.,

belongs to trees or not). In the testing phase, given a new image, we use the

learned point classifier to detect positive key points. If there is at least one

positive key point in the image, we conclude that the image is positive (i.e.,

includes tree(s)). Here, we imposed an assumption between point labels (key

point labels) and the PP label (image label): a PP is labeled as positive if and only

if one or more of its points are positive. This is known as the standard MI assump-

tion which originated in Dietterich et al. (1997)’s work and is commonly used

in PP learning algorithms (Foulds and Frank, 2010).

The aforementioned approach has two undesirable properties. First, it is

usually difficult and costly to obtain point labels (Cheplygina et al., 2015), e.g.,

in the above example, labeling all the key points of the training images (mark-

11 There also exists applications where the output labels at point-level are required, such as
image annotation (Cheplygina et al., 2015), however, this is out of the scope of this research.
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ing whether they belong to trees or not) can be a time-consuming task. Second,

the aforementioned standard assumption about the relationship between point

labels and PP labels can be not relevant in many cases. Revisiting the afore-

mentioned example, but now we want to classify whether an image contains

both tree(s) and mountain(s). Following the described approach, we first mark

the key points of trees or mountains as positive key points. Then, an image

containing positive key points can be not our desired image since it can be an

image of only trees or only mountains, not both.

Moreover, using point learning methods for PP learning can lead to some

problematic issues (discussed in the next section). These highlight the need to

develop PP learning techniques which work directly on PP data using PP la-

bels only (i.e., solutions for the PP learning problem formulated above). These

learning methods, if they can be developed, will have several advantages, such

as saving point-level labeling cost, and avoiding making assumptions between

point-level and PP-level labels (which can be irrelevant in some cases, such as

in the aforementioned example).

1.4 Example of learning PPs using point learning method

The purpose of this section is to illustrate some problematic issues which can

arise when using point learning methods for PP learning. Specifically, the ex-

ample in this part shows that the solution for PP novelty detection (a semi-

supervised PP learning task, see Section 1.1.1) cannot be simply extended from

its counterpart for point data, such as using the naive Bayes (NB) likelihood.

Generally, a statistical data model is specified by the likelihood function

which can be interpreted as how likely an observation is, given the parameters

of the underlying model. In novelty detection, the likelihood can be used to

detect novelties (Markou and Singh, 2003). Let us consider an intuitive example

of detecting abnormal apple falling patterns.

Suppose that apples, which have fallen from an apple tree, land on the
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Credit: clipartbest.com (apple tree clipart) 

Apple tree 

pf (probability density) 

Landing positions (meter) 
1 0.4 -0.4 0.8 -1 0 

1 

0.6 0.6 
0.2 

𝑥𝑥3 𝑥𝑥1 𝑥𝑥2 

Figure 1.7: Distribution of apple landing positions. Position x1 = 0.8 m is 3
times less likely than x2 = 0.4 m and x3 = −0.4 m in having fallen apples. Credit:
clipartbest.com (apple tree clipart)

ground independently of each other, and that the daily PPs of landing positions

are independent from day to day. Further, the probability density pf of the

landing position, learned from normal training data, is shown in Figure 1.7.

Since the apple landing positions are independent, following common prac-

tice (see e.g., (Maron, 1961; Joachims, 1996; McCallum and Nigam, 1998; Cadez

et al., 2000; Csurka et al., 2004)) the likelihood that the apples land at positions

x1, ..., xm is given by the NB likelihood (Russell and Norvig, 2003; Bishop, 2006):

p(x1, ..., xm) =
m

∏
i=1

pf(xi) (1.1)

Suppose on day 1, we observe one apple landing at x1, and on day 2 we observe

two apples landing at x2 and x3 which of these daily landing patterns is more

likely to be a novelty? Since there is no novel training data in novelty detection,

the common practice (see e.g., (Markou and Singh, 2003)) is to examine the

normal data likelihoods of the landing patterns, i.e., to compare

p(x1) = pf(x1) = 0.2, (1.2)

p(x2, x3) =pf(x2)pf(x3) = 0.36, (1.3)

to identify outliers. From Eq. (1.2)-Eq. (1.3), one can conclude that the day 1
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pattern is more likely to be a novelty since p(x1) < p(x2, x3). However, had we

measured distance in centimeters, then

p(x1) = 0.002 > p(x2, x3) = 0.000036, (1.4)

thereby, contradicting the previous conclusion! This phenomenon arises from

the incompatibility in the measurement units of the likelihoods because p(x1) is

measured in “m−1” or “cm−1” whereas p(x2, x3) is measured in “m−2” or “cm−2”,

i.e., we are not “comparing apples with apples.”

In addition, the NB likelihood of the landing positions also suffers from

another problem. To eliminate the effect of unit incompatibility, we assume

that there are only 201 positions numbered from −100 to 100, evenly spaced on

the interval [−1 m,1 m]. Thus, instead of a probability density on [−1 m,1 m] we

now have a (unit-less) probability mass function on the discrete set {−100, ... ,100},

as shown in Figure 1.8.

pf (probability mass function) 

Landing positions 
100 40 -40 -100 0

0.01 
0.006 0.006 

Figure 1.8: Distribution of discrete landing positions.

Four PPs from the normal training data set are shown in Figure 1.9a, while

Figure 1.9b shows 2 new observations X1 and X2. Since X2 has only 1 feature,

whereas X1 and the normal observations each has around 10 features, it is in-

tuitive that X2 is novel. However, its likelihood is much higher than that of X1

(0.009 versus 2×10−23). This counter intuitive phenomenon arises from the lack

of appropriate cardinality information in the likelihood.

The simple example above demonstrates that the NB likelihood of the con-

stituent points is not a good likelihood of a PP. In particular, it suffers from in-

compatibility in the unit of measurement and does not appropriately account
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100 50 -50-100 0 100 50 -50-100 0 

100 50 -50-100 0 100 50 -50-100 0 

100 50 -50-100 0 100 50 -50-100 0 

𝑋𝑋(1) 𝑋𝑋(2) 

(a)

100 50 -50-100 0 100 50 -50-100 0 

100 50 -50-100 0 100 50 -50-100 0 

100 50 -50-100 0 100 50 -50-100 0 

X1 X2  

(b)

Figure 1.9: (a) Examples of normal observations. (b) Input observations:
p(X1) ≈ 2 × 10−23 and p(X2) = 0.009.

for the number of elements in each PP.

1.5 Contributions

In this work, we solve three PP learning problems, namely classification, clus-

tering and novelty detection, using two approaches: one with knowledge of the

underlying data model (model-based approach), and one without (distance-

based approach). The proposed methods are listed in Table 1.3 and briefly

described in the following sections.

TASK
MODEL-BASED
APPROACH

DISTANCE-BASED
APPROACH

Classification MLE of IID-cluster point process k-NN with OSPA distance

Novelty
detection

Ranking function based on
IID-cluster point process density

NN-based novelty detection
with OSPA distance

Clustering
EM with mixture of
IID-cluster point processes

AP with OSPA distance

Table 1.3: Proposed methods for PP learning problems.

1.5.1 Proposed methods for PP classification

To address the classification problem for PP data, we propose two approaches.

In the model-based approach, we propose to model PP data using IID-cluster

point processes (Daley and Vere-Jones, 1988; Moller and Waagepetersen, 2003),

and develop a maximum likelihood (ML) estimation to learn the data model.
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The proposed method delivers good performance on both simulated and real

data experiments (see Chapter 3 for details).

In the distance-based approach, we apply the Optimal Sub-Pattern Assign-

ment (OSPA) distance (Schuhmacher et al., 2008) together with the k-nearest

neighbour (k-NN) algorithm (Cover and Hart, 1967) to classify PP data. The

advantage over existing approaches lies in the versatility of the OSPA distance

over other set distances, such as the Hausdorff (Huttenlocher et al., 1993b),

Chamfer (Gavrila and Philomin, 1999) and Earth mover’s (Zhang et al., 2007)

distances (see Chapter 6 for details).

1.5.2 Proposed methods for PP novelty detection

In the model-based approach, instead of using the IID-cluster point process dens-

ity as the likelihood for PP data (which may provide poor performance in some

cases), we propose a novel ranking function for PP data based on this density.

This ranking function outperforms the naive Bayes likelihood as well as the

IID-cluster point process density in novelty detection for PP data (see Chapter 4

for details).

In the distance-based approach, we propose a solution based on the OSPA

distance between the candidate PP and its nearest neighbour in the normal

training set. We also propose to use normal training data to find the suitable

parameter for the OSPA distance. This PP novelty detection method is simple,

effective and versatile across various applications (see Chapter 6 for details).

1.5.3 Proposed methods for PP clustering

In the model-based approach, we propose to use finite mixture models of IID-

cluster point processes as the generative models for PP clusters. Then the

expectation-maximization (EM) technique is deployed to learn the mixture

parameters and cluster the data. The proposed method performs well on both

simulated and real data (see Chapter 5 for details).

In the distance-based approach, we combine the affinity propagation cluster-
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ing algorithm (Frey and Dueck, 2007) with the OSPA distance as a dissimilarity

measure. Compared to the existing technique using the k-medoids algorithm

and Hausdorff distance, AP can find clusters faster with much lower error, and

does not require the number of clusters to be specified (Frey and Dueck, 2007).

In addition, the OSPA distance is more versatile than the Hausdorff distance,

hence the proposed method can be suitable to more applications (see Chapter 6

for details).

1.6 Thesis structure

The remainder of this thesis is organized as follows. Chapter 2 provides the

necessary background for the work in this thesis. In this chapter, three learn-

ing tasks of interest, namely classification, novelty detection, and clustering,

are described in more detail in terms of their definitions, common methods,

and performance measures. This chapter also provides background on point

process theory: important definitions, successful applications, common point

process models and their probability density functions. The last sections of this

chapter describe three distances for sets used in this work, namely the Haus-

dorff, Wasserstein, and OSPA distances.

In three chapters, Chapter 3, Chapter 4, and Chapter 5, we describe our

proposed methods for PP classification, novelty detection, and clustering, re-

spectively, under the model-based approach. Each of these chapters has a sim-

ilar structure, including a brief review on existing methods for the problem of

interest, details of our proposed method, and numerical experiments on both

simulated and real data.

In Chapter 6, we propose alternative solutions for the three learning prob-

lems of interest, using the distance-based (model-free) approach. In this chapter,

for each learning problem, an overview on the existing distance-based meth-

ods for the learning problem is first given, followed by details of the proposed

method, and numerical experiments on both simulated and real data. This

chapter concludes with a comparison between the performance of the proposed
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distance-based methods and that of the model-based methods.

Finally, Chapter 7 concludes the thesis with a summary and discussion on

the work, as well as suggesting some potential future research directions.



CHAPTER 2

BACKGROUND

Chapter’s key points: background on

∎ Classification

∎ Novelty detection

∎ Clustering

∎ Point process theory

∎ Set distances

In the previous chapter, we gave an overview on machine learning as well

as its fundamental learning problems. In this chapter, three learning tasks

of interest, namely classification, novelty detection, and clustering, will be de-

scribed in more detail in relation to their definitions, common methods, and

performance measures (Section 2.1, Section 2.2, and Section 2.3). In Section 2.4,

we provide background on point process theory which is used to develop model-

based PP learning methods in the following chapters, focusing on its important

definitions, successful applications, common point process models and their

probability density functions. Finally, Section 2.5 describes distances of sets,

which are used in distance-based PP learning methods.

2.1 Classification

2.1.1 Definition

Classification is a supervised learning task of assigning a class label y ∈ {1, ...,K}

23
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to each input observation X (Bishop, 2006), where K is the number of classes.1

Classification relies on training data, which are fully observed input-output

pairs Dtrain = {(X(n), y(n))}Ntrain
n=1 , hence the name supervised learning (Murphy,

2012).

2.1.2 Applications

Classification is arguably the most widely used machine learning form (Murphy,

2012). As an example, let us briefly describe an early application of machine

learning: Soybean disease classification — a classic machine learning success

(Witten and Frank, 2005). The target of this application is to classify diseases

of soybean plants by identifying diagnosing rules. Impressively, the rules gen-

erated by computer (in this 1970s research) outperform human-expert-derived

rules with an accuracy rate of 97.5% versus 72% (Witten and Frank, 2005).

Nowadays, classification can be found in various fields of study, from com-

puter vision (Pham et al., 2000; Javed and Shah, 2002), natural language pro-

cessing (Collobert et al., 2011; Pang et al., 2002), speech recognition (Graves

et al., 2006; Nwe et al., 2003), handwriting recognition (Xu et al., 1992; Belongie

et al., 2002), information retrieval (Lewis, 1998; Croft et al., 2010), to drug dis-

covery (Dietterich et al., 1997; Ellinger-Ziegelbauer et al., 2008).

2.1.3 General approach

The classification process consists of two main steps: the learning step and

the classifying step (Han et al., 2012). In the first step, using training data, a

mapping between training observations and their labels is constructed. In the

classifying step, the class labels of new (test) observations are predicted using

the learned mapping. The classification performance then can be evaluated

using the indicators described in Section 2.1.5.

1 There exists a learning problem called multi-label classification, where an observation can be
assigned with more than one label (Tsoumakas and Katakis, 2006). However, it is out of the
scope of this work.
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2.1.4 Classification methods

In this section, we briefly describe several typical classification methods, namely

classification rules, decision trees, neural networks, support vector machines,

statistical models, and k-nearest neighbors. For a more comprehensive review,

refer to textbooks such as (Bishop, 2006; Murphy, 2012; Han et al., 2012).

Classification rules are simply if-then rules (Han et al., 2012; Witten and

Frank, 2005). For example, to classify low-risk/high-risk customers, a bank

can use a rule such as (Alpaydin, 2004):

if income>A and savings>B then low-risk else high-risk

These rules can be either given by human-experts or generated by computers

using, for example, the separate-and-conquer technique (Witten and Frank, 2005).

In many cases, computer-generated rules can outperform expert-derived rules,

e.g., in the aforementioned soybean disease classification.

Decision trees are tree structures supporting decision-making processes

based on the concept of conditional information gain from information theory.

In a decision tree, each node represents a test on a feature (or attribute) of input

data, the outcomes of a test are represented by edges connected to the note,

and the decisions (or class labels, in the case of classification) are represented

by leaves (Han et al., 2012). For example, the classification rule above can be

(partly) represented by the decision tree in Figure 2.1. A decision tree can be

built using a greedy optimization (Bishop, 2006) or C4.5 algorithm (Quinlan, 2014).

A neural network, in general, is a computational model simulating the way

a human brain processes information. In classification, a class of neural net-

works, called feed-forward neural networks or multilayer perceptrons, is commonly

used due to its efficiency to practical applications (Bishop, 2006). A multilayer

perceptron consists of processing units (nodes), organized in layers, connect-

ing with units of other layers to form a directed graph (see Figure 2.2 for il-
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Figure 2.1: Example of a decision tree.

lustration). The multilayer perceptron can be efficiently trained by using the

backpropagation technique (Bishop, 2006). For more details on neural networks,

refers to books such as (Ripley, 1996; Bishop, 1995).

Figure 2.2: Example of a feed-forward neural network or multilayer per-
ceptron.

A support vector machine (SVM) is a binary classifier, i.e., the classifier as-

signs data into two classes. The key idea is constructing an optimal hyperplane

(also known as maximum-margin hyperplane) which is chosen so that the dis-

tances between the hyperplane and the closest observations from either classes

(i.e., the margins) are maximal (Vapnik, 1995) (see Figure 2.3 for illustration).

The SVM classifier can be extended to multiclass classification using schemes,

such as One-vs-All or All-vs-All (Rifkin and Klautau, 2004). Refer to books,

such as (Vapnik, 1995; Alpaydin, 2004), for more detail on SVM.
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Figure 2.3: Example of an optimal hyperplane in the SVM classifier (based on
a similar illustration in (Vapnik, 1995)).

Classification approaches with statistical models are based on the assump-

tion that data are generated from some underlying distribution (Murphy, 2012),

e.g., a Gaussian distribution. This model can be learned using maximum likeli-

hood (ML) estimation or maximum a posteriori (MAP) estimation (Murphy, 2012).

A well-known example of this type of classifiers is the naive Bayes (Russell

and Norvig, 2003; Bishop, 2006), which imposes an independence assumption

among data features. More detail on model-based classifiers will be given in

Chapter 3.

k-nearest neighbors (k-NN) classifier (Cover and Hart, 1967; Keller et al.,

1985) belongs to the class of lazy learning. Contrary to eager learning algorithms

(e.g., the aforementioned classifiers) in which a classifier is learned from train-

ing data in the training phase, the k-NN algorithm delays most of its compu-

tational effort to the classifying (or test) phase. In the test phase, a queried

observation will be assigned the most popular label among its k nearest obser-

vations in the training set. This classifier will be discussed in more detail in

Chapter 6.

2.1.5 Performance indicators

The evaluation for a classification algorithm is usually performed by running

the algorithm several times on different test sets and then averaging the per-

formance measures, such as accuracy, and uncertainty coefficient. For datasets
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that are not too large, the N -fold cross validation technique (Bishop, 2006) is of-

ten used to generate multiple training and test sets for the evaluation.

In general, a test set of input-output pairs Dtest = {(X(n), y(n))}Ntest
n=1 , different

from the training set, is used to evaluate the performance of classifiers. Follow-

ing (Manning et al., 2008), we can use accuracy defined as

Accuracy ≜ No. of correct classifications
No. of observations in the test set

. (2.1)

To ensure a meaningful accuracy measure, it is recommended that the test sets

contain classes of similar sizes, otherwise other indicators, such as uncertainty

coefficient (Press et al., 2007) should be used. In this work, since the size of

classes in the used test sets are the same, we use accuracy when evaluating

classifiers in order to easily interpret their performance.

2.2 Novelty detection

2.2.1 Definition

Novelty detection is the task of identifying new or strange data that are signi-

ficantly different from normal training data (Markou and Singh, 2003; Pimentel

et al., 2014). Novelty detection thus belongs to a broader class: outlier detec-

tion. To better understand the task, we dedicate the next section to locate nov-

elty detection in outlier detection.

2.2.2 Novelty detection versus outlier detection

The general task of identifying observations that are significantly different from

the rest of the data (according to some criteria) is referred to as outlier detection

or anomaly detection. For comprehensive surveys on outlier detection, refer

to (Hodge and Austin, 2004; Chandola et al., 2009).

Based on training data requirements, outlier detection can be divided into

three categories: unsupervised, supervised, and semi-supervised (Chandola

et al., 2009; Hodge and Austin, 2004). Unsupervised outlier detection does not
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require any training data, and as a result can be easily applied to any problem,

albeit at poorer performance compared to the other two categories.

On the other hand, supervised outlier detection, which requires both nor-

mal and anomalous training data, achieves better performance. However, its

applicability is limited because anomalies do not necessarily follow any model,

and anomalous data are often unavailable in practice, for example, the many

types of malfunctions of a newly developed machine cannot be foreseen.

Semi-supervised outlier detection, or simply novelty detection, which re-

quires only normal training data,2 provides a good compromise between applic-

ability and performance (Hodge and Austin, 2004). Novelty detection is a sep-

arate problem in its own right, whereas unsupervised and supervised outlier

detection problems can be considered as special cases of the clustering and clas-

sification problems, respectively (Hodge and Austin, 2004).

2.2.3 Applications

Novelties provide information that can lead to critical decisions/actions in many

applications, for example, fraud detection (Bolton and Hand, 2002), intrusion

detection (Jyothsna et al., 2011), medical diagnosis (Tarassenko et al., 1995;

Quinn and Williams, 2007), structural health monitoring (Surace and Worden,

2010), video surveillance (Diehl and Hampshire, 2002; Markou and Singh, 2006),

and automated inspection (Neto and Nehmzow, 2007).

2.2.4 General approach

Similar to classification, there are two key steps in novelty detection, namely

the training step and detecting step. In the first step, using a training dataset

(containing only normal data), a normal data characterization, e.g., the normal

data likelihood (in the model-based approach, see Chapter 4), or the intra-class

distances between normal data (in the distance-based approach, see Chapter 6),

2 As previously discussed in Chapter 1, in general, semi-supervised learning uses a training
set consisting of two parts: observations with labels and observations without labels (Chapelle et al.,
2006). Our considered scenario (training set consisting of only normal data) is a special case of
semi-supervised learning.



30 CHAPTER 2. BACKGROUND

is constructed. In the detecting step, the queried observations are ranked ac-

cording to how well they fit the normal data characterization and those not

well-fitted are deemed novel (Chandola et al., 2009; Hodge and Austin, 2004).

The detection performance then can be evaluated using the indicators described

in Section 2.2.6.

2.2.5 Novelty detection methods

In this section, we briefly describe several techniques used in novelty detec-

tion, namely negative selection, support vector domain description, statistical

models, and nearest neighbours.

The negative selection method was first introduced by Forrest et al. (1994),

inspired by the human immune system (Pimentel et al., 2014). In the immune

system, T cells are used to detect foreign proteins (e.g., viruses, transplanted

organs) by the binding test: any cells that successfully bind with a T cell are

marked as foreign cells. T cells are generated by a random genetic rearrange-

ment process and are selected through negative selection: T cells that successfully

bind with body proteins will be destroyed. Following this idea, Forrest et al.

(1994) proposed a method for detecting novel strings (e.g., computer viruses,

malware codes) by using detector strings. The detector strings are generated and

selected so that they will not match normal strings, thus any strings matching

the detector strings can be classified as novelties (Forrest et al., 1994). This ap-

proach was later extended to data other than binary strings, such as the work

by Dasgupta and Majumdar (2002); González and Dasgupta (2003); Taylor and

Corne (2003); Esponda et al. (2004).

Support vector domain description, proposed by Tax and Duin (1999), is

inspired by the method of support vector machines in classification (see Sec-

tion 2.1.4). In this approach, the problem of novelty detection is solved by

finding a minimum volume hypersphere which encloses (almost) all training data

(consisting of only normal data) (Tax and Duin, 1999). Then, the observations

with distances to the center of the hypersphere larger than the radius of the
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hypersphere are deemed novelties. In order to deal with non-spherical data, a

generalization of this method using kernel functions, such as polynomial ker-

nel or Gaussian kernel, is also proposed (Tax and Duin, 1999, 2001).

Statistical model approaches for novelty detection assume that novelties

are distributed outside the normal data distribution (Tarassenko et al., 1995).

Hence the novelties have significantly lower likelihoods compared to normal

data according to the normal data distribution. Commonly, for point data,

Gaussian mixture models are used to represent normal data (Markou and Singh,

2003; Pimentel et al., 2014). This model can be learned using the expectation-

maximization (EM) methods (Dempster et al., 1977). For sequential data, hid-

den Markov models (HMM) can be used. Each HMM consists of a distribution

representing hidden states transition (called transition distribution), and a set

of distributions for generating observations (called emission distributions). The

parameters of these distributions can be learned by the Baum-Welch algorithm

(Baum et al., 1970; Rabiner and Juang, 1986). The statistical approach for nov-

elty detection method will be discussed in more detail in Chapter 4.

The nearest neighbour approach is arguably the most common technique

for novelty detection (Pimentel et al., 2014). This method is based on the as-

sumption that normal observations are closer to the training (normal) data than

novelties (with respect to some distance measure) (Hautamäki et al., 2004). De-

pending on data type, different distance measures can be applied, such as Eu-

clidean distance and p-norm distance (for vectors), Mahalanobis distance and

Earth mover’s distance (for distributions), Hausdorff distance and Jaccard dis-

tance (for sets). This novelty detection method will be discussed in more detail

in Chapter 6.

2.2.6 Performance indicators

Similar to classification (see Section 2.1.5), the evaluation of novelty detection

is also done by running the algorithm several times on different test sets and

then averaging the performance measures, such as precision, recall, and F1 score.
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Figure 2.4: Test set and output set.

Consider a problem of identifying some data of interest out of a dataset

consisting of two groups: interested and uninterested data (see Figure 2.4), e.g.,

novel and normal data in the context of novelty detection. The relevance of

an output set by a algorithm can be determined using precision and recall

(Manning et al., 2008):

Precision ≜ ∣Relevant output∣
∣Output set∣ , Recall ≜ ∣Relevant output∣

∣Interested group∣ ,

where ∣S∣ is the number of observations in set S. In words, precision is the

proportion of relevant output data among data in the output set, and recall is

the proportion of relevant output data among all relevant data in the test set

(i.e., the interested group, see Figure 2.4).

Precision and recall evaluate different aspects of the algorithm. Precision

shows how relevant (or correct) the output set is, whereas recall shows how

good the algorithm is at getting the data of interest. If we attempt hardly to

increase recall, precision may decrease and vice versa. In some applications,

such as novelty detection, a balance between precision and recall is necessary.

F1 score is a performance measure providing such balance between precision

and recall (Manning et al., 2008):

F1 score ≜ 2 × precision × recall
precision + recall

. (2.2)

Note that the F1 score, as a function of precision and recall, is discontinuous at

(0,0). To ensure continuity of the F1 score, we define its value at (0,0) to be its
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limit at (0,0), i.e., F1 score(0,0) ≜ 0.

Other performance measures, such as uncertainty coefficient (Press et al., 2007),

adjusted rand index (Santos and Embrechts, 2009), Matthews correlation coefficient

(Matthews, 1975), receiver operating characteristic (ROC) or precision-recall curve

(Murphy, 2012), can be also used to quantify other aspects of novelty detection

performance. For the purpose of this work, the F1 score are sufficient.

2.3 Clustering

2.3.1 Definition

Compared to supervised learning tasks (e.g., classification), unsupervised tasks

(e.g., clustering) are much less well-defined (Murphy, 2012; Estivill-Castro, 2002).

A loose definition of clustering (also known as cluster analysis) could be: the

process of organizing objects into groups whose members are similar in some

way (Murphy, 2012). A cluster is therefore a collection of objects which are sim-

ilar to each other and are dissimilar to the objects belonging to other clusters.

A clustering or partitioning of a dataset {X1,...,XN } is often represented by the

(latent) cluster assignment y1∶N , where yn denotes the cluster label for datum

Xn.

Clustering is an unsupervised learning problem since the class (or cluster)

labels are not given (Jain et al., 1999; Russell and Norvig, 2003).

2.3.2 Applications

Clustering is a fundamental machine problem with a long history dating back

to the 1930s in psychology (Tryon, 1939). Today, clustering is widely used in

a host of application areas, including text mining (Dhillon and Modha, 2001),

network traffic classification (Erman et al., 2006), medical imaging (Yang et al.,

2002a), genetics (Collins et al., 2007), immunology (Lund et al., 2004), market

research (Arimond and Elfessi, 2001), social network analysis (Mishra et al.,

2007), and mobile robotics (Nguyen et al., 2005).
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2.3.3 Clustering types

In terms of the output, clustering algorithms can be broadly categorized as hard

or soft (also referred to as fuzzy) (Jain et al., 1999). In hard clustering, each

datum can only belong to one cluster, i.e., a hard clustering algorithm outputs

a partition of the dataset. More specifically, the hard clustering could be di-

chotomized as either hierarchical or partitional. The hierarchical clustering

outputs a nested tree of partitions, whereas the output of partitional cluster-

ing is only one partition (Murphy, 2012; Jain et al., 1999). k-means is a typical

example of hard (partitional) clustering.

Soft clustering (or fuzzy clustering), on the other hand, allows each datum

to belong to more than one cluster with certain degrees of membership (Kauf-

man and Rousseeuw, 1990; Xu and Wunsch, 2005). The Gaussian mixture model

is an example of soft clustering wherein the degree of membership of a datum

to a cluster is given by its likelihood with respect to the mixture density. Hard

clustering can be also obtained from soft clustering by simply assigning the

cluster with the highest membership degree to each datum (Jain et al., 1999).

2.3.4 Clustering algorithms

Since the problem of clustering is too broad (due to its ambiguous definition),

to the best of our knowledge, there is no general approach for the clustering

problem. Instead, we represent in this section several widely used approaches

to the clustering problem, namely centroid-based approach (such as k-means, k-

medoids), statistical model-based approach (such as Gaussian mixture models),

and message passing approach (such as affinity propagation).

In the centroid-based approach, each cluster is represented by a centroid

which can be either a datum belonging to the dataset, called an exemplar, or

a computed mean. An example is the well-known k-means algorithm (Mac-

Queen, 1967) which consists of two main steps. First, each datum is assigned

to the group whose center is closest to the datum (with respect to some distance

measure). Second, the group center is computed using the current member ob-
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servations of the group. These two steps are repeated until convergence. As

another example, the k-medoids algorithm (Kaufman and Rousseeuw, 1987) is

similar to k-means except that in the second step, the group center is chosen

among the existing observations in the dataset. For more detail on these al-

gorithms as well as their extensions, refer to materials such as (Jain, 2010; Kauf-

man and Rousseeuw, 1990).

Clustering using statistical models is based on the assumption that data

are generated by some underlying distribution. A well-known algorithm is

expectation-maximization (EM) with Gaussian mixture models. There are two

main steps in this clustering method. First, the parameters of the underlying

model are estimated using the EM technique (Dempster et al., 1977). Second,

data are assigned to groups using maximum a posteriori (MAP) estimation. We

will discuss this clustering method in more detail in Chapter 5.

Message passing is another approach to the clustering problem, with a

well-known algorithm: affinity propagation (AP) (Frey and Dueck, 2007). The

AP algorithm uses the similarity values (e.g., negative of distances) between

pairs of observations as input and returns the ‘best’ set of exemplars. AP

first considers all observations as potential exemplars. Progressively better

sets of exemplars and corresponding clusters are then determined by passing

responsibility and availability messages based on similarities between observa-

tions. Further details on the AP algorithm can be found in (Frey and Dueck,

2007; Dueck and Frey, 2007). We will discuss this clustering method in more

detail in Chapter 6.

2.3.5 Performance indicators

A good way to evaluate the performance of a clustering algorithm is using

ground truth data, i.e., a dataset with true cluster labels given (Färber et al., 2010).

Several indicators can be used to measure the quality of a clustering, such as

purity, normalized mutual information (NMI), rand index, F1 score (Manning et al.,

2008). Let O = {O1, . . . ,On} be the clustering output by an algorithm, Oi be the
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ith cluster in O, G = {G1, . . . ,Gm} be the ground truth data, Gj be the jth cluster

in G, and N be the number of observations in the dataset, then these indicators

can be defined as follows.

Purity is defined as follows:

purity(O,G) ≜ 1

N
Σi max

j
∣Oi ∩Gj ∣. (2.3)

Purity is simple to compute and straightforward to interpret (Manning et al.,

2008), however it tends to increase (to a maximum of 1) with the number of

clusters in the clustering output. Another indicator which can address this

issue is the normalized mutual information (NMI) (Manning et al., 2008):

NMI(O,G) ≜ 2 × I(O;G)
H(O) +H(G) , (2.4)

where I is the mutual information

I(O;G) = ∑
i

∑
j

∣Oi ∩Gj ∣
N

log
N × ∣Oi ∩Gj ∣
∣Oi∣ × ∣Gj ∣

, (2.5)

and H is the entropy

H(O) = −∑
i

∣Oi∣
N

log
∣Oi∣
N

. (2.6)

Note that because NMI is normalized, it can be used to compare clustering

outputs of different numbers of clusters (Manning et al., 2008).

Rand index is an indicator which measures the accuracy of the clustering

output (Manning et al., 2008):

Rand index ≜ TP + TN
TP + FP + FN + TN

, (2.7)

where TP (true positive) is the number of assignments of two observations hav-

ing the same true label as the same cluster, TN (true negative) is the number

of assignments of two observations having different true labels to different

clusters, FP (false positive) is the number of assignments of two observations



POINT PROCESS 37

having different true labels as the same cluster, and FN (false negative) is the

number of assignments of two observations having the same true label to dif-

ferent clusters (see Table 2.1 for summary).

Same cluster Different clusters

Same true labels TP (true positive) FN (false negative)

Different true labels FP (false positive) TN (true negative)

Table 2.1: Computing TP (true positive), FN (false negative), FP (false positive),
and TN (true negative).

F1 score is another commonly used indicator to measure clustering perform-

ance. Recall from Section 2.2.6

F1 score ≜ 2 × precision × recall
precision + recall

. (2.8)

Note that in the context of clustering, precision and recall is computed using

TP, FN, and FP as follows

precision = TP
TP + FP

, recall = TP
TP + FN

,

All the mentioned indicators have a range of [0,1] (1 for the best performance).

For more detail and discussion, refer to (Manning et al., 2008).

2.4 Point process

This section outlines the elements of point process theory and presents some

basic models for PP data. For further detail on point processes, we refer the

reader to textbooks such as (Stoyan et al., 1995; Daley and Vere-Jones, 1988;

Moller and Waagepetersen, 2003).

2.4.1 Definitions

A PP can be characterized as a counting measure on the space X of features.

Given a PP X , a counting measure N is defined, for each (compact) set A ⊆ X ,

by
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N(A) = number of points of X falling in A. (2.9)

The values of the counting variables N(A) for all subsets A provide sufficient

information to reconstruct the PP X (Stoyan et al., 1995; Daley and Vere-Jones,

1988). The points of X are the set of x such that N({x}) > 0. A PP is said to be

finite if it has a finite number of points, i.e., N(X) < ∞; and simple if it contains

no repeated points, i.e., N({x}) ≤ 1 for all x ∈ X .

Formally a point process is defined as a random counting measure. A random

counting measure N may be viewed as a collection of random variables N(A)
indexed by A ⊆ X . A point process is finite if its realizations are finite almost

surely, and simple if its realizations are simple almost surely. For all practical

purposes, we only consider finite point processes.

2.4.2 Applications

Point process theory has proven to be effective in diverse areas such as im-

age processing (Baddeley and Lieshout, 1993; Perrin et al., 2005), neuroscience

(Truccolo et al., 2005), physiology (Barbieri et al., 2005), finance and economet-

rics (Engle and Russell, 1998; Zhang et al., 2001a; Bowsher, 2007), communic-

ation (Baccelli and Blaszczyszyn, 2010), forestry (Stoyan and Penttinen, 2000),

and robotics (Mullane et al., 2011). Point process theory has attracted a lot of

attention worldwide over the last decade due to its success in the area of multi-

sensor multitarget tracking (Mahler, 2014). In particular, the simple-finite point

process (used in this work), also known as the random finite set, has been suc-

cessfully applied to the field of multitarget tracking as briefly reviewed in the

following.

The random finite set was used to develop various effective multitarget es-

timation techniques, such as the Probability Hypothesis Density (PHD) filter,

Cardinalized PHD (CPHD) filter, and multi-Bernoulli filters. The PHD filter is

a computationally inexpensive multitarget filter developed by Mahler (2003c).

In addition, the PHD filter is then generalized to be the CPHD filter (Mahler,

2007a) which can capture changes in the number of targets better, and hence
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provide better performance. Both the PHD and CPHD filters can be effectively

implemented using Gaussian mixture or sequential Monte Carlo (SMC) (Vo

et al., 2005; Vo and Ma, 2006; Vo et al., 2007). Further a Gaussian mixture PHD

smoother was developed in (Vo et al., 2012). The PHD/CPHD filters can be

extended to jointly estimate the multitarget state, false alarm parameters, and

state-dependent detection probability (Beard et al., 2013; Mahler et al., 2011;

Mahler and Vo, 2014).

For non-linear dynamic scenarios, the multi-Bernoulli filters with SMC imple-

mentation can outperform the CPHD filter (Vo et al., 2009, 2010). These filters

have been successfully applied in solving many problems from various fields,

such as computer vision (Maggio et al., 2008; Hoseinnezhad et al., 2012, 2013),

cell biology (Rezatofighi et al., 2015), autonomous vehicles (Mullane et al., 2011;

Lundquist et al., 2011), automotive safety (Battistelli et al., 2008; Meissner et al.,

2013), sensor scheduling (Mahler, 2003b; Ristic and Vo, 2010; Ristic et al., 2011;

Hoang and Vo, 2014; Gostar et al., 2013; Hoang et al., 2015; Gostar et al., 2015,

2016), and sensor networks (Zhang, 2011; Battistelli et al., 2013).

A generalization of the aforementioned filters is the Generalized Labeled Multi-

Bernoulli (GLMB) filter (Vo and Vo, 2013; Vo et al., 2014, 2017b), which also out-

puts the targets’ trajectories. The GLMB filter is an exact solution of the Bayes

multitarget filter (Vo and Vo, 2013; Vo et al., 2014). This filter has several good

analytical properties, such as the void probability functional of a GLMB, the

Cauchy-Schwarz divergence between two GLMBs, the L1-distance between a

GLMB and its truncation, all can be computed in closed form (Beard et al.,

2015b; Vo et al., 2014). Since its appearance, it has been deployed in many

applications, including merged measurements (Beard et al., 2015a), extended

targets (Beard et al., 2016), maneuvering targets (Punchihewa et al., 2016; Jiang

et al., 2016), track-before-detect (Papi et al., 2015; Papi and Kim, 2015), com-

puter vision (Kim et al., 2013; Punchihewa et al., 2014; Rathnayake et al., 2015;

Kim et al., 2016), sensor scheduling (Beard et al., 2015b; Gostar et al., 2014), field

robotics (Deusch et al., 2015), and distributed multi-object tracking (Fantacci
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et al., 2015).

2.4.3 Probability

In this work, we are interested in likelihood functions for finite PP observa-

tions. For a countable feature space X , the likelihood function f is simply the

probability of the PP. More concisely,

f({x1, ..., xm}) = pc(m)∑
π

p(xπ(1), ..., xπ(m) ∣m), (2.10)

where π denotes a permutation of {1,2, . . . ,m}; p(x1, . . . , xm ∣ m) is the joint

probability of the features x1, . . . , xm, given that there are m features; and pc(m)
is the probability that there are m features.

For an uncountable feature space, the likelihood function is the probability

density of the PP (described in the next section). Hereon, we consider point

processes on a compact subset X of Rd, unless otherwise stated.

2.4.4 Probability density

The probability density of a point process is the Radon-Nikodym derivative

of its probability distribution with respect to a dominating measure µ, usually

an unnormalised probability distribution of a Poisson point process.

Let ν be a (non-atomic σ-finite) measure on X , a Poisson point process3 on

X with intensity measure ν is a point process such that

∎ for every (compact) set A ⊂ X , the random variable N(A) is Poisson dis-

tributed with mean ν(A),

∎ if A1, ...,An ⊂ X are disjoint (compact) sets, then the random variables

N(A1), ...,N(An) are independent.

In general the probability density of a point process may not exist (van Lieshout,

2000; Baddeley et al., 2007). To ensure that probability densities are available,

we restrict ourselves to finite point processes (Baddeley et al., 2007).

3 Later in this thesis, for brevity, sometimes the Poisson point process model is briefly called
the Poisson model.



POINT PROCESS 41

Further, in many applications involving uncountable feature spaces, the ob-

served PPs do not have repeated elements, and hence can be modeled as a

simple point process. A simple finite point process is equivalent to a random

finite set (RFS) (Baddeley et al., 2007), i.e., a random variable taking values in

F(X) — the space of finite subsets of X .

The probability density f ∶ F(X) → [0,∞) of a RFS is usually taken with

respect to the dominating measure µ, defined for each (measurable) T ⊆ F(X), by

(see e.g., (Geyer et al., 1999; Moller and Waagepetersen, 2003; Vo et al., 2005)):

µ(T ) =
∞
∑
m=0

1

m!Um ∫ 1T ({x1, ..., xm})d(x1, ..., xm), (2.11)

where U is the unit of hyper-volume in X , 1T (⋅) is the indicator function for

T , and by convention, the integral for i = 0 is 1T (∅). The measure µ is the

unnormalized distribution of a Poisson point process with unit intensity 1/U
when X is bounded. For this choice of reference measure, it was shown in (Vo

et al., 2005) that the integral of f is given by

∫ f(X)µ(dX) =
∞
∑
m=0

1

m!Um ∫ f({x1, ..., xm})d(x1, ..., xm), (2.12)

is equivalent to Mahler’s set integral (Mahler, 2003a, 2007b) and that densit-

ies relative to µ can be computed using Mahler’s set derivative (Mahler, 2003a,

2007b). Note that the reference measure µ, and the integrand f are all dimen-

sionless.

The probability density of an RFS, with respect to µ, evaluated at {x1, ..., xm}
can be written as (van Lieshout, 2000, p. 27) ((Eqs. (1.5), (1.6), and (1.7)):

f({x1, ..., xm}) = pc(m)m!Umfm(x1, ..., xm), (2.13)

where pc(m) is the cardinality distribution, and fm(x1, ..., xm) is a symmetric

function4 denoting the joint probability density of x1, ..., xm given cardinality

4 Since fm is symmetric, the notations fm (x1, ..., xm) and fm ({x1, ..., xm}) can be used in-
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m. Note that by convention f0 = 1 and hence f(∅) = pc(0). It can be seen from

Eq. (2.13) that the probability density f captures the cardinality information as

well as the dependence between the features. Also, Um cancels out the unit of

the probability density fm(x1, ..., xm), and hence f is unitless.

2.4.5 Intensity and conditional intensity

The intensity function λ of a point process is a function on X such that for any

(compact) A ⊂ X
E [N(A)] = ∫

A
λ(x)dx. (2.14)

The intensity value λ(x) can be interpreted as the instantaneous expected num-

ber of points per unit hyper-volume at x.

For a hereditary probability density f , i.e., f(X) > 0 implies f(Y ) > 0 for all

Y ⊆X , the conditional intensity at a point u is given by (Baddeley et al., 2007)

λ(u,X) = f(X ∪ {u})
f(X) , (2.15)

Loosely speaking, λ(u,X)du can be interpreted as the conditional probability

that the point process has a point in an infinitesimal neighbourhood du of u

given all points of X outside this neighbourhood.

The intensity function is related to the conditional intensity by

λ(u) = E [λ(u,X)] . (2.16)

For a Poisson point process the conditional intensity equals the intensity.

The probability density of a finite point process is completely determined by

its conditional intensity (Stoyan et al., 1995; Moller and Waagepetersen, 2003).

Certain point process models are convenient to formulate in terms of the condi-

tional intensity rather than probability density. Using the conditional intensity

also eliminates the normalizing constant needed for the probability density.

terchangeably.
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However, the functional form of the conditional intensity must satisfy certain

consistency conditions.

2.4.6 IID-cluster point process

Imposing the independence assumption among the features, the model in Eq. (2.13)

reduces to the IID-cluster point process model5 with density given by (Daley

and Vere-Jones, 1988; Stoyan et al., 1995):

f(X) = pc(∣X ∣) ∣X ∣! [Upf ]X , (2.17)

where |X ∣ denotes the cardinality (number of elements) ofX , pf is a probability

density onX , referred to as the feature density, and hX ≜ ∏x∈X h(x), with h∅ = 1

by convention, is the finite-set exponential notation.

Sampling from an IID-cluster can be accomplished by first sampling the

number of points from the cardinality distribution pc, and then sampling the

corresponding number of points independently from the feature distribution

pf .

When the cardinality distribution pc is Poisson with rate (or mean) ρ, we

have the celebrated Poisson point process (Daley and Vere-Jones, 1988; Stoyan

et al., 1995) with the density given by

f(X) = ρ∣X ∣ e−ρ [Upf ]X . (2.18)

The Poisson point process model is completely determined by the intensity

function λ = ρpf (Daley and Vere-Jones, 1988). Note that the Poisson cardinality

distribution is described by a single non-negative number ρ, hence there is only

one degree of freedom in the choice of cardinality distribution for the Poisson

point process model.

5 Later in this thesis, for brevity, sometimes the IID-cluster point process model is briefly
called the IID-cluster model.
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2.4.7 Finite Gibbs model

A well-known general model that accommodates dependence between its ele-

ments is a finite Gibbs process, which has probability density of the form

(Stoyan et al., 1995; Moller and Waagepetersen, 2003).

f(X) = exp
⎛
⎝
V0 +

∣X ∣
∑
i=1

∑
{x1,...,xi}⊆X

Vi(x1, ..., xi)
⎞
⎠
, (2.19)

where Vi is called the ith potential, given explicitly by

Vi(x1, ..., xi) = ∑
Y ⊆{x1,...,xi}

(−1)∣{x1,...,xi}∣−∣Y ∣ log f(Y ).

Gibbs models arise in statistical physics, where log(f(X)) may be interpreted

as the potential energy of the PP. The term −V1(x) can be interpreted as the

energy required to create a single point at a location x, and the term −V2(x1, x2)
can be interpreted as the energy required to overcome the force between the

points x1 and x2.

Note that any hereditary probability density of a finite point process can

be expressed in the Gibbs form (Baddeley et al., 2007), e.g., the Poisson point

process is indeed a first order Gibbs model.

2.5 Set distances

2.5.1 Distance measures

A distance is a fundamental measure of dissimilarity between two objects.

Hence, the notion of distance or metric is important to learning approaches

without models (Jain, 2010; Amores, 2013; Pimentel et al., 2014).

Recall the definition of a distance function or metric on a non-empty space

S , a function d ∶ S×S → [0; 1) is called a metric if it satisfies the following three

axioms:

1. (Identity) d(x, y) = 0 if and only if x = y ;
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2. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ S ;

3. (Triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ S .

Our interest lies in the set distances between two finite subsets X = {x1, ..., xm}
and Y = {y1, ..., yn} of a metric space (W, d), where W is closed and bounded

observation window, and d denotes the base distance between the elements of

W . Note that d is usually taken as the Euclidean distance when W is a subset

of Rn.

There are several set distances which can be used for PP data6, namely

the Hausdorff (Huttenlocher et al., 1993b), Wasserstein (Hoffman and Mahler,

2004), and OSPA (Schuhmacher et al., 2008) distances.

2.5.2 Hausdorff distance

The Hausdorff distance between two non-empty sets X and Y is defined by

dH(X,Y ) = max{max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)} , (2.20)

Note that the Hausdorff distance is not defined when either X or Y is empty.

In addition to being a metric, the Hausdorff distance is easy to compute and

was traditionally used as a measure of dissimilarity between binary images.

It gives a good indication of the dissimilarity in the visual impressions that

a human would typically perceive between two binary images (Huttenlocher

et al., 1993a; Rucklidge, 1995).

2.5.3 Wasserstein distance

The Wasserstein distance (also known as Optimal Mass Transfer distance (Schuh-

macher et al., 2008)) of order p ≥ 1 between two sets X and Y is defined by

(Hoffman and Mahler, 2004)

6 A multi-set can be equivalently expressed as a set by augmenting the multiplicity of each
element, i.e., a multi-set with elements x1 repeated N1 times, ...., xm repeated Nm times, can be
represented as the set {(x1,N1), ..., (xm,Nm)}.
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d
(p)
W (X,Y ) = min

C
(
m

∑
i=1

n

∑
j=1

ci,jd (xi, yj)p)
1
p

, (2.21)

where C = (ci,j) is an m × n transportation matrix (recall that m and n are the

cardinalities of X and Y , respectively), i.e., ci,j are non-negative and satisfies:

n

∑
j=1

ci,j =
1

m
for 1 ≤ i ≤m, (2.22a)

m

∑
i=1

ci,j =
1

n
for 1 ≤ j ≤ n. (2.22b)

Note that similar to the Hausdorff distance the Wasserstein distance is a metric

(Hoffman and Mahler, 2004) and is not defined when either X or Y is empty.

The Wasserstein distance can be considered as the Earth Mover’s distance

(Rubner et al., 1998) adapted for PPs (Hoffman and Mahler, 2004). Consider

the sets X = {x1, ..., xm} and Y = {y1, ..., yn} as collections of earth piles at xi

each with mass 1/m and yj each with mass 1/n, i.e., the total mass of each col-

lection is 1, and suppose that the cost of moving a mass of earth over a distance

is given by the mass times the distance. Then the Wasserstein distance can be

considered as the minimum cost needed to build one collection of earth piles

from the other. This is illustrated in Figure 2.5 and Figure 2.6, where the arrows

correspond to the optimal movements of the earth piles.
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Figure 2.5: Left: SetsX (red ●), Y (green ∎), andZ (blue▲) in R2. Right: Abstract
impression of the Wasserstein distances between the finite sets X , Y , and Z.

2.5.4 OSPA distance

The Optimal SubPattern Assignment (OSPA) (Schuhmacher et al., 2008) dis-

tance of order p ≥ 1, and cutoff c > 0, is defined by
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(a) To compute d
(p)
W (X,Y ): move Y ’s

earth piles (green) to formX’s earth piles
(red).

(b) To compute d
(p)
W (X,Z): move Z’s

earth piles (blue) to form X’s earth piles
(red).

Figure 2.6: Earth mover’s interpretation of the Wasserstein distance. Sets
X , Y , and Z in Figure 6.2 are considered as collections of earth piles. The
blue/green arrows represent the amounts and directions of the transportations
of the blue/green earth piles.

d
(p,c)
O (X,Y ) = ( 1

n
(min
π∈Πn

m

∑
i=1

d(c) (xi, yπ(i))
p + cp (n −m)))

1
p

, (2.23)

if n ≥ m > 0 (recall that m and n are the cardinalities of X and Y , respectively),

and d
(p,c)
O (X,Y ) = d(p,c)O (Y,X) if m > n > 0, where Πn is the set of permutations

of {1,2, ..., n}, d(c)(x, y) = min (c, d (x, y)). Further d(p,c)O (X,Y ) = c if one of the

set is empty; and d
(p,c)
O (∅,∅) = 0. The two adjustable parameters p, and c, are

interpreted as the outlier penalty and the cardinality sensitivity, respectively.
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Figure 2.7: Computing OSPA distance. Left: Sets X (red ●), Y (green ∎), and Z
(blue ▲) in R2; the dotted lines are optimal assignments between the elements
of X and Y , Z respectively. Right: Abstract impression of the OSPA distances
between the sets X , Y , and Z.

Assuming p = 1, to compute Eq. (2.23), we assign m elements of Y to the m

elements of X so as to minimize the total adjusted distance d(c) (see Figure 2.7

for illustration). This can be achieved via an optimal assignment procedure

such as the Hungarian method (Kuhn, 1955, 1956). For each of the (n −m) ele-
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ments in Y which are not assigned, we set a fixed distance of c. The OSPA

distance is simply the average of these n distances (i.e., m optimal adjusted

distances and (n −m) fixed distances c). Thus, the OSPA distance has a physic-

ally intuitive interpretation as the “per element” dissimilarity that incorporates

both features and cardinality (Schuhmacher et al., 2008).



CHAPTER 3

MODEL-BASED CLASSIFICATION
FOR POINT PATTERN DATA

Chapter’s key points:

∎ Existing methods for PP classification

∎ Model-based PP classification

∎ Learning point process models

∎ Numerical experiments

In the previous chapter, we reviewed the problem of classification in general,

and introduced the background of point process theory. In this chapter,

we develop a maximum likelihood estimate of the IID-cluster model to use

in PP classification. Numerical experiments show that the proposed method

performs well on both simulated and real data.

3.1 Existing methods for PP classification

As previously discussed, classification is the supervised learning task that uses

fully observed training input-output pairs Dtrain = {(Xn, yn)}Ntrain
n=1 to determine

the output class label y ∈ {1, . . . ,K} of each input input observation (Bishop,

2006; Murphy, 2012). This fundamental machine learning task is the most

widely used form of supervised machine learning, with applications spanning

many fields of study (see Section 2.1).

The classification for PP data is more commonly known as multiple in-

49
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stance classification (MIC) (Amores, 2013). According to Amores (2013), ap-

proaches for solving PP learning problems in general can be divided into three

paradigms, namely Instance-Space, Embedded-Space, and Bag-Space paradigm.

These paradigms differ in the way they exploit data at the point-level or PP-level.

Instance-Space is the paradigm exploiting data at the point-level. Specifically,

in this paradigm, point-level labels are required to construct a point classifier.

Then, given a test PP, we use this point classifier to classify points in the PP,

and use some assumption (such as the standard MI assumption mentioned in

Chapter 1) to infer the PP label (Dietterich et al., 1997; Maron and Lozano-Pérez,

1998; Zhang et al., 2001b; Andrews et al., 2003).1

At the global level, the Embedded-Space paradigm maps all PPs to vectors

of a fixed dimension, which are then also processed by some point classifi-

ers. Examples of this approach include (Dong, 2006; Bunescu and Mooney,

2007; Gärtner et al., 2002). On the other hand, the Bag-Space paradigm ad-

dresses the problem at the most fundamental level by operating directly on the

PPs. The philosophy of the Bag-Space paradigm is to preserve the information

content of the data, which could otherwise be compromised through the data

transformation process (as in the Embedded-Space approach). In this work,

the proposed methods for PP classification belong to this last paradigm — the

Bag-Space paradigm.

Existing methods in the Bag-Space paradigm include distance-based tech-

niques (such as k-nearest neighbour (k-NN)) using set-distances, e.g., the Haus-

dorff (Huttenlocher et al., 1993b), Chamfer (Gavrila and Philomin, 1999), and

Earth Mover’s (Zhang et al., 2007; Rubner et al., 1998) distance.2 Such classi-

fiers do not require any underlying data models and are simple to use. How-

ever, they may perform poorly with high dimensional inputs due to the curse

1 Note that many of existing methods for PP classification in the Instance-Space paradigm
are developed for solving only two-class classification (i.e., binary classification) (Cheplygina
et al., 2015). In practice, however, many applications are indeed multiclass classification, hence
these binary classifiers need to be extended by applying some scheme, such as One-vs-All or
All-vs-All (Rifkin and Klautau, 2004).

2 The distance-based technique for PP classification will be discussed further in Chapter 6.
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of dimensionality, and are often computationally intractable for large datasets

(Murphy, 2012), not to mention that the decision procedure is unclear. On the

other hand, knowledge of the underlying data model can be used to exploit

statistical patterns in the training data, and to devise optimal decision proced-

ures. However, to the best of our knowledge, model-based classifiers for PPs

have not been investigated, despite the fundamental role of statistical models

in machine learning.

3.2 Model-based PP classification

Using the notion of probability density for the point process from Section 2.4,

the standard model-based classification formulation can extend to PP classific-

ation:

∎ In the training phase, we seek likelihoods that “best” fit the training data.

Specifically, for each class k ∈ {1, . . . ,K}, we seek a likelihood function

f(⋅∣y = k) that best fits the training input PPs in D(k)
train = {X ∶ (X,k) ∈

Dtrain}, according to criteria such as maximum likelihood, or Bayes op-

timal if suitable priors on the likelihoods are available.

∎ In the classifying phase, the likelihoods (learned in the training phase) are

used to classify test observations. When a PP X is passed to query its

label, the Bayes classifier returns the mode of the class label posterior

p (y = k ∣X) computed from the likelihood and the class prior p via Bayes’

rule:

p (y = k ∣X) ∝ p(y = k)f(X ∣ y = k). (3.1)

The simplest choices for the class priors are the uniform distribution, and

the categorical distribution, usually estimated from the training data via

p(y = k) = 1

Ntrain

Ntrain

∑
n=1

δyn[k], (3.2)

where δi[j] is the Kronecker delta, which takes on the value 1 when i = j, and

zero otherwise. Hence, the main computational effort in model-based classific-
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ation lies in the training phase.

3.3 Learning point process models

Learning the likelihood function for class k boils down to finding the value(s) of

the parameter θk such that the (parameterized) probability density f(⋅ ∣ y = k, θk)
best explains the observations X1, ...,XN in D(k)

train. In this section, we consider a

fixed class label and its corresponding observations X1, ...,XN .

Methods for learning point process models have been available since the

1970s, see e.g., (Moller and Waagepetersen, 2003; Baddeley et al., 2007). We

briefly summarize some recognized techniques, then develop the methods of

maximum likelihood (ML), and maximum a posteriori probability (MAP)

for learning IID-cluster models as tractable PP classification solutions (Sec-

tion 3.3.5 and Section 3.3.6).

3.3.1 Model fitting via summary statistics

The method of moments seeks the parameter θ such that the expectation of a

given statistic of the model point process parameterized by θ is equal to the

statistic of the observed PPs (Baddeley et al., 2007). However, this approach

is only tractable when the solution is unique and the expectation is a closed

form function of θ, which is usually not the case in practice, not to mention that

moments are difficult to calculate.

The method of minimum contrast seeks the parameter θ that minimizes some

dissimilarity between the expectation of a given summary statistic (e.g., the K-

function) of the model point process and that of the observed PPs (Baddeley

et al., 2007). Provided that the dissimilarity functional is convex in the para-

meter θ, this approach can avoid some of the problems in the method of mo-

ments. However, in general, the statistical properties of the solution are not

well understood, not to mention the numerical behaviour of the algorithm used

to determine the minimum.
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3.3.2 Maximum likelihood

In the maximum likelihood (ML) approach, we seek the ML estimate (MLE) of θ:

MLE(f(⋅ ∣ θ);X1∶N) ≜ argmax
θ

(
N

∏
n=1

f(Xn ∣ θ)) (3.3)

The MLE has some desirable statistical properties such as asymptotic normal-

ity and optimality (Baddeley et al., 2007). However, in general, there are prob-

lems with non-unique maxima, and moreover, analytic MLEs for point process

models are not available because the likelihood Eq. (2.19) of many Gibbs mod-

els contains an intractable normalizing constant which is a function of θ (Moller

and Waagepetersen, 2003).

To the best of our knowledge, currently there is no general ML technique for

learning generic models such as Gibbs from real data. Numerical approxima-

tion methods such as (Ogata and Tanemura, 1984) and Markov Chain Monte

Carlo (MCMC) (Geyer and Møller, 1994) are highly specific to the chosen model,

computationally intensive, and require careful tuning to ensure good perform-

ance. Nonetheless, simple models such as the IID-cluster model Eq. (2.17), ad-

mit an analytic MLE (detailed in Section 3.3.5).

Remark: The method of moment replaces the ML estimation equation

d

dθ
(
N

∑
n=1

log(f(Xn ∣ θ))) = 0 (3.4)

by an unbiased sample approximation of the general equation Eθ [Ψ(θ,X)] = 0,

i.e.,
N

∑
n=1

Ψ(θ,Xn) = 0 (3.5)

For example, Ψ(θ,Xn) = d
dθ log(f(Xn ∣ θ)) results in ML since it is well-known

from classical ML theory that Eq. (3.4) is an unbiased estimating equation. Set-

ting Ψ(θ,Xn) = T (Xn)−Eθ[T (X)] (i.e., the difference between the empirical

value and the expectation of the summary statistic) results in the method of
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moments since T (Xn) is an unbiased estimator of Eθ[T (X)]. Takacs-Fiksel is an-

other well-known family of estimating equations (Takacs, 1986; Fiksel, 1988).

3.3.3 Maximum pseudolikelihood

Maximum pseudolikelihood (MPL) estimation, proposed by Besag (1975, 1977), is

a powerful approach that avoids the intractable normalizing constant present

in the likelihood and retains desirable properties, such as consistency and asymp-

totic normality in a large-sample limit (Baddeley et al., 2007). The key idea is

to replace the likelihood of a point process (with parameterized conditional

intensity λθ(u;X)) by the pseudolikelihood:

PL(θ;X1∶N) =
N

∏
n=1

e−∫ λθ(u;Xn)du [λθ(⋅;Xn)]Xn . (3.6)

The rationale behind this strategy is discussed in (Besag, 1975). Up to a constant

factor, the pseudolikelihood is indeed the likelihood if the model is Poisson,

and is approximately equal to the likelihood if the model is close to Poisson.

The pseudolikelihood may be regarded as an approximation to the likelihood

which ignores the inter-point dependence.

An MPL algorithm has been developed by Baddeley and Turner (2000) for

point processes with sufficient generality, such as Gibbs whose conditional in-

tensity has the form

λ(u,X) = exp
⎛
⎝

∣X ∣+1

∑
i=1

∑
{x1,...,xi−1}⊆X

Vi(u,x1, ..., xi−1)
⎞
⎠
. (3.7)

By turning the pseudolikelihood of a general point process into a classical Pois-

son point process likelihood, MPL can be implemented with standard general-

ised linear regression software (Baddeley and Turner, 2000). Due to its versatil-

ity, the Baddeley-Turner algorithm is the preferred model fitting tool for point

processes.

The main hurdle in the application of the Baddeley-Turner algorithm to PP
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classification is the computational requirement. While this may not be an issue

in spatial statistics applications, the algorithm’s computational requirement is

still prohibitive with large data sets often encountered in PP learning. On the

other hand, the disadvantages of MPL (relative to ML) such as small-sample

bias and inefficiency (Besag, 1977; Jensen and Møller, 1991) become less signi-

ficant with large data. Efficient algorithms for learning general point process

models is an ongoing area of research. Nonetheless, the Baddeley-Turner al-

gorithm is a promising tool for complex PP classification problems.

3.3.4 Bayesian approach

Apart from the aforementioned ML method, which belongs to the class of fre-

quentist approach, the Bayesian approach is based on the posterior distribution of

the model parameter, which incorporates prior knowledge of the parameters

of interest. In the Bayesian approach, the optimal estimate of parameter θ can

be either the posterior mean, median, or mode, however, the mode of the pos-

terior is the most common choice due to its computational efficiency (Murphy,

2012).

In the maximum a posteriori probability (MAP) method, we seek an estimate

of θ which maximizes the posterior distribution p(θ ∣X1∶N), i.e.,

MAP(p(θ), f(⋅ ∣ θ);X1∶N) ≜ argmax
θ

(p(θ)
N

∏
n=1

f(Xn ∣ θ)) , (3.8)

where p(θ) is the prior distribution which represents our knowledge of the

parameter θ before any data are obtained (Wasserman, 2004).

It can be observed from Eq. (3.8) that the MAP estimate of θ is equivalent

to the MLE (Section 3.3.2) if the prior p(θ) is uniform. In other words, the

ML estimation can be seen as a special case of the MAP estimation. For suf-

ficiently large datasets, the MAP (with an arbitrary prior) and ML estimation

yield approximately the same results, although in general they need not agree

(Wasserman, 2004).
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When the prior p(θ) and posterior p(θ ∣ X1∶N) are in the same family of dis-

tributions, p(θ) is called a conjugate prior with respect to the likelihood f(X ∣ θ)
(Wasserman, 2004). In addition, if a conjugate prior is also in the same family

as the likelihood, then it is called a natural conjugate prior (Gelman et al., 2004).

For example, consider a MAP estimation for the mean of a Gaussian likelihood

(whose covariance is known); if the prior is Gaussian, then the posterior is also

Gaussian. Conjugate priors can bring mathematical and computational con-

venience, since it gives a parametric form for the posterior distribution (Gel-

man et al., 2004).

MAP estimates can be computed analytically if the mode of the posterior

has a closed form solution, such as when conjugate priors are used. Otherwise,

numerical approximation methods such as the conjugate gradient method (Saad,

2003) and Markov Chain Monte Carlo (MCMC) (Geyer and Møller, 1994) have

to be deployed. These methods, however, are computationally intensive and

require careful tuning to ensure good performance.

The appeal of MAP estimation is that it is a natural way to incorporate the

prior information about the parameters (if this exists) with the observed data

(Wasserman, 2004). However, MAP estimation has several drawbacks, such

as problems with non-unique maxima, no measure of uncertainty, untypical

summary of the posterior, and is dependent on the parameterization (Murphy,

2012).

There is scant literature on Bayesian learning for point processes and most

studies rely on numerical approximation methods, such as MCMC, rather than

analytical solutions. For example, Byers and Raftery (2002) propose to use

MCMC to estimate a piecewise constant rate point process specified by a Voro-

noi tiling model. In (Moller and Waagepetersen, 2003), the authors review a

few contributions on Bayesian inference for Markov point processes using nu-

merical techniques such as Metropolis-Hastings and MCMC.

To the best of our knowledge, currently there is no general analytical MAP
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technique for learning point process models. Nonetheless, it can be shown that

simple models, such as the IID-cluster model Eq. (2.17), admit an analytic MAP

estimate (detailed in Section 3.3.6).

3.3.5 ML learning for IID-clusters

Computationally efficient algorithms for learning point process models are im-

portant because PP learning usually involves large data sets (compared to ap-

plications in spatial statistics). Since learning a general point process is compu-

tationally prohibitive, the IID-cluster model Eq. (2.17) provides a good trade-

off between tractability and versatility by neglecting interactions between the

points.

Since an IID-cluster model is uniquely determined by its cardinality and

feature distributions, we consider a parameterization of the form:

f(X ∣ ξ,ϕ) =pξ(∣X ∣) ∣X ∣!U ∣X ∣pXϕ . (3.9)

where pξ and pϕ, are the parameterized cardinality distribution and feature dis-

tribution respectively. Learning the underlying parameters of an IID-cluster

model amounts to estimating the parameter θ = (ξ,ϕ) from training input data.

The form of the IID-cluster likelihood function allows the MLE to separate

into the MLE of the cardinality parameter ξ and MLE of the feature parameter

ϕ. This is stated more concisely in Proposition 1 (the proof is straightforward,

but is included for completeness).

Proposition 1. Let X1, ...,XN be N i.i.d. realizations of an IID-cluster with para-

meterized cardinality distribution pξ and feature density pϕ. Then the MLE of (ξ,ϕ),
is given by

ξ̂ = MLE (pξ; ∣X1∣, ..., ∣XN ∣) , (3.10)

ϕ̂ = MLE(pϕ;
N

⊎
n=1

Xn) , (3.11)
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where ⊎ denotes disjoint union.

Proof. Using Eq. (3.9), we have

N

∏
n=1

f(Xn ∣ ξ,ϕ) =
N

∏
n=1

pξ(∣Xn∣) ∣Xn∣!U ∣Xn∣pXnϕ (3.12)

=
N

∏
n=1

∣Xn∣!U ∣Xn∣
N

∏
n=1

pξ(∣Xn∣)
N

∏
n=1

pXnϕ (3.13)

Hence, to maximize the likelihood we simply maximize the second and last

products in the above separately. This is achieved with Eq. (3.10) and Eq. (3.11).

QED

Observe from Proposition 1 that the MLE of the feature density parameter is

identical to that used in the naive Bayes (NB) model (Bishop, 2006, pp. 380–381).

For example, if the feature density is a Gaussian N (⋅ ∣ µ,Σ), then the MLEs of

the mean and covariance are:

µ̂ = 1

N
∑Nn=1∑x∈Xnx, (3.14)

Σ̂ = 1

N
∑Nn=1∑x∈Xn (x − µ̂) (x − µ̂)

T
. (3.15)

If the feature density is a mixture model of the form:

pϕ(x) =
K

∑
k=1

πk pθk(x) (3.16)

where parameters ϕ = {π1∶K , θ1∶K}, π1∶K are prior probabilities, θ1∶K are para-

meters of component distributions, then MLE of ϕ can be found using the ex-

pectation–maximization (EM) algorithm (Dempster et al., 1977; Little and Rubin,

2002). The mixture feature density, e.g., Gaussian mixture, is suitable for PP

data with complex shapes in features, such as the Texture image data described

in Section 3.4.2.

Consequently, compared to learning NB model, learning the IID-cluster model

requires only one additional task of computing the MLE of the cardinality para-
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meters, which is relatively inexpensive.

For a categorical cardinality distribution, i.e., ξ = (ξ1, ..., ξM) where ξk = Pr(∣X ∣ =
k) and ∑Mk=1 ξk = 1, the MLE of the cardinality parameter is given by

ξ̂k = 1

N
∑Nn=1δk[∣Xn∣]. (3.17)

Since there are M parameters ξ1, ..., ξM , a sufficiently large training dataset (sig-

nificantly larger than M ) is needed to avoid over-fitting. Alternatively, the

standard practice of placing a Laplace prior on the cardinality distribution can

be applied, i.e., replacing the above equation by ξ̂k ∝ ε + ∑Nn=1δk[∣Xn∣], where ε

is a small number.

If the training dataset is significantly small, a cardinality distribution with

a small number of parameters should be used, e.g., a Poisson distribution para-

meterized by the rate ξ = ρ, in which case the MLE is given by

ρ̂ = 1

N
∑Nn=1∣Xn∣. (3.18)

It is also possible to develop MLEs for other families of cardinality distributions

such as binomial, multi-Bernoulli, etc.

3.3.6 MAP learning for IID-clusters

The form of the IID-cluster likelihood function also allows the MAP estimate

to separate into the MAP estimates of the cardinality parameter ξ and MAP es-

timate of the feature parameter ϕ, if the prior on (ξ,ϕ) separates into priors on

ξ and ϕ. This is stated more concisely in Proposition 2 (the proof is straightfor-

ward, but is included for completeness).

Proposition 2. Let X1, ...,XN be N i.i.d. realizations of an IID-cluster with para-

meterized cardinality distribution pξ and feature density pϕ. If the prior p(ξ,ϕ) =
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p(ξ)p(ϕ), then the MAP estimate of (ξ,ϕ), is given by

ξ̂ = MAP (p(ξ), pξ; ∣X1∣, ..., ∣XN ∣) , (3.19)

ϕ̂ = MAP(p(ϕ), pϕ;
N

⊎
n=1

Xn) , (3.20)

where ⊎ denotes disjoint union.

Proof. Using Eq. (3.9), we have

p(ξ,ϕ)
N

∏
n=1

f(Xn ∣ ξ,ϕ) = p(ξ)p(ϕ)
N

∏
n=1

pξ(∣Xn∣) ∣Xn∣!U ∣Xn∣pXnϕ (3.21)

=
N

∏
n=1

∣Xn∣!U ∣Xn∣
N

∏
n=1

p(ξ)pξ(∣Xn∣)
N

∏
n=1

p(ϕ)pXnϕ (3.22)

Hence, to maximize the posterior we simply maximize the second and last

products in the above separately. This is achieved with Eq. (3.19) and Eq. (3.20).

QED

Note that in MAP estimation, conjugate priors are usually used to ensure

the MAP estimates have close-form solutions. The conjugate prior for cardin-

ality density parameter ξ depends on the form of pξ. For example, for a Poisson

likelihood parameterized by the rate ρ, a gamma distribution Ga(⋅ ∣ α,β) can

be used as a conjugate prior which yields the posterior:

p(ρ ∣ ∣X1∣, ..., ∣XN ∣) ∝ Ga(ρ ∣ α +
N

∑
n=1

∣Xn∣, β +N) . (3.23)

For a categorical likelihood parameterized by ξ = (ξ0, ..., ξM) belongs to the

unit M -simplex, a Dirichlet distribution Dir(⋅ ∣ η0, ..., ηM) with (η0, ..., ηM) be-

longs to the unit M -simplex , can be used as a conjugate prior which yields the

posterior (Minka, 2003):

p(ξ ∣ ∣X1∣, ..., ∣XN ∣) = Dir (ξ ∣ c0 + η0, ..., cM + ηM) , (3.24)

where cm = ∑Nn=1 δm[∣Xn∣].
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The conjugate prior for feature density parameter ϕ depends on the form of pϕ.

For example, a conjugate prior for mean µ of a Gaussian with known variance

σ2 is a Gaussian N (⋅ ∣ µ0, σ2
0) which yields the posterior (Murphy, 2007):

p(µ ∣ ⊎Nn=1Xn) = N
⎛
⎝
µ ∣ ( n

σ2
+ 1

σ2
0

)
−1

× (µ0

σ2
0

+ nx
σ2

) ,( n
σ2

+ 1

σ2
0

)
−1⎞
⎠
, (3.25)

where x = 1

∑Nn=1 ∣Xn∣ ∑x∈X1
...∑x∈Xn x .

As another example, a conjugate prior for variance σ2 of a Gaussian with

known mean µ is an inverse gamma distribution IG(⋅ ∣ α,β) which yields the

posterior (Jordan, 2010):

p(σ2 ∣ ⊎Nn=1Xn) = IG(σ2 ∣ α + ∑
N
n=1 ∣Xn∣

2
, β + 1

2
∑
x∈X1

... ∑
x∈Xn

(x − µ)2), (3.26)

3.4 Numerical experiments

This section presents the classification experiments using one of the simplest

point process models — the Poisson point process model (may briefly called Pois-

son model, see Section 2.4). The first experiment uses simulated data to illustrate

the benefit of cardinality information when the features between the classes

are similarly distributed. The second experiment shows the versatility of the

framework by using real data from the Texture images dataset (Lazebnik et al.,

2005). For simplicity, we use a uniform class prior in the classification phase.

In the following experiments, the ML technique (Section 3.3.5) is used to

learn the data models instead of the MAP method (Section 3.3.6) since we do

not have any prior information on the model parameters. We benchmark the

classification performance of the Poisson model with the naive Bayes (NB) model,

which shares the same assumption that the features themselves are i.i.d. While

the NB model is not intended for PP data, it has been applied to MI learn-

ing, such as (Joachims, 1996; McCallum and Nigam, 1998; Maron, 1961; Csurka

et al., 2004; Cadez et al., 2000), and can be regarded as a special case of the
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IID-cluster model.3

3.4.1 Classification with simulated data

In this experiment, three datasets representing three diverse scenarios of PP

data are considered. Each dataset consists of three clusters, and each cluster

consists of 200 PPs generated from a Poisson model with a 2-D Gaussian in-

tensity parameterized by (ρ,µ,Σ). As previously discussed in Section 2.4, a PP

can be generated from a Poisson model (ρ,µ,Σ), by first sampling the number

of points from the Poisson distribution with rate ρ, then sampling the corres-

ponding number of points independently from the Gaussian with mean and

covariance (µ,Σ). The parameters of the Poisson models used to generate data

in this experiment are shown in Figure 3.1.

Three diverse scenarios of PP data are considered: in dataset (i), the fea-

tures of the PPs from each cluster are well separated from those of the other

clusters, but their cardinalities significantly overlap (Figure 3.1a); in dataset (ii),

the cardinalities of the PPs from each cluster are well separated from those of

the other clusters, but their features significantly overlap (Figure 3.1b); dataset

(iii) is a mix of (i) and (ii) (Figure 3.1c).

In the training phase, ML is used to learn the parameters of the NB model

and Poisson model from a training dataset consisting of 600 PPs (200 per class).

Note that the feature densities of the Poisson model are indeed identical to

those of the NB model.

In the test phase, 10 different test sets, each consisting of 300 PPs (100 per

class), are used. The average classification accuracies are reported in Figure 3.1.

Observe that in dataset (i), both the NB and Poisson models perform extremely

well. This is due to the fact that features of the PPs from different clusters are

very well separated (Figure 3.1a), hence both the NB and Poisson classifiers,

which can well exploit the feature information, deliver very good performance.

3 We also benchmark with the distance-based classifiers, see Chapter 6.
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(a) Dataset (i)
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(c) Dataset (iii)

Figure 3.1: Simulated data and classification performance in three diverse scen-
arios of PP data. Dataset (i): well-separated in feature but overlapping in car-
dinality; dataset (ii): well-separated in cardinality but overlapping in feature;
dataset (iii): a mix of (i) and (ii).
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However, in datasets (ii) and (iii), where features overlap, the Poisson model

outperforms the NB since the Poisson model can exploit both the feature as

well as the cardinality information in PPs. This helpful characteristic of the

Poisson model is reflected in its density function Eq. (2.18) (or more generally,

in the IID-cluster model density Eq. (2.17)). Compared to the NB likelihood

Eq. (1.1), which includes only the feature density, the density function of the

Poisson model (or IID-cluster model) consists of both feature density pf and

cardinality density pc, hence ability to account for both feature and cardinality

information of PP data.

3.4.2 Classification with Texture images dataset

Class: T14_brick1, image: 7 Class: T14_brick1, image: 9

Class: T15_brick2, image: 6 Class: T15_brick2, image: 9

Class: T20_upholstery, image: 7 Class: T20_upholstery, image: 6

Figure 3.2: Example images from classes “T14_brick1”, “T15_brick2”, and
“T20_upholstery” of the Texture dataset. Circles mark the detected SIFT key-
points.

This experiment involves clustering images from the classes “T14 brick1”,
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“T15 brick2”, and “T20 upholstery” of the Texture images dataset (Lazebnik et al.,

2005). In this dataset, each class consists of 40 images, with some examples

shown in Figure 3.2. Each image is compressed into a PP of 2-D features by

first applying the scale-invariant feature transform (SIFT) algorithm (using the

VLFeat library (Vedaldi and Fulkerson, 2008)) to produce a PP of 128-D SIFT

features, which is then further compressed into a 2-D PP by principal compon-

ent analysis (PCA). Figure 3.3 shows the superposition of the 2-D PPs from the

three classes along with their cardinality histograms.
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Figure 3.3: Extracted data from images of the Texture dataset. Left: 2-D features
(after applying PCA to SIFT features). Right: Histogram of cardinalities of the
extracted data.

In this experiment, we examine Poisson models with different feature dens-

ities, i.e., the Poisson model with single Gaussian feature density (Figure 3.4a),

and the Poisson models with Gaussian mixture feature density (Figure 3.4b and

Figure 3.4c). For all models, the 4-fold cross validation scheme is used. In the

training phase, a training dataset consisting of 30 images per class is used to

learn the model. In the test phase, test sets from the remaining images are used

(10 images per class), and the average classification accuracies are reported.

For the first model, the parameters of the Poisson model (with single Gaus-

sian feature density) are learned using ML estimation (Section 3.3.5). The learned

model is depicted in Figure 3.4a. Note that the feature density of the Poisson

model is identical to that of the NB model. The average classification accuracies

are also reported in Figure 3.4a. Observe that in this dataset, the features of PPs

from different classes are not too overlapped, hence the NB can perform reas-



66 CHAPTER 3. MODEL-BASED CLASSIFICATION FOR PP DATA
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(b) Two-component Gaussian mixture feature density
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Figure 3.4: Learned distributions and classification performance on the Texture
dataset. Left: feature distributions, Middle: cardinality distributions of Poisson
models, Right: classification performance by NB and Poisson models (the error-
bars indicate standard deviations of accuracies). Note that the feature densities
of the Poisson model are indeed identical to those of the NB model.
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onably well (with an average accuracy of 75%). The performance of the Pois-

son model is even better (86%), since in addition to feature information, the

Poisson model can also exploit the cardinality information of the data, hence

distinguishing the data even better.

For the Poisson models with Gaussian mixture feature density, the expectation-

maximization (EM) algorithm is used to learn the parameters of the feature

density (as discussed in Section 3.3.5). The learned models as well as the classi-

fication performance are depicted in Figure 3.4b (for 2-component Gaussian

mixture) and Figure 3.4b (for 3-component Gaussian mixture). The feature

densities of the Poisson models are also identical to those of the NB models.

Observe that with these models, the performance of the NB and Poisson model

are both improved (Figure 3.5) since the Gaussian mixture can better represent

the features of PPs. The Poisson models again outperform the NB models for

the same reason: the Poisson models can exploit both cardinality and feature

information of the data, hence better distinguishing the data.
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Figure 3.5: Classification performance on Texture dataset by NB and Poisson
models with different number of Gaussian components in the feature density
(the error-bars indicate standard deviations of accuracies).

It can be observed from Figure 3.5 that the performance of both NB and

Poisson models increases with the number of Gaussian components, since the

more components in the mixture, the better the data representation. To determ-

ine the optimal number of components, for low dimensional data, such as the

compressed 2-D SIFT features in this experiment, we can simply visualize the

data and manually decide the number of components. For high dimensional
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data, such as the 128-D SIFT features, techniques to determine the number of

clusters in the data can be used, e.g., the cross-validation (Hill and Lewicki,

2006) or silhouette method (Rousseeuw, 1987) (see Section 5.4.1).



CHAPTER 4

MODEL-BASED
NOVELTY DETECTION

FOR POINT PATTERN DATA

Chapter’s key points:

∎ Overview of PP novelty detection

∎ Issues of IID-cluster density in ranking PP data

∎ Novel ranking function for PP data

∎ Numerical experiments

In the previous chapter, we considered PP classification: a supervised learn-

ing problem with fully observed training data, i.e., all class labels are provided

for learning. In this chapter, we work on novelty detection: a semi-supervised

learning problem where only a part of the training data is labeled, more spe-

cifically, novelty detectors are trained with only normal data. After discover-

ing undesirable properties of IID-cluster model density in ranking PP data, we

improve it by proposing a novel ranking function for PP data based on this

density. It is shown in numerical experiments that the proposed ranking func-

tion outperforms the naive Bayes likelihood as well as the IID-cluster model

density in PP novelty detection.

69
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4.1 Overview of PP novelty detection

As previously discussed, novelty detection is the semi-supervised task of identi-

fying observations that are significantly different from the rest of the data (Markou

and Singh, 2003; Pimentel et al., 2014). In novelty detection, there is no novel

training data, i.e., only normal data is available for training. Hence it is not a

special case of classification nor clustering (Chandola et al., 2009; Hodge and

Austin, 2004), and is a fundamental problem in its own right.

Similar to classification, novelty detection involves a training phase and a

detection phase. The training phase is the same as that for classification except

that we are provided with only normal data, hence only the normal class model

is learned. In the detection phase, test observations are ranked according to how

well they fit the normal data model and those not well-fitted are deemed novel

or anomalous (Chandola et al., 2009; Hodge and Austin, 2004). The preferred

measure of goodness of fit is the likelihoods of the data.

Novelty detection is arguably the least attended PP learning task, since to

the best of our knowledge, currently, there are no PP novelty detection methods

in the literature. We argue that there are several reasons for this. First, PP nov-

elty detection cannot simply extend from its counterpart for point data (see the

example in Section 1.4). In addition, even though the tools for handling PP

data exist (e.g., point process theory, set distances), they have not been well in-

troduced to the machine learning community. Furthermore, novelty detection,

even with point data, has received less attention compared to other learning

tasks (such as classification and clustering), since the task of detecting outliers

can also be done simply using the methods classification or clustering methods

(Hodge and Austin, 2004; Chandola et al., 2009). However, undertaking nov-

elty detection in a semi-supervised fashion, is still worth studying since there

are cases where novel data cannot be observed sufficiently or not observed at

all (e.g., malfunction data of a newly developed device, or suspicious usage

of a newly deployed network service). In these cases, classification or cluster-
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ing methods may be neither relevant nor well-performing for novelty detection

task.

4.2 Issues of IID-cluster density in ranking PP data

In Section 1.4, we showed that the NB likelihood of the constituent points can-

not be a good ranking function for PP data. In particular, it suffers from incom-

patibility in the unit of measurement and does not appropriately account for

the number of elements in PPs.

In this section, we point out that the IID-cluster point process density (used

for PP classification in Chapter 3) is also not a proper likelihood for PP data in

the novelty detection task, even though this density function is unit-less and

incorporates both feature and cardinality information. In particular, we illus-

trate through concrete examples that the probability density of a PP does not

necessarily indicate how likely the PP is. For this example, we reserve the term

likelihood for the measure of how likely or probable an observation is.

Consider two IID-cluster models with a common cardinality distribution

but different uniform feature densities as shown in Figure 4.1. Since the feature

density is uniform, PPs with the same cardinality are equally likely, and con-

sequently their likelihoods should be proportional to the cardinality distribution.

If the probability density were an indication of how likely a PP is, then the

plot of probability density against cardinality should resemble the cardinality

distribution. However, this is not the case. Figure 4.2 indicates that for the IID-

cluster with ‘short’ feature density, the probability density tends to decrease

with increasing cardinality (Figure 4.2a). This phenomenon arises because the

feature density given cardinality n is 0.05n, which vanishes faster than the n!

growth (for n ≤ 20). The converse is true for the IID-cluster with ‘tall’ feature

density (Figure 4.2b). Thus, PPs with highest/least probability density are not

necessarily the most/least probable.

The same phenomenon also arises with Poisson models. Consider two Pois-
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Figure 4.1: Feature and cardinality distributions of two IID-cluster point pro-
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Figure 4.2: Probability density against cardinality: (a) ‘short’ feature density;
(b) ‘tall’ feature density.
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Figure 4.4: Average probability density against cardinality: (a) ‘short’ Gaus-
sian feature density; (b) ‘tall’ Gaussian feature density. For each cardinality we
sample 100 PPs and calculate the average density of these PPs.
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son models with a common cardinality distribution but different Gaussian fea-

ture densities as shown in Figure 4.3. In this case, because the feature distri-

butions (Gaussian) are not uniform, we calculate the average of the density

for each cardinality (depicted in Figure 4.4). As previously discussed, we ex-

pect that the plot of probability density against cardinality should resemble the

cardinality distribution. However, this again is not the case. For the Poisson

model with ‘short’ Gaussian feature density, the probability density tends to

decrease with increasing cardinality (Figure 4.4a) and the converse for the case

of Poisson model with ‘tall’ Gaussian feature density (Figure 4.4b).

Reason of the aforementioned phenomenon

The aforementioned phenomenon arises from the non-uniformity of the reference

measure. A measure µ is said to be uniform if for any measurable region A with

µ(A) < ∞, all points of A (except on set of measure zero) are equi-probable under

the probability distribution µ/µ(A).

One example is the Lebesgue measure vol on Rn: given any bounded meas-

urable region A, the probability distribution vol(⋅)/vol(A) is uniform on A, i.e.,

all realizations in A are equally likely. The probability density (as a Radon-

Nikodym derivative) at a point X is the ratio of probability measure to refer-

ence measure at an infinitesimal neighbourhood of X , i.e.,

f(X) = P (dX)
µ(dX) . (4.1)

Hence, unless the reference measure is uniform, f(X) is not a measure of

how likely X is. This is also true even for probability densities on the real line.

For example, the probability density of a zero-mean Gaussian distribution with

standard variance 1 relative to the Lebesgue measure is the usual bell-shaped

curve (Figure 4.5a), while its density relative to a zero-mean Gaussian distribu-

tion with variance 0.8 is a U-shaped curve where the most probable point has the

least probability density value (Figure 4.5b).
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Figure 4.5: Density of a zero-mean unit-variance Gaussian w.r.t.: (a) Lebesgue
measure; (b) zero-mean Gaussian with variance 0.8.

The reference measure µ for point processes defined by Eq. (2.11) is not

uniform because for a bounded region T ⊆ F(X), the probability distribution

µ/µ(T ) is not necessarily uniform (unless all points of T have the same cardin-

ality). Hence, probability densities of input PPs relative to µ are not indicative

of how well they fit the normal data model.

Why is classification not affected by the aforementioned phenomenon?

In novelty detection we are interested in the likelihood of the input PP whereas

in Bayesian classification (Chapter 3) we are interested in its likelihood ratio.

The posterior class probability

p (y ∣X) = p(y)f(X ∣ y)
∫ p(y)f(X ∣ y)dy (4.2)

= p(y)P (dX ∣ y)/µ(dX)
∫ p(y)(P (dX ∣ y)/µ(dX))dy (4.3)

= p(y)P (dX ∣ y)
∫ p(y)P (dX ∣ y)dy (4.4)

is the ratio, at an infinitesimal neighbourhood dX , between the joint probab-

ility P (dX, y), and the probabilityP (dX), which is invariant to the choice of

reference measure. In essence, the normalizing constant cancels out the influ-

ence of the reference measure, and hence, problems with the non-uniformity of
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the reference measure do not arise.

4.3 Ranking function for PP data

To the best of our knowledge, it is not known whether there exists a uniform

reference measure on F(X) that dominates the point process probability distri-

butions of interest (so that they admit densities). In this subsection, we propose

a suitable PP ranking function for novelty detection by modifying the IID-cluster

model density.

The IID-cluster probability density Eq. (2.13) is the product of the cardin-

ality distribution pc(∣X ∣), the cardinality-conditioned feature density f∣X ∣(X),

and a trans-dimensional weight ∣X ∣!U ∣X ∣. Note that the cardinality distribution

and the conditional joint feature density completely describes the point pro-

cess. The conditional density f∣X ∣(X) enables the ranking of PPs of the same

cardinality, but cannot be used to rank across different cardinalities because it

takes on different units of measurement. The weights ∣X ∣!U ∣X ∣ reconcile for the

differences in dimensionality and the unit of measurement between f∣X ∣(X) of

different cardinalities. However, the example in Section 4.2 demonstrates that

weighting by ∣X ∣!U ∣X ∣ leads to probability densities that are inconsistent with

likelihoods.

In the generalization of the MAP estimator to PPs, Mahler (2007b) circum-

vented such inconsistency by replacing ∣X ∣!U ∣X ∣ with c∣X ∣, where c is an arbitrary

constant. More concisely, instead of maximizing the probability density f(X),

Mahler proposed to maximize f(X)c∣X ∣/∣X ∣!. Since c is a free parameter, the

generalized MAP estimate depends on the choice of c.

Inspired by Mahler’s generalized MAP estimator, we replace the weight

∣X ∣!U ∣X ∣ in the probability density by a general function of the cardinalityC(∣X ∣),

resulting in a ranking function of the form

r(X) = pc(∣X ∣)C(∣X ∣)f∣X ∣(X). (4.5)
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The example in Section 4.2 demonstrates that, as a function of cardinality, the

ranking should be proportional to the cardinality distribution, otherwise unlikely

samples can assume high ranking values. In general, the ranking function is

not solely dependent on the cardinality, but also varies with the features. Non-

etheless, the example suggests that the ranking function, on average, should be

proportional to the cardinality distribution. Hence, we impose the following

consistency requirement: for a given cardinality n, the expected ranking value

is proportional to the probability of cardinality n, i.e.,

EX ∣∣X ∣=n [r(X)] ∝ pc(n). (4.6)

Propositional 3. For a point process with probability density Eq. (2.13), a ranking

function consistent with the cardinality distribution, i.e., satisfies Eq. (4.6), is given

by

r(X) ∝ pc(∣X ∣)
∣∣f∣X ∣∣∣22

f∣X ∣(X) (4.7)

where ∣∣ ⋅ ∣∣2 denotes the L2-norm.

Proof. Noting from Eq. (2.13) that f(X ∣ ∣X ∣ = n) = n!Unfn(X)δn[∣X ∣], and

using the integral Eq. (2.12) we have

EX ∣∣X ∣=n [fn(X)] = ∫ fn(X) f(X ∣ ∣X ∣ = n)µ(dX) (4.8)

= n!Un

n!Un ∫ (fn({x1, ..., xn}))2d(x1, ..., xn) (4.9)

= ∣∣fn∣∣22. (4.10)

Hence

EX ∣∣X ∣=n [r(X)] ∝ EX ∣∣X ∣=n [
pc(∣X ∣)
∣∣f∣X ∣∣∣22

f∣X ∣(X)] (4.11)

= pc(n)∣∣fn∣∣22
EX ∣∣X ∣=n [fn(X)] (4.12)

= pc(n). (4.13)
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QED

Note that ∣∣f∣X ∣∣∣22 has units of U−∣X ∣ , which is the same as the unit of f(X),

rendering the ranking function r unit-less, thereby avoiding the unit of meas-

urement inconsistency described in Section 1.4.

-4 -2 0 2 4

x

0

0.5

1

1.5

2

p
f
(x)

p
f
(x)/||p

f
||

2
2

(a)

-4 -2 0 2 4

x

0

0.5

1

1.5

2

p
f
(x)

p
f
(x)/||p

f
||

2
2

(b)

Figure 4.6: Probability density divided by energy: (a) ‘short’ Gaussian (mean =
0, variance = 1); (b) ‘tall’ Gaussian (mean = 0, variance = 0.05).

For an IID-cluster with feature density pf , the ranking function reduces to

r(X) ∝ pc(∣X ∣) ( pf
∣∣pf ∣∣22

)
X

. (4.14)

The feature density pf , in the example of Section 4.2, is uniform and so pf/∣∣pf ∣∣22 =
1 on its support. Hence, the ranking is equal to the cardinality distribution, as

expected. Figure 4.6 illustrates the effect of dividing a non-uniform feature

density (Gaussian) pf , by its energy ∣∣pf ∣∣22: ‘tall’ densities become shorter and

‘short’ densities become taller1, providing the right adjustment for multiplying

together many large/small numbers.

Furthermore, Figure 4.7 and Figure 4.8 verify that the plot of the proposed

ranking function against cardinality indeed resemble the cardinality distribu-

tions of the IID-cluster models (Figure 4.1c and Figure 4.3c).

1 L2-norm of Gaussian density function ∣∣N (x ∣ µ,Σ)∣∣2 =
√

N(µ∣µ,2Σ) (Ho and Lee, 1964).
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Figure 4.7: Ranking function against cardinality: (a) ‘short’ feature density; (b)
‘tall’ feature density.
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Figure 4.8: Average ranking function against cardinality: (a) ‘short’ Gaussian
feature density; (b) ‘tall’ Gaussian feature density.
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4.4 Numerical experiments

This section presents the novelty detection experiments on both simulated and

real data using the Poisson model. The experiments illustrate the versatility of

the framework and the effectiveness of the proposed ranking function relative

to the NB likelihood and the standard Poisson model probability density. Like

the classification experiments, ML method (Section 3.3.5) is used to learn the

parameters of the NB and Poisson models in the training phase. For a fair com-

parison, in all experiments, the threshold is set the same as the 2nd 10-quantile

of the ranking values of the training (normal) data.

4.4.1 Novelty detection with simulated data

In this experiment, we examine four scenarios of novel PP data using simulated

datasets. Each dataset consists of two groups of data: normal and novel. Data

from a group are generated from a Poisson model with a 2-D Gaussian intensity

parameterized by (ρ,µ,Σ) as shown in Figure 4.9.

Normal data have cardinalities between 20 and 60 and are the same in all

scenarios. For novel data, different types are considered: scenario (i) is an ex-

ample of feature novelty, where novel observations are similar in cardinality

to normal training data, but different in feature (Figure 4.9a); scenario (ii) is an

example of high-cardinality novelty, where novel observations are similar in

feature to normal training data, but have cardinalities ≥ 80 (Figure 4.9b); scen-

ario (iii) is an example of low-cardinality novelty, where novel observations

are similar in feature to normal training data, but have cardinalities ≤ 10 (Fig-

ure 4.9c); scenario (iv) is a mix of above novel types (Figure 4.9d).

For training, we use the same 300 normal observations to learn the NB and

Poisson model via ML estimation (Section 3.3.5). For testing, we use a test set

containing 100 normal observations and 100 novelties of each type. In each

scenario, the test is run 10 times with 10 different randomly sampled test sets

and the averaged results are shown in Figure 4.9.
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(a) Scenario (i): feature novelty
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(b) Scenario (ii): high-cardinality novelty
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(c) Scenario (iii): low-cardinality novelty
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(d) Scenario (iv): a mix of novel types

Figure 4.9: Simulated data and novelty detection performance in four diverse
scenarios by NB likelihood, Poisson model probability density, and proposed
ranking function. The error-bars (on the left subplots) represent standard devi-
ations of the F1 scores.
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(a) Scenario (i): feature novelty
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(b) Scenario (ii): high-cardinality novelty
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(c) Scenario (iii): low-cardinality novelty
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(d) Scenario (iv): a mix of novel types

Figure 4.10: Boxplots of log of NB likelihood, log of Poisson model probability
density, and log of proposed ranking function for test data in one fold of the
simulated dataset. Thick lines across the boxes indicate the chosen thresholds.
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Observe that in scenario (i) where novelties are dissimilar to normal data

in feature (Figure 4.9a), all NB likelihood, Poisson model probability density,

and proposed ranking function perform well. In scenario (ii) where novelties

have higher cardinalities compared to normal data (Figure 4.9b), all the likeli-

hoods also perform well. However, note that the good performance of NB like-

lihood and Poisson model probability density in this case is by chance, since

this scenario is in fact the ‘short’ feature density case described in Section 4.2,

where the probability density tends to decrease with increasing cardinality (see

Figure 4.2a), hence the novelties (with higher cardinalities than normal data)

have (by chance) smaller densities than the normal data (see Figure 4.10b)).

Scenario (iii) (see Figure 4.9c), is also the ‘short’ feature density case, however, in

this case the novelties have less cardinalities compared to normal data, hence

the Poisson model (as well as the NB model) gives larger densities to novel-

ties than normal data (see Figure 4.10c), and leads to very poor performance

(Figure 4.9c). On the other hand, the proposed ranking function performs well

since it ranks data properly (see boxplots in Figure 4.10c). Scenario (iv) is a mix

of aforementioned scenarios (see Figure 4.9d), hence the performance is the

sum of the discussed scenarios.

4.4.2 Novelty detection with Texture images dataset

Using the Texture dataset from Section 3.4.2, we consider normal data taken

from class “T14 brick1” and novel data taken from class “T20 upholstery”. We

use 4-fold cross validation: In each fold, the training data consist of 75% of

images from the normal class (30 images), and the testing set consists of the

remaining images from the normal class (10 images) and 25% of images from

the novel class (10 images).

In this experiment, we examine Poisson models with different feature dens-

ities, i.e., the Poisson model with single Gaussian feature density, and the Pois-

son models with Gaussian mixture feature density.

For the first model, the parameters of the Poisson model with single Gaus-
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Class: T14_brick1, image: 7 Class: T14_brick1, image: 9

Class: T20_upholstery, image: 7 Class: T20_upholstery, image: 6

Figure 4.11: Example images from classes “T14_brick1”, and “T20_upholstery”
of the Texture dataset. Circles mark the detected SIFT keypoints. (This figure is
identical to a part of Figure 3.2, but reproduced here for reading convenience.)
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Figure 4.12: Extracted data from images of the Texture dataset. Left: 2-D fea-
tures (after applying PCA to SIFT features). Right: Histogram of cardinalities
of the extracted data. (This figure is identical to a part of Figure 3.3, but repro-
duced here for reading convenience.)
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(a) Single Gaussian feature density
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(b) Two-component Gaussian mixture feature density
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(c) Three-component Gaussian mixture feature density

Figure 4.13: Left: Novelty detection performance on Texture data by 3 ranking
functions: NB likelihood, Poisson model density, and the proposed ranking
function (error-bars indicate standard deviations of F1-scores). Right: Boxplots
of log of NB likelihood, log of Poisson model probability density, and log of
proposed ranking function for test data in one fold of the Texture dataset (thick
lines across the boxes indicate the chosen thresholds).
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sian feature density are learned using ML estimation (see Section 3.3.5). Note

that the learned models (for both NB and Poisson models) are indeed identical

to that of class “T14 brick1” in Figure 3.4a. The average F1 scores of novelty

detection are reported in Figure 4.13a. It can be observed from the boxplots in

Figure 4.13a that the NB likelihood and the probability density rank novel PPs

even higher than normal data, hence they cannot detect any novelty (average

F1 scores of 0). On the other hand, the proposed ranking function provides a

suitable ranking for PPs (see the boxplot in Figure 4.13a), hence achieving good

performance (average F1 scores of around 0.83). Note that this case is similar to

scenario (iii): low-cardinality novelty in the simulated experiment in Section 4.4.1.
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Figure 4.14: Novelty detection performance on Texture dataset by NB and Pois-
son models with different number of Gaussian components in the feature dens-
ity (the error-bars indicate standard deviations of F1 scores).

For the Poisson models with Gaussian mixture feature density, the EM al-

gorithm is used to learn the parameters of the feature density (as discussed in

Section 3.3.5). The learned models (for both NB and Poisson models) are sim-

ilar to those of class “T14 brick1” in Figure 3.4b and Figure 3.4c. The average

F1 scores of novelty detection are reported in Figure 4.13b and Figure 4.13c.

Compared to the first model, these models fit the data better, however, the NB

likelihood and the probability density still fail in ranking the given PPs (see

boxplots in Figure 4.13b and Figure 4.13c), hence still delivering very poor per-

formance (average F1 scores of 0 – 0.1). On the other hand, the proposed rank-

ing function provides a consistent ranking for PPs (see boxplots in Figure 4.13b

and Figure 4.13c), hence achieving good performance (average F1 scores of 0.86
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– 0.90) and even better than that of the first model (average F1 scores of 0.83)

since these models better suit the data.





CHAPTER 5

MODEL-BASED CLUSTERING
FOR POINT PATTERN DATA

Chapter’s key points:

∎ Existing methods for PP clustering

∎ Mixture of IID-cluster point processes

∎ EM clustering with IID-cluster mixture

∎ Clustering with an unknown number of clusters

∎ Numerical experiments

In the previous chapters, the problems of learning PP data with fully ob-

served labels (classification) and partly missing labels (novelty detection)

were studied. In this chapter, we present PP clustering — a PP learning prob-

lem with complete label missing data. The proposed method uses the finite

mixture of IID-cluster point processes as the generative model for PP clusters.

Then, the expectation-maximization (EM) technique is deployed to learn the

mixture model and cluster the PP data.

5.1 Existing methods for PP clustering

As previously discussed, in general, the aim of clustering is to partition the

dataset into groups so that members in a group are similar to each other (Murphy,

2012). A clustering or partitioning of a given set of observations {X1, ...,XN}
is often represented by the (latent) cluster assignment y1∶N , where yn denotes

the cluster label for Xn. Clustering is an unsupervised learning problem since

89
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the class (or cluster) labels are not given (Jain et al., 1999; Russell and Norvig,

2003).

In PP learning, there exist two clustering algorithms: the Bag-level Mul-

tiple Instance Clustering (BAMIC) algorithm (Zhang and Zhou, 2009), and the

Maximum Margin Multiple Instance Clustering (M3IC) algorithm (Zhang et al.,

2009). BAMIC adapts the k-medoids algorithm with the Hausdorff distance

as a measure of dissimilarity between PPs (Zhang and Zhou, 2009).1 On the

other hand, in M3IC, the clustering is posed as a non-convex optimization prob-

lem which is then relaxed and solved via a combination of the Constrained

Concave-Convex Procedure and Cutting Plane methods (Zhang et al., 2009).

While these non-model-based algorithms are simple to use, they lack the ability

to exploit statistical trends in the data, not to mention computational problems

with high dimensional inputs and large datasets (Murphy, 2012).

5.2 Model-based PP clustering

In this section, we propose a model-based approach to the clustering problem

for PP data. Mixture modeling is the most common probabilistic approach to

clustering, where the aim is to estimate the cluster assignment y1∶N via likeli-

hood or posterior inference (Murphy, 2012). The point process formalism en-

ables extension of mixture models to PP data, in particular, the finite mixture

of point processes.

A finite mixture model assumes K underlying clusters labeled 1 to K, with

prior probabilities π1, ..., πK , and is characterized by the parameters θ1, ..., θK in

some space Θ. Let f(Xn ∣ θk) ≜ f(Xn ∣ yn = k, θ1∶K) denote the likelihood of Xn

given that cluster k generates an observation. Then

f(X1∶N , y1∶n ∣π1∶K , θ1∶K) =
N

∏
n=1

πyn f(Xn ∣θzn), (5.1)

Marginalizing the joint distribution Eq. (5.1) over the cluster assignment y1∶N

1 The distance-based technique for PP clustering will be discussed more in Chapter 6.
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gives the data likelihood function

f(X1∶N ∣π1∶K , θ1∶K) =
N

∏
n=1

K

∑
k=1

πk f(Xn ∣θk). (5.2)

Thus, in a finite mixture model, the likelihood of an observation is a mixture

of K probability densities. The posterior probability of cluster label yn = k (i.e., the

probability that, given π1∶K , θ1∶K and Xn, cluster k generates Xn) is

p (yn = k ∣Xn, π1∶K , θ1∶K) = πk f(Xn ∣θk)
∑K`=1 π` f(Xn ∣θ`)

. (5.3)

Under a mixture model formulation, clustering can be treated as an in-

complete data problem since only the X1∶N of the complete data {(Xn, yn)}Nn=1

is observed and the cluster assignment y1∶N is unknown or missing. We seek

y1∶N and the mixture model parameter ψ ≜ (π1∶K , θ1∶K) that best explain the ob-

served dataX1∶N according to a given criterion such as the maximum likelihood

(ML) method. ML is intractable in general and often requires the expectation-

maximization (EM) technique (Dempster et al., 1977; Little and Rubin, 2002) to

find approximate solutions.

5.3 EM clustering via IID-cluster mixture model

The EM technique maximizes the data likelihood Eq. (5.2) by generating a se-

quence of iterates {ψ(i)}∞i=0 using the following two main steps (Dempster et al.,

1977; Little and Rubin, 2002):

∎ E-step: Compute the expectation Q(ψ ∣ ψ(i−1)) defined as

Q(ψ ∣ψ(i−1)) ≜ Ey1∶N∣X1∶N ,ψ(i−1) [logf(X1∶N, y1∶N ∣ψ)] . (5.4)

∎ M-step: Find ψ(i) = argmax
ψ

Q(ψ ∣ψ(i−1)) .

It has been proven that the data likelihood `(ψ(i) ∣ X1∶N) ≜ f(X1∶N ∣ ψ(i)) com-

puted by Eq. (5.2) increases after each EM iteration and consequently converges
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to a local maximum (Dempster et al., 1977; Little and Rubin, 2002). In practice,

the iteration is terminated at a user defined number Niter or when increment in

`(ψ(i) ∣ X1∶N) falls below a given threshold. The optimal cluster label estimate

is the mode of the cluster label posterior Eq. (5.3).

In the E-step, following the arguments of the standard EM from (Bilmes,

1998) with the assumption that observations X1∶N are independent and identic-

ally distributed (i.i.d.), the expectation Q(ψ ∣ψ(i−1)) has the form:

Q(ψ ∣ψ(i−1)) =
K

∑
k=1

N

∑
n=1

log(πkf(Xn∣θk))p(yn=k ∣Xn, ψ
(i−1)). (5.5)

where p(yn=k ∣Xn, ψ(i−1)) is computed by Eq. (5.3).

Then, the M-step can be accomplished by separately maximizing

Q(π1∶K , θ1∶K ∣ψ(i−1)) over θ1, ..., θK and π1∶K . Using the Lagrange multiplier with

constraint ∑Kk=1 πk=1, yields the optimal component weights:

π
(i)
k = 1

N

N

∑
n=1

p(yn = k ∣Xn, ψ
(i-1)). (5.6)

The optimal component parameters θk depend on the specific form of f(Xn∣θk),

and is intractable in general.

Fortunately, close form solutions can be derived for special cases of the IID-

cluster point process mixture model, i.e., a finite mixture point process model

with

f(X ∣θk) = pξk(∣X ∣) ∣X ∣!U ∣X ∣pXϕk , (5.7)

where θk = (ξk, ϕk) with ξk and ϕk denoting the parameters of the cardinality

distribution and feature distribution, respectively. By substituting Eq. (5.7) into
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Eq. (5.5), we obtain

Q(ψ ∣ψ(i−1)) = [
K

∑
k=1

N

∑
n=1

log (πk) p(yn=k ∣Xn, ψ
(i−1))]

+ [
K

∑
k=1

N

∑
n=1

log (∣Xn∣!U ∣Xn∣) p(yn=k ∣Xn, ψ
(i−1))]

+ [
K

∑
k=1

N

∑
n=1

log (pξk(∣Xn∣)) p(yn=k ∣Xn, ψ
(i−1))]

+ [
K

∑
k=1

N

∑
n=1

log (pXnϕk ) p(yn=k ∣Xn, ψ
(i−1))] (5.8)

i.e., Q(ψ ∣ ψ(i−1)) is fully decomposed, hence it can be maximized separately over

the parameters of cardinality and feature distributions, i.e., ξ1∶K and ϕ1∶K re-

spectively (similar to Proposition 1 in Section 3.3.5).

In addition, it can be observed from Eq. (5.8) that both log (pξk(∣Xn∣)) and

log (pXnϕk ) are accompanied by weight p(yn = k ∣Xn, ψ(i−1)), therefore, the values

of the cardinality and feature distributions’ parameters ξk and ϕk, which max-

imize Q(ψ ∣ψ(i−1)), are equivalent to their MLEs with data weighted by p(yn = k ∣
Xn, ψ(i−1)).

Using the aforementioned reasoning, we can derive the iteration update in

M -step for parameters of several frequently used point processes, by incorpor-

ating the weight p(yn=k ∣Xn, ψ(i−1)) into their MLEs (shown in Section 3.3.5):

∎ For a categorical cardinality distribution with maximum cardinality M ,

where ξk = (ξk,0, ..., ξk,M) belongs to the unit M -simplex, the iteration up-

date is

ξ
(i)
k,m = ∑Nn=1 δm [∣Xn∣]p(yn = k ∣Xn, ψ(i-1))

∑M`=0∑Nn=1 δ`[∣Xn∣]p(yn = k ∣Xn, ψ(i-1))
. (5.9)

where 0 ≤ m ≤ M , δi[j] is the Kronecker delta. Note that a Laplace prior

can be used to address over-fitting (see Section 3.3.5).

∎ For a Poisson cardinality distribution, where ξk > 0 is the mean cardinal-
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ity, the iteration update is

ξ
(i)
k = ∑

N
n=1 ∣Xn∣p(yn = k ∣Xn, ψ(i-1))
∑Nn=1 p(yn = k ∣Xn, ψ(i-1))

. (5.10)

∎ For a categorical feature distribution with maximum feature M , where

ϕk = (ϕk,0, ..., ϕk,M) belongs to the unit M -simplex, the iteration update is

ϕ
(i)
k,m = ∑Nn=1∑x∈Xn δm [x]p(yn = k ∣Xn, ψ(i-1))

∑M`=0∑Nn=1∑x∈Xn δ`[x]p(yn = k ∣Xn, ψ(i-1))
. (5.11)

where 0 ≤ m ≤ M , δi[j] is the Kronecker delta. Note that a Laplace prior

can be used to address over-fitting (see Section 3.3.5).

∎ For a Gaussian feature distribution, where ϕk = (µk,Σk) is the mean and

covariance pair, the iteration update is

µ
(i)
k =∑

N
n=1 p(yn = k ∣Xn, ψ(i-1)) ∑x∈Xn x
∑Nn=1 ∣Xn∣p(yn = k ∣Xn, ψ(i-1))

, (5.12)

Σ
(i)
k =∑

N
n=1 p(yn = k ∣Xn, ψ

(i-1))∑x∈Xn A
(i)
k (x)

∑Nn=1 ∣Xn∣p(yn = k ∣Xn, ψ
(i-1))

, (5.13)

where A(i)
k (x) = (x − µ(i)

k )(x − µ(i)
k )T.

∎ For a Gaussian mixture feature distribution, where ϕk is the Gaussian

mixture parameter, ϕ(i)
k can be determined by applying the standard EM

algorithm on the weighted data (see e.g., (Gebru et al., 2016)) with the

weights for x ∈Xn given by p(yn = k ∣Xn, ψ(i-1)) (computed by Eq. (5.3)).

To verify the formulas of the iteration updates in Eq. (5.9)-Eq. (5.13), in the

following part, we take the derivatives of Q(ψ ∣ψ(i−1)) with respect to the cor-

responding parameters and equate to zero.

Categorical cardinality distribution

A categorical cardinality distribution with maximum cardinality M parameter-

ized by ξk = (ξk,0, ..., ξk,M) belongs to the unit M -simplex, has probability of the
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form:

pξk(n) =
M

∏
m=0

ξ
δm[n]
k,m , (5.14)

where δi[j] is the Kronecker delta.

Finding ξk that maximizes Q(ψ ∣ψ(i−1)) (Eq. (5.8)) with the constraint

∑Mm=0 ξk,m =1 can be done using the Lagrange multiplier method. We first form

the Lagrange function with the third term of Q(ψ ∣ ψ(i−1)) in Eq. (5.8) and the

constraint:

L(ξk, λ) =
K

∑
k=1

N

∑
n=1

log (pξk(∣Xn∣)) p(yn=k ∣Xn, ψ
(i−1)) + λ(

M

∑
m=0

ξk,m − 1) , (5.15)

where λ is the Lagrange multiplier.

By equating to zero the partial derivatives of Eq. (5.15) with respect to ξk,0, ..., ξk,M

and λ, we obtain the update of ξk,m for ith iteration (the same as Eq. (5.9)):

ξ
(i)
k,m = ∑Nn=1 δm [∣Xn∣]p(yn = k ∣Xn, ψ(i-1))

∑M`=0∑Nn=1 δ`[∣Xn∣]p(yn = k ∣Xn, ψ(i-1))
. (5.16)

where 0 ≤m ≤M .

Poisson cardinality distribution

A Poisson cardinality distribution with the mean cardinality ξk > 0 has density

of the form:

pξk(n) =
1

n!
(ξk)n e−ξk . (5.17)

By equating to zero the derivative of Q(ψ ∣ψ(i−1)) (Eq. (5.8)) with respect to

ξk, we obtain the update of ξk for ith iteration (the same as Eq. (5.10)):

ξ
(i)
k = ∑

N
n=1 ∣Xn∣p(yn = k ∣Xn, ψ(i-1))
∑Nn=1 p(yn = k ∣Xn, ψ(i-1))

. (5.18)
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Categorical feature distribution

A categorical feature distribution with maximum feature M parameterized by

ϕk = (ϕk,0, ..., ϕk,M) belongs to the unit M -simplex, has probability of the form:

pϕk(x) =
M

∏
m=0

ϕ
δm[x]
k,m , (5.19)

where δi[j] is the Kronecker delta.

Finding ϕk that maximizes Q(ψ ∣ψ(i−1)) (Eq. (5.8)) with the constraint

∑Mm=0ϕk,m=1 can be done using the Lagrange multiplier method. We first form

the Lagrange function with the last term of Q(ψ ∣ ψ(i−1)) in Eq. (5.8) and the

constraint:

L(ϕk, λ) =
K

∑
k=1

N

∑
n=1

log (pXnϕk ) p(yn=k ∣Xn, ψ
(i−1)) + λ(

M

∑
m=0

ϕk,m − 1) , (5.20)

where λ is the Lagrange multiplier.

By equating to zero the partial derivatives of Eq. (5.20) with respect toϕk,0, ..., ϕk,M

and λ, we obtain the update of ϕk,m for ith iteration (the same as Eq. (5.11)):

ϕ
(i)
k,m = ∑Nn=1∑x∈Xn δm [x]p(yn = k ∣Xn, ψ(i-1))

∑M`=0∑Nn=1∑x∈Xn δ`[x]p(yn = k ∣Xn, ψ(i-1))
. (5.21)

where 0 ≤m ≤M .

Gaussian feature distribution

A D-dimensional Gaussian feature distribution with the mean and covariance

ϕk = (µk,Σk), where Σ is positive-definite, has density of the form:

pϕk(x) = (2π)−
D
2 ∣Σk∣−

1
2 e−

1
2
(x−µk)TΣ−1

k (x−µk), (5.22)

By equating to zero the derivatives2 of Q(ψ ∣ψ(i−1)) (Eq. (5.8)) with respect

2 May refer to (Petersen et al., 2012) for manipulation on matrices.



CLUSTERING WITH AN UNKNOWN NUMBER OF CLUSTERS 97

to µk and Σk, we obtain the update of µk and Σk for ith iteration (the same as

Eq. (5.12) and Eq. (5.13)):

µ
(i)
k =∑

N
n=1 p(yn = k ∣Xn, ψ(i-1)) ∑x∈Xn x
∑Nn=1 ∣Xn∣p(yn = k ∣Xn, ψ(i-1))

, (5.23)

Σ
(i)
k =∑

N
n=1 p(yn = k ∣Xn, ψ

(i-1))∑x∈Xn A
(i)
k (x)

∑Nn=1 ∣Xn∣p(yn = k ∣Xn, ψ
(i-1))

, (5.24)

where A(i)
k (x) = (x − µ(i)

k )(x − µ(i)
k )T.

To conclude, the complete EM clustering for PP data using the IID-cluster

point process mixture model is given in Algorithm 1.

Algorithm 1: Clustering for PP data using IID-cluster point process mixture
model.
Input: PP dataset {X1, ...,XN},

number of clusters K,
number of iterations Niter .

Output: cluster assignment y1, ..., yN .

initialize ψ(0) = {(π(0)
k , ξ

(0)
k , ϕ

(0)
k )

K

k=1
};

for i = 1 to Niter do
for k = 1 to K do

for n = 1 to N do
compute posterior p(yn = k ∣Xn, ψ(i-1)) using Eq. (5.3);

end
estimate component weight π(i)

k using Eq. (5.6);
estimate cardinality distribution parameters ξ(i)k (Section 5.3);
estimate feature distribution parameters ϕ(i)

k (Section 5.3);
end

end
for n = 1 to N do

return cluster assignment yn = argmax
k∈{1,...,K}

p(yn = k ∣Xn, ψ(Niter));

end

5.4 Clustering with an unknown number of clusters

The proposed method in the previous section is a solution for the PP clustering

problem with a known number of clusters. In the case of an unknown number
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of clusters, the two following approaches can be applied.3 One approach makes

use of general techniques for determining the number of clusters in the dataset,

such as cross valuation and silhouette methods. The other approach poses the

problem of determining the number of clusters as the model selection problem

in the Bayesian framework, which can be solved using, e.g., MAP estimation

methods.

5.4.1 Determining the number of clusters

Determining the number of clusters K in a dataset is an important problem, not

only because most clustering algorithms require K as input (Kaufman and

Rousseeuw, 1990), but also because the quality of partitioning can be signi-

ficantly affected by this input parameter (Han et al., 2012). Determining the

correct K, however, is one of the most challenging aspects of clustering (Jain,

2010) since the right number of clusters in a dataset is usually ambiguous (Han

et al., 2012). In this section, we briefly introduce some frequently used methods

for determining the number of clusters K, which can be used together with the

proposed PP clustering to address the clustering problem with an unknown

number of clusters.

Cross validation is usually used in the evaluation process for classification

(as used in the experiments in Chapter 3), however, it can also be used to de-

termine the number of clusters in a dataset (Han et al., 2012). In (model-based)

classification, cross validation is deployed as follows: a given dataset is par-

titioned into m parts; m − 1 parts are used to learn the data models, and the

remaining part (called the test part) is used to test the learned models (with

the classification task). This learn and test process is repeated m times (with

a different test part each time), and the average classification performance is

reported.

3 Techniques discussed here assist the proposed clustering method in this chapter to deal
with the unknown number of clusters scenarios. In Chapter 6, we propose another cluster-
ing method for PP data, based on set distances, which can automatically infer the number of
clusters.
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We can apply this cross validation technique in determining the number of

clusters for (model-based) clustering (Hill and Lewicki, 2006), such as the pro-

posed PP clustering method. In particular, with a certain number of clusters K,

the clustering algorithm is run on m − 1 parts of the dataset to learn the under-

lying models of the data. Then, we compute the likelihoods of the observations

in the test part given their clusters, i.e., f(Xn ∣ θk) (see Section 5.2) (Hill and

Lewicki, 2006). This process is repeated m times (with a different test part each

time) and the average likelihood `avg is obtained.

There can be a trend that a larger number of clusters K yields a larger av-

erage likelihood `avg, since increasing K can reduce the size of the clusters,

therefore allowing the clusters’ distributions to better represent observations

belonging to the clusters. However, this trend may be mitigated after the right

number of clusters is reached (as illustrated in Figure 5.1), because splitting a

well-represented cluster only gives a minor improvement in data representa-

tion. Hence, one can choose the number of clusters at the turning point in the

curve of average likelihood `avg with respect to the number of clusters (Fig-

ure 5.1).

1 2 3 4 5 6 7 8
Number of clusters

A
ve

ra
ge

 li
ke

lih
oo

d

Figure 5.1: The average likelihood of observations with respect to the number
of clusters. The circle marks the turning point, at which the number of clusters
can be chosen.

Another method for determining the number of clusters in the dataset is

silhouette (first described by Rousseeuw (1987)). In this method, the data are

first partitioned into a certain number of clusters K, using any technique, such

as the proposed PP clustering method. Then, for each datumXn, two quantities
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are computed: a(n) is the average dissimilarity of Xn to other observations in

Xn’s cluster, and b(n) is the smallest average dissimilarity of Xn to clusters

other than Xn’s cluster, where the average dissimilarity of datum Xn to cluster

C is defined as the average dissimilarity of Xn to observations in C.

In the case of PPs, dissimilarity can be measured by a set distance (such

as the Hausdorff, Wasserstein, and OSPA distances described in Section 2.5).

More specifically, let A be the cluster to which Xn belongs, then a(n) can be

computed as:

a(n) = 1

∣A∣ − 1
∑
X∈A

d(X,Xn), (5.25)

where d denotes a set distance. To compute b(n), we first compute c(n,C): the

average dissimilarity of Xn to observations in a cluster C ≠ A

c(n,C) = 1

∣C ∣ ∑X∈C
d(X,Xn), (5.26)

then b(n) is obtained as follows

b(n) = min
C≠A

c(n,C). (5.27)

Note that a(n) can be interpreted as how fit Xn is in its assigned cluster, in

the sense that the smaller a(n) is, the closer Xn is to other observations in its

assigned cluster. On the other hand, the cluster with the smallest average dis-

similarity b(n) can be considered as the next best fit cluster for Xn (Rousseeuw,

1987).

Given a(n) and b(n), the silhouette s(n) for Xn is defined as:

s(n) ≜ b(n) − a(n)
max{a(n), b(n)} , (5.28)

Observe from its definition that −1 ≤ s(n) ≤ 1. s(n) approximates 1 if a(n) ≪
b(n) which implies that Xn is appropriately assigned to cluster A, since a smaller

a(n) indicates a more fitting Xn in A, and a larger b(n) indicates a less likely
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Xn is assigned to other clusters. In contrast, s(n) close to −1 implies that Xn is

misclassified to A by the same reasoning (Rousseeuw, 1987).

Hence, the average silhouette s(n) over all observations in the dataset can

be used as an indicator of how appropriately the data have been partitioned

into K clusters. Then, one way to choose the number of clusters K is to select

K for which the average silhouette is largest (Rousseeuw, 1987). One can also

re-scale the data to increase the likelihood of the silhouette being maximized at

the right number of clusters using the methods proposed by de Amorim and

Hennig (2015).

For other methods to determine the number of clusters in the dataset, refer

to materials such as (Kaufman and Rousseeuw, 1990; Witten and Frank, 2005;

Han et al., 2012; Murphy, 2012).

5.4.2 Bayesian approach

In a model-based clustering approach where data are represented by a mix-

ture model, such as the proposed PP clustering in Section 5.2, the number

of clusters K is identical to the number of mixture components. Under the

Bayesian framework, determining the optimal value for K can be treated as a

model selection problem (Murphy, 2012). Such a value for K can be computed

as the MAP estimate of the posterior

p(K ∣X1∶N) ∝ p(K)p(X1∶N ∣K), (5.29)

where p(K) is the prior distribution representing our knowledge/assumption on

K before seeing any data. In the case that an uniform prior is used (e.g., when

no assumption onK is made), the MAP estimate is equivalent to the maximum

of the (marginal) likelihood p(X1∶N ∣K) (Murphy, 2012).

In general, evaluating the likelihood p(X1∶N ∣K) is rather difficult, hence, in

practice, some approximations, such as Bayesian information criterion (Schwarz

et al., 1978; Fraley and Raftery, 2007), are frequently used. Alternatively, stochastic
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sampling methods, such as reversible jump MCMC (Green, 1995), can be applied.

However, this method is computationally expensive and difficult to implement

(Murphy, 2012).

A more promising approach is to perform Gibbs sampling on the Dirichlet pro-

cess mixture model, which can be simpler in implementation while still allowing

an infinite number of mixture components (Murphy, 2012). A main require-

ment for Gibbs samplers is that the conditional probabilities in the sampling it-

erations have to be easily computed and sampled, hence the data model should

be designed so that such conditionals can be obtained. This can be considered

as a future research topic for PP clustering.4

Remark: The Bayesian solution for PP clustering (if proposed) can also be

adapted for semi-supervised learning, where only labeled training data for cer-

tain clusters are available and the objective is to compute the posterior of the

missing labels. This approach can also address the novelty detection problem

(Chapter 4) without having to rank the input observations, albeit at greater

computational cost. We can consider these as future research topics for PP

learning.

5.5 Numerical experiments

In this section, we evaluate the proposed EM clustering with both simulated

and real data. Our experiments assume mixture of Poisson models (for the first

two experiments) and mixture of IID-cluster models (for the last experiment). The

relevant performance indicators are: purity, normalized mutual information

(NMI), Rand index, and F1 score (see Section 2.3.5).5

5.5.1 Clustering with simulated data

In this experiment, we use the same simulated dataset described in Section 3.4.1

(but without data labels). Each dataset is represented by a mixture of three

4 May see some preliminary result in (Vo et al., 2017a).
5 A comparison and discussion of the performance of the proposed model-based method

versus the distance-based methods (including BAMIC) will be given in the next chapter.
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(c) Dataset (iii)

Figure 5.2: Simulated data of three diverse scenarios of PP data. Dataset (i):
well-separated in feature but overlapping in cardinality; dataset (ii): well-
separated in cardinality but overlapping in feature; dataset (iii): a mix of (i)
and (ii). (This figure is identical to a part of Figure 3.1, but reproduced here for
reading convenience.)
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Figure 5.3: The learned Poisson model distributions and EM clustering per-
formance for three diverse scenarios of PP data. Dataset (i): well-separated in
feature but overlapping in cardinality; dataset (ii): well-separated in cardinality
but overlapping in feature; dataset (iii): a mix of (i) and (ii).
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Poisson models with 2-D Gaussian feature distributions. These mixtures are

learned by the EM algorithm with the number of clusters K = 3 ( Section 5.3).

The learned distributions and the clustering performance is shown in Fig-

ure 5.3. The proposed EM is effective in this dataset: it results in the learned

distributions being very close to the true distributions (to see that, compare the

estimated parameters in Figure 5.3 with the true parameters in Figure 3.1). In

addition, since the used models fit the data well, the clustering performance is

very good in all three cases, even with the difficult case in dataset (ii) where the

feature densities from all clusters completely overlap (see Figure 5.3).

5.5.2 Clustering with Texture images dataset

Class: T14_brick1, image: 7 Class: T14_brick1, image: 9

Class: T15_brick2, image: 6 Class: T15_brick2, image: 9

Class: T20_upholstery, image: 7 Class: T20_upholstery, image: 6

Figure 5.4: Example images from classes “T14_brick1”, “T15_brick2”, and
“T20_upholstery” of the Texture dataset. Circles mark the detected SIFT key-
points. (This figure is identical to Figure 3.2, but reproduced here for reading
convenience.)
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Figure 5.5: Extracted data from images of the Texture dataset. Left: 2-D features
(after applying PCA to SIFT features). Right: Histogram of cardinalities of the
extracted data. (This figure is identical to Figure 3.3, but reproduced here for
reading convenience.)

This experiment uses images from three classes “T14 brick1”, “T15 brick2”,

and “T20 upholstery” of the Texture dataset described in Section 3.4.2, but

without class labels. We examine Poisson models with different feature densit-

ies, i.e., the Poisson model with single Gaussian feature density, and the Pois-

son models with Gaussian mixture feature density. For all Poisson models, the

EM algorithm (proposed in Section 5.3) with the number of clusters K = 3 is

used to learn the model and cluster the data.

For the first Poisson model with single Gaussian feature density, the learned

distributions and the clustering performance are shown in Figure 5.7a. It can

be observed that the clustering performance is not so good with this model, the

reason being that the singe Gaussian feature distribution is too simple to fit this

data well.
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Figure 5.6: Clustering performance on Texture dataset by Poisson models with
different number of Gaussian components in the feature density.
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(b) Two-component Gaussian mixture feature density
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(c) Three-component Gaussian mixture feature density

Figure 5.7: Learned Poisson models and the clustering performance on the Tex-
ture dataset.
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For the Poisson models with Gaussian mixture feature density, since there

is no close-form solution for the M -step in the proposed EM algorithm , we

deploy an additional EM algorithm to learn the feature density (as discussed

in Section 5.3). In particular, we first re-sample the given data by duplicating

PPs in such a way that the weight of a PP Xn approximates p(yn = k ∣Xn, ψ(i-1))
(computed by Eq. (5.3)). Then, the disjoint union is applied on these PPs to

form a point dataset consisting of all constituent points of the PPs. Finally, a

standard EM is executed on the obtained point dataset to learn the Gaussian

mixture feature density.

The learned distributions and the clustering performance by these models

are shown in Figure 5.7b and Figure 5.7c. Observe that the clustering per-

formance is significantly improved (especially when three-component Gaus-

sian mixture feature density is used) since these models better fit the data. This

also illustrates the importance of choosing a suitable data model in the model-

based learning technique.

5.5.3 Finding proximity groups with Reality Mining dataset

In this experiment, we use the Reality Mining dataset (Eagle and Pentland, 2006).

This dataset was collected at the MIT Media Lab using mobile phones from

about 100 participants over 9 months in 2004. The participants were recruited

on a voluntary basis from the members of the Media Lab and the students of the

Sloan Business School, which is adjacent to the Media Lab. The dataset includes

multiple types of data recorded from the phones such as call logs, cell tower

IDs, application usage, phone status, and Bluetooth scans. To demonstrate the

feasibility of our approach on discrete data, we focus on Bluetooth scan logs.

During the data collection, every 5 minutes, the phone scans for surround-

ing phones which are Bluetooth enabled and records the IDs6 of the detected

ones. We assume that each participant in this experiment owns only one phone,

thus the phone ID can also be considered as the ID of its carrier/owner. Adding

6 In this experiment, we map each phone to a unique ID in the range from 1 to N , where N
is the number of considered phones.
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the scan owner’s phone ID, each Bluetooth scan is a PP of phone IDs (that are

co-located at the scanning time).

These PPs are clustered to find proximity groups of participants using the

proposed EM algorithm with the number of components K = 9 (preferred by

(Nguyen et al., 2013)). In this experiment, each group is represented by an IID-

cluster point process with categorical feature and categorical cardinality distri-

bution. The learned point processes are plotted in Figure 5.8, where the feature

and cardinality distributions (categoricals) are visualized as tag-clouds of parti-

cipant IDs and cardinalities, respectively. Note that the feature distribution of a

group indicates the appearance frequency of participants in the group, whereas

the cardinality distribution can be interpreted as the pattern of the number of

participants gathering.

Note that the dataset does not include group labels of observations, thus we

cannot evaluate the clustering result quantitatively. However, since the dataset

also provides the affiliation labels of participants, we can justify how appro-

priate the clustering is in terms of the affiliation structure. In particular, the

participants are either members of the MIT Media Lab or students of the Sloan

Business School. The members of the MIT Media Lab are further split into sub-

groups: staff, student, ML-grad, new-grad, and masfrosh. Most of them work or

study at the Media Lab on a full time basis, except the masfrosh members, who

are first-year master students, only attend some classes at the Media Lab. The

Sloan students (denoted as the sloan group) only attend classes at the Sloan

Business School.

To visualize the affiliation structure of the clusters, we count the number of

participants belonging to each affiliation in each cluster, then use these counts

as weights to plot the tag clouds of the affiliation labels (the third column in

Figure 5.8). Observe that the found affiliation structure of clusters discovered

by our approach is consistent with those published in the pervasive computing

domain, such as (Nguyen et al., 2013, 2016). However, unlike those studies
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No. Feature distribution
(Participant ID cloud)

Cardinality distribution
(Cardinality cloud)

Clustering result
(Affiliation cloud)

1 2345

sloan 

!1�ew-grad 

1st;year 3rdyear 

2 2345

3 234567 8 9

4 234567

I 

5 234567 8 9 10 11 12 13

6 2345 6

ML-grad
1sbyear 

7 234 5 6

8 2345

9 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probablity

Table 1: RM clustering resultsFigure 5.8: Proximity patterns learned from Reality Mining dataset using the
proposed PP clustering method. The font size and color (with the color map
plotted at the bottom) indicate the frequency/weight of objects.



NUMERICAL EXPERIMENTS 111

that can only discover the members of each proximity group (i.e., the feature

distributions), our approach can also discover the cardinality (i.e., the size of

observations), which can be used to better explain the groups.

For example, clusters 4 and 5 represent the proximity groups of Sloan stu-

dents, since they consist of almost only Sloan members (Figure 5.8). This is

reasonable since the Sloan students usually meet each other and rarely meet

members of other affiliations. However, note that these two groups are differ-

ent in both feature and cardinality distributions (Figure 5.8), which implies two

sub-groups in the Sloan students: students 25, 33, 34, 35, 50, 59, 65 usually meet

each other in small groups of 2 or 3 individuals (cluster 4), while students 9, 14,

15, 18, 23, 49 may meet each other in groups of more individuals (cluster 5).

This may indicate different gathering habits of different groups of students in

this school.

Another interesting pair of clusters is 2 and 9, which mainly consist of mas-

frosh students. Although these two clusters both consist of masfrosh students,

their cardinalities are again different, and the same justification as given above

can be made: students 19, 21, 40, 42, 47 usually meet each other in groups of 2

to 4 individuals (cluster 2), while students 21, 40 very usually only meet each

other (cluster 5), indicating that they (students 21 and 40) may be close friends.





CHAPTER 6

DISTANCE-BASED LEARNING
FOR POINT PATTERN DATA

Chapter’s key points:

∎ Set distances and PP learning

∎ Distance-based PP clustering

∎ Distance-based PP classification

∎ Distance-based PP novelty detection

∎ Comparison with model-based approaches

In the three previous chapters, we presented model-based approach for PP

learning problems. These approaches suit cases where the data follow (or

are assumed to follow) some underlying statistical model. However, when this

is not the case, the proposed methods are not relevant or perform poorly. In

this chapter, we introduce the alternative approaches for PP learning using the

set distances (described in Section 2.5). We start this chapter with a general

discussion on the properties of set distances and the implications in the context

of design choices for PP learning algorithms (Section 6.1). In next sections, the

distance-based PP learning methods are proposed: clustering in Section 6.2,

classification in Section 6.3, and novelty detection in Section 6.4. The chapter

concludes with a comparison and discussion of distance-based methods versus

model-based methods (Section 6.5).

113
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6.1 Set distances and PP learning

As previously mentioned in Section 2.5, a distance is a fundamental measure

of dissimilarity between two objects. Hence, the notion of distance or metric

is important to learning approaches without models (Jain, 2010; Amores, 2013;

Pimentel et al., 2014). In the next sections, we discuss the properties of set

distances and the implications in the context of design choices for PP learning

algorithms. The choice of set distance in PP learning directly influences the

performance and hence it is important to select distances that are compatible

with the applications.

6.1.1 Hausdorff distance

Hausdorff distance (defined in Section 2.5) has been successfully applied in

applications dealing with PP data, such as detecting objects from binary images

(Huttenlocher et al., 1993a; Rucklidge, 1995), or measuring the dissimilarities

between 3-D surfaces — sets of coordinates of points (Cignoni et al., 1998). In

PP learning, it has been applied in classification (Amores, 2013) and clustering

(Zhang and Zhou, 2009).
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F ℝ𝑛𝑛  space 

Figure 6.1: Cardinality difference and outliers in the Hausdorff distance. Left:
Sets X (red ●), Y (green ∎), and Z (blue ▲) in R2. Right: Abstract impression of
the Hausdorff distances between the finite sets X , Y , and Z.

The Hausdorff distance could produce some undesirable effects for many

PP learning applications since it may group together PPs that are intuitively

dissimilar while separating PPs that are similar. Specifically:

∎ The Hausdorff distance is relatively insensitive to dissimilarities in cardin-

ality (Schuhmacher et al., 2008). Consequently, it can group together PPs
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with large differences in cardinality (e.g., X and Y in Figure 6.1). This can

be undesirable in many applications since the cardinalities of the PPs are

important in PP learning.

∎ The Hausdorff distance penalizes outliers heavily — elements in one set

which are far from every element of the other set (Schuhmacher et al.,

2008). Consequently, it tends to separate similar sets that differ only in a

few outliers (e.g., X and Z in Figure 6.1). This is undesirable in applica-

tions where the observed PPs of underlying groups are contaminated by

outliers due to spurious noise. Nonetheless, there are applications where

it is desirable to separate PPs with outliers from those without.

The Chamfer “distance” (Gavrila and Philomin, 1999):

dC(X,Y ) = 1

∣X ∣ ∑x∈X
min
y∈Y

d(x, y), (6.1)

is a variation of the Hausdorff construction, but it does not satisfy the metric

axioms. Since it is very similar to the Hausdorff distance, it also suffers from

issues similar to those discussed above.

6.1.2 Wasserstein distance

The Wasserstein distance (defined in Section 2.5) partially addresses cardinality

insensitivity and reduces the undesirable penalty on the outliers of the Haus-

dorff distance (Schuhmacher et al., 2008). See, for example, in Figure 6.1, the

Wasserstein distances d(2)W (X,Y ) ≈ 5.9 > d(2)W (X,Z) ≈ 3.6 as expected. However,

it still has a number of drawbacks.

∎ It is still possible for the Wasserstein distance to group together dissimilar

sets while separating similar sets, as illustrated in Figure 6.2. Intuitively,

X and Z are very similar whereas X and Y are quite dissimilar, but the

Wasserstein distance disagrees, i.e., d(2)W (X,Y ) ≈ 1.6 < d
(2)
W (X,Z) ≈ 2.3.

The large Wasserstein distance between X and Z is due to the moving of

earth from the bottom blue pile in Figure 6.3b over long distances (the two
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longest blue arrows to red piles in Figure 6.3b). Note that the elements of

Z are not so balanced around the elements of X , and thus require the pile

to be moved over long distances. On the other hand, the elements of Y

are more balanced around the elements of X thereby requiring less work

(see Figure 6.3a) and hence a smaller resulting distance. In general, the

Wasserstein distance depends on how well balanced the numbers of points

of X are distributed among the points of Y .

0 2 4 6 8 10 12 14
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𝑑𝑑𝑊𝑊
(2) ≈ 2.3 
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Z 

F ℝ𝑛𝑛  space 

Figure 6.2: Left: SetsX (red ●), Y (green ∎), andZ (blue▲) in R2. Right: Abstract
impression of the Wasserstein distances between the finite sets X , Y , and Z.

(a) To compute d
(p)
W (X,Y ): move Y ’s

earth piles (green) to formX’s earth piles
(red).

(b) To compute d
(p)
W (X,Z): move Z’s

earth piles (blue) to form X’s earth piles
(red).

Figure 6.3: Earth mover’s interpretation of the Wasserstein distance. Sets
X , Y , and Z in Figure 6.2 are considered as collections of earth piles. The
blue/green arrows represent the amounts and directions of the transportations
of the blue/green earth piles. (This figure is identical to Figure 2.6, but repro-
duced here for reading convenience.)

∎ Both the Wasserstein and Hausdorff distances are not defined if one of the

sets is empty. However, in PP data, empty PPs are not unusual. For ex-

ample, in WiFi log data where each datum (a log record) is a set of WiFi

access point IDs around the scanning device at a given time, there are

instances when there are no WiFi access points leading to empty observa-

tions. In image data where each image is represented by a set of features
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describing some objects of interest, images without any object of interest

are represented by empty PPs.

6.1.3 OSPA distance

The OSPA distance (defined in Section 2.5) is a metric with several salient prop-

erties that can address some of the undesirable effects of the Hausdorff and

Wasserstein distances (Schuhmacher et al., 2008).

∎ The OSPA distance penalizes relative differences in cardinality in an im-

partial way by introducing an additive component on top of the aver-

age distance in the optimal sub-pattern assignment. The first term in

Eq. (2.23) (see Section 2.5) is the dissimilarity in feature while the second

term is the dissimilarity in cardinality.

∎ The OSPA distance is defined for any two PPs. It is equal to c (i.e., max-

imal) if only one of the two PPs is empty, and zero if both PPs are empty.

∎ The outlier penalty can be controlled via parameter p. The larger the p, the

heavier the penalty on outliers. Note that the role of p in OSPA is similar

to that for the Wasserstein distance, however, it is mitigated due to the

cutoff c. In practice, it is common to use p = 2.1

∎ The cutoff parameter c controls the trade-offs between feature dissimilarity and

cardinality difference (see Figure 6.4 for illustration). Indeed, c determines

the penalty for cardinality difference and is also the largest allowable

base distance between constituent elements of any two sets. As a gen-

eral guide: 1) to emphasize feature dissimilarity, c should be as small as the

typical base distance between constituent elements of the PPs in the given

dataset; 2) conversely, to emphasize cardinality difference, c should be larger

than the maximum base distance in the given dataset; 3) for a balanced em-

phasis on cardinality and feature, a moderate value of c in between the two

aforementioned values should be chosen.

Figure 6.4 shows four PPs X , Y , Z and O, where: Y has elements that are

1 For the rest of this chapter, we use p = 2, unless stated.
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Figure 6.4: Trade-offs between feature dissimilarity and cardinality difference
in the OSPA distance. Left: Sets X (red ●), Y (green ∎), Z (blue ▲), and O (cyan
⧫) in R2. Right: Abstract impression of the OSPA distances between the sets X ,
Y , Z, and O.

closest to the individual elements of X , but has a larger cardinality; Z has ele-

ments far away from the elements of X , but has the same cardinality; while O

is visually most similar toX . In this scenario, the typical base distance between

the elements of the PPs is about 1.4 and the maximum base distance is about

9.5. Choosing a small cutoff c = 1.4 yields d(2,1.4)O (X,Y ) < d(2,1.4)O (X,Z), indicat-

ing an emphasis of feature dissimilarity over cardinality difference. Choosing

a large cutoff c = 15 yields d(2,15)
O (X,Y ) > d(2,15)

O (X,Z), indicating an emphasis

of cardinality difference over feature dissimilarity. Choosing a moderate cutoff

c = 6, makes O closest to X , indicating a balanced emphasis on both feature

dissimilarity and cardinality difference.

6.2 Distance-based PP clustering

In the distance-based clustering context, the overall goal is to partition a given

dataset D = {X1, ...,XN} ⊆ X into disjoint clusters which minimize the sum

of the distances between observations and their cluster centers, while penaliz-

ing the trivial partition P = {{X1}, ...,{XN}} (i.e., each observation is a cluster)

which yields a zero sum of distances. More concisely, let µ ∶ D → X be a map-

ping that assigns a cluster center to each observation in D, i.e., µ (X) is the

center of the cluster to which X belongs, then the clustering problem can be
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stated as

min
µ
∑
X∈D

d (X,µ(X)) + γ(X)δX[µ (X)], (6.2)

subject to µ (C) = C,∀C ∈ µ(D), (6.3)

where δA[B] = 1 if A = B, and is 0 otherwise, γ ∶ D → [0,∞) is a user chosen

penalty function that imposes a penalty for the selection of an observation X

as its own cluster centre, and hence penalizes the identity map µ ∶ X ↦ X as a

solution.

Remark: The mapping µ provides a partitioning P = {P1, ...,P∣µ(D)∣} of the

dataset D, where Pk = {X ∈ D ∶ µ (X) = Ck} is the kth cluster and

µ (D) = {C1, ...,C ∣µ(D)∣} is the set of cluster centers or centroids. The constraints

ensure that if an observation C ∈ D is a cluster centre, then C must belong to the

cluster with centre C. The user defined penalty γ(X) can also be interpreted in

terms of the preference for datum X to be a centroid: the smaller the γ(X), the

more we prefer X to be a centroid.

Note that the cluster center µ (X) of a datum X can be either defined as

the mean (or more generally the Fréchet mean) of the observations in its group

(e.g., k-means) or chosen among observations in the dataset, i.e., µ ∶ D → D
(e.g., k-medoids). In general, the Fréchet mean of a collection of observations

is computationally intractable (Baum et al., 2015) and a better strategy is to

select the centroids from the dataset. Such centroids, also known as exemplars

(Frey and Dueck, 2007), can be efficiently computed as well as serving as real

prototypes for the data.

6.2.1 Existing distance-based method for PP clustering

To the best of our knowledge, the Bag-level Multiple Instance Clustering (BAMIC)

(Zhang and Zhou, 2009) is the only distance-based clustering algorithm for PPs.

BAMIC adapts the k-medoids algorithm with the Hausdorff distance as a meas-

ure of dissimilarity between PPs (Zhang and Zhou, 2009).
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The Hausdorff distance, used by BAMIC, has several undesirable proper-

ties as discussed in Section 6.1.1. Moreover, since BAMIC is based on the k-

medoids algorithm, it requires the number of clusters as input, which is not al-

ways available in practice. Determining the correct number of clusters is one of

the most challenging aspects of clustering (Jain, 2010). While it is possible to ap-

ply techniques such as cross validation or silhouette to determine the number

of clusters (Section 5.4.1), this process incurs substantial computational cost. In

addition, it is mathematically more principled to jointly determine the number

of clusters and their centers.

6.2.2 AP clustering with set distances

Overview

In this work, we propose to use the affinity propagation (AP) algorithm (Frey

and Dueck, 2007) for the described clustering problem. The AP algorithm has

been widely used in several applications due to its ability to automatically infer

the number of clusters and its fast execution time. Some recent examples are

image clustering (Dueck and Frey, 2007), protein interaction graph partition-

ing (Vlasblom and Wodak, 2009), text clustering (Guan et al., 2011), community

detection (Nguyen et al., 2013), and location detection (Nguyen et al., 2014).

In particular, we propose a versatile PP clustering algorithm using the AP

algorithm (Frey and Dueck, 2007) with the OSPA distance (defined in Sec-

tion 2.5.4) as a dissimilarity measure. For the sake of performance comparison,

we also include the Hausdorff and Wasserstein distances (Section 2.5.2 and Sec-

tion 2.5.3) as baselines. Using message passing, AP provides good approxim-

ate solutions to the problem Eq. (6.2)-Eq. (6.3) (Dueck and Frey, 2007; Frey and

Dueck, 2007), thereby determining the number of clusters automatically from

the data. Compared to k-medoids (used in BAMIC), AP can find clusters faster

with considerably lower error (Frey and Dueck, 2007) and does not require ran-

dom initialization of cluster centers (since AP first considers all observations as

exemplars). In addition, the OSPA distance does not suffer from the undesir-
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able effects as the Hausdorff distance used in BAMIC, as well as being more

flexible, as discussed in Section 6.1.3.

Algorithm

The AP algorithm uses the similarity values between all pairs of observations

in the data set D = {X1, ...,XN} and the user-defined exemplar preferences, as

input and returns the ‘best’ set of exemplars. The similarity values of interest

in this work are the negatives of the OSPA distances between the PPs in D. The

preference value for a datum Xn is the negative of the penalty, i.e., −γ(Xn), the

larger its preference, the more likely that Xn is an exemplar. In AP, the exem-

plar for an observation Xn (which could be Xn itself or another observation) is

represented by a variable cn, where cn = k means that Xk is the exemplar for

Xn.

Note that a configuration (c1, . . . , cN) provides an equivalent representation

of the decision variable µ ∶ D → D in problem Eq. (6.2)-Eq. (6.3) by defining

µ (Xn) = Xk iff cn = k. Treating each cn as a random variable, a factor graph

with nodes c1, . . . , cN can be constructed by encoding into the functional po-

tentials the similarities between pairs of observations, the preferences for each

observation, as well as the constraints that ensure valid cluster configurations.

Constraint Eq. (6.3) means that in a valid configuration (c1, . . . , cN), ccn = cn,

i.e., if Xk is an exemplar for any observation, then the exemplar of Xk is Xk.

This constraint can be enforced by setting the potential of any configuration

(c1, . . . , cN) with ccn ≠ cn to −∞. Ideally, performing max-sum message-passing

yields a configuration that maximizes the sum of all potentials in this factor

graph, and hence a solution to the clustering problem Eq. (6.2)-Eq. (6.3). AP is

an efficient approximate max-sum message-passing algorithm using a protocol

originally derived from loopy propagation on factor graphs (Frey and Dueck,

2007).2 Further details on the AP algorithm can be found in (Frey and Dueck,

2 An equivalent binary graphical model representation for AP was later proposed in (Givoni
and Frey, 2009). Instead of creating a latent node for each individual observation as in (Frey
and Dueck, 2007), a binary node bn,k is created for each pair (Xn,Xk) and bn,k = 1 if Xk is an
exemplar for Xn. Message-passing on this new factor graph representation yields the same
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2007; Dueck and Frey, 2007). In the following, we discuss specific details for

the clustering of PP data, summarized in Algorithm 2.

Algorithm 2: Clustering of PP data using set distances. See text for values
of γ(Xn).
Input: PP dataset D = {X1, ...,XN},

stopping threshold θ.
Output: cluster assignment c1, ..., cN .
for n, k ∈ {1, ...,N} do

initialize messages r(n, k) = 0; a(n, k) = 0;
compute similarity s(n, k) = −dO (Xn,Xk);
assign preference s(n,n) = −γ(Xn);

end
repeat

for n, k ∈ {1, ...,N} do
Update responsibility
r (n, k) = s (n, k) −maxk′≠k{a (n, k′) + s (n, k′)}; (6.4)

Update availability
a (n, k) = min{0, r (k, k)} +∑n′∉{n,k} max{0, r (n′, k)}; (6.5)

Update self-availability a (k, k) = ∑n′≠k max{0, r (n′, k)}; (6.6)
end

until change of any r(⋅, ⋅) or a(⋅, ⋅) < θ;
for n ∈ {1, ...,N} do

return cluster assignment cn = argmax
k

(r(n, k) + a(n, k)) ;

end

The algorithm starts by computing all pairwise similarities input for AP:

s(n, k) = −dO(Xn,Xk), and preferences s (k, k) = −γ(Xk). A common practice

is to give all observations the same preference, e.g., the median of the simil-

arities (which results in a moderate number of clusters) or the minimum of

the similarities (which results in a small number of clusters) (Frey and Dueck,

2007).

The AP algorithm passes two types of messages. The responsibility r(n, k),

defined in Eq. (6.4) indicating how well Xn trusts Xk as its exemplar, is sent

from observationXn to its candidate exemplarXk. Then, the availability a(n, k),

defined in Eq. (6.5) reflecting the accumulated evidence for Xk to be an exem-

plar for Xn, is sent from a candidate exemplar Xk to Xn. Note from Eq. (6.4)-

solution.
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Eq. (6.5) that the responsibility r (n, k) is calculated from the availability values

that Xn receives from its potential exemplar, whereas the availability a (n, k) is

updated using the ‘support’ from observations that consider Xk as their candid-

ate exemplar. Note from Eq. (6.5) that when an observation is assigned to exem-

plars other than itself, its availability falls below zero. Such negative availabil-

ities in turn decrease the effect of input similarities s (n, k′) in Eq. (6.4), thereby

eliminating the corresponding PPs from the set of potential exemplars.

The loopy propagation is usually terminated when changes in the mes-

sages fall below a threshold (e.g., used in Algorithm 2), or when the cluster

assignments stay constant for some iterations, or when the number of itera-

tions reaches a given value (Frey and Dueck, 2007). The cluster label cn is the

value of k that maximizes the sum r(n, k) + a(n, k) (Frey and Dueck, 2007).

6.2.3 Experiments

In this section, we evaluate the performance of the proposed AP-based cluster-

ing algorithm on both simulated and real PP data. In particular, we compare

the clustering performance amongst the Hausdorff, Wasserstein and OSPA dis-

tances. Note that BAMIC (which uses the k-medoids algorithm instead of AP)

can be treated as AP clustering with the Hausdorff distance.3

Since the result of the AP algorithm depends on the choice of exemplar pref-

erences, we first empirically select the exemplar preference that yields the best

performance in terms of the number of clusters for each distance, and then

benchmark the best case performance of one distance against the others. The

relevant performance indicators are: purity (Pu), normalized mutual informa-

tion (NMI), rand index (RI), and F1 score (F1) (see Section 2.3.5).
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(c) Dataset (iii)

Figure 6.5: Simulated data and clustering performance in three diverse scen-
arios of PP data. Dataset (i): well-separated in feature but overlapping in car-
dinality; dataset (ii): well-separated in cardinality but overlapping in feature;
dataset (iii): a mix of (i) and (ii). (A part of this figure is identical to Figure 3.1,
but reproduced here for reading convenience.)
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Clustering with simulated data

In this experiment, we use the same simulated dataset described in Section 3.4.1.

Three different cutoff values for the OSPA distance are examined: c = 1 (small);

c = 12 (moderate); and c = 26 (large). Note that c = 1 is a typical value of the

intra-PP base distance (i.e., base distance between the features within the PPs

in the dataset), c = 26 is an estimate of the maximum intra-PP base distance,

and c = 12 is a moderate value of the intra-PP base distance.

In dataset (i) (Figure 6.5a), the Hausdorff, Wasserstein and OSPA distances

with small and moderate cutoffs show good performance. The OSPA distance

with a large cutoff tends to emphasize the cardinality dissimilarities (which are

negligible in this scenario) over feature dissimilarities (see Section 6.1.3) leading

to poor clustering performance.

In dataset (ii) (Figure 6.5b), where cardinality difference is the main discrim-

inative information, the Hausdorff and Wasserstein distances perform poorly

since they are unable to capture cardinality dissimilarities between the PPs. The

OSPA distance with a small cutoff tends to emphasize feature dissimilarities

(which are negligible in this scenario) over cardinality dissimilarities (see Sec-

tion 6.1.3) leading to poor performance. On the other hand the OSPA distance

with moderate and large cutoffs perform better since they can appropriately

capture cardinality dissimilarities.

In dataset (iii) (Figure 6.5c), the results again confirm the discussions above.

The OSPA distance with moderate cutoff provides a balanced emphasis on both

feature and cardinality dissimilarities (see Section 6.1.3), yielding the best per-

formance.
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Class: T14_brick1, image: 7 Class: T14_brick1, image: 9

Class: T15_brick2, image: 6 Class: T15_brick2, image: 9

Class: T20_upholstery, image: 7 Class: T20_upholstery, image: 6

Figure 6.6: Example images from classes “T14_brick1”, “T15_brick2”, and
“T20_upholstery” of the Texture dataset. Circles mark the detected SIFT key-
points. (This figure is identical to Figure 3.2, but reproduced here for reading
convenience.)
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Figure 6.7: PP data extracted from images of classes “T14 brick1”, “T15 brick2”,
and “T20 upholstery” of the Texture dataset, and clustering performance for
various distances. (A part of this figure is identical to Figure 3.3, but repro-
duced here for reading convenience.)
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Clustering with Texture dataset

In this experiment, we cluster the Texture images dataset described in Sec-

tion 3.4.2. The clustering performance is summarized in Figure 6.7. It can be

seen that the OSPA distances outperform the Hausdorff and Wasserstein dis-

tances, since it can properly incorporate both feature and cardinality informa-

tion. The poor performance of the Hausdorff and Wasserstein distances is due

to the significant overlap in the features and their inability to measure cardin-

ality dissimilarities in the data.

6.3 Distance-based PP classification

The classification problem can be approached with or without knowledge of

the underlying data model (Cover and Hart, 1967). In Chapter 3, we intro-

duced a method for PP classification exploiting the underlying data model. In

this section, we focus on another approach: the k-nearest neighbors (k-NN)

classifier (Cover and Hart, 1967; Keller et al., 1985), which does not require

prior knowledge of the data model.

6.3.1 Existing distance-based method for PP classification

Classifiers with distance-based techniques (such as k-nearest neighbour (k-NN)

algorithm) using set distances such as Hausdorff (Huttenlocher et al., 1993b),

Chamfer (Gavrila and Philomin, 1999), and Earth Mover’s (Zhang et al., 2007;

Rubner et al., 1998) are the only known distance-based methods for PP classi-

fication (Amores, 2013). These distances, however, do not perform well in some

common cases of PP classification, such as when classes significantly overlap

in cardinality, or when the PPs contain outliers.

6.3.2 k-NN classification with OSPA

The general k-NN classifier has two phases: training and classifying. Contrary

to eager learning algorithms in which a model is learned from training data

3 Note that the M3IC algorithm (Zhang et al., 2009) (see Section 5.1) does not belong to the
model-based or the distance-based approach, hence is out of the scope of this work. In future
broader research, it may be included as another baseline.
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in the training phase, the k-NN algorithm delays most of its computational ef-

fort until the classifying (or test) phase. In the training phase, the only task

is storing class labels of the training observations. In the test phase, when a

new observation is passed to query its label, the algorithm determines its k

nearest observations, with respect to some distance, in the training set. The quer-

ied observation is then assigned the most popular label among its k nearest

observations.

In this work, we propose to use the OSPA distance (Section 2.5.4 and Sec-

tion 6.1.3) which is more versatile and better at capturing feature and cardin-

ality dissimilarities between PPs (compared to aforementioned set distances),

hence the OSPA distance would be more effective with the k-NN algorithm for

PP classification.

Unlike existing k-NN classification which only stores the class labels in the

training phase, our proposed approach exploits training data to learn a suitable

dissimilarity measure. Since the fully observed training data can be used to as-

sess whether the set distance agrees with the notion of similarity/dissimilarity

of the application under consideration, in principle, a suitable distance can

be learned. A simple approach is to perform cross-validation on the training

data for a range of distances and select the best. Intuitively, a suitable distance

entails small dissimilarities between observations in the same class, but large

dissimilarities between observations from different classes. Hence, for a given

training dataset, we seek a distance (or its parameterization) that minimizes the

ratio of inter-class dissimilarity to intra-class dissimilarity. In general, learning

an arbitrary distance from training data is numerically intractable. However, it

is possible to learn low dimensional parameters such as the cutoff parameter in

the OSPA distance.

The OSPA distance provides the capability to adapt the weighing between

feature dissimilarity and cardinality dissimilarity via the cutoff parameter c (see

Section 6.1.3). While the right balance between feature and cardinality dissim-
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ilarities varies from one application to another, it can be learned from the fully

observed training data via cross-validation. However, cross-validation is not

suitable for small training datasets. In the following, we describe an alternat-

ive approach that also accommodates small datasets.

Let d̄(p,c)O (X,C) denote the average OSPA distance with cutoff c, from a PP

X to its k nearest neighbours in a collection C (of PPs), and let C` denote the

class of PP observations with class label ` in the training set. Then, the intra-

class dissimilarity for C` is defined by D̂(p,c)(C`) = maxX∈C` d
(p,c)
O (X,C`) while

its inter-class dissimilarity is defined by Ď(p,c)(C`) = minj≠` minX∈C` d
(p,c)
O (X,Cj).

To enforce small intra-class dissimilarity and large inter-class dissimilarity, we

seek cutoff parameters that minimize the worst-case (over the training data set)

ratio of intra-class dissimilarity to inter-class dissimilarity

α(c) = max
`

⎛
⎝
D̂

(p,c)
O (C`)

Ď
(p,c)
O (C`)

⎞
⎠
. (6.7)

The operations max, min in the definition of α can be replaced by the aver-

age or a combination thereof.

6.3.3 Experiments

In the following experiments, we benchmark the classification performance of

the OSPA distance against the Hausdorff4 and Wasserstein5 distances on both

simulated and real data. Since the performance depends on the choice of k (the

number of nearest neighbours), we ran our experiments for each k ∈ {1, ...,10}
and benchmark the best case performance of one distance against the others.

Classification with simulated data

This experiment also examines the classification performance on the three di-

verse scenarios from the simulated datasets of Section 3.4.1. Using a 10-fold

cross validation, the average classification performance is summarized in Fig-

4 and hence the Chamfer “distance”, see Section 6.1.1.
5 and hence the Earth Mover’s distance, see Section 2.5.3.
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Figure 6.8: Classification performance on simulated data for various distances
(k is the number of nearest neighbours). The error-bars represent the standard
deviations of the accuracies.

ure 6.8.

Observe that in dataset (i), where the features of the PPs from one cluster

are well separated from those of the other clusters, all distances perform well.

In dataset (ii) and a part of dataset (iii), where the features of the PPs from one

cluster overlap with those of the other clusters, the OSPA distance outperforms

the Hausdorff and Wasserstein since it can better capture the cardinality dis-

similarities in the data.

Classification with Texture data
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Figure 6.9: Classification performance on Texture data for various distances (k
is the number of nearest neighbours). The error-bars represent the standard
deviations of the accuracies.

This experiment examines the classification of the extracted PP data from

the Texture image dataset described in Section 3.4.2. Using a 4-fold cross valid-

ation, the average performance is summarized in Figure 6.9. It can be observed

that in this dataset, the OSPA distance again performs best, since it can provide

a good balance between feature and cardinality dissimilarities.
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6.4 Distance-based PP novelty detection

As previously discussed, the novelty detection problem for PP data has not

been studied in the literature (see Section 4.1). Like classification, novelty de-

tection can be approached with or without knowledge of the underlying data

model. In Chapter 4, we introduced a method for PP novelty detection using

the point process model. In this section, we focus on another approach without

using a data model: the nearest neighbor method, the most common approach

to novelty detection (Pimentel et al., 2014).

6.4.1 Novelty detection with set distances

In general, the nearest neighbor method is based on the assumption that nor-

mal observations are closer to the training (normal) data than novelties (Hautamäki

et al., 2004). This approach requires a suitable notion of distance between obser-

vations (Pimentel et al., 2014). This section introduces a solution to the novelty

detection problem for PP data by incorporating set distances into the nearest

neighbour algorithm.

If the distance (e.g., Hausdorff, Wasserstein or OSPA) between the candid-

ate PP and its nearest normal neighbour (NNN) is greater than a given threshold,

then the candidate is deemed as novel, otherwise it is normal. A suitable

threshold can be chosen experimentally. One suitable threshold (as chosen

for experiments in this work) is the 95th-percentile of the inter-class distances

(between normal training observations and their NNNs). However, we stress

that no single threshold is guaranteed to work well for all cases.

Similar to classification with OSPA (Section 6.3.2), training data can be used

to determine a suitable balance between feature dissimilarity and cardinal-

ity dissimilarity with the cutoff parameter c. However, there is no inter-class

dissimilarity, and hence minimizing the intra-class dissimilarity for normal

data yields the trivial solution c = 0. To determine a suitable balance, con-

sider the cardinality dissimilarity d(p)card(X,Y ) = 1
n (n −m) and feature dissimilarity
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d
(p)
feat(X,Y ) = 1

n minπ∈Πn∑mi=1 d (xi, yπ(i))
p

between all pairs of observations X,Y

in the normal training set (assuming the cardinality m of Y is not greater than

the cardinality n of X , otherwise we compute d(p)card(Y,X) and d
(p)
feat(Y,X)).

Note that for d(p)feat we use the base distance d to capture the absolute feature

dissimilarity rather than the capped feature dissimilarity from base distance

d(c) (Section 2.5.4). To decide whether a test PP datum T is novel, we need to

determine its cardinality dissmilarity and feature dissimilarity relative to the

normal data. The relative cardinality dissmilarity and feature dissimilarity of

T (with respect to the normal data) can be defined as d(p)card(T,T ∗))/m(p)
card and

d
(p)
feat(T,T ∗)/m(p)

feat, where T ∗ is T ’s NNN, m(p)
card and m(p)

feat are large values (e.g.,

maximum or 95th-percentile) of d(p)card(Y,X) and d
(p)
feat(Y,X)) in the normal data

set, respectively. It can be observed that summing the relative dissmilarities

and scaling by m(p)
feat gives the uncapped OSPA “distance”

(d(p)O (T,X(T )))p = m
(p)
feat

m
(p)
card

d
(p)
card((T,T ∗) + d(p)feat(T,T ∗) (6.8)

Hence, a suitable cutoff parameter is c = (m(p)
feat/m

(p)
card)

1/p
.

6.4.2 Experiments

In this section, we examine the novelty detection performance of the Hausdorff,

Wasserstein and OSPA distances on both simulated and real data.

Novelty detection with simulated data

In this experiment, we consider class 2 from each simulated data set in Sec-

tion 3.4.1 as normal data, and classes 1 and 3 as novel data. This allows us

to study three diverse scenarios: dataset (i) is an example of feature novelty,

where novel observations are similar in cardinality to normal training data, but

dissimilar in feature (Figure 3.1a); dataset (ii) is an example of cardinality nov-

elty, where novel observations are similar in feature with normal training data,

but dissimilar in cardinality (Figure 3.1b); dataset (iii) is a mix of feature and

cardinality novelty (Figure 3.1c).
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Figure 6.10: Novelty detection performance on simulated data for various dis-
tances. The error-bars represent the standard deviations of the F1 scores.

Using a 10-fold cross validation, the average performance is summarized

in Figure 6.10. Figure 6.11 shows boxplots of the distances between the test

PPs and their NNNs in the training set. It can be seen that in dataset (i), where

novel and normal data are dissimilar in feature, all distances perform well. In

dataset (ii) and a part of dataset (iii), where novel and normal data overlap in

feature, the OSPA distance outperforms the Hausdorff and Wasserstein since

it can appropriately penalize the cardinality dissimilarity between normal and

novel data.

Novelty detection with Texture data

Using the Texture dataset from Section 3.4.2, we consider normal data taken

from class “T14 brick1” and novel data taken from class “T20 upholstery”. We

use a 4-fold cross validation scheme. In each fold, the training data consist

of 75% of images from the normal class (30 images), the testing set consists of

the remaining images from normal class (10 images) and 25% of images from

the novel class (10 images). For this dataset, all distances perform well (see

Figure 6.12 and Figure 6.13) since normal and novel data are sufficiently distin-

guished in feature (see the feature plot in Figure 4.12).
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Figure 6.11: Boxplots of distances between test data and their NNNs for one
data fold of the simulated dataset. Thick lines across the boxes indicate the
chosen thresholds.
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Figure 6.13: Boxplots of distances between test
data and their NNNs for one data fold of the Tex-
ture dataset. Thick lines across the boxes indicate
the chosen thresholds.

6.5 Comparison with model-based methods

This section compares the performance of the distance-based methods pro-

posed in this chapter with the equivalent model-based methods proposed in

Chapter 3, Chapter 4, and Chapter 5. In classification, the distance-based ap-

proach using k-NN classifier with OSPA distance (Section 6.3) and the model-

based approach using IID-cluster models (Chapter 3) both show similar per-

formance. The good performance of these approaches on both simulated and

real data (Texture images) indicates that both IID-cluster models and the OSPA

distance are versatile enough for handling various scenarios of PP data in clas-

sification.

In novelty detection, although the proposed ranking function outperforms

other model-based methods, such as NB likelihood and Poisson model density

(Chapter 4), it is still not as good as the distance-based method based on the

nearest neighbour technique with the OSPA distance (Section 6.4). The reason

for this could be due to the ranking function which is based on the IID-cluster

density derived with the nonuniform reference measure (see Chapter 4). This

may indicate that problem of ranking PPs using data likelihood is still unsolved
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completely, hence requiring more effort in future research.

In clustering, for the simulated datasets, the performance of the distance-

based approach using the AP algorithm with set distance (Section 6.2) is sim-

ilar to that of the model-based approach using the mixture of Poisson models

(Chapter 5). For the real dataset (Texture images), the model-based approach

(with Poisson model with Gaussian mixture feature distribution) outperforms

the distance-based approach, since the model-based methods have a greater de-

gree of freedom to better describe the data, e.g., to describe the non-spherical

shape of the features in this case.



CHAPTER 7

CONCLUSION

Chapter’s key points:

∎ Summary and discussion on the work

∎ Some directions for future work

7.1 Summary and discussions

Point pattern data, also known as bags or multiple instance data, are abund-

ant in nature and many applications (Chapter 1). However, fundamental PP

learning problems, in particular classification, novelty detection, and cluster-

ing, have received limited attention. In this work, we attempted to solve these

learning problems using two approaches: one with knowledge of the under-

lying data model (model-based approach), and one without (distance-based

approach). The proposed methods are listed in Table 7.1.

TASK
MODEL-BASED
APPROACH

DISTANCE-BASED
APPROACH

Classification MLE of IID-cluster point process k-NN with OSPA distance

Novelty
detection

Ranking function based on
IID-cluster point process density

NN-based novelty detection
with OSPA distance

Clustering
EM with mixture of
IID-cluster point processes

AP with OSPA distance

Table 7.1: Proposed methods for PP learning problems.

137
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Model-based approach

Central to the model-based approaches is the notion of generative models from

which the data are (or assumed to be) sampled. In the context of PP learning,

point process models can be used. In particular, for classification, we propose

ML and MAP estimation methods to learn the IID-cluster models. The learned

models are then used to classify new data using a Bayes classifier (Chapter 3).

For novelty detection, we introduce a novel ranking function based on the IID-

cluster model density. Data are ranked according to this function and PPs with

a ranking lower than some threshold will be deemed novel (Chapter 4). For

clustering, we propose to use a finite mixture of IID-cluster point processes as

the generative model for PP clusters. Then, the EM technique is deployed to

learn the mixture model and cluster the data (Chapter 5).

The greatest advantage of model-based approaches for PP learning is that

they can exploit the statistical patterns in PP data. This not only can result

in good performance in many applications (as shown in the experiments in

Chapter 3, Chapter 4, and Chapter 5), but also assists in gaining some in-

sights into the data (see e.g., the experiment of finding proximity groups in

Section 5.5.3). In addition, the model learned from the data can also be viewed

as a characterization of the data and can be applied in tasks such as data stream

clustering and classification (Nguyen et al., 2015).

Distance-based approach

The model-based approaches, however, have a main drawback that, in practice

the true underlying model of the data may be unknown, or may be too com-

plex to learn (Markou and Singh, 2003). In such scenarios, non-model-based

approaches should be better choices. In this work, we focus on the distance-

based approach.

In the distance-based approach, the notion of distance measure plays an im-

portant role. In the context of PP data, set distances are suitable candidates for

distance measure. The choice of set distances in PP learning directly influences
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performance, hence it is important to select distances that are compatible with

the applications. In this work, we propose to use the OSPA distance due to its

salient properties for PP learning tasks (Section 6.1.3).

In particular, we apply the AP algorithm with the OSPA distance for the

clustering task (Section 6.2). The performance comparison shows that the OSPA

distance (with a suitable cutoff parameter) outperforms the other set distances,

such as the Hausdorff and Wasserstein distances. This is due to the properties

of OSPA that can address the undesirable effects of the Hausdorff and Wasser-

stein distances (Section 6.1.3). In classification and novelty detection, we use the

nearest neighbour approach together with the OSPA distance (Section 6.3 and

Section 6.4). We also propose to use training data to learn the OSPA’s cutoff

parameter using the inter-class and intra-class dissimilarities (for classification,

Section 6.3), and the cardinality and feature dissimilarities (for novelty detec-

tion, Section 6.4). The performance of OSPA in these tasks also outperforms

the Hausdorff and Wasserstein distances, and in some cases, outperforms the

model-based methods. However, we stress that there is no single distance

that works for all applications. In practice, to determine which distance (and

its parameters) is better suited to which application, it is important to assess

whether the distance agrees with the notion of similarity/dissimilarity specific

to that application.

Compared to the model-based methods, the distance-based methods have

several advantages. First, they do not require prior knowledge of the data

model, hence they are suitable for a wide range of applications where data

models are unknown or too complex to learn. Moreover, learning parameters

for set distances (in particular the cutoff of OSPA distance) is far simpler than

learning model parameters (such as parameters of the IID-cluster model).

However, we again emphasize that there is no single approach that works

well for all applications. For example, the distance-based method can outper-

form the model-based method in novelty detection for Texture data (see Sec-
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tion 6.4.2 and Section 4.4.2), whereas in clustering for Texture data, the distance-

based method performs worse (see Section 6.2.3 and Section 5.5.2). In addition,

computing set distances which require the optimal assignment of elements,

such as Wasserstein and OSPA distances, can be rather expensive for PPs with

high cardinality.

7.2 Future directions

Since PP learning is a developing field of study with a limited number of stud-

ies, there are still problems which are unsolved or whose existing solutions can

be improved. We suggest some potential research directions for PP learning as

follows:

∎ Model-based PP clustering with an unknown number of clusters. Since it is

usually the case in practice that the number of clusters are unknown,

such a clustering method is worth studying. Although we already have

a distance-based method which can address this problem (i.e., AP clus-

tering with set distances shown in Section 6.2), the existing model-based

method (proposed in Chapter 5) can only handle the scenario of a known

number of clusters. This generalization of the proposed clustering method

in Chapter 5 inherits the nice properties of model-based methods, such as

the ability to exploit statistical patterns in the data. As previously dis-

cussed in Section 5.4.1, a promising approach to this problem can be to

use an infinite mixture model with Dirichlet process, which can be com-

puted effectively by a Gibbs sampler.1

∎ General semi-supervised PP learning. In semi-supervised learning, which is

an area of emerging interest in machine learning (Chapelle et al., 2006),

only a part of the training data is labeled. In this work, we have dealt

with a special case of this type of learning: the novelty detection problem.

As discussed in Section 5.4.1, the Bayesian solution for PP clustering (if

proposed) can also be adapted for general semi-supervised learning, by

1 May see some preliminary result in (Vo et al., 2017a).
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computing the posterior of the missing labels. In addition, this approach

can also address the novelty detection problem without having to rank

the input observations (as the method proposed in Chapter 4), albeit at

greater computational cost.

∎ More computationally efficient set distances. As discussed in Chapter 6, the

notion of distance plays an important role in distance-based learning ap-

proach, since it significantly affects not only the quality of the outcome,

but also the computational cost of the learning methods. Of the set dis-

tances examined in this work, the OSPA distance has salient properties

that can address some of the undesirable effects of the other distances,

hence delivering better performance in many applications. However, com-

puting OSPA is rather expensive, especially for PPs with large cardinality,

since it requires the optimal assignment of PPs’ elements. Hence, in or-

der to apply the proposed distance-based learning method to big data,

it is necessary to develop novel set distances which have similar salient

properties to those of the OSPA but are more efficient in computation.
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