Ore genesis of the Fule Pb-Zn deposit and its relationship with the Emeishan Large Igneous Province: Evidence from mineralogy, bulk C-O-S and in situ S-Pb isotopes

Jia-Xi Zhoua, c, f, *, Kai Luoa, b, Xuan-Ce Wangc, Simon A. Wildec, Tao Wud, f, Zhi-Long Huanga, Yin-Liang Cuia, Jian-Xin Zhaof

Corresponding author, E-mail, zhoujiaxi@vip.gyig.ac.cn

a Stake Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy Sciences, Guiyang 550081, China

b University of Chinese Academy Sciences, Beijing 100049, China

c The Institute for Geoscience Research, Department of Applied Geology, Curtin University, GPO Box U1987, Perth WA 6845, Australia

d School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

e Yunnan Nonferrous Metals Geological Bureau, Kunming 650051, China

f Radiogenic Isotope Facility, School of Earth and Environment Sciences, University of Queensland, Brisbane QLD 4072, Australia
ABSTRACT

Magma tic activity plays an important role in mineralization, but little is understood of its role with respect to carbonate-hosted stratabound epigenetic Pb-Zn deposits. The Fule Pb-Zn deposit (~10 Mt of sulfide ore with mean grades of 15-20 wt. % Zn + Pb), is stratigraphically placed in middle Permian strata and spatially (~1 m) associated with late Permian continental flood basalts of the Emeishan Large Igneous Province (ELIP). It thus provides an ideal case to investigate its genetic relationship with the ELIP. In addition, the Fule deposit is characterized by high concentrations of Ag, Cd, Ge and Ga, and contains a variety of Cu and Ni sulfide minerals. Syn-ore calcite (δ^{13}C = +2.57-+3.01‰) and associated fluids (δ^{13}C = +2.96-+3.40‰) have δ^{13}C values similar to those of fresh limestone (δ^{13}C = +1.58-+2.63‰), but the δ^{18}O values of calcite (+16.83-+19.92‰) and associated fluids (+7.80-+10.89‰) are distinctly lower than those of limestone (δ^{18}O = +21.85-+23.61‰). This means that C is mainly derived from limestone, whereas the O isotope signature may be related to water/rock (W/R) interaction between mantle and/or metamorphic fluids and limestone. δ^{34}S values of sulfide minerals obtained by in situ NanoSIMS and conventional bulk techniques record a range of +9.8-+23.1‰ and +10.04-+16.43‰, respectively, reflecting the enrichment of heavy S isotopes in the ore-forming fluids and thermochemical sulfate reduction (TSR) is the principal mechanism for the formation of S_2^\cdot. Cores of sulfide crystals have much higher δ^{34}S values than their rims, indicating a probable mixture of multiple S reservoirs and/or a dynamic fractionation of S isotopes occurred during sulfide precipitation. The uniform femtosecond (fs) LA-MC-ICPMS in situ Pb isotopic data for galena plot in the field that differs from any of the three potential...
sources in the region. Such signatures demonstrate that metal Pb was most likely derived from a well-mixed source of basalts, sedimentary rocks and basement rocks. We propose that (a) the enrichment in Ag, Cu, Ni, Cd, Ge and Ga, and the isotope signatures of hydrothermal minerals in the Fule region are related to fluids derived from or flowed through multiple reservoirs; (b) Emeishan magmatism provided heat, elements and associated fluids, and its basalts acted as an impermeable and protective layer; and (c) fluid mixing caused TSR, and then resulted in W/R interaction and CO₂ degassing, all of which played a key role in the precipitation of hydrothermal minerals.

Key words NanoSIMS in situ S isotopes; Fs LA-MC-ICPMS in situ Pb isotopes; Role of Emeishan magmatism; Carbonate-hosted Pb-Zn deposits in the ELIP, South China

1. Introduction

Carbonate-hosted stratabound epigenetic Pb-Zn deposits, traditionally named as Mississippi Valley-type (MVT), are an important source of base metal ores that form in sediments some time during the lifetime of a sedimentary basin (Anderson and Macqueen, 1982). MVT deposits predominantly form in platform carbonate sequences and are typically located within extensional zones inboard of orogenic belts (Leach et al., 2005). As such type of deposits is characterized by the absence of temporally or spatially associated magmatic activity, the classical thinking about the origin of MVT deposits is that it was related to the low temperature (50-200 °C) and high salinity (10-30 wt. % NaCl equiv.) basin brines (Leach et al., 2010). However, many carbonate-hosted Pb-
Zn deposits are spatially associated with igneous rocks, but whether they are related to the igneous activity is unclear and needs to be carefully investigated. In the western Yangtze Block (Fig. 1a), South China, there are more than 400 carbonate-hosted Pb-Zn deposits and many basalt-hosted native Cu deposits within the Emeishan Large Igneous Province (ELIP) (Fig. 1b) (Liu and Lin, 1999; Zhu et al., 2007; Zhou et al., 2014a). These Pb-Zn deposits form the giant Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province (Fig. 1a-b), representing ~27% of the total Zn + Pb resources in China, and are an important part of the South China low-temperature metallogenic domain (Zhou et al., 2013a; Wang et al., 2014; Zhang et al., 2015; Hu et al., 2017). The SYG province is structurally bounded by the N-S-trending Anninghe-Lvzhijiang, the NE-SW-trending Mile-Shizong-Shuicheng and the NW-SE-trending Kangding-Yiliang-Shuicheng (Fig. 1a) faults. The Pb-Zn deposits in the SYG province are characterized by (a) ore bodies that are hosted by late Ediacaran to middle Permian carbonate rocks that are spatially associated with late Permian Emeishan continental flood basalts (Figs. 1b, 2-3); (b) ore bodies that have stratiform or lentiform shape within bedding-planes and/or steeply-dipping veins along fault dip planes (Zheng and Wang, 1991; Li et al., 2007; Zhou et al., 2013b; Wei et al., 2015; Jin et al., 2016; Zhu et al., 2016); (c) sulfide ore that has high mean grades of 10-35 wt. % Zn + Pb, and high contents of Ag, Cu, Cd, Ge and Ga (Si et al., 2006; Ye et al., 2011; Zhou et al., 2011, 2014b; Zhu et al., 2017); and (d) ore-forming fluids of low-medium temperatures (<300 °C) and salinities (<15 wt. % NaCl equiv.) (Bai et al., 2013; Li et al., 2015; Zhang et al., 2015; Liu et al., 2017). These features are significantly different from those of typical MVT deposits (Leach et al., 2005, 2010). As the only large-scale igneous event
between the Ediacaran and Triassic in the SYG province was eruption of the Emeishan flood basalts, the above mineralization features were generally considered to be related to the ELIP (Huang et al., 2010; Xu et al., 2014; Zhou et al., 2013a, 2014a; Li et al., 2016).

The Fule Pb-Zn deposit, hosted by carbonate rocks of the middle Permian Yangxin Formation (Si et al., 2006), is stratigraphically and spatially (~1 m) close to the late Permian Emeishan basalts (Figs. 1b, 2-3). This deposit contains very high ore grades (up to 60 wt. % Zn + Pb, mean 15-20 wt. %) and is rich in multiple elements (4567 t Cd, 329 t Ge, and 177 t Ga at mean grades of 0.127 wt. % Cd, 0.012 wt. % Ge, and 0.007 wt. % Ga) (Si et al., 2011, 2013; Ye et al., 2011). These features are similar to those of the adjacent world-class Huize Pb-Zn deposit (hosted in Carboniferous strata with >30 Mt of sulfide ore with average grades of 25-35 wt. % Zn + Pb) (Fig. 1b) (Zhou et al., 2001; Li et al., 2006; Huang et al., 2010; Bao et al., 2017), which is considered to be a typical representative of the unique SYG-type deposits (related to the ELIP) in the western Yangtze Block (Huang et al., 2010). In spite of this, there is still debate on the ore genesis type, including whether it is a distal magmatic hydrothermal-type (based on geological evidence: Liu and Lin, 1999), stratabound-type (based on trace element data: Si et al., 2006, 2011) or MVT (based on Cd isotopic data: Zhu et al., 2017). Hence, the Fule deposit provides an ideal case for understanding the role of magmatism during the formation of carbonate-hosted Pb-Zn deposits.

Micro-scale variation of elements and isotopes in hydrothermal minerals, obtained by micro-beam analysis, can provide crucial clues for revealing the source and evolution of ore-forming elements and associated fluids, and the
cause of hydrothermal mineral precipitation (Barker et al., 2009; Nishizawa et al., 2010; Ye et al., 2011; Jin et al., 2016; Deng et al., 2017). Laser-ablation multi-collector inductively coupled plasma mass spectroscopy (LA-MC-ICPMS) and secondary ion mass spectroscopy (SIMS) can accurately analyze isotopic compositions of hydrothermal minerals in situ (Ikehata et al., 2008; Zhang et al., 2014; Yuan et al., 2015; Bao et al., 2016). Here we use the Fule deposit as a case study, utilizing NanoSIMS in situ S, femtosecond (fs) LA-MC-ICPMS in situ Pb, and bulk C-O-S isotope analyses, together with a detailed dataset of the ore deposit geology and mineralogy, aimed at revealing the ore genesis of the Fule deposit and its relationship with the ELIP. The outcomes will have wide significance for further exploration of carbonate-hosted Pb-Zn deposits in the ELIP and can open the door to similar situations in other Large Igneous Provinces where they interact with carbonate rocks.

2. Geological setting

2.1 Geology of the western Yangtze Block

The Yangtze Block is bounded by the Cathysia Block to the southeast, the Sanjiang Orogenic Belt to the southwest and the Songpan-Ganzê Orogenic Belt to the northwest (Fig. 1a). In the western Yangtze Block, the basement is comprised of late Paleoproterozoic to early Neoproterozoic metamorphic rocks, which were intruded by late Neoproterozoic and Mesozoic igneous rocks (Fig. 1b) (Gao et al., 2011; Zhou et al., 2014c; Hu et al., 2017). The cover sequence in the western Yangtze Block is late Ediacaran to Triassic marine, and Jurassic to Cenozoic continental sedimentary rocks (Liu and Lin, 1999; Yan et al., 2003;
The platform carbonate sequences constitute an important part of the late Ediacaran to Triassic marine strata, which are rich in salt-gypsum and organic matters (Huang et al., 2004; Jin, 2008; Zhou et al., 2014a). The western margin of the Yangtze Block is characterized by multiple processes of tectonic activity, which strictly controlled sedimentation, magmatism and mineralization (Figs. 1b, 2).

The late Permian ELIP (263-259 Ma) covers ~0.3×10^6 km^2 of the western Yangtze Block and eastern Songpan-Ganzê Orogenic Belt (Fig. 1a-b), with displaced correlative units in northern Vietnam (Song Da zone). It hosts many economically important Fe-Ti-V oxide deposits, Ni-Cu-(PGE) sulfide deposits and native Cu deposits (Zhou et al., 2002; Ali et al., 2005; Zhu et al., 2007; Jian et al., 2009; Shellnutt, 2014; Tran et al., 2016). The Emeishan flood basalts constitute a significant part of the ELIP, and are up to ~5 km maximum thickness in the western part of the ELIP (i.e. Yunnan), whereas the maximum thickness is only a few hundred meters in the eastern part (i.e. Guizhou) (Xu et al., 2001; Pirajno, 2013; Shellnutt, 2014). After eruption of the Emeishan basalts, the Indosinian Orogeny (257-200 Ma) resulted from closure of Paleotethys (Carter et al., 2001; Lepvrier et al., 2004; Enkelmann et al., 2007; Reid et al., 2007; Pullen et al., 2008; Qiu et al., 2016), resulting in faulting and folding that structurally controlled the occurrence of hydrothermal deposits in the western Yangtze Block (Fig. 1b) (Liu and Lin, 1999; Zaw et al., 2007; Zhu et al., 2007; Hu and Zhou, 2012; Chen et al., 2015).
The SYG Pb-Zn metallogenic province covers ~0.2×10^6 km² of SW Sichuan, NE Yunnan and NW Guizhou provinces (Fig. 1a), and hosts 408 carbonate-hosted Pb-Zn deposits in late Mesoproterozoic to late Paleozoic, all of which are spatially associated with the late Permian Emeishan basalts (Fig. 1b) (Liu and Lin, 1999; Zhou et al., 2013a; Wang et al., 2014; Zhang et al., 2015; Hu et al., 2017). These deposits were formed between 245 Ma and 192±7 Ma as constrained by Pb model ages, and hydrothermal calcite/fluorite Sm-Nd and sphalerite/pyrite Rb-Sr isochron dating (Guan and Li, 1999; Si et al., 2006; Li et al., 2007; Lin et al., 2010; Mao et al., 2012; Zhou et al., 2013a, 2013b, 2015; Zhang et al., 2015). These dates broadly match the ages of basalt-hosted native Cu deposits in the ELIP (231±3-225±2 Ma: Zhu et al., 2007), Carlin-like Au deposits in the Youjiang Basin (235±33-204±19 Ma: Chen et al., 2015) and detritus (~230-206 Ma) in the Songpan-Ganzê Orogenic Belt that resulted from collision with the western Yangtze Block during the late Triassic (Enkelmann et al., 2007).

2.2 Regional geology of the Fule district

The Fule carbonate-hosted Pb-Zn deposit is located 110 km NE of Luoping City, NE Yunnan Province (Fig. 1b). The exposed rocks include the Mesoproterozoic Kunyang Group basement rocks, and late Paleozoic (middle Devonian, Carboniferous and Permian) and early Mesozoic (early-middle Triassic) cover sequences (Si et al., 2006; Lu et al., 2015). The Kunyang Group is composed mainly of mudstone and metasandstone, which are unconformably overlain by
the middle Devonian Haikou Formation that consists mainly of limestone and sandstone. The Haikou Formation sedimentary rocks are unconformably overlain by early Carboniferous coal-bearing clastic rocks and late Carboniferous carbonate rocks. Sedimentary rocks of Carboniferous age are conformably overlain by early Permian limestone, shale and sandstone, which are in turn conformably overlain by limestone and dolostone of middle Permian Yangxin Formation. Carbonate rocks of the Yangxin Formation are disconformably overlain by late Permian, which consists mainly of Emeishan basalts, and coal-bearing clastic rocks. Late Permian clastic rocks are conformably overlain by early Triassic sandstone, mudstone and carbonates, which are in turn overlain conformably by middle Triassic carbonates.

The Mile-Shizong-Shuicheng fault (Fig. 1a) and Faben anticline (Si et al., 2011; Lu et al., 2015) form major structural features in the studied district. The Mile-Shizong-Shuicheng regional fault strikes NE-SW, with a slight bend in the Fule district (Fig. 1b). It consists of a series of secondary fractures that controlled the distribution of Pb-Zn deposits (Figs. 2-3) (Liu and Lin, 1999; Zhou et al., 2013b; Qiu et al., 2016). The Faben anticline is 20 km in length and 10 km wide, and is a gentle fold structure whose axis strikes 030-040° (Si et al., 2006).

Carboniferous rocks in the central part of the anticline have a horizontal dip angle, whereas Permian rocks dip at 5°-10°. The Emeishan flood basalts are widely distributed in the Fule district, but their thickness is relatively thin, as they form the southeastern margin of the ELIP (Liu and Lin, 1999; Xu et al., 2001;
More than 10 Pb-Zn ore deposits have been discovered over ~60 km² in the Fule district (Fig. 2), including the Fule (~10 Mt of sulfide ore with mean grades of 15-20 wt. % Zn + Pb), Fusheng (~3 Mt of sulfide ore with average grades of 15-25 wt. % Zn + Pb) and Fuli (~1 Mt of sulfide ore with mean grades of 10-15 wt. % Zn + Pb) deposits (Si et al., 2006; Lu et al., 2015). All the Pb-Zn deposits are hosted by carbonate rocks of the middle Permian Yangxin Formation (Figs. 2-3). Ore bodies occur as stratiform or lentiform shapes along bedding-planes (Fig. 3), and are structurally controlled by the regional fault-fold system (Figs. 1b, 2-3). A principal feature of these deposits is that they are rich in Ag, Cu, Cd, Ge and Ga (Si et al., 2006; Ye et al., 2011; Zhu et al., 2017).

3. Geology of the Fule ore deposit

3.1 Stratigraphy and lithology

In the Fule mining area, the exposed lithologies include Permian, early-middle Triassic and Quaternary rocks (Figs. 2-3). The late Carboniferous Maping Formation was exposed by underground mining tunnels (Fig. 3), and consists mainly of dolomitic bioclastic limestone. The Maping Formation limestone is conformably overlain by the early Permian Liangshan Formation that is mainly composed of limestone, shale and sandstone. Sedimentary rocks of the Liangshan Formation are conformably overlain by carbonate rocks of the middle Permian Yangxin Formation, which are in turn disconformably overlain...
by late Permian Emeishan flood basalts. The basalts are disconformably overlain by the terrestrial coal-bearing clastic sequence of the late Permian Xuanwei Formation. Clastic rocks of the Xuanwei Formation are conformably overlain by the early Triassic Feixianguan Formation, which consists mainly of sandstone, shale and argillaceous limestone. The Feixianguan Formation sedimentary rocks are conformably overlain by the early Triassic Yongzhenning Formation that is composed mainly of carbonate rocks, which are in turn conformably overlain by oolitic dolostone and limestone of the middle Triassic Guanling Formation. Quaternary sediments locally overlie the Permian and Triassic rocks (Figs. 2-3).

3.2 Structural Geology

The major structures in the Fule mining area include secondary structures of the Mile-Shizong-Shuicheng regional fault and the right limb of the Faben anticline (Figs. 1b, and see Figs. 2-3 for the details). The F₄ fault is a normal structure and strikes 000°-030° with a length of 43 km (Figs. 2-3). The F₅ fault is a reverse fault and trends 000-045° and is 17 km long (Figs. 2-3). Another important fault, the F₆ reverse fault (Fig. 4a), is 20 km in length and strikes 000-050° (Figs. 2-3). The F₅ and F₆ reverse faults controlled the occurrence of the Pb-Zn ore bodies in the Fule mining area (Figs. 2-3).

3.3 Magmatic rocks

The Emeishan flood basalts are the only igneous rocks exposed in the Fule mining area, and have a close spatial association with all the known Pb-Zn
deposits (Figs. 2-3). The distance between the basalts and Pb-Zn ores is less
than 1 m locally (Fig. 3).

3.4 Ore bodies

Twenty-ore bodies have been discovered in the Fule deposit, all of which are
buried, and these have a total NW-SE length of 3000 m and NE-SW width of
1500 m. They have been divided into the Laojuntai and Xinjuntai sections, with
the Laojuntai section having been completely mined-out (Si et al., 2011). Ore
bodies in the Xinjuntai section occur as stratiform to lentiform shapes or as
veins along bedding-planes within the Yangxin Formation; they trend SE with a
dip of 10° (Fig. 3). The Erdong stratiform ore body is the largest one in the
Xinjuntai section, and is 1000 m in length, 300-500 m in width and 0-20 m in
thickness. The next largest is the Danaotang ore body, which is lenticular and
500 m long, 400 m wide and 0-20m thick. These large ore bodies have also
been completely mined-out. The total mined-out sulfide ore in the two sections
are more than 7 Mt (Si et al., 2013). Some medium-scale ore bodies have been
found recently, for example, the No. 108 stratiform ore body, which is 400 m
long, 200m wide and 2-12 m thick; the No. 904 lentiform ore body, which is 340
m in length, 200m in width and 1.5-15m in thickness; and the No.74 veined ore
body, which is 200 m long, 150 m wide and 3-15 m thick. Sulfide ore in these
newly-discovered ore bodies contains Zn + Pb grades up to 60 wt. %, averaging
15-20 wt. %, and 256-8171 µg/g Cd, 1.77-239 µg/g Ge, 0.74-182 µg/g Ga, 23.5-
107 µg/g Se, and 0.98-122.1 g/t Ag. The total metal reserves of Cd, Ge and Ga
are more than 4567 t, 329 t and 177 t, respectively (Si et al., 2006, 2011, 2013; Zhu et al., 2017).

3.5 Structure and texture of the sulfide ores

Previous studies showed that sulfide ore in the Fule deposit is composed mainly of sphalerite, galena and pyrite, with calcite and dolomite as gangue minerals (Figs. 4-7). In this study, Cu and Ni sulfide minerals, together with apatite (Fig. 7f), have been identified, including tetrahedrite (Figs. 6g, k, m, t and 7g-h, j, l-s), chalcopyrite (Fig. 6i, r-t), millerite, polydymite, and pentlandite (Fig. 7s).

The main sulfide minerals occur as either massive (Figs. 4c-f, h-o, q-s and 5a, e, k-q), veined (Figs. 4h, 5b-d, i-j, r-t and 6a-c), disseminated (Figs. 4p and 5g-h, n, r-s) or brecciated (Figs. 4g, 5f and 6d) structure. Aggregations of sulfide minerals in the wall rocks form massive ore (Figs. 4c-e, i-j, n-o and 5a, k); sulfide veins between millimeter-scale veinlets (Figs. 4h, 5b-d and 6a) or centimeter-scale veins of calcite/dolomite (Figs. 5i-j, r-t and 6b-c) constitute the veined ore, whereas in the disseminated ore, sulfide minerals occur as speckles or single crystals irregularly distributed in the wall rocks (Fig. 4p) or in calcite/dolomite veins (Fig. 5g-i, n, r-s). In the brecciated ore, fragments of sulfides and carbonate rocks are enclosed in calcite/dolomite cements (Figs. 4g and 5f).

The hydrothermal minerals occur in a variety of forms and may be granular (Figs. 6e-t and 7a-t), form replacement minerals (Fig. 6r), have embayments (Figs. 6f, l, s and 7b, d, j, m), occur in solid-solution (Figs. 6i, s and 7a-b, d, k, o, s), show stress deformation (Figs. 6e-f, l-m and 7g-h) or have cataclastic
textures (Fig. 6n). Granular form is common and sphalerite occurs as euhedral to anhedral fine- (< 0.5 mm, Figs. 6e-f, h, j-m, o-r, t and 7a, c, h-i, p), medium- (0.5-5 mm, Fig. 6g, k-l and 7a-d, q) to coarse-grained minerals (> 5 mm, Figs. 5i, n, r-s, 6b-d, i, s and 7t); Galena is euhedral to anhedral, fine- to coarse-grained with grain sizes of 0.01-15 mm (Figs. 5k, 6c, e-f, l-m and 7a-h, j, i-t).

Stress deformation is a common feature in galena (Figs. 6e-f, l-m and 7g-h). Chalcopyrite has a solid-solution texture within sphalerite (Fig. 6i, s) or else replaces pyrite (Fig. 6r). The contacts between sphalerite and galena (Fig. 6f, l) or calcite/dolomite (Fig. 6s and 7b, d, j, m) commonly show embayment. Pyrite has commonly has a cataclastic texture (Figs. 6h, n and 12). In contrast, millerite and pentlandite occur as a solid-solution in polydymite (Fig. 7s), whereas calcite and dolomite often form solid-solutions (Fig. 7a-b, d, k, o, s).

3.6 Mineral paragenesis

Based on macro-scale geological observations, microscope identification and scanning electron microscopy (SEM) analysis, together with previously published geological data (Si et al., 2006, 2011), the ore-forming process of the Fule deposit can be divided into diageneric, hydrothermal and supergene periods (Fig. 8). The hydrothermal period can be further divided into sulfide + carbonate (including two generations, i.e. I and II) and barren carbonate (includes one generation, namely III) stages (Fig. 8). There are two principal sulfide ore types: sphalerite-dominated (Figs. 4h, q, 5a-j, p-t and 6a-c) and sphalerite + galena-dominated (Figs. 4c-f, i-p, r-s, 5k-o and 6d). These two ore
types have the following spatial distribution from bottom to top as follows:

massive sphalerite-dominated ore often occurs at the bottom of the ore body
(Fig. 4j, m, o, q), followed by massive sphalerite + galena-dominated (Figs. 4c-f, i-p, r-s and 5n) or sphalerite-dominated interbedded veins (Figs. 4h, 5b-d, i-j, r-t and 6a-c), with disseminated sphalerite + galena-dominated ore commonly at the top (Figs. 4p and 5g-j, n, r-s).

Overall, there are at least two generations of hydrothermal minerals formed in the two types of sulfide ore. Sphalerite-I is euhedral (Figs. 5e, h, j, o, r and 6i) to anhedral (Figs. 5f-g, k-n and 6a-e) fine- to medium-grained (0.01-0.5 mm), coexisting with galena-I (Figs. 6a-c and 7a, q), pyrite-I (Figs. 6k, 7e and 10), tetrahedrite (Figs. 6m and 7h, q) or calcite/dolomite-I (Figs. 6a-c and 7a-b), and is enclosed by galena-II (Figs. 6f, l-m and 7h, l), as well as being filled by galena-II (Fig. 6g, q and 7g, t), tetrahedrite (Figs. 6h and 7g), pyrite-II (Fig. 6n), calcite/dolomite-II (Figs. 6g, k, n, q and 7a, e) or replaced by chalcopyrite (Fig. 6i). Sphalerite-II occurs as subhedral to anhedral medium- to coarse-grained crystals (0.5-10 mm) that coexist with galena-II (Figs. 6e-f, l, p, r and 7h, j, l, p, r), pyrite-II (Figs. 6h, r and 7c-d), tetrahedrite (Fig. 6t and 7l, p, r), chalcopyrite (Fig. 6r) or calcite/dolomite-II (Fig. 6e-f, p, s-t), and are enclosed by calcite/dolomite-II (Figs. 6h, j, o, r and 7i). Galena-I is euhedral to anhedral fine- to medium-grained (0.01-0.1 mm), and coexists with sphalerite-I (Figs. 6a-c and 7a, q), pyrite-I (Fig. 7e) or calcite/dolomite-I (Figs. 6a-c and 7a), and is enclosed by pyrite-II (Fig. 7c-d) or calcite/dolomite-II (Fig. 7e, m, o). Galena-II forms
subhedral to anhedral medium- to coarse-grained crystals (0.1-15 mm) that coexist with sphalerite-II (Figs. 6e-f, l, p, r and 7h, j, l, p, r), tetrahedrite (Figs. 6g and 7l-m, o-p), or calcite/dolomite-II (Figs. 6e-g, p-r and 7m-o), and enclose sphalerite-I (Figs. 6f, l-m and 7h, l), pyrite-I (Figs. 6r and 7n) or tetrahedrite (Figs. 6m and 7h, j, n, r), as well as filling sphalerite-I (Figs. 6g, q and 7g, t). Pyrite-I coexists with sphalerite-I (Figs. 6k, 7e and 11) or galena-I (Fig. 7e), and is enclosed by galena-II (Figs. 6r, and 7n) or calcite/dolomite-II (Fig. 7e). Pyrite-II coexists with sphalerite-II (Figs. 6h, r and 7c-d) or calcite/dolomite-II (Figs. 6h, n, r and 7c-d), and encloses galena-I (Fig. 7c-d), as well as being replaced by chalcopyrite (Fig. 6r). Syn-ore calcite/dolomite-I occurs as crumbs or millimeter-scale discrete veinlets that enclose or coexist with sphalerite-I and galena-I (Figs. 6a-c and 7a-b). Syn-ore calcite/dolomite-II forms centimeter-scale veins (Figs. 5i-j, r-t and 6b-d) that fill, cement or coexist with two generations of sulfide minerals (Figs. 6-7). Post-ore calcite/dolomite-III occurs as veinlets or stockworks that fill fractures in the sulfide ores (Figs. 4e-g and 6a) or cement carbonate breccias (Fig. 4b, t). In addition, millerite and pentlandite coexists with galena-I and all are enclosed by polydymite (Fig. 7s). Apatite occurs as euhedral crystal and is enclosed by dolomite-III that fills fractures in galena-II (Fig. 7f).

3.7 Wall rock alteration

Wall rock alteration includes chloritization and carbonatization, which can be divided into pre- and post-ore stages. The pre-ore stage of chloritization
generated chlorite along fault planes within the basalts (Fig. 4a), and carbonatization recrystallized coarse-granular dolostone (Fig. 4b-c). The post-ore stage is of carbonatization forming barren carbonate (dolomite and calcite) veins or veinlets, which cement/fill fractures within sulfide ore (Figs. 4e-g and 6a) or wall rocks (Fig. 4b, t). The pre-ore chloritization/carbonatization, resulted from water/rock interaction between fluids and basalts/carbonates, usually occur along fluid migration pathways. The post-ore alteration is always close to sulfide ore, and thus can be used as a clue in mineral exploration.

4. Samples and analytical methods

4.1 Samples

Sulfide ore samples were collected mainly from the newly-discovered ore bodies, because the other main ore bodies had been mined-out completely (Si et al., 2011). Seven calcite and ten sulfide mineral separates were handpicked from seventeen sulfide ore samples, which were used for bulk C-O and S isotope analyses, respectively. Four fresh limestone samples were also used for bulk C-O isotope analysis. Twelve polished thin sections of sulfide ores were used for NanoSIMS in situ S and Fs-LA-MC-ICPMS in situ Pb isotope analyses. In situ δ³⁴S values for galena were not obtained, because no galena standard was available (Tang et al., 2014; Zhang et al., 2014). Also, no in situ Pb isotopic ratios of pyrite and sphalerite were obtained as their high Hg contents could markedly affect the quality of the data (Chen et al., 2014; Bao et al., 2016, 2017;
4.2 Analytical methods

4.2.1 Bulk C-O isotope analysis

Bulk C-O isotope analysis was performed at the State Key Laboratory of Ore Deposit Geochemistry (SKLODG), Institute of Geochemistry (IG), Chinese Academy Sciences (CAS), using a Finnigan MAT-253 mass spectrometer. Calcite separates and limestone whole-rock reacted with 100% H$_3$PO$_4$ to produce CO$_2$. The analytical precisions calculated from replicate analyses of unknown samples were better than 0.2‰ (2σ) and 1‰ (2σ) for δ13C and δ18O, respectively. The δ13C and δ18O values were reported relative to the Vienna Pee Dee Belemnite (V-PDB) standard and Standard Mean Ocean Water (SMOW), respectively.

4.2.2 In situ S isotope analysis

In situ S isotope analysis was undertaken at the Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, CAS, using a CAMECA NanoSIMS. The measurements were made using 3 different settings of the Faraday cups/electron multiplier (EM) detectors, in order to meet the diverse requirements for spatial resolution. The standard-sample-standard bracketing method was applied to correct for instrumental mass fractionation. Target spots of the most homogeneous isotopes (such as 32S, 34S and 75As in Fig. 9) were selected for in situ S isotope analysis in order to obtain the most credible data. Internal standards included PY-1117 (pyrite), CS01 (pyrite), JC-
14 (sphalerite) and MY09-12 (sphalerite), and international standards included Balmat (pyrite and sphalerite) and CAR 123 (pyrite). The analytical precision calculated from replicate analyses of the unknown samples was better than 0.2‰ (1σ). The in situ S isotopic compositions were reported relative to the Vienna Canyon Diablo Troilite (V-CDT) standard. Details of instrument parameters and NanoSIMS in situ S isotope analysis techniques were described in Zhang et al. (2014).

4.2.3 Bulk S isotope analysis

Bulk S isotope analysis was undertaken at the SKLODG, IGCAS, using a Finnigan MAT-253 mass spectrometer. Sulfide mineral powders (200 mesh) were mixed with CuO powder, and then were heated to extract SO₂. The analytical uncertainty was better than 0.1‰ (1σ) calculated from replicate analyses of the IAEA international standards: IAEA S1 (-0.3‰), IAEA S2 (+22.62‰) and IAEA S3 (-32.49‰). The analytical precision calculated from replicate analyses of the unknown samples is better than 0.2‰ (2σ). The bulk δ³⁴S values are reported relative to the Vienna Canyon Diablo Troilite (V-CDT) standard.

4.2.4 In situ Pb isotope analysis

In situ Pb isotopes were analyzed at the State Key Laboratory of Continental Dynamics, Northwest University, using a Nu II MC-ICPMS instrument combined with a 266 nm femtosecond (fs) laser ablation system. The surface of the polished thin sections was cleaned with milli-Q water (18.2 MΩ·cm). Line scan
Ablation consisted of background collection for 20 s followed by 50 s of laser ablation for signal collection. Laser ablation parameters were: 15 μm spot size for galena; 100% output energy, >600 μJ; 100% energy density, 6 J/cm²; laser frequency, 5-50 Hz; and ablation way, line 3 μm/s. These ensured a strong enough Pb signal for the in situ analysis of galena samples. The Tl (20 ppb), NIST SRM 997 (205Tl/203Tl = 2.38890) and NIST SRM 610 glass served as internal and external standards. The repeated analyses of NIST SRM 610 glass yielded highly reliable and reproducible results during the whole analytical process with mean $^{206}\text{Pb}/^{204}\text{Pb} = 17.052 \pm 0.003$, $^{207}\text{Pb}/^{204}\text{Pb} = 15.515 \pm 0.003$ and $^{208}\text{Pb}/^{204}\text{Pb} = 36.980 \pm 0.007$ (1 s, $n = 183$). Details of instrument parameters and fs LA-MC-ICP-MS in situ Pb isotope analyses were described in Bao et al. (2016).

5. Analytical results

5.1 Bulk C-O isotopic compositions

Bulk $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values of syn-ore calcite separates and fresh limestone whole-rock samples are listed in Table 1 and are shown in Figure 10. Syn-ore calcite (generation II) separates have $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values ranging from +2.57 to +3.01‰ and +16.83 to +19.92‰, respectively. $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values of fresh limestone whole-rock samples range from +1.58 to +2.63‰ and +21.85 to +24.01‰, respectively. The $\delta^{13}\text{C}$ values of syn-ore calcite can be compared with those of fresh limestone, but the former has slightly lower $\delta^{18}\text{O}$ values than
5.2 In situ and bulk $\delta^{34}S$ values

In situ and bulk $\delta^{34}S$ values are presented in Table 2 and are shown in Figures 11-12. The NanoSIMS in situ $\delta^{34}S$ values of sulfide minerals range from +9.8 to +23.1‰, of which pyrite and sphalerite crystals have $\delta^{34}S$ values ranging from +10.3 to +19.4‰ and +9.8 to +23.1‰, respectively. In situ $\delta^{34}S$ values of pyrite-I and pyrite-II crystals range from +12.8 to +19.4‰ and +10.3 to +10.4‰, respectively. Sphalerite-I and sphalerite-II crystals have in situ $\delta^{34}S$ values ranging from +12.5 to +23.1‰ and +9.8 to +16.9‰, respectively. A principal feature of both pyrite and sphalerite crystals is that their $\delta^{34}S$ values decrease gradually from core to rim (pyrite: decreasing from +19.4 to +10.3‰; sphalerite: decreasing from +23.1 to +9.8‰; Figs. 11 and 12a). Sulfide minerals have bulk $\delta^{34}S$ values ranging from +10.0 to +16.4‰, of which sphalerite has $\delta^{34}S$ values (+14.16-+16.43‰) higher than those of galena (generation II: +10.04-+11.86‰). Sphalerite-I has bulk $\delta^{34}S$ values (+14.16-+16.43‰) similar to those of sphalerite-II (+14.21-+15.10‰). Another major feature is that bulk S isotopic data of sphalerite have a much narrower range than in situ S isotopic data (Fig. 11a-b).

5.3 In situ Pb isotopic compositions

In situ Pb isotopic ratios of galena are listed in Table 3 and are shown in Figures 13-14. Galena (generation I and II) crystals have in situ $^{206}\text{Pb}/^{204}\text{Pb}$ ratios of 18.572-18.617, $^{207}\text{Pb}/^{204}\text{Pb}$ ratios of 15.711-15.728 and $^{208}\text{Pb}/^{204}\text{Pb}$ ratios of
38.592-38.727. In situ Pb isotopic ratios of galena-I are as follows: \(^{206}\text{Pb}/^{204}\text{Pb} = 18.572-18.598, ^{207}\text{Pb}/^{204}\text{Pb} = 15.711-15.728\) and \(^{208}\text{Pb}/^{204}\text{Pb} = 38.592-38.695\) and in situ Pb isotopic ratios of galena-II are: \(^{206}\text{Pb}/^{204}\text{Pb} = 18.580-18.617, ^{207}\text{Pb}/^{204}\text{Pb} = 15.712-15.727, \) and \(^{208}\text{Pb}/^{204}\text{Pb} = 38.597-38.727.\) The main feature is that \(^{206}\text{Pb}/^{204}\text{Pb} \) and \(^{208}\text{Pb}/^{204}\text{Pb} \) ratios of galena-I are lower than those of galena-II (Fig. 14a-b).

6. Discussion

6.1 Sources of ore-forming elements and associated fluids

6.1.1 New insights from C-O isotopes

Mineralogical records reveal that calcite and dolomite are the two main C-bearing minerals in the sulfide ores (Figs. 4-8). Thus, HCO\(_3^-\) and H\(_2\)CO\(_3\) [occurring as CO\(_2\) (aqueous)] are two dominant C species in the hydrothermal fluid, as supported by the analysis of fluid inclusions in sphalerite (Li ZL unpublished data). Therefore, the calculated \(\delta^{13}\text{C}_{\text{CO}_2}\) value is approximate to the theoretical \(\delta^{13}\text{C}_{\text{fluid}}\) value, namely \(\delta^{13}\text{C}_{\text{CO}_2} \approx \delta^{13}\text{C}_{\text{fluid}}\), if the fractionation of C isotopes between HCO\(_3^-\) (liquid) or H\(_2\)CO\(_3\) and CO\(_2\) (gas) is negligible (Ohmoto, 1972; Hoefs, 2009). The \(\delta^{13}\text{C}_{\text{CO}_2}\) values were calculated using the temperature function of 1000 ln\(\alpha\)\(\text{(CO}_2\text{-Calcite)} = -2.4612 + 7.663 \times 10^3 / (t + 273.15) - 2.988 \times 10^6 / (t + 273.15)^2 \) (Bottinga, 1968; “t” [200 °C] is an average homogenization temperature of fluid inclusions in sphalerite, Li ZL unpublished data). Similarly, the \(\delta^{18}\text{O}_{\text{H}_2\text{O}}\) values were calculated using the temperature function of 1000 ln\(\alpha\)
\[
(Ca_{\text{c}}l_{\text{ite}} - H_2O) = 2.78 \times 10^6 / (t + 273.15)^2 - 3.39 \quad (O'Neil \ et \ al., \ 1969).
\]
We obtained \(\delta^{13}\text{C}_{\text{fluid}}\) and \(\delta^{18}\text{O}_{\text{fluid}}\) values having a range of +2.96--3.40‰ and +7.80--+10.89‰, respectively (Table 2; Fig. 10).

It has been well-documented that \(\delta^{13}\text{C}\) and \(\delta^{18}\text{O}\) values of different geological reservoirs are distinct (Fig. 10). For instance, typical marine carbonate rocks have \(\delta^{13}\text{C}\) values of -4--+4‰ and \(\delta^{18}\text{O}\) values of +20--+30‰ (Veizer and Hoefs, 1976), the \(\delta^{13}\text{C}\) and \(\delta^{18}\text{O}\) values of mantle-derived \(\text{CO}_2\) range from -8 to -4‰ and +6 to +10‰, respectively (Taylor et al., 1967; Demény et al., 1998), whereas sedimentary organic matters have \(\delta^{13}\text{C}\) and \(\delta^{18}\text{O}\) values mainly ranging from -30 to -15‰ and +24 to +30‰, respectively (Kump and Arthur, 1999; Hoefs, 2009). Therefore, C-O isotopes can provide an important constraint on the source of ore-forming fluids.

Compared with the above three main reservoirs of \(\text{CO}_2\), the calculated \(\delta^{13}\text{C}_{\text{fluid}}\) values (+2.96--3.40‰) are higher than those of organic matters and the mantle, but are similar to those of carbonate rocks and limestone (Fig. 10). However, the calculated \(\delta^{18}\text{O}_{\text{fluid}}\) values (+7.80--+10.89‰) are lower than those of organic matters, carbonate rocks and limestone (Fig. 10), but are similar to those of mantle or metamorphic fluids (+2--+25‰: Hoefs, 2009). This means that C is mainly derived from limestone, whereas the O isotope signature may be related to water/rock (W/R) interaction between mantle and/or metamorphic fluids and limestone.

Geologically, the mantle-derived basalts of the ELIP and the metamorphic rocks...
of the Mesoproterozoic Kunyang Group are spatially associated with Pb-Zn deposits in the Fule region (Figs. 1b, 2-3), suggesting that both mantle magmatism and metamorphism have the potential to provide elements and associated fluids to the hydrothermal system, as suggested in other places (Pirajno, 2000; Davidheiser-Kroll et al., 2014). In addition, the occurrence of abundant Cu and Ni sulfide minerals (Figs. 6-8) indicates a genetic relationship between Emeishan magmatism and Pb-Zn mineralization. Furthermore, evidence from in situ Pb isotopic data suggests that the metal Pb was derived from a well-mixed source involving the basalts, sedimentary rocks and metamorphic rocks (see below). Therefore, we propose that the O isotope signature was generated by W/R interaction between mixed (mantle and metamorphic) fluids and limestone.

6.1.2 Constraints from in situ and bulk S isotopes

Primary ore in the Fule deposit is composed of sphalerite, galena, pyrite, and Cu and Ni sulfide minerals, but lacks sulfate minerals (Figs. 4-8). Hence, the δ^{34}S values of sulfide minerals approximate those of the corresponding fluids, namely δ^{34}S$_{\text{sulfide}} \approx \delta^{34}S_{\text{fluid}}$ (Ohmoto, 1972; Seal, 2006). The δ^{34}S values of sulfide minerals obtained by NanoSIMS in situ analyses compared with bulk techniques range from +9.8 to +23.1‰ (average +15.5‰) and +10.04 to +16.43‰ (average +13.3‰), respectively (Figs. 11-12), reflecting the enrichment of heavy S isotopes in the hydrothermal fluids. The mean δ^{34}S value of sulfide minerals is +14.8‰, which approximates that of the ore-forming fluids. Such S
isotope signatures differ from mantle-derived S (0 ± 3‰: Chaussidon et al., 1989), and are similar to Permian seawater (+11-+15‰: Claypool et al., 1980; Seal, 2006). Given that the S was completely sourced from Permian seawater, as the thermochemical sulfide reduction (see below) can form up to +15‰ of the Δ^{34}S$_{\text{sulfate-sulfide}}$ value (Ohmoto et al., 1990; Machel et al., 1995; Worden et al., 1995; Ohmoto and Goldhaber, 1997), so the theoretical δ^{34}S$_{\text{sulfide}}$ value could drop to -4‰. The theoretically predicted δ^{34}S$_{\text{sulfide}}$ values (-7-+15‰) do not match well with the observed δ^{34}S values (+9.8-+23.1‰). Hence, Permian seawater was not the only S source for the Fule deposit.

Previous studies suggested that the sulfate-bearing evaporites (salt-gypsum rocks) that are common in the late Ediacaran to Triassic marine strata in the region, with δ^{34}S values ranging from +22 to +28‰ (Fig. 11c; Zhou et al., 2013c), overlap with those of the Ediacaran to Triassic seawater (+10-+35‰: Claypool et al., 1980; Seal, 2006). If the S was totally derived from the above evaporites or seawater, the theoretical δ^{34}S$_{\text{sulfide}}$ values (+7-+28‰ or -5-+35‰) can match reasonably well with the observed δ^{34}S values (+9.8-+23.1‰). Evidence from S isotopes for the nearby Pb-Zn deposits (Fig. 12c), including the Shaojiwan (hosted in early Permian) (Zhou et al., 2013c), Huize (hosted in early Carboniferous) (Li et al., 2006, 2007), Nayongzhi (hosted in early Cambrian and late Ediacaran) (Jin et al., 2016) and Maozu (hosted in late Ediacaran) (Zhou et al., 2013b), also suggests that the S in the hydrothermal fluids was derived from multiple S reservoirs. Hence, we conclude that the S in the Fule deposit...
had multiple sources.

Thermochemical sulfate reduction (TSR) and bacterial sulfate reduction (BSR) are two crucial processes for the formation of S^2- from SO_4^{2-}, and they are temperature-dependent (Ohmoto et al., 1990; Machel et al., 1995; Hoefs, 2009; Zhou et al., 2013c). TSR occurs at a relatively high temperature (higher than 100-140°C: Machel et al., 1995; Worden et al., 1995) and can generate a large amount of S^2- with relatively stable $\delta^{34}S$ values (Ohmoto et al., 1990; Seal, 2006; Zhou et al., 2013c). BSR occurs at a relatively low temperature (lower than 110°C: e.g. Jørgenson et al., 1992; Worden et al., 1995; Basuki et al., 2008).

As the metallogenic temperature (180-210°C, based on fluid inclusions in sphalerite-II: Li ZL unpublished data) is too high for bacteria to survive, hence BSR played an insignificant role in the formation of S^2-. In addition, the sulfide ore reserves of the Fule deposit are more than 10 Mt, which suggests a significant requirement of S^2-. This means that TSR has played a crucial role in the formation of S^2- from SO_4^{2-} in the Fule deposit.

The $\delta^{34}S$ values of pyrite-I crystals (rims: +12.8+-13.4‰) are higher than those of paragenetic sphalerite-I crystals (rims: +12.5‰) in sample Fl14-95 (Fig. 11). Similarly, in sample Fl14-65 (Fig. 11), pyrite-II crystals have $\delta^{34}S$ values (rims: +10.3+-10.4‰) higher than those of paragenetic sphalerite-II crystals (rims: +9.8+-10.1‰). Such S isotope signatures suggest that the fractionation of S isotopes between pyrite and paragenetic sphalerite reached equilibrium (Ohmoto, 1972; Seal, 2006). In addition, sphalerite-II has $\delta^{34}S$ values (+14.21-
(+15.10‰) higher than those of galena-II (+10.04-+11.86‰) (Fig. 12a), which indicates that S isotope fractionation between sphalerite and galena had also reached equilibrium (Seal, 2006; Hoefs, 2009). Hence, equilibrium fractionation played an important role in the variation of δ³⁴S values for the sulfide minerals in the Fule deposit. On the other hand, the δ³⁴S values decrease gradually from core to rim in both sphalerite and pyrite crystals (Fig. 11), which suggests that other factors may have controlled the S isotope signatures, such as changes in the physico-chemical conditions (T, pH, fO₂, fS, etc.), Rayleigh fractionation, or mixing of multiple S reservoirs (Ohmoto, 1972; Hoefs, 2009). Previous studies suggested that physical and chemical conditions are crucial factors that can cause large variations in S isotopes (Seal, 2006; Hoefs, 2009). However, the circulating process (dissolution and re-precipitation) of local carbonate rocks that was caused by water/rock (W/R) interaction (O’Neil et al., 1969; Zheng and Hoefs, 1993; Warren, 2000) can help keep a metastable metallogenic environment (see below). Hence, changes in physical-chemical conditions can be ruled out. In contrast, as a consequence of dynamic fractionation, heavy S isotopes are expected to be more enriched in the cores of sulfide minerals than their rims (Figs. 11-12) during precipitation, due to the fact that light S isotopes are more enriched in the gas phase (H₂S) (Seal, 2006; Zhou et al., 2013c). Alternatively, a mixing process of multiple reservoirs and associated fluids can cause distinct variation of S isotopes (Basuki et al., 2008; Zhou et al., 2013c), and our isotopic data imply that multiple reservoirs were involved (Figs. 11-12),
providing the S source for the formation of the Fule sulfide ore. Therefore, both
equilibrium and dynamic fractionation of S isotopes occurred during sulfide
precipitation.

6.1.3 Evidence from in situ Pb isotopes

The extremely low U and Th contents in sulfide minerals (Carr et al., 1995;
Muchez et al., 2005; Zhou et al., 2013a; Pass et al., 2014) enables us to use
the Pb isotopic ratios of galena formed at different paragenetic stages in the
Fule deposit to investigate the nature of the hydrothermal fluids. Uniform in situ
Pb isotopic ratios of galena suggest a single or a well-mixed source of Pb (Fig.
13). The Pb isotopic data plot above the Pb evolution curve of the average
upper continental crust in the diagram of $^{207}\text{Pb}/^{204}\text{Pb}$ vs. $^{206}\text{Pb}/^{204}\text{Pb}$ (Fig. 13)
(Zartman and Doe, 1981).

Previous studies suggested that there are three potential metal sources in the
SYG province, namely the late Permian Emeishan basalts, ore-hosting late
Ediacaran to middle Permian sedimentary rocks and Meso- to Neo-proterozoic
metamorphic rocks (Zheng and Wang, 1991; Zhou et al., 2001, 2013a; Huang
et al., 2004; Li et al., 2007, 2015, 2016; Zhang et al., 2015; Jin et al., 2016; Zhu
et al., 2017). Compared with the basalts, sedimentary rocks and basement
rocks, galena has Pb isotopic ratios that differ from all of them in the diagram
of $^{207}\text{Pb}/^{204}\text{Pb}$ vs. $^{206}\text{Pb}/^{204}\text{Pb}$ (Fig. 13). This means that there was not a single
source for the Pb. In addition, galena displays higher $^{207}\text{Pb}/^{204}\text{Pb}$ than those of
the basalts and basement rocks at a given $^{206}\text{Pb}/^{204}\text{Pb}$ ratio (Fig. 13), but both
the galena and the basalts, sedimentary rocks and basement rocks have the same $^{206}\text{Pb}/^{204}\text{Pb}$ ratio at a given $^{206}\text{Pb}/^{204}\text{Pb}$ ratio (Fig. 13). It should be noted that many of the ELIP basalts show evidence of crustal contamination and that it is possible the contamination originated from carbonate rocks (possibly their fluids) (Xu et al., 2001; Pirajno, 2013; Shellnutt, 2014). Hence, we cannot rule out contribution from the ELIP basalts (6-323 µg/g Cu, 66-156 µg/g Zn and 3-30 µg/g Pb: Huang et al., 2004; Xu et al., 2001, 2007) and we consider a well-mixed metal source is a reasonable postulate (Fig. 13).

There is a gradual increase in the $^{206}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ ratios from galena-I to galena-II (Fig. 14a-b), which can be explained by: (a) a high $^{206}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$-enriched source provided more Pb for galena-II than galena-I, or (b) galena-I had lower ^{238}U and ^{232}Th contents than galena-II.

Because of the low U and Th contents in galena, and the lack of any distinct difference between the two generations of galena (Zhou et al., 2011; Ye et al., 2011 and unpublished data), so a highly radiogenic Pb-enriched source (such as basalts or basements), which may have provided more Pb to the hydrothermal fluids in the late phase is possible. This explanation is further supported by the occurrence of abundant Cu and Ni sulfide minerals in the late phase (Figs. 6-8).

6.2 Precipitation mechanisms of hydrothermal minerals

6.2.1 Mechanisms of calcite precipitation

As the solubility of calcite decreases with increase in temperature, so cooling
of the fluid itself could not cause calcite precipitation (Zheng, 1990; Barnes, 1997; Hoefs, 2009). There are three main processes that can lead to calcite precipitation in an open hydrothermal system, i.e. fluid mixing, water/rock (W/R) interaction and CO$_2$ degassing (Zheng and Hoefs, 1993; Huang et al., 2010; Du et al., 2017). Our C isotopic data suggest that C is sourced mainly from the limestone (Fig. 10). This means that the process of fluid mixing played an insignificant role in calcite precipitation. As a consequence of W/R interaction, the circulating process between dissolution and re-precipitation in carbonate rocks can cause calcite precipitation, at least locally (Warren, 2000). Moreover, such circulating processes of precipitation \rightarrow dissolution \rightarrow re-precipitation can generate metastable conditions that are beneficial to the continuous formation of sulfide ore (Zhou et al., 2018). In addition, the C-O isotopic evolution curve of W/R interaction between fluids (initial δ^{13}C$_{\text{fluid}} = +2\%o$, δ^{18}O$_{\text{fluid}} = +6\%o$) and limestone (Fig. 15) was simulated, using the fractionation factor and equation of C-O isotopes (O’Neil et al., 1969; Zheng and Hoefs 1993). The simulation results suggest that our C-O isotopic data match well with the evolution curves of both HCO$_3^-$ and H$_2$CO$_3$ (Fig. 15) as the dominant C species (Zheng and Hoefs, 1993). Similarly, the C-O isotopic evolution curve of CO$_2$ degassing (with 0.1, 0.2, 0.3 and 0.4 mol fraction of total C and O; initial δ^{13}C$_{\text{fluid}} = +2\%o$, δ^{18}O$_{\text{fluid}} = +6\%o$) was also simulated (Fig. 16a-b). The results show that our C-O isotopic data still match well with the evolution curve of both H$_2$CO$_3$ (Fig. 16a) and HCO$_3^-$ (Fig. 16b) as the dominant C species. Hence, calcite precipitation was
controlled by both W/R interaction and CO₂ degassing.

6.2.2 Mechanisms of sulfide precipitation

Previous studies suggested that there are three main models (reduced S, local sulfate reduction, and mixing of metal and reduced S) that can account for sulfide precipitation in hydrothermal systems (Anderson, 1975; Corbella et al., 2004; Leach et al., 2005). The reduced S model requires metal and reduced S to be transported together to the depositional site; the local sulfate reduction model calls upon increasing the concentration of reduced S at the depositional site through sulfate reduction; and the mixing of metal and reduced S demands a metal-rich, but reduced S-poor brine, mixed with a fluid rich in hydrogen sulfide at the depositional site (Heijlen et al., 2003; Leach et al., 2005). Our S isotopic data suggest that S was derived from multiple reservoirs and TSR played a dominant role in the formation of S²⁻ from SO₄²⁻ (Figs. 11-12). However, our Pb isotopic data indicate that a well-mixed source of the basalts, sedimentary rocks and basement rocks provided the main metal source (Figs. 13-14). As the normal SO₄²⁻-bearing basin brines are of low temperature (usually < 100 °C) (Corbella et al., 2004; Leach et al., 2005), which is lower than the required temperature for activating TSR, so the aforementioned three models cannot reasonably explain the formation of sulfide ore in the Fule deposit. Therefore, an alternative model is proposed here, namely fluid mixing caused by TSR, which then resulted in sulfide precipitation.

6.3 Possible mineralizing age and related geological events
In the Fule mining area, the ore-bearing strata are the middle Permian Yangxin Formation (Figs. 2-3), which implies that the ore formation time was not older than middle Permian age. In addition, the evidence from mineralogy (Cu and Ni sulfide minerals) (Figs. 6g, i, k, m, r-t and 7g-h, j, l-s), and O (Fig. 10) and Pb isotopes (Figs. 13-14) reveals a genetic association with Emeishan magmatism. This reflects that mineralization may have occurred at the same time as the ELIP. The most reliable radiometric dates indicate generation of the ELIP at 263-259 Ma (Xu et al., 2001; Zhou et al., 2002; Ali et al., 2005; Shellnutt et al., 2012). On the other hand, sulfide ore in the Fule deposit occurs as stratiform to lentiform shapes or as veins along the bedding-planes, locally associated with the Mile-Shizong-Shuicheng regional fault system and the Faben anticline (Figs. 1b, 2-3). These structures were activated during the Indosinian Orogeny (Lu et al., 2015), which suggests that the Fule deposit was most likely formed during the Indosinian period (257-200 Ma: Carter et al., 2001; Enkelmann et al., 2007; Reid et al., 2007; Lepvrier et al., 2008; Pullen et al., 2008). Furthermore, according to the Pb model ages, Si et al. (2006) considered that the Fule deposit was probably formed during late Triassic to early Jurassic (~225-198 Ma). This age broadly matches the dates of the nearby Pb-Zn deposits (245-192 Ma) (Guan and Li, 1999; Li et al., 2007; Lin et al., 2010; Mao et al., 2012; Zhou et al., 2013a, 2013b, 2015; Zhang et al., 2015), native Cu deposits (230-225 Ma) (Zhu et al., 2007) and Carlin-like Au deposits (235-204 Ma) (Chen et al., 2015). Hence, the Fule and nearby deposits were formed between 250-200
Ma, and were most likely related to the ELIP and the Indosinian Orogeny that occurred after eruption of the Emeishan basalts.

6.4 Ore genesis

Sulfide ore in the Fule deposit has a spatial association with the Emeishan basalts (Figs. 1b, 2-3), which led some researchers to classify it as a distal magmatic-hydrothermal type (Xie, 1963). Other geological evidence linking mineralization to Emeishan magmatism includes the occurrence of hidden Pb-Zn veins in the basalts at Xuanwei County, NE Yunnan Province (Liu and Lin, 1999). On the other hand, sulfide ore in the Fule deposit occurs in stratiform to lentiform shapes or veins (Figs. 3-4) that are clearly stratabound. This led other researchers to classify it as a Sedimentary Exhalative-type (SEDEX) or a stratabound-type of deposit (Si et al., 2006). However, the Fule sulfide ore is hosted by middle Permian carbonate rocks, which are different from clastic rocks that host sulfide ore of SEDEX-type (Leach et al., 2005). In addition, based on the evidence of Cd isotopes, the Fule deposit was considered to be a Mississippi Valley-type (MVT) deposit (Zhu et al., 2017). Traditionally, typical MVT deposits are related to basin fluids that are characterized by low temperatures (50-200 °C) and high salinities (10-30 wt. % NaCl equiv.) and have no genetic association with magmatic activity (Leach et al., 2005, 2010). However, the study of fluid inclusions in sphalerite suggests that the ore-forming fluids in the Fule deposit are characterized by low-medium temperatures (120-260 °C) and low salinities (4-10 wt. % NaCl equiv.) (Si et al., 2006; Li ZL,
unpublished data). In addition, the occurrence of abundant Cu and Ni sulfide minerals (Figs. 6g, i, k, m, r-t and 7g-h, j, l-s), and the evidence of O (Fig. 10) and Pb isotopes (Figs. 13-14) imply that the formation of sulfide ore in the Fule deposit was associated with the ELIP. Furthermore, these features are similar to those of the unique SYG-type Huize Pb-Zn deposit (Zhou et al., 2001; Huang et al., 2004; Li et al., 2007) (Table 4). Moreover, the sulfide ore in the Fule deposit is of higher grades (up to 60 wt.% Zn + Pb, av. 15-20 wt.%) than those of MVT deposits (usually < 10. Wt.% Zn + Pb). Hence, we propose that the Fule deposit is not a typical MVT deposit and represents a new unique SYG-type of deposit that is between MVT and magmatic hydrothermal deposits.

6.5 Ore formation process and relationship with the ELIP

Pirajno (2000) established indirect links with sediment-hosted deposits (such as MVT and SEDEX-type) and mantle plumes. The thermal simulation indicates that the basalts of the EILP begin to release metal-bearing fluids at ~5-10 Ma after it erupting and this process can last over ~50 Ma (Xu et al., 2014). On the other hand, if we consider that the Pb-Zn deposits in the ELIP formed as a consequence of Indosinian tectonism (~257-200 Ma: Carter et al., 2001; Lepvrier et al., 2004; Enkelmann et al., 2007; Reid et al., 2007; Pullen et al., 2008), then it makes sense that magmatic fluids related to the Emeishan event could pass through the carbonate rocks and be involved in the mineralization. Furthermore, metal-bearing fluids (including thermal flux and volatiles) generated by Emeishan magmatism have been shown to be involved in the
formation of the Fule deposit, as evidenced by field data (Figs. 1-8), fluids compositions (Figs. 10, 12, 15-16), and in situ S (Figs. 9, 11-12) and Pb (Figs. 13-14) isotopes. In addition, hydrothermal fluids responsible for carbonate-hosted base metal deposits in the Irish Pb-Zn ore district was considered to be driven by mantle heat (Davidheiser-Kroll et al., 2014). Hence, sulfide ore in the Fule deposit has a genetic relationship with Emeishan magmatism. Between 263-259 Ma, during the eruption of the Emeishan basalts (Shellnutt, 2014), fluids were provided (thermal flux + volatiles) and there was an elevated background geothermal gradient, both of which facilitated and enhanced the mobilization and extraction of ore-forming elements from Proterozoic metamorphic rocks in the basement and Paleozoic sedimentary rocks (Fig. 17a). Following eruption of the Emeishan basalts, these metal-bearing mixed (mantle and metamorphic) fluids (initial δ^{13}C$_{\text{fluid}} = +2\%$, δ^{18}O$_{\text{fluid}} = +6\%$) were driven upward along regional faults (including the Mile-Shizong-Shuicheng fault and its subsidiaries; Fig. 1a) during the early Indosinian Orogeny (257-250 Ma) (Fig. 17b). These fluids were then released into structural units (such as the Faben anticline) when the overall tectonic regime changed from compression to extension between 250-200 Ma (Fig. 17c) (Carter et al., 2001; Reid et al., 2007; Lepvrier et al., 2008; Lu et al., 2015; Qiu et al., 2016). The fluids were then trapped by evaporitic salt and sedimentary organic-bearing units within the platform carbonate sequences at the structurally-controlled depositional sites (Fig. 17c). This process resulted in the formation of S^2- from multiple S
reservoirs via TSR and the extraction of some metals from ore-hosting strata through W/R interaction (as evidenced by C-O-S and Pb isotopes), and then resulted in the precipitation of hydrothermal minerals (Fig. 17c). Importantly during ore formation, the Emeishan basalts also acted as an impermeable and protective layer (Figs. 1b, 2-3, 17) and even acted as ore-hosting rocks, which enabled the massive accumulation of Cu, Pb-Zn, and even Au ores in the western Yangtze Block (Fig. 1b).

7. Conclusions

(a) Bulk C-O isotopic data suggest that the source of C in the Fule Pb-Zn deposit was limestone, whereas the O isotope signature is related to W/R interaction between mixed (mantle and metamorphic) fluids and limestone. W/R interaction and CO₂ degassing are two crucial processes for calcite precipitation.

(b) Both in situ and bulk S isotopic data indicate a mixed S source from multiple reservoirs and that TSR played a crucial role in the formation of S²⁻. Both equilibrium and dynamic fractionation controlled the variation in S isotopes.

(c) In situ Pb isotopic data imply a well-mixed Pb source that includes basalts, sedimentary rocks and Proterozoic basement rocks.

(d) The Fule Pb-Zn deposit thus represents a new unique SYG-type of deposit that is between MVT and magmatic hydrothermal deposits.
Acknowledgements:

This research was financially supported by the National Key Research and Development Project of China (2017YFC0602502), the Key Program of National Natural Science Foundation of China (41430315), the National Basic Research Program of China (2014CB440905), and the Visiting Scholar Project of China Scholarship Council to Jia-Xi Zhou (201604910455). We thank Profs. Lin Ye (IG CAS) and Mei-Fu Zhou (University of Hong Kong) for fruitful discussions. We thank Prof. Franco Pirajno (Associate Editor), Prof. Greg Shellnutt and anonymous reviewers for their constructive suggestions and comments.

References

isotope fingerprinting of hydrothermal activity associated with Ordovician to Carboniferous metallogenic events in the Lachlan fold belt of New South Wales. Economic Geology 90, 1467–1505.

dissolution and sulfide precipitation in Mississippi Valley-type deposits.

Mineralium Deposita 39, 344–357.

Lu, Y.H., Han, R.S., Ren, T., Qiu, W.L., Rang, H., Gao, Y., 2015. Ore-controlling characteristics of fault structures and their relations to mineralization at Fulechang Zn-Pb mining district in deposit concentration district of
northeastern Yunnan, China. Geoscience 29, 563–575.

Processes in Mineralisation. Geol Dep Univ Extens, University of Western Australia 23, 70–120.

Wei, A.Y., Xue, C.D., Xiang, K., Li, J., Liao, C., Akhter, Q.J., 2015. The ore-forming process of the Maoping Pb-Zn deposit, northeastern Yunnan, China: Constraints from cathodoluminescence (CL) petrography of

Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China: Mineralium Deposita 52, 675–686.

Figure captions

Fig. 1 a: Regional geological setting of SW China, highlighting the general study area; b: Geological sketch map of the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province (modified from Liu and Lin, 1999), which shows the distribution of Pb-Zn deposits, native Cu deposits, strata, faults and igneous rocks.

Fig. 2 Geological sketch map of the Fule district (modified from Liu and Lin, 1999), showing the distribution of Pb-Zn deposits, strata, faults and Emeishan basalts.

Fig. 3 A-B cross-section through the Fule district (modified from Liu and Lin,
1999), revealing the distribution of ore bodies, faults and strata, and the spatial relationship between sulfide ores and basalts.

Fig. 4. Field photographs of the Fule deposit; a: \(F_6 \) reverse fault plane with chloritization; b: post-ore dolomite/calcite (Dol/Cal) veins fill fractures in dolostone; c: sphalerite (Sp) and galena (Gn) occur as massive aggregates that are filled by Dol/Cal crumbs, and carbonate breccias are cemented by Dol/Cal veins; d: Dol/Cal occur as crumbs and fill fractures in massive Sp and Gn aggregates; e: massive Sp and Gn aggregates are filled/cemented by Dol/Cal veins; f: massive Sp and Gn, and carbonate breccias are filled/cemented by Dol/Cal veins or veinlets; h-n: massive Sp and Gn are filled/cemented by Dol/Cal veins; g: breccias of sulfide ore and carbonate are cemented by Dol/Cal crumb aggregates; h: interbedded sulfide veins are filled/cemented by Dol/Cal veins or veinlets; o: massive Sp and Gn; p: Dol/Cal veins fill fractures in the wall rocks or cement carbonate breccias, and Sp and Gn occur as speckles or single crystals that are irregularly distributed in the wall rocks; q-r: massive Sp and/or Gn are filled/cemented by Dol/Cal veins; t: post-ore Dol/Cal veins fill fractures in the wall rocks or cement the carbonate breccias.

Fig. 5 Photographs of hand specimens from the Fule deposit; a: dense massive sulfide ore, sphalerite (Sp) coexists with galena (Gn); b-d: interbedded sulfide veins between calcite/dolomite (Cal/Dol) millimeter-scale veinlets; e: massive
Sp and Gn are filled/cemented by Cal/Dol crumbs, veinlets or veins; f: sulfide ore breccias are cemented by Cal/Dol aggregates; g-h: Sp and Gn occur as speckles or single crystals that are either densely or sparsely distributed in dolostone, which is filled by Cal/Dol veins; i-j: Sp and Gn occur as speckles or single crystals that are distributed in Cal/Dol aggregates, which are filled by barren Cal/Dol veins; these barren veins and sulfide veins together form veined ore; k: Gn occurs as massive aggregates; l-m: massive Sp and Gn are filled by Cal/Dol fragments or veinlets; n: Cal/Dol fragments fill fractures in the massive Sp and Gn ores or host disseminated Sp; o-q: massive Sp and Gn are filled by Cal/Dol fragments or veinlets; r-t: barren Cal/Dol, speckles or single crystals of Sp and/or Gn-bearing Cal/Dol and sulfide veins form veined ore.

Fig. 6 The textural and structural features of sulfide minerals in the Fule deposit under the microscope; a: sphalerite-I (Sp-I) coexists with galena-I (Gn-I), and forms veined aggregates; calcite/dolomite-I (Cal/Dol-I) forms veined aggregates and is interbedded with sulfide veins; post-ore Cal/Dol-III fills fractures in the sulfide veins; b-c: barren Cal/Dol-II, disseminated sulfide-bearing Dol-I, and Sp-I and Gn-I veins form veined ore; d: massive Sp-II and Gn-II are filled by Cal/Dol veins; e: Sp-II occurs as euhedral to anhedral fine-grained crystals and coexist with Gn-II; f: Gn-II forms subhedral medium-grained crystals that enclose Sp-I and coexist with Sp-II; g: Sp-I forms granular crystals that are filled by Cal/Dol-II, Gn-II, and tetrahedrite (Ttr); h: granular Sp-
II coexists with granular Py-II, both of which are enclosed by Dol-II; i: Chalcopyrite (Ccp) occurs as within Sp-I; j: Sp-II forms a euhedral fine-grained crystal that is enclosed by Dol-II and Cal-II; k: anhedral Sp-I coexists with Py-I and Ttr, all of which are cemented by Cal/Dol-II; i: Gn-II forms a subhedral fine-grained crystal that encloses Sp-I and coexists with Sp-II; m: fine-grained Sp-I crystal coexists with Ttr and is enclosed by coarse-grained Gn-II crystal; n: fine-grain cataclastic Py-II crystals coexist with Cal/Dol-II, both of which fill fractures in the Sp-I; o: Sp-II forms a subhedral fine-grained crystal and is enclosed by Dol-II; p: Sp-II coexists with Gn-II and Cal/Dol-II; q: Sp-I is filled by Gn-II and Cal/Dol-II; r: Gn-II encloses Py-I and coexists with Sp-II, and Py-II replaces Ccp, all of which are filled/cemented by Cal/Dol-II; s: Ccp occurs within Sp-II that forms an embayment texture with Cal/Dol-II; t: Ccp coexists with Ttr and Sp-II, all of which are filled or enclosed by Cal/Dol-II.

Fig. 7 The texture and structure of hydrothermal minerals in the Fule deposit under the scanning electron microscope (SEM); a: Sphalerite-I (Sp-I) present as euhedral-subhedral fine- to medium-grained crystals that coexist with galena-I (GnI), all of which are filled or enclosed by dolomite-I (Dol-I) that forms a solid-solution with calcite-I (Cal-I); b: Sp-I occurs as a medium-grained crystal and forms embayment texture with Dol-I that encloses Cal-I solid-solution; c: Py-II encloses Gn-I and coexists with Sp-II, both of which form embayment texture with Cal-II; e: Py-I and Gn-I are enclosed by Dol-II that fills a fracture in
the Sp-I; f: apatite is enclosed by Dol-III that fills a fracture in Gn-II; g: Gn-II and
Ttr fill a fracture in Sp-I; h: Ttr occurs as a fine-grained crystal that coexists with
fine-grained Sp-I, all of which are enclosed by coarse-grained Gn-II that
coexists with Sp-II; i: Sp-II occurs as a euhedral fine-grained crystal that is
cemented or enclosed by Dol-II; j: Gn-II encloses Ttr and coexists with Sp-II; k:
solid-solution texture of Dol-II and Cal-II; l: Gn-II encloses Sp-I and coexists with
Ttr and Sp-II; m: Gn-II coexists with Ttr and Dol-II, of which the latter encloses
Gn-I; n: Dol-II coexists with Gn-II that encloses Py-I and Ttr; o: Ttr encloses Gn-
I and coexists with Gn-II and Dol-II, of which the latter forms a solid-solution
texture with Cal-II; p: Gn-II coexists with Ttr and Sp-II; q: Sp-I coexists with Gn-
I and Ttr; r: Gn-II forms embayment texture with Sp-II and coexists with Ttr; s:
Ttr occurs as aggregate veinlets along the rim of polydymite (Pld); millerite (Mil)
occurs as a micro-vein aggregate within Pld; pentlandite (Ptl) is a euhedral fine-
grained crystal within Pld; Gn-I coexists with Ptl; all of them are enclosed by
Dol-II that encloses Cal-II solid-solution; t: Gn-II forms fine veinlets and fills
fractures in Sp-I.

Fig. 8 Mineral paragenesis in the Fule Pb-Zn deposit (data are sourced from Si
et al., 2006 and this paper)

Fig. 9 The area selected for in situ S isotope analysis that has homogeneous
isotopic compositions (including 32S, 34S, 75As and 63Cu32S).
Fig. 10 Plot of δ^{13}C vs. δ^{18}O; C-O isotopic data for mantle, marine carbonate rocks and sedimentary organic matters are sourced from Taylor et al. (1967), Demény et al. (1998), Veizer and Hoefs (1976) and Hoefs (2009).

Fig. 11 In situ δ^{34}S values in sphalerite and paragenetic pyrite, showing the in situ δ^{34}S values for sphalerite and pyrite crystals, and their cores and rims.

Fig. 12 a: A comparison of in situ and bulk S isotopic compositions for sulfide minerals formed at generations I and II; b: Histogram of in situ and bulk S isotopic data; c: A comparison between mantle-derived S, seawater, evaporates and data from nearby Pb-Zn deposits.

Fig. 13 Plot of $^{207}\text{Pb}/^{204}\text{Pb}$ vs. $^{206}\text{Pb}/^{204}\text{Pb}$ that shows the field of late Permian Emeishan basalts, late Ediacaran-middle Permian sedimentary rocks and Proterozoic metamorphic rocks, and the Pb evolution curves of U, O, M and L (after Zartman and Doe, 1981); Upper Crust (U), Orogen Belt (O), Mantle (M) and Lower Crust (L). Whole-rock Pb isotopic data are taken from Huang et al. (2004), Li et al. (2007), Yan et al. (2007), Zhou et al. (2013a, 2014a) and Bao et al. (2017).

Fig. 14 Plots of $^{207}\text{Pb}/^{204}\text{Pb}$ vs. $^{206}\text{Pb}/^{204}\text{Pb}$ (a) and $^{208}\text{Pb}/^{204}\text{Pb}$ vs. $^{206}\text{Pb}/^{204}\text{Pb}$
(b) that display the gradually incremental increase in Pb isotopic ratios from galena-I (early phase) to galena-II (late phase).

Fig. 15 Diagram of δ13C vs. δ18O for calcite precipitated by W/R interaction with different R/W ratios and temperatures (400-50°C) for either HCO\textsubscript{3}- or H\textsubscript{2}CO\textsubscript{3} as the dominant C species (after Zheng and Hoefs, 1993), showing the position of calcite-II. Initial fluids: δ13C = +2‰, δ18O = +6‰. Δ = δ13C\textsubscript{rock} – δ13C\textsubscript{liq}; I: Δ13C = +0.2‰, Δ18O = +2‰; II: Δ13C = +1‰, Δ18O = +6‰; III: Δ13C = +2‰, Δ18O = +10‰.

Fig. 16 Plots of δ13C vs. δ18O for calcite precipitated by CO\textsubscript{2} degassing with H\textsubscript{2}CO\textsubscript{3} (a) or HCO\textsubscript{3}- (b) as the dominant C species (after Zheng, 1990), showing the position of calcite-II. The batch (solid line) and Rayleigh (dashed line) degassing precipitation models change with temperature (400-50°C) and mol fraction of C in the degassed CO\textsubscript{2} (0.1 to 0.4) (after Zheng, 1990). The initial δ13C\textsubscript{fluid} and δ18O\textsubscript{fluid} values were taken as +2‰ and +6‰, respectively.

Fig. 17 A sketch of the metallogenic model favoured for the carbonate-hosted Pb-Zn deposits in the ELIP; a: 263-259 Ma, the eruption of the Emeishan basalts (Shellnutt, 2014) provided fluids and elevated background geothermal gradient, which facilitated and enhanced the mobilization and extraction of ore-forming elements from Proterozoic metamorphic rocks and Paleozoic sedimentary rocks; b: 257-250 Ma, metal-bearing mantle and metamorphic
fluids were driven upward along regional faults during the early Indosinian Orogeny (Carter et al., 2001; Reid et al., 2007; Hu et al., 2017); c: 250-200 (– 156 Ma), the ore-forming fluids were released into structural units when the overall tectonic regime changed from compression to extension between 250-200 Ma (Carter et al., 2001; Lepvrier et al., 2008; Zhou et al., 2013b), where they were trapped by the evaporitic salt and sedimentary organic-bearing units within the platform carbonate sequence at structurally-controlled depositional sites. This process resulted in the formation of S2– from multiple S reservoirs via TSR and the extraction of some metals from ore-hosting rocks through W/R interaction, which then caused the precipitation of hydrothermal minerals.
<table>
<thead>
<tr>
<th>Period</th>
<th>Diagenesis</th>
<th>Hydrothermal</th>
<th>Supergene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
<td>Py + Dol</td>
<td>Sulfide + carbonate</td>
<td>Oxidized and leached</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mineral assemblage</th>
<th>Generation</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphalerite (Sp)</td>
<td>Less</td>
<td>More</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galena (Gn)</td>
<td>Less</td>
<td></td>
<td>More</td>
<td></td>
</tr>
<tr>
<td>Pyrite (Py)</td>
<td>Less</td>
<td></td>
<td></td>
<td>More</td>
</tr>
<tr>
<td>Chalcopyrite (Ccp)</td>
<td>Less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahedrite (Ttr)</td>
<td>Less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polydymite (Pld)</td>
<td>Less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentlandite (Ptl)</td>
<td>Less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millerite (Mil)</td>
<td>Less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite (Cal)</td>
<td>Less</td>
<td>More</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite (Dol)</td>
<td>Less</td>
<td>More</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limonite</td>
<td>Less</td>
<td></td>
<td>More</td>
<td></td>
</tr>
<tr>
<td>Smithsonite</td>
<td>Less</td>
<td></td>
<td>More</td>
<td></td>
</tr>
<tr>
<td>Cerusite</td>
<td></td>
<td></td>
<td>More</td>
<td></td>
</tr>
<tr>
<td>Hemimorphite</td>
<td></td>
<td></td>
<td></td>
<td>More</td>
</tr>
<tr>
<td>Malachite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Less; More.
\(\delta^{13}\text{C}_{\text{fluid}} = +2\% \)
\(\delta^{18}\text{O}_{\text{fluid}} = +6\% \)

\(\text{HCO}_3^- \) as the dominant C species

\(\text{H}_2\text{CO}_3 \) as the dominant C species

\(\delta^{13}\text{C}_{\text{PDB}}/\text{PDB} \) vs \(\delta^{18}\text{O}_{\text{SMOW}}/\text{SMOW} \)

R/W = 1.0

400°C
350°C
300°C
250°C
200°C
150°C
100°C
50°C

Calcite-II
Table 1

C-O isotopic compositions of calcite and limestone in the Fule deposit

<table>
<thead>
<tr>
<th>No.</th>
<th>Locations</th>
<th>Mineral</th>
<th>(\delta^{13}C_{PDB}/‰)</th>
<th>(\delta^{18}O_{SMOW}/‰)</th>
<th>(\delta^{13}C_{CO2}/‰^a)</th>
<th>(\delta^{18}O_{H2O}/‰^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL_14-2</td>
<td></td>
<td>Calcite-II</td>
<td>+2.94</td>
<td>+16.84</td>
<td>+3.33</td>
<td>+7.81</td>
</tr>
<tr>
<td>FL_14-23</td>
<td></td>
<td>Calcite-II</td>
<td>+2.93</td>
<td>+19.92</td>
<td>+3.32</td>
<td>+10.89</td>
</tr>
<tr>
<td>FL_14-44</td>
<td>Nos. 108, 904 and 74 ore bodies</td>
<td>Calcite-II</td>
<td>+3.01</td>
<td>+18.15</td>
<td>+3.40</td>
<td>+9.12</td>
</tr>
<tr>
<td>FL_14-64</td>
<td></td>
<td>Calcite-II</td>
<td>+2.96</td>
<td>+19.77</td>
<td>+3.35</td>
<td>+10.74</td>
</tr>
<tr>
<td>FL_14-8</td>
<td></td>
<td>Calcite-II</td>
<td>+2.67</td>
<td>+16.86</td>
<td>+3.06</td>
<td>+7.83</td>
</tr>
<tr>
<td>FL_14-68</td>
<td></td>
<td>Calcite-II</td>
<td>+2.57</td>
<td>+16.83</td>
<td>+2.96</td>
<td>+7.80</td>
</tr>
<tr>
<td>FL_14-36</td>
<td></td>
<td>Calcite-II</td>
<td>+2.92</td>
<td>+18.25</td>
<td>+3.31</td>
<td>+9.22</td>
</tr>
<tr>
<td>FL_14-D1</td>
<td></td>
<td>Limestone</td>
<td>+1.85</td>
<td>+23.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL_14-D2</td>
<td></td>
<td>Limestone</td>
<td>+1.58</td>
<td>+22.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL_14-D3</td>
<td>The mining area periphery</td>
<td>Limestone</td>
<td>+2.18</td>
<td>+21.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL_14-D4</td>
<td></td>
<td>Limestone</td>
<td>+2.63</td>
<td>+24.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)1000\ln \alpha(CO₂ - Calcite) = -2.4612 + 7.663 \times 10^7 / (t + 273.15) - 2.988 \times 10^9 / (t + 273.15)^2 (Bottinga, 1968);

\(^b\)1000\ln \alpha(Calcite - H₂O) = 2.78 \times 10^6 / (t + 273.15)^2 - 3.39 (O’Neil et al., 1969)

t = 180-210 °C (average 200 °C), based on temperature analysis of fluid inclusion in sphalerite-II (Li ZL unpublished data).
Table 2

In situ and bulk S isotopic compositions of sulfide minerals in the Fule deposit

<table>
<thead>
<tr>
<th>No.</th>
<th>Locations</th>
<th>Mineral</th>
<th>$\delta^{34}\text{S}_{CDT}/%$</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL14-3-01</td>
<td>Core</td>
<td>Pyrite-I</td>
<td>+18.7</td>
<td></td>
</tr>
<tr>
<td>FL14-3-02</td>
<td>Core</td>
<td>Pyrite-I</td>
<td>+19.3</td>
<td></td>
</tr>
<tr>
<td>FL14-10-01</td>
<td>Core</td>
<td>Pyrite-I</td>
<td>+17.7</td>
<td></td>
</tr>
<tr>
<td>FL14-10-02</td>
<td>Core</td>
<td>Pyrite-I</td>
<td>+17.8</td>
<td></td>
</tr>
<tr>
<td>FL14-25-01</td>
<td>Core</td>
<td>Pyrite-I</td>
<td>+19.3</td>
<td></td>
</tr>
<tr>
<td>FL14-25-02</td>
<td>Core</td>
<td>Pyrite-I</td>
<td>+19.4</td>
<td></td>
</tr>
<tr>
<td>FL14-60-01</td>
<td>Core</td>
<td>Pyrite-I</td>
<td>+17.5</td>
<td></td>
</tr>
<tr>
<td>FL14-60-02</td>
<td>Core</td>
<td>Pyrite-I</td>
<td>+18.0</td>
<td></td>
</tr>
<tr>
<td>FL14-60-03</td>
<td>Rim</td>
<td>Pyrite-I</td>
<td>+13.8</td>
<td></td>
</tr>
<tr>
<td>FL14-60-04</td>
<td>Rim</td>
<td>Pyrite-I</td>
<td>+13.2</td>
<td>In situ</td>
</tr>
<tr>
<td>FL14-65-01</td>
<td>Rim</td>
<td>Pyrite-II</td>
<td>+10.4</td>
<td>analysis</td>
</tr>
<tr>
<td>FL14-65-02</td>
<td>Rim</td>
<td>Pyrite-II</td>
<td>+10.3</td>
<td></td>
</tr>
<tr>
<td>FL14-65-03</td>
<td>Rim</td>
<td>Sphalerite-II</td>
<td>+9.8</td>
<td></td>
</tr>
<tr>
<td>FL14-65-04</td>
<td>Rim</td>
<td>Sphalerite-II</td>
<td>+10.1</td>
<td></td>
</tr>
<tr>
<td>FL14-65-05</td>
<td>Core</td>
<td>Sphalerite-II</td>
<td>+16.5</td>
<td></td>
</tr>
<tr>
<td>FL14-65-06</td>
<td>Core</td>
<td>Sphalerite-II</td>
<td>+16.9</td>
<td></td>
</tr>
<tr>
<td>FL14-95-01</td>
<td>Rim</td>
<td>Pyrite-I</td>
<td>+13.4</td>
<td></td>
</tr>
<tr>
<td>FL14-95-02</td>
<td>Rim</td>
<td>Pyrite-I</td>
<td>+12.8</td>
<td></td>
</tr>
<tr>
<td>FL14-95-03</td>
<td>Rim</td>
<td>Sphalerite-I</td>
<td>+12.5</td>
<td></td>
</tr>
<tr>
<td>FL14-95-04</td>
<td>Core</td>
<td>Sphalerite-I</td>
<td>+23.1</td>
<td></td>
</tr>
<tr>
<td>FL14-13</td>
<td></td>
<td>Galena-II</td>
<td>+11.86</td>
<td></td>
</tr>
<tr>
<td>FL14-24</td>
<td></td>
<td>Galena-II</td>
<td>+10.49</td>
<td></td>
</tr>
<tr>
<td>FL14-58</td>
<td></td>
<td>Galena-II</td>
<td>+10.04</td>
<td></td>
</tr>
<tr>
<td>FL14-75</td>
<td></td>
<td>Galena-II</td>
<td>+10.66</td>
<td></td>
</tr>
<tr>
<td>FLC-0-1</td>
<td></td>
<td>Sphalerite-II</td>
<td>+15.02</td>
<td>Bulk</td>
</tr>
<tr>
<td>FLC-0-3</td>
<td></td>
<td>Sphalerite-II</td>
<td>+15.10</td>
<td>analysis</td>
</tr>
<tr>
<td>FLC-0-5</td>
<td></td>
<td>Sphalerite-II</td>
<td>+14.21</td>
<td></td>
</tr>
<tr>
<td>FLC-0-8</td>
<td></td>
<td>Sphalerite-I</td>
<td>+14.16</td>
<td></td>
</tr>
<tr>
<td>FLC-0-9</td>
<td></td>
<td>Sphalerite-I</td>
<td>+15.16</td>
<td></td>
</tr>
<tr>
<td>FLC-0-16</td>
<td></td>
<td>Sphalerite-I</td>
<td>+16.43</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Mineral</td>
<td>206Pb/204Pb</td>
<td>1s</td>
<td>207Pb/204Pb</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>FL14-17-01</td>
<td>Galena-I</td>
<td>18.588</td>
<td>0.003</td>
<td>15.721</td>
</tr>
<tr>
<td>FL14-17-02</td>
<td>Galena-I</td>
<td>18.589</td>
<td>0.003</td>
<td>15.724</td>
</tr>
<tr>
<td>FL14-17-03</td>
<td>Galena-I</td>
<td>18.585</td>
<td>0.002</td>
<td>15.718</td>
</tr>
<tr>
<td>FL14-17-04</td>
<td>Galena-I</td>
<td>18.580</td>
<td>0.002</td>
<td>15.717</td>
</tr>
<tr>
<td>FL14-17-05</td>
<td>Galena-I</td>
<td>18.577</td>
<td>0.002</td>
<td>15.713</td>
</tr>
<tr>
<td>FL14-17-06</td>
<td>Galena-I</td>
<td>18.581</td>
<td>0.003</td>
<td>15.720</td>
</tr>
<tr>
<td>FL14-17-07</td>
<td>Galena-I</td>
<td>18.585</td>
<td>0.002</td>
<td>15.723</td>
</tr>
<tr>
<td>FL14-17-08</td>
<td>Galena-I</td>
<td>18.586</td>
<td>0.002</td>
<td>15.721</td>
</tr>
<tr>
<td>FL14-25-01</td>
<td>Galena-I</td>
<td>18.582</td>
<td>0.002</td>
<td>15.718</td>
</tr>
<tr>
<td>FL14-25-02</td>
<td>Galena-I</td>
<td>18.585</td>
<td>0.002</td>
<td>15.724</td>
</tr>
<tr>
<td>FL14-25-03</td>
<td>Galena-I</td>
<td>18.580</td>
<td>0.002</td>
<td>15.719</td>
</tr>
<tr>
<td>FL14-25-04</td>
<td>Galena-I</td>
<td>18.582</td>
<td>0.002</td>
<td>15.721</td>
</tr>
<tr>
<td>FL14-25-05</td>
<td>Galena-I</td>
<td>18.580</td>
<td>0.002</td>
<td>15.720</td>
</tr>
<tr>
<td>FL14-25-06</td>
<td>Galena-I</td>
<td>18.579</td>
<td>0.002</td>
<td>15.716</td>
</tr>
<tr>
<td>FL14-25-07</td>
<td>Galena-I</td>
<td>18.588</td>
<td>0.003</td>
<td>15.728</td>
</tr>
<tr>
<td>FL14-25-08</td>
<td>Galena-I</td>
<td>18.587</td>
<td>0.002</td>
<td>15.722</td>
</tr>
<tr>
<td>FL14-40-01</td>
<td>Galena-I</td>
<td>18.581</td>
<td>0.003</td>
<td>15.715</td>
</tr>
<tr>
<td>FL14-40-02</td>
<td>Galena-I</td>
<td>18.584</td>
<td>0.003</td>
<td>15.720</td>
</tr>
<tr>
<td>FL14-40-03</td>
<td>Galena-I</td>
<td>18.589</td>
<td>0.002</td>
<td>15.723</td>
</tr>
<tr>
<td>FL14-40-04</td>
<td>Galena-I</td>
<td>18.585</td>
<td>0.002</td>
<td>15.719</td>
</tr>
<tr>
<td>FL14-40-05</td>
<td>Galena-I</td>
<td>18.573</td>
<td>0.002</td>
<td>15.711</td>
</tr>
<tr>
<td>FL14-40-06</td>
<td>Galena-I</td>
<td>18.577</td>
<td>0.003</td>
<td>15.720</td>
</tr>
<tr>
<td>FL14-40-07</td>
<td>Galena-I</td>
<td>18.589</td>
<td>0.002</td>
<td>15.721</td>
</tr>
<tr>
<td>FL14-40-08</td>
<td>Galena-I</td>
<td>18.596</td>
<td>0.002</td>
<td>15.723</td>
</tr>
<tr>
<td>FL14-59-01</td>
<td>Galena-I</td>
<td>18.598</td>
<td>0.002</td>
<td>15.723</td>
</tr>
<tr>
<td>FL14-59-02</td>
<td>Galena-I</td>
<td>18.585</td>
<td>0.002</td>
<td>15.711</td>
</tr>
<tr>
<td>FL14-59-03</td>
<td>Galena-I</td>
<td>18.589</td>
<td>0.002</td>
<td>15.717</td>
</tr>
<tr>
<td>FL14-59-04</td>
<td>Galena-I</td>
<td>18.588</td>
<td>0.002</td>
<td>15.719</td>
</tr>
<tr>
<td>FL14-59-05</td>
<td>Galena-I</td>
<td>18.575</td>
<td>0.002</td>
<td>15.718</td>
</tr>
<tr>
<td>FL14-59-06</td>
<td>Galena-I</td>
<td>18.572</td>
<td>0.002</td>
<td>15.716</td>
</tr>
<tr>
<td>FL14-59-07</td>
<td>Galena-I</td>
<td>18.578</td>
<td>0.003</td>
<td>15.713</td>
</tr>
<tr>
<td>FL14-59-08</td>
<td>Galena-I</td>
<td>18.580</td>
<td>0.002</td>
<td>15.712</td>
</tr>
<tr>
<td>FL14-75-01</td>
<td>Galena-II</td>
<td>18.606</td>
<td>0.003</td>
<td>15.723</td>
</tr>
<tr>
<td>FL14-75-02</td>
<td>Galena-II</td>
<td>18.614</td>
<td>0.002</td>
<td>15.718</td>
</tr>
<tr>
<td>FL14-75-03</td>
<td>Galena-II</td>
<td>18.615</td>
<td>0.002</td>
<td>15.717</td>
</tr>
<tr>
<td>FL14-75-04</td>
<td>Galena-II</td>
<td>18.610</td>
<td>0.002</td>
<td>15.715</td>
</tr>
<tr>
<td>FL14-75-05</td>
<td>Galena-II</td>
<td>18.615</td>
<td>0.002</td>
<td>15.722</td>
</tr>
<tr>
<td>FL14-75-06</td>
<td>Galena-II</td>
<td>18.616</td>
<td>0.002</td>
<td>15.727</td>
</tr>
<tr>
<td>FL14-75-07</td>
<td>Galena-II</td>
<td>18.609</td>
<td>0.003</td>
<td>15.724</td>
</tr>
<tr>
<td>FL14-75-08</td>
<td>Galena-II</td>
<td>18.606</td>
<td>0.002</td>
<td>15.713</td>
</tr>
<tr>
<td>Sample</td>
<td>Group</td>
<td>Mass 1</td>
<td>Mass 2</td>
<td>Mass 3</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>FL14-95-01</td>
<td>Galena-II</td>
<td>18.606</td>
<td>0.002</td>
<td>15.712</td>
</tr>
<tr>
<td>FL14-95-02</td>
<td>Galena-II</td>
<td>18.617</td>
<td>0.002</td>
<td>15.723</td>
</tr>
<tr>
<td>FL14-95-03</td>
<td>Galena-II</td>
<td>18.614</td>
<td>0.002</td>
<td>15.725</td>
</tr>
<tr>
<td>FL14-95-04</td>
<td>Galena-II</td>
<td>18.602</td>
<td>0.002</td>
<td>15.722</td>
</tr>
<tr>
<td>FL14-95-05</td>
<td>Galena-II</td>
<td>18.598</td>
<td>0.002</td>
<td>15.721</td>
</tr>
<tr>
<td>FL14-95-06</td>
<td>Galena-II</td>
<td>18.605</td>
<td>0.002</td>
<td>15.725</td>
</tr>
<tr>
<td>FL14-95-07</td>
<td>Galena-II</td>
<td>18.601</td>
<td>0.002</td>
<td>15.716</td>
</tr>
<tr>
<td>FL14-95-08</td>
<td>Galena-II</td>
<td>18.595</td>
<td>0.002</td>
<td>15.714</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Huize (typical SYG-type)</td>
<td>MVT</td>
<td>Fule</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>Pb + Zn: 25-35 wt. %, Zn/(Zn + Pb): 0.9±</td>
<td>Pb + Zn: av. <10 wt. %, Zn/(Zn + Pb): 0.8±</td>
<td>Pb + Zn: av. 15-20 wt. %, Zn/(Zn + Pb): 0.9±</td>
<td></td>
</tr>
<tr>
<td>Tonnage</td>
<td>Pb + Zn metal reserves: single ore body ~1 Mt, total > 7 Mt</td>
<td>Pb + Zn metal reserves: single ore body < 1 Mt</td>
<td>Pb + Zn metal reserves: single ore body ~0.5 Mt, total > 1 Mt</td>
<td></td>
</tr>
<tr>
<td>Acreage</td>
<td>The SYG province covers 170, 000 km²</td>
<td>Hundreds of square kilometers</td>
<td>The SYG province covers 170, 000 km²</td>
<td></td>
</tr>
<tr>
<td>Host rocks</td>
<td>Early Carboniferous coarse-grained dolostone</td>
<td>Cambrian to Carboniferous carbonate rocks</td>
<td>Middle Permian dolostone</td>
<td></td>
</tr>
<tr>
<td>Depth of Mineralization</td>
<td>>2000 m</td>
<td><1500 m</td>
<td><400 m</td>
<td></td>
</tr>
<tr>
<td>Tectonic setting</td>
<td>Western Yangtze Block, controlled by NE reverse fault-fold tectonic system</td>
<td>Typically located within extensional zones inboard of orogenic belts</td>
<td>Western Yangtze Block, controlled by NE reverse fault-fold tectonic system</td>
<td></td>
</tr>
<tr>
<td>Relation with magmatic activity</td>
<td>Genetically associated with late Permian Emeishan basalts</td>
<td>Generally has no genetic association with magmatic activity</td>
<td>Genetically associated with late Permian Emeishan basalts</td>
<td></td>
</tr>
<tr>
<td>Ore-controlled factors</td>
<td>Controlled by thrust fault-fold structure and lithology</td>
<td>Mainly controlled by structure and lithology</td>
<td>Controlled by fault-fold structure and lithology</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>~225 Ma</td>
<td>From Proterozoic to Cretaceous</td>
<td>250-200 Ma</td>
<td></td>
</tr>
<tr>
<td>Ore texture and structure</td>
<td>Mainly exhibiting massive structures, and fine-, medium- and coarse-grained textures</td>
<td>Exhibiting disseminated, fine granular, branched, colloidal and massive structures and colloidal, skeleton coarse-crystalline textures</td>
<td>Mainly exhibiting massive structures, and fine-, medium- and coarse-grained textures</td>
<td></td>
</tr>
<tr>
<td>Mineral compositions</td>
<td>Sphalerite, galena, pyrite and calcite</td>
<td>Sphalerite, galena, pyrite, barite, fluorite, calcite and dolomite.</td>
<td>Sphalerite, galena, pyrite, chalcopyrite, tetrahedrite, millerite, polydymite, pentlandite, calcite and dolomite</td>
<td></td>
</tr>
<tr>
<td>Fluid inclusions</td>
<td><10 wt. % NaCl equiv.; Cl⁻-Na⁺-Ca²⁺-Mg²⁺-SO₄²⁻; 150-300°C</td>
<td>10-30wt. % NaCl equiv.; Cl⁻-Na⁺-Ca²⁺-K⁺-Mg²⁺; 50-200°C</td>
<td>4-10 wt. % NaCl equiv.; Cl⁻-Na⁺-Ca²⁺-Mg²⁺-SO₄²⁻; 120-260°C</td>
<td></td>
</tr>
<tr>
<td>Associated metals</td>
<td>Ag, Cu, Ge, Ga, Cd and In</td>
<td>Ag</td>
<td>Ag, Cu, Ni, Cd, Ge, Ga and In</td>
<td></td>
</tr>
<tr>
<td>O isotopes</td>
<td>Generated from W/R interaction between mantle/metamorphic fluids and carbonate rocks</td>
<td>Sourced from carbonate rocks</td>
<td>Generated from W/R interaction between mantle/metamorphic fluids and carbonate rocks</td>
<td></td>
</tr>
<tr>
<td>S isotopes</td>
<td>+11 to +17‰, sourced from multiple S reservoirs</td>
<td>+10 to +25‰, sourced from evaporates within sedimentary strata</td>
<td>+9 to +23‰, sourced from multiple S reservoirs</td>
<td></td>
</tr>
<tr>
<td>Pb isotopes</td>
<td>Normal and uniform Pb isotopes, sourced from a well-mixed source</td>
<td>Complicated Pb isotopic ratios and regional zonation</td>
<td>Normal and uniform Pb isotopes, sourced from a well-mixed source</td>
<td></td>
</tr>
<tr>
<td>Precipitation of sulfide</td>
<td>Fluid mixing + sulfate reduction</td>
<td>Reduced S, local sulfate reduction, or metal and reduced S-mixing</td>
<td>Fluid mixing + sulfate reduction</td>
<td></td>
</tr>
<tr>
<td>Tectonic setting</td>
<td>Changed from compression to extension</td>
<td>Extensional basin</td>
<td>Changed from compression to extension</td>
<td></td>
</tr>
</tbody>
</table>

References: Zhou et al., 2001; Li et al., 2007; Huang et al., 2010; Leach et al., 2005, 2010; Zhu et al., 2017; This paper