Coconut Creek, Florida

| Journal of Coastal Research I 33 I 6 | November 2017

1423-1435 |

A Study of Storm Surge Disasters Based on Extreme Value
Distribution Theory

Shuo Yangi, Xin Liu®, Qiang Liu™, Li Guan', Jae Myung Lee®, and Kwang Hyo Jung§

*Australian Joint Research Centre for
Building Information Modelling

School of Built Environment

Curtin University

Bentley, WA 6102, Australia

"Engineering College
Ocean University of China
Qingdao 266100, China

$Department of Naval Architecture
and Ocean Engineering

Pusan National University

Busan 609-735, Republic of Korea

www.cerf-jer.org

ABSTRACT i s S e e T

Yang, S.; Liu, X,; Liu, Q.; Guan, L.; Lee, J. M., and Jung, K.H., 2017. A study of storm surge disasters based on extreme value
distribution theory. Journal of Coastal Research, 33(6), 1423-1435. Coconut Creek (Florida), ISSN 0749-0208.

In this study, a statistical model was set up using extreme value distribution theory to estimate the return periods for
both the highest surge levels and the adjusted direct economic losses from storm surge disasters based on the historical
database. The extreme value distribution theory has been widely applied in hydrology and coastal engineering, and one
well-performing extreme distribution is the Gumbel distribution. Based on the Gumbel distribution, three parameter
estimation methods were used to determine the best method for generating the Gumbel distribution functions;
subsequently, the expressions for the return periods were derived. The least square method was identified as the best
parameter-estimation method for this study. Comparisons were implemented among return periods of the highest surge
levels with the adjusted direct economic loss, which showed that the linear functional relationship between these two
indicators was not significant. This study also found there was strong spatial autocorrelation for the highest surge levels
with the adjusted direct economic loss by employing spatial analysis along the China’s coastline. Analysis based on
comparisons among the return periods of the highest surge levels and the adjusted direct economic loss in three coastal
regions showed different levels of return periods the regions tended to have. Furthermore, analysis of the variation in
indicators between the former half and the latter half of the study period reflected the change in climate. The application
of the extreme value distribution theory was extended to evaluate economic losses during a storm surge disaster, and the
underlying relationships and the deviations between the highest surge levels and the adjusted direct economic loss were
analyzed, which indicated the damages caused by storm surges did not completely depend on the surge level.
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INTRODUCTION

In the past few years, coastal hazards have drawn large
attention around the world, whereas storm surge has emerged
as one of the most devastating hazards that occasionally cause
huge losses in terms of lives and properties (Horn, 2015).
Because of the recent trend of global climate change and sea-
level variation (Nicholls and Cazenave, 2010) associated with
the rapid economic development of coastal areas, the disaster
risks caused by storm surges may become increasingly severe.
Although there is no evident tendency in the past two decades
(Shi et al., 2015), the average annual direct economic losses
reached 1.7 billion USD in China in the past 14 years (State
Oceanic Administration, P.R.C., 2015). In China, storm surge
hasbeen listed as one of the major disasters in the past decades.
For example, in 2014 and 2015, the proportions of direct
economic losses from storm surge were 99.7% and 99.8%,
respectively, out of all the main marine and coastal disasters
(State Oceanic Administration, P.R.C., 2015).

The significance of studying storm surge in China arises also
because of the upward trend in storm-surge disasters that has
occurred along the China coastline. For example, Shi et al.
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(2015) drew a conclusion, based on statistics of extratropical
storm surges and typhoon storm surges, that the frequency of
storm-surge events in China has increased remarkably since
1949; after statistical analyses of the storm surges since the
1950s in China, Fan (2006) concluded that there was a general
increasing tendency for disastrous storm surges.

In hydrology and coastal engineering, the return periods of
certain water-level indicators and their corresponding, derived
frequencies are viewed as effective and have been widely used to
assess the potential risk. Previous studies of the return period
based on extreme value distribution theory have achieved
valuable results (Coles, 2001). The most common distribution
functions include the applied Gumbel distribution, Pearson-I1I
distribution, and the generalized extreme value (GEV) (Obey-
sekera and Park, 2013; Zhou et al., 2014). For example,
statistical frequency analysis using extreme value distribution
has been widely used in hydrology to estimate the relationship
between the magnitude and the occurrence frequency of various
hydrological events (Mahdi and Ashkar, 2004). In addition,
Pearson-1II distribution, Gumbel distribution, Weibull distri-
bution, and logarithmic normal distribution have been widely
used in hydrological statistical analyses (Nnaji et al., 2014).

The calculation of the return period for maximum surge
heights at a coastal hydrological station is essential for coastal
disaster prediction, coastal engineering design, and estimating
the damage of the disaster caused by a storm surge (Kim, Choi,
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and Cho, 2012; Tsai et al., 2006). Wang and Chen (1984) applied
the Gumbel method and an equivalent Pearson-I1I method to
calculate the return period of the surge height at 17 coastal
stations. Hu et al. (1993) then generalized the Gumbel extreme
distribution method for several types of climate extremes, such
as the annual maximum temperature, wind speed, precipita-
tion, and wave height. In their study, the moment method, the
Thomas plot method, and the least-square method for estimat-
ing the parameters were introduced, and the results indicated
that the Thomas plot method had greater accuracy. Zhou et al.
(2014) conducted frequency analyses to predict extreme
precipitation in the Taihu Basin in China using two distribution
methods, i.e. Pearson-1II and GEV, while applying the two
parameter-estimation methods (maximum-likelihood estimates
and L-moments) to estimate each of the distribution methods.
To identify the best-fitting model, 2 and Kolmogorov—-Smirnov
(K-S) tests were performed. Based on the results of those two
tests, the GEV distribution model using the L-moment
estimation method was evaluated as the best-fitting model to
identify and predict precipitation in the Taihu Basin. Feng and
Jiang (2015) analyzed extreme water levels at three stations on
the northwestern Pacific Rim. They evaluated the performance
of four types of extreme distributions, i.e. Gumbel, Weibull,
GEV, and generalized Pareto (GPD) distributions using
maximum-likelihood estimates. Results indicated that the
GEV distribution performed best at two of the stations, whereas
the Gumbel distribution was the best at the other station.

The probability distribution of extreme values approaches an
extreme value distribution when the sample size increases
infinitely. The extreme value distributions differ from one
another because of the different statistical characteristics of
the samples. As long as there is a group of samples that has
certain statistical characteristics and a large capacity, extreme
value distribution can be established. Similar to the extreme
value distribution applied to hydrological statistical analyses,
extreme value distribution can also be used to analyze the
highest surge levels in coastal areas. As an extension of the
classic application of extreme value distribution, statistical
data of the direct economic loss with large sample capacity can
be estimated by extreme value distribution theory.

Because of the broad influences caused by storm surges
(NOAA, 2016), the economic loss cannot be constrained within
the range of a station or even a province. However, most
previous studies usually focus on a single or several specific
stations when applying extreme value distributions to analyze
the return periods of storm surges. Although this is adequately
accurate for calculating the storm surge return period for local
coastlines, it is still not precise enough for risk management of
storm surge disasters on a larger scale. In addition, because the
availability of the historical storm surge event data is limited, it
is more feasible to apply the sampling method to research on
extreme storm surge value distributions on a large spatial
scale. Therefore, the study area discussed in this article covered
the entire area of China. In addition, to explore the geograph-
ical features of storm surge events in China, spatial analysis
was implemented along the China’s coastline.

The moment method, the Thomas plot method, and the least-
squares method were chosen to estimate the parameters in the
distribution functions in this article. Three probability distri-

bution, parameter-evaluating indicators were chosen, namely,
standard deviation, relative error, and the largest K-S statistic.

There is no unified functional relationship between the highest
surge level and the direct economic loss in storm surge events.
The real situation is much more complex, and the connection may
not be linear. However, it is apparent that higher surge levels
tend to lead to larger inundation areas and more damaged
properties at certain locations at certain times. Analyses were
conducted to obtain information on such undetermined relation-
ships, and their deviations were analyzed in this study.

In the following sections, the data sources are presented, and
then, the extreme value distribution applied in this study and
the three parameter estimation methods are briefly introduced.
To analyze the relative errors of these three estimation
methods, error evaluation methods are presented. The out-
comes of these three parameter estimation methods of the
highest surge levels and the adjusted direct economic loss are
presented, and the distribution functions of each of them were
determined. Based on error-evaluation methods, the best-fit
distribution functions are chosen, and the return period
expression was identified. Then, the correlation between the
return periods of the highest surge levels and the adjusted
direct economic loss is analyzed. In addition, geographical
features of the highest surge levels and the adjusted direct
economic loss along China’s coastline were analyzed. At last,
based on the results of this study, analysis relating to climate
change was conducted.

METHODS

There were three main goals in this study: (1) to determine a
well-performing extreme-value distribution for the storm surge
level based on historical storm surge level data, which was
chosen from the results of three parameter estimation methods
that were analyzed by the evaluating indicators; (2) to obtain a
well-performing extreme value distribution for the direct
economic loss, and then, to use the same methods used for
the surge level to estimate the parameter and perform
evaluation analyses; and (3) to compare and analyze the N-
year, return-period results from the probability-distribution
function for both the surge level and the direct economic loss.
The main research route was organized as shown in Figure 1.

Data Sources

The research area discussed in this article covered the entire
coastal area of China, as shown in Figure 2. The data needed for
this study were the historical records of storm-surge events in
China: the highest surge levels and the direct economic losses.
Most of the data were collected from publications of the China
Oceanic Disasters Communiqué, edited by the State Oceanic
Administration, P.R.C. (2015), whereas other data were cited
in research articles that involved storm surge data collection;
88 records of severe storm-surge events during the period
between 1989 and 2014 were available for this study. All
records covered the most-destructive storm-surge events in
those years. This means that there were 88 groups of the
highest surge levels and direct economic losses in the 26-year
study period. All years of the 26-year study period had at least
two records, except for 2004, which had only a single record.

Journal of Coastal Research, Vol. 33, No. 6, 2017




Storm Surge Disasters Based on Extreme Value Distribution Theory 1425

i
Historical data of storm surge svents |

{ Historical surge fovel data é—————-}s Historical direct economic loss data

Selecting the best parameter
method based on

Extreme value distribution
function for surge level

Extreme value distribution

furction for direct economic loss
N-year relurn peried of Neyear return period of
surge level ditect ceonomic foss

L Make comparisons & analyze ‘—J\

Figure 1. The main research route followed throughout this article.

The most records were from 2005 and 2007, when both years
had eight records of severe storm surges.

The records collected were from the most severe storm-surge
events in each year, which means that the highest surge levels
and/or direct economic losses were the extreme ones in each
year. Based on the extreme value distribution theory, only
extreme values need to be involved in the calculation of the
distribution-function determination process (Gumbel, 1958); as
a result, among the 88 records in this study, only the most-
extreme records of each year (26 records in 26 years) were
included in the calculations. Thus, although the capacity of the
database was not abundant, it was sufficient to perform the
calculations.

In addition, the economy of China has experienced increasing
growth rarely seen in its history. As a result, the value of the
loss during storm-surge disasters differed throughout the
study period (from 1989 to 2014). Therefore, the gross domestic
product (GDP) deflator has been intreduced in this article to
offset the effects of the rapid economic development experi-
enced in China. The ending year of the research period (2014)
was set as the benchmark year for calculating the deflator.
Based on data released by the National Bureau of Statistics of
the People’s Republic of China, i.e. the GDP and the GDP index,
the GDP deflators for each year during the research period
were obtained. All economic data in this article were adjusted
by dividing the GDP inflators so that the value of the direct
economic loss in each year were comparable according to the
price levels in 2014,

Extreme Value Distribution Theory

There are two classes of extreme value distributions in the
existing literature (Bali, 2003): (1) the GEV distribution,
proposed by Jenkinson (1955), which includes three standard
extreme-value distributions, namely Frechet, Weibull, and
Gumbel; and (2) the GPD, introduced by Pickands (1975),
which has been widely used in financial areas.

The distribution used in this study was based on the classic
Gumbel distribution that is a branch of the GEV distribution.

The reasons for choosing the Gumbel distribution were based
on the following parameters:

* The Gumbel distribution can efficiently use the data and
provides acceptable, asymptotic fitting considering the
limited data source in this study. (Castillo, 1988; Skjong,
Naess, and Naess, 2013; Watt e al., 1989; Yue et al., 1999).

* There are numerous methods for estimating the parame-
ters (Scotto and Tobias, 1999), which confirms its feasibility
of the method in this study.

¢ Because of its wide practical application in hydrology, it is
more convenient to compare the research results from this
article with those from previous studies. This enables
comparable analysis and assists in proving the correctness
of the method.

The key features of the GEV distribution are described below.

Let X;, Xy, ..., X, be a sequence of mutually independent,
random variables with a common continuous distribution
function G(x). Then Y, is defined as a distribution function
equal to G*(x). Suppose there exists a pair of sequences a,, and
b,, with a, > 0 for all n, and a distribution function A(x) is
defined in Equation (1) (Pickands, 1975):

Y, -b

an

IimP(

n—%

n o x) = lIm G +b) =A@ (1)

where, A(x) is continuous for all x.

The A(x) is an extreme distribution function that must belong
toone of the three generalized extreme distributions (Pickands,
1975). Suppose there are years of data that are recorded daily,
for example, the highest surge level, and a sample of the annual
maxima is established based on the largest level in each year.
The probability of the annual largest values follow the extreme
value distribution A(x) when the sample size is infinite. The
choice of the three standard extreme value distributions can be
made empirically or be based on a posteriori error analysis.

Gumbel Distribution and Parameter Estimation

The cumulative distribution function (CDF) F(x) of the
Gumbel distribution is determined by two parameters, i.e. «
and f; x is the random variable that stands for the highest
surge level or the direct economic loss, in this case. The CDF is
shown in Equation (2) (Liu and Ma, 1976):

F(x) = exp{—exp[-a(x — f)]} (2

The values of « and f can be estimated via several methods
(Scotto and Tobias, 1999; Wang et al., 2012; Zhou et al., 2014).
Three methods were used in this study, namely, the moment
method, the Thomas plot method, and the least-squares
method because they provide good estimation accuracy and
calculation convenience for the Gumbel distribution (Oztiirk,
2008; Scotto and Tobias, 1999). The accuracy of the different
estimation methods may be influenced by the characteristics
and size of the sample.

Here, we briefly introduce the three parameter estimation
methods. Suppose the ordered sequence from small to large of
the historical data is xy, %o, ..., Xy, ..., x,, Where x; is the
sequence of the historical data that ranges from small to large,
and I is the order of the sequence. F,(x) represents the
empirical distribution that can be expressed as Equation (3):
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Figure 2. The research area and the major coastal cities listed in the region. (Color for this figure is available in the online version of this paper.)

Fn (1) = i (=12 ..n) (3) Equation (5) can be transformed into Equation (7):
n+1
Oy Oy Oy
Y= p) =—[ —(u ——u)] (1)
Moment Method Ox 7 o e

Equation (2) can also be expressed as in Equation (4): Compared with Equation (4b), the expressions of « and ff can

F(x) = exp|—exp(—y)] (4a) be derived as follows:
g, 128255
y = afx—f) (4b) n= = (8a)
Equation (4b) can be transformed into Equation (5):

Ty
Y-ty x—p, B =, ——p, = pt, — 0.4500, (8b)

e .. (5) Ty

gy [

where, y, and p, are the population means of X and Y, and o, Fle)=1- 1 9
and o, are the standard deviations of X and Y. The values of 1, T T ©

and o, can be generated based on the moment method:
From Equations (2) and (9), the value of x at the return period

tt, = 0.57722  (Euler’s constant) (6a) of T can be derived as follows:
=" = 128255 6b wp = f—2in —In|1 - (10
»=h (66) Pl T )
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The moment method approximates the sample mean £ and
the sample standard deviation S,, such that they substitute for
the population mean and standard deviation. As a result, the
CDF and the value of x at the return period are determined by
the moment method.

Thomas Plot Method

The moment method makes the sample statistics of x
substitute for the population statistics of x. Similarly, the
sample statistics of y can also substitute for the population
statistics of y. The value of the CDF is assigned, as shown in
Equation (11):

F'(x) = exp[—exp(—y;)] = (11)

i
N+1

y; = —In {—ln (TV—%T)] (12)

where, N is the sample capacity. Based on the law of large
numbers (Hsu and Robbins, 1985), when N — o, F(x) —F(x).

The values of 1, and o, are substituted by the sample mean y
and the sample standard deviation S,. Then, the expression of
CDF can be derived from the combination of Equations (2) and
(8), and the expression of x7 is given by Equation (13):

xsz——gfy~g-i—ln{—ln[l~§%;)—}} (13)

Least-Squares Method

The least-squares method for mathematical analysis has
been widely used in numerous research fields in the past
decades. It has been effectively used in the parameter-
estimation process in the extreme value distribution. According
to Equation (4b), the linear relationship between x and y can be
expressed as shown in Equation (14):

1
x=—y+§ (14)

Based on the principle of the least-squares method, the
coefficient of Equation (14) can be derived as in Equation (15),
where r, is the correlation coefficient between x and y:

1 S.

o= rxys—y (15a)

p=z-1y, (15)
o

where, the determination of § and S, are similar to the method
used in the Thomas plot. Thus, the CDF and x7 can be derived
from Equations (2) and (10).

Error Evaluation Methods

To determine the best parameter-estimation method, the
three methods applied were tested by three goodness-of-fit
tests: standard deviation o (Equation 16), relative error V
(Equation 17), and the largest K-S statistic D,, (Equation 18):

(16)

n

> A a7

i-1

V=

S|

D, = max[|F, (x) - F(x)]] (18)

Based on the empirical distribution F; (x), the fitted data =;
can be derived. Based on the K-S test theory, according to the
acceptable level of significance o (¢, =0.05 in this case) and the
number of data series n, D,, can be obtained. If D, < ﬁn, the
chosen probability distribution identified fits the observed data
series (Zhou et al., 2014).

After the method with the best performance in the goodness-
of-fit tests was chosen, the parameters determined from the
tests can be substituted into the CDF F(x). As illustrated in
Figure 1, this main research route was applied to the
caleulations for both the highest surge level and the adjusted
direct economic loss.

The return period T(x) can be derived from F(x):

T() = — (19)
1-Fix)

Then, the value of x (the highest surge level or the adjusted
direct economic loss) corresponding to its return period can be
determined by Equation (10). Through the use of the CDFs
(from which the probability distribution functions [PDFs] can
be conveniently derived) of the highest surge level and the
adjusted direct economic loss, which were determined by
different parameter-estimation methods, the return period
can be determined for further comparison and analysis.

Furthermore, because both the adjusted direct economic loss
and the highest surge level increase have geographic features,
their spatial distribution should follow the first law of
geography (Tobler, 1970). Therefore, all 88 historical events
were geocoded as points on the map, and the classic spatial-
analysis method Kriging (Liu ef al., 2014; Oliver and Richard,
1990) was applied to them to interpolate their spatial
distribution along China’s coastline. The spatial coordinates
of the georeferenced points indicates where the storm surge
events happened historically. The adjusted direct economic loss
and the highest surge level are two attributes of the spatial
points.

RESULTS

Calculation of the distributions derived from the parameter
estimation was performed. The three parameter estimation
methods were applied to the distribution analyses of the
highest surge levels and the adjusted direct economic loss. The
CDFs were determined based on the approaches mentioned
above, and the PDF's could be conveniently generated from the
CDFs. The relationships between the return period and the
highest surge levels or the adjusted direct economic loss were
determined. The values corresponding to the typical return
periods, which are frequently used in coastal and ocean
engineering applications (CCCC First Harbor Consultants
Staff, 1998; Dong et al., 2013), are listed separately.

Extreme Distribution Function for Surge Level
The CDFs and PDFs of the three parameter estimation
methods were calculated as shown in Figure 3. The values of «
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Figure 3. Cumulative distribution functions and probability distribution
functions of the highest surge levels from the three parameter estimation
methods. (a) CDF's of the highest surge level: the differences between the
CDFs are marginal, and the increasing rate of the moment method between
the highest surge levels of 1.5 m and 4.5 m is steeper than those of the other
methods. (b) PDFs of the highest surge level: the peak value of the moment
method is the highest compared with those of the other methods and that of
the least-squares method is second and slightly higher than that of the
Thomas plot method.

and f in the calculated CDF's are shown in Table 1. Figure 3a
shows that the differences between the CDFs were marginal.
The increasing rate of the moment method between the highest
surge levels of 1.5 m and 4.5 m was steeper than those of the
other methods. From Figure 3b, the peak values of the PDFs
were different; the peak value of the moment method was the
highest compared with those from the other methods, with the
least-squares method second and slightly higher than that of
the Thomas plot method. However, the values of the PDFs were
very similar at the highest surge levels below 1 m and above 6
m.
The relationships between the return period and the highest
surge levels were calculated with Equation (19) and are
illustrated in Figure 4. The data observed are also presented
in Figure 4 for better understanding. Because the return
periods in the observable data were relatively short, the
expected return periods longer than 30 years cannot be
confirmed. In addition, the observable data all fell near the
return period lines. The values corresponding to the typical
return periods are listed in Table 2.

Table 1. The values of o and B in the highest surge-level parameter
estimation.

Parameter Estimation Method 4 B

Least-squares method 1.347 2.260
Thomas plot method 1.305 2.247
Moment method 1.534 2.277

Extreme Distribution Function for Adjusted Direct
Economic Loss

The CDFs and PDFs of the three parameter estimation
methods were calculated as shown in Figure 5. The values of «
and f in the calculated CDF's are shown in Table 3.

As shown in Figure 5a, the differences between the three
CDF lines of the adjusted direct economic loss were barely
noticeable, except that the line for the moment method rose
slightly steeper when the adjusted direct economic loss was less
than 3 billion USD. The PDFs are shown in Figure 5b, where
the peak values of the three lines were marginally different,
with the moment method having the highest peak value,
whereas the other two methods had similar lower peak values.

The functional relationships between the return period and
the adjusted direct economic loss are illustrated in Figure 6.
The observed data for the historical economic loss aligned well
with the economic loss lines. The slopes of the least-squares
method and the Thomas plot method were similar and steeper,
whereas the slope of the moment method was smaller. Most of
the observed data fell near the lines, except for two spots whose
return periods were more than 10 years and were slightly
higher than the lines. The quantity of the observed data was
limited. As a result, the functional relationship between the
return period and the adjusted direct economic loss can be
confirmed merely by the data observed below the return period
of approximately 30 years; therefore, the trend in the results
beyond that point can only be viewed as theoretical. The values
of the typical return period are shown in Table 4.

ANALYSIS
Based on the results calculated in the last section, evaluation
of the results was implemented using three goodness-of-fit

Highest Surge Level (m)

& QObserved data
~~— 1 tast Square Method
- Thomas Plot Method
-~ Moment Method

1
10 100 1060
Return Period (a)

Figure 4. Calculated return periods corresponding to the highest surge
levels and the observed data, which illustrate the conformity between the
calculated data and the observed data. The observed data all fall near the
return period lines.
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Table 2. Predicted N-year return-period storm-surge level over one year.

Return Periods

Parameter Estimation Method

1000 500 200 100 50 25 20 10 2
Least-squares method 7.39 6.87 6.19 5.67 5.16 4.63 4.46 3.93 2.53
Thomas plot method 7.51 6.98 6.28 5.74 521 4.67 4.49 3.94 2.50
Moment method 6.78 6.33 5.73 5.28 4.82 4.36 4.22 3.75 2.52

parameters, so that the extreme value distributions of the
highest surge levels and the adjusted direct economic loss could
be determined. Because the return periods of the highest surge
level and the adjusted direct economic loss were calculated
independently, a comparative analysis was implemented to
discuss the inherent relationships between them. Because the
calculation of the extreme value distribution was on a national
scale, however, the intensity of storm-surge disaster differs
geographically; therefore, additional spatial analyses and
evaluation in terms of geographical locations were performed.
In addition, given the trend of climate change in recent years,
storm-surge disaster levels in both halves of the study period
(26 y) were calculated, respectively, and compared with each
other.

104 Ja—
A¥
&
4
./ - Least Squarc Method
2 Thomas Plot Method
. - Moment Method
=
o
/
0.0 3 T y
0 5 10 13

Adjusted Direct Economic Loss (billion USD)

(R
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PDF
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Figure 5. Cumulative distribution functions and probability distribution
functions of the adjusted direct economic loss from the three parameter
estimation methods. (a) CDFs of the adjusted direct economic loss: the
differences among the three CDF lines are barely noticeable. (b) PDFs of the
adjusted direct economic loss: the moment method has the highest peak
value, whereas the other two methods have similar, lower peak values.

Determination of the Extreme Value Distribution

The expressions of the CDFs, the PDFs, and the return
period were determined in the previous section. The distribu-
tion functions with the best goodness-of-fit were chosen based
on the evaluation results from three goodness-of-fit tests. The
goodness-of-fit test results for the highest surge level and the
adjusted direct economic loss are listed in Tables 5 and 6,
respectively. Given that the acceptable level of significance o=
0.05 and the number of data series was 26, ﬁn(0.05)= 0.259. All
values of D,, were smaller than 0.259, which implied that none
of the three methods were rejected by the K-S tests for the
significance level of 0.05.

For the highest surge level, the least-squares method had the
better performance in both goodness-of-fit tests for ¢ and V. No
values for D,, were rejected by the K-S tests (<0.259), whereas
the Thomas plot method had a smaller D,. Therefore, the
distribution function estimated by the least-squares method
was chosen as the final distribution of the highest surge level
for the best goodness-of-fit.

For the adjusted direct economic loss, the o of the least-
squares method had the better performance. None of the values
of D, were rejected by the K-S tests, whereas the moment
method had the smallest V out of the three methods. Because
the value of V can be influenced by certain fitted data with
small absolute values (Equation 17), the value of ¢ was
considered to be the main basis of the evaluation. Therefore,
the least-squares method was chosen as the final distribution of
the adjusted direct economic loss.

Comparative Analysis

Return periods of the highest surge level and the adjusted
direct economic loss were compared and analyzed based on the
reported results. After the best parameters for the distribution
functions were determined, the N-year return period was
generated by the best distribution function with relatively
better accuracy. Each storm surge event in the database had a
highest storm-surge height and a corresponding adjusted
direct economic loss. The return periods of the highest surge
level and the adjusted direct economic loss were calculated by
choosing the best distribution functions. Therefore, there were
two series of return periods generated by the distribution
function of the highest surge level and the distribution function
of the direct economic loss, respectively. This means that
separately calculated return periods for the highest surge level

Table 3. The values of o and B in the parameter estimation of the adjusted
direct economic loss.

Parameter Estimation Method % B

Least-squares method 0.845 0.962
Thomas plot method 0.810 0.935
Moment method 0.948 0.983
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Figure 6. Calculated return periods corresponding to the adjusted direct
economic losses and the observed data, which illustrate the conformity
between the calculated data and the observed data. Most of the observed
data fall near the lines, except for two spots that are slightly higher than the
lines.

and the adjusted direct economic loss from the same historical
storm-surge event could be different from each other. However,
correlations existed between the two series of return periods
because of the inherent cause-and-effect relationships. Based
on that idea, the comparisons and analyses were implemented.

The 88 historical events were resorted in an ascending order
according to the surge level observed, which functioned as a
reference. Then, the return periods of the highest surge level
and the adjusted direct economic loss were computed sepa-
rately using the chosen distribution functions. The results are
illustrated in Figure 7.

As shown in Figure 7, the movement of the direct economic
loss line was not synchronous when the return periods of the
highest surge levels increased. The correlation coefficient was
0.02, which represented a linear functional relationship
between the two series of return periods, and was not
significant. There were more large values from direct economic
losses when the return period of the highest surge level
increased, whereas not all the events followed that rule.
Additionally, the return period of the adjusted direct economic
loss tended to be longer than that of the highest surge level
when the return period of the highest surge level was shorter
than 1.29 years. This was because, out of 50 events, there were
only three in which the return periods of the adjusted direct
economic loss were shorter than those of the highest surge
level, whereas the differences between the return periods of
these two indicators of the three events were all less than 0.05
years. In contrast, out of 38 events that had return periods of
the highest surge levels that were longer than 1.29 years, there
were 27 events that had shorter return periods for the adjusted

Table 5. Goodness-of-fit test results for the Gumbel distribution of the
highest surge level.

Parameter Estimation Method @ \Z D,

Least-squares method 0.213 0.061  0.098
Thomas plot method 0.217  0.063  0.093
Moment method 0.237 0.079 0.128

direct economic loss than they had for the return periods of the
corresponding highest surge level. This means that, historical-
ly, the storm surge events with minor surge levels have often
caused unexpected economic losses.

Spatial Analysis

To better investigate the relationship among factors, spatial
analysis can be used to evaluate the correlation. Theoretically,
nonspatial correlation analysis can lead to biased conclusions.
By applying spatial analysis to the adjusted direct economic
loss and the highest surge level, this study found there were
strong spatial autocorrelation (Figure 8a,b) for both of them.
Furthermore, an irrefutable spatial correlation (0.39) was
identified between these two factors.

Two high-high areas were found in the south Zhejiang
province and at the intersection between Guangdong province
and Guangxi province, respectively. Although relatively high
surge-level increases were identified in some other areas, such
as NE Hainan province and NE Fujian province, the economic
losses were relatively small. In contrast, the low levels of the
highest surge-level increase did not necessarily mean small
economic losses. For example, the area around Shanghai was
more sensitive to storm-surge events, and the low level of the
highest surge level increase there could lead to moderate
economic losses. These findings could have been concealed with
nonspatial correlation analysis.

Evaluation Based on Geographic Locations

In this study, the research on extreme value distribution was
at a national scale. However, the different economic and
topographic characteristics of various geographic locations
imply return periods that may differ geographically. To
emphasize that consideration, the coastline of China was
divided info three parts according to their natural geographic
zoning (as shown in Figure 2). The return periods of the highest
surge levels and the adjusted direct economic losses in these
regions were then analyzed.

The first part (coastal region 1 [CR1]) covered the coastal
areas north of the Yangtze River, which included the entire
coastline of north China and the northern part of the coastline
of the east China. The second part (coastal region 2 [CR2])
included the southern part of the east China region, i.e. the
coastline of Shanghai City and Zhejiang Province. The third
part (coastal region 3 [CR3]) covered the entire coastline of

Table 4. Predicted N-year return-period adjusted direct economic loss over one year.

Return Periods

Parameter Estimation Methed

1000 500 200 100 50 25 20 10 2
Least-squares method 9.13 8.31 7.23 6.40 5.58 4.75 4.48 3.62 1.40
Thomas plot method 9.46 8.60 7.47 6.61 5.75 4.88 4.60 3.71 1.39
Moment method 8.27 7.54 6.57 5.83 5.10 4.36 4.11 3.36 1.37
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Figure 7. Comparison of the highest surge level with the adjusted direct

economic loss, both of which were originated from specific events. As shown,
there are some apparent differences between the two lines.

south China. In addition, other types of storm surges besides
typhoon storm surges, i.e. extratropical storm surges, occur in
the coastal areas of the Bohai Sea, the Yellow Sea, and
northern part of the east China Sea. The areas influenced by
extratropical storm surges overlap the CR1.

In CR1, 11 storm-surge events were recorded during the 26-
year research period. The values for those storms are
illustrated in Figures 9 and 10. In Figure 9, the observed data
from the highest surge level in CR1 were lower than the
calculated data. Each value of the highest surge level from the
observed data was smaller than that of the calculated value for
a similar return period; in other words, the observed data had a
parallel trend with the calculated data. The difference in the
values between the two groups was stable. The correlation
coefficient between the two groups of data was the largest
(0.984) among the three regions, which indicated the two

Table 6. Goodness-of-fit test results for the Gumbel distribution of the
adjusted direct economic loss.

Parameter Estimation Method o 1 D,

Least-squares method 0.392 0.902 0.162
Thomas plot method 0.396 0.924 0.160
Moment method 0.420 0.847 0.153

groups of data of CR1 were the mostly related linearly. The
mean value and the standard deviation for the difference in
values were 1.736 m and 0.105 m, respectively (see Table 7).
The value of the standard deviation was the smallest among
the three regions. Although there was insufficient historical
data for CR1 to calculate the return-period curve for this
region, it still can be concluded that the level of the highest
surge level was lower than the level for the country as a whole.
The observed data for the adjusted direct economic loss are
shown in Figure 10. As shown, the observed values for the
adjusted direct economic loss in CR1 were far less than the
calculated data at similar return-period levels. The mean
difference in the values between the observed data and the
calculated data was 2.604 billion USD. The correlation
coefficient between the two groups of data was 0.916, and the
standard deviation value of the different values was 0.699
billion USD. It can be concluded that, at a similar return-period
level, the adjusted direct economic loss in CR1 tends to be less
than the adjusted direct economic loss from a national
perspective.

In CR2, 16 storm surge events occurred during the 26-year
research period. As shown in Figure 9, all the highest surge
levels from the observed data were smaller than the values
from the calculated data for similar return-period levels.
However, the difference in values between the two groups of
data was not as large as the differences in CR1 values. The
mean difference in values in CR2 was 0.816 m. The correlation
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Figure.8. Inthe coastal section of a map of China, major coastal cities are shown, and the spatial distributions of the highest surge level (a) and the adjusted direct
economic loss (b) along the coastline are illustrated. (Color for this figure is available in the online version of this paper.)

Journal of Coastal Research, Vol. 33, No. 6, 2017



1432

Yang et al.

» Calculated data
Observed data in CR 1 et
Observed data in CR 2 P
Observed data in CR 3 e

Highest Surge Level (m)

T - 1
1 10 100
Return Period (a)

Figure 9. Comparison between the calculated data and the observed data on
the highest surge level from the three coastal regions.

coefficient between the two groups of data was 0.951. The
standard deviation of the difference in values was 0.420 m. The
highest surge level in CR2 was still lower than the calculated
data but was higher than the observed data in CR1, which
indicates the highest surge level in CR2 tended to be higher
than that in CR1 and was also closer to the national level. As
illustrated in Figure 10, the observed data for the direct
economic loss in CR2 were smaller than the calculated data
when the return period was less than 20 years. All the observed
data in CR2 were higher than the observed data in CR1. The
plots of the observed data were close to the calculated line when
the return period was larger than 10 years. The mean value of
the difference in values between the cobserved data and the
calculated data was 0.975 billion USD. The standard deviation
and the correlation coefficient between the two groups of data
were 0.560 billion USD and 0.953, respectively. Based on the
results shown in Figure 10, storm surges with relatively small
economic losses (less than 2 billion USD) happened less
frequently in CR2, but storm surges with adjusted direct
economic losses greater than 2 billion USD tended to be at
similar levels throughout the entire study area.

As illustrated in Figure 9, the observed data of the highest
surge level in CR3 were close to the calculated data. The
closeness was reflected by the evaluation parameters. The
mean value of the difference in values was —0.002. The
standard deviation of the mean difference in values was
0.241, and the correlation coefficient between the two groups
of data was 0.955. The return period for the highest surge level
in CR3 was most similar to the return-period level for the

Table 7. Evaluation parameters in the three coastal regions of China.
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Figure 10. Comparison between the calculated data and the observed data
on the adjusted direct economic loss from the three coastal regions.

country as a whole, which also means storm surges in CR3 best
approximate the extreme level of the highest surges among the
three regions of the entire country. As for the adjusted direct
economic loss in CR3 (see in Figure 10), the mean difference in
the values between the calculated data and the observed data
was 0.287 billion USD. The standard deviation of the mean
difference in values was 0.624 billion USD, and the correlation
coefficient between the two groups of data was 0.893.

Climate Change

The application of the extreme value distribution theory
requires a sufficiently long series of historical data. Theoret-
ically, the results will be more accurate with additional
historical data for a longer time span, which means studies
using extreme value distribution usually use data from years
before. To associate those data with the climate-change trends
during the past decade, it is necessary to analyze the changesin
the indicators during the study period. Comparisons were
made between two halves of the study period (13 years each) in
terms of the highest surge level and the adjusted direct
economic loss.

As shown in Figures 11 and 12, return periods were divided
into six groups. The return periods were derived from
substitution of the historical storm-surge records into the final
distributions that were formerly determined in this study.
Because no return period in the historical record exceeded 100
years and all calculated return periods exceeded 1 year, the x-
axis started at year 1 and ended at year 100. In Figure 11, the
frequency in all return-period groups increased in the second

Highest Surge Level (m)

Adjusted Direct Economic Loss (billion USD)

Region d SD r d SD r

CR1 1.736 0.105 0.984 2.604 0.699 0.916
CR2 0.816 0.420 0.951 0.975 0.560 0.953
CR3 —0.002 0.241 0.955 0.287 0.624 0.893

CR1 =coastal region 1, covering the coastal areas northern of the Yangtze River, including the entire coastline of the north China and the northern part of the
coastline of the east China; CR2 = coastal region 2, covering the southern part of the east China region, i.e. the coastline of Shanghai City and Zhejiang
Province; CR3 = coastal region 3, covering all the entire coastline of the south China; d =the mean value of the difference in values between the observed data
and the calculated data and equals the calculated data minus the observed data; SD =the standard deviation of the difference in values between the observed
data and the calculated data; r = the correlation coefficient between the observed data and the caleulated data.
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Figure 11. Frequency of certain return periods of the highest surge level,
with the research period divided into two halves.

half, except the last group (50-100 years). The frequency of
storm surges with the return period of the highest surge levels
from 2-5 years doubled in the second half of the study period,
and the return period times in the group of 5-10 years tripled.
In the first half of the study period, there were no return
periods of the highest surge level exceeding 10 years. However,
in the second half, there were 3 records with return periods of
more than 10 years, and one of them was more than 20 years. It
can be concluded that the frequency of the storm surges
increased in the second half of study period, especially the
frequency of storm surges having the highest surge level with
longer return periods.

As shown in Figure 12, the return periods of the adjusted
direct economic losses were mainly located in the group with a
1-2 year return period. In the group with a return period of 1-2
years, the records for the second half increased dramatically
from 31 times to 48 times. The frequency in the group with 2-5
years reduced from 3 to 2. The frequency in the group with 5-10
years remained stable at 1. During the first half of the research
period, there were two records located in the group with 20-50
years among all return period groups whose return periods
were longer than 10 years. In the second half, no storm surge
events with return periods of adjusted direct economic loss
greater than 10 years were recorded. No significant trends in
the return periods of the adjusted direct economic loss were
found after comparing the frequencies in the two halves in
contrast with the increasing trend of the frequency of the
return periods of the highest surge level, which indicates the
changes in climate have less effect on the economy of the
coastal region than does the hydrologic aspect. This may result
from better storm-surge disaster mitigation in recent years.

DISCUSSION

The parameter estimation methods (the least-squares meth-
od, the Thomas plot method, and the moment method)
performed well based on error-evaluation results, and most of
the goodness-of-fit test results were very close. However, the
performance of the least-squares method performed relatively
better in the error-evaluation analysis of the distributions of
both the highest surge levels and the adjusted direct economic
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Figure 12. Frequency of certain return period of the adjusted direct
economic loss, with the research period divided into two halves.

losses. In this case, the least-squares method was determined
to be the best method for parameter estimation, and the
parameters derived from it were used in the final distribution
functions. According to the observed data in Figures 4 and 6,
the distribution functions fit the data well. However, there are
some up-to-date methods for estimating extreme value distri-
butions, and those parameters could be more precise than the
methods used in this article (Skjong, Naess, and Naess, 2013);
therefore, it may be worthwhile to evaluate them in further
research.

In this study, the least-squares method was chosen to
determine the final distributions for caleulating both the
highest surge level and the adjusted direct economic loss.
However, previous research carried out by Hu et al. (1993)
showed that the Thomas plot method had better accuracy in
estimating the parameters compared with the least-squares
method and the moment method. These findings indicate that
it is necessary to confirm the performance of the parameter-
estimation methods by evaluating the errors individually and
that the ideal parameter-evaluation method for different
research samples is not consistent.

As shown in Figure 7, the movement of the adjusted direct
economic loss line was not synchronous when the return
periods of the highest surge level increased. The return period
of the direct economic losses tended to be longer than those of
the highest surge levels when the return periods of the highest
surge level were shorter than 1.29 years. Storm surge events
with minor surge levels often cause unexpected economic loss.
This indicates that the damages caused by a storm surge are
not completely determined by the level of the surge (Core
Writing Team, Pachauri, and Meyer, 2014); therefore, even if
the potential surge level is not high, advanced preparation
should not be neglected. In addition, the economic loss caused
by a storm surge is related to other indicators besides the surge
level, such as the state of the local economic development, the
storm intensity, the forward speed, the size, the angle of
approach to the coast, the central pressure of the storm, and the
shape and characteristics of the coastal features, such as bays
and estuaries (NOAA, 2016). Therefore, the return period of a
storm-surge level is a different concept from the return period
of the direct economic losses caused by that storm surge. The
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severity of a storm-surge disaster simply identified by the
return period of the surge level can, occasionally, be mislead-
ing.

In addition, there are some limitations in this article. The
data collected was on a national scale, and the data on the
highest surge levels were gauged at different tidal stations in
different spatial locations because storm surges were the
intended research subject and the impacts of those surges
were not fixed within the range of specific stations. Because of
that assumption, some of the surge levels from different
stations may be incomparable, which could lead to a negative
influence on the accuracy of the analyses. In addition, the
sample size was another limitation. The data were recorded
between 1989 and 2014, and there were 88 events. Although all
the storm-surge events were the most severe ones in each year,
the shortness of records influenced the method selection for a
more accurate conclusion. Furthermore, the time duration was
not sufficient to identify the distribution for longer return
periods.

CONCLUSIONS

The Gumbel distribution employed in this article has been
widely used in a number of research fields. In this study, the
application of the Gumbel distribution to identify the return
periods of the highest surge levels and the adjusted direct
economic losses was noticeably effective. The parameter-
estimation methods (the least-squares method, the Thomas
plot method, and the moment method) performed well and were
analyzed by error evaluation. The least-squares method was
identified as the best method of parameter estimation for both
the highest surge level and the adjusted direct economic loss,
and the estimated parameters derived from that method were
used in the final distribution functions. The expressions of the
distribution functions and the return periods for the highest
surge level and the adjusted direct economic loss were
generated and can be applied to storm-surge prediction, coastal
engineering design, and the estimation of the damage of a
disaster caused by a storm surge.

The relationships between the return periods of the highest
surge level and the adjusted direct economic loss were also
analyzed. The linear functional relationship was not signifi-
cant. Storm-surge events with minor surge levels often caused
unexpected economic losses, which indicates that the damages
caused by a storm surge are not completely determined by the
level of the surge. Therefore, even if the potential surge level is
not high, disaster management plans made ahead of time are
still necessary. The geographic analyses indicate that there are
strong spatial autocorrelations between the highest surge
levels and the adjusted direct economic losses. Both the highest
surge level and the adjusted direct economic loss in CR1 tended
to be smaller at the same return-period level, which indicates
storm surges in CR1 were less frequent and have less intensity
than do storm surges in the other regions. Analysis based on
climate change shows that the frequency of the storm surges
increased in the second half of study period, especially the
frequency of storm surges having the highest surge level with
longer return periods. This may be the evidence for the trend in
the impacts of storm surges resulting from climate change.
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