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Abstract

Requirements Engineering (RE) is one of the crucial and demanding phase of soft-

ware engineering. The success or failure of a software project or a system depends

on RE activities. RE states the intention of a software system, the functionalities

it must accomplish and the definition of the software constraints that must be

designed and implemented. The activities involved in RE are elicitation, analy-

sis, specification, validation, and management of requirements. Many approaches

ranging from traditional to goal-oriented RE have been proposed for modeling

and analysing requirements.

Goal-Oriented Requirements Engineering (GORE) considers the system-to-be

and its environment as a group of active components called agents. These compo-

nents are the stakeholder’s, devices and softwares involved in the system. GORE

is appropriate for analysing requirements (also known as goals) particularly with

regard to non-functional requirements (also known as softgoals) in the early sta-

ges of the software development cycle. There are number of benefits associated

with the analysis of goal models apart from modeling. One such benefit is the

evaluation of alternative design options based on non-functional requirements.

The critical problem in goal analysis is: given a set of alternative options for

a goal, which alternative gives best satisfaction in terms of the softgoals of the

system. Although many approaches have been proposed, goal reasoning is still a

significant challenge in RE.

Among the various GORE framework, the i∗ framework which is Goal- and

agent-oriented modeling framework is appropriate for representing the social ele-

ments of the system domain and is suitable for reasoning of goals particularly

at the requirements level. The survey of goal analysis procedures for the i∗ fra-

mework shows that these are basically qualitative in nature. We have developed

a novel approach based on fuzzy numbers for quantitative reasoning of goals in

the i∗ framework for early requirements engineering. The fuzzy-based quanti-

tative approach was enhanced by using an operation research technique namely

vii



optimisation. Optimisation was used to deal with incomplete or unobtainable in-

formation about requirements. Furthermore, we have proposed a novel approach

based on game theory to manage requirements of a conflicting nature. A tool

has been developed to implement the proposed approaches and it was evaluated

using OpenOME, an existing tool for the i∗ framework. The evaluation results

have shown that fuzzy-based optimal goal analysis is better when choosing from

alternative options of goals in comparison with respect to the OpenOME tool.
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Chapter 1

Introduction

With the advancements in Internet and web technology, most software systems

progress towards open, distributed, decentralized and integrated environments.

Users can now access various services (e-commerce, e-learning, e-banking, e-

healthcare, e-forecasting, etc) from anywhere, at any time and in any form. There

is a demand for new features in the software systems enabling them to adapt to en-

vironmental changes and high expectations of the users. This is attainable with

the emergence of new technology namely, agent-oriented technology. Software

agents are software systems that are autonomous and social; they communicate,

coordinate, and cooperate with each other to accomplish goals. Agent-oriented

software engineering has received a great deal of attention in agent research (Yu,

2001).

When developing any software system, one has to go through the entire soft-

ware development cycle:- requirements, design, construction, validation and veri-

fication, deployment, maintenance, evolution, legacy, re-use, etc. For agent-based

software technology, an important but challenging task is requirements engineer-

ing. Requirements engineering emphasizes “the use of systematic techniques to

ensure the completeness, consistency, and relevance of the system requirements”

(Chung et al., 2012). In requirements engineering, all stakeholders, users, de-

velopers, and analysts comprehend each other’s interests. Furthermore, the re-

quirements analyst examines alternative options and makes decisions about the

systems to be implemented. The requirements of a software system are classified

as either functional requirements (goals) or non-functional requirements (softgo-

als). Functional(or behavioural) requirements are associated with the function of

the system or its components. Non-functional requirements are the criteria for

checking the system’s operation rather than specific behaviour. Non-functional

1



requirements like usability, integrity and security have more impact on soft-

ware systems than do the functional requirements (Pohl, 2010).

In RE literature, various methods have been proposed to model requirements,

namely conceptual entity-relationship modeling, structured modeling, object-

oriented, use case and goal-oriented approaches. Goal-oriented requirements en-

gineering (GORE) is complementary when compared to traditional approaches

(Mylopoulos et al., 1999). Compared with other approaches, GORE is appropri-

ate for requirements analysis with regard to non-functional requirements (NFR)

early in the software development cycle and is appropriate for the evaluation

of alternatives. The GORE approach is used to reveal, examine and express

stakeholder’s goals that lead to software and system requirements. The other

approaches are more suited to requirements analysis in the later stage of the soft-

ware cycle and target the traceability between requirements and implementation.

The popular GORE frameworks are Non-Functional Requirements (NFR) frame-

work (Chung et al., 2012), Knowledge Acquisition in Automated Space (KAOS)

(Dardenne et al., 1991), i∗ framework (Yu, 2011), Tropos (Bresciani et al., 2004),

Goal-Oriented Requirement Language (GRL) (Amyot et al., 2010) and Attribu-

ted Goal-Oriented Requirements Analysis (AGORA) (Kaiya et al., 2002).

In addition to modeling analysts use goal models to determine whether go-

als are being met, to evaluate design alternatives, to choose the system design,

analyse risk and prioritize the requirements. A goal may have different design

options and, for implementation, the best design has to be selected. Hence, when

evaluating design alternatives, analysts explore various design alternatives for a

goal and select the best ones using several evaluation criteria. Softgoals in goal

models are used as evaluation criteria in existing quantitative and qualitative ap-

proaches(Mylopoulos et al., 1992). During the process of goal model evaluation,

the qualitative or quantitative values are propagated either using forward propa-

gation (from the bottom softgoals to the top softgoals) or backward propagation

(from the top softgoals to the bottom softgoals). The satisfaction levels of softgo-

als are assessed based on the selected design alternative. The design alternative

that gives best satisfaction in terms of the top softgoals is selected.

Qualitative approaches use qualitative labels such as denied, partially denied,

satisfied, partially satisfied, unknown, and conflict in the propagation algorithm.

The drawback of qualitative approaches is the ambiguity in decision making.

Ambiguity arises when two alternatives have the same label and when a goal

receives an unknown or conflict label. It is essential to deal with conflicting

requirements as these are one of the three main problems associated with software

2



development (Mairiza et al., 2014).

Quantitative approaches use numbers instead of qualitative labels to overcome

the problems of qualitative analysis. It is also crucial to assign definite numbers

to stakeholders’ requirements because requirements analysis may involve distinct

stakeholders having diverse preferences regarding the same requirements. This

is explained by the fact that different stakeholders have different levels of know-

ledge, training and skills (Wang and Xiong, 2011). Moreover, in reality, linguistic

terms such as low cost, and high profit are generally used by the stakeholders to

communicate their requirement preferences. It is challenging task to represent

these terms with definite numbers. Hence, there is a need for a novel approach

to goal analysis.

Compared with KAOS and NFR frameworks, frameworks such as i∗, GRL

and Tropos goal model shows different actors and their dependencies. Each actor

depends on other actors for goal accomplishment. These interdependencies are

also influential in the decision-making regarding alternative design options (Bres-

ciani et al., 2004; Amyot et al., 2010; Yu, 2011). The existing literature has also

discussed the actor dependencies and formalisation (Morandini et al., 2007).

In practice, due to incomplete or unobtainable information, the input data

used to evaluate the requirements are imprecise. The inputs used in the analysis

are subjected to the requirements analyst. Moreover, in real-life RE problems,

one has to deal with multiple-goal models in which there can be more than one

goal which is important to address RE problems. The priority of these goals may

be different but it is important that they be considered simultaneously. These

goals might be either conflicting or congruent. Furthermore, another problem

with goal models is scalability. As the size of the goal model increases, it is

difficult to decide and assign values to goals and, hence, the decision making is a

challenging task (Yu, 2011; Letier and Van Lamsweerde, 2004; Heaven and Letier,

2011). Therefore, there is a need for automating the goal analysis procedure.

1.1 Research Questions

The following research questions were raised:

1. How to represent the linguistic description of requirements (by stakeholders)

in goal analysis?

2. How to effectively represent the subjective preference of quantitative values

used in the goal analysis?
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3. How to effectively implement requirements of opposing nature?

4. What type of tool can assist in the process of goal analysis?

The research is carried out using the i* framework. The reason for selecting

the i* framework is that it is a goal- and agent-oriented modeling framework that

can be efficiently used to model and analyse the relationships among the strategic

entities in a social network (Yu, 2011), which includes human organizations and

other types of social structures. The i* framework has also been used in busi-

ness process modeling and redesign (Yu and Mylopoulos, 1995) and for software

process modelling (Yu and Mylopoulos, 1994). Moreover, in the existing RE lite-

rature, there is no work on the quantitative analysis of goals in the i* framework.

Hence, in this research, the i* framework is preferred as a modeling tool for the

goal analysis. The research includes: fuzzy-based procedures for evaluating go-

als; the evaluation of goals using inter-actor dependencies in the i∗ framework;

procedures for optimising the i∗ goal model to avoid the subjective preferences

during goal analysis; game-theory-based procedure for handling the optimisation

of softgoals with opposing objective functions and finally, the development of a

tool for the analysis of goals in the i∗ framework.

Research Objectives The main objectives of this research are:

• Use of fuzzy numbers to represent linguistic description of requirements

• Use of optimisation technique to avoid subjective preferences in goal ana-

lysis

• Use of game-theory-based procedure to effectively implement requirements

of opposing nature

• Development of a tool to assist in the process of goal analysis

1.2 Research Methodology

To address the limitations of the existing qualitative and quantitative approaches,

we explored the use of fuzzy numbers for goal analysis with the aim of supporting

decision making during the RE process. The linguistic representation of stake-

holders’ requirement preferences can be easily expressed in Fuzzy Logic (Zadeh,

1965, 1975).
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• Fuzzy numbers to represent linguistic terms of requirements: First,

we have developed a fuzzy-based quantitative approach for finding softgoals

satisfaction using the inter-actor dependencies in the i∗ framework. The

approach used fuzzy concepts to capture requirements, which can be stated

in linguistic terms. Fuzzy logic helps in converting the linguistic terms to

quantitative numbers.

• Optimisation for incomplete or unobtainable information about

requirements: Next, in order to handle incomplete or unobtainable in-

formation about the requirements and scalability issue of a goal model,

we have developed an approach using optimisation, an operation research

technique. In the proposed fuzzy-based, inter-actor goal analysis procedure,

the weights of the leaf softgoals are assigned by the analyst and this is sub-

ject to the analyst’s preference. To avoid this subjective preference and to

minimize the analyst’s interaction, we have proposed an optimisation-based

approach. In the optimisation approach, based on the leaf softgoals of a

goal model, the weight of the leaf softgoals are found and, in turn these

are used in the analysis of the goal model. The optimisation model has

been expanded to include sensitivity analysis, in order to produce useful

information as the input data for the requirement analyst.

The optimisation approach was further enhanced by developing an optimi-

sation model that is based on all the softgoals and leaf softgoals of a goal

model, presenting a complete optimisation model for an i∗ framework in a

more generalized form. The reason for this improvement is that the choices

made from a range of alternatives are based upon the propagation of values

throughout the entire hierarchy of softgoals. Therefore, an optimal model

was developed by taking into consideration all of the softgoals within the

hierarchy.

• Requirements of conflicting nature: Incredibly, most of the real-world

business problems encounter the simultaneous optimisation of many com-

petitive objective functions (Zou et al., 2011). In existing requirements

engineering literatures (Heaven and Letier, 2011), goal analysis procedures

have taken into consideration objectives of maximising type (all objectives

of the same type). A game-theory-based approach was proposed in order

to select an alternative design for a system with goals of opposing objective

functions in an i∗ goal model. The reason for the selection of the game
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theory concept is that it is used to find optimal solutions when there is

conflict, with the assumption that players are rational and behave in their

own interests (Kelly, 2003). The non-functional requirements with oppo-

sing objective functions of the system are treated as players in a game and

the alternative design options of the system are considered as strategies of

the game.

1.3 Research Outcomes and Main Contributi-

ons

This thesis makes several contributions to the current state-of-art RE literature.

• Fuzzy based quantitative analysis of the i∗ framework: Firstly, we

developed a fuzzy based quantitative method for goal analysis of an i∗ fra-

mework using the inter-actor dependencies among the actors. Fuzzy values

are defined in terms of goal/softgoal contribution (or impact) to softgoal

relations. The alternative options are selected based on the percentage of

their contribution of satisfaction to the top softgoals. A simulation-based

implementation was developed in VC++ to evaluate the feasibility of the

approach.

• Optimisation of the i∗ framework based on leaf softgoals: Secondly,

we developed an optimisation approach for the i∗ goal analysis. In the

fuzzy-based quantitative goal analysis, the weights of the leaf softgoals are

assigned by the analyst. Different analysts have different preferences regar-

ding leaf softgoals and, hence, different satisfaction values are obtained for

the top softgoals for a selected alternative. To avoid such subjective prefe-

rences, a multi-objective optimisation method is used to find the weights of

the leaf softgoals, which are then used in the goal analysis. The feasibility

of the approach was tested by simulation developed in VC++ integrated

with MATLAB. The built-in genetic algorithm of MATLAB was used for

optimisation of the approach.

• Optimisation of the i∗ framework based on all softgoals in a Strate-

gic Rationale model: Thirdly, the optimisation approach was enhanced

to include all the softgoals in the hierarchy. The reason for this is that an

alternative selection is made by propagating the score value through all the
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softgoals in its propagation path. A complete optimisation model for the

i∗ framework was developed using the Multi-Objective Goal Programming

(MOGP) approach. To test the feasibility of the approach, a simulation

was developed in Java Eclipse integrated with the IBM Cplex optimisation

tool. The choice of Java Eclipse instead of VC++ (as in the previous two

approaches) is a step towards tool development for optimal goal analysis of

the i∗ framework.

• Analysis of goals with opposing objective functions: Fourthly, our

research has addressed the problems of goals with opposing objective functi-

ons (one with maximum value and the other with minimum value). The

game-theory-based approach was used to handle the goals with opposing

objective functions. A tool has been developed in Java integrated with the

IBM Cplex optimisation tool for the game-theory-based goal analysis in the

i∗ framework.

• Evaluation of the Optimal goal analysis tool: Finally, our last contri-

bution is the empirical evaluation of the Optimal tool to assess the efficiency

and effectiveness of our approaches. This evaluation is done for the pur-

pose of comparison with the OpenOME tool, an open tool for the i∗ goal

analysis.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:-

• Chapter 2: “Literature Survey” reviews the existing research work related

to this thesis. This includes an overview of Goal-Oriented Requirements

Engineering (GORE) frameworks. This chapter also provides background

information which details the approaches available for goal analysis namely

qualitative and quantitative approaches and also those that use optimisation

for goal analysis.

• Chapter 3:“Fuzzy-based Inter-actor Quantitative Reasoning” provides a des-

cription of our fuzzy-based quantitative approach to address the ambiguity

and conflict problems that arise in the qualitative approaches for the i∗

framework.
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• Chapter 4:“Optimal Reasoning and Sensitivity Analysis” describes how op-

timisation and sensitivity analysis are applied to the i∗ framework.

• Chapter 5:“Optmal Goal Programming of Softgoals” provides a description

of our complete optimal framework for i∗ framework.

• Chapter 6:“Softgoals with Opposing Objective Functions” presents in detail

how the game-theory-based approach was used for handling the softgoals

of opposing objective functions.

• Chapter 7:“Evaluation” presents, discusses and analyses the results of an

empirical evaluation of our Optimal goal analysis tool for the purpose of

comparison with the existing OpenOME tool.

• Chapter 8:“Conclusion” revisits our research problems, reiterates our con-

tributions and discusses the limitations of our approach. The chapter con-

cludes with suggestions for future work.
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Chapter 2

Literature Survey

This chapter gives some insight into the problem that this research addresses. The

first part of this chapter provides some background on Requirements Engineering

(RE) and Goal-Oriented Requirements Engineering (GORE). In Section 2.3, we

explain the different approaches proposed for performing goal analysis. In Section

2.4, we present the purpose of this research work.
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2.1 Introduction to Requirements Engineering

Requirements refer to a set of specifications or a description of what a system

has to do. They define for the software developer what needs to be developed.

There are different kinds of requirements: those that specify a feature of a system;

those that provide a detailed specification of a system behaviour, may represent

a general property of a system, or specify a specific constraints of a system, or

algorithmic information to system engineers and so on. In general, requirements

are classified as functional requirements, non-functional requirements or domain

requirements. Functional requirements define the function of the system or its

components. Non-functional requirements are the criteria for checking the sy-

stem’s operation rather than its specific behaviour. Non-functional requirements

such as usability, integrity and security have more impact on software systems

than do the functional requirements (Pohl, 2010). The domain requirements are

inherited from the features of an application domain or define the rules and re-

gulations that have to be applied to that domain.

Requirements Engineering (RE), an early phase of the software development

life-cycle involves activities such as goals elicitation to be accomplished by the

conceived system, the operationalization of such goals according to service and

constraint specifications, the allocation of tasks (for the fulfillment of require-

ments) to agents such as humans, devices and software, and the evolution of

these requirements over time. However, the RE process may vary depending on

the application domain, the people involved and the organisation developing the

requirements. However, RE follows a systematic approach to achieve a complete

and consistent set of requirements for the achievement of goals. Obtaining the

correct requirements is an important activity in software engineering process.

Obtaining the correct and quality requirements is a challenging and critical task.

The recent literature surveys on requirements have shown that RE is a primary

area of concern in software engineering research and practice (Van Lamsweerde

and Letier, 2004).

Currently, the term ’goal’ is used in requirements engineering technology. A

goal is defined as an objective to be achieved by the system under consideration

(Van Lamsweerde, 2001, 2000). Goals are obtained from stakeholders, disclosed

in requirements documents, analysis of similar or existing systems, on elabora-

ting other goal models and so on. Goals may be specified at different levels

of abstraction varying from high-level, strategic concerns to low-level, techni-

cal concerns. Goals also include different types of concerns: behavioural goals
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(functional requirements) prescribe the services to be provided by the system

and softgoals (non-functional requirements) are concerned with quality of service

such as accuracy, performance, security and so forth.

In software engineering, goals have been used to model early requirements

and non-functional requirements (Giorgini et al., 2002). In RE literature, a va-

riety of methods have been proposed to model requirements, namely concep-

tual entity-relationship modeling, structured modeling, object-oriented, use case

and goal-oriented approaches. Goal-oriented requirements engineering (GORE)

is complementary when compared to traditional approaches (Mylopoulos et al.,

1999). Compared with other approaches, GORE is appropriate for requirements

analysis with regard to non-functional requirements (NFR) early in the software

development cycle and is suitable for alternatives evaluation. The GORE ap-

proach is used to reveal, examine and express stakeholders’ goals that lead to

software and system requirements. The other approaches are more appropriate

for requirements analysis later in the software cycle and target the traceability

between requirements and implementation.

2.2 Goal-Oriented Requirements Engineering

Goal-oriented requirements engineering (GORE) is involved with the application

of goals for eliciting, elaborating, structuring, specifying, analysing, negotiating,

documenting, and modifying requirements (Van Lamsweerde, 2004). Goals are

the stakeholders’ objectives or requirements to be accomplished by the system

under consideration. Here the word “system” refers to the software-to-be to-

gether with its environment (Van Lamsweerde and Letier, 2004). The goals are

represented using AND/OR structures that show how the goals are refined or

abstracted. Goals may also specify the functional or non-functional requirements

and are categorized from high-level ones to lower-level ones. System goals relate

to the application’s specific safety, fault tolerance and survivability properties

that are to be achieved for high assurance systems. Goal modeling and reasoning

are particularly crucial for such high assurance systems.

The popular GORE frameworks are: Non-Functional Requirements (NFR)

framework (Chung et al., 2012), Knowledge Acquisition in Automated Space

(KAOS) (Dardenne et al., 1991), i∗ framework (Yu, 2011), Tropos (Bresciani

et al., 2004), Goal-Oriented Requirement Language (GRL) (Amyot et al., 2010)

and Attributed Goal-Oriented Requirements Analysis (AGORA) (Kaiya et al.,
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2002). In the following section, we give a brief description of each framework.

2.2.1 KAOS Framework

KAOS (Van Lamsweerde and Letier, 2004) is a requirement engineering metho-

dology designed by van Lamsweerde and others in 1990 in collaboration with the

University of Oregon and the University of Louvain. It assists the requirement

analyst to construct requirements models and to develop requirements documents

from KAOS models. Objectiver is a tool designed to support KAOS. With KAOS,

the system goals are obtained by understanding the existing technical documents,

consulting current and future users, and examining the current systems, and so

on. The collected goals are structured into directed, acyclic graphs by the ana-

lyst. In the graph model, each goal (except the roots: the top-most strategic

goals) is rationalized by at least another goal, and each goal (except the leaves,

the bottom goals) is refined as a collection of subgoals. The goals at the top

of the graph represent business or strategic goals and the bottom represents the

system requirements. These goals are expressed in stakeholders’ words. The

identification of goals is done using either a top-down or bottom-up approach.

The analysis is carried out as follows: analysts first determine the intermediate

goals and then by asking “ why do we want that?” they look for higher-level

reasons for each new goal. More specific goals emerge from asking “how shall we

attain that objective?”. In general, the KAOS goal model can be considered as

a collection of interrelated goal diagrams for handling a particular problem.

2.2.2 Non-Functional Requirements Framework

The Non-Functional Requirements Framework (NFR) (Mylopoulos et al., 1992)

is a framework for representing and using non-functional requirements during the

development process. The functional and non-functional requirements together

determine the complexity of a software system. The non-functional requirements,

which are informally stated during requirement analysis are challenging to imple-

ment during software development and difficult to validate once the final system

has been built. The NFR framework is used as a tool for formal representation

of non-functional requirements. The formal representation of non-functional re-

quirements is defined using two approaches: the product-oriented approach and

the process-oriented approach. In product-oriented formalization, formal definiti-

ons of non-functional requirements are developed in order to evaluate the degree
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to which a software system meets its requirements. On the other hand, in the

process-oriented approach, techniques are developed to justify design decisions

during the software development process. Design decisions either positively or

negatively influence the specific non-functional requirements. These dependen-

cies are used to verify whether or not a software system indeed meets a certain

non-functional requirement.

The non-functional requirements, also known as softgoals are difficult to ex-

press, although they contribute to the global qualities of a software system. The

qualities could be precision, performance, accuracy, security, and usability of a

given system. These softgoals are then usually streamlined through refinement

methods to reveal a hierarchy of goals and softgoals. The tree structure can then

be evaluated to resolve the extent to which a set of non-functional requirements

is supported by a particular design.

2.2.3 Goal-Oriented Requirements Language

Goal-Oriented Requirements Language (GRL) (Amyot et al., 2010) is a modeling

language that is used for decision making and rationale documentation. In the

goal graph, the AND decomposition represents system functionality and the OR

decomposition represents the different ways of performing these goals. The sy-

stem stakeholders and their non-functional requirements are captured by actors.

In GRL, the goal diagram incorporates a scenario notation for qualitative and

quantitative attributes. It also separates GRL elements from their graphical re-

presentation which facilitates a consistent and scalable representation of multiple

views/diagrams of the same goal model. For quantitative analysis, GRL uses

numbers in the range ([-100..100]) to denote contributions, satisfaction values,

and the importance of intentional elements to their containing actor. There are

also qualitative scales for contributions { Break, ..., Make }, satisfactions { De-

nied,..., Satisfied }, and importance { None, ..., High }. However, for quantitative

analysis, it is hard to assign suitable values to goals. The tool jUCMNav has fe-

atures to handle this situation. GRL syntax is based on the i∗ language and the

goal diagram represents stakeholders’ high-level business goals and non-functional

requirements. The stakeholders’ important beliefs (facts) are also shown in the

goal diagram.
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2.2.4 Attribute Goal-Oriented Requirements Analysis Met-

hod

Attribute Goal-Oriented Requirements Analysis Method (AGORA) (Kaiya et al.,

2002) is an extended version of the AND-OR goal graph; stated precisely, it is an

attributed AND-OR goal graph. The extended part includes:

• Nodes and edges with attribute values: These attributes include details

of structural characteristics of the graph plus the variables that help to

estimate the quality of the requirements specification.

• Rationale: It specifies the reasons for the decomposition of goals into sub-

goals. It is attached to an attribute as well as to a node and an edge

To construct an AGORA graph, the following steps are used.

1. Choosing customer’s needs as initial goals

2. Goals decomposition and refinement into sub-goals

3. Selection of goals from the alternatives of decomposed goals

4. Analysing the conflict of goals

2.2.5 i∗ Framework

The i∗ framework introduced by Yu (2011) models the social elements of a system

and can be used in the early stages of requirements analysis. The Strategic De-

pendency (SD) model and the Strategic Rationale (SR) model are the two types

of diagrams employed in modeling. The Strategic Dependency diagram represents

stakeholders’ relationships, while the Strategic Rationale diagram represents the

internal intentional relationships of stakeholders. An SD model is a graph in

which the nodes represent the actors and the links represent the interdependency

between the actors. Goal, softgoal, task and resources are the intentional ele-

ments. A dependency can be any one of the intentional elements. An SD model

is a higher level of abstraction representing the actors’ dependency upon each ot-

her. An SD model targets external relationships and does not disclose the details

of the internal structure. In the SD model, actors are represented by circles, hard

goals by ovals, softgoals by cloud symbols, resources by rectangles, and tasks by

hexagonal shapes.
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An SR model assigns the intentional elements’ goals, tasks, resources and soft-

goals to actors. It describes how actors achieve their goals. Intentional elements

are linked by MEANS-END relationships, TASK decomposition and softgoal con-

tributions. An SR model can be viewed as a graph that shows the decomposition

of high-level goals into lower level goals by the MEANS-END / TASK decomposi-

tion. In means-end relationships, a mean node can represent a softgoal or a task,

and an end node can be a goal, a softgoal, a resource or a task. A means-end

links a task to a goal, implying that a particular method is used to achieve a goal.

Task decomposition shows the sub-goals, resources and softgoals that are to be

carried out to ensure the success of a task. A softgoal contribution can be any of

the following types: help, make, some+, some-, hurt, or break.

The early analysis of the i∗ model not only answers the ’what’ and ’how’, but

also the ’why’ questions involved in software development. Hence, it performs a

refined analysis of software dependencies and encourages a uniform treatment of

the system’s functional and non-functional requirements.

2.2.6 TROPOS

Tropos (Bresciani et al., 2004) is an agent-oriented software methodology. It

borrows the i∗ modeling framework proposed by Eric Yu. The idea of actor, goal

and dependencies are used to model early and late requirements. The Tropos

methodology was intended to assist with all analysis and design activities in the

software development activity. Requirement analysis comprises two phases: early

requirements analysis and late requirements analysis. In the early requirements

phase, the domain stakeholders are identified by the analyst who models them

as actors with their dependencies on other actors and resources. In the late

requirement phase, the new actors and their dependencies are added, thereby

extending the model. All the functional and non-functional requirements of the

system are defined. The system specifications resulting from the requirements

phases are addressed in the architectural and detailed design phase. Following

the detailed design specification, the implementation activity is carried out step-

by-step in order to map between the implementation platform constructs and the

detailed design.

In the following section, we briefly describe some of the goal analysis proce-

dures proposed for various GORE frameworks in the existing RE literature.
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2.3 Goal Analysis

Goal models are developed to support qualitative or formal reasoning of goals

during requirements engineering. A goal model is an AND/OR graph depicting

how higher-level goals are satisfied by lower-level ones and how lower-level goals

contribute to the satisfaction of higher-level ones (Van Lamsweerde, 2009).

In addition to modeling, analysts use goal models to find the level of goals

satisfaction, to evaluate design alternatives, to choose the system design, analyse

risk and decide the requirements’ prioritization. During alternative design evalu-

ation, analysts explore different design alternatives and select the best ones using

several evaluation criteria. Softgoals in goal models are used as evaluation crite-

ria in existing qualitative and quantitative approaches (Mylopoulos et al., 1992).

Many qualitative and quantitative reasoning approaches have been proposed in

RE literature to support the goal analysis (Liaskos et al., 2011; Amyot et al.,

2010; Franch, 2006; Horkoff and Yu, 2009; Miller et al., 2014; Waters et al., 2015;

Ashamalla et al., 2017; Burgess and Krishna, 2009; Burgess et al., 2009). During

the evaluation process, the qualitative or quantitative values are propagated from

the bottom softgoals to the top softgoals in a goal model.

In qualitative analysis, qualitative weights such as positively and negatively

are used for describing the contribution of goals to softgoals. Qualitative labels

such as satisfied, denied, partially satisfied and partially denied are assigned to

the nodes in a goal model. These labels are propagated through link paths to

find satisfaction of goal achievement. In qualitative label propagation, there is a

chance of getting one or more alternative options with the same label, in which

case decision making is difficult. Moreover, in some cases, decision making is un-

certain when an option has a U (Undetermined) label. To address the limitations

of qualitative reasoning, a measurable specification for goals, namely quantita-

tive reasoning, has been proposed in RE literature. In the quantitative approach,

quantitative estimations are used to represent the contribution of goals to soft-

goals and quantitative labels are propagated through link paths to find the level

to which the goal has been satisfied. Since the development of the concept of a

goal model, considerable amount of research work has been undertaken on reaso-

ning related to goal achievement using qualitative and quantitative labels(Liaskos

et al., 2011; Amyot et al., 2010; Franch, 2006; Horkoff and Yu, 2009; Goncalves

and Krishna, 2016b; Affleck et al., 2013, 2015).
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2.3.1 Qualitative Analysis

2.3.1.1 Reasoning about Alternative Requirements

Van Lamsweerde (2009) initially proposed a qualitative reasoning approach for

alternative evaluation. The qualitative procedure is as follows: first, the contri-

bution of each alternative to the various softgoals is qualitatively assessed. Then

these contributions are propagated upwards in the softgoal graph through refine-

ment marked as + or ++ according to the strength of the positive contribution

and conflict links marked as - or - - according to the severity of the negative con-

tribution. The propagation is carried out recursively until the top-level softgoals

receive a single label. The disadvantages of this approach are

1. The propagation rule sometimes turns labels into ’inconclusive’

2. The labels and link weights have no clear meaning in terms of system-

specific phenomena.

3. It provides a rough evaluation of goals.

To address these limitations, Lamsweerde came up with a lightweight quan-

titative alternative evaluation system by integrating the notions of softgoals and

goals into the KAOS framework. The contributions of alternatives to all the

leaf softgoals are assessed using quantitative estimations. The leaf softgoals are

assigned different weights to show their relative importance. Based on system

phenomena, each option is scored against the leaf softgoals. A weighted matrix

is used to collect the weights and scores for overall comparison. In his approach,

Lamsweerde used variables such as gauge variable, ideal target value, and max-

imum acceptable value, for each softgoal. These values are obtained from the

specification of the system. So, in order to design a goal model using this met-

hod, a thorough knowledge of the specification of the system is required. Another

problem with this approach is that it may be difficult to apply to complex and

large systems. The limitation of this approach is the ambiguity that arises when

two or more goals receive the same label, creating confusion in decision making.

2.3.1.2 Exploring Alternatives during Requirements Analysis

Mylopoulos et al. (2001) proposed an approach to explore alternatives and to

evaluate their feasibility and desirability with regard to business-goals-based goal-

oriented analysis technique. The analysis is done using an AND/OR decomposi-

tion graph and consists of five steps:
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1. Goal analysis

2. Softgoal analysis

3. Softgoal correlation analysis

4. Goal correlation analysis and

5. Evaluation of alternatives.

The approach is explained with meeting scheduler case study. Once the graph

showing the goal and softgoal decomposition has been constructed using the first

four steps, the evaluation of functional goal decomposition is done in terms of

softgoal hierarchies. Evaluation is done by choosing a set of softgoals that alto-

gether satisfy all given goals or at least support the best overall satisfaction for

top-level softgoals.

2.3.1.3 Reasoning with Goal Models

Giorgini et al. (2002) presented a formal reasoning of goals in goal models using

a qualitative formalization and label propagation algorithm. The work aimed to

model a framework for goals to incorporate qualitative goal relationships and also

to include contradictory situations. This is done by introducing goal relationships

labelled “+”, “-” to represent a goal’s positive and negative contribution towards

satisfying another goal. This labelling required a precise semantics representation

of the new goal relationships. This is accomplished in two different ways: labelling

the propagation algorithm with a qualitative formalization, and labelling the

propagation algorithm with a quantitative formalization. Both algorithms have

been implemented in Java. Two sets of experiments were carried out: the first

one for the qualitative label propagation algorithm, and the second one for the

quantitative label propagation algorithm. In the qualitative algorithm, a set of

labels was assigned to some of the goals and events and the consequences of other

nodes were noted. A steady state was reached after, at most, five iterations.

In the quantitative algorithm, the relationships “+”, “-” and “-s” are assigned

numeric weights. Using the propagation algorithm, the final values are computed

for each goal/event. These results are confirmed by the results obtained from

the qualitative algorithm. However, more precise conclusions about the final

value of the goals/events are obtained with the numeric approach. In addition,

quantitative semantics for new relationships are based on the probabilistic model.

This work requires sound mathematical knowledge, as it uses first order logic.
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2.3.1.4 Evaluating Goal Achievement in Enterprise Modeling - an In-

teractive Procedure and Experiences

Horkoff and Yu (2009) proposed a qualitative analysis of goal- and agent-oriented

models to comprehend the problem domain during the early phase of requirement

engineering. In addition to understanding the problem domain, they also introdu-

ced an interactive evaluation procedure for alternatives evaluation which require

customer intervention. The alternatives may be a system alternative or a process

design choice or alternative courses of actions, capabilities, and commitments.

For easy understanding and manual analysis, an informal procedure in terms

of the i∗ framework has been presented. The analysis starts with the question

“How effective is an alternative with respect to model goals?”. The intentional

elements are assigned a degree of satisfaction or denial using a set of qualitative

labels. Using the propagation algorithm, these qualitative labels are propagated

through the model links. When multiple conflicting or partial values arise, human

judgement is used to find the satisfaction or denial of a softgoal. Each actor’s

final satisfaction and denial values are analysed using the original question. The

analysis checks whether a design choice is satisfied (“good enough”) or not, and

allows further model analysis and refinement. An experimental study has been

undertaken where this procedure has been applied to several case studies. The

experimental results showed that the procedure provided a better understanding

of the model and domain. However, the experiment suffered from several issues

of validity, including the small number of participants. However, the main dra-

wback with their approach is the ambiguity of the decision-making when one or

more goals receive the same label.

2.3.2 Quantitative Analysis

2.3.2.1 Reasoning about Partial Goal Satisfaction for Requirements

and Design Engineering

Letier and Van Lamsweerde (2004) proposed a more accurate, but heavy weight

approach based on the interpretation of numbers in terms of probability. Lam-

sweerde et al. (2004) presented a method for determining the partial degrees of

goal satisfaction and for quantifying the impact of system alternatives on high-

level goals that are partially satisfied. Both qualitative and quantitative reaso-

ning methods are used to evaluate alternatives with respect to degrees of goal

satisfaction. Bayesian Networks concepts are used for making predictions about
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softgoals. A semi-formal but precise way of determining partial goal satisfaction

is represented by objective functions and quality variables. Quality variables are

domain-specific goal-related random variables defined for a specified sample space.

Again, objective functions are also domain-specific goal-related quantities to be

maximized or minimized. Using five heuristics, the appropriate objective functi-

ons and quality variables are specified correctly for alternative design evaluation.

Probabilistic extension of temporal logic is used to specify objective functions

more precisely at the optimal formal layer. The propagation rules that relate the

quality variables of subgoals to the quality variables of parent goals are used to

compute the objective function values for each alternative. The actual calculation

of objective functions is done through ad-hoc use of mathematical software. This

may turn out to be difficult for complex refinement equations. Dedicated tools

to perform such computations more effectively should be provided. The author

also states that the framework should be extended to handle uncertainties on

parameter estimations by using confidence intervals. This approach is difficult to

apply to a complex system.

2.3.2.2 Evaluating Goal models within Goal-oriented Requirements

Language

Amyot et al. (2010) developed a hybrid approach by combining the qualitative

and quantitative approaches to perform an analysis of the GRL model to evaluate

the satisfaction levels of the actors and the intentional elements. The algorithms

are illustrated using the example of a telecommunications system. The evalua-

tion is done by attaching satisfaction values to a subgroup of intentional elements

and, by means of a propagation algorithm, these values are propagated through

decomposition, contribution and dependency links to other intentional elements.

This is carried out at different times for a different subset of intentional elements

by assigning different intentional strategies for the same GRL model. In the

evaluation, two evaluation values namely, one that is qualitative and one that

is quantitative (integer value in range [-100...100]), are selected. Initially, these

two attribute values are set to None and 0 respectively for all other intentional

elements. The jUCMNav tool, an Eclipse-based editor for URN models, imple-

mented three evaluation algorithms, namely qualitative evaluation, quantitative

evaluation and hybrid evaluation. The tool also implemented three propagation

algorithms, namely forward propagation, backward propagation and mixed pro-

pagation. In mixed propagation, the evaluation starts from intentional elements
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that are neither roots nor leaves. Some of the criteria that are checked during eva-

luation are: actor satisfaction, cycles, automation, conflicts, strategy consistency,

and evaluation overriding. This work does not address the generation of a good

goal model, which is often linked with the requirements elicitation and analysis

process. Moreover, when stakeholders’ requirements are vague, it is difficult to

assign exact numeric numbers to requirements using quantitative analysis.

2.3.2.3 On Eliciting Contribution Measures in Goal Models

Liaskos et al. (2012) explained the application of a mathematical method, namely

Analytic Hierarchy Process (AHP), to quantitatively prioritize goals-based sta-

keholder input. It aimed to examine the similarity between goal hierarchies and

criteria hierarchies, by which AHP organizes priority elicitation. This requires

that the goal model satisfy certain structural features. The approach uses five

steps to perform priority elicitation. The formation of the criteria hierarchy is

the first step. The objective to be achieved is the top element of the hierarchy

and is called the ’decision goal’. In the second step, the relative importance of

the sibling criteria or alternatives is obtained by comparing the elements at each

level of the hierarchy. These comparison values are stored in an n ∗n comparison

matrix. In the third step, the local weights are obtained by transforming the

comparison matrices into weighted priority profiles of the involved items. Thus,

each element in the hierarchy tree obtains a real number ranging from 0 to 1,

and this represents the contribution of each element to its parent. In the next

step, the local weights are aggregated to obtain global weights for the decision

alternatives. The global weights give the ranking and the suitability of each al-

ternative. The higher the ranking of an element, the greater is its suitability.

An experimental study has also been conducted to show the feasibility of the

approach. The limitation of this approach is that it requires certain structural

features to be satisfied by the model for goal analysis.

2.3.2.4 Representing and Reasoning about Preferences in Require-

ments Engineering

Liaskos et al. (2010, 2011) suggested a framework to indicate preference requi-

rements and their prioritization. This framework is used to determine the spe-

cifications that achieve mandatory requirements while best satisfying preference

requirements and priorities. It differentiates mandatory goals from preference go-

als and also offers a method of determining alternative ways to achieve mandatory
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goals and the fulfilment or non-fulfillment of preference goals. By using a quanti-

tative requirement prioritization method such as the Analytic Hierarchy Process

(AHP) weights of importance are assigned to preference goals to obtain an optimi-

zed preference function. The alternative plans for fulfilling mandatory goals and

optimized preference functions are obtained by means of a powerful preference-

based planner. The formal planning domain definition language (PDDL ) 3.0 was

used to specify Artificial Intelligence planning problems and to help in the defini-

tion of hierarchical task networks (HTN). This HTN and PDDL-based reasoning

tool is useful for exploring alternative designs during early requirements stages,

supporting priority elicitation activities, improving domain understanding and

model accuracy and supporting customization of software systems. This is ac-

complished by integrating the high-level design descriptions obtained through the

tool into configurations of various points in the software itself. The disadvantage

of this approach is that it cannot be applied to larger frameworks.

2.3.2.5 On the Quantitative Analysis of Agent-Oriented Models

Franch (2006) presented an analysis of agent-oriented models with an emphasis

on the quantitative aspect. To explain his approach, he used the i∗ language to

construct agent-oriented models. The conceptual model of the i∗ is represented

using Unified Modeling Language(UML) and Object Constraint Language (OCL)

is used to express the framework. The quantitative method is used to determine

the structural indicators that are used to define the structural metrics. The

structural metrics are used to measure properties of an i∗ model such as actors,

dependencies and other elements. They have illustrated with an example how the

indicators are used to obtain the properties of a system. This method requires

some sort of expert judgement when deciding the alternative to be selected. This

method is not completely quantitative in nature since it requires some degree of

qualitative reasoning to obtain accurate information.

2.3.2.6 Utilizing TOPSIS: A Multi-Criteria Decision Analysis Techni-

ques for Non-Functional Requirements Conflicts

Mairiza et al. (2014) proposed a Multi Criteria Decision Analysis (MCDA) for

resolving the conflicts in NFR decision analysis for sureCM framework ie., an in-

tegrated experimental-based framework for NFRs conflict management and Ana-

lysis. The evaluation and analysis of alternative design solutions are performed

using MCDA. This approach also finds the best design solution that best satisfy
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the conflicting NFRs using MCDA. A goal-based technique in MCDA, namely

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), is

used to find an alternative that is closest to the ideal solution. This research does

not provide any evaluation of the approach.

2.3.2.7 Applying Fuzzy Preferences Relation for Requirements Prio-

ritization in Goal-Oriented Requirements Elicitation Process

Sadiq and Jain (2014) presented a method for requirements prioritization, called

Prioritization of Requirements using a fuzzy-based approach in Goal-Oriented

Requirements Elicitation (PRFGORE). It applied the concepts of α-level weig-

hted F-preference relation, a fuzzy-based Analytical Hierarchy Process (AHP)

for group decision making and a binary sort tree method to obtain a list of the

prioritized requirements. The AHP pair wise comparison is used for assigning

weights to goals/softgoals and locates the list of prioritized requirements using

the binary sort tree method. Fuzzy preference relation is used to combine ex-

perts’ preferences with group preferences. The approach has been demonstrated

with a small number of requirements and criteria. This approach requires sound

mathematical knowledge for the prioritization of goals.

2.3.2.8 Optimal Requirements-Dependent Model-Driven Agent De-

velopment

Goncalves and Krishna (2016b) proposed a quantitative approach for operati-

onalization in Extended Non-Functional Requirements framework (ENFR). To

determine the most appropriate operationalization, the preferences of operatio-

nalization and the progressive value of its children within the ENFR model are

used. The authors have proposed a method for finding an optimal path with

regard to the complexity time and space that has to be followed for any com-

bination of operationalization at any particular time. A simulation was created

and tested using a banking system case study. The authors extended their work

(Goncalves and Krishna, 2016a, 2015) by incorporating change management in

agents. The decision path is used to find the agents that are affected when any

changes (like change in softgoal weight, change in contribution values) occur in an

agent. An optimisation model was proposed based on probability, and an evalua-

tion was carried out. The evaluation results indicated that this approach cannot

be applied directly to the ENFR. This process requires changes to be made to

the original model in order to incorporate the proposed concepts.

23



2.3.3 Optimisation in Goal Analysis

2.3.3.1 Simulating and Optimising Design Decisions in Quantitative

Goal Models

Heaven and Letier (2011) extended their previous work by applying multi-objective

optimisation to the KAOS goal model for exploring the alternative design opti-

ons. In their earlier work, a formal semantics and a set of heuristics for the goal

models were presented. However, this did not automate the model analysis and is

not applicable to a model with very a large number of design alternatives. In this

research, these limitations are addressed by providing an automated technique

for the goal model with a large number of design alternatives and identification

of optimal alternatives among them. To simulate the complete set of alternative

designs in the given goal model, a stochastic simulation model is generated. The

input to the simulation is a particular set of design choices and a sample size.

The behaviour of that particular design is simulated using probability distribu-

tions and equations of the quantitative goal model. Also, the goal satisfaction

levels for the simulation are obtained. Optimal design choices are identified using

a multi-objective optimization component. A MATLAB simulation-based illus-

tration was presented using the London Ambulance Service goal model. The

drawback of this approach is that there is no systematic technique for specifying

the objective functions.

2.3.3.2 Non-functional Requirements Framework: A Mathematical

Programming Approach

Affleck et al. (2013, 2015) proposed a linear programming optimisation model for

the NFR framework. This approach aimed to minimise the operationalization.

The optimisation model is an extended version of their original work (Affleck and

Krishna, 2012). The initial work presented a quantitative extension to the NFR

framework to support the decision-making process. In the quantitative NFR fra-

mework, weights are assigned to the leaf softgoals in the softgoal graph and to

links between leaf softgoals and operationalization. Using these weights, the ope-

rational scores, leaf softgoal scores, and the optimal and actual attainment scores

are calculated. The operation selection is done based on operational scores. In

the extended version, the linear programming method is used to mathematically

express an objective function in terms of decision variables. The constraints are

the restrictions to be satisfied by these decision variables. To a linear solver, the
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objective functions, variables and constraints are given as an input to compute

the results. The aim is to find an optimal set of operationalizations that produces

the maximum satisfaction of leaf softgoals. It is also presented as a minimization

or maximization problem along with the proof. Also, a procedure for the propa-

gation of the leaf softgoals to the root softgoals in the goal graph was included

in the extended model. A simulation was implemented using C# and LPSolve.

The simulation showed that the process was effective in graphs where there is a

large number of relationships between softgoals and operationalization. To do so,

it used single-objective optimisation to select the minimum number of operations

that maximises the overall satisfaction of non-functional requirements. Additi-

onally, sensitivity analysis is performed to help developers find the quantitative

input values. Sensitivity analysis finds the extent of input data for which there

is no change in the final value. The developers are alerted if the potential value

exceeds the range given, and take action accordingly. The limitation of the ap-

proach is that values assigned to leaf softgoals are subjective and it is difficult to

assign correct values to the leaf softgoals.

2.3.4 Game Theory in Requirements Engineering

2.3.4.1 Game Theory Perspective on Requirement-Based Engineering

Design

Yazdania et al. (2017) proposed a non-cooperative game theory for requirement-

based engineering design to improve the suboptimal performance of a software

project. During software development, the complex systems are hierarchically di-

vided into subsystems. The system-level requirements are also decomposed into

subsystem-level requirements to be satisfied by each design team. The resources

shared by the subsystems are seen as system-level requirements. The entire sy-

stem performance depends on the effective allocation of these resources. Since

each design team wants to satisfy its own requirements specification, the system

performance will be affected by poor decomposition of system-level requirements.

It also restricts the design alternatives. This may not result in an optimal design

outcome. To improve the optimal results of sub-designs, the author applied a

non-cooperative game theory for the theoretical analysis of the performance of

requirements-based design engineering. While this approach uses game theory

for requirements design engineering, it cannot be applied to goal analysis.
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2.3.4.2 Applying Game Theoretic Approach to Goal-driven Require-

ments Trade-Off Analysis for Self-Adaptation

Lee and Lee (2015) proposed a game-theory-based approach to handle conflicts

among requirements in a self-adaptive software environment. The authors state

that the satisfaction degree of quality requirements is considerably affected when

self-adaptive software is adapting to changes in the environment. To analyse the

trade-off obtained from requirements in an adaptive environment, game theory

is applied. The approach is explained using a N-tier client-server architecture

system. A goal model in a normal form is constructed to analyse conflicts of

adaptive actions. The author also states that the model has to be refined to

include the dynamics correctly. Although this approach is based on goal-driven

requirements, it does not deal with goal analysis.

2.4 Summary of the Research Review and Pur-

pose of this Research

In software engineering, the two main approaches for data analysis are the qua-

litative approach (Dyb̊a et al., 2011) and the quantitative approach (Lázaro and

Marcos, 2006). Qualitative approaches use text and picture representation of

data in the analysis. Qualitative methods are used to study the complexities of

human behaviour namely, motivation, communication and understanding. These

methods were devised by educational researchers and other social scientists. Ho-

wever, in quantitative analysis, the numerically-presented data obtained from a

sample are used and examined using statistical methods. These approaches re-

duce the complexity of the problem by identifying independent and dependent

variables, and by eliminating irrelevant variables. Both qualitative and quanti-

tative approaches have their own strengths and limitations as shown in Table

2.1.

From the review of the goal analysis literature, we find that both qualitative

and quantitative approaches are used. Qualitative analysis methods use qualita-

tive labels such as satisfied, denied, partially satisfied, partially denied, unknown

and conflict in the propagation algorithms to find the satisfaction of goals. Also,

in some researches, the symbols “+”, “-” are used to represent a goal’s posi-

tive and negative contribution towards the satisfaction of another goal. Even

though, the qualitative algorithms provide easier, more simple and cheaper ways
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of performing goal analysis, they have several limitations. The main drawback of

qualitative approaches is the ambiguity that arises when two or more alternati-

ves contribute to the same label, thereby creating problems for decision making.

Moreover, there is confusion when a goal receives an unknown or conflict label.

The second limitation is that the labels and link weights have no clear meaning

in terms of system-specific phenomena. Several approaches require system know-

ledge and sound mathematical knowledge. Some approaches are difficult to apply

to complex and large systems.

The problems of qualitative analysis were overcome by the quantitative ana-

lysis methods. Numeric representations, probabilistic interpretation of numbers,

Analytic Hierarchy Process (AHP) representation of goals were used in quanti-

tative goal analysis. Despite overcoming the limitations of qualitative analysis,

quantitative analysis also has its own drawbacks. The probabilistic extension of

temporal logic requires strong mathematical knowledge, and the AHP method

requires certain structural features to be satisfied by the goal model. The main

issue with quantitative analysis is that it is difficult to assign definite numbers

to stakeholders’ requirements as requirements analysis may involve various sta-

keholders with diverse preferences regarding the same requirements. Moreover,

in reality, terms such as low cost, and high profit are generally used by the stake-

holders to communicate their requirement preferences. These linguistic terms are

challenging to represent by qualitative labels as used in qualitative analysis and

also difficult to represent by definite numbers as used in quantitative analysis.

Hence, there is a need for a method to deal with linguistic terms of requirements.

This dissertation aims to fill this gap by using fuzzy numbers for the linguistic

representation of stakeholders’ requirements.

Further more in real-world situations, the input data used to evaluate the

requirements are imprecise due to incomplete or unobtainable information. The

inputs used in the analysis are also subjective from the perspective of the require-

ments analyst. Moreover, most of the real-world business problems encounter the

simultaneous optimisation of many competing objective functions. The literature

review reveals that the existing goal analysis approaches do not address these pro-

blems in their goal analysis procedures. To address these research gaps, we have

proposed methods based on multi-objective optimisation and goal programming

to handle imprecise requirements and to avoid subjective preferences. To ad-

dress the competing objective functions or requirements with opposing objective

functions, a method based on game theory was proposed in this thesis.

Also from the literature review of goal analysis, we infer that to date there has
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been no research work on the quantitative analysis of goals in the i∗ framework.

Hence, the i∗ framework is chosen as a framework for implementing our novel

approaches.

A summary of the above research approaches with their strengths and limi-

tations are shown in Tables 2.2 and 2.3.

2.5 Chapter Summary

In this chapter, we provided an overview of requirements engineering, goal-oriented

requirements engineering and goal analysis procedures by briefly presenting the

relevant definitions, and key concepts, and emphasizing its significance in soft-

ware development. We have explained the two major approaches used for goal

analysis. We have also reviewed various approaches that have been proposed

in RE literature to address qualitative and quantitative goal analysis. We have

also discussed the advantages and disadvantages of those approaches in order to

highlight the gaps that our work intends to address. In the next chapter, we

begin describing our fuzzy-based quantitative work with a description of the i∗

framework.
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Table 2.1: Analysis Approaches in Software Engineering,- Strengths and Limitations

Approach Based on Strengths Limitations

Qualitative � Use data that are described � Help the researcher to � Usually more labour-intensive

Approach as text, pictures, not numbers. investigate the complexity of the and exhaustive

(Dyb̊a et al., 2011) � These methods were used to study problem instead of abstracting it away. � Qualitative results often are

the complexities of human behaviour � Rich and more informative considered softer, or fuzzier

namely, motivation, communication results are obtained. than quantitative results,

and understanding. � Help to find responses especially in software engineering

� These methods were devised by to queries that contain variables communities.

educational researchers and other that are hard to quantify (principally � Results are more hard

social scientists. human characteristics such as to summarize or simplify.

motivation, perception, and experience).

� Used to answer the “why” questions.

Quantitative � Use numerical form of data obtained � Results can be generalized. � Results are limited namely

Approach from a sample and are examined over � Results are of great accuracy. numerical descriptions, no

(Lázaro and Marcos, 2006) statistical methods. � Informations can be summarized. human perception.

� Reduces the complexity of the problem � Avoids personal bias. � Laboratory environment does

by identifying independent and dependent not correspond to real world.

variables, and by eliminating inadequate � Cannot be used in all

variables. circumstances.
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Table 2.2: Goal Analysis Approaches,- Strengths and Limitations

Approach & Ref. Concept used Strengths Limitations

Qualitative � Used Qualitative labels like satisfied, � Its easy and simple to � Sometimes the label turn into

Methods partially satisfied, denied, partially perform the propagation unconclusive in the propagation rule.

(Van Lamsweerde, 2009) denied, unknown, conflict in the algorithm . � The labels and link weights have no clear

(Giorgini et al., 2002) propagation algorithms. � It provides a quick means meaning in terms of system specific phenomena.

(Horkoff and Yu, 2009) � Or used labels like ++, +, – or - of goal evaluation. � Some approaches requires knowledge

(Mylopoulos et al., 2001) in the propagation algorithms. about system being developed.

� Sometimes, the approaches are difficult

in complex and large systems.

� Formal reasoning of qualitative approaches

require a strong mathematical knowledge.

� Leads to ambiguity in decision making

when one or more goals receive same label.

Quantitative � Approaches used numeric values, � Avoids ambiguity in � It’s difficult to assign exact numbers

Methods or probabilistic interpretation of numbers, decision making. as stakeholders requirements are

(Mairiza et al., 2014) or Analytical Hierarchy Process (AHP) to sometimes vague.

(Amyot et al., 2010) quantify goals, or used multi criteria � Probabilistic extension of temporal logic

(Liaskos et al., 2012) decision analysis, or fuzzy based AHP requires extensive mathematical knowledge.

(Liaskos et al., 2010) in the goal analysis process. � The AHP methods requires certain

(Liaskos et al., 2011) � Used single objective, multi-objective structural features to be satisfied by the

(Franch, 2006) optimisation for goal analysis. model for goal analysis.

� Certain approaches cannot be applied

to larger frameworks.
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Table 2.3: Comparison of Goal Analysis Approaches(cont..)

Approach Authors Analysis Involve Tool Sensitivity Game

(Year) Type Optimisation Support Analysis Theory

KAOS

Exploring alternatives Mylopolus et al. Qualitative No No No No

during requirements analysis (2001)

Reasoning about alternative requirements Lamsweerde (2009) Qualitative No No No No

Reasoning about partial Lamsweerde et al. Quantitative No No No No

goal satisfaction for requirements (2004)

and design engineering

Simulating and optimising Willam et al. Quantitative Yes Presents a No No

design decisions in for (2011) Simulation

quantitative goal models

NFR

Utilizing TOPSIS: A multi criteria D.Zowghi et al. Multi Criteria No No No No

decision analysis techniques for (2014) Decision Analysis

non-functional requirements conflicts

Optimal Requirements Dependent Joshua et al. Quantitative No No No No

Model-Driven Agent Development (2016b)

Non-functional requirements Affleck et al. Qualitative Yes No Yes No

framework: A mathematical (2015)

Programming approach

GRL

Evaluating Goal models D.Amyot et al. Quantitative, No yes No No

within Goal-oriented (2010) Quantitative

Requirements Language and hybrid
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Table 2.3: Comparison of Goal Analysis Approaches

Approach Authors Analysis Involve Tool Sensitivity Game

Type Optimisation Support Analysis Theory

i∗

Evaluating goal achievement in Horkoff and Yu Qualitative No Yes but involves No No

enterprise modeling - an (2009) human interaction

interactive procedure

and experiences

On eliciting contribution Liaskos et al. Analytic Hierarchy No No No No

measures in goal models (2012) Process

Representing and reasoning about Liaskos et al. Analytic Hierarchy No No No No

preferences in Requirements (2011) Process (AHP)

Engineering

On the quantitative analysis Franch not completely quantitative No No No No

of agent-oriented models (2006) in nature since it requires

some degree of qualitative reasoning
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Chapter 3

Inter-actor Quantitative

Reasoning of the i∗ Framework

The previous chapter gave some insight into the problem which this research

attempts to address. The previous chapter briefly explained the concepts relevant

to goals and goal-oriented requirement engineering. In addition, we presented

an overview of the research area of goal analysis with a special focus on the

approaches and techniques used for goal analysis. Furthermore, we reviewed

the use of the optimisation techniques applied to goal analysis. In this chapter,

we discuss how to develop a fuzzy-based method for quantitative analysis of

the i∗ framework. In Section 3.1, we introduce the concept of fuzzy numbers.

An overview of the i∗ framework is given in Section 3.2. In Section 3.3, we

present our approach to provide a quantitative fuzzy-based reasoning of goals in

the i∗ framework. Section 3.4 describes a simulation in VC++ and presents an

evaluation of our work using case studies in the existing literature.

Some of the material in this chapter has previously appeared in the following publications:

1. Chitra M Subramanian, Aneesh Krishna, Raj P. Gopalan and Arshinder Kaur (2015).

Quantitative Reasoning of Goal Satisfaction in the i∗ framework, The 27th International

Conference on Software Engineering and Knowledge Engineering (SEKE 2015), Pitts-

burgh, USA.

2. Chitra M Subramanian, Aneesh Krishna and Arshinder Kaur (2015). Reasoning about

Goal Satisfaction for early Requirements Engineering in the i∗ framework using Inter-

actor Dependency, The 19th Pacific Asia Conference on Information Systems (PACIS

2015), Singapore.
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The success of any software system depends on the accurate requirement fra-

ming from the stakeholders, users and customers of the software. Requirement

elicitation, an early phase of requirements engineering (RE) involves collecting

requirements from the stakeholders, users and customer of the software. Someti-

mes these requirements are uncertain, vague or imprecise and therefore cannot

be used for the analysis or modeling of requirements. To illustrate, to express a

requirement quantitatively, a stakeholder may use phrases such as “about twenty”

which is a practical, if vague, approach. These uncertainties in the requirements

have to be represented in some form during analysis or modeling. In addition

to this issue, another concern is aggregating the requirements of various stake-

holders. Since a diverse group of stakeholders with conflicting requirements are

involved in a software development, it is difficult to aggregate the requirements

from several stakeholders. These vague, uncertain, inappropriate or conflicting

requirements can be easily expressed in linguistic terms which are conveniently

represented by fuzzy numbers. Due to their appropriateness for expressing un-

certainty, fuzzy numbers and fuzzy values are widely used in many engineering

applications. In the following section, an overview of fuzzy numbers is provided.

3.1 Overview of Fuzzy Numbers

Fuzzy set theory, introduced by Zadeh, is a technique used to handle the impre-

cision and vagueness associated with human decision making (Zadeh, 1965). A

fuzzy number is considered as a quantity whose value is imprecise rather than

definite as in the case of single valued numbers. The fuzzy numbers express the

real world problem more practically than do single valued numbers. In general,

a fuzzy set is defined as “A collection of objects with graded membership between

0 and 1” and represent a fuzzy set ’A’ as {(x, µA(x))|xεX, 0 ≤ µA(x) ≤ 1},
where µA(x) is a membership function. The membership function describing a

fuzzy number helps to represent some vague idea related to that fuzzy number.

The membership function is selected in a subjective way. Hence, different per-

sons may select different membership functions to represent the same idea. It

also depends on the context in which it is used. Fuzzy membership functions are

continuous for many fuzzy numbers. But discontinuous membership functions

are also used in certain specific cases. Examples of membership functions that

are used to represent fuzzy numbers are Triangular, Trapezoidal and Gaussian

functions. Triangular fuzzy numbers are used in the proposed approach because
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starting with a triangular membership function is the simplest approach. Mo-

reover, triangular fuzzy numbers represent fuzzy numbers, whereas trapezoidal

fuzzy number represents fuzzy intervals. We give a brief introduction to triangular

fuzzy numbers in the following paragraphs.

Triangular fuzzy numbers (TFN) are in the form Ā = (a1, a2, a3) and are

diagrammatically presented as in Figure 3.1.

 

Figure 3.1: Membership function of TFN

The parameter a2 is the value where the membership function of a fuzzy

number is 1.0, a1 is the left distribution of the confidence interval and a3 the right

distribution of the confidence interval of the fuzzy number Ā. The membership

function for the interval is given as follows:

µĀ(x) =


(x− a1)/(a2− a1), a1 ≤ x ≤ a2

(a3− x)/(a3− a2), a2 ≤ x ≤ a3

0, otherwise

Fuzzy logic supports many functions for performing fuzzy arithmetic. A few of

the arithmetic operations that are performed on TFN are addition, subtraction,

multiplication, division, and α - cut (Gani and Assarudeen, 2012).

Let Ā = (a1, a2, a3) and B̄ = (b1, b2, b3) are two fuzzy numbers then,

Addition:

Ā+ B̄ = (a1 + b1, a2 + b2, a3 + b3)
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Subtraction:

Ā− B̄ = (a1− b3, a2− b2, a3− b1)

Division:

Ā÷B̄ = (min(a1÷b1, a1÷b3, a3÷b1, a3÷b3), a2÷b2,max(a1÷b1, a1÷b3, a3÷b1, a3÷b3))

Multiplication:

Ā×B̄ = (min(a1×b1, a1×b3, a3×b1, a3×b3), a2×b2,max(a1×b1, a1×b3, a3×b1, a3×b3))

α - cut : is the set of elements whose membership values exceed the threshold

level α.

Āα = {x | µĀ(x) ≥ α}

A crisp interval of a fuzzy number Ā can be obtained by α - cut operation.

Thus

Āα = [(a2− a1)α + a1, a3− (a3− a2)α]

Having given a brief introduction to fuzzy numbers, we present an overview

of the i∗ framework in the following section.

3.2 Overview of the i∗ Framework

Among the Goal Oriented Requirements Engineering (GORE) frameworks, the

i∗ framework captures the social elements of the system and can be used for

reasoning, especially at the requirements level (Eric, 2011). In the i∗ framework,

a process or a system is comprehended by considering the intentional, strategic

view of the process or the system. The intentional actor is the central entity

to be modelled and the actors has motivations, intents and rationales behind

its actions. Properties such as goals, beliefs, ability and commitment are used to

characterise the intentional aspects of the actor. An actor is said to be a strategic

actor when it is concerned about its structural relationships with other actors, in

addition to performing its goal. It consists of two models:

• a Strategic Dependency (SD) model for depicting a specific configuration

of dependency relationship between organisational actors and

• a Strategic Rationale (SR) model for depicting the rationales of that actor.
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3.2.1 The Strategic Dependency Model

The Strategic Dependency (SD) model is intended to capture the intentional

structures of the system, instead of usual non-intentional and non-strategic pro-

cess models of activities and entities. The SD model is represented by a set of

nodes and links, where the nodes represent the actors and the links represent the

dependency. The depending actor is called the depender and the term depen-

dee is used for the actor who is depended upon. Dependum is the term used to

represent the object around which the dependency relationship centres. There

are four types of dependency: goal dependency, task dependency, resource de-

pendency and softgoal dependency. The SD model can be used to analyse the

dependency relationships, namely who depends on whom for what, directly or

indirectly. It can also be used to find who the stakeholders are and what their

stakes are. The validation of the model is done by comparing answers to different

questions to determine whether they comply with what is expected intuitively.

An example of an SD diagram is shown in Figure 3.2. In this figure, actors are

represented by circles, hard goals by ovals, softgoals by cloud symbols, resources

by rectangles and tasks by hexagonal shapes.

 

 

Figure 3.2: Example of Strategic Dependency model

37



3.2.2 The Strategic Rationale Model

The Strategic Rationale (SR) model explicitly describes the rationales of the

system in terms of its elements and their relationships. The SR model is a

graph with a set of nodes and links that depict structural representations of

rationales. There are four types of nodes: goals, resources, softgoals, and tasks.

The relationships between the nodes are denoted by means-end links and task-

decomposition links. In means-end relationships, a mean node can represent a

softgoal or a task, and an end node can be a goal, a softgoal, a resource or a

task. A means-end links a task to a goal, indicating that a particular method

is used to achieve a goal. A task node is connected to its component nodes by

task-decomposition links. For the four elements of the model, there are four

types of task decomposition links: subgoal, subtask, resource and softgoal. Task

decomposition shows the sub-goals, resources and softgoals that are to be carried

out to ensure the success of a task. A softgoal contribution can be any of the

following types: help, make, some+, some-, hurt, or break.

In addition to modeling, the SR model can also be used in a number of

computer-supported analysis design activities by considering their formal repre-

sentations. An analysis can be done at the actor level to determine whether an

actor knows how to do something, whether it will work, how well it will work and

why the agents believe it will work. Systematic exploration of alternatives is also

done during the design phase. An instance of the SR model is shown in Figure 3.3.

The figure shows three actors: Kids and Youth, Organisation and Counsellors.

The detailed intentional elements are shown for the actor Kids and Youth. There

are inter-actor dependencies between the actors. The actor Organisation depends

on actor Counsellor through softgoal dependency, HighQualityCounselling.

Apart from modeling, goal models assist the requirement analyst to assess

the satisfaction of goals, to determine the high-level requirements and to assess

design alternatives (Amyot et al., 2010). Many approaches which include both

quantitative and qualitative analysis procedures have been proposed to assess the

satisfaction of goals (Amyot et al., 2010; Horkoff and Yu, 2009; Van Lamsweerde,

2004). Both the KAOS and NFR the goal models show the goals’ decomposition

and there is no actor dependency. However, the i∗, Tropos and GRL models,

include inter-actor dependencies. The existing literature has discussed the actor

dependencies and formalisation of these dependencies (Morandini et al., 2007).

However, in the current RE literature, these dependencies have not been con-

sidered in relation to calculating the goal satisfaction. This research presents
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Figure 3.3: A Simple SR Model: Youth Counselling Example (adapted from

Horkoff and Yu (2009))

an approach for finding softgoal satisfaction using the inter-actor dependencies

of the i∗ framework. It uses fuzzy concepts to capture requirements, which are

stated in linguistic terms. Fuzzy logic helps to convert the linguistic terms in a

quantitative manner.

The i∗ frameworks are useful for qualitatively representing and analysing how

the stakeholders’ goals influence each other (Horkoff and Yu, 2009). However, it

lacks any method of quantitative support for goal analysis. In the next section, a

quantitative-based goal analysis approach using inter-actor dependencies for the

i∗ framework is described.
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3.3 The Quantitative, Fuzzy based Goal Analy-

sis using Inter-Actor Dependency

The i∗ framework involves an enormous number of actors performing distinct

functions, interacting with each other to accomplish individual and common go-

als. To perform common goals, tasks are distributed among the actors to work in

parallel. The inter-actor dependencies characterise this arrangement. Goal ana-

lysis has to be performed by considering these dependencies amongst the actors.

To illustrate the approach, we use the goal model shown in Figure 3.4.

Figure 3.4: Inter-actor Dependency

In this example, Actor1 depends on Actor2 and Actor3 for its goal accom-

plishment. The goal analysis for Actor1 results in the following three cases:

Case 1: Goals analysis using the dependency from Actor2 only

Case 2: Goals analysis using the dependency from Actor3 only

Case 3: Goals analysis using the dependencies from Actor2 and Actor3 simulta-

neously.

The results obtained from these three cases can be analysed to find the impact

of one or more actors on another actor in terms of goal accomplishment and

satisfaction. For understandability and explanation of the approach, the Youth

Counselling case study as shown in figure 3.5 has been used throughout the
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following section. The steps i to v are carried out for each alternative to find

its satisfaction percentage for the top softgoals. The top softgoals satisfaction

percentages for each alternative are compared in order to select an alternative

that provides the best satisfaction.

 

 

Figure 3.5: SR Model: Youth Counseling Example (adapted from Horkoff and

Yu (2009))

i) Assigning weights to leaf softgoals: The leaf softgoals (the softgoals

that are lower in the hierarchy are called leaf softgoals) are assigned values from

0 to 100 based on their relative importance in percentage, and the weight of a

leaf softgoal is represented by ωL.

Youth Counselling : The leaf softgoals (LSG) HighQualityCounseling, Im-

mediacy and Anonymity of the actor Organisation are assigned weights 50%,

70%, and 30% respectively based on their relative importance.
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ii) Fuzzy weights for the correlation between goals and softgoals: The

contributions of goals or tasks to softgoals described by make, help,some+, some-

hurt, and break are expressed as fuzzy numbers. Both triangular and trapezoi-

dal fuzzy numbers are simple to implement and fast for computation. Triangular

fuzzy numbers are used in the proposed approach because starting with a trian-

gular membership function is the simplest approach. Moreover, triangular fuzzy

numbers represent fuzzy numbers, whereas trapezoidal fuzzy numbers represent

fuzzy intervals. Table 3.1 shows our representation of the contributions of go-

als/tasks to leaf softgoals (LSG). The fuzzy values and its membership function

for the softgoal contribution are shown in Figure 3.6. The correlation between

goal and softgoal is represented as C̄A∗L, where A is an alternative option that is

selected and L is a leaf softgoal.

Youth Counselling : For the actor, Organisation, correlations between the

alternative option Use Text Messaging and the leaf softgoals HighQualityCounse-

ling, Immediacy and Anonymity are break, hurt and help respectively. Based on

Table 3.1, the correlation links are assigned (0, 0, 0), (0,0.16, 0.32) and (0.48, 0.64,

0.8) respectively. Similarly, The correlation links between the task, Use Cyber

Cafe/Portal/Chat Room and the leaf softgoals HighQualityCounseling, Immedi-

acy and Anonymity are hurt, help and hurt respectively. Based on Table 3.1,

the correlation links are assigned weights (0,0.16, 0.32) (0.48, 0.64, 0.80), and (0,

0.16, 0.32) respectively.

Table 3.1: Fuzzy values for hard goal and softgoal correlation.

Name Fuzzy Contribution

Make (0.64, 0.80, 1)

Help (0.48, 0.64, 0.80)

Some+ (0.32, 0.48, 0.64)

Some- (0.16, 0.32, 0.48)

Hurt (0, 0.16, 0.32)

Break (0, 0, 0.16)

iii) Calculation of leaf softgoal score: Let us represent the leaf softgoal

score as S̄L(A), it is calculated from the variables: weights of the leaf softgoals

and the impact of leaf softgoals for the selected alternative. It also takes into

account any dependencies on the other actors. The dependency link is considered

as ’MAKE’ contribution. If the dependency score and dependency impact are

denoted by S̄d and Īd correspondingly and there are ’n’ dependencies, then the
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Figure 3.6: Membership function for Impact

equation for the score calculation of a leaf softgoal is given by the equation 3.1

below:

S̄L(A) = C̄A∗L ∗ ωL +
n∑
i=1

(
S̄di ∗ Īdi

)
(3.1)

Youth Counselling: To illustrate, let us consider the score calculation of

the leaf softgoal HighQualityCounseling for the alternative Use CyberCafe/Portal/

ChatRoom in the actor Organisation. The leaf softgoal HighQualityCounseling of

actor Organisation depends on the leaf softgoal HighQualityCounseling of actor

Counsellor. So, in score calculation the leaf softgoal HighQualityCounseling of

actor Organisation, the score of HighQualityCounseling of actor Counsellor is

used. If the calculated score of HighQualityCounseling of actor Counsellor is (

0.0, 0.031, 0.0768), then the score equation for HighQualityCounseling of actor

Organisation is given by:

S̄HighQualityCounseling(CyberCafe/Portal/ChatRoom) =

(0, 0.16, 0.31) ∗ 0.5 + (0.64.0.8, 1) ∗ (0.0, 0.031, 0.0768)

= (0, 0.1, 0.23)
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The multiplication operation is performed using fuzzy multiplication.

iv) Propagation of leaf softgoal scores to find satisfaction of the

softgoals: The LSG scores are propagated backwards to find the scores of the

softgoals that are higher in the hierarchy. Softgoals are the recipients of multiple

contribution links. The score is calculated in two steps. In the first step, the

score of its children are multiplied by their impact links. In the second step, the

combined effects of all the children are calculated by using the addition operation.

Let us represent the softgoal (SG) score by S̄SG. If the goal for which the score

calculated is dependent on other actor goals, then the dependency score is also

taken into consideration for score calculation. The score of a softgoal is given by

equation 3.2 below:

S̄(SG) =
n∑
i=1

(
C̄SCi ∗ S̄LCi|SCi

)
+

m∑
i=1

(
S̄di ∗ Īdi

)
(3.2)

where LC represents leaf softgoal child and SC represents softgoal child, C̄SCi

is the correlation link between a softgoal and its ith child, S̄LCi|SCi is the score of

its ith child, S̄di is the score of its ith dependent, Īdi is the ith dependent impact,

’n’ is the number of its children and ’m’ is the number of dependencies.

Youth Counselling: Let us consider the score calculation of the softgoal

HelpKids for the alternative option Use CyberCafe/Portal/ChatRoom in the ac-

tor Organisation. The softgoal HelpKids has three children namely HighQuality-

Counseling, Immediacy, and HelpasManyKidsasPossible. The softgoal HelpKids

is not dependent on any other actor goals. Hence, the scores calculation involves

scores of its children only. If the scores of the softgoals HighQualityCounseling,

Immediacy, and HelpasManyKidsasPossible are (0, 0.1, 0.23), (0.336,0.448,0.56)

and (0,0.012,0.049) respectively, then the score equation of HelpKids is given by

S̄HelpKids(UseCyberCafe/Portal/ChatRoom) = (0, 0.1, 0.23) ∗ (0.48, 0.64, 0.8)

+(0.336, 0.448, 0.56) ∗ (0.48, 0.64, 0.8) + (0, 0.012, 0.049) ∗ (0.48, 0.64, 0.8)

= (0.16, 0.358, 0.67)

v) Selection of alternative with the highest score: The scores are

propagated backwards until the softgoals that are the top of the hierarchy are

reached. The softgoals that are at the top of the hierarchy are called top softgoals.

These top softgoal scores for each alternative are then compared and the best

alternative is selected for implementation, thereby supporting the analyst in the

decision-making process. This is done from each actor’s perspective. To obtain
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a quantifiable result, the scores are defuzzified by applying the α - cut operation

and using an optimal index λ (Deng and Molla, 2008). The λ indicates the degree

of confidence and it can take values λ = 0 for a pessimistic index, λ = 0.5 for a

moderate index and λ = 1 for an optimistic index.

Youth Counselling : In the actor Organisation, the defuzzified score of the

top softgoal HelpKids for the alternative option UseCyberCafe/Portal/ChatRoom

is 87% and for the alternative option UseTextMessaging it is 29%. On compari-

son of these two values, the alternative option UseCyberCafe/Portal/ChatRoom

has a higher value than the alternative option, UseTextMessaging. The option

UseCyberCafe/Portal/ChatRoom provides the best satisfaction level and hence is

selected for the actor Organisation.

3.4 Simulation and Evaluation of the Approach

with Case Studies

The validation of the fuzzy-based quantitative approach is important as it plays

a major role in critical decision making. The validation of the approach is done

based on its ability to help in the decision-making process. To facilitate this, a

simulation for fuzzy based inter-actor goal analysis was developed in Visual C++.

A Strategic Rationale (SR) model was considered as a collection of directed graphs

with each graph corresponding to an actor. Directed graphs represent the softgoal

interdependencies and the inter-actor dependencies. The directed graph was im-

plemented using linked list representation. Inputs to the goal analysis were lists

with each list representing each actor’s softgoal hierarchy and the alternative op-

tion for which softgoals satisfaction is calculated. The output of the simulation is

each actor’s top softgoals satisfaction for the given alternative option. The pseudo

code for inter-actor goal analysis of the i∗ framework is given in Algorithm 1.

We evaluated the fuzzy-based inter-actor goal analysis using two distinct case

studies from the existing RE literature : Youth Counselling (Horkoff and Yu,

2009) and Meeting Scheduler (Letier and Van Lamsweerde, 2004). The computer-

based Youth Counselling (Figure 3.5) provides a friendly, confidential service for

young people who are in need of counselling. It supports phone counselling for

youth but is primarily concerned with reaching more youth via the Internet. In

the Youth Counselling example, the two different alternative tasks for all the

three actors are

• Kids Use CyberCafe/Portal/ChatRoom
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Algorithm 1 Pseudo code for Goal Analysis using inter-actor dependencies in

i∗ Framework

INPUT :

i) Set of interconnected graphs representing the softgoals interdependencies and

actor dependencies.

ii) A task/goal of each actor and their impacts with the leaf softgoals.

OUTPUT :

The top softgoals satisfaction percentage for each actor.

// compute leaf softgoals scores

for all graph in the given set of graphs do

The leaf softgoals are assigned weights to reflect their relative importance

Compute the leaf softgoals score by multiplying its weight with impact of

the given goal.

end for

// compute softgoals score in backward propagation

while a graph with score not calculated do

if graph is independent and scores are not calculated then

while top softgoal not reached do

Compute the softgoals score by adding all its children multiplied score

with its impact

end while

else

// depends on other graphs

if leaf softgoal depends on other actors then

for each graph it depends add the depended score to this leaf softgoal

score

end if

while top softgoal not reached do

Compute the softgoals score by adding all its children multiplied score

with its impact

end while

end if

end while
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• Kids Use TextMessaging

In this case study, an analyst has to select an alternative that achieves good

satisfaction for softgoals GetEffectiveHelp, Happiness and HelpKids of actors Kids

and Youth, Counsellor and Organisation respectively.

By using the first alternative Kids Use CyberCafe/Portal/ChatRoom, goal

analysis was performed using steps ’i’ through ’v’ presented in Section 3.2; the

computed scores of the softgoals are shown in Figure 3.7. In this case study, by

considering only the softgoal dependencies, it is apparent that the existence of

the Case 1: actor Organisation depends on actor Counsellor.

Figure 3.7: Quantitative Analysis of Goals for alternative Use Cyber-

Cafe/Portal/ChatRoom in Kids Youth Counseling case study

As seen from Figure 3.7, the first alternative option, Kids Use CyberCafe/Portal/ChatRoom,

was estimated to achieve satisfaction scores of 100%, 5% and 78% for the top soft-

goals GetEffectiveHelp (Kids and Youth), Happiness (Counsellor) and HelpKids
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(Organisation) respectively. To analyse the estimated values, these values are

compared with the satisfaction values from the second alternative element: Kids

UseTextMessaging. The scores of softgoals for both the alternative options are

given in table 3.2, and table 3.3. From table 3.3, we can see that the satisfaction

percentage of GetEffectiveHelp (Kids and Youth), Happiness (Counsellor) and

HelpKids (Organisation) are 83%, 1% and 29% respectively for the second alter-

native option Use TextMessaging. By comparing the scores of the top softgoals

for both alternatives, it can be seen that the first alternative, Kids Use Cyber-

Cafe/Portal/ChatRoom, outperforms the Kids UseTextMessaging in terms of the

relative weights assigned to each softgoal.

Table 3.2: Leaf softgoal scores for all three actors of Kids Youth Counseling case

study

Actor LSG
Score

UseTextMessaging Use CyberCafe/Portal/ChatRoom

Kids and Youth

Comfortableness (0.24, 0.32, 0.4) (0.24, 0.32, 0.4)

Anonymity (0.144, 0.192, 0.24) (0, 0.048, 0.096)

Immediacy (0, 0.112, 0.224) (0.448, 0.56, 0.7)

Counsellors ListenforCues (0, 0, 0.048) (0, 0.048, 0.096)

Organization

HighQualityCounselling (0, 0, 0.08) (0, 0.08, 0.16)

Immediacy (0, 0.112, 0.224) (0.336, 0.448, 0.56)

Anonymity (0.144, 0.192, 0.24) (0, 0.048, 0.096)

Table 3.3: Top Softgoals Satisfaction scores for Kids Youth Counseling (* indi-

cates goal selection)

Actor Top Softgoals
Alternative option scores Defuzzified scores

UseTextMessaging Use CyberCafe/ UseTextMessaging Use CyberCafe/

Portal/ChatRoom Portal/ChatRoom

Kids and Youth Get Effective Help (0.18,0.39,0.69) (0.29,0.51,0.82)* 0.83(83%) 1 (100%)

Counsellors Happiness (0,0,0.03) (0,0.02,0.64)* 0.01(1%) 0.052(5%)

Organization Help Kids (0.007,0.10,0.37) (0.16 ,0.29,0.45)* 0.29(29%) 0.78(78%)

To check the feasibility of our approach, we have demonstrated the goal ana-

lysis procedure with another case study. The second case study is the Meeting

Scheduling System (Figure 3.8). A computer-based Meeting Scheduling System

should effectively organise meetings by finding appropriate dates and locations for

invited participants. All potential information about the participants is obtained

by the meeting initiator. The intended participants may express their requested

constraints by email or the requested information may be obtained by accessing

their electronic agenda.
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Figure 3.8: Meeting Scheduling System case study

This example is different from the previous case study. In the Kids Youth

Counseling case, all the actors have the same type of alternatives and the same

number of alternatives. However, in the Meeting Scheduling system, each actor

has a different number and different types of alternatives. The selected alternative

options are different for each actor and goal analysis is performed in accordance

with each alternative point of view.

In the Meeting Scheduling system, the softgoal LowEffort of the actor Meet-

ingInitiator has a softgoal dependency on LowEffort of the actor MeetingParti-

cipants. Hence, the goal analysis for the actor MeetingParticipants is carried out

first so that its score values can be used in the goal analysis of the actor MeetingI-

nitiator. By using the goal analysis procedure described in Section 3.3, the scores

of the softgoals of the actor MeetingParticipants are computed. Table 3.4 shows

the scores of the top softgoals of the actor MeetingParticipants. From Table 3.4,
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it can be seen that the alternative FindAgreeableDateByTalkingToInitiator of the

actor MeetingParticipants contributes 29% and 85% to the top softgoals Con-

venientMeetingDates and LowEffort respectively. Similarly, the alternative Fin-

dAgreeableDateUsingScheduler of the actor MeetingParticipants contributes 8%

and 68% to the top softgoals ConvenientMeetingDates and LowEffort respecti-

vely. The alternative option FindAgreeableDateByTalkingToInitiator has better

satisfaction than the other alternative option FindAgreeableDateUsingScheduler

and hence it is selected for the actor MeetingParticipants.

Table 3.4: Top Softgoals Satisfaction scores for the actor MeetingParticipants (*

indicates goal selection)

Top Softgoals
Alternative option scores Defuzzified scores

FindAgreeableDate FindAgreeableDate FindAgreeableDate FindAgreeableDate

UsingScheduler ByTalkingToInitiator UsingScheduler ByTalkingToInitiator

ConvenientMeetingDates (0, 0.0328, 0.1024) (0.055, 0.13, 0.256) 0.08 (8%) 0.286 (29%)*

LowEffort (0.184, 0.327, 0.512) (0.246, 0.409, 0.64) 0.675 (68%) 0.852 (85%)*

Next, the scores of the actor MeetingInitiator are calculated. The scores of the

top softgoals of the actor MeetingInitiator are shown in Table 3.5. From the Table

3.5, it can be seen that the alternative ScheduleMeeting of the actor MeetingIni-

tiator contributes 76% to the top softgoal, Happiness. Similarly, the alternative

LetSchedulerScheduleMeeting of the actor MeetingInitiator contributes 100% to

the top softgoal Happiness. The alternative option LetSchedulerScheduleMeeting

has better satisfaction than the other alternative option ScheduleMeeting ; hence,

it is selected for the actor MeetingInitiator.

Table 3.5: Top Softgoals Satisfaction scores for the actor MeetingInitiator (*

indicates goal selection)

Top Softgoals
Alternative option scores Defuzzified scores

ScheduleMeeting LetSchedulerSchedule ScheduleMeeting LetSchedulerSchedule

Meeting Meeting

Happiness (0.088, 0.342,0.742) (0.314, 0.611, 1) 0.758 (76%) 1 (100%)*

As the actor MeetingScheduler does not depend on any other actor, the goal

analysis is performed from the perspective of each alternative. The scores of the

top softgoals of the actor MeetingScheduler are shown in Table 3.6. From Table

3.6, it can be seen that the alternative ConstraintsAcquiredByEmail of the actor

MeetingScheduler contributes 36% to the top softgoal EffectiveScheduling. Simi-
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larly, the alternative ConstraintsAcquiredByE-Agenda of the actor MeetingSche-

duler contributes 22% to the top softgoal EffectiveScheduling. And the alter-

native ConstraintsAcquiredByDefault of the actor MeetingScheduler contributes

14% to the top softgoal EffectiveScheduling. The alternative option Constraint-

sAcquiredByEmail has better satisfaction than the other two alternative opti-

ons ConstraintsAcquiredByE-Agenda and ConstraintsAcquiredByDefault. Hence,

ConstraintsAcquiredByEmail is selected for the actor MeetingScheduler.

The graphical representation of the comparison of scores for Kids Youth Coun-

seling is shown in Figure 3.9 and for the Meeting Scheduler System in Figure 3.10.

Table 3.6: Top Softgoals Satisfaction scores for the actor MeetingScheduler (*

indicates goal selection)

Top Softgoals
Alternative option scores Defuzzified scores

ConstraintsAcquired ConstraintsAcquired ConstraintsAcquired ConstraintsAcquired ConstraintsAcquired ConstraintsAcquired

ByEmail ByE-Agenda ByDefault ByEmail ByE-Agenda ByDefault

EffectiveScheduling (0.032, 0.136, 0.409) (0, 0.074, 0.3014) (0, 0.0419, 0.2032) 0.357 (36%)* 0.224 (22%) 0.143 (14%)

Figure 3.9: Comparison Graph for Kids Youth Counseling case study

To check the effectiveness of the proposed approach, the estimated values

from inter-actor dependencies were compared with values obtained from without

using inter-actor dependencies. Tables 3.7 and 3.8 demonstrate the comparison

of scores for the Kids Youth Counseling and Meeting Scheduling System case

studies. In the first case study, Kids Youth Counseling, the only softgoal that is

affected by interaction is HighQualityCounseling of the actor Organisation. From

table 3.7, it can be seen that by performing goal analysis without using inter-

actor dependencies, the satisfaction of Kids Use CyberCafe/Portal/ChatRoom
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Figure 3.10: Comparison Graph for Meeting Scheduling System case study

and Kids Use TextMessaging are 73% and 26% respectively. With inter-actor

dependencies, the scores for Kids Use CyberCafe/Portal/ChatRoom and Kids

Use TextMessaging are found to be 77% and 29% respectively. By analysing the

above computed scores, it can be seen that, the proposed inter-actor dependency

approach gives improved scores for softgoals than for those without inter-actor

dependencies. Similarly, from table 3.8 it can be observed that for the Meeting

Scheduling System (MSS), the scores obtained by the inter-actor dependency

approach are better than those for the without inter-actor dependencies.

For Youth Counseling Service with single softgoal dependency HighQuality-

Counseling between the actors Organisation and Counsellor, the softgoal Help-

Kids satisfaction is found to be increased by 4% for Kids Use CyberCafe/Portal/

ChatRoom and 3% for Kids Use TextMessaging. Similarly, for the Meeting Sche-

duling System with single softgoal dependency LowEffort between the actors

MeetingInitiator and MeetingParticipants, the softgoal Happiness is found to be

increased by 9% for LetSchedulerScheduleMeeting. By considering single soft-

goal dependency, the proposed approach provides an improved score over the

non-inter-actor dependencies. However, when there are a large number of depen-

dencies, it is expected that the proposed approach will give a significantly better

result comparatively and thus help in decision making.
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Table 3.7: Scores Comparison for Kids Youth Counseling (with and without

inter-actor dependencies)

Actor Top Softgoals
Use CyberCafe/Portal/ ChatRoom UseTextMessaging

With Inter-actor Without Inter-actor With Inter-actor Without Inter-actor

Dependencies Dependencies Dependencies Dependencies

Organization Help Kids 77% 73% 29% 26%

Table 3.8: Scores Comparison for Meeting Scheduling System (with and without

inter-actor dependencies)

Actor Top Softgoals
ScheduleMeeting LetSchedulerScheduleMeeting

With Inter-actor Without Inter-actor With Inter-actor Without Inter-actor

Dependencies Dependencies Dependencies Dependencies

MeetingInitiator Happiness 100% 100% 76% 67%

3.5 Chapter Summary

This chapter proposed a fuzzy-based approach for goal analysis using inter-actor

dependency in the i∗ framework. The proposed approach was implemented and

tested using two case studies from the existing literature: Youth Counsellor and

Meeting Scheduling System. Analysis was based on improvements to the top

softgoal scores of each actor in the goal model. The proposed approach of inter-

actor dependencies gives an improved result over non-inter-actor dependencies.

In the next two chapters, we describe a method for including optimisation in

goal models to select the weights for the LSG and thereby to select the alternative

options for which the softgoals’ levels of satisfaction are best.
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Chapter 4

Optimal Reasoning and

Sensitivity Analysis in the i∗

Framework

In the previous chapter, we explained the idea of enhancing the i∗ framework to

support quantitative reasoning, including the inter-actor dependencies. We also

presented the fuzzy-based quantitative approach to the i∗ framework along with

evaluation of the approach using two case studies from the existing literature.

Although quantitative reasoning is being increasingly accepted, optimisation mo-

dels have attracted significantly less consideration. In this chapter, we discuss

the need for optimisation techniques in goal analysis of the i∗ framework. We

also present an optimisation model for the i∗ framework; this optimisation model

is validated by simulation-based analysis using case studies.

Another interesting point of optimisation is sensitivity analysis. Sensitivity

analysis is employed to detect the system’s behaviour when input data changes.

Furthermore, this chapter examines the application of sensitivity analysis to the

i∗ framework in order to provide the analyst with extra information about the

quantitative values selected.

The chapter is structured as follows: in Section 4.1, we discuss the need for

optimisation in the i∗ framework; Section 4.2 introduces Multi-Objective Opti-

misation; Section 4.3 presents the proposed optimal i∗ framework; Section 4.4 ex-

plains application and evaluation of optimisation model to i∗ case studies; Section

4.5 presents sensitivity analysis of the i∗ framework.

Some of the material in this chapter has previously appeared in the following publications:
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1. Chitra M Subramanian, Aneesh Krishna, and Arshinder Kaur (2015). Optimal Reaso-

ning of Goals in the i∗ Framework. In Software Engineering Conference (APSEC), 2015

Asia-Pacific (pp. 346-353). IEEE.

2. Chitra M. Subramanian, Aneesh Krishna, Arshinder Kaur (2016) Sensitivity Analysis of

the i∗ Optimisation Model. JSW 11(1): 10-26.
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4.1 Need for Optimisation in Quantitative Ana-

lysis of the i∗ Framework

In practice, the input data required for goal evaluation are incomplete, or unobtai-

nable, or imprecise. Moreover, when presented with real-life requirements engi-

neering (RE) problems, one usually has to deal with multiple goals, each of which

may be significantly important to address in relation to the RE problem presen-

ted. The priority of these goals may be different but, at the same time, it is

important that they are considered. These goals can be either conflicting or con-

gruent. There is a need to address such issues with a method which considers

multi-objective optimisation. Furthermore, scalability is another issue associated

with requirements evaluation. It is difficult to assign values to the goals of a

goal model in a large and complex system. Hence, the decision making becomes

a crucial task (Letier and Van Lamsweerde, 2004; Yu, 2011; Heaven and Letier,

2011; Liaskos et al., 2010).

In this research, optimisation has been used to find the values (weights) of

leaf softgoals. These values (weights) are in turn used in the goal analysis pro-

cedure explained in the previous chapter to select the best alternative option.

Optimisation, an operation research technique, is a method used to obtain the

best possible solution under the given circumstances (Johnson and Montgomery,

1974; Sasieni et al., 1959). We explain the need for optimisation in goal analy-

sis with a running example namely London Ambulance Service [LAS], which is

adapted from (You, 2004). The partial Strategic Rationale (SR) model of LAS

is shown in Figure 4.1. The LAS is a computer-aided system used to automate

the dispatch of an ambulance to an emergency scene with an arrangement that

the ambulance be dispatched in 3 seconds and arrive at the scene in 11 seconds.

However, the system failed to address the requisite time specification and was

also unreliable, and crashed. The LAS was used as a standard case study for goal

modelling by the RE research community (You, 2004). The partial SR diagram

in Figure 4.1 depicts four actors, namely the Ambulance Crew, the Resource Allo-

cator, the Resource Allocator Module and the Human Resource Allocator, as well

as some of their intentional relationships. The actor Resource Allocator has the

goal Becollected[IncInfo] which represents the incident information that is to be

collected. This goal can be accomplished in two ways using either paper-based

information or network-based information. Hence, the goal Becollected[IncInfo]

is decomposed into two tasks known as the ByPaperbased Form and the By-
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Database or Network. The goal Becollected[IncInfo] represents a decision point.

The goal BeGenerated[MobileInst] of actor Resource Allocator represents which

vehicle is to be assigned to the incident scene. This information can be genera-

ted either by a computer-based algorithm or by a human. Therefore, the goal

BeGenerated[MobileInst] is again OR decomposed into two tasks, namely the

ByMachineBasedAlgorithm and the ByHumanDecision and, hence, the goal Be-

Generated[MobileInst] becomes a decision point. The selection of a task for these

goals Becollected[IncInfo] and BeGenerated[MobileInst] influences the satisfaction

levels of non-functional goals or softgoals, namely Timeliness[mobilization] and

Optimal[mobInst] of the actor Resource Allocator.

 

 

Figure 4.1: SR diagram for LAS (adapted from You (2004))

There are inter-actor dependencies among these four actors. These inter-

actor dependencies demonstrate that an actor depends on another actor for its

goal accomplishment. The actor Ambulance Crew depends on the actor Resource

Allocator through the softgoal dependency namely Optimal[mobInst]. The soft-

goal Timeliness[mobilisation] of the actor Ambulance Crew depends upon the

accuracy of the optimal information that has been collected. Furthermore, the

goal BeGenerated[MobileInst] of the actor Resource Allocator depends upon the

task ByMachineBasedAlgorithm of the actor ResourceAllocatorModule. And also
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depends upon the task ByHumanDecision of the actor HumanResourceAllocators.

These inter-actor dependencies also influence the decision making of each actor.

In Figure 4.1 the actor Resource Allocator has two decision points, namely

the goals Becollected[IncInfo] and BeGenerated[MobileInst]. These two goals are

OR decomposed into two tasks. The intent of a requirement analyst is to se-

lect an alternative task from these two tasks for each goal such that it delivers

a maximum satisfaction percentage to the top softgoals. The selection of a task

depends on its contribution to the non-functional requirements (represented by

softgoals) of the goal model. To illustrate, in this case study, the LAS the analyst

has to make a selection from the alternative tasks Bypaperbasedform or ByData-

base or Network in order to maximise the satisfaction level of the top softgoals

known as Timeliness[mobilization], optimal[mobInst] of the actor Resource Allo-

cator. The goal Timeliness[service] of the actor Ambulance Crew depends upon

the Optimal[MobInst] of the actor Resource Allocator. The selection of an alter-

native option for the actor Resource Allocator affects the softgoals of the actor,

Ambulance Crew.

In explaining the inter-actor quantitative analysis (approach described in pre-

vious chapter), we refine the leaf softgoal score equation and softgoal score equa-

tion defined in the previous chapter and provide generalised equations. To begin

the analysis, let us assume that an analyst assigns the weights 70%, 60%, 70% and

50% to the leaf softgoals (LSG) Accuracy[AmbInfo], Timeliness[service], Accuracy

and Timeliness[mobilization] respectively. Let the weight of an ith leaf softgoal

be represented by ωLi
. The goal Becollected[IncInfo] of the actor Resource Al-

locator has two tasks, namely ByPaperbased-form and ByDatabase or Network.

The analyst selects the first option known as ByPaperbased-form and performs

the goal analysis to find the impact of the selection of this option. The con-

tribution ( or impact) of this alternative to the leaf softgoals is in the form of

triangular fuzzy numbers and is given as C̄Aj∗Li
where Aj is jth alternative op-

tion that is selected and Li is ith leaf softgoal. The contribution of the alternative

ByPaperbased-form on the leaf softgoals Accuracy[AmbInfo], Timeliness[service],

Accuracy and Timeliness[mobilization] are (0.48, 0.64, 0.80), (0.48, 0.64, 0.80) ,

(0, 0.16, 0.32) and (0, 0.16, 0.32) accordingly. An LSG score is calculated using

its weight and the contribution of the selected alternative option. Let us denote

the score of ith leaf softgoal by S̄Li
. An actor may depend on another actor for

its goal performance. The inter-actor dependencies may influence the decision

making regarding the alternative options. The dependency link is considered to

be the MAKE contribution. If the dependency score and dependency impact are
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denoted by S̄d and Īd correspondingly, and if there are ’nd’ dependencies, then

the equation for score calculation of an ith leaf softgoal for jth alternative of kth

actor at tth level of hierarchy is given by equation 4.1 below:

S̄Lijkt = C̄Aj∗Li ∗ ωLik +
nd∑
b=1

(
S̄db ∗ Īdb

)
(4.1)

where t is the hierarchy level, and for leaf softgoals, t is zero.

Thus using equation 4.1, the scores calculated for the LSGs Accuracy[AmbInfo],

Timeliness[service], Accuracy and Timeliness[mobilization] are (0.336, 0.448, 0.56),

(0.288, 0.455, 0.65), (0, 0.11,0 .224) and (0, 0.08, 0.16) respectively. Next, the

LSG scores are propagated backwards in the goal hierarchy until the top softgoals

are reached so as to find the scores of the other softgoals in the model. Let the

ith softgoal (SG) score be represented by S̄SGi
. The score calculation of an ith

softgoal for jth alternative of kth actor at tth level in the hierarchy is given by

equation 4.2 below:

S̄SGijkt =
nc∑
d=1

((
C̄SGi∗(SGd|LSGd)

)
∗
(
S̄Ldjk(t−1)|S̄SGdjk(t−1)

))
+

nd∑
b=1

(
S̄d′b ∗ Īd′b

)
(4.2)

where C̄SGi∗(SGd|LSGd) is the correlation link between the ith softgoal and its

dth child which may be a softgoal or a leaf softgoal, S̄Ldjk(t−1) is the score of its

dth leaf softgoal child, S̄SGdjk(t−1) is the score of its dth softgoal child,| represents

or, S̄d′b is the score of its bth dependent, Īd′b is the bth dependent impact, ’nc’ is

the number of children of ith softgoal and ’nd’ is the number of dependencies.

By using equation 4.2, the scores calculated for the top softgoals Quality[service]

and Optimal[mobInst] are ( 0.29, 0.515, 0.81) and ( 0, 0.07, 0.1792). These scores

are defuzzified so as to obtain a quantifiable value. It shows the degree of satis-

faction of the top softgoals for the selected alternative option. The defuzzified

scores are 100% and 16% for Quality[service] and Optimal[mobInst] respectively.

Similarly, the analyst has to perform the analysis to find the satisfaction values

for the alternative options, known as ByDatabase or Network. By performing

this analysis, the defuzzified scores of the top softgoals Quality[service] and Op-

timal[mobInst], are 100% and 59% accordingly. By comparing the scores of the

top softgoals of the two alternatives, the option ByDatabase or Network is found

to have better satisfaction for the softgoals. Hence, the analyst decides to select

the option ByDatabase or Network.
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Since the weights are subjective in terms of the analyst, different scores are

obtained for the same softgoals based on the weights assigned by the analyst.

To illustrate this, let us assume that another analyst assigns the weights 50%,

50%, 60% and 40%, to the leaf softgoals Accuracy[AmbInfo], Timeliness[service],

Accuracy and Timeliness[mobilization] respectively. The calculated scores for

the top softgoals Quality[service] and Optimal[mobInst] are now found to be 84%

and 13% for the first alternative option ByPaperbased-form and 84% and 50%

for the second alternative option ByDatabase or Network. In the above analysis,

we can see that different scores are calculated for the same alternative with dif-

ferent weights assigned to the leaf softgoals. Hence, the scores of the softgoals

are subjective depending upon the subjective selection of weights made by the

requirement analyst. In order to avoid these subjective scores, an optimisation

model is proposed for finding the weights of the leaf softgoals. To determine the

optimal weight, we choose multi-objective optimisation.

In the following section, we give a brief introduction to multi-objective opti-

misation.

4.2 Multi-Objective Optimisation

Nowadays in all professions, optimisation is used as a technique in decision ma-

king. The processes in engineering systems such as design, construction and

maintenance include decision making both at managerial and technical levels.

The aim of such decision making is to minimise certain parameters or maximise

other parameters. Therefore, optimisation is defined as the process of maximising

or minimising certain parameters within system considerations. Optimisation is a

method of selecting the best or optimal alternatives from a list of possible choices

(Harman, 2007). Linear programming, non-linear programming and quadratic

programming are some of the optimisation research techniques used. Most of the

real-world problems have distinct objectives to be satisfied. Therefore, the single

objective optimisation technique is too inadequate to achieve a solution in such

circumstances. Hence, techniques for solving problems with multiple-objective

optimisation have been developed (Caramia and Dell’Olmo, 2008). In the LAS

case study (Figure 4.1), the goal Becollected[IncInfo] has two different choices

namely ByPaperbased-form and ByDatabase or Network for the actor Resource

Allocator. Now the task of the requirement analyst is to select the best or optimal

alternative from these two choices. Each choice is considered to be an objective
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and hence this problem can be solved by using multi-objective optimisation.

A multi-objective optimisation problem is written mathematically as:

Max|Min[f1(x), f2(x), ., fn(x)]

xεY
(4.3)

where f1, f2,., fn are scalar functions and Y is the set of constraints. A multi-

objective optimisation generates a set of solutions which are called Pareto so-

lutions or a Pareto frontier. The best solution is selected from a Pareto fron-

tier. There are many techniques to solve multi-objective optimisation namely

scalarization method, ∈ - constraints method, goal programming and multi-level

programming. To solve the multi-objective optimisation problem, we randomly

chose the scalarization method or weighted sum method (Sasieni et al., 1959). In

the scalarization method, the multi-objective problem is solved by combining its

multiple objectives into one single objective scalar function. Using the scalari-

zation method, the new optimisation problem with single objective function will

be

Max|Min
n∑
i=1

γiFi(ωL)

n∑
i=1

γi = 1

0 ≤ ωL ≤ 100

γi ≥ 0, i = 1, 2, ..., n

In the following section we present the optimisation of the i∗ framework.

4.3 Optimal i* Framework

As this research aims to completely automate the goal analysis process, there is

a need to minimise the analyst’s subjectivity when assigning the weights to leaf

softgoals. Assigning weight in the case of a large goal model is difficult, and also

preferences for the weights of the leaf softgoals may vary from analyst to analyst;

hence, there is a need for a novel method. Therefore, in order to automate and

handle the scalability issue, multi-objective optimisation will be applied to goal

analysis.
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The optimisation model mathematically expresses objective functions in terms

of decision variables (Johnson and Montgomery, 1974; Sasieni et al., 1959) using

linear programming. The constraints of the objective functions are the restrictions

to be satisfied by the decision variables. Once the objective functions, variables

and constraints are defined, they are solved by a tool solver to obtain the re-

sults. The objective of our optimisation model for an i∗ framework is to compute

an optimal weight that would achieve the maximum satisfaction of top softgoal

for given alternative options, subject to the restriction imposed by the graph

structure. The proposed optimisation framework is shown in Figure 4.2. In an

SR model with more than one alternative, an objective function in terms of leaf

softgoals is obtained for each alternative. These objective functions are solved

using an optimiser to give the values of the decision variables in the objective

functions. In our case, the decision variables are the weights of the leaf softgoals.

The weights obtained by the optimiser are used in the goal analysis procedure to

select the best alternative.

Hence, optimisation is performed in order to find the weights of the leaf softgo-

als and thereby identify an alternative option by which the softgoals satisfaction

can be maximized. This minimizes the analyst’s interaction and also, by auto-

mating the process, it can handle large complex systems.

To frame the optimisation model of an i∗ framework, the SR diagram is viewed

as the directed graph G (N, A) where N is the set of nodes and A is the set of

arcs. The intentional elements of the SR diagram, namely softgoals, goals, and

tasks are assumed to be the nodes of the directed graph G and the means-end,

task-decomposition and operational contribution links are assumed to be the arcs

of the graph G.

An objective function for the optimisation model is formed from the calcula-

tions of variables of the graph. For any node that is a leaf softgoal, there is a

weight represented by ωLik, meaning that the weight of the ith leaf softgoal of the

kth actor. Additionally, any arc from a goal/task to a leaf softgoal ( representing

the impact of goal/task) is denoted by a triangular fuzzy number C̄Aj∗Li, indi-

cating the impact of the jth alternative option on ith leaf softgoal. The ith leaf

softgoal score is calculated from the weight of the ith leaf softgoal and its impact

for jth alternative and is represented by S̄Lij. The score of ith leaf softgoal for jth

alternative of kth actor is given by equation 4.1 as :

S̄Lijk = C̄Aj∗Li ∗ ωLik +
nd∑
b=1

(
S̄db ∗ Īdb

)
63



 

Figure 4.2: Optimisation Framework

Since, the hierarchy level (t) for leaf softgoals is zero, we avoid ’t’ in the leaf

softgoal score representation. To get maximum satisfaction for any top softgoal,

the sum of the leaf softgoal scores for an alternative has to be maximized. Hence

the objective function for the first alternative of kth actor with ’m’ leaf softgoals
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is represented by:

Max(S̄L11k + S̄L21k + .....+ S̄Lm1k) (4.4)

Using equation 4.1 of leaf softgoal score calculation, equation 4.4 is expanded

as below

Max{C̄(A1∗L1)k ∗ ωL1k +
nd1∑
b=1

(
S̄db ∗ Īdb

)
+ C̄(A1∗L2)k ∗ ωL2k +

nd2∑
b=1

(
S̄db ∗ Īdb

)
+ ....+

C̄(A1∗Lm)k ∗ ωLmk +
ndm∑
b=1

(
S̄db ∗ Īdb

)
}

(4.5)

and equation 4.5 can be rewritten as given below.

Max{C̄(A1∗L1)k ∗ ωL1k + C̄(A1∗L2)k ∗ ωL2k + ....+ C̄(A1∗Lm)k ∗ ωLmk+
nd1∑
b=1

(
S̄db ∗ Īdb

)
+

nd2∑
b=1

(
S̄db ∗ Īdb

)
+ ....+

ndm∑
b=1

(
S̄db ∗ Īdb

)
}

Max{
m∑
i=1

C̄(A1∗Li)k ∗ ωLik +
m∑
i=1

ndi∑
b=1

(
S̄db ∗ Īdb

)
} (4.6)

To avoid complexity in solving the objective function, we omit the inter-

actor dependency score part (as its score is taken into consideration during goal

analysis). Therefore, the objective function for an i∗ framework is now given by

equation 4.7 as below:

Max{
m∑
i=1

C̄(A1∗Li)k ∗ ωLik} (4.7)

Since, the weights are assumed to be from 0 to 100%, it forms one of the

constraint of the objective function. Also the factor C̄(A1∗Li)k ∗ ωLik should be

greater than zero, and it forms the second constraint of the objective equation.

Hence, the objective function is written as

Max{
m∑
i=1

C̄(A1∗Li)k ∗ ωLik} (4.8)
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Subject to

ωL11, ωL21, ...., ωLm1 ≥ 0

ωL11, ωL21, ...., ωLm1 ≤ 100

0 ≤ C̄(Aj∗Li)k ∗ ωLik for i = 1 to m

Supposing there are ’n’ alternatives for a given kth actor, then there are ’n’

objective functions which are given by:

F1(ωL) = Max

m∑
i=1

C̄(A1∗Li)k ∗ ωLik

F2(ωL) = Max
m∑
i=1

C̄(A2∗Li)k ∗ ωLik

.....

.....

Fn(ωL) = Max
m∑
i=1

C̄(An∗Li)k ∗ ωLik

(4.9)

Subject to

0 ≤ ωLik ≤ 100 for i = 1 to m

0 ≤ C̄(Aj∗Li)k ∗ ωLik for i = 1 to m

Similarly, the objective functions are obtained for each actor in the SR mo-

del. In the case of a goal model in which the alternatives are the same for all

actors, then a cumulative objective function involving all the actors can be used.

Supposing a goal model has ’p’ number of actors, the objective function for a jth

alternative option in the goal model is given by:

Fj(ωL) = Max

(
m∑
i=1

C̄(Aj∗Li)1 ∗ ωLi1 +
m∑
i=1

C̄(Aj∗Li)2 ∗ ωLi2 + ....+
m∑
i=1

C̄(Aj∗Li)p ∗ ωLip

)
(4.10)

In short the function is given by:

Fj(ωL = Max

p∑
k=1

m∑
i=1

C̄(Aj∗Li)k ∗ ωLik (4.11)

Therefore, the objective functions for a goal model with ’n’ number of alter-

natives are given by:
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F1(ωL) = Max

p∑
k=1

m∑
i=1

C̄(A1∗Li)k ∗ ωLik

F2(ωL) = Max

p∑
k=1

m∑
i=1

C̄(A2∗Li)k ∗ ωLik

....

....

Fn(ωL) = Max

p∑
k=1

m∑
i=1

C̄(An∗Li)k ∗ ωLik

(4.12)

Subject to

0 ≤ ωLik ≤ 100 for i = 1 to m and k = 1 to p

0 ≤ C̄(Aj∗Li)k ∗ ωLik for i = 1 to m, j = 1 to n and k = 1 to p

In general, the multi-objective functions are given by following equation:

Max[F1(ωL), F2(ωL), ., Fn(ωL)]

with ωLεY
(4.13)

where n ≥ 1 and Y is the set of defined constraints.

These objective functions can be solved by using the scalarization or the weighted

sum technique (Sasieni et al., 1959). The new optimisation problem with unique

objective function in the scalarization method is given by:

Max
n∑
i=1

γiFi(ωL)

n∑
i=1

γi = 1

0 ≤ ωL ≤ 100

γi ≥ 0, i = 1, 2, ..., n

(4.14)

where γ denotes the weight associated with each objective function.

In the following section, we illustrate how to solve the multi-objective optimi-

sation problem.
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4.3.1 Multi-Objective Optimisation Algorithms

Solving multi-objective optimisation problems is not as simple as a conventional

single-objective optimisation problem as there are multiple Pareto optimal soluti-

ons. On exploring different ways to solve multi-objective optimisation problems,

one such approach is to transform the multi-objective optimisation problem into a

single objective optimisation problem. This is called scalarization or the weighted

sum technique (Caramia and Dell’Olmo, 2008). A multi-objective optimisation

generates a set of solutions called Pareto solutions or a Pareto frontier. The best

solution is selected from the Pareto frontier. Evolutionary algorithms are pre-

dominant approaches for generating Pareto optimal solutions. Non-dominated

Sorting Genetic Algorithm- II (NSGA- II) and Strength Pareto Evolutionary Al-

gorithm 2 (SPEA 2) are standard evolutionary approaches. We have used the

NSGA-II (Deb et al., 2002) evolutionary algorithm that has an implementation

in MATLAB Global Optimization Toolbox. We briefly explain the use of this

algorithm for finding the optimal weights of the leaf softgoals in goal models.

The evolutionary algorithm begins with a population of randomly generated

individuals and finds a solution over a number of iterations. The population

in each iteration is known as a ’generation’. In each generation, the fitness of

the selected individual known as a chromosome (weight of leaf softgoal) in the

population is evaluated. The fitness is the value of the objective function in the

optimisation problem. The selected individuals from the current population are

randomly mutated by a process called crossover to form a new generation, which

is used in the next iteration. The algorithm can be terminated when either a

maximum number of generations have been produced or a satisfactory fitness

level has been reached for the population.

4.3.2 Encoding the Optimisation Problem for Weights of

the Leaf Softgoals

Binary representations are used to show the chromosomes in genetic algorithms.

Therefore, we define a mapping from weights of the leaf softgoals in the goal

model to a binary representation. The aim of the objective function is to find the

weights of the leaf softgoals. So, the number of bits in a chromosome depends on

the number of leaf softgoals in the goal model. In the LAS goal model (Figure

4.1), for the actor Resource Allocator, the number of leaf softgoals is two; hence,

the number of bits in the chromosome is 2. Let us represent the actors Ambulance
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Crew, Resource Allocator, Resource Allocator Module and Human Resource Allo-

cator with numbers 1, 2, 3, and 4 respectively. The actor Ambulance Crew has

no alternatives and has no objective functions. Using equation 4.8, the objective

functions for the LAS are obtained.

For the actor Resource Allocator, the objective functions for the alternatives

ByPaperbased Form (F1) and ByDatabase or Network (F2) are given as

F1 = Max(0.16 ∗ ωL12 + 0.16 ∗ ωL22)
F2 = Max(0.64 ∗ ωL12 + 0.64 ∗ ωL22)

For the actor Resource Allocator Module, the objective functions for the al-

ternative ByMachineBasedAlgorithm is

F3 = Max(0.64 ∗ ωL13 + 0.64 ∗ ωL23)

For the actor Human Resource Allocator, the objective function for the alter-

native ByHumanDecision is

F4 = Max(0.16 ∗ ωL14 + 0.16 ∗ ωL24)

The collective objective functions are given as

F1 = Max(0.16 ∗ ωL12 + 0.16 ∗ ωL22)
F2 = Max(0.64 ∗ ωL12 + 0.64 ∗ ωL22)
F3 = Max(0.64 ∗ ωL13 + 0.64 ∗ ωL23)
F4 = Max(0.16 ∗ ωL14 + 0.16 ∗ ωL24)

Subject to

0 ≤ ωLi ≤ 100 for i = 1 to 2

Using the scalarization method, the objective functions are combined into a

single objective function and is given by

Max{γ1(0.16 ∗ ωL12 + 0.16 ∗ ωL22) + γ2(0.64 ∗ ωL12 + 0.64 ∗ ωL22)+
γ3(0.64 ∗ ωL13 + 0.64 ∗ ωL23) + γ4(0.16 ∗ ωL14 + 0.16 ∗ ωL24)}

4∑
i=1

γi = 1

0 ≤ ωL1j, ωL2j ≤ 100, j = 2 to 4

γi ≥ 0, i = 1, 2, 3, 4
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Figure 4.3 illustrates the process of crossover with γ1 = 1 and γ2, γ3, γ4 as ze-

ros. In this figure, we have two bits in the chromosome representing the weights

two leaf softgoals ωL12 and ωL22. We randomly assign the values of these bits

representing the initial population. For the first population, we randomly select

23 and 56 to ωL12 and ωL22 respectively. Similarly, for the second population

we randomly assign 60 and 35 to ωL12 and ωL22 respectively. With this initial

population, the value of the objective function for the first population and se-

cond population are 12.64 and 15.2 correspondingly. Crossover is performed by

mutating the second bit of second population with the second bit of first popula-

tion resulting with 60 and 56 for the current population. The objective function

value for the crossover is 18.29. The process is repeated for a specified number

of iterations or until an optimal solution is found.

 

Figure 4.3: Crossover for Optimal weights

4.4 Application of Optimisation to a Case Study

In the LAS case study, the actor the Resource Allocator has goals Becollected[IncInfo]

and BeGenerated[MobileInst] as two decision points. The goal Becollected[IncInfo]

is OR decomposed into two tasks:

• ByPaperbased Form and
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• ByDatabase or Network

and the goal BeGenerated[MobileInst] is OR decomposed into two tasks:

• ByMachineBasedAlgorithm

• ByHumanDecision.

The objective of the optimisation approach is to find the weights of the leaf

softgoals Accuracy and Timeliness[mobilization] that, when used in goal ana-

lysis, maximises satisfactions for the softgoals Optimal[mobInst] and Timeline-

ness[mobilization] of the actor Resource Allocator and Quality[service] of the

actor Ambulance Crew. The softgoal Timelineness[mobilization] is leaf softgoal

as well as top softgoal.

Let us represent the weight obtained from the optimiser as the optimal weight,

which is denoted by Oω. The leaf softgoal score equation 4.1 is updated as:

S̄Lijkt = C̄Aj∗Li ∗OωLik +
nd∑
b=1

(
S̄db ∗ Īdb

)
(4.15)

The LAS goal model consists of four alternatives known as ByPaperbased Form,

ByDatabase or Network, ByMachineBasedAlgorithm and ByHumanDecision. Ba-

sed on the number of alternatives, this model has four objective functions, one for

each alternative. The objective function for the alternative ByPaperbased Form,

denoted by F1 is given by:

F1(ωL) = Max
2∑
i=1

(
C̄A1∗Li2 ∗ ωLi2

)
F1 = Max(0.16 ∗ ω12 + 0.16 ∗ ω22)

where ω12, ω22 represent the weights of the leaf softgoals Accuracy and Ti-

meliness of actor Resource Allocator (actor number 2). For the convenience of

solving the objective functions, the defuzzified values of correlation links are used

in the functions.

Similarly, the objective functions for the other three options ByDatabase or

Network, ByMachineBasedAlgorithm and ByHumanDecision are given by F2, F3

and F4 correspondingly:

F2 = Max(0.64 ∗ ω12 + 0.64 ∗ ω22)

F3 = Max(0.64 ∗ ω13 + 0.64 ∗ ω23)

F4 = Max(0.16 ∗ ω14 + 0.16 ∗ ω24)
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The multi-objective functions for the LAS goal model are:

F1 = Max(0.16 ∗ ω12 + 0.16 ∗ ω22)

F2 = Max(0.64 ∗ ω12 + 0.64 ∗ ω22)

F3 = Max(0.64 ∗ ω13 + 0.64 ∗ ω23)

F4 = Max(0.16 ∗ ω14 + 0.16 ∗ ω24)

Subject to

0 ≤ ωij ≤ 100 for i = 1 to 2 and j = 2 to 4

0.64 ∗ ωij ≤ 100 for i = 1 to 2 and j = 2 to 4

0.16 ∗ ωij ≤ 100 for i = 1 to 2 and j = 2 to 4

By solving, the above multi-objective functions using the MATLAB Genetic

Algorithm, the weights of the leaf softgoals are identified and are presented in

Table 4.1. These weights are now used in equation 4.15 to find the scores of

leaf softgoals and thereby to find the optimal satisfaction of the softgoals and

top softgoals. The calculated scores of the softgoals for the alternative option

ByDatabase or Network are provided in Figure 4.4.

Table 4.1: Weights of the leaf softgoals of the actor Resource Allocator

Actor Leaf Softgoals Weight

Resource Allocator
Accuracy 0.9

Timeliness[mobilization] 0.8

In Figure 4.4, it can be seen that the alternative option ByDatabase or Net-

work was estimated to achieve 100%, 76% and 100% for the top softgoals of Qua-

lity[service](Ambulance Crew), Optimal[mobInst](Resource Allocator) and Time-

liness[mobilization](Resource Allocator) respectively. Similarly, goal analysis is

performed for other alternative options. The scores of the softgoals for all the

alternatives are given in Table 4.2. From the table, it can be seen that the al-

ternative options ByDatabase or Network and ByMachineBasedAlgorithm were

found to be the optimal alternative options for the goals BeCollected[IncInfo] and

BeGenerated[mobileInst] respectively.

4.4.1 Evaluation of the Approach using a Case Study

For the evaluation of the approach, we illustrated the optimisation of the i∗

framework using another case study - the Telemedicine goal ( adapted from (Yu,
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Figure 4.4: Optimal softgoal scores for the alternative option ByDatabase or

Network

Table 4.2: Top softgoal scores for all the alternative options in LAS case study

Actor Top softgoal
BeCollected[IncInfo] BeGenerated[mobileInst]

ByDatabase or Network ByPaperbased Form ByMachineBasedAlgorithm ByHumanDecision

Ambulance Crew Quality[service] 100% 100% 100% 100%

Resource Allocator Optimal[mobInst] 76% 20% 76% 20%

Timeliness[mobilization] 100% 100% 100% 100%

2001) ) model. In the Telemedicine system (Figure 4.5), a patient depends upon a

healthcare provider for the treatment of an illness. A patient may prefer to have

a flexible treatment plan which incorporates other activities. The healthcare

provider may choose to honour the patient’s request by monitoring the patient

remotely with the use of patient monitoring equipment. In addition to this, the

provider might enhance his/her performance by using a host system that manages

a number of patients at the same time.

In the Telemedicine case study, we have two actors, namely Patient and He-

althcare Provider.

For the two actors, the two different alternative tasks are:

• Patient Centred Care

• Provider Centred Care.

The objective of the optimisation is to find the weights of leaf softgoals that

when used in goal analysis select an alternative that achieves maximum satisfacti-

73



 

 

                                                                                                

Figure 4.5: An SR Model of Telemedicine System (adapted from (Yu, 2001) )

ons for the softgoals Happiness of actor Patient and viable Healthcare Service of

actor Healthcare Provider .

The Telemedicine goal model consists of two actors: Patient and Healthcare

Provider with the same type alternatives namely Patient Centred Care and Pro-

vider Centred Care. Based on the number of alternatives, this model has two

objective functions one for each alternative. The objective function for the al-

ternative option Patient Centred Care of both the actors using equation 4.11 is

given by F1

F1 = Max

2∑
k=1

2∑
i=1

C̄A∗Lik ∗ ωLik

F1 = Max(0.64 ∗ ω1 + 0.64 ∗ ω2 + 0.16 ∗ ω3 + 0.16 ∗ ω4)

where ω1, ω2, ω3, ω4 represents the weights of the leaf soft goals Normal Life

Style, Quality of Care, Efficient Operations and Effective Treatments in two ac-

tors. For the ease of use, the variables ω1, ω2, ω3, ω4 are used instead of ω11, ω21, ω12,

ω22 respectively. For the convenience of solving these objective functions, the

defuzzified values of correlation links are used in the functions. Similarly, the
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objective function for the second alternative option, Provider Centred Care is

given by equation 4.11:

F2 = Max(0.16 ∗ ω1 + 0.81 ∗ ω2 + 0.64 ∗ ω3 + 0.64 ∗ ω4)

The multi-objective functions for the Telemedicine goal model are:

F1 = Max(0.64 ∗ ω1 + 0.64 ∗ ω2 + 0.16 ∗ ω3 + 0.16 ∗ ω4)

F2 = Max(0.16 ∗ ω1 + 0.81 ∗ ω2 + 0.64 ∗ ω3 + 0.64 ∗ ω4)

Subject to

0 ≤ ωij ≤ 100 for i = 1 to 4

0.64 ∗ ωi ≤ 100 for i = 1, 2, 7, 8

0.16 ∗ ωi ≤ 100 for i = 3, 4, 5, 6

By solving the above multi-objective functions using the MATLAB Genetic

Algorithm, the weights of the leaf softgoals are found and are shown in Table 4.3.

These weights are now used in our approach as described in Chapter 3 to find the

optimal satisfaction of the top softgoals. The calculated scores of the softgoals

for the alternative option Provider Centred Care are given in Figure 4.6.

Table 4.3: Optimised weights of leaf softgoals of the Telemedicine goal model

Actor Leaf Softgoals Weight

Patient
Normal Life Style 0.85

quality of Care 0.99

Healthcare Provider
Efficient operations 0.9

effective Treatments 0.75

In Figure 4.6, it can be noted that the alternative option Provider Centred

Care was estimated to achieve 60%, and 69% for the top soft goals Happiness

(Patient) and Viable Health Service (Healthcare Provider) correspondingly. To

analyse the estimated values, these values are compared with the satisfaction va-

lues from the other alternative option Patient Centred Care. The top softgoals’

values and the satisfaction comparison of these two alternatives are displayed

in Table 4.4. The table shows that the alternative Provider Centred Care out-

performs the Patient Centred Care in the actor Healthcare Provider whereas

alternative Patient Centred Care outperforms the alternative Provider Centred

Care in case of the actor Patient.
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Figure 4.6: A Goal Analysis with optimal weights for alternative option Provider

Centred Care

Table 4.4: Top SoftGoals Satisfaction Scores for Telemedicine Goal model (*

indicates goal selection).

Actor Top Softgoals
Alternative option scores Defuzzified scores

Patient Centered Care Provider Centered Care Patient Centered Care Provider Centered Care

Patient Happiness (0.41,0.73,1) (0.3,0.597,0.9) 71% ∗ 60%

Healthcare Provider Viable Healthcare Service (0,0.168,0.42) (0.38,0.67,1) 21% 69%∗

To analyse the effectiveness of the proposed approach, the scores obtained

from optimised goal analysis are compared with scores obtained without optimi-

sation. In goal analysis without using optimisation, weights have to be assigned

to the leaf softgoals by a requirement analyst. Since the assigned weights are sub-

jective to the analyst, different scores are obtained for the same softgoals based

on the analyst’s weights. To illustrate this, let us assume that an analyst assigns

the weights 30%, 50%, 40% and 40% to the leaf soft goals Normal Life Style,

Quality of Care, Efficient Operations and Effective Treatments respectively. The

satisfaction scores of the softgoals Happiness and Viable Healthcare Service are

found to be 35% and 67% respectively for the alternative option Patient Cen-

tred Care. Similarly, for the alternative option Provider Centred Care, the scores

of the softgoals Happiness and Viable Healthcare Service are found to be 31%

and 54% respectively. However, if another analyst assigns weights of 70%, 80%,

60% and 60% to the leaf softgoals Normal Life Style, Quality of Care, Efficient

Operations and Effective Treatments respectively, then satisfaction scores of the

softgoals Happiness and Viable Healthcare Service are found to be 11% and 15%

respectively for the alternative option Patient Centred Care. For the alternative
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option, Provider Centred Care, the scores of the softgoals Happiness and Viable

Healthcare Service are 35% and 52% respectively. The scores of top softgoals

for both the actors are given in Table 4.5 and Table 4.6. Hence the scores of

the softgoals are subjective depending on the subjective selection of weights by

the requirement analyst. In order to avoid these subjective scores, the proposed

optimisation approach can be used. And also, by previewing the above calcula-

ted scores, it can be seen that the proposed optimised approach gives a better

optimal softgoal scores than those without optimisation. The score comparisons

are shown in Table 4.7 and the graphical representation of score comparison is

shown in Figure 4.7. Algorithm 2 outlines the steps in the optimal inter-actor

goal analysis of the i∗ framework.

Table 4.5: Top softgoal scores of Patient (for different weights)

Weights of LSG Happiness Score

Normal Life Style Quality of Care Patient Centered Care Provider Centered Care

30 50 35% 31%

70 80 67% 54%

Table 4.6: Top softgoal scores of Healthcare Provider (for different weights)
Weights of LSG Happiness Score

Efficient Operations Effective Treatments Patient Centered Care Provider Centered Care

40 40 11% 35%

60 60 15% 52%

Table 4.7: Scores Comparison for Telemedicine System (with and without Opti-

misation)

Actor Top Softgoals
Patient Centered Care Provider Centered Care

With Optimisation Without Optimisation With Optimisation Without Optimisation

Patient Happiness 71% 35%, 67% 60% 31%, 54%

Healthcare Provider Viable Healthcare Service 21% 11%, 15% 69% 35%, 52%

4.5 Sensitivity Analysis

Another interesting point of optimisation is sensitivity analysis. Sensitivity ana-

lysis is employed to detect the system’s behaviour when input data change. The
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Figure 4.7: Graphical representation of scores comparisons with and without

optimisation

main advantage of this technique is that a thorough investigation of the esti-

mation of the input variables is conducted before a final decision is made. It

also helps to identify the errors in the model and comprehend the effect of input

parameters. The concept of sensitivity analysis is new to software engineering

domains and this work is the earliest attempt at applying sensitivity analysis in

case of the i∗ framework. The only other research work on sensitivity analysis of

goal models was conducted by Affleck et al. (2015). However, this research was

conducted on a different framework known as a Non-Functional Requirements

framework.

In regards to modelling, sensitivity analysis can help an analyst in numerous

ways. Sensitivity analysis is one of the most appealing and interesting optimisa-

tion field (Hadigheh and Terlaky, 2006). Efforts are made to explore the problem’s

behaviour for changes in the input data. The following questions are used when

conducting sensitivity analysis. What is the range of the input parameter? How

positive or optimal are the results? How much will the result change if the data

is slightly varied? Will these changes have a minor or a major impact on the

results? Formally, the question is: Is optimal solution sensitive to a small change

in one of the problem coefficients? Usually, variation occurs in the right hand side

of the constraints and /or the objective function’s coefficient. If the solution of

the Linear Program (LP) changes, when the original coefficient is changed, then

it is referred to as LP sensitive. Imagine a model in linear form,
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Algorithm 2 Inter-actor optimal reasoning of Goals/tasks in the i∗ Framework

INPUT :

Graph Collection G, Set of task (T), Leaf SoftGoals(LSG), SoftGoals(SG)

OUTPUT :

Optimal alternative task that is selected for each actor.

for all graph g in G do

for all task t in T do

for all leaf softgoal lsg in LSG do

Obtain objective functions

W[ ]= gamultiobj()

end for

end for

end for

for all graph g in G do

for all task t in T do

for all leaf softgoal lsg in LSG do

lsg.score = lsg.impact ∗W [lsg]

end for

end for

end for

for all graph g in G do

for all softgoal sg in SG do

for all child C in SG do

sg.score+ = sg.impact ∗ Clsg/sg.score
end for

for all dependent sg in SG do

sg.score+ = dsg.impact ∗ dClsg/sg.score
end for

end for

end for

optimal alternative = maxscore(sg.score[])
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Y =
n∑
i=1

CiXi

lowerlimit ≤ Ci ≤ upperlimit

where the input parameters are Ci, lowerlimit and upperlimit. Now by chan-

ging the values of the input parameters the sensitivity analysis is performed. A

diagrammatic view of sensitive analysis for an optimisation model is given in

Figure 4.8.

Figure 4.8: A model for the sensitivity analysis of optimisation

Sensitivity analysis capability is provided by most optimisation tools; ho-

wever, the data obtained is dependent on continuous variables. This control on

maintaining integer variables increases the complexity of the problem, and therby

decreasing the computational efficiency LP (date).

4.5.1 Sensitivity Analysis of the i∗ Framework

To overcome the above mentioned issue, a simulation was created to check the

system behaviour for change after each input parameter. The values of the input

parameter are altered until a change in the solution takes place. The sensitive

data provide the range for an input data where there is no change in the optimal

output value. The analyst is alerted if the value exceeds the range obtained from
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the sensitivity analysis. An analyst can take action by re-considering the input

data. For our optimal i∗ framework, the objective function in simple form is:

F = Max
m∑
i=1

C̄ ∗ ω

The input parameter on the right side of the objective function is the impact

of the alternative on the leaf softgoals and it is given by triangular fuzzy number

(a1, a2, a3). Usually, the choice of fuzzy numbers varies from expert to expert.

Hence, it is interesting to observe the dependency of the solutions obtained from

the parameters of the fuzzy numbers. A special case is now considered in which

these numbers are perturbed by δ1 and δ2 as in Figure 4.9.

Figure 4.9: Perturbation of fuzzy number

In this case, the task is to find the range in which δ1 and δ2 may vary without

violating the optimal solution. The impacts of the goals(or task) on softgoals

make, help, some+, some-, hurt, and break are represented by triangular fuzzy

numbers (0.64, 0.80, 1), (0.48, 0.64, 0.80), (0.32, 0.48, 0.64), (0.16, 0.32, 0.48),
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(0, 0.16, 0.32) and (0, 0, 0.16) respectively. For each type of impact, the lower

and upper bounds are varied, except for make and break, because the impacts are

represented as fuzzy numbers from 0 to 1. To improve the analysis, initially the

lower (upper) bound is tested and moved on, only if the bound is not a limit for

the analysis. The middle point between the current impact’s lower (upper) limit,

and adjacent impact’s lower (upper) limit, forms the lower (upper) bound

ml = (l1 + l2)/2 mu = (u1 + u2)/2

Where ml is the middle point for lower limit, mu is the middle point for the

upper limit, l1 is the current impact’s lower limit, l2 is the adjacent impact’s

lower limit, u1 is the current impact’s upper limit and u2 is the adjacent impact’s

upper limit. The values are decreased (increased) from this middle point until a

change in the optimal solution occurs.

4.5.2 Analysis with LAS Case Study

In the LAS goal model ( Figure 4.1), help and hurt are the two impacts associ-

ated with the alternative options. The fuzzy values of help and hurt are (0.48,

0.64, 0.8) and (0, 0.16, 0.32) respectively. The lower bound of help and the upper

bound of hurt are varied to check for any change in the optimal satisfaction levels

of the top softgoals. The upper bound of help is not varied, because the upper

limit of the membership function is 1. Similarly, the lower bound of hurt is not

changed, because the lower limit of the membership function is 0. For example,

for the actor Resource Allocator, the impact of the alternative option ByDatabase

or Network on the leaf softgoal Timeliness[mobilization] has an impact value of

(0.48, 0.64, 0.8). According to sensitivity analysis, the lower bound is varied to

see if there is any change in the optimal satisfaction value. The impact has the

new bounds (0.48, 0.64, 0.8), (0.2, 0.64, 0.8); this implies that the impact can

take any value in this range without a change occurring in the optimal satis-

faction levels of the softgoals. Similarly, the impact of the alternative option,

ByPaperbased Form on the leaf softgoal Timeliness[mobilization] has an impact

value of (0, 0.16, 0.32). According to sensitivity analysis, the impact was found

to have the bounds (0, 0.16, 0.32), (0, 0.16, 0.6). Figures 4.10 and 4.11 demon-

strate the graphical representation of the sensitivity analysis for the top softgoals,

Timeliness[mobilization] and Optimal[mobInst] of the actor Resource Allocator,

with both impacts being taken into consideration. For instance, the graph de-

monstrates the score of the softgoals for both of the impacts help and hurt. It
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is found that beyond the sensitivity analysis bounds of the impacts, the optimal

satisfaction scores of the softgoals decrease and within the specified bound the

optimal solution, remains unchanged.

Figure 4.10: Sensitivity Analysis of the softgoal optimal[mobInst]

Figure 4.11: Sensitivity Analysis of softgoal Timeliness[mobilisation]

The benefit of sensitivity analysis is that it helps the analyst to decide whether

the inputs are within the accepted range. Also, analysts can examine the solutions

obtained from different inputs and decide on the best solution. Furthermore,

the analyst need not perform the sensitivity analysis every time optimisation is

conducted; it is done only when access to the data provided is required. This
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means that when an impact comes under review the analyst can make a demand

for a calculation of bounds.

4.6 Chapter Summary

In this chapter, we presented a method of representing the i∗ framework as a

directed graph. This graph was then used to create a multi-objective function

optimisation model for the i∗ framework based on maximising the top softgoals

of a given system. The optimisation model was used to obtain the weights of the

leaf softgoals that are used for the goal analysis. The optimisation model was

evaluated using the case studies from the existing literature: the London Ambu-

lance System, and the Telemedicine System. Furthermore, a sensitivity analysis

approach was developed and implemented to examine the solution used for the

London Ambulance System. The optimisation assists the analyst to identify the

weights of leaf softgoals, thereby avoiding subjective preferences. The sensitivity

analysis helps the analyst to determine the bounds of the inputs, for which there

is no change in the optimal solution. In the next chapter, we discuss a complete

optimisation model for the i∗ framework using the goal programming approach.
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Chapter 5

Optimal Goal Programming of

Softgoals in the i∗ Framework

In Chapter 4, we presented a method for finding the weights of the leaf softgoals

using the optimisation approach. These optimal weights are used in goal analysis

to select an option from a given set of alternatives. Although the analysis used in

the previous chapter was less intensive and can be scaled to a very large number

of design alternatives, it performs only a partial optimisation of the goal model.

This optimisation model is based upon the leaf softgoals in an SR model of the

i∗ framework and does not take into consideration the other softgoals within the

hierarchy. As the alternative choices selected are based upon the propagation of

values throughout the entire hierarchy of softgoals, an optimal model still needs to

be developed that takes into consideration all of the softgoals within the hierarchy.

Hence, in this chapter, we address this particular limitation, by developing an

optimisation model that is based on all of the softgoals and leaf softgoals in an

SR model of the i∗ framework, presenting a complete optimisation model for the

i∗ framework. In Section 5.1, we explain multi-objective optimisation in the i∗

framework, building a complete optimisation model based upon the softgoals of

a given i∗ goal model. In Section 5.2, we give an introduction to multi-objective

goal programming and in Section 5.3 the formulation of the i∗ framework as a

multi-objective goal model is presented. A simulation-based evaluation of the

approach is presented in Section 5.4.

Some of the material in this chapter has previously appeared in the following publication:

1. Chitra M Subramanian, Aneesh Krishna, and Arshinder Kaur (2016). Optimal Goal

Programming of Softgoals in Goal- Oriented Requirements Engineering. The 20th Pacific
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Asia Conference on Information Systems (PACIS), Taiwan June 27- July 1.
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5.1 Optimisation Model based on SoftGoals in

the i* Goal Model

To obtain a complete, generalised optimisation model of an i∗ framework in terms

of softgoals, consider the Strategic Rationale (SR) diagram as a directed graph G

(N, A), with N as a set of nodes and A as set of arcs (Figure 5.1). The intentional

elements comprising softgoals, goals, and tasks in the SR diagram form the nodes

of the directed graph G and the means-end, task-decomposition and operational

contribution links form the arcs of graph G.

 

Figure 5.1: Directed Graph representation of a SR diagram

An objective function for the optimisation model is created in terms of the

elements of the graph. For any node that is a leaf softgoal (LSG), there is a

weight represented by ωLSGik, representing the weight of the ith leaf softgoal of

the kth actor. Additionally, any arc from a goal/task to a leaf softgoal that is an

impact of goal/task is denoted by a triangular fuzzy number C̄Aj∗LSGi, denoting

the impact of the jth alternative (A) option on ith leaf softgoal. The ith leaf

softgoal score is calculated from the weight of the ith leaf softgoal and its impact
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for jth alternative and is represented by S̄LSGij.

The score of ith leaf softgoal for jth alternative of kth actor is given by

S̄LSGijkt = C̄(Aj∗LSGij)k ∗ ωLSGijk (5.1)

for leaf softgoals t is zero. The dependency score part is avoided since we are

focusing on the optimisation of SR only.

The score calculation of an ith softgoal for jth alternative of kth actor at tth

level in the hierarchy is given by S̄SGijkt

S̄SGijkt =
nc∑
d=1

(
C̄SGij∗(SGdj|LSGdj) ∗ S̄LSGdjk(t−1)|SGdjk(t−1)

)
(5.2)

Where ’nc’ is the number of leaf softgoals.

To find an optimal model based on softgoals, we need to write the softgoal

score equation as a leaf softgoal score equation. To perform this, let us start with

softgoals at level 1, which depends on the scores of leaf softgoals. The score of

an ith softgoal with ’nc’ children for jth alternative of kth actor at level t = 1 is

given by expanding equation 5.2

S̄SGijk =
(
C̄(SGij∗LSG1j) ∗ S̄LSG1jk

)
+
(
C̄(SGij∗LSG2j) ∗ S̄LSG2jk

)
+....+

(
C̄(SGij∗LSGncj) ∗ S̄LSGncjk

)
Replacing the scores of leaf softgoal with equation 5.1,

S̄SGijk = {(C̄(SGij∗LSG1j) ∗ C̄(Aj∗LSG1j)k ∗ ωLSG1jk

+(C̄(SGij∗LSG2j) ∗ C̄(Aj∗LSG2j)k ∗ ωLSG2jk

+.....+

(C̄(SGij∗LSGncj) ∗ C̄(Aj∗LSGncj)k ∗ ωLSGncjk}

S̄SGijk =
nc∑
d=1

(C̄(SGij∗LSGdj) ∗ C̄(Aj∗LSGdj)k ∗ ωLSGdjk) (5.3)

If there are ’m’ softgoals at level 1 and to obtain maximum softgoal score, the

sum of softgoal scores have to be maximized. Therefore, the objective function

is given by

Max{S̄SG1jk + S̄SG2jk + .....+ S̄SGmjk}
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By replacing the softgoal score with equation 5.3

Max{

[
nc∑
d=1

(C̄(SG1j∗LSGdj) ∗ C̄(Aj∗LSGdj)k ∗ ωLSGdjk)

]

+

[
nc∑
d=1

(C̄(SG2j∗LSGdj) ∗ C̄(Aj∗LSGdj)k ∗ ωLSGdjk)

]
+....+[

nc∑
d=1

(C̄(SGmj∗LSGdj) ∗ C̄(Aj∗LSGdj)k ∗ ωLSGdjk)

]
}

Rewriting the above equation

Max{

[
m∑
i=1

nc∑
d=1

(C̄(SGij∗LSGdj) ∗ C̄(Aj∗LSGdj)k ∗ ωLSGdjk)

]
}

The score of any softgoal at hierarchy level t > 1 is obtained by multiplying

its impact by the child score. In this way, it propagates upwards. Therefore, for

any softgoal at level ’t’ , the score can be generalised as

MaxΠt
l=1C̄SGijl

m∑
i=1

{

[
nc∑
d=1

(C̄(SGij∗LSGdj) ∗ C̄(Aj∗LSGdj)k ∗ ωLSGdjk)

]
}

Hence, the objective function to obtain optimal weight of the leaf softgoals

that maximise the top softgoal scores for the jth alternative is

MaxΠt
l=1C̄SGijl

m∑
i=1

{

[
nc∑
d=1

(C̄(SGij∗LSGdj) ∗ C̄(Aj∗LSGdj)k ∗ ωLSGdjk)

]
} (5.4)

Such that

0 ≤ ωLSGd ≤ 100 for d = 1 to nc

Hence, the objective function for the i∗ framework is now given by equation

5.5 as below:

MaxΠt
l=1C̄SGijl

m∑
i=1

nc∑
d=1

(C̄(SGij∗LSGdj) ∗ C̄(Aj∗LSGdj)k ∗ ωLSGdjk) (5.5)
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Such that

0 ≤ ωLSGd ≤ 100 for d = 1 to nc

If there are ’n’ alternatives for an actor, then there are ’n’ objective functions

as follows:

f1(ωL) = MaxΠt
l=1C̄SGi1l

m∑
i=1

nc∑
d=1

(C̄(SGi1∗LSGd1) ∗ C̄(A1∗LSGd1)k ∗ ωLSGd1k)

f2(ωL) = MaxΠt
l=1C̄SGi2l

m∑
i=1

nc∑
d=1

(C̄(SGi2∗LSGd2) ∗ C̄(A2∗LSGd2)k ∗ ωLSGd2k)

......

......

fn(ωL) = MaxΠt
l=1C̄SGinl

m∑
i=1

nc∑
d=1

(C̄(SGin∗LSGdn) ∗ C̄(An∗LSGdn)k ∗ ωLSGdnk)

(5.6)

Such that

0 ≤ ωLSGd ≤ 100 for d = 1 to nc

Likewise, for each actor in the SR model, objective functions are generated.

Cumulative objective functions can be generated if all the actors have the same

type of alternatives. In a goal model with ’p’ number of actors, the objective

function for a jth alternative option is given by:

fj(ωL) = MaxΠt
l=1C̄SGijl

m∑
i=1

nc∑
d=1

(C̄(SGij∗LSGdj) ∗ C̄(Aj∗LSGdj)1 ∗ ωLSGdj1)

+Πt
l=1C̄SGijl

m∑
i=1

nc∑
d=1

(C̄(SGij∗LSGdj) ∗ C̄(Aj∗LSGdj)2 ∗ ωLSGdj2)

+....+

Πt
l=1C̄SGijl

m∑
i=1

nc∑
d=1

(C̄(SGij∗LSGdj) ∗ C̄(Aj∗LSGdj)p ∗ ωLSGdjp)

In short, the function is given by:

fj(ωL) = Max

p∑
k=1

Πt
l=1C̄SGijl

m∑
i=1

nc∑
d=1

(C̄(SGij∗LSGdj) ∗ C̄(Aj∗LSGdj)k ∗ωLSGdjk) (5.7)

Therefore, the objective functions for a goal model with ’n’ number of alter-

natives are given by:
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f1(ωL) = Max

p∑
k=1

Πt
l=1C̄SGi1l

m∑
i=1

nc∑
d=1

(C̄(SGi1∗LSGd1) ∗ C̄(A1∗LSGd1)k ∗ ωLSGd1k)

f2(ωL) = Max

p∑
k=1

Πt
l=1C̄SGi2l

m∑
i=1

nc∑
d=1

(C̄(SGi2∗LSGd2) ∗ C̄(A2∗LSGd2)k ∗ ωLSGd2k)

......

......

fn(ωL) = Max

p∑
k=1

Πt
l=1C̄SGinl

m∑
i=1

nc∑
d=1

(C̄(SGin∗LSGdn) ∗ C̄(An∗LSGdn)k ∗ ωLSGdnk)

(5.8)

Subject to

0 ≤ ωLSGdk ≤ 100 for d = 1 to nc and k = 1 to p

0 ≤ C̄(Aj∗LSGdj)k ∗ ωLSGdjk) ≤ 100 for d = 1 to nc, j = 1 to nc and k = 1 to p

In general, the multiple objective functions are given by following equation:

Maxf(ωL) = [f1ωL, f2ωL, ...., fnωL]

with ωLεY

where n > 1 and Y is the set of constraints defined

(5.9)

A great strategy for solving the above type of multi-objective linear program-

ming (MOLP) is goal programming (Oliveira and Saramago, 2010; Caramia and

Dell’Olmo, 2008). The following section gives an introduction to multi-objective

goal programming.

5.2 Multi-Objective Goal Programming (MOGP)

Optimisation problems usually include circumstances involving minimizing and/or

maximizing several conflicting functions simultaneously. Such cases are specified

as multi-objective optimisation problems, also known as multicriteria, multiper-

formance, or vector optimizations. Among different approaches used to solve

multi-objective functions, goal programming proposed by Charnes and Cooper

(Charnes and Cooper, 1961), is a highly effective strategy which can be used to

solve multi-objective problems by assigning multiple goals (Caramia and Dell’Olmo,

2008).
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Goal programming requires that the user designates targets/goals for each

objective that needs to be met. The main concept in goal programming is to com-

pute solutions that achieve a predefined goal for one or more objective functions.

Thus, goal programming involves expressing a set of goals g = [g1, g2, ..., gn] with

a set of objectives, f(x) = [f1(x), f2(x), ..., f2(x)]. The optimization problem can

be formulated as

fi(x) = gi, i = 1, ..., n;xεΩ (5.10)

where Ω is the feasible search region.

In the next section, we describe the formulation of the i∗ framework as a

multi-objective goal model.

5.3 Formulation of the i∗ Framework as a Multi-

Objective Goal Model

The goal programming method requires that the decision maker specifies a goal

or a target for each objective (a set of goals for an MOLP) that he/she wishes to

achieve. The objective of goal programming is to obtain a predefined target for

one or more objective functions. If no solution reaches predefined targets for all

of the objective functions, then preferred solutions that minimize the deviations

from those goals are to be identitfied. Presented below is a formal description of

the optimisation problem.

The MOLP of the i∗ framework as given by equation 5.9 is

Maxf(ωL) = [f1ωL, f2ωL, ...., fnωL]

with ωLεY

where n > 1 and Y is the set of constraints defined

In goal programming, the user chooses the goal value g, for every objective

function and the task is then to focus on making each objective fiωL as close

to its goal gi as possible, subject to the condition that the resulting solution is

feasible (ωLεΩ). The optimisation problem can be formulated as follows:

goal fiωL = gi, i = 1, ..., n;ωLεΩ, (5.11)

where Ω is the feasible region.
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Two positive deviation variables, v−i , v
+
i are introduced representing the under

and over achievement of the ith goal gi for the ith objective fiωL(i = 1, 2, ..., n)

respectively. Now the objective is to minimize the sum of the deviations (v−i , v
+
i ),

so that the optimal solution is minimally distant from the goal, in either direction.

The optimisation problem is now remodelled as follows

min
ωL,v

−
1 ,v

+
1 ,....,v

−
n ,v

+
n

v−1 , v
+
1 , ...., v

−
n , v

+
n

s.t

f1ωL + v−1 − v+1 = g1,

f2ωL + v−2 − v+2 = g2,

....

....

fnωL + v−n − v+n = gn,

v−1 , v
+
1 , ...., v

−
n , v

+
n ≥ 0

ωLεΩ,

(5.12)

To perform direct comparisons of the objectives, a requirements analyst can

use weighted or non-pre-emptive goal programming. To indicate the relative

importance of the objectives, all of the deviations between the objectives and

goals are multiplied by weights and are expressed as a standard optimisation

problem using the following formulation.

Min v =
n∑
i=1

αiv
−
i + βiv

+
i

Subject to

fiωL + v−i − v+i = gi, , i = 1, 2, ..., n

v−i , v
+
i ≥ 0, ωLεΩ,

(5.13)

MOGP demands that goals are assigned for each objective and a favoured

solution is designated to be one that minimises the deviations of the goals.

Let us assume that, the goals g = (g1, g2, ..., gn) for the objective functi-

ons fωL = (f1ωL, ........, fnωL) are given by a requirements analyst, A deci-

sion variable ω∗LεWL in the MOLP problem is sought, such that the objective

functions, f ∗(ωL) = (f ∗1ωL, ........, f
∗
nωL), are as close as possible to the goals,
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g = (g1, g2, ..., gn). The deviation between f ∗(ωL) and g is defined as a deviation

function D(f(ωL)), g). The MOGP is now defined as below:

min
ω∗LεWL

D(f(ωL), g)

s.t

ω∗LεWL =
{
ω∗LεR

L|Y
} (5.14)

The deviation function D(f(ωL), g) is a maximum of deviations of individual

goals

D(f(ωL), g) = Max {D1(f1(ωL), g1), ...., Dn(fn(ωL), gn)} (5.15)

From equation 5.12 and 5.13, the min-max approach is applied to the GP

problem.

min
ω∗LεWL

max {D1(f1(ωL), g1), ...., Dn(fn(ωL), gn)} (5.16)

By introducing an auxiliary variable γ, equation 5.16, is now written as a

linear program problem as

min
ωL

γ

s.t

D1(f1(ωL), g1) ≤ γ

D2(f2(ωL), g2) ≤ γ

....

....

Dn(fn(ωL), gn) ≤ γ

ωLεY

(5.17)

Equation 5.17 is used to create the objective functions of an SR model. The

objective functions are solved to obtain the weights of leaf softgoals that are in

turn used in the goal analysis procedure.
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5.4 Evaluation of Alternatives with Softgoal Op-

timisation

A code for optimal model-based goal programming was developed and implemen-

ted in Java Eclipse integrated with the IBM CPLEX optimisation tool (Figure

5.2). The reasons for this combination are: availability and prior experience made

Java the preferred selection. Also, the IBM ILOG CPLEX optimizer is used to

solve business mathematical models using powerful algorithms to obtain precise

and logical decisions. Additionally, IBM ILOG CPLEX has a modeling layer

called Concert that enables interfacing with Java, C++ and C# languages.

The input to the CPLEX optimizer was a set of objective functions for a

given i∗ framework and the outputs were the weights of the leaf softgoals of the

given model. These weights are in turn used in the goal analysis to find the

alternatives that maximise the top softgoals for the given i∗ model. The MOGP

model for an i∗ framework was evaluated using the goal models from the existing

RE literature: Youth Counseling (Horkoff and Yu, 2009), Meeting Scheduler

System (Letier and Van Lamsweerde, 2004), London Ambulance System (You,

2004) and Telemedicine (Yu, 2001). To demonstrate this approach, the adapted

Youth Counseling System and Telemedicine goal models are used in this chapter.

Figure 5.2: Scheme of the Multi-Objective Goal Programming Softgoal Optimi-

sation and alternative selection
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5.4.1 Deriving Objective Functions for the Actors

The following illustrates the derivation of multi-objective functions in terms of

goal programming for the Youth Counseling case study (Figure 5.3). The alter-

natives in all three actors are

• Kids Use CyberCafe/Portal/Chat Room

• Kids Use TextMessaging

 

 

Figure 5.3: SR Model for Youth Counseling (adapted from Horkoff and Yu (2009))

In this case, the problem is to select an alternative that achieves maximum

satisfactions for the top softgoals, GetEffectiveHelp, Happiness and HelpKids of

actors, Kids and Youth, Counsellor and Organisation respectively. In Chapter 3,

we have proposed a quantitative analysis approach that can be applied to such

problems. In this analysis, the weights for the leaf softgoals which are assigned

by the analyst, are subjective to the analyst. To avoid this subjective preference,
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the weights are obtained by the MOGP optimisation model. These weights are in

turn used in the analysis to select an alternative that yields maximum satisfaction

of the top softgoals. Now by considering the first actor, Kids and Youth:

Score of the top softgoal, GetEffectiveHelp for alternative, UseTextMessaging is

SGetEffectiveHelp = Help ∗ SComfortableness +Help ∗ SAnonymity +Help ∗ SImmediacy
= 0.64 ∗ SComfortableness + 0.64 ∗ SAnonymity + 0.64 ∗ SImmediacy

= 0.64 ∗ [0.64 ∗ ω1] + 0.64 ∗ [0.64 ∗ ω2] + 0.64 ∗ [0.16 ∗ ω3]

= 0.4096 ∗ ω1 + 0.4096 ∗ ω2 + 0.1024 ∗ ω3

Note: For simplicity of calculation the defuzzified values of impact are used

in the objective function.

The objective function for the alternative, UseTextMessaging in terms of the

top softgoal, GetEffectiveHelp is

FText(ω) = max {0.4096 ∗ ω11 + 0.4096 ∗ ω21 + 0.1024 ∗ ω31}

Similarly, the Score of the top softgoal, GetEffectiveHelp for alternative, KidsU-

seCyberCafe is

SGetEffectiveHelp = Help ∗ SComfortableness +Help ∗ SAnonymity +Help ∗ SImmediacy
= 0.64 ∗ SComfortableness + 0.64 ∗ SAnonymity + 0.64 ∗ SImmediacy

= 0.64 ∗ [0.64 ∗ ω1] + 0.64 ∗ [0.16 ∗ ω2] + 0.64 ∗ [0.8 ∗ ω3]

= 0.4096 ∗ ω1 + 0.1024 ∗ ω2 + 0.512 ∗ ω3

The objective function for the alternative, KidsUseCyberCafe in terms of the

top softgoal, GetEffectiveHelp is given below:

FCybercafe(ω) = max {0.4096 ∗ ω11 + 0.1024 ∗ ω21 + 0.512 ∗ ω31}

Similarly, the objective functions for the other two actors are obtained. For

the actor, Organisation, the objective functions are

FText(ω) = max {0 ∗ ω12 + 0.1024 ∗ ω22 + 0.1074 ∗ ω32}
FCybercafe(ω) = max {0.4096 ∗ ω12 + 0.1024 ∗ ω22 + 0.2685 ∗ ω32}

For the actor, Counsellor, the objective functions are
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FText(ω) = max {0 ∗ ω13}
FCybercafe(ω) = max {0.0655 ∗ ω13}

Since, the alternatives are the same for all three actors, we have cumulative

objective functions as follows:

FText(ω) = max{0.4096 ∗ ω11 + 0.4096 ∗ ω21 + 0.1024 ∗ ω31 + 0 ∗ ω12 + 0.1024∗
ω22 + 0.1074 ∗ ω32 + 0 ∗ ω13}

FCybercafe(ω) = max{0.4096 ∗ ω11 + 0.1024 ∗ ω21 + 0.512 ∗ ω31 + 0.4096 ∗ ω12

+0.1024 ∗ ω22 + 0.2685 ∗ ω32 + 0.0655 ∗ ω13}
Subject to

0 ≤ ωdk ≤ 100 for d = 1 to 3 and k = 1 to 3

(5.18)

Now, by considering the Telemedicine (Figure 5.4) goal model, the objective

functions are obtained in a similar way. The alternatives are the same for the

two actors. The two alternatives of the two actors are PatientCenteredCare and

ProviderCenteredCare. The objective functions of the two alternatives are given

as below:

FPatientCenteredCare(ω) = max{0.4096 ∗ ω11 + 0.4096 ∗ ω21 + 0.1024 ∗ ω12 + 0.1024 ∗ ω22}
FProviderCenteredCare(ω) = max{0.1024 ∗ ω11 + 0.512 ∗ ω21 + 0.4096 ∗ ω12 + 0.4096 ∗ ω22}

Subject to

0 ≤ ωdk ≤ 100 for d = 1 to 2 and k = 1 to 2

(5.19)

5.4.2 Obtaining Weights by MOGP

For the Youth counseling case study, let us consider the goals for each objective

function to be equal to

FText(ω) = 80 and FCybercafe(ω) = 90

The optimisation problem according to equation 5.17 with the auxiliary vari-

able γ is :
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Figure 5.4: An Strategic Rationale Model: Telemedicine system (Adapted from

Yu (2001))

min
ωL

γ

s.t

0.4096 ∗ ω11 + 0.4096 ∗ ω21 + 0.1024 ∗ ω31 + 0 ∗ ω12 + 0.1024∗
ω22 + 0.1074 ∗ ω32 + 0 ∗ ω13 − 80 ≤ γ

0.4096 ∗ ω11 + 0.1024 ∗ ω21 + 0.512 ∗ ω31 + 0.4096 ∗ ω12

+0.1024 ∗ ω22 + 0.2685 ∗ ω32 + 0.0655 ∗ ω13 − 90 ≤ γ

0 ≤ ωdk ≤ 100 for d = 1 to 3 and k = 1 to 3

For the Telemedicine goal model, by setting the goals to 70 and 80, the opti-

misation problem with the auxiliary variable γ is :

99



min
ωL

γ

s.t

0.4096 ∗ ω11 + 0.4096 ∗ ω21 + 0.1024 ∗ ω12 + 0.1024 ∗ ω22 − 70 ≤ γ

0.1024 ∗ ω11 + 0.512 ∗ ω21 + 0.4096 ∗ ω12 + 0.4096 ∗ ω22 − 80 ≤ γ

0 ≤ ωdk ≤ 100 for d = 1 to 2 and k = 1 to 2

The above multi-objective functions are solved by a programming code in

the IBM CPLEX tool to find the weights of the leaf softgoals and the weights

obtained are shown in Tables 5.1 and 5.2 for Youth Counseling and Telemedicine

case studies respectively.

Table 5.1: Optimal weights for the Kids Youth Counseling case study

Actor Leaf Softgoals Weight

Kids and Youth

Comfortableness with service 1

Anonymity 0.65

Immediacy 0.10

Organisation

HighQualityCounseling 0.57

Immediacy 1

Anonymity 0.1

Counsellor ListenforCues 0.1

Table 5.2: Optimal weights for the Telemedicine case study

Actor Leaf Softgoals Weight

Patient
Normal Life Style 1

Quality of Care 0.67

HealthCare Provider
Efficient Operations 0.99

Effective Treatments 0.1

5.4.3 Evaluation of the Approach

The weights computed by the optimisation goal model are now used in the quanti-

tative analysis described in Chapter 3 to find the alternative option that provides

maximum satisfaction of the top softgoals. For the inter-actor goal analysis, a

code is implemented in the Java Eclipse environment. The reason for switching

100



from VC++ (as in Chapter 3) to Java Eclipse is a step towards tool development.

This Java implementation allows the user to input graphical representation of the

i∗ goal model. The weights obtained by the CPLEX optimiser are given as weights

of the leaf softgoals in the input for Java implementation. The top softgoals scores

and the satisfaction comparison for the two goal models, Youth Counseling and

Telemedicine, are given in Tables 5.3 and 5.4. From Table 5.3, it can be observed

for Youth Counseling that the alternative Use CyberCafe/Portal/ChatRoom con-

tributes 100% , 100% and 18% to the top softgoals GetEffectiveHelp, Happiness

and HelpKids respectively. The second alternative Use Text Messaging of Youth

Counseling contributes 99% ,40% and 4% to the top softgoals GetEffectiveHelp,

Happiness and HelpKids respectively. By comparing the score values, the alter-

native CyberCafe/Portal/ChatRoom is selected for Youth Counseling case study.

From Table 5.4, it can be seen that the alternative Patient Centred Care con-

tributes 100% and 37% to Happiness and Viable Healthcare Service respectively.

The alternative Provider Centred Care contributes 98% and 92% to Happiness

and Viable Healthcare Service respectively. On comparing the scores, the al-

ternative Patient Centred Care is selected for actor Patient and the alternative

Provider Centred Care is selected for actor HealthCare Provider.

Table 5.3: Scores of Top softgoals of the Kids Youth Counseling case study (*

indicates selection)

Actor Top Softgoals
Alternatives Score

Use Text Messaging Use CyberCafe

Kids and Youth GetEffectiveHelp 99% 100%∗

Organisation Happiness 40% 100%∗

Counsellor HelpKids 4% 18%∗

Table 5.4: Scores of Top softgoals of the Telemedicine case study (* indicates

selection)

Actor Top Softgoals
Alternatives Score

PatientCenteredCare ProviderCenteredCare

Patient Happiness 100% ∗ 98%

HealthCare Provider Viable Healthcare service 37% 92%∗

To evaluate the effectiveness of the proposed optimal model, the scores com-

puted from the softgoals optimisation, are compared with the leaf softgoals op-
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timisation model. By using the leaf-based optimal model, presented in Chapter

4, the objective functions are obtained for both case studies: Youth Counseling

and Telemedicine. For these objective functions, the goal programming approach

implemented using the CPLEX optimiser tool was applied to solve the weights

of the leaf softgoals. The leaf softgoal based objective function for the case study

Youth Counseling is given as

min
ωL

γ

s.t

0.64 ∗ ω11 + 0.64 ∗ ω21 + 0.16 ∗ ω31 + 0.0 ∗ ω12 + 0.16 ∗ ω22+

0.64 ∗ ω32 + 0.0 ∗ ω13 − 80 ≤ γ

0.64 ∗ ω11 + 0.16 ∗ ω21 + 0.8 ∗ ω31 + 0.16 ∗ ω12 + 0.64 ∗ ω22+

0.16 ∗ ω32 + 0.16 ∗ ω13 − 90 ≤ γ

0 ≤ ωdk ≤ 100 for d = 1 to 3 and k = 1 to 3

The leaf softgoal-based objective function for the Telemedicine case study is

given as

min
ωL

γ

s.t

0.64 ∗ ω11 + 0.64 ∗ ω21 + 0.16 ∗ ω12 + 0.16 ∗ ω22 − 70 ≤ γ

0.16 ∗ ω11 + 0.81 ∗ ω21 + 0.64 ∗ ω12 + 0.64 ∗ ω22 − 80 ≤ γ

0 ≤ ωdk ≤ 100 for d = 1 to 2 and k = 1 to 2

The weights of the leaf softgoals were found using the CPLEX tool and are

used in the analysis of the alternative selection. The score comparisons are shown

in Tables 5.5 and 5.6 for Youth Counseling and Telemedicine respectively. The

graphical representation of comparisons is shown in Figure 5.5 and Figure 5.6 . It

can be inferred from these tables that the proposed softgoals based optimisation

model gives a better scores compared to the leaf softgoals optimisation model

for most of the top softgoals except for the alternative Use TextMessage of the

softgoal HelpKids. Hence, the softgoal optimisation model outperforms the leaf

softgoal optimisation model. The scores obtained from the proposed approach

were not compared with the approach without optimisation, as the aim of the

optimisation model is to avoid the subjective selection of weights for the leaf

softgoals.
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Table 5.5: Scores Comparison for the Youth Counseling case study

Actor Top Softgoals
Use TextMessage Use CyberCafe

With Softgoals With Leaf softgoals With Softgoals With Leaf softgoals

Optimisation Optimisation Optimisation Optimisation

Kids and Youth GetEffectiveHelp 99% 98% 100% 100%

Organisation Happiness 40% 25% 100% 25%

Counsellor HelpKids 4% 7% 18% 13%

Table 5.6: Scores Comparison for the Telemedicine case study

Actor Top Softgoals
Patient Centered Care Provider Centered Care

With Softgoals With Leaf softgoals With Softgoals With Leaf softgoals

Optimisation Optimisation Optimisation Optimisation

Patient Happiness 100% 83% 98% 41%

HealthCare Provider Viable Healthcare Service 37% 36% 92% 89%

 

    

 

Figure 5.5: Telemedicine Comparison of Softgoals optimisation scores with Leaf

softgoals Optimisation scores

5.5 Chapter Summary

Optimisation techniques have a significant part to play in the goal analysis of the

goal models. This chapter has demonstrated how multi-objective optimisation

can help decision making regarding alternative design choices. In particular, this

chapter presented a technique for representing a given i∗ framework as multi-

objective optimisation models. These models are then solved by means of the

goal programming approach, used to compute the weights of the leaf softgoals

of the given i∗ framework. These weights are in turn used in the goal analysis

to select the alternative that maximises the satisfaction of the top softgoals. A
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Figure 5.6: Youth Counseling Comparison of Softgoals optimisation scores with

Leaf softgoals Optimisation scores

key feature of these models, as opposed to other optimisation models, is that

objective functions are derived by considering all of the non-functional (softgo-

als) elements of the given system. The optimisation model is evaluated and the

evaluation results are demonstrated using the case studies the Youth Counseling

System and the Telemedicine System, taken from existing RE literature. The

evaluation results showed that the softgoal-based goal programming optimisation

is an improvement on the existing optimisation model.

In the next chapter, we discuss a method for handling the requirements of

opposing objective functions.
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Chapter 6

Softgoals with Opposing Nature

In Chapter 5, we presented a method based on Multi-Objective Goal Program-

ming (MOGP) for obtaining the optimal model of the i∗ framework. The objective

functions generated from the optimal model are of maximising type (all objective

functions of same type). Incredibly, most of the real-world business problems en-

counter simultaneous optimisation of many competitive objective functions. To

illustrate, consider a system with two non-functional requirements such as profit

and defect. Now the task of an analyst is to select an alternative design option

that maximises profit and minimises defect. So, to deal with such problems, in

this chapter we propose a game-theory-based goal analysis approach for the i∗

framework. After a motivating example in Section 6.1, we present the challenges

and motivation in Section 6.2. In Section 6.3, we explain the application of game

theory concepts to solve multi-objective optimisation in the i∗ framework. In

Section 6.4, we present the illustration of game-theory-based goal analysis using

i∗ frameworks.

Some of the material in this chapter has been submitted to the Computer Journal (Accepted

and to be published):

1. Chitra M Subramanian, Aneesh Krishna, and Arshinder Kaur (2017). Game Theory

based Requirements Analysis in the i∗ framework .
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6.1 Motivating Example: Supply Chain Mana-

gement System

In the current era, the use of software agents and their networks have greatly

enhanced e-commerce planning and execution. One such example is the e-supply

chain (Nair, 2013). Supply chain management (SCM) “is the management of

material and information flows both in and between facilities, such as vendors,

manufacturing and assembly plants and distribution centres” (Thomas and Grif-

fin, 1996). Figure 6.1 depicts a simplified supply chain network. SCM is an area

that is currently attracting tremendous attention from the business community.

Figure 6.1: Supply Chain Network

The e-supply chain consists of a group or collection of intelligent software

agents, each responsible for one or more activities. They also interact with each

other in the planning and execution of their responsibilities. The e-supply chain

uses software agents to perform various tasks with their local intelligence and

problem-solving paradigm. Although the different entities in the supply chain

have different sets of constraints and objectives, they operate interdependently

to improve the performance of the system in terms of quality, cost minimisation

and on-time delivery. Furthermore, the systems and their enclosing circumstances

are dynamic. Hence, there is a need for systematic frameworks –models, methods,

and tools that help with goal/task analysis and message communication.

Multi-agent system programming is appropriate for implementing the co-

ordination involved in multiple autonomous or semi-autonomous agents where

communications are conducted through messages (Bond and Gasser, 2014). Since

supply chain management involves the integrity of decision makers, a multi-agent

modeling framework is the best option to use in the design of a communica-
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tion system which can be used between agents (such as manufactures, suppliers,

retailers, customers).

The goal- and agent-oriented modeling framework, namely i*, is an efficient

way to model and analyse the relationships among the strategic entities in a social

network (Yu, 2011), which includes human organisations and other forms of social

structures. The i* framework has also been used in business process modeling

and redesign (Yu and Mylopoulos, 1995) and for software process modelling (Yu

and Mylopoulos, 1994). Hence, in this research, the i* framework is preferred as

a modeling tool for the business process engineering of supply chain management.

Figure 6.2 shows an example of a Strategic Dependency (SD) model for glo-

bal computer manufacturer and supplier supply chain. In this figure, the enti-

ties of the supply chain namely Supplier, Manufacturer, Retailer and Customer

are denoted as actors (represented by circles) of the SD model. The depen-

dency/communication between the entities of a supply chain can be represented

by the dependency link of the SD model. The dependency can be one of any of

the following types: goal dependency (represented by an oval), resource depen-

dency (represented by a rectangle), task dependency (represented by a hexagon)

or softgoal dependency (represented by a cloud). For instance, in Figure 6.2, the

actor, Supplier has a softgoal dependency on the Manufacturer, namely On time

Delivery. A simplified SD representation of the supply chain is given in Figure

6.3.

The top-down approach is used for identifying the goals of the actors. The

overall objective/goal is to implement the supply chain services that can help vari-

ous supply chain processes in the entire life cycle. The overall goal is decomposed

into a set of sub-goals by using “ how” and “ what ” questions. Each sub-goal

is further broken down by asking HOW to achieve it and this is repeated until

all the leaf goals are atomic. A goal may have different ways of implementing it.

One of the Goal-Oriented Requirements Engineering (GORE) approaches is to

select an alternative goal option that maximises the satisfaction of the softgoals

(non-functional requirements) of an actor. The softgoals of an actor are identified

and they are decomposed into sub-softgoals until the softgoals are atomic. The

following illustrates the decomposition of the softgoals and the goals of an actor

in the SCM case study.

The SCM model contains four actors: Supplier, Manufacturer, Retailer and

Customer. For convenience and explanation purposes, only two actors namely

Manufacturer and Retailer, are considered in this research work. Figure 6.4 con-

tains a simplified example (with only 2 actors) of the i* goal model created for
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Figure 6.2: SD model for Supply Chain Network

Figure 6.3: Simplified SD model for Supply Chain Network

this domain. For any organisation, there are many organisational goals such as
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excellent service, quality of products, performance, transportation cost and so

on. These are qualitative and harder to measure. These organisational goals are

achieved by the operational goals. The organisational goals are called softgoals

and the operational goals are called hard goals in the goal framework (Yu, 2011).

The dependency of organisational goals on the operational goals is depicted by

SR diagram of the i∗ framework. For simplicity and illustration purpose, let us

assume that for the actor Manufacturer, the two main softgoals (non-functional

requirements) are Performance and LogisticsCost. These two softgoals in turn de-

pend on the OntimeDeliveryProcess and ProductionProcess. The Manufacturer

has a hard goal (functional requirement) of Inventory and explores two alterna-

tive ways of implementing this goal: Traditional Inventory and Vendor Managed

Inventory (VMI). These two alternatives contribute to the Manufacturer goal in

different ways, which in turn contribute to each other. To illustrate, the contri-

bution of the VMI to ontimeDelivery is help whereas VMI to ProductionProcess

is make. The softgoal OntimeDelivery in turn contributes some+ to the softgoal

Performance and the softgoal ProductionProcess which in turn contributes help

to the softgoal Performance. The actor, Manufacturer depends upon the actor

Retailer for its inventory management. The actor, Retailer has its own goal to

achieve. When selecting the best way to implement a goal, there arises a problem

for the requirement analysts. These issues and challenges are explained in Section

6.2.

6.2 Challenges and Motivation

An analysis of this goal model (Figure 6.4) leads to an important question: The

manufacturer has two high level (top) softgoals of opposing objective functions,

namely Performance and LogisticsCost. The satisfaction percentage for the soft-

goal Performance should be maximised, whereas the softgoal LogisticsCost should

be minimised in relation to the other goals and softgoals of the actor manufactu-

rer. This situation leads to the question of which alternative the Traditional or

the VMI is most effective for both the Performance & the LogisticsCost softgo-

als. The existing goal analysis approaches described in Chapters 3, 4 and 5 find

an alternative based on maximising top softgoals. These approaches cannot be

used to find a solution for an actor with one or more softgoals having opposing

objective functions. There is a need for a new analysis procedure which helps to

select an alternative for the actor with one or more top softgoals which have op-
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Figure 6.4: Simplified SR model for Supply Chain Network

posing objective functions. In this chapter, a novel approach is proposed to solve

this type of problem. This approach is based on game theory, since game the-

ory is used to find optimal solutions in competitive environments (Kelly, 2003).

The proposed use of the new game-theory-based analysis procedure is illustrated

using global computer manufacturer supplier supply chain case study for greater

understanding in Section 6.4.

For elicitation and analysis of requirements in the early RE, many models

focusing on stakeholder’s goals have been proposed. These models indicate the

fundamental motivation for the system, acquire non-functional criteria, and pre-

sent the impact of high-level design alternatives on the goal achievement for

diverse stakeholders through the dependencies. Several questions are raised on

examination of the model: Which is the most effective alternative, and for whom?

How to select an alternative, in case of softgoals with opposing nature? What

information is missing from the model? Is the model adequately correct?

Even though answers to some of these types of questions can be found from

the model, fast and consistent tracing effects become too complex for humans

in the case of larger models. The model in Figure 6.4 is a simplified version of
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a larger model; tracing the effects of alternative functionality becomes difficult

when the model is large. Hence, there arises a need for a systematic analysis

procedure which advises the analyst to evaluate alternative requirements, and

explore the model. In such circumstances, to find an alternative option in the

case of softgoals with opposing objective functions, the proposed game theory

based approach can be applied.

6.3 Game Theory Model for Goal Modeling

In this section, game theory concepts and the application of game theory to the

i* framework for goal analysis is introduced.

6.3.1 Introduction to Game Theory

“Game Theory (GT) is a scientific field dealing with the study and analysis of

strategic, rational decision processes of individuals and their interactions in a (so-

cial) environment” (Démuth, 2013). Game theory facilitates the anticipation and

elucidation of systems whose behaviour and decisions use rational algorithms for

problem solving. It is possible to determine the probability, weight and accuracy

of certain aspects of the decision process. It is also applicable in fields where the

outcome of an action is not dependent on pre-determined action, but depends

upon a certain amount of choice. There is no boundary to the application of

game theory. The application of game theory ranges from simple issues such

as the determination of a favourable option that involves logic, and mathema-

tics to solve complex issues such as social behaviour, economic behaviour, ethics,

biological theory of choice and many others.

Game theory symbolizes an abstract model of decision making with a complete

set of rules describing a game. An instance of the game is called a play. The

intention of game theory is to find optimal solutions under the circumstances

of conflict and cooperation with the assumption that players are rational and

behave in their own interest (Kelly, 2003). The main elements of any game

are its participating, autonomous decision makers, known as Players. A game

must have two or more players. Even though a game can have a huge number

of players, the number must be finite and known. The choices for each player

must be more than one, since a player with only one choice has no strategy and

hence cannot control the outcome of the game. There are three types of games:

games of skill; games of chance and games of strategy. The games of strategy
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are those involving two or more players and each player has partial control over

the outcomes. Games of strategy can be sub-divided into two-player games and

multi-player games. Within each of these two sub-divisions, there are three sub-

categories depending on the way in which the pay-off functions are related to one

another:

Cooperative games of strategy: Games of strategy, whether two-player

or multi-player, in which the players’ interests coincide. The following example

taken from (Kelly, 2003) illustrates cooperative games of strategy. “Two cyclist

are going in opposite directions in a narrow path. They are due to collide and their

intention is to avoid collision. Each has three strategies: move to right; move to

left; or maintain direction. Obviously, the outcome depends on the decision of

both cyclist and their interests coincide exactly. This is fully cooperative and the

players need to signal their intentions to one other”.

Zero-sum games of strategy: Games in which the players’ interests are

conflicting (strictly competitive games). Chess and Poker are examples of Zero-

sum games.

Mixed-motive games of strategy: Games in which the interests of players

are neither fully conflicting nor fully coincident. The following example taken

from (Kelly, 2003) illustrates mixed-motive games of strategy. “The teachers’

union at a school is threatening not to participate in parents’ evenings unless

management rescinds the redundancy notice of a long-serving colleague. Mana-

gement refuses. The union now complicates the game by additionally threatening

not to cooperate preparations for government inspection, if their demands are

not met. Management has a choice between conceding and refusing, and which

ever option it selects, the union has four choices: to resume both normal work

practices; to participate in parents’ evenings only; to participate in preparations

for the inspection only; or not resume participation in either. Only one of the

possible strategic combinations leads to a satisfactory outcome from the mana-

gements’ point of view - management refusing to meet the union’s demands not

withstanding the resumption of normal work - although clearly some outcomes are

worse than others. Both players (management and union) prefer some outcomes

to others. For example, both would rather see resumption of participation in pa-

rents’ evenings - since staff live in the community and enrollment depends on it

- than not resume participation in either. So players’ interest are simultaneously

opposed and coincident”.

Of these types of games, the Zero-sum game suits our requirement of finding

alternatives in situations where there are conflicting softgoals. Having given this
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brief introduction to game theory, in the following section we explain the applica-

tion of game theory, to aid in the decision making of selecting alternative options

in the i* goal model.

6.3.2 Game Theory for Multi-Objective Optimisation of

i∗ Goal Model

In game theory, if G1 symbolizes one game with ’t’ players then feasible stra-

tegies for each player are expressed as S1, S2, ...St with Si is player i ’s strategy

set. Let Sij represent player i ’s jth strategy and let pi be the player i ’s payoff.

The problem of decision making in multi-objective optimisation (MOP) can be

compared to the problem of decision making in a game. The goals of MOP can

be considered to be players of the game. The design variable of MOP can be

treated as the game strategies and constraints of MOP as constraints of game

theory. The objective function value can be viewed as the gains of the game.

Therefore, the game of ’t’ players can be expressed as

G1 = {F1, F2, ., Ft, S1, S2, ...St}

with F1, F2, ., Ft as design goals and Si = {Aj, ...., Ak} for iε1 to t as the

strategy set for ’t’ players. Optimising the objective functions individually will

identify the optimal value, which then forms the payoff matrix of the game.

6.3.2.1 Formalization

Let us consider an actor B of an i* goal model having two top softgoals TS1 and

TS2 with opposing objective functions. Top softgoals are softgoals that are high

in the goal hierarchy. Let us assume that the TS1 softgoal’s objective function

is to be maximised and the TS2 softgoal’s objective function is to be minimised.

The actor B may have more than one alternative, among which the best alter-

native has to be selected. This is considered to be analogous to the Zero-sum

game between two players. The top softgoals are treated as the players of the

game; the alternatives are to be strategies of the players. Let the top softgoal

TS1 (player 1), have alternatives (strategies) A1 = {Aj, ...., Ak} and the top soft-

goal TS2 (player 2) have alternatives (strategies) A2 = {Aj, ...., Ak} (with the

assumption that both softgoals have the same set of alternatives). The payoff of a

softgoal (player) is defined as a quantifiable value that the softgoal receives from

arriving at a particular outcome (strategy). A matrix is used to represent the
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possible outcome (strategy) for a two-person Zero-sum game with both players’

possible strategies. This matrix is called a payoff matrix and the payoff matrix

with both softgoals’ (players’) payoff represents the game. The optimal strategy

is obtained by analysing the payoff matrix. We define a game for an actor of the

i* goal model as follows:

Definition 1 (i* game model and payoff matrix): A two-softgoal

(person) Zero-sum game for an actor in an i* goal model is given by a tuple

G =< A1,A2,P >, where

(1) A1 is a nonempty set, the set of alternatives (strategies) of top softgoal

1(TS1)

(2) A2 is a nonempty set, the set of alternatives (strategies) of top softgoal 2

(TS2)

(3) P is a payoff matrix defined on A1 ∗A2 with p(a1, a2) as a real number

for every a1εA1 and a2εA2 and

(4) p1(a1, a2) + p2(a1, a2) = 0

Softgoal 1 (Player 1) tries to maximise p1(a1, a2) and Softgoal 2 (player 2)

tries to maximise p2(a1, a2) = −p1(a1, a2). Subsequently, Softgoal 2 (player 2)

tries to minimise p1(a1, a2). This procedure is called the maxmin strategy or

optimal strategy and is defined as

Definition 2 (maxmin): For every finite two softgoal (person) Zero-sum

game, the expected payoff to softgoal TS1 when it uses strategy Ap and softgoal

TS2 using strategy Aq be denoted by Ppq. If softgoal TS1 plays strategy Ap

ie., minqPpq then it has to maximise these minimum payoff. This is known as

the maximin criterion.

By using the maxmin criterion, softgoal TS1’s minimum payoff is tl , the

lower value of the game, where tl = maxpminqPpq. The value of the game is

called the saddle point and is defined as

Definition 3 (Saddle Point): In a finite two softgoal Zero-sum game payoff

matrix, if

(1) Softgoal TS1’s minimum payoff is tl, the lower value of the game, where

tl = maxpminqPpq and

(2) Softgoal TS2’s payoff is no more than tu, the upper value of the game,
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where tu = minqmaxpPpq

(3) With tl = tu, then this point is called the saddle point and is the value

of the game.

Definition 4 (Nash equilibrium): If p∗ and q∗ satisfies the maxmin

criterion with tl = tu = t , then t along with the optimal strategies p∗ and q∗

forms the solution of the game and is called Nash equilibrium . If there is

no saddle point in the game, then the game can be solved by an equalizing

strategy (primal linear programming).

6.3.2.2 Strategy Space and Payoff Matrix Computation

The multi-objective optimisation function for an actor with ’n’ number of al-

ternatives for the first top softgoal (maximise) can be written as (for details of

objective function generation, the readers are directed to Chapter 5).

f11(ωL) = S̄SGi1k = max Πt
l=1C̄SGijlΣ

m
i=1Σ

nc
d=1

(C̄(SGi1∗LSGd1) ∗ C̄(A1∗LSGd1)k ∗ ωLSGd1k)
f12(ωL) = S̄SGi2k = max Πt

l=1C̄SGijlΣ
m
i=1Σ

nc
d=1

(C̄(SGi2∗LSGd2) ∗ C̄(A2∗LSGd2)k ∗ ωLSGd2k)
...

...

f1n(ωL) = S̄SGink = max Πt
l=1C̄SGijlΣ

m
i=1Σ

nc
d=1

(C̄(SGin∗LSGdn) ∗ C̄(An∗LSGdn)k ∗ ωLSGdnk)
such that 0 ≤ ωLSGd ≤ 100, for d = 1 to nc (6.1)

Similarly, the multi-objective functions for the second softgoal with a minimi-

sing nature can be written as

f21(ωL) = S̄SGi1k = min Πt
l=1C̄SGijlΣ

m
i=1Σ

nc
d=1

(C̄(SGi1∗LSGd1) ∗ C̄(A1∗LSGd1)k ∗ ωLSGd1k)
f22(ωL) = S̄SGi2k = min Πt

l=1C̄SGijlΣ
m
i=1Σ

nc
d=1

(C̄(SGi2∗LSGd2) ∗ C̄(A2∗LSGd2)k ∗ ωLSGd2k)
...

...

f2n(ωL) = S̄SGink = min Πt
l=1C̄SGijlΣ

m
i=1Σ

nc
d=1
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(C̄(SGin∗LSGdn) ∗ C̄(An∗LSGdn)k ∗ ωLSGdnk)
such that 0 ≤ ωLSGd ≤ 100, for d = 1 to nc (6.2)

In general, the multiple-objective functions for the first softgoal in equation

(6.1) can be written as:

max[f11(ωL), f12(ωL), ..., f1n(ωL)]

with ωLεY (6.3)

where n > 1 and Y is the set of defined constraints.

The multiple objective functions for the second softgoal in equation (6.2) can

be written as:

min[f21(ωL), f22(ωL), ..., f2n(ωL)]

with ωLεY (6.4)

where n > 1 and Y is the set of defined constraints.

Optimise the objective functions in equations (6.3) and (6.4) individually to

obtain the ideal solutions. The ideal solutions are symbolically shown (x11, x12, ..., x1n,

x21, x22, ..., x2n) with (x11, x12, ..., x1n) representing the solution to equation (6.3)

and (x21, x22, ..., x2n) representing the solution to equation (6.4). Now the payoff

matrix (P) can be represented as

P =


A1 A2 An

A1 y11(x11, x21) y12(x11, x22) .... y1n(x11, x2n)

.... .... .... ....

.... .... .... ....

An yn1(x1n, x21) yn2(x1n, x22) .... ynn(x1n, x2n)


where

yij(xab, xcd) = fij(xab) + fij(xcd) for i, j = 1 to n (6.5)

a, b, c, d = 1 to n

The element yij is called a saddle point of the matrix P if

yij ≤ yil ∀l = 1, .., n and

yij ≥ ykj ∀k = 1, .., n

That is, the element yij is simultaneously a minimum in its row and a maxi-

mum in its column. If (i, j) is a saddle point of a given game matrix, then the

payoff that the row player gets in the saddle point is called the value of the game

and corresponds to the pure strategy Nash equilibrium of the game.
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6.3.2.3 Solving by Primal Linear Programming

If there is no saddle point, then the value of the game is obtained by equalizing

strategy. The softgoal 1 follows the Maxmin strategy and the softgoal 2 follows

Minmax strategy. If the softgoal 1 uses A1, y11(x11, x21) proportion of times, A2,

y21(x12, x21) proportion of times, ..... and An, yn1(x1n, x21) proportion of times

with softgoal 2 consistently having A1, then player 1’s gain will be

y11(x11, x21)A1 + y21(x12, x21)A2 + ..+ yn1(x1n, x21)An (6.6)

If softgoal 2 consistently uses A2, then the softgoal 1’s gain will be

y12(x11, x22)A1 + y22(x12, x22)A2 + ..+ yn2(x1n, x22)An (6.7)

and so on and finally with softgoal 2 consistently using An, then the softgoal

1’s gain will be

y1n(x11, x2n)A1 + y2n(x12, x2n)A2 + ..+ ynn(x1n, x2n)An (6.8)

Softgoal 1 knows that it has to maximise the minimum that it will obtain.

Since it is linear, the minimum that softgoal 1 will obtain lie in equation (6.6)

or (6.7) or (6.8) or it is the point of intersection of these equations. Hence, the

softgoal 1’s formulation is given as:

max v

Subject to

v ≤ y11(x11, x21)A1 + y21(x12, x21)A2 + ...+

yn1(x1n, x21)An

v ≤ y12(x11, x22)A1 + y22(x12, x22)A2 + ...+

yn2(x1n, x22)An

....

....

v ≤ y1n(x11, x2n)A1 + y2n(x12, x2n)A2 + ...+

ynn(x1n, x2n)An

n∑
i=1

Ai = 1;

Ai ≥ 0 for i = 1 to n

(6.9)
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Where Ai represent strategy or proportion of times using a particular strategy.

Similarly, for softgoal 2 following the minmax strategy, the linear formulation

is given by:

minu

Subject to

u ≥ y11(x11, x21)A1 + y12(x11, x21)A2 + ...+

y1n(x11, x21)An

u ≥ y21(x12, x21)A1 + y22(x12, x22)A2 + ...+

y2n(x12, x2n)An

....

....

u ≥ yn1(x1n, x21)A1 + yn2(x1n, x22)A2 + ...+

ynn(x1n, x2n)An

n∑
i=1

Ai = 1;

Ai ≥ 0 for i = 1 to n

(6.10)

Since equation (6.10) is a dual of equation (6.9), the solution to the game is

found by either solving equation (6.9) or equation (6.10). In the following section,

the duality of equations (6.9) and (6.10) will be demonstrated.

6.3.2.4 Proof of Duality

Consider softgoal 1’s formulation given by equation (6.9) (which is known as pri-

mal) and we will try to find its dual. In order to find the dual of softgoal 1’s

primal, rewrite the softgoal 1’s formulation given in equation (6.9) as follows:

max v
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Subject to

v − y11(x11, x21)A1− y21(x12, x21)A2− ...−
yn1(x1n, x21)An ≤ 0

v − y12(x11, x22)A1− y22(x12, x22)A2− ...−
yn2(x1n, x22)An ≤ 0

....

....

v − y1n(x11, x2n)A1− y2n(x12, x2n)A2− ...−
ynn(x1n, x2n)An ≤ 0

A1 + A2 + ...+ An = 1;

A1, A2, ..., An ≥ 0
(6.11)

The primal has n + 1 constraints; hence, the dual will have n + 1 variables.

Let us define dual variables as Z1, Z2, Zn, w for the constraints as follows:

max v

Subject to

Z1 : v − y11(x11, x21)A1− y21(x12, x21)A2− ...−
yn1(x1n, x21)An ≤ 0

Z2 : v − y12(x11, x22)A1− y22(x12, x22)A2− ...−
yn2(x1n, x22)An ≤ 0

....

....

Zn : v − y1n(x11, x2n)A1− y2n(x12, x2n)A2− ...−
ynn(x1n, x2n)An ≤ 0

w : A1 + A2 + ...+ An = 1;

A1, A2, ..., An ≥ 0
(6.12)

The dual will be given as:

minw
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Subject to

Z1 + Z2 + ...+ Zn = 1

−y11(x11, x21)Z1− y12(x11, x22)Z2− ...−
y1n(x11, x2n)Zn ≥ w

−y21(x12, x21)Z1− y22(x12, x22)Z2− ...−
y2n(x12, x2n)Zn ≥ w

....

....

−yn1(x1n, x21)Z1− yn2(x1n, x22)Z2− ...−
ynn(x1n, x2n)Zn ≥ w

Z1 + Z2 + ...+ Zn ≥ 0 (6.13)

Now rewriting equation (6.13) as

minw

Subject to

Z1 + Z2 + ...+ Zn = 1

w ≥ y11(x11, x21)Z1 + y12(x11, x22)Z2 + ...+

y1n(x11, x2n)Zn

w ≥ y21(x12, x21)Z1 + y22(x12, x22)Z2 + ...+

y2n(x12, x2n)Zn

....

....

w ≥ yn1(x1n, x21)Z1 + yn2(x1n, x22)Z2 + ...+

ynn(x1n, x2n)Zn

Z1 + Z2 + ...+ Zn ≥ 0 (6.14)

Comparing the equation (6.14) with softgoal 2’s formulation equation (6.10),

we can say that the dual of softgoal 1’s formulation is the softgoal 2’s formulation.

There is a primal dual relationship between softgoal 1 and softgoal 2. If the

solution for one of them is found, then the duality principle is applied to solve

the other. Hence, by solving either softgoal 1’s linear formulation or softgoal 2’s

linear formulation, the proportions for the strategies (in our case the alternatives)

can be found. The strategy (alternative) with high proportion (probability) is

selected.
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6.4 Illustration of Game-Theory-Based Goal Ana-

lysis using i* Framework

In order to evaluate the optimisation model using game theory, a tool was created

using Java Eclipse environment integrated with the IBM ILOG CPLEX optimisa-

tion tool. The reasons for this combination are: availability and prior experience

made Java the preferred selection. Also, the IBM ILOG CPLEX optimizer is

used to solve business mathematical models using powerful algorithms to obtain

precise and logical decisions. Additionally, IBM ILOG CPLEX has a modeling

layer called Concert that facilitates interfacing with Java, C++ and C# langua-

ges. The tool is analogous to that used in Chapter 5; however, the current tool

includes solving both the maximisation and minimisation objective functions by

using the Zero-sum game-theory-based approach. The simulation takes an input

graph in which the top softgoals are associated with a gauge variable that shows

the type of optimisation to be performed. Based on the gauge variable of each

top softgoal, the objective functions are generated. Once the objective functions

have been generated, they are solved individually to obtain the objective function

values. A payoff matrix is created using these function values with the alternati-

ves as strategies of the game. Then, using the game-theory-based approach, the

payoff matrix is solved so as to identify the optimal alternative. To demonstrate

this approach, we return to the Supply Chain Management case study.

Figure 6.4 presents a supply chain model with two actors that are conside-

rably simplified, but supports some types of reasoning namely identification and

the exploration of alternatives. The reasoning behind one possible arrangement

is illustrated namely, Manufacturer. The main softgoals of the actor Manufactu-

rer are Performance and Logistics cost, which depend upon the softgoals Ontime

Delivery Process and Production Process. The actor, Manufacturer, has the In-

ventory goal, representing the Manufacturer aim of maintaining the inventory

management system. The goal, Inventory, has two ways of being implemented

and thus is OR decomposed into two tasks known as Traditional and Vendor

Managed Inventory (VMI). VMI needs strong information technology support

to connect vendor and manufacturer in order to implement VMI successfully.

The goal, Inventory, represents a decision point. The selection of a task for

this goal influences the satisfaction levels of the non-functional goals (softgoals

Performance and Logistics cost) for the actor, Manufacturer.
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6.4.1 Generation of the Objective Functions using Gauge

Variables

The multi-objective functions generated for the supply chain management case

study (Figure 6.4) are illustrated as follows. The alternative tasks of the actor,

Manufacturer are

• Traditional

• Vendor Managed Inventory(VMI)

In this case, the problem is to select an alternative that maximises the satis-

faction of top softgoal Performance and minimises the satisfaction of top softgoal

Logistics cost. The top softgoals are associated with the gauge variable (ĝ) whose

value is 1 (one) if it has to be maximised, and zero if it has to be minimised. For

the actor, Manufacturer, let us assume that ĝ = 1 for top softgoal Performance

and ĝ = 0 for top softgoal logistics cost.

The score of the top softgoal Performance for the alternative Traditional is

given as follows:

SPerformance = (Some+) ∗ (SOntimeDeleiveryProcess)+

(Help) ∗ (SProductionProcess)

= 0.48 ∗ SOntimeDeleiveryProcess + 0.64 ∗ SProductionProcess
= 0.64 ∗ [0.16 ∗ ω1] + 0.64 ∗ [0.48 ∗ ω2]

= 0.0768 ∗ ω1 + 0.3072 ∗ ω2

Since ĝ = 1 for top softgoal Performance, the objective function for the Tra-

ditional alternative in terms of the top softgoal Performance is given below

FPerformance(ω) = max{0.0768 ∗ ω1 + 0.3072 ∗ ω2}

Similarly, the objective function for the VMI alternative in terms of the top

softgoal Performance is given as

FPerformance(ω) = max{0.3072 ∗ ω1 + 0.512 ∗ ω2}

Correspondingly, the objective functions for the top softgoal Logistics Cost

with ĝ = 0 are obtained as
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FLogisticscosts(ω) = min{0.1024 ∗ ω1 + 0.3072 ∗ ω2}
FLogisticscosts(ω) = min{0.4096 ∗ ω1 + 0.512 ∗ ω2}

The objective functions for the actor, Manufacturer, including both top soft-

goals Performance and Logistics Cost are given as follows:

F11 = FPerformance(ω) = max{0.0768 ∗ ω1 + 0.3072 ∗ ω2}
F12 = FPerformance(ω) = max{0.3072 ∗ ω1 + 0.512 ∗ ω2}
F21 = FLogisticscosts(ω) = min{0.1024 ∗ ω1 + 0.3072 ∗ ω2}
F22 = FLogisticscosts(ω) = min{0.4096 ∗ ω1 + 0.512 ∗ ω2}

Similarly, the objective functions obtained for the actor, Retailer, are

F11 = FIncreaseinCustomers(ω) = max{0.4096 ∗ ω1

+0.4096 ∗ ω2}
F12 = FIncreaseinCustomers(ω) = max{0.4096 ∗ ω1

+0.3072 ∗ ω2}
F21 = FMaintenanceCost(ω) = min{0.4096 ∗ ω1

+0.3072 ∗ ω2}
F22 = FMaintenanceCost(ω) = min{0.4096 ∗ ω1

+0.2304 ∗ ω2}

The solutions to these objective functions are obtained by invoking the IBM

ILOG CPLEX; the obtained function values are given in Table 6.1 as a ready

reference.

Table 6.1: Objective functions values for SCM goal model

Objective Function Manufacturer Retailer

F11 38.4 81.9

F12 81.92 71.68

F21 4.096 7.16

F22 9.216 6.4
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6.4.2 Pay-off Matrix and Alternative Selection

The pay-off matrix for the actor, Manufacturer, is created using equation 6.5, as

follows:

P =


Traditional V MI

Traditional 42.496 47.616

VMI 86.016 91.136



42.496T + 86.016V = 47.616T + 91.136V [T represents Traditional and V

represents VMI ]

Primal linear programming has been used to solve the above equation and the

solutions obtained are T = −5 and V = 6.

Similarly, the pay-off matrix for the actor, Retailer is

P =


Traditional Online

Traditional 89 88

Online 78.8 78.08



89T+78.8L = 88T+78.08L[T represents Traditional and L represents Online].

The solutions for the actor Retailer, are TraditionalAdvertisement = 1 and

OnlineAdvertisement = 0.

The tool outputs for the actor Manufacturer are provided in Figures 6.5 &

6.6. The graphical representation of the outputs are given in Figure 6.7. From

the Figure 6.7, it can be seen that the alternative VMI has a higher probability

(proportion) than the alternative Traditional and hence is selected for the actor

Manufacturer by considering both the top softgoals Performance and Logistics

Cost. Also for the actor Retailer, it can be seen that the alternative, Traditional

is only given, as the value of alternative, Online is zero. Thus, the alternative

Traditional Advertisement is selected for the actor Retailer. The game-theory-

based goal analysis pseudo-code is given in Algorithm 3.

The validation of the proposed approach has been carried out by comparing

results of the existing approach proposed in Chapter 3. In Chapter 3, we propo-

sed an approach to find the satisfaction percentage of alternatives based on top

softgoals. According to this proposal, the leaf softgoals are assigned percentage
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Algorithm 3 Psuedo code for the Tool Implementation of Game theory based

Goal Analysis of i* Framework

Require: Parameter G, such that G = {G1, G2, ..., Gn} is a collection of directed

graphs. Each graph Gi is a quadruple {T, LSG, SG, TSG} comprises of a set

of tasks T, a set of Leaf Softgoals LSG, a set of intermediate softgoals SG

and a set of top softgoals TSG with each top softgoal associated with a gauge

variable ĝ.

MAIN MODULE : optimal goal analysis

1: for all GiεG do

2: for all task tεT do

3: for all top softgoals tsgεTSG do

4: if ĝ is 0 then

5: Generate minimisation objective function

6: else

7: Generate maximisation objective function

8: end if

9: end for

10: end for

11: end for

12: Let F1← min{f1, f2, ..., fn}
13: Let F2← max{g1, g2, ..., gn}
14: for all fi in F1 do

15: Let xi ← optim(fi, ĝ)

16: end for

17: for all gi in F2 do

18: Let yi ← optim(gi, ĝ)

19: end for

20: generate payoff matrix p using xi and yi as

21: for all task tεT do

22: pij ← xi + yj //generate Primal equation

23: end for

24: solve the primal equation to obtain optimal solution

25: SUBMODULE : optim ( F , G )

26: ASSERTION : solves the objective function to find the ideal value of the

function
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ALGORITHM

27: declare the variables.

28: Define the expression, the objective and the constraints based on G (if G=0

define minimisation function, else maximisation function)

29: if ĝ is 0 then

30: define minimisation function

31: else

32: define maximisation function

33: end if

34: W ← cplex.solve() //invoking CPLEX function

35: return W

weights (from 0 to 100) based on their relative importance given by the require-

ments analyst. The impacts of the goals or tasks on the softgoals namely Make,

Help, Some+, Some-, Hurt, and Break are assigned fuzzy numbers (0.64, 0.80,

1), (0.48, 0.64, 0.80),(0.32,0.48,0.64), (0.16, 0.32, 0.48), (0, 0.16, 0.32) and (0, 0,

0.16) respectively. After this assignment, for each alternative option the scores

of leaf softgoals are computed. These scores are then propagated backwards to

compute the scores of other softgoals in the hierarchy. Once the top softgoals (go-

als that are at the top in the hierarchy) scores are computed, they are compared

in order to select an alternative option that best satisfies the top softgoals. The

drawback of the approach proposed in Chapter 3 is the subjective preference of

weights assigned to the leaf softgoals by the analyst. The validition of the propo-

sed game-theory-based approach has been realised by comparing results obtained

in Chapter 3 for different set of weights.

First, let us assume that the weights (in percentage) of the leaf softgoals

OntimeDeliveryProcess, ProductionProcess, ImmediacyService and QualityGoods

are 53%, 10%, 73% and 10% respectively. Using these weights for the actor

Manufacturer, the satisfaction percentage of the top softgoals Performance and

LogisticsCost for the alternative Traditional are found to be 21% and 25% re-

spectively. The scores of the top softgoals for the second alternative VMI are

45% and 55% respectively. From these values, we can infer that the alternative

VMI has the best satisfaction percentage and, hence, it is selected for the actor

Manufacturer. Similarly, for the actor Retailer, the satisfaction percentage of

the top softgoals IncreaseinCustomers and MaintenanceCost for the alternative

Traditional are found to be 70% and 68% respectively. Also, the satisfaction per-

centage for the second alternative Online are 68% and 67% respectively. From

126



these values, we can infer that the alternative Traditional has the best satisfaction

percentage and, hence, it is selected for the actor, Retailer. These results cor-

respond with the results obtained by the proposed game-theory-based approach.

Results obtained for the actors, Manufacturer and Retailer, with different sets of

weights are provided in Tables 6.2 and 6.3 as a ready reference for readers.

Table 6.2: Satisfaction Percentage of Top Softgoals for the actor Manufactu-

rer(SCM goal model)(* indicates options selected)
Weights of LSG Satisfaction Percentage of TSG

Ontime Delivery Process Production Process Performance Logistics Cost

Traditional VMI Traditional VMI

50 10 21% 45%∗ 25% 55% ∗

60 40 41% 81%∗ 46% 93%∗

70 50 51% 98%∗ 56% 100%∗

40 50 43% 79%∗ 46% 87%∗

30 60 46% 83%∗ 49% 89%∗

Table 6.3: Satisfaction Percentage of Top Softgoals for the actor Retailer(SCM

goal model)(* indicates options selected)

Weights of LSG Satisfaction Percentage of TSG

Immediacy Service Quality Goods Increase in Customers Maintenance Cost

Traditional Online Traditional Online

73 10 70%∗ 68% 68%∗ 67%

70 60 100%∗ 97% 98%∗ 88%

70 50 100%∗ 91% 91%∗ 83%

30 55 72%∗ 61% 61%∗ 53%

40 80 100%∗ 84% 85%∗ 73%

The inference from Tables 6.2 and 6.3 is that for any set of weights, for the

actor, Manufacturer, the alternative VMI option has the best satisfaction values

than the alternative Traditional option and is therefore selected for the actor,

Manufacturer. On the other hand, for the actor, Retailer the alternative option

Traditional dominates over the alternative option Online and hence it is selected

for the actor Retailer. These results correspond with the result obtained from the

game-theory-based approach and thus validate the game theory approach results.
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Figure 6.5: Tool Result for actor Manufacturer for alternative VMI

6.4.3 Evaluation of the Approach

To check the effectiveness and feasibility of the proposed game-theory-based ap-

proach, experiments were carried out using different case studies from the lite-

rature, namely Meeting Scheduler System (Van Lamsweerde, 2009), Kids Youth

Counselling (Horkoff and Yu, 2016) and Telemedicine (Yu, 2001). The results of

the Telemedicine case study are presented in this chapter.

Telemedicine system is the use of information technology and telecommu-

nication to provide remote diagnosis and treatment for patients. The adapted

Telemedicine (Figure 6.8) shows two actors: Patient and Healthcare Provider.

For illustration and simplicity, let us assume that the two main non-functional

requirements of the actor Patient are Expense of the treatment and Happiness

(satisfaction) obtained from the remote treatment. These two softgoals in turn

depend upon Time Saving and Quality of Care. There are two alternative ways of
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Figure 6.6: Tool Result for actor Manufacturer for alternative Traditional

obtaining treatment for the patient: Patient Centered Care or by Provider Cen-

tered Care. The Patient has to choose an alternative option such that his/her

Expense is less and Happiness is more. Similarly, for the Healthcare Provi-

der, the two main non-function requirements are Viable Healthcare Service and

Maintenance Cost. These two softgoals are further decomposed into Efficient

Operations and Effective Treatments. The two alternative ways of providing ser-

vices are Patient Centered Care and Provider Centered Care. Here, the task is to

select an alternative option that increases the Healthcare service and decreases

Maintenance Cost.

The objective functions for the actor, Patient, for both the top softgoals Ex-

pense and Happiness are given as:
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Figure 6.7: Graphical representation of proportional values of alternatives for

SCM

F11 = FExpense(ω) = min{0.4096 ∗ ω1 + 0.4096 ∗ ω2}
F12 = FExpense(ω) = min{0.1024 ∗ ω1 + 0.512 ∗ ω2}

F21 = FHappiness(ω) = max{0.512 ∗ ω1 + 0.4096 ∗ ω2}
F22 = FHappiness(ω) = max{0.128 ∗ ω1 + 0.512 ∗ ω2}

Similarly, the objective functions for the actor, Healthcare Provider, for both

the top softgoals Viable Healthcare Service and Maintenance Cost are given as:

F11 = FV iableHealthcareService(ω) = max{0.1024 ∗ ω1

+0.3072 ∗ ω2}
F12 = FV iableHealthcareService(ω) = max{0.4096 ∗ ω1

+0.4096 ∗ ω2}
F21 = FMaintenanceCost(ω) = min{0.1024 ∗ ω1 + 0.384 ∗ ω2}
F22 = FMaintenanceCost(ω) = min{0.4096 ∗ ω1 + 0.512 ∗ ω2}

The values of the objective functions are obtained by using the tool and are

provided in Table 6.4 as a ready reference.

The pay-off matrix for the actor, Patient, is as follows:
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Figure 6.8: Simplified SR model for Telemedicine (adapted from Yu (2001))

Table 6.4: Objective functions values for Telemedicine goal model

Objective Function Patient Healthcare Provider

F11 8.19 40.96

F12 6.14 81.92

F21 92.16 4.86

F22 64 9.22

P =


Patient Provider

Patient 100 72

Provider 98 70


100Pa + 98Pr = 72Pa + 70Pr [Pa represents Patient Centered Care and Pr

represents Provider Centered Care]

Solving by primal linear programming (by using equation 6.9), the solutions

131



are Pa=1 and Pr=0. The alternative Patient Centered Care has high probability

and hence it is selected for the actor, Patient.

Similarly, the pay-off matrix for the actor, Healthcare Provider, is

P =


Patient Provider

Patient 45.8 50

Provider 86 91



45.8Pa+ 86Pr = 50Pa+ 91Pr [Pa represents Patient Centered Care and Pr

represents Provider Centered Care]

Again solving by primal linear programming, the solutions are Pa=0 and

Pr=1. The alternative Provider Centered Care has high probability and, hence,

it is selected for the actor, Healthcare Provider.

To ensure the validity of the results, the procedure as described in the SCM

case study is followed. The satisfaction percentage of the top softgoals of the

actors, Patient and Healthcare Provider, are calculated and are provided in Tables

6.5 and 6.6 respectively.

Table 6.5: Satisfaction Percentage of Top Softgoals for the actor Patient (Tele-

medicine goal model) (* indicates options selected)
Weights of LSG Satisfaction Percentage of TSG

Time Saving Quality of Care Expense Happiness

Patient Centered Provider Centered Patient Centered Provider Centered

Care Care Care Care

100 20 100%∗ 55% 100%∗ 64%

50 70 100%∗ 92% 100%∗ 96%

80 40 100%∗ 70% 100%∗ 77%

65 60 100%∗ 86% 100%∗ 92%

40 75 97%∗ 94% 100%∗ 97%

Form Tables 6.5 and 6.6, it can be seen that the alternatives selected is same

as that of the alternatives selected using game-theory-based approach.

To evaluate the game-theory-based approach with optimal goal analysis (pro-

posed in Chapter 5), the alternatives selected from the game-theory-based goal

analysis are compared with those that are selected by using the optimal goal

analysis method. The evaluation was performed using the case studies: Meet-

ing Scheduler System (Van Lamsweerde, 2009), Kids Youth Counselling (Horkoff

and Yu, 2016) and Telemedicine (Yu, 2001) from the existing literature. Only the
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Table 6.6: Satisfaction Percentage of Top Softgoals for the actor Healthcare Pro-

vider(Telemedicine goal model)(* indicates options selected)
Weights of LSG Satisfaction Percentage of TSG

Efficient Effective Viable Healthcare Service Maintenance Cost

Operations Treatments Patient Centered Provider Centered Patient Centered Provider Centered

Care Care Care Care

20 84 61% 88%∗ 75% 100%∗

70 60 62% 100%∗ 72% 100%∗

50 70 62% 100%∗ 74% 100%∗

80 40 53% 100%∗ 60% 100%∗

60 30 40% 76%∗ 45% 83%∗

results of the Telemedicine and SCM case studies are presented in this chapter.

Since the optimal goal analysis in Chapter 5 performs only maximisation of top

softgoals, the top softgoals of the SCM goal diagram are Performance for actor

Manufacturer and Increase in Customers for actor Retailer. Similarly, for the

Telemedicine case study goal diagram, the top softgoals are Happiness for actor

Patient and Viable Healthcare service for actor Healthcare Provider. For these

goal models, the objective functions are obtained based on the optimal goal ana-

lysis method (for details on objective functions generation, the reader is directed

to Chapter 5). The objective functions for the SCM goal model are represented

as follows:

FTraditional(ω) = max {0.0768 ∗ ω11 + 0.3072 ∗ ω21}
FVMI(ω) = max {0.3072 ∗ ω11 + 0.512 ∗ ω21}

FTraditional(ω) = max {0.4096 ∗ ω12 + 0.4096 ∗ ω22}
FOnline(ω) = max {0.4096 ∗ ω12 + 0.3072 ∗ ω22}

Subject to

0 ≤ ωdk ≤ 100 for d = 1 to 2 and k = 1 to 2

The objective functions for the Telemedicine goal model are represented as

follows:

FPatientCenteredCare(ω) = max{0.4096 ∗ ω11 + 0.4096 ∗ ω21

+0.1024 ∗ ω12 + 0.1024 ∗ ω22}
FProviderCenteredCare(ω) = max{0.1024 ∗ ω11 + 0.512 ∗ ω21

+0.4096 ∗ ω12 + 0.4096 ∗ ω22}
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Subject to

0 ≤ ωdk ≤ 100 for d = 1 to 2 and k = 1 to 2

Solving the above objective functions by optimal goal analysis tool (Chapter

5), the weights of the leaf softgoals (Table 6.7) and the scores of the top softgoals

(Tables 6.8 and 6.9) are obtained.

Table 6.7: Weights of SCM and Telemedicine goal models
SCM Telemedicine

Actor Leaf Softgoals Weight Actor Leaf Softgoals Weight

Manufacturer
OntimeDeliveryProcess 53

Patient
Time Saving 100

Production Process 10 Quality of Care 18

Retailer
Immediacy Service 73

Healthcare Provider
Efficient operations 10

Quality Goods 10 Effective Treatments 84

Table 6.8: Top Softgoals scores of SCM goal model (* indicates options selected)

Actor Top Softgoals
Alternative Scores

Traditional VMI/Online

Manufacturer Performance 21 45*

Retailer Increase in Customers 70* 68

Table 6.9: Top Softgoals scores of Telemedicine goal model(* indicates options

selected)

Actor Top Softgoals
Alternative Scores

Patient Centered care Provider Centered Care

Patient Happiness 100* 62

Healthcare Provider Viable Healthcare Service 71 97*

It can be seen from Table 6.8 that for the SCM goal model, the alternative

VMI is selected for the actor Manufacturer and the alternative Traditional is

selected for the actor Retailer. Table 6.9 shows that for the Telemedicine goal

model, the alternative Patient Centered care is selected for the actor, Patient, and

the alternative Provider Centered Care is selected for the actor, Healthcare Provi-

der. These selected alternatives correspond to the alternatives selected using the

proposed game-theory-based approach. Hence, it can be concluded that the pro-

posed approach is an improvement on the optimal goal programming approach,

in terms of handling the goal analysis of the softgoals having opposing objective

functions.
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6.4.4 Actor with n(> 2) Top Softgoals

In general, an actor will have any number of top softgoals (n > 2) based upon

the system requirements. For an actor with n top softgoals, there will be n fac-

torial (n!) relationships between the top softgoals. If n! is very large, the analysis

process becomes complex. To make the process simpler, the concept of a repre-

sentative agent is used. It is also assumed that every agent uses the same strategy

and obtains the same payoff. The top softgoals have to be either maximised or

minimised. Therefore, there will be two representative agents, one representing

the maximising top softgoals and another representing the minimising top soft-

goals. Hence, for the i* framework with n > 2 top softgoals there will be two

representative agents. Now, the problem becomes a two-player game which can

be solved using the above Zero-sum game-theory-based goal analysis.

6.5 Chapter Summary

In this chapter, a game-theory-based approach for goal evaluation in the i* frame-

work has been proposed. This approach was implemented using the IBM CPLEX

tool integrated with the Java eclipse environment and tested using case studies

from the existing literature: Supply chain management, Youth Counsellor and

the Telemedicine System. Evaluation of the proposed approach was based on

the alternative selection of each actor in the selected goal model. The proposed

game-theory-based goal analysis gives the same result as the optimal goal analy-

sis approach. The optimal goal analysis method performs goal analysis of the i*

model by only maximising top softgoals. The advantage of the game theory based

goal analysis is that it can perform analysis of the i* model with top softgoals

having maximising and minimising objective functions simultaneously occurring

in real-life situations. On the other hand, it is not possible to perform this task

using the optimal goal analysis method. This chapter also concludes the details

of our goal analysis framework. In the next chapter, we present an evaluation of

our tool and compare it with the existing Open OME tool.
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Chapter 7

Tool Validation

Having implemented our approach for quantitative and optimal goal analysis

in the i∗ framework, we now perform an empirical evaluation of the approach

and tool in comparison with an existing tool for the textiti∗ framework namely

OpenOME. The evaluation is performed in terms of the following criteria: time,

result interpretation, automation, functionality, performance, satisfaction and

ease of use. We first describe the qualitative approach using OpenOME tool and

its limitations. We give a brief introduction to our approach to overcoming the

limitations of OpenOME in Section 7. In Section 7, we describe the evaluation

method and then analyse the results of the evaluation. And finally in Section 7,

we present the discussion of the results and threats to validity.
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7.1 State of the Art

For i* modeling, many tools (wik, date) have been developed. These include Ope-

nOME, OME, REDEPEND-REACT-BCN, T-Tool, J-PRiM and DesCARTES to

name a few. Although these tools support modeling of the i* framework, only a

few support the analysis or evaluation of the i* model. The tools that support

analysis or evaluation of the i* framework are OpenOME (/OME), REDEPEND-

REACT, J-PRiM and DesCARTES.

7.1.1 REDEPEND-REACT

REDEPEND (Pavan et al., 2003; Grau et al., 2005), is a graphical modelling tool

that enables the modeling of complex agent-based systems and their dependencies

using the i* formalism. This tool helps to generate and evaluate systems’ diffe-

rent architectures. The software architectures are modelled as an i* SD model

in which the actors represent software domains and stakeholders namely human,

hardware, software and organisation. The interaction is represented by the de-

pendencies among the actors of SD. The generated architectures are evaluated

based on certain properties of the system. The analysis of SD is done to se-

lect an architecture based on several interesting properties (security, accuracy or

efficiency) of the system being modelled.

7.1.2 J-Prim

J-PRiM (Grau et al., 2006) is another tool for modeling of the i* framework based

on the PRiM methodology. In PRiM, the modeling is addressed in the context of

process re-engineering. In process re-engineering, the new system’s specification

starts from the examination of the current system and ends with the attainment

of the specifications of the system-to-be. In J-PRiM, the elements are added

individually when modeling the i* SD and SR diagram. It differs from other

tools in the way the elements are introduced and visualised. J-PRiM does not

support visualising models in graphical representation of the i* elements but

shows these in a tree-form hierarchy. It is used for the evaluation of the system

model.
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7.1.3 DesCARTES

The DesCARTES (Design CASE Tool for Agent-Oriented Repositories, Techni-

ques, Environments and Systems) (des, date) tool is designed to support vari-

ous model editions: i* models (Strategic Dependency and Strategic Rationale

models), NFR (Non-Functional Requirements) models, UML (Unified Modeling

Language) models, AUML (Agent UML) models in the context of Tropos and

I-Tropos developments. It helps in the development of the methodology, analysis

and design of models as well as forward engineering capabilities and an integrated

software project management module. It mainly supports Tropos developments

and UML/RUP developments. In addition, it supports the following develop-

ments:

• i* Strategic Dependency and Strategic Rationale Models;

• NFR Goal Analysis Models;

• UML Use-Cases and Business Use-Cases Models;

• Enterprise Models;

The goal analysis of the i* framework is not supported by this tool.

7.1.4 OpenOME

The Organisation Modelling Environment (OME) (ome, date) is a general, goal-

oriented and agent-oriented modeling and analysis tool. The Eclipse based Ope-

nOME tool, is an improved version of OME and the word ’open’ indicates its

open source nature. It provides a graphical interface to develop i* models and

also computer-aided analysis. The computer-aided analysis is both backwards

(top-down) and forwards (down-top), qualitative, interactive analysis using SAT

solving techniques. This tool helps in goal analysis.

7.1.5 Optimal Goal Analysis of the i* framework

To support quantitative goal analysis and to automate the goal analysis process of

the i* framework, we developed an Optimal tool based on the methods proposed

in Chapters 4 and 5. The analysis is forward (bottom-top), quantitative, and uses

optimisation to avoid any subjective preferences in goal analysis. The tool was

created using Java Eclipse integrated with JUNG (sf, date) and the IBM ILOG
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CPLEX optimisation tool (ilo, date). Despite of using Java Swing library for the

interface, displaying the framework and other forms of modifications like addition

and deletion of intentional elements are controlled through the JUNG open-source

software. The JUNG (Java Universal Network/Graph Framework) software is

used to support the graphical representation of SR diagram and visualization of

the model. The Java-based JUNG is an open source software library that supports

a common and extendible language for modeling, reasoning, and visualization

of information that can be depicted as a graph or network. The visualization

framework provided by JUNG makes it easy to construct tools that involve the

interactive analysis of data. The IBM ILOG CPLEX tool is used to support the

multi-objective optimisation of this approach. The IBM ILOG CPLEX optimizer

is used to solve business mathematical models using powerful algorithms to obtain

precise and logical decisions. Additionally, the modeling layer, Concert, in the

IBM ILOG CPLEX optimizer facilitates the interface with Java, C++ and C#

languages.

An empirical evaluation of the Optimal tool was conducted to test its feasi-

bility. The evaluation involved student volunteers from bachelor and master of

software engineering courses. We performed a comparison of Optimal goal analy-

sis tool using the OpenOME tool. The reason for selecting only OpenOME was

that the analysis in REDEPEND-REACT was based solely on the SD diagram

and also, the analysis requires that specific system properties be known. The

reason for not considering J-Prim for empirical evaluation was that it does not

support node visualization in graphical representation. Also, the DesCARTES

was not used in the empirical evaluation as it did not support goal analysis of the

i* framework. In the following section, a brief explanation of the qualitative ana-

lysis of the i* framework using the OpenOME tool and the quantitative analysis

using the Optimal tool is given before the empirical evaluation is presented.

7.2 OpenOME: Qualitative Analysis of the i*

Framework

For alternative design/goal selection, Jennifer et al. (Horkoff and Yu, 2009) pro-

posed an interactive, qualitative analysis procedure that was implemented using

the OpenOME tool. In this method, a set of qualitative labels were used to re-

present the degree of satisfaction or denial of the intentional elements. A brief

description of the procedure is as follows: Once the model has been constructed,
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the analysis starts with a general question “How effective is an alternative with

respect to model goals?”. The intentional elements related to this analysis ques-

tion are assigned qualitative labels to convey their degree of satisfaction. Using

predefined rules, these labels are propagated through the model links to find the

degree of satisfaction of the other intentional elements in the model. Human

interaction is involved in place of multiple conflicting or partial values to resolve

the satisfaction or denial of an intentional element. For each actor, the final sa-

tisfaction and denial values for the intentional elements are determined in view

of the analysis question. Further analysis and model refinement is done based on

judgement of whether or not the design choice is satisfied. We illustrate the steps

involved in the qualitative analysis with the Telemedicine case study (Yu, 2002).

Telemedicine is the use of information technology and telecommunication to pro-

vide remote diagnosis and treatment for patients. Let us consider a simplified

Telemedicine case study as shown in Figure 7.1.

 

 

Figure 7.1: SR Model: Telemedicine Example (adapted from (Yu, 2002)).

We illustrate the evaluation of the option in actor Patient of the Telemedi-

cine case study. The analysis starts with the question “What is the effect of

using the alternative Provider Centered Care?”. The label assigned for the alter-

native Patient Centered Care is denied and for the alternative Provider Centered

Care is satisfied. With this initial assignment and using predefined rules, the

softgoal Normal Life Style receives partially denied from Patient Centered Care
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and partially denied from Provider Centered Care. Since the softgoal Normal

Life Style receives two labels for the same polarity, it received the label partially

denied. The softgoal Quality of Care receives partially denied from Patient Cen-

tered Care and satisfied from Provider Centered Care. Since the softgoal Quality

of Care has two labels of different polarity, human judgement is needed to resolve

the label assignment. Using the predefined priority rules, the softgoal Quality of

Care receives the label satisfied. The labels are propagated forward to obtain

the label of the top softgoal, Happiness. The softgoal, Happiness, receives parti-

ally denied from Normal Life Style and partially satisfied from Quality of Care.

Again, human judgement is used to decide the label assignment and, using the

predefined priority rules, the softgoal Happiness receives partially satisfied. This

overall assessment leads to partial satisfaction of the top softgoal, Happiness.

This evaluation is shown in Figure 7.2.

Figure 7.2: OpenOME: Goal Analysis with first alternative

The drawback of this qualitative analysis is the human interaction involved

in label propagation. Since label assignment by human interaction is subjective

to the analyst, the top softgoals may receive different labels for the same initial

assignment. Another issue with this approach is the conflict that arises in the

analysis. Also, ambiguity arises in decision making when a top softgoal receives

the same label for all the alternatives. This is illustrated by considering the

analysis question “what is the effect of the alternative Patient Centered Care?”

for the actor, Patient. The analysis results are shown in Figure 7.3. From Figure
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7.3, it can be seen that the effect of the alternative Patient Centered Care is also

a partial satisfaction of the top softgoal, Happiness. There arises an ambiguity in

the decision making regarding alternative tasks. Another issue is: what happens

if the top softgoal receives the label Unknown?

Figure 7.3: OpenOME: Goal Analysis with second alternative

To overcome these problems in the qualitative analysis of the i* framework,

a fuzzy-based quantitative and optimal goal analysis of the i* framework was

proposed in Chapters 3, 4 and 5.

7.3 Optimal Goal Analysis Tool: Quantitative

Analysis of the i* Framework

In the Telemedicine case study, for each actor there are two different alternatives.

The task of the analyst is to select an alternative that delivers maximum satis-

faction of the top softgoals for each actor. Initially, a fuzzy-based quantitative

reasoning of goals for the i* framework was proposed in Chapter 3.

In this approach, the leaf softgoals are assigned weights in percentage based

on their relative preference. The impacts of the goals (or task) on the softgoals

represented by make, help, some+, some-, hurt, and break are given by triangular

fuzzy numbers (0.64, 0.80, 1), (0.48, 0.64, 0.80),(0.32, 0.48, 0.64), (0.16, 0.32,

0.48), (0, 0.16, 0.32) and (0, 0, 0.16) correspondingly. Since the impact has a
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direct effect on the degree of satisfaction of the softgoals, they are represented by

fuzzy numbers to avoid the imprecision associated with decision making. Using

the weight of the leaf softgoals and the impact value of the selected alternative on

the leaf softgoals, the scores of the leaf softgoals are calculated. These scores are

then propagated forward to find the scores of the other softgoals in the hierarchy.

For each actor, the top softgoal scores for the alternatives are compared and the

alternative that contributes to the maximum satisfaction level is selected. For

further details, readers are directed to Chapter 3.

To avoid the subjective preference of the weights assigned to the leaf softgoals

and to automate the alternative selection process, an optimal goal analysis proce-

dure using optimisation was proposed in Chapters 4 and 5. Optimisation is used

to find the weights of the leaf softgoals. For each actor, an objective function for

each alternative in terms of the leaf softgoals is obtained. For details of objective

function generation, readers are directed to Chapter 4. These objective functions

are solved using the goal programming method to find the weights of the leaf soft-

goals. These optimal weights of the leaf softgoals are in turn used in the analysis

procedure proposed in Chapter 3 to find an alternative that contributes to max-

imum satisfaction. For the approach, a tool using Java Eclipse integrated with

the IBM CPLEX optimisation tool was developed. We illustrate the alternative

selection in optimal goal analysis procedure with the Telemedicine case study.

The input to the tool is the SR diagram. The objective functions are generated

based on the input and are solved by calling the IBM CPLEX optimisation tool.

The outputs of the optimisation tool are the weights of the leaf softgoals. Based

on these weights, the quantitative analysis is performed. The tool output for the

actor, Patient, is given in Figures 7.4 and 7.5.

7.4 Empirical Evaluation (Controlled Experiment)

to Evaluate the Usability of the Optimal i*

Tool

In this section, details are presented of the controlled experiment carried out

to assess the time consumption, functionality, performance, ease of use, result

interpretation, automation, user satisfaction of the Optimal goal analysis tool in

comparison with the existing OpenOME tool. Table 7.1 shows the key elements of

the controlled experiment. To perform this experiment, the guidelines proposed
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Figure 7.4: Optimal Tool: Goal Analysis (First Alternative)

by Wohlin et al. (Wohlin et al., 2012), on how to define, plan, run, and analyse

the results of an experiment in software engineering domain were used.

7.4.1 Research Objectives

The main objective of the controlled experiment was to analyse two tools used for

requirements analysis: OpenOME and Optimal goal analysis tools. To achieve

the desired objective, seven properties were evaluated during the experiment:

time taken for analysis, interpretation of results, user interaction, functionality

(suitable for goal analysis), performance (slow, responsive or fast), user’s satis-

faction with analysis results, and ease of use. The results of the investigation

would help researchers and decision makers to select an appropriate tool for re-

quirements analysis of the i* framework. The experiment was conducted using

20 students from undergraduate and master degrees who have a knowledge of

software engineering and/or requirements engineering. The students were asked

to test both tools using i* models taken from existing RE literature. Thus, this
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Figure 7.5: Optimal Tool: Goal Analysis (Second Alternative)

experiment is categorised as a blocked subject-object study.

In brief, the objective of the research is defined as:

Analyse the OpenOME tool (qualitative goal analysis) and Optimal goal ana-

lysis tool (quantitative optimal goal analysis) with regards to time taken for ana-

lysis, interpretation of results, user interaction, functionality (suitable for goal

analysis), performance (slow, responsive or fast), user’s satisfaction with analysis

results, and ease of use from the perspective of decision makers in the context

of software engineering students. To achieve the objective of this experiment,

answers to the following questions were sought.

RQ1: What is the time (T) taken by the OpenOME and Optimal goal analysis

tools, when applied to perform alternative option selection process for a given i*

model?

RQ2: Which tool - the OpenOME or the Optimal goal analysis tool, makes

the interpretation (I) of results easier?

RQ3: Which tool - the OpenOME or the Optimal goal analysis tool - is

automated (A)?
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Table 7.1: Key Elements of Controlled Experiment

Aim
Analyze the tools OpenOME and Optimal goal

analysis for alternative option selection with the

intent of measuring time, functionality, automation

and performance, satisfaction,ease of use

Context
The experiment was carried out using 20 real

subjects (who has a knowledge of Requirements

Engineering/Software Engineering) with i* case

studies taken from the existing RE literature

Dependent variables
time, result interpretation, automation, functionality,

performance, satisfaction and ease of use

Independent variables
OpenOME tool (Qualitative approach) and

Optimal goal analysis tool (Quantitative approach)

RQ4: Which tool - the OpenOME or the Optimal goal analysis tool - is more

suitable (F) for goal analysis?

RQ5: How fast (P) are OpenOME and Optimal goal analysis tools when

applied to perform alternative option selection process?

RQ6: Which tool - the OpenOME or the Optimal goal analysis tool - gives

user satisfaction (S) results?

RQ7: Which tool - the OpenOME or the Optimal goal analysis tool - is easier

to use (U)?

7.4.2 Experimental Design

7.4.2.1 Context Selection

The experiment was carried out in a laboratory environment, and hence it was

executed off line (i.e., the experiment was not conducted in an industrial set-

ting). The participants in the experiment were undergraduate and postgraduate

students from our university. As pointed out by Carver et al. (Carver et al.,

2003), this research took advantage of the benefit of considering students for

experiments. The experiment is classified as specific as it targeted the goal ana-

lysis/requirement analysis process in OpenOME tool and Optimal goal analysis

tool. The experiment addressed a real problem as it sought to determine the

differences between two tools when tested on the same set of i* models.
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7.4.2.2 Formulation of Hypotheses

The following hypotheses were established based on the research questions (RQ1

to RQ7) articulated in Section 6.1 for the controlled experiment:

• Time Null Hypothesis (HT0): There is no considerable difference between

the OpenOME and Optimal goal analysis tools in the view of the time taken

to perform the goal analysis of a given i* model.

δ(T(OpenOME tool)) = δ(T(Optimal goal analysis tool))

• Time Alternative Hypothesis (HT1): There is a considerable difference bet-

ween the OpenOME and Optimal goal analysis tool in the view of the time

taken to perform the goal analysis of a given i* model.

δ(T(OpenOME Tool)) 6= δ (T(Optimal goal analysis tool))

• Interpretation Null Hypothesis (HI0): There is no considerable difference

between the OpenOME and Optimal goal analysis tools in terms of inter-

pretation of results from the goal analysis of a given i* model.

δ(I(OpenOME Tool)) = δ(I(Optimal goal analysis tool))

• Interpretation Alternative Hypothesis (HI1): There is a considerable dif-

ference between the OpenOME and Optimal goal analysis tools in terms of

interpretation of results from the goal analysis of a given i* model.

δ(I(OpenOME Tool)) 6= δ(I(Optimal goal analysis tool))

• Automation Null Hypothesis (HA0): There is no considerable difference

between the OpenOME and Optimal goal analysis tools in terms of user

interaction involved in the goal analysis of a given i* model.

δ(A(OpenOME Tool)) = δ(A(Optimal goal analysis tool))

• Automation Alternative Hypothesis (HA1): There is a considerable diffe-

rence between the OpenOME and Optimal goal analysis tools in terms of

user interaction involved in the goal analysis of a given i* model.

δ(A(OpenOME Tool)) 6= δ(A(Optimal goal analysis tool))

• Suitability Null Hypothesis (HF0) : The functionality of the OpenOME

tool is the same as that of the Optimal goal analysis tool.

δ(F(OpenOME Tool)) = δ(F(Optimal goal analysis tool))
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• Suitability Alternative Hypothesis (HF1): The functionality of the Ope-

nOME tool is not the same as that of the Optimal goal analysis tool.

δ(F(OpenOME Tool)) 6= δ(F(Optimal goal analysis tool))

• Performance Null Hypothesis (HP0): The performance of the OpenOME

tool is the same as that of the Optimal goal analysis tool.

δ(P(OpenOME Tool)) = δ(P(Optimal goal analysis tool))

• Performance Alternative Hypothesis (HP1): The performance of the Ope-

nOME tool is not the same as that of the Optimal goal analysis tool.

δ(P(OpenOME Tool)) 6= δ(P(Optimal goal analysis tool))

• Satisfaction Null Hypothesis (HS0): There is a no considerable difference

between the OpenOME and Optimal goal analysis tools in terms of user

satisfaction with the results from the goal analysis of a given i* model.

δ(S(OpenOME Tool)) = δ(S(Optimal goal analysis tool))

• Satisfaction Alternative Hypothesis (HS1): There is a considerable diffe-

rence between the OpenOME and Optimal goal analysis tools in terms of

user satisfaction with the results from the goal analysis of a given i* model.

δ(S(OpenOME Tool)) 6= δ(S(Optimal goal analysis tool))

• Ease of use Null Hypothesis (HU0): There is no considerable difference

between the OpenOME and Optimal goal analysis tools in terms of usability

of the tool.

δ(U(OpenOME Tool)) = δ(U(Optimal goal analysis tool))

• Ease of use Alternative Hypothesis (HU1): There is a considerable difference

between the OpenOME and Optimal goal analysis tools in terms of usability

of the tool.

δ(U(OpenOME Tool)) 6= δ(U(Optimal goal analysis tool))

7.4.2.3 Selection and Measurement of Variables

As with any controlled experiment in the domain of software engineering, the in-

dependent and dependent variables of the controlled experiment were identified.

The independent variables are the tools OpenOME and Optimal goal analysis.

Seven dependent variables were identified based on the research questions stated
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in Section 7.4.1: time, result interpretation, automation, functionality, perfor-

mance, satisfaction and ease of use. In the controlled experiment, the variables

were measured using tabular structure for comparison of these two tools. After

working with each tool, the test subjects were asked to fill in a questionnaire.

7.4.2.4 Selection of Subjects and Objects

The subjects of this controlled experiment were undergraduate and master stu-

dents who have a knowledge of software engineering and/or requirements engi-

neering. The experiment was not made compulsory in order to avoid biasing the

results. The findings would be more rigorous if subjects were not compelled to

participate. In response to our invitation, 20 students agreed to participate in

the experiment. All the subjects were given a set of documents: a copy of the

consent form, participation information sheet, details about the experiment, test

model diagrams and a questionnaire.

The same objects were used to test both tools. The experiment was carried

out using two i* models adapted from existing RE literature: Telemedicine (Yu,

2002) and Youth Counseling (Horkoff and Yu, 2009).

7.4.3 Execution

Prior to the controlled experiment, a brief explanation was given to all subjects

about the purpose of goal analysis and goal frameworks. Moreover, a short in-

struction on how to work with tools, OpenOME and Optimal goal analysis tool

was provided. The experiment was conducted in a laboratory room where each

computer was installed with the OpenOME tool and Optimal goal analysis tool.

The subjects executed the two given goal models, using the OpenOME tool and

Optimal goal analysis tool. The session took an hour including the introductory

presentation and providing instructions for the use of the tools. After executing

the two models using both tools, each participant completed the questionnaire to

measure the ease of use of both tools.

7.4.4 Results and Analyses

The results obtained from the experiment were statistically analysed by following

T-test, and Chi-2 (denoted χ2) test (Wohlin et al., 2012) to answer the research

questions RQ1 to RQ7. This section presents the analyses of the results obtained

from the experiment.
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Table 7.2: Average time consumption for OpenOME tool and Optimal tool

OpenOME Optimal Difference

Tool Tool (OpenOME, Optimal Tool)

Actual time- 5.166s 2.333s 2.833s

consumption(in secs)

Figure 7.6: Boxplot of the actual time consumption

7.4.4.1 RQ1: What was the time (T) taken by the OpenOME and

Optimal goal analysis tools when applied to perform an alter-

native option selection process for a given i* model?

The time taken by each tool to perform goal analysis was measured by recording

the start time and end time. This time included time to draw the model and time

for performing goal analysis. Table 7.2 presents the average time-consumption.

The boxplot in Figure 7.6 compares the actual time-consumption for performing

goal analysis of the Telemedicine case study using the OpenOME tool and the

Optimal tool. From Table 7.2, it can be seen that the difference in average time-

Table 7.3: T-test values for null hypothesis HT0

¯OpenOME ¯Optimal S2
OpenOME S2

Optimal Sp t0

5.2 2.35 0.8 0.24 0.7852 12.5
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Table 7.4: Chi-Square test values for null hypothesis HI0

Easy interpretation OpenOME tool Optimal tool

of results

No. of response 2 18

% 10% 90%

χ2 12.8

p-value 0.000347(<0.05)

consumption between the OpenOME tool and Optimal tool collected from 20

subjects is 2.833s, which corresponds to a 55% reduction. This is also shown

in Figure 7.6, where the median value is smaller for the Optimal tool than for

the OpenOME tool. Hence, the time taken to perform goal analysis using the

Optimal tool is less than that for the OpenOME tool.

To test the null hypothesis (HT0), we applied a T-test. The test results mean,

standard deviation and variance are shown in Table 7.3. From (Wohlin et al.,

2012), we found that the null hypothesis could be rejected if |t0| > tα/2,n+m−2.

By using the T-test, we obtained |t0| = 12.5. The p-value is less than 0.00001.

The result is significant at p <0.05; therefore, the first null hypothesis (HT0) was

rejected. Hence, it was concluded that the time taken using the Optimal tool is

less than that for the OpenOME tool.

7.4.4.2 RQ2: which tools between OpenOME and Optimal goal ana-

lysis, interpretation (I) of results was easier?

The subjects worked with both the tools using the Telemedicine case study and

were asked to answer the following question: Which tool did they found easy (or

difficult) to interpret results of goal analysis? Among the 20 subjects, 18 subjects

found Optimal tool easier to interpret final results than OpenOME tool. Hence,

90% of the participants found the Optimal tool easier. Since the data were not

distributed normally with respect to the variable ’easy interpretation of results’

(Table 7.4), we chose Chi-square test (χ2) (Wohlin et al., 2012) to investigate the

second null hypothesis (HI0) by comparing the number of responses in favour of

Optimal tool to the total number of responses. Obviously, there was a statistically

critical difference, as p value = 0.000347 (<0.05). Therefore, the second null

hypothesis (HI0) was rejected and it was concluded that the interpretation of

results is easier with the Optimal tool when compared with the OpenOME tool.
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Table 7.5: Chi-Square test values for null hypothesis HA0

Involve user OpenOME tool Optimal tool

interaction

No. of response 18 2

% 90% 10%

χ2 12.8

p-value 0.000347(<0.05)

Table 7.6: Chi-Square test values for null hypothesis HF0

Functionality OpenOME tool Optimal tool Equally

No. of response 1 4 15

χ2 20.3

p-value 0.00003.9(<0.05)

7.4.4.3 RQ3: Which tool - the OpenOME or the Optimal goal analysis

tool - was automated (A)?

To find the automation of the tools, the subjects were asked to answer the follo-

wing question: Did the tool require involvement of user interaction during goal

analysis? Table 7.5 shows the responses obtained from the subjects. It is ob-

served from Table 7.5 that 18 subjects noted that OpenOME tool involved user

interaction whereas 2 subjects noted that Optimal tool involve user interaction.

As the data were not distributed normally and due to the nature of variable, we

applied Chi-square test (χ2) to investigate the third null hypothesis (HA0) by

comparing the number of responses in favour of the Optimal tool to the total

number of responses. It was apparent that there is a statistically significant diffe-

rence, as p value = 0.000347 (<0.05). Therefore, the third null hypothesis (HA0)

was rejected and it was concluded that the Optimal tool is automated and did

not require any user interaction.

7.4.4.4 RQ4: Which tool - the OpenOME or the Optimal goal analysis

tool - was more suitable (F) for goal analysis?

To find the functionality of the tools, the subjects were asked to answer the

following question: Was the tool suitable for goal analysis? Table 7.6 summarizes

the responses collected from test subjects with respect to the functionality of goal

analysis by OpenOME tool and Optimal tool. Table 7.6 clearly demonstrates that
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Table 7.7: Chi-Square test values for null hypothesis HP0

Tool
Likert Scale

Slow Responsive Fast

OpenOME 5 11 4

Optimal tool 0 8 12

χ2 15.2618

critical vale at 0.05 5.991

15 subjects noted that both tools were suitable for goal analysis. Of the remaining

5 subjects, 4 stated that the Optimal tool was more suited for goal analysis than

the OpenOME tool. In order to obtain better understanding of which tool is

more suitable for goal analysis, the fourth null hypothesis was tested statistically.

Since the data were not distributed normally, and due to the nature of variables,

we applied Chi-square test (χ2) to investigate the fourth null hypothesis (HF0).

It was apparent that there is a statistically significant difference, as p value =

0.00003.9 (<0.05). Therefore, the fourth null hypothesis (HF0) was rejected

and it was concluded that the Optimal tool is more suited for goal analysis in

comparison with OpenOME tool.

7.4.4.5 RQ5: Which tool - the OpenOME or the Optimal goal analy-

sis tool - had better performance when used to conduct goal

analysis?

To measure the performance, after working with both the tools, each participants

was asked to indicate his/her judgement using Likert scale. The results of this

post-questionnaire are given in Table 7.7. For the Optimal tool, the majority of

the participants believed that it is fast in comparison with the OpenOME tool.

Hence, it could be said that the Optimal tool has better performance than does

the OpenOME tool. To test the fifth null hypothesis (HP0), again the Chi-Square

test with two variables was applied. After applying the test, χ2 was found to be

15.2618 which is greater than the critical value (5.991). Hence, the fifth null

hypothesis (HP0) was rejected. Thus, it was concluded that the Optimal tool

performs better than the OpenOME tool.
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Table 7.8: Chi-Square test values for null hypothesis HS0

Tool
Likert Scale

Not Satisfied Partially Satisfied Fully Satisfied

OpenOME 10 2 8

Optimal tool 0 2 18

χ2 18.9154

critical vale at 0.05 5.991

Table 7.9: Chi-Square test values for null hypothesis HU0

Tool
Likert Scale

Easy medium hard

OpenOME 12 4 4

Optimal tool 17 3 0

χ2 5.00493

critical vale at 0.05 5.991

7.4.4.6 RQ6: Which tool - the OpenOME or the Optimal goal analysis

tool - gave better user satisfaction (S) results?

To test the satisfaction of the goal analysis results, the subjects were asked to

record their satisfaction using a Likert scale. The post-questionnaire results are

given in Table 7.8. The majority of the participants had better satisfaction with

the Optimal tool than with OpenOME tool. Hence, it could be said that the

Optimal gives better satisfaction results than the OpenOME tool. To test the

sixth null hypothesis (HS0), again the Chi-Square test with two variables was

applied. After applying the test, χ2 was found to be 18.9154 which is greater than

the critical value (5.991). Hence, the sixth null hypothesis (HS0) was rejected.

Thus, it was concluded that the Optimal tool gave better results in terms of

satisfaction than did the OpenOME tool.

7.4.4.7 RQ7: Which tool between OpenOME and Optimal goal ana-

lysis was easier to use (U)?

To test the usability of the goal analysis tools, the subjects were asked to record

their judgement using a Likert scale. The post-questionnaire results are given

in Table 7.9. As can be seen from Table 7.9, the opinions of the participants

seem to differ regarding the usability of the OpenOME tool and the Optimal

155



tool. In order to obtain a better understanding of which tool is more easy to

operate and understand, the seventh null hypothesis was tested statistically. Since

the data were not distributed normally, and due to the nature of the variable,

the Chi-square test ( χ2 ) to investigate the seventh null hypothesis (HU0) was

applied. It is apparent that there is a no significant difference, as χ2 is 5.00493

(<5.991). Therefore, the seventh null hypothesis (HU0) was accepted and it can

be concluded that both the Optimal tool and the OpenOME tool are easy to use

and understand.

7.5 Discussion

Based on the statistical analysis from Section 6.4, the Optimal tool was found to

be better than the OpenOME tool in terms of the time taken for goal analysis,

interpretation of results, automation, functionality, performance, and satisfaction.

The reason for this is that Optimal tool is quantitative in nature and did not

involve any subjective preferences in the goal analysis. However, in terms of

ease of use, subjects found both tools easy to use and understand. By overall

comparison, it was concluded that the Optimal goal analysis tool is significantly

better than the OpenOME tool in performing goal analysis of the i∗ framework.

7.5.1 Threats to Validity

The threats to the validity of the experiment are analysed in this section. The

main threat for this experiment was the number of subjects (N=20). This number

is comparatively small: however, the knowledge of the subjects who contributed to

this experiment was significant. It is worth noting that the results were obtained

in a situation where the OpenOME and Optimal tools were applied to small goal

models. An essential factor to consider when performing controlled experiments

is to carry out experiments in an acceptable amount of time. However, most of

the real-life industrial software include larger goal models. Hence, the results of

the experiments could not be generalized to all industrial software. These results

might be valid only when small goal models are used. Moreover, the Optimal

tool was static in performing optimisation. Therefore, the evaluation of Optimal

tool in situations of large goal models and dynamic optimisation of goal models

could be considered for further empirical investigation of this approach.
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7.6 Chapter Summary

In this chapter, we presented a description of the empirical evaluation carried out

in order to evaluate and compare the two goal analysis tools, namely OpenOME

tool and Optimal tool. The two tools were compared and analysed to find which

is more suitable for goal analysis based on the time taken for goal analysis, in-

terpretation of results, automation, functionality, performance, satisfaction, and

ease of use. The statistical analysis of the results obtained from the controlled

experiment indicates the superiority of the Optimal tool over OpenOME in terms

of time taken for goal analysis, interpretation of results, automation, functiona-

lity, performance, and satisfaction. The subjects found that both tools were easy

to use. The experiment was carried out with 20 subjects from undergraduate

and master studies, who have a knowledge of software engineering and/or requi-

rements engineering. The Telemedicine and Youth Counselling case studies from

existing literature were used as test goal models. The future direction for this

research is to use dynamic optimisation using the Optimal tool and apply this

experiment to larger goal models.

This chapter completes the description of the research carried out in this

thesis. In the next chapter, we highlight the main problems that we wanted to

solve and summarise our key contributions in addressing those problems. We

will also discuss some major limitations in our approach and then propose future

work to deal with them.
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Chapter 8

Contributions, Limitations and

Future work

The success of any software system depends on the degree to which it satisfies

the purpose for which it was intended. The term Requirements Engineering (RE)

was introduced to refer to the process which determines the purpose of a software

system and documents it in a form which is amenable to comprehensible scrutiny,

communication followed by implementation. RE is considered to be an inevitable

activity of software development cycle, since poor requirements are perceived to

be a predominant cause of software problems. The initial recognition of the so-

called requirements problems led to development of modeling languages for the

definition and analysis of requirements. One of the most critical problems in

RE is requirements analysis. Although, many approaches have been proposed

for requirements analysis, automated requirements analysis is still a significant

challenge in Requirements Engineering (RE).

Goal-Oriented Requirements Engineering (GORE) is an emerging paradigm

in RE. Similar to traditional and object-oriented paradigms, GORE also evolved

to overcome problems that arise in requirements analysis. Among the GORE

frameworks, the i∗ framework facilitates the analysis of an enterprise with an

emphasis on socio-technical domains which includes stakeholders, their goals, de-

pendencies and alternatives. The i∗ framework can be used as a tool for the

modeling and reasoning of organizational environments and their information sy-

stems. The existing literature works show that the i∗ framework supports only

qualitative analysis of requirements with some limitations. Therefore, it is im-

portant to investigate methods that help to improve the analysis of requirements.

Our work aims to fill that gap as well as to automate the analysis of requirements
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in the i∗ framework. In this chapter, we conclude the work that has been carried

out and suggest directions for future related research.

8.1 Summary of contributions

Our major objective was to provide an optimal quantitative support for goal

analysis in the i∗ framework. We followed a fuzzy-based quantitative approach to

perform goal analysis to address the ambiguity problems that arise in qualitative

analysis. In other words, we used fuzzy numbers to represent the stakeholders’

linguistic representation of requirements. The following research questions were

raised in Chapter 1:

1. How to represent the linguistic description of requirements (by stakeholders)

in goal analysis?

2. How to effectively represent the subjective preference of quantitative values

used in the goal analysis?

3. How to effectively implement requirements of an opposing nature?

4. What type of tool can assist in the process of goal analysis?

We developed a fuzzy-based optimal goal analysis framework, addressing each

of the research questions as summarized below.

The linguistic representation of stakeholders’ preferences regarding require-

ments can be easily represented by fuzzy numbers (research question 1). We em-

ployed fuzzy numbers to represent the contribution of goals/tasks to goals/softgoals

(Chapter 3). Moreover, the i∗ framework involved inter-actor dependencies. The-

refore, we proposed a fuzzy based quantitative goal analysis using inter-actor

dependencies in the i∗ framework. We defined our own membership functions

for the contributions of goal/softgoal to softgoal which were represented by help,

make, some+, some-, hurt, or break. Once the goal model was obtained, the leaf

softgoals were assigned percentage values based on their relative importance. For

each alternative, these leaf softgoal values along with the contribution of fuzzy

values were propagated to the top softgoals. The alternatives that gave maxi-

mum contribution to the top softgoal was selected. To prove the feasibility of the

approach, a simulation was implemented in VC++ and evaluation was carried to

with case studies from existing literature.
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The novel aspect of our framework was the management of subjective prefe-

rences (weights) to the leaf softgoals (research question 2). Specifically, the sub-

jective weights to the leaf softgoals were handled using an optimisation technique

(Chapter 4) namely multi-objective optimisation. For each actor, the objective

functions for each alternative based on its impact on the leaf softgoals was ge-

nerated. Using the scalarization method, the multiple objective functions were

combined into an objective function. This single objective function was then

solved using the MATLAB genetic algorithm to obtain the weights of the leaf

softgoals. These weights were then used in the analysis procedure described in

Chapter 3 to perform goal analysis of the i∗ framework. An interesting point of

optimisation was sensitivity analysis. Sensitivity analysis was conducted to check

the system behaviour for change in input parameter. The input parameter in the

objective function was the impact of the tasks on the leaf softgoals. The lower

and upper bounds of each impact variable were varied to find the range for which

there was no change in the optimal solution.

The goal analysis in the i∗ framework was performed by propagating the

impact and weight values throughout the entire hierarchy of an actor. The op-

timisation model developed in Chapter 4 was partial as it was derived based on

the leaf softgoals. A complete optimisation model was then built based on all

the softgoals and leaf softgoals of an actor (Chapter 5). The multi-objective goal

programming concept was used to build complete optimisation model. As in

Chapter 4, for each actor, for each alternative an objective function was genera-

ted. The multiple objective functions were solved using the IBM ILOG CPLEX

optimizer to find the weights of the leaf softgoals. These weights were then used

in the analysis procedure described in Chapter 3 to perform goal analysis of the

i∗ framework. A tool (research question 4) in the Java Eclipse environment was

developed to perform the inter-actor goal analysis.

Usually, most of the real-world business problems encounter the simultaneous

optimisation of many competitive objective functions (research question 3). To

deal with such problems, we proposed a method for goal analysis based on game

theory in Chapter 6. For each actor, the opposing multi-objective functions were

obtained and were solved to obtain the objective function values. Using these

objective function values and the alternatives of an actor, a payoff matrix was

obtained. Using the zero-sum game theory approach, the payoff matrix was solved

to identify the optimal alternatives. The approach was implemented in the Java

Eclipse environment integrated with the IBM ILOG CPLEX optimizer.

Finally, we performed an empirical evaluation to assess the efficiency and
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effectiveness of our optimal goal analysis framework. The evaluation was perfor-

med against the existing OpenOME tool for the i∗ goal analysis. The evaluation’s

results demonstrated that the approach was effective in comparison with Ope-

nOME tool. The evaluation’s results also lead to some potential future work that

are discussed in the following section.

8.2 Limitations and Future work

Our research can be further improved by addressing some of the potential li-

mitations where further research and extensions to the i∗ goal analysis can be

performed.

8.2.1 Additional parameters for the i∗ evaluation

Our fuzzy based inter-actor quantitative approach has used only softgoal inter-

dependencies in the goal analysis of i∗ framework. In an i∗ goal model, there

are also other types of dependencies including goal dependency, resource depen-

dency and task dependency. These dependencies also contribute to the analysis

of goals in a strategic dependency model of an i∗ framework. Therefore, potential

future work may involve an extension to the goal analysis to include all forms of

dependencies.

The goals contributing to the softgoals evaluation can also be associated with

other parameters such as cost and time for the development of the goal, and the

risk or other factors involved in the development. In the optimal goal analysis

procedure, these factors can also be included in the evaluation of the goals in

order to determine the goals with maximum softgoal satisfaction and minimum

cost factors.

8.2.2 Implementation Issues

In the implementation of optimal quantitative goal analysis, the contributions or

impacts of the task to goals namely make, help, some+, some-, hurt and break are

represented by fuzzy numbers. The membership functions for these fuzzy numbers

can be selected in a subjective way. Different persons may wish to select different

membership functions to represent the same idea and also choice depends on the

context in which it is used. In the implementation of our approach, we established
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fixed values for the contributions. The tool can be modified to choose the fuzzy

values for the contributions.

The main focus of our work is on optimisation of the i∗ frameworks to auto-

mate goal analysis. The implementation of our optimal algorithm is limited in

human involvement for generating objective functions. In the tool implementa-

tion of optimal goal analysis, we have performed static way of generating objective

functions for a given i∗ model. However, in practice, this has to be performed

dynamically. Therefore, this implementation should be thoroughly modified for

general use.

Another concern with the tool is regarding sensitivity analysis of the i∗ frame-

work. In Chapter 4, we have performed only a simulation for sensitivity analysis

of i∗ framework using visual VC++. As a future line of research, the optimal

goal analysis tool can be extended to incorporate sensitivity analysis. We intend

to perform a sensitivity analysis by changing the proportion of the alternatives

in the proposed game-theory-based approach.

The interface used in the optimal goal analysis tool is basic and simple because

of limited time. We intend to improve the interface of the tool to make it more

user friendly and easier to use.

We would also like to perform a more extensive study on the applicability

of our optimisation and game theory approach to other models such as Non-

Functional Requirements framework, Goal-Oriented Requirements Language fra-

mework, and Tropos framework.

We would like to analyze approaches based on Machine Learning to determine

whether these methods can be of use in modifying or extending the approach

described in this research work. In the analysis of real-time software systems,

requirements are sometimes incompletely specified (or not known). To determine

the incompleteness of a given set of requirements, inductive learning algorithms

can be used in our proposal. To deal with vagueness and uncertainty in data,

rough set based approaches can also be used in our proposal.
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Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén

(2012). Experimentation in software engineering. Springer Science & Business

Media.

Yazdania, S., Y.-T. Linb, W. Caic, and E. Huanga (2017). A game theory per-

spective on requirement-based engineering design.

You, Z. (2004). Using meta-model-driven views to address scalability in i* models.

Ph. D. thesis, University of Toronto.

Yu, E. (2001). Agent-oriented modelling: software versus the world. In In-

ternational Workshop on Agent-Oriented Software Engineering, pp. 206–225.

Springer.

Yu, E. (2002). Agent-oriented modelling: software versus the world. Agent-

Oriented Software Engineering II , 206–225.

Yu, E. (2011). Modelling strategic relationships for process reengineering. Social

Modeling for Requirements Engineering 11, 2011.

Yu, E. S. and J. Mylopoulos (1994). Understanding” why” in software process

modelling, analysis, and design. In Software Engineering, 1994. Proceedings.

ICSE-16., 16th International Conference on, pp. 159–168. IEEE.

Yu, E. S. and J. Mylopoulos (1995). From er to armodelling strategic actor relati-

onships for business process reengineering. International Journal of Cooperative

Information Systems 4 (02n03), 125–144.

Zadeh, L. A. (1965). Fuzzy sets. Information and control 8 (3), 338–353.

171



Zadeh, L. A. (1975). The concept of a linguistic variable and its application to

approximate reasoningi. Information sciences 8 (3), 199–249.

Zou, W., Y. Zhu, H. Chen, and B. Zhang (2011). Solving multiobjective opti-

mization problems using artificial bee colony algorithm. Discrete dynamics in

nature and society 2011.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been

omitted or incorrectly acknowledged.

172


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Research Methodology
	Research Outcomes and Main Contributions
	Thesis Structure

	Literature Survey
	Introduction to Requirements Engineering
	Goal-Oriented Requirements Engineering
	KAOS Framework 
	Non-Functional Requirements Framework 
	Goal-Oriented Requirements Language
	Attribute Goal-Oriented Requirements Analysis Method
	i* Framework
	TROPOS

	Goal Analysis
	Qualitative Analysis
	Quantitative Analysis
	Optimisation in Goal Analysis
	Game Theory in Requirements Engineering

	Summary of the Research Review and Purpose of this Research
	Chapter Summary

	Inter-actor Quantitative Reasoning of the i* Framework 
	Overview of Fuzzy Numbers
	Overview of the i* Framework
	The Strategic Dependency Model
	The Strategic Rationale Model

	The Quantitative, Fuzzy based Goal Analysis using Inter-Actor Dependency
	Simulation and Evaluation of the Approach with Case Studies
	Chapter Summary

	Optimal Reasoning and Sensitivity Analysis in the i* Framework
	Need for Optimisation in Quantitative Analysis of the i* Framework
	Multi-Objective Optimisation
	Optimal i* Framework
	Multi-Objective Optimisation Algorithms
	Encoding the Optimisation Problem for Weights of the Leaf Softgoals

	Application of Optimisation to a Case Study
	Evaluation of the Approach using a Case Study

	Sensitivity Analysis
	Sensitivity Analysis of the i* Framework
	Analysis with LAS Case Study

	Chapter Summary

	Optimal Goal Programming of Softgoals in the i* Framework
	Optimisation Model based on SoftGoals in the i* Goal Model
	Multi-Objective Goal Programming (MOGP)
	Formulation of the i* Framework as a Multi-Objective Goal Model
	Evaluation of Alternatives with Softgoal Optimisation
	Deriving Objective Functions for the Actors
	Obtaining Weights by MOGP
	Evaluation of the Approach

	Chapter Summary

	Softgoals with Opposing Nature
	Motivating Example: Supply Chain Management System
	Challenges and Motivation
	Game Theory Model for Goal Modeling
	Introduction to Game Theory
	Game Theory for Multi-Objective Optimisation of i* Goal Model

	Illustration of Game-Theory-Based Goal Analysis using i* Framework 
	Generation of the Objective Functions using Gauge Variables
	Pay-off Matrix and Alternative Selection
	Evaluation of the Approach
	Actor with n (> 2) Top Softgoals

	Chapter Summary

	Tool Validation
	State of the Art
	REDEPEND-REACT
	J-Prim 
	DesCARTES
	OpenOME
	Optimal Goal Analysis of the i* framework

	OpenOME: Qualitative Analysis of the i* Framework
	Optimal Goal Analysis Tool: Quantitative Analysis of the i* Framework
	Empirical Evaluation (Controlled Experiment) to Evaluate the Usability of the Optimal i* Tool 
	Research Objectives
	Experimental Design
	Execution
	Results and Analyses

	Discussion
	Threats to Validity

	Chapter Summary 

	Contributions, Limitations and Future work
	Summary of contributions
	Limitations and Future work
	Additional parameters for the i* evaluation 
	Implementation Issues


	Bibliography

