Faculty of Science and Engineering Department of Applied Geology

# A Petrochronological Investigation of Metamorphic, Melt and Fluid Related Processes in Lower Crustal Rocks from Southwestern Norway and Southern India

**Eleanore Renee Blereau** 

This thesis is presented for the Degree of Doctor of Philosophy of Curtin University

**July 2017** 

### DECLARATION

To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgement has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I warrant that I have obtained, where necessary, permission from the copyright owners to use any of my own published work (e.g. journal articles) in which the copyright is held by another party (e.g. publisher).

Hereau

18 / 7 / 2017

Eleanore Renee Blereau

Date

### ABSTRACT

Long-lived high temperature terranes can be difficult to quantify as a consequence of containing complex and potentially perturbed data sets. Increased rates of diffusion, partial melting and fluid interaction can modify geochronological and geochemical data, obscuring the exact timing of discrete events. By applying a multidisciplinary petrochronological approach two prolonged high-T terranes are investigated to provide new constraints on the duration of high-T conditions. The effect of prolonged high-T on the common geochronometers zircon and monazite is examined and new petrochronological tools for future studies are presented.

Orthopyroxene, the foundation of the charnockite assemblage, is shown to potentially grow during high-*T* metamorphism at *ca* 590–540 Ma (reaching 830–925°C and 6–9 kbar) at Kakkod, Southern India based on the three key lithologies recording overlapping P-T conditions and mineral textures. Contrasting with previous interpretations of charnockite formation being an exclusively post-peak fluid-related process. The crystallisation of the local melt system (*ca* 540–510 Ma) is interpreted to be the source of a later localised fluid event (*ca* 525–490 Ma), that altered the already existing orthopyroxene and caused coupled dissolution-reprecipitation of monazite. Charnockite formation likely occurs on a localised scale due to differences in fluid composition and event ages with a similar nearby locality.

A petrochronological approach shows that the Rogaland–Vest Agder Sector followed a high-*T* polymetamorphic evolution, with regional metamorphism between *ca* 1070–955 Ma (peaking at 850–900°C and 7–8 kbar between *ca* 1035–995 Ma). Samples closer to the Rogaland Igneous Complex (RIC) also experienced later contact metamorphism (at 3–6 kbar and 900°C (2 km) to ~1100°C (at contact)) and display a continuum of ages (from regional to younger), with no clear melt crystallisation until *ca* 900 Ma, 30 Myr after the emplacement of the RIC. High temperature conditions were prolonged, extending previous estimates, remaining at elevated geothermal conditions for at least 100 Myr to ~150 Myr, with implications for the stability of high-grade crust. Based on the results of this study and an assessment of current literature the earlier continent-continent collisional model cannot satisfactorily explain the metamorphic and magmatic evolution of the Sveconorwegian Belt. A long-lived subduction-accretionary model better explains the distribution of magmatism and metamorphism.

Osumilite is successfully dated using the  ${}^{40}$ Ar/ ${}^{39}$ Ar method for the first time with a measured closure temperature of ~770°C for a grain radius of 175 µm and a cooling rate of 10°C/Myr. Osumilite presents an opportunity to directly date portions of a high-*TP*–*T* path by being a datable mineral with quantified thermodynamic activity models, a feat zircon is currently unable to do directly. Diffusion modelling of the age distribution preserved in osumilite provided additional constraints on the maximum temperatures experienced by the sample.

REE-in-zircon diffusion modelling can provide additional constraints on the duration and conditions of high-temperature metamorphism in rocks dominated by recrystallisation and shows,

Abstract

under appropriate conditions and time-scales, REE in zircon are not immobile and can be potentially modified or equilibrated. This modelling also provided constraints on the method of emplacement of the RIC, requiring a rapid assembly as a series of pulses over 1–5 Myr to achieve appropriate temperatures, differing to previous two pulse models.

Whilst both case studies produced geochronological data sets that initially appear similar, the generation of these data sets resulted from unique combinations of processes. The combination of processes generating the resulting data set were resolvable by careful petrochronological analysis. Zircon at Kakkod was controlled by the presence of melt and neocrystallisation whereas in Rogaland zircon was primarily modified by recrystallisation. Monazite recorded the fluid processes at Kakkod whereas high-*T* fluid-absent conditions were recorded by monazite in Rogaland. Combining a number of techniques and multiple geochronometers was highly beneficial in unravelling high temperature systems due to variable responses to different geodynamic and geochemical factors by each mineral, providing new constraints on high-*T* processes. Zircon and monazite are not impervious to modification by high-grade processes but the resultant effects can be recognised in a number of ways and may also be used to provide additional constraints.

'Science is nothing but storytelling under rigorous circumstances'

### -Adam Savage

"In the beginning the Universe was created. This has made many people very angry and has been widely regarded as a bad move."

"The Hitchhiker's Guide to the Galaxy is an indispensible companion to all those who are keen to make sense of life in an infinitely complex and confusing Universe, for though it cannot hope to be useful or informative on all matters, it does at least make the reassuring claim, that where it is inaccurate it is atleast definitively inaccurate."

"Forty-two!... Is that all you've got to show for seven and a half million years' work? I checked it very thoroughly, said the computer, and that quite definitely is the answer. I think the problem, to be quite honest with you, is that you've never actually known what the question is."

"Don't Panic. It's the first helpful or intelligible thing anybody's said to me all day."

"Life... is like a grapefruit. It's orange and squishy, and has a few pips in it, and some folks have half a one for breakfast."

"I only know as much about myself as my mind can work out under its current conditions. And its current conditions are not good."

"We'll be saying a big hello to all intelligent life forms everywhere.. and to everyone else out there, the secret is to bang the rocks together, guys."

### - Douglas Adams "The Hitchhikers Guide to the Galaxy

"Mischeif Managed."

- J. K. Rowling

### ACKNOWLEDGEMENTS

This PhD has been a tumultuous experience of highs, lows, laughter, stress, frustration and confusion with bright points of joy, success and achievement. All of which, especially lately, were experienced in a coffee fueled haze. It's an experience I am grateful for and it's made me appreciate a real weekend, the joys of a nice glass of wine or cider at the end of the day, making time for the things that I enjoy in life, traveling to new places, trying new things and the thrill of scientific discovery. It has also introduced me to an inordinate amount of people and if you are inheretly absent from the thanks below, I apologise and thank you muchly.

Firstly, many thanks to my supervisors Chris Clark, Tim Johnson, Rich Taylor and Pete Kinny for your guidance and answering my many questions. You made me want to work hard to impress you all and helped me grow so I could achieve my goals. I hope we can continue to work together in the future. I know you will miss my enthusiasm, my over use of air quotations and the all time favourite: yes, osumilite is isostructural with millerite.

Thanks also to Martin Hand for interesting and enlightening chats and for helping me the time we went down the 'wrong' side of that mountain in Norway. Many thanks also to Fred Jourdan, Ian Fitzsimons and M. Santosh for working with me, answering my many questions and all the great feedback. Thanks to all the technicians in the SHRIMP, LA–ICP–MS, SEM and Argon labs for all your assistance. Thanks to Luke Hersey for helping me out in the field, sharing my frozen delirium, nonsensical Norwegian store hours, mapping fever and the discovery of the magical cabinet. Thanks also to Mehrooz Aspandiar for all your support and guidance over the years.

A huge amount of hugs and thanks to all my PhD friends, for making me laugh, keeping me positive and looking after me when times were hard. Thanks to you all for listening to my chatty babble, keeping me company during my many coffee runs and supporting my occasional couch surfing. Special thanks to Lucy for your positivity, many laughs and company during all those late night and weekend work days. Also heaps of thanks to Ellie for saving me from MATLAB and calculus hell! To my friends outside of uni, thanks for giving me a taste of the real world now and then, for always being free to talk and for always looking after me. I know you were all quizzical when you found out I liked rocks, but I made you see that they were interesting in the end!

Thank you to the QWERTY keyboard for placing G so close to F, making 'buffered' very easily becomes 'buggered' during tired and furious typing.

Last but not least, to my parents and my family for putting up with my crazy, stress-filled, occasionally grumpy and sleep-deprived self. For keeping me fed and watered and for listening to my occasional rants about geology (life), the universe and everything. If only the answer to my thesis was 42! It was fun surprising you with how technical my work is, and showing you that geology is much more than smashing two rocks together.

I'm happy to now say so long to my thesis and thanks for all the schist (fish).

### LIST OF PUBLICATIONS INCLUDED AS PART OF THIS THESIS

This thesis is a compilation of a number of research papers that were either published, submitted or in preparation at the time of writing this document. All papers have a statement of co-authorship in Appendix A and published papers 1 and 2 are reprinted in their published form in Appendix A at the end of this thesis.

### Paper 1:

Blereau, E., Clark, C., Taylor, R. J. M., Johnson, T. E., Fitzsimons, I. C. W., and Santosh M., 2016. Constraints on the timing and conditions of high-grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India. *Journal of Metamorphic Geology*, 34, 527–549. doi:10.1111/jmg.12192.

### Paper 2:

Blereau, E., Johnson, T. E., Clark, C., Taylor, R. J. M., Kinny, P. D., and Hand, M., 2017. Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway. *Geoscience Frontiers*, 8, 1–14. doi: http://dx.doi.org/10.1016/j.gsf.2016.07.003

### Paper 3:

Blereau, E., Clark, C., Jourdan, F., Johnson, T. E., Taylor, R. J. M., Kinny, P. D., Hand, M. and Eroglu, E. Constraining the timing of prograde metamorphism in long-lived hot orogens.

(Under review in Geology since 7/6/2017)

### Paper 4:

Blereau, E., Clark, C., Taylor, R. J. M., Kinny, P. D., Johnson, T. E., Sansom, E., Hand, M. Using accessory minerals to unravel thermal histories in polymetamorphic terranes: an example from Rogaland, SW Norway.

(Under review in the Journal of Metamorphic Geology since 23/6/2017)

### **TABLE OF CONTENTS**

| Declaration                                                                   | i      |
|-------------------------------------------------------------------------------|--------|
| Abstract                                                                      | ii     |
| Acknoweldgements                                                              | vi     |
| List of publications                                                          | vii    |
| Table of contents                                                             | viii   |
| Thesis aims                                                                   | xiii   |
| Thesis structure                                                              | xiii   |
| Chapter 1: Introduction – An overview of U–Pb petrochronology and its         | 1      |
| application in high-grade rock systems                                        |        |
| 1. Introduction                                                               | 2      |
| 2. Petrochronological techniques                                              | 2      |
| 2.1 The path to petrochronology                                               | 3      |
| 2.2 SIMS and LA–ICP–MS                                                        | 4      |
| 2.3 Electron Probe geochronology                                              | 5      |
| 2.4 Laser Ablation Split Stream Petrochronology                               | 6      |
| 2.5 Advantages and limitations                                                | 6      |
| 3. The chemistry of petrochronology                                           | 7      |
| 3.1 Textural features of metamorphic zircon and monazite                      | 7      |
| 3.2 Within mineral chemical variation                                         | 11     |
| 3.3 REE partitioning between minerals                                         | 12     |
| 3.4 The controls on the chemistry of high-grade accessory minerals            | 17     |
| 4. Linking petrochronology to metamorphic forward models                      | 19     |
| 4.1 Limitations and complications with forward modelling                      | 27     |
| 5. Conclusions                                                                | 29     |
| 6. Relevance for this thesis                                                  | 29     |
| References                                                                    | 31     |
| Chapter 2: Constraints on the timing and conditions of high-grade metamorphis | sm, 55 |
| charnockite formation, and fluid-rock interaction in the Trivandrum Block,    |        |

### southern India

| 1. Introduction                         | 56 |
|-----------------------------------------|----|
| 2. Geological setting                   | 57 |
| 3. Field relationships at Kakkod quarry | 58 |

| Table of contents                                                                            |    |  |
|----------------------------------------------------------------------------------------------|----|--|
| 4. Petrography                                                                               | 60 |  |
| 4.1 Garnet-biotite gneiss                                                                    | 60 |  |
| 4.2 Transitional zone between garnet-biotite gneiss at charnockite                           | 60 |  |
| 4.3 Garnet-bearing charnockite                                                               | 63 |  |
| 4.4 Metapelitic gneiss                                                                       | 63 |  |
| 4.5 Pegmatite                                                                                | 64 |  |
| 5. Analytical methods                                                                        | 64 |  |
| 5.1 Phase equilibria modelling                                                               | 64 |  |
| 5.2 SHRIMP U–Pb geochronology                                                                | 66 |  |
| 5.3 LA-ICP-MS REE analysis of monazite, zircon and garnet                                    | 67 |  |
| 6. Results                                                                                   | 67 |  |
| 6.1 Phase equilibria modelling                                                               | 67 |  |
| 6.2 Monazite SHRIMP U–Pb dating                                                              | 69 |  |
| 6.2.1 Garnet-biotite gneiss                                                                  | 69 |  |
| 6.2.2 Transition zone                                                                        | 69 |  |
| 6.2.3 Charnockite                                                                            | 69 |  |
| 6.2.4 Metapelitic gneiss                                                                     | 69 |  |
| 6.2.5 Pegmatite                                                                              | 71 |  |
| 6.3 Zircon SHRIMP U–Pb dating                                                                | 71 |  |
| 6.3.1 Garnet-biotite gneiss                                                                  | 71 |  |
| 6.3.2 Charnockite                                                                            | 71 |  |
| 6.3.3 Metapelitic gneiss                                                                     | 71 |  |
| 6.4 Rare Earth Element mineral chemistry                                                     | 71 |  |
| 6.4.1 Monazite                                                                               | 72 |  |
| 6.4.2 Zircon                                                                                 | 72 |  |
| 6.4.3 Garnet                                                                                 | 75 |  |
| 7. Discussion                                                                                | 75 |  |
| 7.1 Pressure-temperature evolution                                                           | 75 |  |
| 7.2 A case for peak-metamorphic charnockite formation                                        | 78 |  |
| 7.3 Timing of peak metamorphism at Kakkod                                                    | 79 |  |
| 7.4 Age of post-peak fluid event                                                             | 81 |  |
| 8. Conclusion                                                                                | 82 |  |
| Acknowledgements                                                                             | 83 |  |
| References                                                                                   | 84 |  |
| Chapter 3: Reappraising the <i>P</i> – <i>T</i> evolution of the Rogaland–Vest Agder Sector, | 95 |  |
| southwestern Norway                                                                          |    |  |

| Table of contents                                                             |     |
|-------------------------------------------------------------------------------|-----|
| 1. Introduction                                                               | 96  |
| 2. Regional geology                                                           | 97  |
| 3. Sample descriptions and petrology                                          | 101 |
| 3.1 Distal sample (N 58°49'49.4", E 6°16'49.2")                               | 101 |
| 3.2 Intermediate sample (N 58°42'9.7", E 6°10'1.4")                           | 103 |
| 3.3 Proximal sample (N 58°35'46.5", E 5°46'59.0")                             | 104 |
| 4. Phase equilibria modelling                                                 | 106 |
| 4.1 Distal sample                                                             | 107 |
| 4.2 Intermediate sample                                                       | 107 |
| 4.3 Proximal sample                                                           | 108 |
| 5. Discussion                                                                 | 109 |
| 5.1 P–T conditions of regional metamorphism                                   | 109 |
| 5.2 <i>P</i> – <i>T</i> conditions of contact metamorphism                    | 109 |
| 5.3 $P-T$ evolution of the RVA Sector                                         | 111 |
| 5.4 Implications for the tectonic setting of the Sveconorwegian orogeny       | 112 |
| 6. Conclusion                                                                 | 113 |
| Acknowledgements                                                              | 114 |
| References                                                                    | 115 |
| Chapter 4: Constraining the timing of prograde metamorphism in long-lived hot | 127 |
| orogens                                                                       |     |
| 1. Introduction                                                               | 128 |
| 2. Geological setting and sample description                                  | 129 |
| 3. Methods and results                                                        | 130 |
| 4. Discussion                                                                 | 131 |
| 5. Conclusions                                                                | 133 |
| Acknowledgements                                                              | 134 |
| References                                                                    | 135 |
| Chapter 5: Using accessory minerals to unravel thermal histories in           | 141 |
| polymetamorphic terranes: an example from Rogaland, SW Norway                 |     |
| 1. Introduction                                                               | 142 |
| 2. Regional geology                                                           | 143 |
| 3. Sample descriptions                                                        | 145 |
| 3.1 Garnet–sillimanite–cordierite migmatite (ROG13/11, 30 km)                 | 145 |
| 3.2 Sapphirine–orthopyroxene–cordierite–spinel granulite (ROG13/10,10 km)     | 146 |
| 3.3 Osumilite–orthopyroxene–spinel migmatite (ROG13/2, 2 km)                  | 146 |

| Table of contents                                                                   |     |
|-------------------------------------------------------------------------------------|-----|
| 3.4 Garnet-sillimanite-cordierite-spinel migmatite (ROG14/5, at contact)            | 149 |
| 3.5 Garnet-bearing anorthosite (ROG14/8, at contact)                                | 149 |
| 4. Analytical methods                                                               | 149 |
| 4.1 SHRIMP U–Pb geochronology                                                       | 149 |
| 4.2 REE analysis by LA–ICP–MS                                                       | 151 |
| 5. Results                                                                          | 151 |
| 5.1 Zircon U–Pb geochronology                                                       | 151 |
| 5.1.1 Garnet-sillimanite-cordierite migmatite (ROG13/11, 30 km)                     | 152 |
| 5.1.2 Sapphirine-orthopyroxene-cordierite-spinel granulite                          | 153 |
| (ROG13/10,10 km)                                                                    |     |
| 5.1.3 Osumilite-orthopyroxene-spinel migmatite (ROG13/2, 2 km)                      | 153 |
| 5.1.4 Garnet-sillimanite-cordierite-spinel migmatite (ROG14/5, at contact)          | 153 |
| 5.1.5 Garnet-bearing anorthosite (ROG14/8, at contact)                              | 153 |
| 5.2 Monazite U–Pb geochronology                                                     | 154 |
| 5.2.1 Garnet-sillimanite-cordierite migmatite (ROG13/11, 30 km)                     | 154 |
| 5.2.2 Osumilite-orthopyroxene-spinel migmatite (ROG13/2, 2 km)                      | 154 |
| 5.2.3 Garnet-sillimanite-cordierite-spinel migmatite (ROG14/5, at                   | 154 |
| contact)                                                                            |     |
| 5.3 Rare Earth Elements                                                             | 156 |
| 5.3.1 Zircon                                                                        | 156 |
| 5.3.2 Garnet                                                                        | 157 |
| 5.3.3 Monazite                                                                      | 158 |
| 6. Discussion                                                                       | 159 |
| 6.1 Metamorphic events in SW Norway                                                 | 159 |
| 6.2 Modification of REE during high– $T$ conditions                                 | 162 |
| 6.3 Implications for the assembly of the RIC                                        | 166 |
| 7. Conclusions                                                                      | 168 |
| Acknowledgements                                                                    | 168 |
| References                                                                          | 169 |
| Chapter 6: Conclusions and future research directions                               | 177 |
| 1. Timing, conditions and controlling factors on high- $T$ metamorphic processes in | 178 |
| Southern India and Southwestern Norway                                              |     |
| 1.1 S India (Chapter 2)                                                             | 178 |
| 1.2 SW Norway (Chapter 3–5)                                                         | 179 |
| 2. Tectonic implications for SW Norway                                              | 181 |

| Table of contents                                                                   |     |
|-------------------------------------------------------------------------------------|-----|
| 3. Behaviour of traditional geochronometers during high- <i>T</i> conditions        | 181 |
| 3.1 S India (Chapter 2)                                                             | 181 |
| 3.2 SW Norway (Chapter 5)                                                           | 182 |
| 4. The importance of a petrochronological approach in assessing high-grade terranes | 183 |
| 5. Future research directions                                                       | 184 |
| References                                                                          | 185 |
| Chapter 7: Bibliography                                                             | 189 |
| Appendix A: First authored papers                                                   | 233 |
| Appendix B: Supplementary material for Chapter 2                                    | 263 |
| Appendix C: Supplementary material for Chapter 3                                    | 307 |
| Appendix D: Supplementary material for Chapter 4                                    | 315 |
| Appendix E: Supplementary material for Chapter 5                                    | 339 |
|                                                                                     |     |

### **THESIS AIMS**

Petrochronology is a relatively young research field, integrating geochemistry, geochronology and petrography to create a firm connection between age constraints and phase equilibria modelling, with the aim of unravelling complex terranes and geological problems. High temperature terranes push the limits of petrochronology and many mineral phases due to the interconnected involvement of fluids, melt and higher rates of diffusion, resulting in complex reaction textures as well as complex geochronological and geochemical information. Southern India and Southwestern Norway are two complex metamorphic regions where the metamorphic evolutions of both regions have been highly debated, with contrasting interpretations on the timing, duration and P-T conditions as well as the involvement of melt and fluid processes and factors controlling metamorphism. SW Norway also has two contrasting tectonic models representative of two very different geodynamic settings, with potential implications for the formation of magmatic suites hosted within the region. This thesis will apply current analytical techniques (SHRIMP U–Pb, LA–ICP–MS) and a newly updated thermodynamic modelling dataset ('ds62') to these regions to evaluate previous data and provide new constraints and interpretations.

Using these two regions as case studies, this thesis has three main aims:

- Quantify the timing, conditions and factors controlling high-*T* metamorphic processes in S India and SW Norway through a petrochronological approach.
- Investigate the behaviour of traditional geochronometers during high-*T* conditions.
- Highlight the importance of a petrochronological approach in assessing high-grade terranes.

Additional aims and side projects:

- Tectonic implications for SW Norway based on this study.
- Test osumilite as a new potential thermochronometer.

### **THESIS STRUCTURE**

This thesis has been written as a series of individual manuscripts investigating the aims of this thesis within two case studies: one within southern India (**Chapter 2**) and one within SW Norway (**Chapter 3–5**). These manuscripts are either published in peer review journals, in preparation for submission or under review. The formatting of each chapter within this thesis may vary due to the requirements and formatting guidelines of each individual journal as well as the requirements of this thesis. Due to the composite nature of this thesis there is some repetition in the methodology. Regional geological backgrounds with relevant information for the contents of each manuscript are given within each pertinent chapter. Supplementary information for each manuscript is provided in appendices at the end of this thesis.

### **Introduction: Chapter 1**

This chapter provides a review of U–Pb petrochronological techniques as applied to metamorphic rocks, with a focus on the application of accessory minerals and how various forms of analytical data may be combined and interpreted. This chapter is written in the style of a review paper.

### Southern India: Chapter 2

**Chapter 2** provides a case study from Kakkod, southern India. Kakkod is a previously unstudied quarry located in the Trivandrum Block (TB) within the Southern Granulite Terrane (SGT). The P-T-t history of the TB has been subject to debate for many years. The occurrence and generation of incipient charnockites has also been highly debated, with many key localities within the TB. Kakkod quarry provided an opportunity to evaluate the P-T conditions and timing of metamorphism on a local scale, as well as increase understanding of charnockite formation due to the fact that all three of the key rock types of the TB were present within one exposure (unique from other exposures). **Chapter 2** applies the techniques of SHRIMP U–Pb geochronology and LA–ICP–MS REE and trace element geochemistry of zircon and monazite, petrography and phase equilibria modelling ('ds62').

#### This chapter is published in the Journal of Metamorphic Geology as:

Blereau, E., Clark, C., Taylor, R. J. M., Johnson, T. E., Fitzsimons, I. C. W., and Santosh M., 2016. Constraints on the timing and conditions of high-grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India. Journal of Metamorphic Geology, 34, 527–549. doi:10.1111/jmg.12192.

#### Southwestern Norway: Chapter 3-5

**Chapters 3–5** provide a case study from the Rogaland–Vest Agder (RVA) Sector of SW Norway. The RVA sector is a high-grade metamorphic province with two contrasting tectonic models (collisional vs. prolonged subduction/accretionary) as well as two different P-T-t models (polymetamorphic vs. singular metamorphic evolution) that have been proposed by previous studies. The RVA sector is also host to the ~1000 km<sup>2</sup> Rogaland Igneous Complex (RIC) which has been postulated in some studies to be intrinsically related to the metamorphic evolution in the form of a contact metamorphic event.

**Chapter 3** combines detailed petrographic observation with phase equilibria modelling ('ds62') on a suite of samples collected at different distances from the RIC (30 km, 10 km and at the RIC contact). This sampling approach was used to re-evaluate the P-T conditions of the RVA on a regional scale and evaluate the temporal affect of the RIC on the metamorphic evolution. An assessment of the two tectonic models based on previous literature and the metamorphic evolution proposed in this paper was also conducted with implications for the tectonic setting of the Sveconorwegian Orogeny.

Thesis aims and structure

This chapter is published in Geoscience Frontiers as:

Blereau, E., Johnson, T. E., Clark, C., Taylor, R. J. M., Kinny, P. D., and Hand, M., 2017. Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway. Geoscience Frontiers, 8, 1–14. doi: 10.1016/j.gsf.2016.07.003.

**Chapter 4** provides the first attempt of  ${}^{40}$ Ar/ ${}^{39}$ Ar dating on osumilite, a silicate mineral found in HT/ UHT metamorphic rocks and volcanic rocks. Comparisons are made between  ${}^{40}$ Ar/ ${}^{39}$ Ar osumilite ages and U–Pb monazite geochronology from a previous study on the same sample. Phase equilibria modelling ('ds55') are compared with *P*–*T* conditions from **Chapter 3**. The applicability of osumilite as a thermochronometer is accessed and the closure temperature from diffusion experiments is also reported for the first time. The implications and additional constraints on the metamorphic evolution of the RVA are also discussed.

This chapter is under review in Geology as:

Blereau, E., Clark, C., Jourdan, F., Johnson, T. E., Taylor, R. J. M., Kinny, P. D., Hand, M. and Eroglu,E. Constraining the timing of prograde metamorphism in long-lived hot orogens. (Since 7/6/2017)

**Chapter 5** applies SHRIMP U–Pb geochronology and LA–ICP–MS REE and trace element geochemistry to the samples as in **Chapter 3** as well as two additional samples (at 2 km from the RIC (same sample used in **Chapter 4**) and at the contact of the RIC). The affects of anorthosite emplacement on the country rocks of the RVA are investigated as well as refining the timing of different events. Diffusion modelling was conducted to evaluate and quantify diffusion modification of REE in zircon due to high-grade metamorphism. REE data from Rogaland are interpreted using the aforementioned model, providing additional constraints on the method of emplacement of the RIC.

### This chapter is under review in the Journal of Metamorphic Geology as:

Blereau, E., Clark, C., Taylor, R. J. M., Kinny, P. D., Johnson, T. E., E. Sansom, Hand, M. Using accessory minerals to unravel thermal histories in polymetamorphic terranes: an example from Rogaland, SW Norway. (Since 23/6/2017)

### Conclusions and future research directions: Chapter 6

Chapter 6 summarises the key findings of each case study and future research suggestions.

### **Bibliography: Chapter 7**

Complete bibliography of all references included in this thesis.

An overview of U–Pb petrochronology

Chapter 1

### **INTRODUCTION**

An overview of U–Pb petrochronology and its application in high-grade rock

systems

### An overview of U–Pb petrochronology

### Chapter 1

#### **1. INTRODUCTION**

The stability of zircon and monazite in most geological settings, the typically low concentrations of common lead (204Pb) in these minerals and their high closure temperatures  $(T_{\circ})$  (>900°C: Ashwal et al., 1999; Cherniak and Watson, 2001; Cherniak et al., 2004; Cherniak and Pyle, 2008) have made these accessory minerals the two most commonly used U-Pb geochronometers. As a result of forming from the interplay of a variety of processes, both zircon and monazite have a high degree of inherent complexity in terms of growth zones and geochemical signatures, with individual grains often recording multiple ages. Petrochronology uses this internal complexity, petrography and geochronology to connect accessory minerals like zircon and monazite to the silicate mineral evolution, forming a strong connection between recorded age data and P-T conditions. Linking age data to the silicate mineral evolution is crucial for increasing understanding on the time-scales and rates of orogenic processes (e.g. Hermann and Rubatto, 2003; Janots et al., 2009), unravelling complex metamorphic terranes (e.g. Rubatto et al., 2013) and generating quantitative P-T-t paths (e.g. Foster et al., 2004). However, the age data recorded by accessory minerals are further complicated in high temperature terranes due to increased rates of diffusion (e.g. Kohn and Penniston-Dorland, 2017), partial melting (e.g. Bea and Montero, 1999) and fluid influx (e.g. Kelly et al., 2012), perturbing recorded age and geochemical data and resulting in complex data sets. Polymetamorphic terranes take this a step further, potentially removing earlier parageneses

and overprinting recorded age data. This overview highlights how petrochronology may be used to unravel complex high-grade and polymetamorphic terranes, by providing a resource for interpreting a range of textural, geochemical and partitioning data from accessory minerals. It also provides an overview of the history of petrochronology, a relatively young field of research, including the main high-resolution in situ analytical techniques used and their relative advantages and limitations. The range of zoning and geochemical signatures within zircon and monazite and their use in petrochronological studies are characterised in terms of high temperature processes. The importance of rare earth elements (REE) and their partitioning behaviour for petrochronological studies is discussed. Examples of how accessory mineral information can be integrated with forward modelling is demonstrated using synthetic P-T-t paths of high-grade lithologies related to natural examples of textures, geochemistry and REE relationships. The current limitations and complications when using accessory minerals in high-grade rocks are also discussed.

### 2. PETROCHRONOLOGICAL TECHNIQUES

The importance of the petrochronological approach was first put forward by Fraser et al. (1997), shortly after the recognition of complex internal structures in accessory minerals previously described as featureless in transmitted light through the application of BSE and CL imaging (Vavra, 1990; Hanchar and Rudnick, 1995). Previously, analysing these featureless grains using earlier dissolution methods could provide minimal whole grain chemical information. However, as described



**Fig. 1:** Timeline of important petrochronological developments from the 1970's till present. 1: Davis et al. (2003), 2: Vavra (1990), 3: Suzuki and Adachi (1991), 4: Jackson et al. (2004), 5: Fraser et al. (1997), 6: Rubatto (2002), 7: Rubatto and Hermann (2007), 8: Yuan et al. (2008), 9: Kylander-Clark et al. (2013)

by Hanchar and Rudnick (1995), the presence of multiple growth zones would make it difficult to date individual events through dissolution and to isolate structures such as thin rims from older cores. The ability to measure an array of major and trace elements by in situ targeting was essential in order to properly characterise different domains and avoid age mixing, as this would open up a complex array of geological information within individual grains (Ireland and Williams, 2003). The application of in situ Secondary Ion Mass Spectrometry (SIMS) analysis to accessory minerals and later Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) saw these techniques become the most widely used and foundational petrochronological technique(s) due to their high spatial resolution and ability to measure a range of isotopes in situ within a small analytical volume. The application and types of interpretations that can be made using these techniques will be covered in the most detail, with the use of SIMS for U-Pb and LA-ICP-MS for REE of particular focus for this thesis. Other techniques such as EPMA and their advantages

and disadvantages compared to SIMS and/or LA–ICP–MS will also be discussed.

#### 2.1 The path to petrochronology

Earlier dissolution techniques (e.g. ID-TIMS) provided age information from the dissolution of a single grain, and therefore were unable to resolve useful information from grains with high levels of internal complexity (Ireland et al., 2008; Nemchin et al., 2013). The development of SIMS instruments with high spatial resolution made it possible to study several age domains or growth generations within a single grain, providing an alternative to dissolution methods. The Sensitive High Resolution Ion MicroProbe (SHRIMP I) was developed between 1974-1981 and was the first SIMS instrument fully dedicated to the evaluation of geological materials (Fig. 1), with some of the first U-Pb SHRIMP data published in the early 80's by Compston et al. (1982), Froude et al. (1983) and Williams et al. (1983). The SHRIMP II became operational in 1992, with four times the sensitivity of its predecessor and faster analysis

### *An overview of U–Pb petrochronology*

speeds, increasing the number of grains analysable in one session (Davis et al., 2003; Ireland et al., 2008). Targeting of identified internal textures from cathodoluminescence (CL) and back scattered electron (BSE) imaging in the early 1990's (Vavra, 1990; Hanchar and Miller, 1993) facilitated analysis of different growth zones that are not visible under typical light sources, with the added bonus of reducing mixed analyses and avoiding potential problems such as cracks. These forms of imaging have been combined with all techniques (i.e. LA-ICP-MS, SIMS, EPMA) and have become crucial for interpreting geological processes behind analysed age domains, such as protolith ages (Hanchar and Rudnick, 1995), metamorphism (Rubatto et al., 2001) or fluid infiltration (Taylor et al., 2014). The early 1990's were also important with the development of EPMA dating (Suzuki and Adachi, 1991) as well as the start of LA-ICP-MS in 1993 (Feng et al., 1993; Fryer et al., 1993; Jackson et al., 2004)(Fig. 1). LA-ICP-MS was first used to measure in situ <sup>207</sup>Pb/<sup>206</sup>Pb ages (Feng et al., 1993; Fryer et al., 1993; Jackson et al., 2004)(Fig. 1), with increasing applications from the mid 90's for both ages and trace element geochemistry (Hirata and Nesbitt, 1995; Fernández-Suárez et al., 1998; Horn et al., 2000; Ketchum et al., 2001; Li et al., 2001; Košler et al., 2002; Tiepolo, 2003). The use of REE geochemistry to categorise zircon textures and associated formative processes through correlating geochemistry and textures with microstructures was highlighted by Rubatto (2002), and saw the growth of REE in petrochronological applications. In response to the growth in the application of REE geochemistry, experimental studies to provide quantitative constraints on REE partitioning

between accessory minerals and other minerals were conducted, e.g. zircon and garnet (Rubatto and Hermann, 2007; Taylor et al., 2015a). These experiments increased understanding on the partitioning of these elements between minerals and provided a framework to interpret REE distributions in natural samples. Until the late 2000's the collection of both REE and age data required the use of multiple analytical spots. Laser Ablation Split Stream (LASS) provided a new tool to analyse both geochemical and geochronological information from the same analytical volume. The premise for LASS was first described in 2008 (Yuan et al., 2008) and was adopted by Xie et al. (2008) and Chen et al. (2010) with improved precision and changes to ablation volume. In 2013, the key paper of Kylander-Clark et al. (2013) underpinned the widespread uptake of LASS, due to its flexibility and wide applicability to a variety of accessory and major minerals as well as its petrochronological applications.

### 2.2 SIMS & LA-ICP-MS

SIMS (and more specifically the SHRIMP) allows measurement of small domains for isotopic and elemental abundance and has been instrumental to petrochronology as a tool for resolving complicated growth histories of accessory minerals. For the analysis of minerals such as zircon and monazite a primary oxygen ion beam is used to ablate material within a small diameter spot ( $\sim$ 5–30 µm), forming a very shallow pit (<5 µm) with ionised positive material accelerated using a charge differential into a multi-collector mass spectrometer (when first designed the SHRIMP II used a single collector). SIMS requires very

An overview of U–Pb petrochronology

high mass resolution to separate between ions of all elements as well as accompanying oxides and hydroxides within the ionised material. Analysis times are long (~20 minutes per spot) in order to achieve the required high resolution without the loss of precision.

LA-ICP-MS applies a more destructive laser instead of an ion beam to ablate the sample, resulting in an ablated aerosol transported by a carrier gas (e.g. Argon) to a mass spectrometer. LA-ICP-MS has high spatial resolution, analysing spot sizes of  $\sim 10-30 \mu m$  to a depth of  $\sim 5-15 \mu m$ , which is a larger analytical volume than analysed by SIMS. By ablating a larger analytical volume, shorter analysis times are possible (~1 min) whilst achieving resolution on par with SIMS under ideal conditions. LA-ICP-MS can apply either a quadrapole or a multi-collector mass spectrometer: the quadrapole's ability to analyse a large range of elemental masses with low detection limits is best applied to trace and major elements, and the multicollector's high precision and narrow mass range is most suited for isotope ratios for age derivation and Hf isotopes.

The derivation of isotopic ages measured by SIMS and LA–ICP–MS require the collection of primary and secondary standards with known ages throughout an analytical session to correct for fractionation in combination with other uncertainties (Schmitt and Vazquez, 2017). SIMS and LA–ICP–MS are capable of measuring U–Pb and REE individually, but there are advantages and disadvantages to this approach which will be discussed below. SIMS and LA–ICP–MS may be integrated with other techniques such as EBSD, EPMA, CL/BSE imaging and can be used to collect data from experiments involving accessory minerals. Within this thesis SIMS is combined with LA–ICP–MS through initial SIMS analysis for U–Pb followed by LA–ICP–MS for trace elements on top of the SIMS analytical spots, with this combination of techniques being widely in a number of other studies (e.g. Rubatto, 2002; Hermann and Rubatto, 2003; Rubatto and Hermann, 2003; Rubatto et al., 2006; Taylor et al., 2014; Johnson et al., 2015). The application of SIMS and LA–ICP–MS provided a foundation for how REE and U–Pb vary in zircon and monazite in different geological and mineralogical environments and the measurement other diagnostic geochemical features.

#### 2.3 Electron Probe geochronology

EPMA dating provides an alternative to SHRIMP and LA-ICP-MS and is applicable to monazite (Suzuki and Adachi, 1991, 1994; Braun et al., 1998; Cocherie et al., 1998; Dahl et al., 2005; Mahan et al., 2006; Williams et al., 2006; Zhou et al., 2008)(also known as CHIME dating), but is rarely applied to zircon (Santosh et al., 2003), generating chemical Th-U-total Pb ages. EPMA offers high spatial resolution as it is capable of analysing features on the micron scale ( $\sim 1-2 \mu m$ ) (Cocherie et al., 1998; Williams et al., 2017). This makes the technique very useful for analysing small textural features visible only on highresolution geochemical maps. This technique is non-destructive as it relies on the application of an electron beam to the sample causing atoms to release characteristic X-rays, as opposed to the destructive ionisation of sample material utilised by previously described techniques. This makes EPMA perferable for use when analysing rare

and important samples where minimal sample destruction is desired. However, by analysing a small analytical volume this technique can only achieve a low compositional resolution (detection limit of a few tens of ppm: Engi et al., 2017). EPMA analysis can be conducted in situ as spot analyses, arrays of spots or as maps (e.g. Sanislav, 2011; Williams and Jercinovic, 2012). Using the mapping approach, areas of particular geochemistry can be selected as irregular domains to target with later spot analyses (Williams et al., 1999; Buick et al., 2010; Dumond et al., 2015; Shazia et al., 2015). EPMA dating requires a number of assumptions: that the sample contains no common Pb and that the sample has experienced no Pb loss or modification to U/Th/Pb contents except through radioactive decay. These assumptions are required due to the inability of EPMA to measure individual elemental isotopes, with only total elemental concentrations being measured. This is particularly problematic for non-radiogenic common lead, which is corrected in isotopic studies to determine the amount of radiogenic lead (206, 207, 208). Processing Pb ratios without making this correction will result in overall higher amounts of Pb and anomalously old ages. Whilst EPMA dating may be applicable to some samples, many high-grade metamorphic samples experience partial to complete Pb loss and U and Th concentrations may be modified during the metamorphic evolution by processes such as fluid infiltration (Williams et al., 2011).

2.4 Laser Ablation Split Stream Petrochronology

LASS is the most recent petrochronological technique, becoming available for analytical studies

*An overview of U–Pb petrochronology* 

in ~2013 (Kylander-Clark et al., 2013). While LA-ICP-MS applies a single mass spectrometer at a time, LASS splits the ablated aerosole laser stream across two mass spectrometers. One stream is used for collecting isotopes for age information (typically using a multi-collector) and the other is used for collecting many different trace and major elements (typically using a quadrapole detector), with the important point being all data are collected from the same analytical volume. By collecting data from the same analytical volume all data is directly comparable, as opposed to having to apply multiple analytical sites or analytical spots on top of previous analysis sites to collect the same information. LASS has been applied to both monazite (e.g. Holder et al., 2015; Štípská et al., 2015) and zircon (e.g. Gordon et al., 2013; Zhao et al., 2015), simultaneously collecting trace elements and isotopic ratios. LASS was not applied in this study due to the timing of the project research. LASS was in its infancy at the beginning of this project (early 2014) and was not as widely available as SIMS and LA-ICP-MS techniques.

#### 2.5 Advantages and limitations

The small and shallow analysis spots of SIMS cause minimal sample destruction with good spatial resolution in terms of targeting specific textural or chemical domains (Ireland and Williams, 2003). However, in order to maintain high resolution without the loss of precision, SIMS analysis (i.e. SHRIMP) times are slow (~20 mins per spot) limiting the number of analytical spots per session (~50 analytical spots). LA–ICP–MS on the other hand with its fast analysis times thanks

#### An overview of U–Pb petrochronology

to analysing a larger ablation volume is perfect for evaluating large sample sizes (>100 grains) and, under ideal conditions, can achieve similar levels of precision. U–Pb and REE are both collectable via SIMS or LA–ICP–MS individually, but both techniques require multiple analytical spots adjacent to each other or repolishing in between analytical sessions. As isotopic variations can occur on the micron scale within the sample this limitation can introduce discrepancies between data sets. The combination of SIMS for U–Pb and LA–ICP–MS for REE lessens the effect of different analytical volumes by placing laser spots over previous SHRIMP spots.

EPMA has the best spatial resolution of all techniques, acheiving spots sizes up to 10 times smaller than ion probe and laser ablation spot sizes (Cocherie et al., 1998; Cocherie and Albarede, 2001; Engi et al., 2017). EPMA is less destructive than all the other techniques, is widely available and has shorter analysis times than SIMS (Cocherie and Albarede, 2001; Santosh et al., 2003; Williams et al., 2006). Nevertheless, EPMA dating is limited to monazite as well as samples with (or assumed to have) no common lead due to an inability of measure individual isotopes, with no way to correct for common lead or unusual amount of other Pb isotopes due to parent isotope modification.

The main advantage of LASS is that by splitting the aerosole stream between two mass spectrometers isotope ratios and trace element concentrations may be measured within the same analytical volume. LASS has the same disadvantages as LA–ICP–MS with deeper analytical pits, increasing the risk of mixed analyses due to heterogeneity with depth, but any heterogeneities can be resolved through time-resolved data. LASS, like LA–ICP–MS, is relatively inexpensive per spot compared to SIMS due to faster analysis times, allowing the collection of very large volumes of data within one session (~500 analytical spots).

All of the above limitations and advantages are also dependant on the properties of the sample in question and the aim of the research. Is the desired sample area very small and therefore spot size is the limitation? Are precise trace element concentrations more important than isotopic ratios? Is the sample rich in elements that will cause problems for the instruments collectors? All of the above mentioned techniques and the applicable parameters must be evaluated on a case-by-case basis, in order to determine the most appropriate method that will allow the best results to be achieved.

### 3. THE CHEMISTRY OF PETROCHRONOLOGY

3.1 Internal textures of metamorphic zircon and monazite

Zircon and monazite have been shown to form from a range of geological processes within different geodynamic environments, with a related empirical catalogue of internal textural features (Corfu et al., 2003; Taylor et al., 2016), allowing processes to be dated based on associated textures. Under CL or BSE imaging internal textures are generated in response to internal variations in chemistry or average atomic number respectively (Corfu et al., 2003). Metamorphic rocks display the widest array of internal textures within



**Fig. 2:** Catalogue of zircon and monazite textures and a synthetic geochronological data set. a- Zircon textures modified from Corfu et al. (2003) (i, ii, v), Möller et al. (2002) (iii), Nutman et al. (2002) (iv), Johnson et al. (2015) (vi, x), Taylor et al. (2016) (vii, xiii), Hermann and Rubatto (2003) (viii), Taylor et al. (2015b) (ix), Vavra et al. (1996) (xi), Taylor et al. (2014) (xii, xiv) and Hoskin and Black (2000) (xv). b- Synthetic Terra Wasserburg plot with suggestions of potential interpretations based on analysed textures. §- enlarged inset of younger range of ages. c- Monazite textures modified from Taylor et al. (2015b) (xvi), Kohn et al. (2005) (xvii), Johnson et al. (2015) (xix), Ayers et al. (1999) (xx), Rasmussen and Muhling (2007) (xxi), Rubatto et al. (2001) (xxii), Erickson et al. (2015) (xxiii), Williams et al. (2011) (xxiv) and Taylor et al. (2014) (xxv).

### *An overview of U–Pb petrochronology*

Chapter 1

accessory minerals due to the large range of possible protoliths as well as numerous processes during metamorphism capable of modifying geologically resilient minerals like zircon.

As a result of their resilient nature, sometimes accessory minerals are the only available source of protolith information, typically in the form of magmatic or detrital zircon with oscillatory zoning (Pidgeon, 1992; Möller et al., 2002; Corfu et al., 2003; Taylor et al., 2016) (Fig 2a i–iii). Following initial crystallisation these grains may be extracted through erosion and incorporated as detrital zircon into sedimentary protoliths (Friend et al., 2003) or metamorphosed as magmatic zircon within an igneous protolith (Hoskin and Black, 2000), recording ages predating metamorphism related to crystallisation or deposition of the protolith (Fig. 2b).

Whilst largely inert during lower grades of metamorphism, the introduction of partial melts at higher temperatures and the compatibility for elements within accessory minerals makes melt crucial for the growth of new material, but can also cause the dissolution of pre-existing phases (Harley et al., 2007). The ability of melt to partially dissolve oscillatory zoned zircon was highlighted by Rubatto et al. (2001), with zircon located within in the leucosome of a metapelite displaying embayments cross cutting original internal zoning that was in-filled by later growth. Irregular shaped relict cores are also associated with melt interaction (Fig. 2a ii-v) (Corfu et al., 2003; Taylor et al., 2016). Within melt bearing rocks most zircon growth is related to post-peak melt crystallisation based on empirical trends (Taylor et al., 2016) and modelling (Roberts and Finger, 1997; Yakymchuk and Brown,

2014a), resulting in overgrowths on pre-existing grains (Taylor et al., 2014) (Fig. 2a v-viii). The occurrence of multiple melt forming reactions during a metamorphic evolution can generate multiple stages of zircon overgrowths as shown by Hermann and Rubatto (2003), who interpreted three periods of zircon growth in relation to two partial melting events separated by cooling. High temperature neocrystallised metamorphic zircon are characterised by sector zoning (aka 'soccer ball' zircon) as well as more equant grain shapes compared to igneous zircon (Fig. 2a ix-xi). The formation of 'soccer ball' zircon has been shown to occur from prograde anatexis (Vavra et al., 1996) and crystallisation from high-T (Schaltegger et al., 1999) to UHT supersolidus melts (Kelly and Harley, 2005).

Melt is very important to zircon growth and modification but the volume of internally or externally derived fluids is just as important. Whilst most melt related zircon growth is related to post-peak crystallisation, Gauthiez-Putallaz et al. (2016) showed that fluids can permit prograde zircon growth in connection to dehydration reactions. The capability of fluids to modify metamict zircon domains was described by Kirkland et al. (2009), leaving altered domains susceptible to further diffusional modification (Cherniak and Watson, 2003). Many studies have noted the importance of fluids in the modification of zircon by coupled dissolution-reprecipitation (e.g. Pidgeon, 1992; Vavra et al., 1996; Williams et al., 1996; Schaltegger et al., 1999; Geisler et al., 2007), creating zircon that may retain original grain shapes but show regions replacing original textures (Fig. 2a xii).

In melt-depleted and fluid-poor areas

### An overview of U–Pb petrochronology

increased temperatures during high-grade metamorphism can cause recrystallisation of existing zircon. Recrystallisation is promoted due to increased diffusion rates in connection to high temperatures, causing internal zoning in zircon to become diffuse (Pidgeon, 1992; Vavra et al., 1996; Hoskin and Black, 2000; Hoskin and Schaltegger, 2003), forming 'ghost' zoning as termed by Hoskin and Black (2000) (Fig. 2a xiii-xv). Recrystallisation processes can cause problems in interpreting zircon from high-grade rocks. As shown by Möller et al. (2002), recrystallisation can be incomplete (or partial), resulting in Pb and other trace elements being inherited from the original grain, generating mixed ages. Pb loss during metamorphism associated with recrystallisation can be recognised within a concordia plot, with recrystallised regions typically falling along a discordant trend from older inherited ages towards younger concordant ages dating the Pb loss event (i.e. metamorphism)(Fig. 2b)(Taylor et al., 2014). Currently there is no definitive way to know if a zircon has undergone complete Pb loss other than age trends (recrystallisation towards a younger age intercept or population) and homogenisation of internal textures potentially coupled with variations in chemistry.

Monazite does not have as many textural variations as zircon but can still contain high levels of textural complexity such as five individual monazite generations with unique ages as identified by Kohn et al. (2005) (Fig. 2c xvi, xvii). Monazite has also been reported with limited to no internal structures (e.g. Johnson et al., 2015) (Fig. 2c xix). Zoning in monazite can record both metamorphic (Zhu et al., 1997) or igneous (re)crystallisation events (Ayers et al., 1999) (Fig. 2c xx) depending on the lithologies involved. Textures in monazite should not be the sole basis for interpreting different events, with a study by Martin et al. (2007) reporting monazite where internal textural variations did not correlate at all with age and Tucker et al. (2015) showed that age does not always correlate with internal compositional variations. Monazite can be used to date a range of different processes such as the emplacement of thrust sheets (Kohn et al., 2005), crustal thickening (Cottle et al., 2009b), anatexis (Cottle et al., 2009a) and Walsh et al. (2015) showed monazite can record long periods of growth (e.g. ≥80 Myr) even at UHT conditions. Inherited monazite is possible within metamorphic rocks including those reaching upper greenschist (Rasmussen and Muhling, 2007)(Fig 2c xxi), amphibolite facies (Rubatto et al., 2001)(Fig 2c xxii) as well as high-grade conditions (Cutts et al., 2013), but is less common than inherited zircon due to its more reactive nature (Yakymchuk et al., 2017). In connection to its reactive nature, monazite has been shown to grow during a variety of metamorphic mineral reactions including the appearance of staurolite (Kohn and Malloy, 2004). Pyle and Spear (2003) documented monazite growth in relation to four whole-rock reactions including both xenotimebearing and absent reactions. This connection to metamorphic reactions makes monazite a great tool in dating petrological evolutions (e.g. Janots et al., 2008; Kelsey et al., 2008; Spear and Pyle, 2010) as well as deformation events in relation to tectonic fabrics (Williams and Jercinovic, 2002), deformation twins and distortion (Erickson et al., 2015)(Fig. 2c xxiii). Monazite is also very adept at recording fluid events, seen as lobate internal

### An overview of U–Pb petrochronology

features formed through coupled-dissolution reprecipitation (Vavra and Schaltegger, 1999; Williams et al., 2011; Taylor et al., 2014) (Fig. 2c xxiv, xxv) or irregular alteration textures from hydrothermal alteration (Poitrasson et al., 1996; Poitrasson et al., 2000). Fluids also affect the recorded compositional information (e.g. Taylor et al., 2014) but can also modify U-Pb systematics through Pb loss (Vavra and Schaltegger, 1999; Williams et al., 2011; Kirkland et al., 2016) as well as U and Th loss (Williams et al., 2011) or Th gain (Harlov, 2011). The lobate internal features have been replicated through experiments to gain additional constraints on the types of fluids responsible including alkali-bearing fluids such as  $Na_{2}Si_{2}O_{5} + H_{2}O$  (Harlov and Hetherington, 2010; Harlov et al., 2011; Williams et al., 2011).

Chapter 1

#### 3.2 Within mineral chemical variation

Whilst internal textures alone can provide a lot of information, these textures can be further characterised by chemical variations that may correlate with particular geological processes, growth or breakdown of particular minerals or with respect to age. One of the commonly used chemical variations is the ratio between Th and U. This is routinely measured during dating processes as a means of checking for excess <sup>206</sup>Pb in relation to Th decay (Schärer, 1984). The Th/U ratio has mainly been used to classify zircon as either 'metamorphic' or 'magmatic', following initial observations and trends noted in different rock types (Ahrens, 1965; Williams et al., 1996; Hoskin and Ireland, 2000). Zircon is typically classified as 'metamorphic' with a Th/U ratio of <0.1, which has been shown to associate with featureless CL

zones associated with metamorphic modification (Williams et al., 1996; Rubatto, 2002). However, the classification of metamorphic zircon based purely on a Th/U ratio of <0.1 is not robust as the ratio has been shown to be strongly affected by other Th-bearing phases such as monazite (Stepanov et al., 2012) and xenotime (Rubatto, 2017), resulting in low Th/U ratios regardless of the growth environment (Möller et al., 2003; Kelly and Harley, 2005). Studies in the Napier Complex have reported Th/U>>0.1 from zircon due to zircon acting as the main sink for Th as a result of no other Th-bearing phases being present (Kelly and Harley, 2005). Kelly and Harley (2005) showed metamorphic zircon with high Th/U ratios can be formed from syn-metamorphic anatectic melts. Metamorphic melts and fluids tend to fractionate U over Th resulting in higher Th/U ratios (Kohn and Kelly, 2017). Another possible interpretation for Th/U>0.1 is presented by Möller et al. (2002) and Harley et al. (2007) where the Th/U ratio of analysed metamorphic zircons was inherited from the original igneous zircon that was recrystallised. Many HT-UHT metamorphic samples also show exception to the <0.1 classification including orthogneisses (Kelly and Harley, 2005), metapelites (Schaltegger et al., 1999; Möller et al., 2003) and metapsammites (Vavra et al., 1996). Th/U ratios have also been used in monazite to differentiate between different age populations. Taylor et al. (2014) related the increase in Th/U with age to fluid modification causing the incorporation of Th + Si and age modification. Monazite in the study by Johnson et al. (2015) showed a continuum of ages, however, these were dividable into two populations based on texture and Th/U ratio (dark BSE response

### An overview of U–Pb petrochronology

#### Chapter 1

+ low Th/U = older population, bright BSE response + high Th/U ratio = younger population) corresponding to prograde growth and melt crystallisation. All of these studies highlight the complexity and care that must be taken when classifying and interpreting minerals the Th–U– Pb system.

Yttrium is highly compatible in both monazite and garnet, but garnet with its larger volume exerts greater pressure on the available Y budget (Gibson et al., 2004). This pressure on the available Y budget by garnet has a roll-on effect to monazite due to its sensitivity to available Y. By analysing Y within different age domains, measured ages may be correlated with garnet growth (low Y) or garnet breakdown (high Y) reactions (Bea et al., 1994; Foster et al., 2002; Rubatto, 2002; Foster et al., 2004).

By quantifying the variation of internal chemistry with temperature, minerals may be used to estimate temperature conditions (i.e. geothermometers). Zircon has become a valuable high-temperature (mineral pair) thermometer related to the integration of titanium into zircon at high-T accompanied by zirconium substitution in rutile (Zack et al., 2004; Watson and Harrison, 2005; Watson et al., 2006; Ferry and Watson, 2007). However, this technique requires the presence of both of these minerals in a sample otherwise only a minimum temperature may be estimated (Watson and Harrison, 2005). This thermometer can also suffer from temperature overestimates when used in rocks experiencing low-pressure conditions (<5 kbar)(Rubatto, 2017). For samples that are zircon free, monazite can be used within two thermometers. The behaviour of yttrium at different temperatures within garnet-bearing lithologies has been calibrated as the garnetmonazite-xenotime thermometer and is applicable to rocks with only monazite or xenotime as well as rocks containing both (Pyle and Spear, 1999, 2000; Pyle et al., 2001; McFarlane et al., 2005; Tomkins and Pattison, 2007). For garnet-free assemblages monazite-xenotime thermometry may be used, but if no xenotime is present only a minimum temperature estimate may be derived (Gratz and Heinrich, 1997; Andrehs and Heinrich, 1998).

#### 3.3 REE partitioning between minerals

With the aim of unifying zircon with the mineralogical evolution and in-turn metamorphic conditions Rubatto (2002) categorised trace element variations in zircon and accompanying minerals from different textural settings, showing geochemical relationships between REE bearing minerals such as zircon and garnet. This work built a foundation for the petrochronological approach and the usefulness of integrating REE and U-Pb data from accessory minerals. This was achieved by characterising the geochemical response of REE minerals to each other and to metamorphic processes, tying accompanying geochronology to different processes. Once quantified, the distribution of REE between two minerals (i.e. elemental partitioning) can be used to infer the progression of mineral growth, the state of equilibrium between two phases, as well as the presence or absence of a particular phase during a portion of the metamorphic evolution. Partitioning of REE between two minerals is controlled by the degree of fit of the pertinent element, with one mineral more readily accepting that element



Fig. 3: Partition coefficient plots of experimental (colour) and empirical data (black) (references within figure). a-Partitioning between zircon and garnet (Modified after Taylor et al., 2016). b- Partitioning between zircon and melt (Modified after Taylor et al., 2015a). c- Partitioning between monazite and melt (Modified after Stepanov et al., 2012). d- Partitioning between monazite and xenotime (Modified after Andrehs and Heinrich, 1998). e- Partitioning between monazite and K-feldspar (Modified after Villaseca et al., 2003). f- Partitioning array plot of zircon/garnet compared to the experimental data of Taylor et al., 2015a, \*- The axis of this plot are: x:  $\log(D_{yb})$ , y:  $\log(D_{slope}) = \log(D_{yb}/D_{Gd})$  (Modified after Taylor et al., 2017).

into its lattice based on ionic radius, charge and substitution mechanisms. The partitioning of REE ( $D_{REE}$ ) between different minerals has been quantified through the analysis and observation of natural lithologies such as eclogites (Rubatto,

2002), paragneisses (Hokada and Harley, 2004; Kelly and Harley, 2005) and orthogneisses (Villaseca et al., 2003) as well as experimental studies to quantify relationships such as zircon/ garnet, zircon/melt (Rubatto and Hermann, 2007;

### *An overview of U–Pb petrochronology*

Taylor et al., 2015a), monazite/melt (Stepanov et al., 2012) and monazite/xenotime (Andrehs and Heinrich, 1998).

The partitioning of REE between zircon and garnet (D<sub>REE</sub> (Zrc/Grt))(Fig. 3a) is widely used in high-grade metamorphic rocks such as pelitic granulites (Rubatto, 2002; Whitehouse and Platt, 2003; Clark et al., 2009), associated leucosomes (Hokada and Harley, 2004; Harley and Nandakumar, 2014) and granulites reaching UHT conditions (Baldwin and Brown, 2008). As this technique is reliant on zircon and garnet, this technique is not applicable to rocks that are completely garnet- or zircon-absent; potential alternatives are discussed below. By characterising the REE distribution of certain zircon textures as well as texturally different garnet populations, the REE profiles of each mineral can be compared in terms of relative chondrite normalised abundances or as a ratio of each element (e.g. Yb<sub>2rc</sub>/Yb<sub>Grt</sub>). As both garnet and zircon are minerals rich in mid-toheavy REE (M-HREE) over light REE (LREE), they compete for the same elements when equilibrating within the same system, resulting in similar REE patterns if equilibrium is reached. By comparing the REE patterns between zircon and garnet, zircon ages can be attributed to a particular stage of the metamorphic evolution based on the presence or absence of equilibrium with garnet (i.e. pre-dating or post-dating garnet growth). The partitioning of REE between zircon and garnet is largely controlled by garnet, an important sink for trace elements (Bea et al., 1994; Hermann and Rubatto, 2003). Although both garnet and zircon compete for M-HREE, garnet preferentially incorporates M-HREE easier than zircon into its structure. This relationship has been empirically

observed in rocks (e.g. granulite to UHT/UHP) where zircon growing in the presence of garnet have flat to slightly depleted REE patterns due to competition for M-HREE from the existing garnet (Fig. 4a) (Whitehouse and Platt, 2003; Hokada and Harley, 2004; Kelly and Harley, 2005; Harley and Kelly, 2007; Wu et al., 2008a; Wu et al., 2008b; Fornelli et al., 2014; Whitehouse et al., 2014). Partitioning coefficients  $(D_{RFF})$  for zircon over garnet (Zrc/Grt) may be graphically presented on a logarithmic plot with the growth of zircon in the presence of garnet seen as a curve with a M-HREE (Yb/Gd slope) slope of ~1 to a slightly curved profile (Fig. 3a; Taylor et al., 2015a). This logarithmic plot allows the comparison between REE partitioning patterns from empirical and experimental studies (Fig. 3a).

Experimental studies were conducted to quantify the partitioning of REE between zircon and garnet at set temperature conditions to link T-t constraints to empirical studies. The first experimental study was conducted by Rubatto and Hermann (2007) and looked at migmatitic granulites and eclogites. Experiments were conducted at ~20 kbar and granulite-UHT temperatures with Ca-rich garnet. The results of the experiments by Rubatto and Hermann (2007) showed a temperature-dependant control on the partitioning of M-HREE: a M-HREE slope of near 1 at ~1000°C but heavily favouring zircon at lower temperatures (Fig. 3a). The second experimental study was conducted by Taylor et al. (2015a) on pelitic migmatites with experiments conducted at 7 kbar and 900-1000°C. In contrast to the first experiments, the experimental results of Taylor et al. (2015a) showed no significant correlations between temperature and M-HREE

An overview of U–Pb petrochronology

partitioning, with a M-HREE slope of near 1 for all temperatures. Whilst the two experiments alternate between two M-HREE partitioning patterns (more convex to a flatter pattern), this variation has also been noted in empirical studies (Fig. 3a). This variation in M-HREE partitioning patterns may reflect the pressure differences between the two studies or variations in garnet chemistry (Taylor et al. 2015a). The addition of more experiments testing the control of pressure and garnet chemistry may resolve this discrepancy and shed light on the factors controlling REE partitioning. These experiments still provide valuable information for empirical studies by relating partitioning patterns to ones generated through experiments at certain temperatures (using the experiment with appropriate bulk composition). If an empirical partitioning pattern matches one generated from an experiment this may be interpreted as the empirical partitioning relationship equilibrating at the temperature defined by the experimental pattern. A lack of partitioning relationships is also useful as shown by Harley and Nandakumar (2016) who interpreted garnet porphyroblast cores to predate zircon growth by a lack of partitioning between REE in zircon/garnet.

Zircon and garnet-bearing rocks, while abundant, are only some of the wide array of metamorphic parageneses. Partitioning relationships between zircon and melt ( $D_{REE}$ (Zrc/ Melt)) are applicable to garnet-free rocks in supra-solidus conditions.  $D_{REE}$ (Zrc/Melt) have been experimentally quantified for pelitic (Taylor et al., 2015a), granulite and eclogite (Rubatto and Hermann, 2007) lithologies (Fig 3b). Many zircon-bearing rocks also contain monazite, but monazite can also be present in zircon-absent assemblages (Morrissey et al., 2016) and has been shown to be affected by bulk composition (Wing et al., 2003; Fitzsimons et al., 2005; Kelsey et al., 2008). Partitioning relationships have been experimentally quantified for monazite and melt  $(D_{REE}(Mnz/Melt))$ (Fig. 3c) within a peraluminous granitic composition (Stepanov et al., 2012) as well as within a number of empirical studies: Yurimoto et al. (1990) (pegmatitic granite), Ward et al. (1992) (granitic), Bea et al. (1994) (peraluminous migmatite). Andrehs and Heinrich (1998) experimentally quantified monazite and xenotime  $(D_{REE}(Mnz/Xen))$  partitioning relationships for amphibolite to granulite temperatures using a bulk composition modelled from a metapelitic granulite (Fig. 3d), allowing additional T-t constraints from zircon-free rocks. Monazite and K-feldspar  $(D_{REE}(Mnz/Kfs))$  has also been quantified but only empirically from granulites and felsic igneous rocks (Villaseca et al., 2003)(Fig. 3e).

All of the aforementioned partitioning relationships are typically applied by generating REE averages of certain textures or populations of each mineral and relating those in turn to experimental information if available. While this approach may be applicable for a simple interrogation of the dataset, the natural complexity and variability of the sample is lost. A new approach described by Taylor et al. (2017) uses data arrays with the capability of resolving large data. This array approach incorporates all zircon analyses from a sample to visualise partitioning relationships or trends within a logarithm plot of M-HREE slope  $(\log(D_{yb}/D_{Gd}))$  versus HREE partitioning values  $(\log(D_{yb}))$  (Fig. 3f). Natural samples may be compared to experimental data graphically, with each zircon analysis and their





Sm Eu Gd Tb Dy Ho Er Tm Yb Lu



La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

**Fig. 4:** Rare Earth Element patterns. a-Representative chondrite normalised REE patterns for different types of zircon. i- Schematic of different zircon REE patterns in relation to different processes. b- Representative chondrite normalised REE patterns for different types of monazite. ii- Schematic of different monazite REE patterns in relation to different processes. c- Representative chondrite normalised REE patterns for different types of garnet.

respective ages comparable to different garnet or orthopyroxene compositions within the sample (Taylor et al., 2017). Zircon analyses that partition with the selected garnet composition form linear arrays of data comparable to that defined by experimental data (Fig. 3f). By interrogating each individual analysis instead of averages this approach provides additional resolution to the timing of petrologic events (e.g. garnet resorption or orthopyroxene growth). Currently, partitioning relationships are only considered between two phases where in reality multiple phases may be interacting within an equilibration volume, potentially causing additional complications and unquantified relationships. Nonetheless, partitioning of REE between major and accessory

An overview of U–Pb petrochronology

minerals is a key and important technique to petrochronological study.

Chapter 1

3.4 The controls on the chemistry of high-grade accessory minerals

Rare Earth Element patterns can provide information on the formation geochemical environment at the time of mineral growth but are also controlled by growth and break down of other minerals, partial melts, fluids and diffusion. Zircon and monazite favour different REE, M–HREE and LREE respectively and can exert slight reductions in the concentration of their favoured elements in the opposing mineral during growth. However, many other minerals have stronger influences on the chemistry in zircon and monazite.

Garnet is a key REE-bearing mineral in metamorphic rocks and by having a huge capacity for REE (in particular M-HREE) has recognised influences on both zircon and monazite. Zircon grown in igneous lithologies (i.e. garnet-free) are characterised by steep M-HREE slopes e.g. (Schaltegger et al., 1999; Rubatto, 2002; Taylor et al., 2015b) (Fig 4a, i), reflecting incorporation of any available REE in the geochemical system if no other REE-bearing phases are present. In the presence of garnet, zircon shows flat M-HREE slopes representative of the competition for M-HREE regardless of the overall lithology (Fig. 4a, i): metapelites (Hermann and Rubatto, 2003; Taylor et al., 2015b), eclogites (Rubatto, 2002) and felsic gneisses (Taylor et al., 2015b). An important caveat to consider is flat M-HREE patterns in zircon can occur when zircon forms coevally with garnet as well as following garnet growth. This can result in chronology

issues, with the only definitive interpretation based on REE data alone being the presence of garnet during zircon growth or modification. The textural location of the accessory mineral is also important as garnet can effectively shield even more reactive monazite from later modification as described by Montel et al. (2000), preserving earlier populations. Zhu and O'Nions (1999) showed monazite growing in the presence of or coeval with garnet can show depletion in M-HREE (Fig 4b, ii), a feature recognised in other studies (Foster et al., 2000; Foster et al., 2002; Kohn et al., 2005; McFarlane et al., 2005; Rubatto et al., 2006), and can be used as a complimentary or comparative indicator of garnet to zircon if both phases record similar ages. Other REE patterns in addition to flat M-HREE patterns occur in garnet and can provide information on processes predating zircon and monazite growth, such as the growth of garnet in zircon-absent, melt-present conditions which displays a convexity to the MREE (Fig. 4c) (Rubatto and Hermann, 2003). Increased concentrations of Y and HREE can occur in residual garnet resulting from resorption of available REE released during garnet breakdown (Baxter et al., 2017) resulting in enriched rims or 'annuli' structures in elemental maps (Pyle and Spear, 1999). The wide array of documented REE patterns of garnet permit detailed examinations of the geochemical evolution during metamorphism, including recognising multiple melting events during stages of growth (forming a 'bell curve' M-HREE pattern: Hermann and Rubatto, 2003). One of the most common controls on REE is feldspar due to its wide P-T stability except for extreme P or T. The presence or absence of feldspar (plagioclase more so than K-feldspar

(Nagasawa, 1971)) can affect both zircon and monazite due to feldspar strongly partitioning Eu. When growing with plagioclase or in a rock with high amounts of plagioclase, zircon (Bea and Montero, 1999; Rubatto, 2002; Hermann and Rubatto, 2003; Möller et al., 2003) and monazite (Zhu and O'Nions, 1999; Hermann and Rubatto, 2003; Rubatto et al., 2006) are characterised by negative Eu anomalies (Fig. 4b, i-ii). Eu anomalies can be used to demonstrate increasing crystallisation of plagioclase in connection to partial melt crystallisation, as shown by Johnson et al. (2015) with a direct correlation between the negativity of the Eu anomaly in monazite with age. When growing in a feldspar-free rock, as long as the bulk composition is not already Eu depleted, crystallising zircon and monazite will have a positive Eu anomaly (Fig. 4 i).

Zircon readily grows within melt-bearing environments including metamorphic and igneous systems, however the two systems are readily told apart based on internal zircon textures and REE patterns. Zircon growing within partial melt formed during metamorphism in the absence of garnet will show steep M-HREE patterns with wholesale depletion in REE compared to igneous zircon (Schaltegger et al., 1999; Rubatto, 2002; Möller et al., 2003)(Fig. 4a, i). Whitehouse and Kamber (2003) showed there is a relationship between the REE composition of zircon growing in anatectic melts and the volume and composition of melt, resulting in the deviation from characteristically igneous REE patterns to steep REE patterns that are relatively depleted (Fig. 4 i).

Fluids have also shown to have variable influence on REE, with fluid altered zircon from Taylor et al. (2014) displaying increased scatter

## *An overview of U–Pb petrochronology* to the HREE but zircon related to a hydrothermal event from Kirkland et al. (2009) show uniformly enriched REE (Fig. 4a). As shown by Rubatto and Hermann (2003) zircon forming from a fluid under eclogite-facies can show wholesale depletion in nearly all trace elements and lacks a negative Eu anomaly (Fig. 4a). Despite the varied effects on REE composition, likely caused by variable fluid compositions, fluid related processes can be easily identified via internal textures (see earlier). The same fluids that modified zircon in Taylor et al. (2014) were also shown to affect HREE in monazite but to a lesser extent than in zircon due to the lower initial concentrations (Fig. 4b). This fluid event caused internal textural modification to both zircon and monazite that also correlated with age (Taylor et al., 2014).

All of the aforementioned REE patterns are dependant on the geochemical environment and diffusion. Recrystallisation (i.e. solid state) is a diffusion related process, with the effected mineral expelling elements that don't fit well within the atomic lattice or that are located within low energy sites in order for the mineral to reach equilibrium with the surrounding geochemical environment. Each element has its own unique diffusivity in a particular mineral which is a function of ionic radius and activation energy (which is inversely affected by temperature), causing complications to re-equilibrating systems as no two elements will re-equilibrate at the same rate. Due to very slow rates of diffusion in most geological settings REE are largely immobile within zircon, but diffusion is enhanced at elevated temperatures due to the positive exponential relationship between diffusivity and temperature as shown by Cherniak and Watson (2003). This
## results in REE in recrystallised zircon largely representing the REE composition of the original zircon and not representing the surrounding evolving geochemical system. Recrystallised zircon may have steep REE patterns to relatively depleted REE patterns and may be associated with uniform low CL response textures, ghost zoning and discordant trends or spreads of ages (Fig. 2b) (Taylor et al., 2014). The REE patterns seen in recrystallised zircon are largely dependant on the starting composition of the zircon (measurable from relict regions or based on internal textures) as well as the conditions of metamorphism by being a diffusion related process. The bulk rock chemistry of the rock also exerts a first-order control over

the available trace elements, so consideration of the rock bulk composition associated with the interpreted textural and geochemical context of accessory minerals is of key importance in order to avoid missleading interpretations when comparing different samples.

Higher temperatures, whilst increasing rates of diffusion, also affects equilibration volume and the associated effective bulk composition. Equilibration volume is an added level of complexity to a metamorphic system. Most interpretations are based purely on the overall mineral assemblage, i.e. garnet-bearing or garnet-absent, with the assumption that zircon growing in the rock was interacting with all the minerals within the whole rock. Conversely, it has been recognised that many metamorphic rocks can equilibrate on a smaller scale, forming subdomains within which minerals interact with an effective bulk composition that may differ on the small scale to a neighbouring domain (Palin et al., 2016; Lanari and Engi, 2017).

This is important for accessory phases growing within such domains as mineral assemblages and recorded geochemical information may vary due to the absence or presence of phases rich in REE, resulting in range of potential REE patterns recorded in the same rock but from different bulk compositions or assemblages. The presence of different sized equilibrium domains is why establishing textural context of accessory minerals and their accompanying trace element geochemistry is essential in high-grade rocks.

### 4. LINKING PETROCHRONOLOGY TO METAMORPHIC FORWARD MODELS

The ultimate end point of petrochronology is forming the connection between various types geochronological and geochemical data of and P-T conditions built on phase equilibria and petrological interpretations. As discussed above, accessory minerals provide a wealth of information, in particular within high-grade rocks, surviving high temperatures whilst recording information on melt, fluids and remaining geochronologically and geochemically robust even after long timescales at high-T. Accessory mineral information (i.e. ages, chemistry) is commonly connected to metamorphic forward modelling (i.e. pseudosections) by using categorised relationships (through empirical and experimental studies) in regards to texture, chemistry and microstructures to form a connection between dated but not directly modelled minerals (e.g. monazite or zircon) and modelable minerals. Methods of linking accessory minerals to forward models will be illustrated using two synthetic models (Fig. 5) showing how this information can be coalesced into a qualitative P-T-t path, as well as evaluating



#### An overview of U–Pb petrochronology

Fig. 5: Synthetic P-T evolutions with associated types of zircon and monazite, garnet growth/breakdown and potential REE systematics. a- Singular clockwise P-T evolution. (i) Incorporation of inherited zircon into metamorphic protolith. (ii) Primary garnet with sillimanite inclusions, recrystallisation of inherited zircon. (iii) Generation of relict zircon cores, initial monazite growth. (iv) Additional garnet growth and peritectic grains start to grow. (v) Neocrystallised 'soccer ball' zircon, continued monazite growth and recrystallisation of zircon. (vi) Garnet breakdown to cordierite forming microzircon within the breakdown texture. (vii) Melt crystallisation and majority of zircon growth (overgrowths) and final monazite growth, recrystallised zircon modification slows due to crystallisation of melt and cooling temperatures. (viii) A later fluid event causes modification to zircon and monazite forming lobate textures. b- A residual protolith along a clockwise polymetamorphic P-T path. (i) Inherited zircon starts to recrystallise. (ii) Subsolidus monazite growth along the prograde path in the presence of relict garnet, recrystallisation of zircon continues. (iii) Upon crossing an elevated solidus the generation of minor melt causes additional monazite growth and promotes recrystallisation of existing zircon but is insufficient to see new zircon growth. (iv) Garnet breakdown to plagioclase + orthopyroxene with neocrystallised microzircon, final monazite growth and complete 'ghost zoning' to recrystallised zircon. After a later localised hydration event, the hydrated areas followed the grey P-T path during a second metamorphic event. (v) Following localised hydration melt embays previously recrystallised zircon and previously grown monazite becoming relict cores stable with relict garnet grains. (vi) Neocrystallised zircon and monazite in equilibrium with minor garnet growth. (vii) Final melt crystallisation seen as zircon overgrowths.

and discussing limitations. These two P-T evolutions shown in the synthetic models could be produced from real samples. Such paths may be identified through forward modelling: generating a modelled P-T diagram from which associated mineral assemblages and microstructures within the sample may be linked to form a P-T path along which the sample evolved. Some of the assumptions and limitations of forward modelling will be discussed later.

Chapter 1

The first P-T evolution (Fig. 5a) is representative of a standard granulite facies clockwise P-T evolution of a pelitic protolith containing inherited zircon (Fig. 5a i). Along the prograde path any inherited zircon may start to recrystallise as temperatures increase, coeval with primary garnet growth (Fig. 5a ii). Prograde information in high-grade rocks tends to be either difficult to constrain or completely absent from the preserved paragenesis and is one of the frequent gaps in the petrochronological record. Minerals growing during prograde metamorphism may have once dated prograde heating, but upon reaching peak conditions can be modified due to closure temperatures typically being exceeded (closure temperature below the metamorphic temperature = mineral is diffusively open) as well as due to high-grade processes (e.g. dissolution, fluid alteration) and perturbation will continue until cooling. No evidence of prograde metamorphism may be present at all due to no subsolidus geochronometer growth or complete overprinting by later metamorphism. Minor crystallisation of zircon during the prograde to peak metamorphic evolution has been shown to occur through the introduction of externally derived melts (Andersson et al., 2002; Flowerdew et al., 2006; Wu et al., 2007) as well as through local migration of melt (Harley and Nandakumar, 2014; Harley, 2016), but preservation of such phases is dependent on the evolution of the individual system and the location of the phase.

Upon crossing the solidus and with the generation of partial melts, inherited zircon may be

#### *An overview of U–Pb petrochronology*

consumed/dissolved by the melt phase generating relict oscillatory zoned cores (Fig. 5a iii) or embayed grains (Keay et al., 2001; Rubatto et al., 2001; Andersson et al., 2002; Wu et al., 2007). First quantified by Watson and Harrison (1983) and more recently re-evaluated by Boehnke et al. (2013) and Gervasoni et al. (2016), inherited zircon may be completely dissolved if it is introduced to a melt phase rich in zirconium, resulting in a lack of inherited ages and promoting recrystallisation of pre-existing zircon over additional zircon growth. Monazite has been shown in natural samples to grow along both the prograde and retrograde path (Rubatto, 2002; Johnson et al., 2015) as well as during peak conditions (Kelsey et al., 2008; Rubatto et al., 2009) and just following peak conditions (Clark et al., 2014) (Fig. 5a iii, v, vii). However, this is contrary to predictive modelling by Kelsey et al. (2008) which show majority of monazite growth upon crossing the solidus and that prograde supersolidus monazite growth is unlikely and should be consumed instead (Kelsey et al., 2008; Yakymchuk, 2017). Modelling by Spear and Pyle (2010) showed monazite growing continuously throughout the high-T metamorphic evolution. Apatite breakdown to form monazite has been reported from experiments (Wolf and London, 1994) and has been proposed as a potential source of prograde monazite (Johnson et al., 2015), but recent forward modelling by Yakymchuk (2017) showed that only minor and small prograde monazite growth may occur at the interface between apatite and melt but would be unlikely to survive in the matrix of the rock unless shielded within peritectic minerals. A mechanism to grow and preserve large prograde monazite in the matrix following partial melting is still elusive.

Prograde garnet cores may see additional growth with the addition of partial melts as well as the formation of peritectic garnet (Fig. 5a iv), typically identifiable from large quartz inclusions or euhedral grain shapes, with both types of garnet showing similar REE patterns as a result of growing within the same geochemical system. The use of REE partitioning is one of the most common methods of linking zircon ages to an event such as peritectic garnet growth. In this example metamorphic 'soccer ball' zircon is growing during super/supra-solidus conditions (Schaltegger et al., 1999; Vavra and Schaltegger, 1999; Taylor et al., 2016) and shares similar REE as rims on peritectic garnet, which can be inferred to have grown and equilibrated at the same time as zircon (Fig. 5a v). Partitioning relationships are based on the assumption of equilibrium being achieved between minerals and the recorded information has not been perturbed since the end of metamorphism. As discussed above, the scale to which a metamorphic rock will achieve equilibrium is related to the equilibration volume which is typically at its largest during peak conditions due to the highest temperatures and highest rates of diffusion from the presence of fluids, melts as well as temperature. These factors lend themselves to the interpretation that in metamorphic rocks partitioning relationships are most likely achieved during peak conditions, but this is purely dependant on the occurrence of reactions causing new mineral growth, modification, or peak conditions being sufficient to re-equilibrate pre-existing minerals. Earlier relationships may be preserved but this must be investigated and evaluated on a case-by-case basis.

An overview of U–Pb petrochronology

The stability of ferromagnesian minerals is an important control on the formation of zircon and monazite, as these contain elements necessary for crystallisation along the retrograde path (Brown and Korhonen, 2009). Following peak conditions during decompression Zr-bearing phases such as garnet may breakdown (e.g. to cordierite; Fig. 5a vi) and release Zr which has the potential to grow new micro-zircon (Fraser et al., 1997; Degeling et al., 2001; Tomkins et al., 2005; Wu et al., 2007) but only within the region directly adjacent to garnet as Zr is relatively insoluble and therefore difficult to transport (Whitehouse and Platt, 2003). This requirement of adjacency has also been illustrated by Bingen et al. (2001) with ilmenite breakdown forming new zircon in close proximity. However, the same relationships between garnet breakdown and zircon growth could not be replicated in predictive modelling by Kelsey and Powell (2011), with melt and rutile showing a greater control on zircon growth than garnet.

When approaching the solidus the majority of zircon growth occurs (Kelsey et al., 2008), nucleating on existing relict cores to form overgrowths such as low CL response rims reported by Taylor et al. (2014) and Johnson et al. (2015) (Fig. 5a vii) and potentially as entirely new grains at the initial stages of the cooling path (Roberts and Finger, 1997). A later subsolidus fluid event (e.g. fluids released from crystallisation of plutons) causes additional modification to zircon and monazite, forming lobate cross cutting textures (Fig. 5a viii), perturbing age and geochemical data (Kröner et al., 2014; Taylor et al., 2014). Fluids have been shown by Poitrasson et al. (2000) and Seydoux-Guillaume et al. (2012)

to perturb monazite and zircon even at low–T (<400°C).

The second scenario is representative of metamorphism of a residual (already partially melted) pelitic protolith (Fig. 5b). Due to the residual nature of the protolith, the solidus temperature is more elevated than in the first scenario, with most of the prograde path staying at subsolidus conditions and the lack of melting along the prograde path promoting recrystallisation (Fig. 5b i, ii). White and Powell (2002) showed that melt loss will increase the preservation but limit the generation of new assemblages following initial high-grade metamorphism. Accessory minerals are also affected by melt loss as most trace elements from granitic melts are taken up by accessory minerals (Bea and Montero, 1999; White and Powell, 2002; Brown and Korhonen, 2009), limiting the growth of new accessory minerals but also increasing the potential of dissolution of existing phases to accommodate the growth of any new assemblages. The behaviour of monazite in high-T environments has been shown to contrast with zircon. For example, McFarlane et al. (2006) and Rubatto et al. (2013) both documented larger amounts of monazite growth with limited zircon growth during metamorphism. Monazite may grow despite the lack of zircon growth in a melt poor environment due to its higher reactivity (Morrissey et al., 2016)(Fig. 4b ii), resulting in monazite potentially recording information that might be missed by zircon. Högdahl et al. (2012) demonstrated that monazite was more capable than zircon at recording changing host rock conditions, permitting detailed time constraints from complex tectonic events. Monazite grew, dissolved and reprecipitated under both sub- and

#### An overview of U–Pb petrochronology

supersolidus conditions with zircon restricted to melt-producing events, missing some of the age populations recorded by monazite (Högdahl et al., 2012).

Chapter 1

Upon crossing the solidus, due to the residual bulk composition, melting is minimal, promoting additional recrystallisation (especially at elevated T) of zircon but no neocrystallisation (Fig. 5b iii). Morrissey et al. (2016) showed the importance of melt in residual compositions with new growth of zircon restricted to originally residual regions that experienced later retrogression, generating a more 'fertile' composition that produced more melt upon heating; the non-retrogressed remaining residual regions did not record the second event at all. The low abundance of neocrystallisation in residues compared to leucosomes has also been illustrated in predictive models by Yakymchuk and Brown (2014a). Similar to scenario one, relict garnet decompression breakdown to plagioclase + orthopyroxene permits micro-zircon growth dating decompression but due to the low volume of melt in scenario two no overgrowths representative of melt crystallisation occurs (Fig. 5b iv). The behaviour of zircon and monazite in melt bearing conditions are well categorised, being affected by factors such as the proportion (Rubatto et al., 2001) as well as chemistry (Watson and Harrison, 1983; Rapp et al., 1987) of melt and the rate of melt extraction (Watt et al., 1996). There is limited understanding as to what information geochronometers can record in prolonged, hot, residual systems with scare amounts of melt and fluids. Understanding the behaviour and responsiveness of geochronometers in anhydrous conditions is important for constraining the duration of geodynamic processes in the lower crust as well as generating quantitative P-T-tpaths from residual lithologies, key to generating accurate geodynamic models of the crust.

Understanding the potential heterogeneity on a range of scales within a sample as well as the studied outcrop (e.g. microscopic, local, regional) is also important, as different ages may be preserved within different rocks from the same region due to melt loss and fluid incorporation (Morrissey et al., 2016). In scenario two, a later localised hydration event cause localised retrogression (e.g. introduction of externally derived fluid along fractures/shear zones), reducing the solidus temperature within the retrogressed areas (Fig. 5b). Retrogression permitted, during a second lower temperature event, additional melting only within these domains, similar to interpretations by Kelly et al. (2006) and Morrissey et al. (2016). This additional melting during the second event caused embayment of pre-existing grains (Fig. 5b v), followed by neocrystallisation of zircon (in equilibrium with relict garnet) and monazite only within the more 'fertile' compositions (Fig. 5b vi, vii), with the non-retrogressed samples showing no additional modification or younger ages.

High-grade terranes pose an additional problem, with geochronometers in most terranes recording a spread of ages rather than a singular statistical population, potentially related to prolonged thermal conditions or resetting from separate events (Taylor et al., 2016). Determining the process(es) responsible for the range of ages can be done petrochronologically, categorising the textures associated with the distribution of ages as well as any geochemical trends. As mentioned earlier if the spread of ages is associated

#### An overview of U–Pb petrochronology

with recrystallisation or coupled dissolutionreprecipitation Pb loss has likely occurred. Pb loss through recrystallisation is one of the hardest processes to constrain as the amount of Pb loss can only be estimated through indirectly associated features (e.g. textures), with no quantitative method for estimating the volume of Pb lost as the whole system has likely been perturbed. The rate by which Pb is lost is dependent on diffusivity, which can vary in relation to temperature and grain size (Cherniak and Watson, 2003; Cherniak et al., 2004) but also features such as radiation damage (Mezger and Krogstad, 1997; Cherniak and Watson, 2001), fluids (Harlov et al., 2011; Williams et al., 2011) and deformation (Piazolo et al., 2016), implying that no two grains will evolve in the same way. Lead loss through diffusion may be further assisted through the presence of fractures as described by Ashwal et al. (1999). The simplest assumption is that the youngest recorded ages from modified grains are representative of complete Pb loss, and those with in-between ages are only partially modified. This kind of interpretation may be strengthened with relationships between Pb loss and internal texture or Pb loss and modifications of trace or major elements but there is still a degree of uncertainty to keep in mind.

Being able to accurately quantify the time-scales of events is key to accurately modelling geologic processes. However, there are two different interpretations in regard to the nature and time-scales of prolonged regional high-grade metamorphism recorded by geochronometers: (1) high-temperatures are regionally sustained throughout an entire event (>10 Myr) or (2) prolonged regional high–T events are made up of short temperature bursts. Korhonen et al. (2011) and Korhonen et al. (2013) used zircon and monazite to show that the Eastern Ghats Province potentially stayed continuously at UHT conditions for up to 200 Myr. Another example of prolonged high temperatures was documented by Walsh et al. (2015) and Smithies et al. (2011) who constrained the duration of high-grade metamorphism to  $\sim 100$ Myr in the Musgrave Province with zircon and monazite. Diffusion experiments by Cherniak et al. (1997), Cherniak and Watson (2001) and Cherniak et al. (2004) quantified the resilience of zircon and monazite to perturbation via diffusion, requiring very-high and long-lived temperatures to cause modification and re-equilibration via diffusion. The implication of this for melt- and fluid-poor high–*T* terranes with limited new geochronometer growth but a wide spread of recorded ages is these regions must have sustained high–T in order to sufficiently modify geochronometers like zircon. Contrastingly, Viete and Lister (2017) propose that high-grade regional metamorphism represent transient thermal anomalies (1–10 Myr) related to localised heat production rather than prolonged 'normal' conditions within the associated tectonic setting. Walsh et al. (2015) suggested that a protracted spread of monazite ages could possibly represent crystallisation after multiple individual events occurring over short timescales that cannot be resolved with current analytical resolution, but could not rule out the possibility that the spread resulted from continuous elevated thermal conditions, similar to Korhonen et al. (2013). Clark et al. (2011) showed with numerical modelling that in order to achieve high-grade regional metamorphism the effected crust within a collisional orogen must be radiogenic element rich

#### An overview of U–Pb petrochronology

and requires long time periods with low erosion rates, requiring extended periods at appropriate conditions for the achievement of wide-spread metamorphism without large scale magmatism or other heat sources that could potentially generate high temperatures over shorter time scales. Whilst short durations (<5-40 Myr: Kelsey and Hand, 2015; <10 Myr: Harley, 2016) of high-grade metamorphism are recognised (e.g. Kaapvaal Craton, 5-10 Myr: Schmitz and Bowring, 2003; Southern Madagascar, ~5 Myr: Jöns and Schenk, 2011), what types of internal textures have been dated in connection to the short metamorphic event is an important factor. Short durations of metamorphism would be best recorded by neocrystallisation but this requires the system to be primed to readily grow new accessory minerals. If the short range of ages were associated with recrystallisation either extreme temperatures would be required for equilibration of existing phases or potentially the data set has been over interpreted and the resolution of the techniques used (i.e. uncertainties on individual ages) should be questioned/considered (are the uncertainties small enough to separate two or multiple events?). These differing theories on the duration of high temperatures during metamorphism highlight the importance of resolution in terms of the duration of events and the limited nature of our current understanding of how responsive geochronometers are to an evolving high-T system. Does metamorphism occur over orogenic timescales (e.g. 10-100 Myr) or only as short thermal perturbations punctuating long-term subdued tectonism?

While very comprehensive, both of the posed synthetic scenarios are resolvable due to the

application of petrochronological methodology, but are by no means absolute in their interpretation due to the high number of factors involved within even a simple metamorphic evolution. It is important keep in mind the number of factors affecting the information displayed here, in particular trace element geochemistry. REE signatures are dependant on a number of factors including bulk rock composition and the volume of REE minerals. A bulk composition enriched in HREE will allow zircon and garnet growing together within this bulk composition to have relatively high concentrations of these elements compared to a system within which these minerals would have to compete for limited volumes of these elements (Rubatto, 2017). Hermann et al. (2001) and Gauthiez-Putallaz et al. (2016) showed a similar bulk composition affect with zircon in a high pressure feldspar-free rocks where newly grown zircon still had an negative Eu anomaly despite the absence of feldspar due to the bulk composition being overall depleted in Eu. The volume of REE minerals (e.g. minor garnet) present within the sample can permit accessory minerals to have higher REE (i.e. HREE in terms of garnet) values than expected when growing in the presence of a REE bearing phase (Rubatto, 2017).

The petrochronological record is, put simply, a function of protolith, the presence of melt and P-T-t evolution. Different protoliths on the same P-T-t evolution will likely record different parts of and/or may not record parts of the P-T-tevolution if one protolith is more reactive than the other (more reactive = more likely to record more of the P-T-t evolution), as long as both have the ability to grow new geochronometers during

#### An overview of U–Pb petrochronology

metamorphism. Conversely, similar protoliths on a singular vs. polymetamorphic evolution, if the rock remains sufficiently melt bearing during the whole evolution, may record one or multiple periods respectively of accessory mineral crystallisation during periods of cooling\* (\*– as long as cooling occurs between events in the polymetamorphic scenario). However, it is also possible that both a high-T protracted singular evolution and a polymetamorphic evolution with limited cooling could foreseeably produce similar geochronological data sets depending on a number of factors, but a petrochronological approach could be used to verify which kind of scenario likely occurred.

# 4.1 Limitations and complications with forward modelling

There is a large degree of complexity to consider when evaluating accessory minerals but there is also a degree of uncertainty involved in the generation of *P*–*T* models. Forward metamorphic models are inherently simplified in order to allow constraints to be quantified from complex natural processes. This simplification is applied through the use of a bulk composition that within P-Tspace does not vary (i.e. a closed system) and is modelled using a thermodynamic dataset of activity-composition models (a-x) that constrain mineral stability within a chosen chemical system of major elements. No natural chemical system is ever truly closed, but the degree to which they are open can vary and can only be estimated. Studies by Yakymchuk and Brown (2014b) have modelled conditionally open systems to replicate the extraction of partial melts which is a key process

in the evolution of high-grade metamorphic rocks. Partial melting and melt loss however is a one-way process, resulting in evolved bulk compositions that experienced an unclear amount of melt loss. Forward modelling alone cannot quantify melt loss as the system models the rock 'forward' through time towards its current state. This is also why prograde conditions are typically not constrainable using metamorphic forward models as the modelled bulk composition represents an evolved composition, resulting in none to limited constraints on the prograde evolution. Attempts have been made to 'rewind' metamorphic processes such as Korhonen et al. (2010) and Yakymchuk and Brown (2014b), however this is still an evolving branch of research. The interrogation of a forward modelled P-T pseudosection by creating temperature- or pressure-composition (T - or P - X) diagrams allows the potential control of compositional factors on the modelled equilibrium assemblage to be assessed. As explained by Korhonen et al. (2012) T-X and P-X diagrams are commonly used to assess how the amount of H<sub>2</sub>O or ferric iron changes the stability of the interpreted equilibrium assemblage, as well as correcting for later modification through retrogression or oxidation causing the modelled assemblage to contain rocks not observed within the natural sample.

Forward models currently have an over arching problem due to the lack of minor elements within thermodynamic a-x models that are built upon the behaviour of major element components within minerals. Minor elements such as Zn in spinel and F in biotite can expand the stability of these minerals in nature and experiments, but this currently cannot be replicated in forward models

(e.g. Vielzeuf, 1983; Harley, 1986; Chacko et al., 1987; Clarke et al., 1989; Motoyoshi et al., 1990; Nair and Chacko, 2002; White et al., 2002; Kelly and Harley, 2004; Tajčmanová et al., 2009; Diener and Powell, 2010). The continual updating of thermodynamic data sets allows for the increased accuracy of metamorphic forward models. White et al. (2014b) integrated manganese, permitting Mn substitution or Mn-bearing end members; however Mn has been shown to not have much impact at high temperature (Johnson et al., 2015) and may be excluded from studies with relevant conditions. Wheller and Powell (2014) created an updated sapphirine model incorporating ferric iron, which has been shown to effect and expand sapphirine stability to lower temperatures (Taylor-Jones and Powell, 2010; Wheller and Powell, 2014). Both of these updates are of particular importance to pelitic rocks, within which the stability of many minerals are affected by these elements. Pelitic to psammitic bulk compositions are modellable in the latest dataset 'ds6' since its public release in 2014 (White et al., 2014a; White et al., 2014b). The new activity models of Green et al. (2016) permit the modelling of melt bearing metabasic rocks, a key part of many metamorphic terranes. It is still the case that some minerals do not as of yet have updated a-x models for 'ds6' (e.g. osumilite) and must be modelled within the older dataset 'ds5'. The difference between these two models is discussed by Korhonen et al. (2014).

Another consideration is the rate at which the rock travelled through sections of the P-T evolution; similar rocks will not necessarily experience the same reactions if they move through P-T space at different rates due to reactions having

#### An overview of U–Pb petrochronology

variable activation energies and being subject to reaction kinetics. What is metamorphosed is also important, for example a sample experiencing no previous melt loss will be more sensitive to a rapid P-T excursions forming new microstructures and growing new minerals whereas a more residual composition may not have enough time to respond to a rapid P-T event, unless temperatures are sufficiently high. The formation of new microstructures during a metamorphic event (in particular during polymetamorphic scenarios) is incredibly important as microstructures and stable assemblages are what P-T paths are based on. Modelled assemblages are interpreted to be at equilibrium and were stable during a section of the P-T history, preserving the conditions the rock once experiences. However, it is entirely possible to model metastable conditions in forward modelling. The nature of equilibrium represented by an assemblage can be evaluated by comparing the stability of the modelled assemblage to the typical stability range of the individual minerals within the assemblage.

Petrochronology currently relies on P-T conditions constrained by major mineral assemblages that are indirectly correlated to accessory minerals. Accessory minerals are not readily considered during typical forward metamorphic modelling as they are a very small component of the rock (approximately  $\leq 1\%$ ) and containing elements that are trace components within major minerals. Earlier attempts to integrate accessory minerals directly into phase equilibria such as Kelsey et al. (2008), combined data from dissolution experiments with phase equilibria as no mineral activity-composition models (a-x) existed at the time that enabled the incorporation

#### An overview of U–Pb petrochronology

of Zr or LREE into minerals. An additional step towards integrating accessory minerals and phase equilibria came through the incorporation of Zr (Tomkins et al., 2007; Kelsey and Powell, 2011) and LREE (Spear and Pyle, 2010) into a-x models. However, these techniques are still evolving, but will be of great use to petrochronology following further development.

#### **5. CONCLUSIONS**

Quantitative constraints on the time-scales of high temperatures during metamorphism are essential for understanding lower crustal processes and the generation of accurate geodynamic models of the crust. Whilst the application of highspatial resolution techniques are capable of analysing the internal complexities of accessory minerals, the variable behaviour of trace elements and the interaction of many geological processes during metamorphism generate complex heterogeneities in accessory minerals within high-grade metamorphic rocks. Whilst a lot of work has been done to categorise and constrain the processes associated with certain internal textures and geochemical signatures, there is limited understanding in regards to how accessory minerals behave when exposed to prolonged high temperatures. High temperatures can perturb recorded information as well as largely remove information connected to earlier events (e.g. prograde metamorphism), making it difficult to accurately constrain the duration of high-temperatures and resolve individual events from complex data sets. It is due to these complications that many high-grade terranes lack quantitative estimates of the duration of metamorphism. The increased study of accessory

minerals within high-grade terranes will permit the assessment of the applicability of different geochronometers to constraining different geological processes at elevated temperatures and categorise what recorded information is representative of within a certain system. The petrochronological approach allows complex high-grade terranes to be evaluated to a high level of detail, enabling the discernment between melt, fluid and elevated temperature (diffusion) processes in addition to the quantification of accurate P-T-t constraints. The future development of new micro-analytical techniques and the continual updating of thermodynamic data sets will allow petrochronologic studies to achieve additional resolution in constraining rates, timescales and conditions of geological processes. The development and discovery of new geochronometers and their applicability to various geodynamic systems will also be beneficial to petrochronological studies.

#### 6. RELEVANCE FOR THIS THESIS

This overview highlights key information that is applied in the following chapters and also provides a foundation of the current state of research and the current limitations of various petrochronological techniques and applications. The following chapters further develop this young field of research, highlighting the importance of a petrochronological approach by providing new insight into two debated high-*T* terranes and providing new insight into the behaviours of common geochronometers at high-*T*, of high importance for constraining quantitative P-T-tevolutions. As it is only a side project of this thesis (see Thesis structure) a summary of <sup>40</sup>Ar/<sup>39</sup>Ar

geochronology is not discussed here, see the following reviews for more information:
–Jourdan, F., Mark, D. F., and Verati, C., 2014, Advances in 40Ar/39Ar dating: from archaeology to planetary sciences – introduction: Geological Society, London, Special Publications, v. 378, no. 1, p. 1–8.
– Kelley, S., 2002, K-Ar and Ar-Ar Dating:

 Kelley, S., 2002, K-Ar and Ar-Ar Dating: Reviews in Mineralogy and Geochemistry, v. 47, no. 1, p. 785.

-McDougall, I., and Harrison, T. M., 1999, Geochronology and Thermochronology by the 40Ar/39Ar Method, Oxford University Press on Demand.

- Ahrens, L. H., 1965, Some observations on the uranium and thorium distributions in accessory zircon from granitic rocks: Geochimica et Cosmochimica Acta, v. 29, no. 6, p. 711-716.
- Andersson, J., Möller, C., and Johansson, L., 2002, Zircon geochronology of migmatite gneisses along the Mylonite Zone (S Sweden): a major Sveconorwegian terrane boundary in the Baltic Shield: Precambrian Research, v. 114, no. 1–2, p. 121-147.
- Andrehs, G., and Heinrich, W., 1998, Experimental determination of REE distributions between monazite and xenotime: potential for temperature-calibrated geochronology: Chemical Geology, v. 149, no. 1–2, p. 83-96.
- Ashwal, L. D., Tucker, R. D., and Zinner, E. K., 1999, Slow cooling of deep crustal granulites and Pbloss in zircon: Geochimica et Cosmochimica Acta, v. 63, no. 18, p. 2839-2851.
- Ayers, J. C., Miller, C., Gorisch, B., and Milleman, J., 1999, Textural development of monazite during high-grade metamorphism: Hydrothermal growth kinetics, with implications for U,Th-Pb geochronology, American Mineralogist, Volume 84, p. 1766.
- Baldwin, J. A., and Brown, M., 2008, Age and duration of ultrahigh-temperature metamorphism in the Anápolis-Itauçu Complex, Southern Brasília Belt, central Brazil - constraints from U-Pb geochronology, mineral rare earth element chemistry and trace-element thermometry: Journal of Metamorphic Geology, v. 26, p. 213-233.
- Baxter, E. F., Caddick, M. J., and Dragovic, B., 2017, Garnet: A Rock-Forming Mineral Petrochronometer: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 469.
- Bea, F., and Montero, P., 1999, Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy: Geochimica et Cosmochimica Acta, v. 63, no. 7–8, p. 1133-1153.
- Bea, F., Pereira, M. D., and Stroh, A., 1994, Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study): Chemical Geology, v. 117, no. 1, p. 291-312.

- Bingen, B., Birkeland, A., Nordgulen, Ø., and Sigmond, E. M. O., 2001, Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments: Precambrian Research, v. 108, p. 293-318.
- Boehnke, P., Watson, E. B., Trail, D., Harrison, T. M., and Schmitt, A. K., 2013, Zircon saturation rerevisited: Chemical Geology, v. 351, p. 324-334.
- Braun, I., Montel, J.-M., and Nicollet, C., 1998, Electron microprobe dating of monazites from highgrade gneisses and pegmatites of the Kerala Khondalite Belt, southern India: Chemical Geology including Isotope Geoscience, v. 146, p. 65-68.
- Brown, M., and Korhonen, F. J., 2009, Some remarks on melting and exteme metamorphism of crustal rocks: Physic's and Chemistry of the Earth's Interior, p. 67-87.
- Buick, I. S., Clark, C., Rubatto, D., Hermann, J., Pandit, M., and Hand, M., 2010, Constraints on the Proterozoic evolution of the Aravalli–Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry: Lithos, v. 120, p. 511-528.
- Buick, I. S., Hermann, J., Williams, I. S., Gibson, R. L., and Rubatto, D., 2006, A SHRIMP U–Pb and LA-ICP-MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa: Lithos, v. 88, no. 1–4, p. 150-172.
- Chacko, T., Ravindra Kumar, G. R., and Newton, R. C., 1987, Metamorphic P–T conditions of the Kerala (South India) Khondalite Belt, a granulite facies supracrustal terrain: The Journal of Geology, v. 95, no. 3, p. 343-358.
- Chen, R.-X., Zheng, Y.-F., and Xie, L., 2010, Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements, U–Th–Pb and Lu–Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen: Lithos, v. 114, no. 1–2, p. 132-154.
- Cherniak, D. J., Hanchar, J. M., and Watson, E. B., 1997, Rare-earth diffusion in zircon: Chemical Geology, v. 134, no. 4, p. 289-301.
- Cherniak, D. J., and Pyle, J. M., 2008, Th diffusion in monazite: Chemical Geology, v. 256, no. 1–2, p. 52-61.

*An overview of U–Pb petrochronology* 

Cherniak, D. J., and Watson, E. B., 2001, Pb diffusion in zircon: Chemical Geology, v. 172, no. 1–2, p. 5-24.

Chapter 1

- Cherniak, D. J., and Watson, E. B., 2003, Diffusion in zircon: Reviews in mineralogy and geochemistry, v. 53, no. 1, p. 113-143.
- Cherniak, D. J., Watson, E. B., Grove, M., and Harrison, T. M., 2004, Pb diffusion in monazite: a combined RBS/SIMS study1: Geochimica et Cosmochimica Acta, v. 68, no. 4, p. 829-840.
- Clark, C., Collins, A. S., Santosh, M., Taylor, R., and Wade, B. P., 2009, The P–T–t architecture of a Gondwanan suture: REE, U–Pb and Ti-in-zircon thermometric constraints from the Palghat Cauvery shear system, South India: Precambrian Research, v. 174, p. 129-144.
- Clark, C., Fitzsimons, I. C. W., Healy, D., and Harley, S. L., 2011, How does the continental crust get really hot?: Elements, v. 7, p. 235-240.
- Clark, C., Kirkland, C. L., Spaggiari, C. V., Oorschot, C., Wingate, M. T. D., and Taylor, R. J., 2014, Proterozoic granulite formation driven by mafic magmatism: An example from the Fraser Range Metamorphics, Western Australia: Precambrian Research, v. 240, p. 1-21.
- Clarke, G. L., Powell, R., and Guiraud, M., 1989, Low-pressure granulite facies metapelitic assemblages and corona textures from MacRobertson Land, east Antarctica: the importance of Fe2O3 and TiO2 in accounting for spinel-bearing assemblages: Journal of Metamorphic Geology, v. 7, no. 3, p. 323-335.
- Cocherie, A., and Albarede, F., 2001, An improved U-Th-Pb age calculation for electron microprobe dating of monazite: Geochimica et Cosmochimica Acta, v. 65, no. 24, p. 4509-4522.
- Cocherie, A., Legendre, O., Peucat, J. J., and Kouamelan, A. N., 1998, Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination: implications for lead behaviour in monazite: Geochimica et Cosmochimica Acta, v. 62, no. 14, p. 2475-2497.
- Compston, W., Williams, I. S., and Clement, S. W., U-Pb ages within single zircons using a sensitive high mass-resolution ion microprobe1982, p. 593-595.
- Corfu, F., Hanchar, J. M., Hoskin, P. W. O., and Kinny, P., 2003, Atlas of zircon textures: Reviews in mineralogy and geochemistry, v. 53, no. 1, p. 469-500.

- Cottle, J. M., Jessup, M. J., Newell, D. L., Horstwood, M. S. A., Noble, S. R., Parrish, R. R., Waters, D. J., and Searle, M. P., 2009a, Geochronology of granulitized eclogite from the Ama Drime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya: Tectonics, v. 28, no. 1, p. 1-25.
- Cottle, John M., Searle, Michael P., Horstwood, Matthew S. A., and Waters, David J., 2009b, Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(–Th)–Pb Geochronology: The Journal of Geology, v. 117, no. 6, p. 643-664.
- Cutts, K. A., Kelsey, D. E., and Hand, M., 2013, Evidence for late Paleoproterozoic (ca 1690–1665 Ma) high- to ultrahigh-temperature metamorphism in southern Australia: Implications for Proterozoic supercontinent models: Gondwana Research, v. 23, no. 2, p. 617-640.
- Dahl, P. S., Hamilton, M. A., Jercinovic, M. J., Terry, M. P., Williams, M. L., and Frei, R., 2005, Comparative isotopic and chemical geochronometry of monazite, with implications for U-Th-Pb dating by electron microprobe: An example from metamorphic rocks of the eastern Wyoming Craton (U.S.A.): American Mineralogist, v. 90, no. 4, p. 619.
- Davis, D. W., Krogh, T. E., and Williams, I. S., 2003, Historical development of zircon geochronology: Reviews in mineralogy and geochemistry, v. 53, no. 1, p. 145-181.
- Degeling, H., Eggins, S., and Ellis, D. J., 2001, Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown: Mineralogical Magazine, v. 65, no. 6, p. 749-758.
- Diener, J. F. A., and Powell, R., 2010, Influence of ferric iron on the stability of mineral assemblages: Journal of Metamorphic Geology, v. 28, p. 599-613.
- Dumond, G., Goncalves, P., Williams, M. L., and Jercinovic, M. J., 2015, Monazite as a monitor of melting, garnet growth and feldspar recrystallization in continental lower crust: Journal of Metamorphic Geology, v. 33, no. 7, p. 735-762.
- Engi, M., Lanari, P., and Kohn, M. J., 2017, Significant Ages—An Introduction to Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 1.
- Erickson, T. M., Pearce, M. A., Taylor, R. J. M., Timms, N. E., Clark, C., Reddy, S. M., and Buick, I. S., 2015, Deformed monazite yields high-temperature tectonic ages: Geology, v. 43, no. 5, p. 383.

- Feng, R., Machado, N., and Ludden, J., 1993, Lead geochronology of zircon by LaserProbe-inductively coupled plasma mass spectrometry (LP-ICPMS): Geochimica et Cosmochimica Acta, v. 57, no. 14, p. 3479-3486.
- Fernández-Suárez, J., Gutiérrez-Alonso, G., Jenner, G. A., and Jackson, S. E., 1998, Geochronology and geochemistry of the Pola de Allande granitoids (northern Spain): their bearing on the Cadomian-Avalonian evolution of northwest Iberia: Canadian Journal of Earth Sciences, v. 35, no. 12, p. 1439-1453.
- Ferry, J. M., and Watson, E. B., 2007, New thermodynamic models and revised calibrations for the Tiin-zircon and Zr-in-rutile thermometers: Contributions to Mineralogy and Petrology, v. 154, no. 4, p. 429-437.
- Fitzsimons, I. C. W., Kinny, P. D., Wetherley, S., and Hollingsworth, D. A., 2005, Bulk chemical control on metamorphic monazite growth in pelitic schists and implications for U–Pb age data: Journal of Metamorphic Geology, v. 23, no. 4, p. 261-277.
- Flowerdew, M. J., Millar, I. L., Vaughan, A. P. M., Horstwood, M. S. A., and Fanning, C. M., 2006, The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons: Contributions to Mineralogy and Petrology, v. 151, no. 6, p. 751-768.
- Fornelli, A., Langone, A., Micheletti, F., Pascazio, A., and Piccarreta, G., 2014, The role of trace element partitioning between garnet, zircon and orthopyroxene on the interpretation of zircon U–Pb ages: an example from high-grade basement in Calabria (Southern Italy): International Journal of Earth Sciences, v. 103, no. 2, p. 487-507.
- Foster, G., Gibson, H. D., Parrish, R., Horstwood, M., Fraser, J., and Tindle, A., 2002, Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite: Chemical Geology, v. 191, no. 1–3, p. 183-207.
- Foster, G., Kinny, P., Vance, D., Prince, C., and Harris, N., 2000, The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry: Earth and Planetary Science Letters, v. 181, no. 3, p. 327-340.

- Foster, G., Parrish, R. R., Horstwood, M. S. A., Chenery, S., Pyle, J., and Gibson, H. D., 2004, The generation of prograde P–T–t points and paths; a textural, compositional, and chronological study of metamorphic monazite: Earth and Planetary Science Letters, v. 228, no. 1–2, p. 125-142.
- Fraser, G., Ellis, D., and Eggins, S., 1997, Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks: Geology, v. 25, no. 7, p. 607.
- Friend, C. R. L., Strachan, R. A., Kinny, P. D., and Watt, G. R., 2003, Provenance of the Moine Supergroup of NW Scotland: evidence from geochronology of detrital and inherited zircons from (meta)sedimentary rocks, granites and migmatites: Journal of the Geological Society, v. 160, no. 2, p. 247.
- Froude, D. O., Ireland, T. R., Kinny, P. D., Williams, I. S., Compston, W., Williams, I. R. t., and Myers, J. S., 1983, Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons: Nature, v. 304, no. 5927, p. 616-618.
- Fryer, B. J., Jackson, S. E., and Longerich, H. P., 1993, The application of laser ablation microprobeinductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)–Pb geochronology: Chemical Geology, v. 109, no. 1, p. 1-8.
- Gauthiez-Putallaz, L., Rubatto, D., and Hermann, J., 2016, Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis: Contributions to Mineralogy and Petrology, v. 171, no. 2, p. 15.
- Geisler, T., Schaltegger, U., and Tomaschek, F., 2007, Re-equilibration of Zircon in Aqueous Fluids and Melts: Elements, v. 3, no. 1, p. 43.
- Gervasoni, F., Klemme, S., Rocha-Júnior, E. R. V., and Berndt, J., 2016, Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts: Contributions to Mineralogy and Petrology, v. 171, no. 3, p. 21.
- Gibson, H. D., Carr, S. D., Brown, R. L., and Hamilton, M. A., 2004, Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y–Th–U X-ray mapping: Chemical Geology, v. 211, no. 3–4, p. 237-260.

An overview of U–Pb petrochronology

Gordon, S. M., Whitney, D. L., Teyssier, C., and Fossen, H., 2013, U–Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction: Lithos, v. 170–171, p. 35-53.

Chapter 1

- Gratz, R., and Heinrich, W., 1997, Monazite-xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO4-YPO4: American Mineralogist, v. 82, no. 7-8, p. 772-780.
- Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., and Palin, R. M., 2016, Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks: Journal of Metamorphic Geology, v. 34, no. 9, p. 845-869.
- Hanchar, J. M., and Miller, C. F., 1993, Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories: Chemical Geology, v. 110, no. 1, p. 1-13.
- Hanchar, J. M., and Rudnick, R. L., 1995, Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths: Lithos, v. 36, no. 3, p. 289-303.
- Harley, S. L., 1986, A sapphirine-cordierite-garnet-sillimanite granulite from Enderby Land, Antarctica: implications for FMAS petrogenetic grids in the granulite facies: Contributions to Mineralogy and Petrology, v. 94, no. 4, p. 452-460.
- Harley, S. L., 2016, A matter of time: The importance of the duration of UHT metamorphism: Journal of Mineralogical and Petrological Sciences, v. 111, p. 50–72.
- Harley, S. L., and Kelly, N. M., 2007, The impact of zircon–garnet REE distribution data on the interpretation of zircon U–Pb ages in complex high-grade terrains: An example from the Rauer Islands, East Antarctica: Chemical Geology, v. 241, no. 1–2, p. 62-87.
- Harley, S. L., Kelly, N. M., and Möller, A., 2007, Zircon behaviour and the thermal histories of mountain chains: Elements, v. 3, p. 25-30.
- Harley, S. L., Kinny, P. D., Snape, I., and Black, L. P., Zircon chemistry and the definition of events in Archaean granulite terrains2001, Volume 37, p. 511-513.

- Harley, S. L., and Nandakumar, V., 2014, Accessory mineral behaviour in granulite migmatites: a case study from the Kerala Khondalite Belt, India: Journal of Petrology, v. 55, no. 10, p. 1965-2002.
- Harley, S. L., and Nandakumar, V., 2016, New evidence for Palaeoproterozoic high grade metamorphism in the Trivandrum Block, Southern India: Precambrian Research, v. 280, p. 120-138.
- Harlov, D. E., 2011, Petrological and experimental application of REE- and actinide-bearing accessory mineral to the study of Precambrian high-grade gneiss terrains: Geological Society of America Memoirs, v. 207, p. 13-24.
- Harlov, D. E., and Hetherington, C. J., 2010, Partial high-grade alteration of monazite using alkalibearing fluids: Experiment and nature: American Mineralogist, v. 95, p. 1105-1108.
- Harlov, D. E., Wirth, R., and Hetherington, C. J., 2011, Fluid-mediate partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer: Contributions to Mineralogy and Petrology, v. 162, p. 329-348.
- Hermann, J., and Rubatto, D., 2003, Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust: Journal of Metamorphic Geology, v. 21, p. 833-852.
- Hermann, J., Rubatto, D., Korsakov, A., and Shatsky, V. S., 2001, Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan): Contributions to Mineralogy and Petrology, v. 141, no. 1, p. 66-82.
- Hirata, T., and Nesbitt, R. W., 1995, U-Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique: Geochimica et Cosmochimica Acta, v. 59, no. 12, p. 2491-2500.
- Högdahl, K., Majka, J., Sjöström, H., Nilsson, K. P., Claesson, S., and Konečný, P., 2012, Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden: Contributions to Mineralogy and Petrology, v. 163, no. 1, p. 167-188.
- Hokada, T., and Harley, S. L., 2004, Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations in Napier Complex, East Antarctica: Journal of Mineralogical and Petrological Sciences, v. 99, no. 4, p. 180-190.

- Holder, R. M., Hacker, B. R., Kylander-Clark, A. R. C., and Cottle, J. M., 2015, Monazite trace-element and isotopic signatures of (ultra)high-pressure metamorphism: Examples from the Western Gneiss Region, Norway: Chemical Geology, v. 409, p. 99-111.
- Horn, I., Rudnick, R. L., and McDonough, W. F., 2000, Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology: Chemical Geology, v. 164, no. 3–4, p. 281-301.
- Hoskin, P. W. O., and Black, L. P., 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon: Journal of Metamorphic Geology, v. 18, p. 423-439.
- Hoskin, P. W. O., and Ireland, T. R., 2000, Rare earth element chemistry of zircon and its use as a provenance indicator: Geology, v. 28, no. 7, p. 627-630.
- Hoskin, P. W. O., and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in mineralogy and geochemistry, v. 53, no. 1, p. 27–62.
- Ireland, T. R., Clement, S., Compston, W., Foster, J. J., Holden, P., Jenkins, B., Lanc, P., Schram, N., and Williams, I. S., 2008, Development of SHRIMP: Australian Journal of Earth Sciences, v. 55, no. 6-7, p. 937-954.
- Ireland, T. R., and Williams, I. S., 2003, Considerations in zircon geochronology by SIMS: Reviews in Mineralogy and Geochemistry, v. 53, no. 1, p. 215-241.
- Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology: Chemical Geology, v. 211, no. 1–2, p. 47-69.
- Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J. O., and Spandler, C., 2008, Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite– xenotime phase relations from 250 to 610 °C: Journal of Metamorphic Geology, v. 26, no. 5, p. 509-526.
- Janots, E., Engi, M., Rubatto, D., Berger, A., Gregory, C., and Rahn, M., 2009, Metamorphic rates in collisional orogeny from in situ allanite and monazite dating: Geology, v. 37, no. 1, p. 11.

- Johnson, T., Clark, C., Taylor, R., Santosh, M., and Collins, A. S., 2015, Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India: Geoscience Frontiers, v. 6, no. 3, p. 373-387.
- Jöns, N., and Schenk, V., 2011, The ultrahigh temperature granulites of southern Madagascar in a polymetamorphic context: implications for the amalgamation of the Gondwana supercontinent: European Journal of Mineralogy, v. 23, no. 2, p. 127.
- Jourdan, F., Mark, D. F., and Verati, C., 2014, Advances in 40Ar/39Ar dating: from archaeology to planetary sciences – introduction: Geological Society, London, Special Publications, v. 378, no. 1, p. 1–8.
- Keay, S., Lister, G., and Buick, I., 2001, The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece: Tectonophysics, v. 342, no. 3–4, p. 275-312.
- Kelley, S., 2002, K-Ar and Ar-Ar Dating: Reviews in Mineralogy and Geochemistry, v. 47, no. 1, p. 785.
- Kelly, N. M., Clarke, G. L., and Harley, S. L., 2006, Monazite behaviour and age significance in polymetamorphic high-grade terrains: A case study from the western Musgrave Block, central Australia1: Lithos, v. 88, no. 1–4, p. 100-134.
- Kelly, N. M., and Harley, S. L., 2004, Orthopyroxene–Corundum in Mg–Al-rich Granulites from the Oygarden Islands, East Antarctica: Journal of Petrology, v. 45, no. 7, p. 1481-1512.
- Kelly, N. M., and Harley, S. L., 2005, An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antartica: Contributions to Mineralogy and Petrology, v. 149, p. 57-84.
- Kelly, N. M., Harley, S. L., and Möller, A., 2012, Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration: Chemical Geology, v. 322-323, p. 192-208.
- Kelsey, D. E., Clark, C., and Hand, M., 2008, Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites: Journal of Metamorphic Geology, v. 26, p. 199-212.

An overview of U–Pb petrochronology

Kelsey, D. E., and Hand, M., 2015, On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings: Geoscience Frontiers, v. 6, p. 311-356.

- Kelsey, D. E., and Powell, R., 2011, Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na<sub>2</sub>O-CaO-K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-ZrO<sub>2</sub> system: Journal of Metamorphic Geology, v. 29, no. 1, p. 151-166.
- Ketchum, J. W. F., Jackson, S. E., Culshaw, N. G., and Barr, S. M., 2001, Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology: Precambrian Research, v. 105, no. 2–4, p. 331-356.
- Kirkland, C. L., Erickson, T. M., Johnson, T. E., Danišík, M., Evans, N. J., Bourdet, J., and McDonald,
  B. J., 2016, Discriminating prolonged, episodic or disturbed monazite age spectra: An example from the Kalak Nappe Complex, Arctic Norway: Chemical Geology, v. 424, p. 96-110.
- Kirkland, C. L., Whitehouse, M. J., and Slagstad, T., 2009, Fluid-assisted zircon and monazite growth within a shear zone: a case study from Finnmark, Arctic Norway: Contributions to Mineralogy and Petrology, v. 158, no. 5, p. 637-657.
- Kohn, M. J., and Kelly, N., 2017, Petrology and Geochronology of Metamorphic Zircon: Microstructural Geochronology: Planetary Records Down to Atom Scale, v. 232, p. 35.
- Kohn, M. J., and Malloy, M. A., 2004, Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations: Geochimica et Cosmochimica Acta, v. 68, no. 1, p. 101-113.
- Kohn, M. J., and Penniston-Dorland, S. C., 2017, Diffusion: Obstacles and Opportunities in Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 103.
- Kohn, M. J., Wieland, M. S., Parkinson, C. D., and Upreti, B. N., 2005, Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core: Journal of Metamorphic Geology, v. 23, no. 5, p. 399-406.

- Korhonen, F. J., Clark, C., Brown, M., Bhattacharya, S., and Taylor, R., 2013, How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India: Precambrian Research, v. 234, p. 322-350.
- Korhonen, F. J., Clark, C., Brown, M., and Taylor, R. J. M., 2014, Taking the temperature of Earth's hottest crust: Earth and Planetary Science Letters, v. 408, p. 341-354.
- Korhonen, F. J., Powell, R., and Stout, J. H., 2012, Stability of sapphirine + quartz in the oxidised rocks of the Wilson Lake terrane, Labrador: calculated equilibria in NCKFMASHTO: Journal of Metamorphic Geology, v. 30, p. 21-36.
- Korhonen, F. J., Saito, S., Brown, M., and Siddoway, C. S., 2010, Modeling multiple melt loss events in the evolution of an active continental margin: Lithos, v. 116, p. 230-248.
- Korhonen, F. J., Saw, A. K., Clark, C., Brown, M., and Bhattacharya, S., 2011, New constraints on UHT metamorphism in the Eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology: Gondwana Research, v. 20, p. 764-781.
- Košler, J., Fonneland, H., Sylvester, P., Tubrett, M., and Pedersen, R.-B., 2002, U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques: Chemical Geology, v. 182, no. 2–4, p. 605-618.
- Kröner, A., Wan, Y., Liu, X., and Liu, D., 2014, Dating of zircon from high-grade rocks: Which is the most reliable method?: Geoscience Frontiers, v. 5, no. 4, p. 515-523.
- Kylander-Clark, A. R. C., Hacker, B. R., and Cottle, J. M., 2013, Laser-ablation split-stream ICP petrochronology: Chemical Geology, v. 345, p. 99-112.
- Lanari, P., and Engi, M., 2017, Local Bulk Composition Effects on Metamorphic Mineral Assemblages: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 55.
- Li, X.-h., Liang, X.-r., Sun, M., Guan, H., and Malpas, J. G., 2001, Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation: Chemical Geology, v. 175, no. 3–4, p. 209-219.

Chapter 1 An overview of U–Pb petrochronology

- Mahan, K. H., Goncalves, P., Williams, M. L., and Jercinovic, M. J., 2006, Dating metamorphic reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield: Journal of Metamorphic Geology, v. 24, no. 3, p. 193-217.
- Martin, A. J., Gehrels, G. E., and DeCelles, P. G., 2007, The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal: Chemical Geology, v. 244, no. 1–2, p. 1-24.
- McDougall, I., and Harrison, T. M., 1999, Geochronology and Thermochronology by the 40Ar/39Ar Method, Oxford University Press on Demand.
- McFarlane, C. R. M., Connelly, J. N., and Carlson, W. D., 2005, Monazite and xenotime petrogenesis in the contact aureole of the Makhavinekh Lake Pluton, northern Labrador: Contributions to Mineralogy and Petrology, v. 148, no. 5, p. 524-541.
- McFarlane, C. R. M., Connelly, J. N., and Carlson, W. D., 2006, Contrasting response of monazite and zircon to a high-T thermal overprint: Lithos, v. 88, no. 1–4, p. 135-149.
- Mezger, K., and Krogstad, E. J., 1997, Interpretation of discordant U-Pb zircon ages: An evaluation: Journal of Metamorphic Geology, v. 15, no. 1, p. 127-140
- Möller, A., O'Brien, P. J., Kennedy, A., and Kröner, A., 2002, Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon: Journal of Metamorphic Geology, v. 20, p. 727-740.
- Möller, A., O'Brien, P. J., Kennedy, A., and Kröner, A., 2003, Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway): Geological Society, London, Special Publications, v. 220, no. From: Vance, D., Müller, W., & Villa, I. M. (eds) 2003. Geochronology: Linking the Isotopic Record with Petrology and Textures., p. 65-81.
- Montel, Kornprobst, and Vielzeuf, 2000, Preservation of old U-Th-Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Morocco): Journal of Metamorphic Geology, v. 18, no. 3, p. 335-342.

- Morrissey, L. J., Hand, M., Kelsey, D. E., and Wade, B. P., 2016, Cambrian High-temperature Reworking of the Rayner–Eastern Ghats Terrane: Constraints from the Northern Prince Charles Mountains Region, East Antarctica: Journal of Petrology, v. 57, no. 1, p. 53-92.
- Motoyoshi, Y., Hensen, B. J., and Matsueda, H., 1990, Metastable growth of corundum adjacent to quartz in a spinel-bearing quartzite from the Archaean Napier Complex, Antarctica: Journal of Metamorphic Geology, v. 8, no. 1, p. 125-130.
- Nagasawa, H., 1971, Partitioning of Eu and Sr between coexisting plagioclase and K-feldspar: Earth and Planetary Science Letters, v. 13, no. 1, p. 139-144.
- Nair, R., and Chacko, T., 2002, Fluid-absent melting of high-grade semi-pelites: P-T constraints on orthopyroxene formation and implications for granulite genesis: Journal of Petrology, v. 43, no. 11, p. 2121-2142.
- Nemchin, A. A., Horstwood, M. S. A., and Whitehouse, M. J., 2013, High-spatial-resolution geochronology: Elements, v. 9, no. 1, p. 31-37.
- Nutman, A. P., McGregor, V. R., Shiraishi, K., Friend, C. R. L., Bennett, V. C., and Kinny, P. D., 2002, ≥3850 Ma BIF and mafic inclusions in the early Archaean Itsaq Gneiss Complex around Akilia, southern West Greenland? The difficulties of precise dating of zircon-free protoliths in migmatites: Precambrian Research, v. 117, no. 3, p. 185-224.
- Palin, R. M., Weller, O. M., Waters, D. J., and Dyck, B., 2016, Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations: Geoscience Frontiers, v. 7, no. 4, p. 591-607.
- Pidgeon, R. T., 1992, Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications: Contributions to Mineralogy and Petrology, v. 110, no. 4, p. 463-472.
- Poitrasson, F., Chenery, S., and Bland, D. J., 1996, Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications: Earth and Planetary Science Letters, v. 145, no. 1, p. 79-96.
- Poitrasson, F., Chenery, S., and Shepherd, T. J., 2000, Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration:: Implications for U-Th-Pb geochronology and nuclear ceramics: Geochimica et Cosmochimica Acta, v. 64, no. 19, p. 3283-3297.

- Pyle, J. M., and Spear, F. S., 1999, Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions: Geological Materials Research, v. 1, no. 6, p. 1-49.
- Pyle, J. M., and Spear, F. S., 2000, An empirical garnet (YAG) xenotime thermometer: Contributions to Mineralogy and Petrology, v. 138, no. 1, p. 51-58.
- Pyle, J. M., and Spear, F. S., 2003, Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire, American Mineralogist, Volume 88, p. 338.
- Pyle, J. M., Spear, F. S., Rudnick, R. L., and McDonough, W. F., 2001, Monazite–Xenotime–Garnet Equilibrium in Metapelites and a New Monazite–Garnet Thermometer: Journal of Petrology, v. 42, no. 11, p. 2083-2107.
- Rapp, R. P., Ryerson, F. J., and Miller, C. F., 1987, Experimental evidence bearing on the stability of monazite during crustal anaatexis: Geophysical Research Letters, v. 14, no. 3, p. 307-310.
- Rasmussen, B., and Muhling, J. R., 2007, Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism: Contributions to Mineralogy and Petrology, v. 154, no. 6, p. 675-689.
- Roberts, M. P., and Finger, F., 1997, Do U–Pb zircon ages from granulites reflect peak metamorphic conditions?: Geology, v. 25, p. 319-322.
- Rubatto, D., 2002, Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism: Chemical Geology, v. 184, p. 123-138.
- Rubatto, D., 2017, Zircon: The Metamorphic Mineral: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 261.
- Rubatto, D., Chakraborty, S., and Dasgupta, S., 2013, Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology: Contributions to Mineralogy and Petrology, v. 165, no. 2, p. 349-372.

- Rubatto, D., and Hermann, J., 2003, Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones: Geochimica et Cosmochimica Acta, v. 67, no. 12, p. 2173-2187.
- Rubatto, D., and Hermann, J., 2007, Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks: Chemical Geology, v. 241, p. 38-61.
- Rubatto, D., Hermann, J., Berger, A., and Engi, M., 2009, Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps: Contributions to Mineralogy and Petrology, v. 158, p. 703-722.
- Rubatto, D., Hermann, J., and Buick, I. S., 2006, Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, Central Australia): Journal of Petrology, v. 47, no. 10, p. 1973-1996.
- Rubatto, D., Williams, I. S., and Buick, I. S., 2001, Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia: Contributions to Mineralogy and Petrology, v. 140, no. 4, p. 458-468.
- Sanislav, I. V., 2011, A long-lived metamorphic history in the contact aureole of the Mooselookmeguntic pluton revealed by in situ dating of monazite grains preserved as inclusions in staurolite porphyroblasts: Journal of Metamorphic Geology, v. 29, no. 2, p. 251-273.
- Santosh, M., Yokoyama, K., Biju-Sekhar, S., and Rogers, J. J. W., 2003, Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: implications on the history of supercontinents: Gondwana Research, v. 6, no. 1, p. 29-63.
- Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C., Schulmann, K., and Gebauer, D., 1999, Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminesecence and microchemical evidence: Contributions to Mineralogy and Petrology, v. 134, p. 186-201.
- Schärer, U., 1984, The effect of initial230Th disequilibrium on young UPb ages: the Makalu case, Himalaya: Earth and Planetary Science Letters, v. 67, no. 2, p. 191-204.

Schmitt, A. K., and Vazquez, J. A., 2017, Secondary Ionization Mass Spectrometry Analysis in Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 199.

Chapter 1

- Schmitz, M. D., and Bowring, S. A., 2003, Ultrahigh-temperature metamorphism in the lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal Craton, southern Africa: Geological Society of America Bulletin, v. 115, no. 5, p. 533.
- Seydoux-Guillaume, A.-M., Montel, J.-M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J.-L., Janots, E., and Wirth, R., 2012, Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers: Chemical Geology, v. 330-331, p. 140-158.
- Shazia, J. R., Harlov, D. E., Suzuki, K., Kim, S. W., Girish-Kumar, M., Hayasaka, Y., Ishwar-Kumar, C., Windley, B. F., and Sajeev, K., 2015, Linking monazite geochronology with fluid infiltration and metamorphic histories: Nature and experiment: Lithos, v. 236-237, p. 1–15.
- Smithies, R. H., Howard, H. M., Evins, P. M., Kirkland, C. L., Kelsey, D. E., Hand, M., Wingate, M. T. D., Collins, A. S., and Belousova, E., 2011, High-Temperature Granite Magmatism, Crust–Mantle Interaction and the Mesoproterozoic Intracontinental Evolution of the Musgrave Province, Central Australia: Journal of Petrology, v. 52, no. 5, p. 931-958.
- Spear, F. S., and Pyle, J. M., 2010, Theoretical modeling of monazite growth in a low-Ca metapelite: Chemical Geology, v. 273, no. 1–2, p. 111-119.
- Stepanov, A. S., Hermann, J., Rubatto, D., and Rapp, R. P., 2012, Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks: Chemical Geology, v. 300–301, p. 200-220.
- Štípská, P., Hacker, B. R., Racek, M., Holder, R., Kylander-Clark, A. R. C., Schulmann, K., and Hasalova, P., 2015, Monazite dating of prograde and retrograde P–T–d paths in the Barrovian terrane of the Thaya window, Bohemian Massif: Journal of Petrology, v. 56, no. 5, p. 1007-1035.
- Suzuki, K., and Adachi, M., 1991, Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime: GEOCHEMICAL JOURNAL, v. 25, no. 5, p. 357-376.

- Suzuki, K., and Adachi, M., 1994, Middle Precambrian detrital monazite and zircon from the hida gneiss on Oki-Dogo Island, Japan: their origin and implications for the correlation of basement gneiss of Southwest Japan and Korea: Tectonophysics, v. 235, no. 3, p. 277-292.
- Tajčmanová, L., Konopásek, J., and Košler, J., 2009, Distribution of zinc and its role in the stability of spinel in high-grade felsic rocks of the Moldanubian domain (Bohemian Massif): European Journal of Mineralogy, v. 21, p. 407-418.
- Taylor, R., Clark, C., Fitzsimons, I. C. W., Santosh, M., Hand, M., Evans, N., and McDonald, B., 2014, Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India: Contrib Mineral Petrol, v. 168, no. 2, p. 1-17.
- Taylor, R., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., and Kelly, N. M., 2015a, Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes: Journal of Metamorphic Geology, v. 33, p. 231–248.
- Taylor, R. J. M., Clark, C., Harley, S. L., Kylander-Clark, A. R. C., Hacker, B. R., and Kinny, P. D., 2017, Interpreting granulite facies events through rare earth element partitioning arrays: Journal of Metamorphic Geology, p. 1-17.
- Taylor, R. J. M., Clark, C., Johnson, T. E., Santosh, M., and Collins, A. S., 2015b, Unravelling the complexities in high-grade rocks using multiple techniques: the Achankovil Zone of southern India: Contributions to Mineralogy and Petrology, v. 169, no. 5, p. 51.
- Taylor, R. J. M., Kirkland, C. L., and Clark, C., 2016, Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes: Lithos, v. 264, p. 239-257.
- Taylor-Jones, K., and Powell, R., 2010, The stability of sapphirine + quartz: calculated phase equilibria in FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–TiO<sub>2</sub>–O: Journal of Metamorphic Geology, v. 28, no. 6, p. 615-633.
- Tiepolo, M., 2003, In situ Pb geochronology of zircon with laser ablation–inductively coupled plasma– sector field mass spectrometry: Chemical Geology, v. 199, no. 1–2, p. 159-177.
- Tomkins, H. S., and Pattison, D. R. M., 2007, Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia: Journal of Metamorphic Geology, v. 25, no. 4, p. 401-421.

- Tomkins, H. S., Powell, R., and Ellis, D. J., 2007, The pressure dependence of the zirconium-in-rutile thermometer: Journal of Metamorphic Geology, v. 25, no. 6, p. 703-713.
- Tomkins, H. S., Williams, I. S., and Ellis, D. J., 2005, In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway: Journal of Metamorphic Geology, v. 23, p. 201-215.
- Tucker, N. M., Hand, M., Kelsey, D. E., and Dutch, R. A., 2015, A duality of timescales: Short-lived ultrahigh temperature metamorphism preserving a long-lived monazite growth history in the Grenvillian Musgrave–Albany–Fraser Orogen: Precambrian Research, v. 264, p. 204-234.
- Vavra, G., 1990, On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study: Contributions to Mineralogy and Petrology, v. 106, no. 1, p. 90-99.
- Vavra, G., Gebauer, D., Schmid, R., and Compston, W., 1996, Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study: Contributions to Mineralogy and Petrology, v. 122, p. 337-358.
- Vavra, G., and Schaltegger, U., 1999, Post-granulite facies monazite growth and rejuvenation during Permian to Lower Jurassic thermal and fluid events in the Ivrea Zone (Southern Alps): Contributions to Mineralogy and Petrology, v. 134, no. 4, p. 405-414.
- Vielzeuf, D., 1983, The spinel and quartz associations in high grade xenoliths from Tallante (S.E. Spain) and their potential use in geothermometry and barometry: Contributions to Mineralogy and Petrology, v. 82, no. 4, p. 301-311.
- Viete, D. R., and Lister, G. S., 2017, On the significance of short-duration regional metamorphism: Journal of the Geological Society, v. 174, no. 3, p. 377.
- Villaseca, C., Martín Romera, C., De la Rosa, J., and Barbero, L., 2003, Residence and redistribution of REE, Y, Zr, Th and U during granulite-facies metamorphism: behaviour of accessory and major phases in peraluminous granulites of central Spain: Chemical Geology, v. 200, no. 3–4, p. 293-323.

- Walsh, A. K., Kelsey, D. E., Kirkland, C. L., Hand, M., Smithies, R. H., Clark, C., and Howard, H. M., 2015, P–T–t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia: Gondwana Research, v. 28, no. 2, p. 531–564.
- Ward, C. D., McArthur, J. M., and Walsh, J. N., 1992, Rare Earth Element Behaviour During Evolution and Alteration of the Dartmoor Granite, SW England: Journal of Petrology, v. 33, no. 4, p. 785-815.
- Watson, E. B., and Harrison, T. M., 1983, Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types: Earth and Planetary Science Letters, v. 64, no. 2, p. 295-304.
- Watson, E. B., and Harrison, T. M., 2005, Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth: Science, v. 308, no. 5723, p. 841.
- Watson, E. B., Wark, D. A., and Thomas, J. B., 2006, Crystallization thermometers for zircon and rutile: Contributions to Mineralogy and Petrology, v. 151, no. 4, p. 413.
- Watt, G. R., Burns, I. M., and Graham, G. A., 1996, Chemical characteristics of migmatites: accessory phase distribution and evidence for fast melt segregation rates: Contributions to Mineralogy and Petrology, v. 125, no. 1, p. 100-111.
- Wheller, C. J., and Powell, R., 2014, A new thermodynamic model for sapphirine: calculated phase equilibria in K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>: Journal of Metamorphic Geology, v. 32, p. 287-299.
- White, R. W., and Powell, R., 2002, Melt loss and the preservation of granulite facies mineral assemblages: Journal of Metamorphic Geology, v. 20, p. 621-632.
- White, R. W., Powell, R., and Clarke, G. L., 2002, The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>: Journal of Metamorphic Geology, v. 20, p. 41-55.
- White, R. W., Powell, R., Holland, T. J. B., Johnson, T., and Green, E. C. R., 2014a, New mineral activity-composition relations for thermodynamic calculations in metapelitic systems: Journal of Metamorphic Geology, v. 32, p. 261-286.

- White, R. W., Powell, R., and Johnson, T., 2014b, The effect of Mn on mineral stability in metapelites revisited: new a-x relations for manganese-bearing minerals: Journal of Metamorphic Geology, v. 32, p. 809-828.
- Whitehouse, M. J., and Kamber, B. S., 2003, A rare earth element study of complex zircons from early Archaean Amîtsoq gneisses, Godthåbsfjord, south-west Greenland: Precambrian Research, v. 126, no. 3–4, p. 363-377.
- Whitehouse, M. J., and Platt, J. P., 2003, Dating high-grade metamorphism- constraints from rare-earth elements in zircon and garnet: Contributions to Mineralogy and Petrology, v. 145, p. 61-74.
- Whitehouse, M. J., Ravindra Kumar, G. R., and Rimša, A., 2014, Behaviour of radiogenic Pb in zircon during ultrahigh-temperature metamorphism: an ion imaging and ion tomography case study from the Kerala Khondalite Belt, southern India: Contributions to Mineralogy and Petrology, v. 168, no. 2, p. 1042.
- Williams, I. S., Buick, I. S., and Cartwright, I., 1996, An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia\*: Journal of Metamorphic Geology, v. 14, no. 1, p. 29-47.
- Williams, I. S., Compston, W., Collerson, K. D., Arriens, P. A., and Lovering, J. F., 1983, A reassessment of the age of the Windmill metamorphics, Casey area: Antarctic Earth Science. Austral Acad Sci, Canberra, p. 73-76.
- Williams, M. L., and Jercinovic, M. J., 2002, Microprobe monazite geochronology: putting absolute time into microstructural analysis: Journal of Structural Geology, v. 24, no. 6–7, p. 1013-1028.
- Williams, M. L., and Jercinovic, M. J., 2012, Tectonic interpretation of metamorphic tectonites: integrating compositional mapping, microstructural analysis and in situ monazite dating: Journal of Metamorphic Geology, v. 30, no. 7, p. 739-752.
- Williams, M. L., Jercinovic, M. J., Goncalves, P., and Mahan, K., 2006, Format and philosophy for collecting, compiling, and reporting microprobe monazite ages: Chemical Geology, v. 225, no. 1–2, p. 1-15.

- Williams, M. L., Jercinovic, M. J., Harlov, D. E., Budzyń, B., and Hetherington, C. J., 2011, Resetting monazite ages during fluid-related alteration: Chemical Geology, v. 283, p. 218-225.
- Williams, M. L., Jercinovic, M. J., Mahan, K. H., and Dumond, G., 2017, Electron Microprobe Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 153.
- Williams, M. L., Jercinovic, M. J., and Terry, M. P., 1999, Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories: Geology, v. 27, no. 11, p. 1023.
- Wing, B. A., Ferry, J. M., and Harrison, T. M., 2003, Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology: Contributions to Mineralogy and Petrology, v. 145, no. 2, p. 228-250.
- Wolf, M. B., and London, D., 1994, Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms: Geochimica et Cosmochimica Acta, v. 58, no. 19, p. 4127-4145.
- Wu, Y.-B., Gao, S., Zhang, H.-F., Yang, S.-H., Jiao, W.-F., Liu, Y.-S., and Yuan, H.-L., 2008a, Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China: evidence from zircon U–Pb age, trace element and Hf isotope composition: Contributions to Mineralogy and Petrology, v. 155, no. 1, p. 123-133.
- Wu, Y.-B., Zheng, Y.-F., Gao, S., Jiao, W.-F., and Liu, Y.-S., 2008b, Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen: Lithos, v. 101, no. 3–4, p. 308-322.
- Wu, Y. B., Zheng, Y. F., Zhang, S. B., Zhao, Z. F., Wu, F. Y., and Liu, X. M., 2007, Zircon U–Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting: Journal of Metamorphic Geology, v. 25, no. 9, p. 991-1009.
- Xie, L., Zhang, Y., Zhang, H., Sun, J., and Wu, F., 2008, In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite: Chinese Science Bulletin, v. 53, no. 10, p. 1565-1573.
- Yakymchuk, C., 2017, Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth: Lithos, v. 274–275, p. 412-426.

Yakymchuk, C., and Brown, M., 2014a, Behaviour of zircon and monazite during crustal melting: Journal of the Geological Society, v. 171, no. 4, p. 465.

- Yakymchuk, C., and Brown, M., 2014b, Consequences of open-system melting in tectonics: Journal of the Geological Society, v. 171, no. 1, p. 21.
- Yakymchuk, C., Clark, C., and White, R. W., 2017, Phase Relations, Reaction Sequences and Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 13.
- Yuan, H.-L., Gao, S., Dai, M.-N., Zong, C.-L., Günther, D., Fontaine, G. H., Liu, X.-M., and Diwu, C., 2008, Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS: Chemical Geology, v. 247, no. 1–2, p. 100-118.
- Yurimoto, H., Duke, E. F., Papike, J. J., and Shearer, C. K., 1990, Are discontinuous chondritenormalized REE patterns in pegmatitic granite systems the results of monazite fractionation?: Geochimica et Cosmochimica Acta, v. 54, no. 7, p. 2141-2145.
- Zack, T., Moraes, R., and Kronz, A., 2004, Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer: Contributions to Mineralogy and Petrology, v. 148, no. 4, p. 471-488.
- Zhao, L., Zhou, X., Zhai, M., Santosh, M., and Geng, Y., 2015, Zircon U–Th–Pb–Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane: Gondwana Research, v. 28, no. 1, p. 246-261.
- Zhou, X., Zhao, G., Wei, C., Geng, Y., and Sun, M., 2008, EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton: American Journal of Science, v. 308, no. 3, p. 328-350.
- Zhu, X. K., and O'Nions, R. K., 1999, Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: a case study from the Lewisian terrain: Earth and Planetary Science Letters, v. 171, no. 2, p. 209-220.
- Zhu, X. K., O'Nions, R. K., Belshaw, N. S., and Gibb, A. J., 1997, Significance of in situ SIMS chronometry of zoned monazite from the Lewisian granulites, northwest Scotland: Chemical Geology, v. 135, no. 1, p. 35-53.
# Chapter 2

# Constraints on the timing and conditions of high-grade metamorphism, charnockite formation, and fluid-rock interaction in the Trivandrum Block, southern India

Eleanore Blereau<sup>1\*</sup>, Chris Clark<sup>1</sup>, Richard J. M. Taylor<sup>1</sup>, Tim E. Johnson<sup>1</sup>, Ian C. W. Fitzsimons<sup>1</sup>, M. Santosh<sup>2,3</sup>

<sup>1</sup>Department of Applied Geology, The Institute of Geoscience Research (TIGeR), Curtin University, GPO Box U1987, Perth WA 6845, Australia.

<sup>2</sup>School of the Earth Sciences and Resources, China University of Geosciences (Beijing), 29 Xueyuan Road, Beijing 100083, China.

<sup>3</sup>Centre for Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia

This article is published in the Journal of Metamorphic Geology, vol. 34, pp. 527–549. doi:10.1111/ jmg.12192 and reprinted with permission in Appendix A.

#### ABSTRACT

Incipient charnockites have been widely used as evidence for the infiltration of CO<sub>2</sub>-rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for a thorough investigation of the metamorphic evolution by preserving not only orthopyroxenebearing charnockite patches in a host garnet-biotite felsic gneiss but also layers of garnet-sillimanite metapelite gneiss. Thermodynamic phase equilibria modelling of all three bulk compositions indicates consistent peak metamorphic conditions of 830-925°C and 6-9 kbar with retrograde evolution involving suprasolidus decompression at high-temperature. These models suggest that orthopyroxene was most likely stabilised close to the metamorphic peak as a result of small compositional heterogeneities in the host garnet-biotite gneiss. There is insufficient evidence to determine whether the heterogeneities were inherited from the protolith or introduced during syn-metamorphic fluid flow. U-Pb geochronology of monazite and zircon from all three rock types constrains the peak of metamorphism and orthopyroxene growth to have occurred between the onset of high-grade metamorphism at c. 590 Ma and the onset of melt crystallisation at c. 540 Ma. The majority of metamorphic zircon growth occurred during protracted melt crystallisation between c. 540–510 Ma. Melt crystallisation was followed by the influx of aqueous, alkali-rich fluids likely derived from melts crystallizing at depth. This late fluid flow led to retrogression of orthopyroxene, the observed outcrop pattern and to the textural and isotopic modification of monazite grains at c. 525-490 Ma.

#### **1. INTRODUCTION**

The occurrence of orthopyroxene-bearing patches within otherwise orthopyroxene-free biotite- or hornblende-bearing host rocks, referred to as incipient or arrested charnockite, has been used as a key piece of evidence to support the notion Exposures are generally confined to quarries, that the infiltration of a low-H<sub>2</sub>O activity, CO<sub>2</sub>rich fluid drives dehydration of the lower crust and the transition from amphibolite to granulite facies rocks (Newton, 1992; Santosh & Omori, 2008; Touret & Huizenga, 2012; Newton & Tsunogae, 2014). Whether dehydration of the lower crust to form granulite facies rocks was driven dominantly by interaction with CO<sub>2</sub>-rich fluids (Newton et al., 1980; Newton, 1989) or by the removal of hydrous partial melt (Fyfe, 1973; White & Powell, 2002) is still the subject of debate.

at many localities within the Trivandrum Block of southern India (Hansen et al., 1987; Stähle et al., 1987; Raith & Srikantappa, 1993; Perchuk et al., 2000; Ravindra Kumar, 2004; Rajesh & Santosh, 2012; Endo et al., 2013; Taylor et al., 2014). most of which contain either garnet-biotite gneiss (referred to locally as leptynite) and associated charnockite or more aluminous metapelitic gneiss (khondalite). However, a previously unstudied quarry at Kakkod (Fig. 1) preserves all three main rock types (incipient charnockite, host garnetbiotite gneiss and metapelitic gneiss), potentially enabling a study of charnockite formation within the context of the broader metamorphic history of the Trivandrum Block. We combine petrography, phase equilibria modelling, U-Pb geochronology Incipient charnockites have been described and REE analyses of key minerals from the three



**Fig. 1:** Geological map of the Southern Granulite Terrane of southern India adapted from Taylor et al. (2014) with major rock types and field locations marked. Kakkod quarry is located at N 08° 48' 37.6" E 76° 48' 37.9", with the direction of view to the north. The Achankovil Shear Zone (ACSZ) separates the Trivandrum Block from the South Madurai Block. ACSZ, Achankovil Shear Zone; DC, Dharwar craton; SB, Salem Block; PCSS, Palghat-Cauvery Shear System; NB, Nilgiri

Block; MSB, Madras Block; NMB, North Madurai Block; SMB, South Madurai Block; IB, Isotopic boundary; P, Phanerozoic cover; NCB, Nagercoil Block; TB, Trivandrum Block.

main lithotypes to better understand the conditions and timing of their formation. In addition, we use textural information from monazite and zircon to infer an episode of fluid flux in these rocks, and, coupled with U–Pb age data and the rare earth element compositions of garnet, zircon and monazite, investigate the relationship between the timing of peak metamorphism, charnockite formation and fluid influx.

#### 2. GEOLOGICAL SETTING

The Southern Granulite terrane (SGT) of southern India, located to the south of the Dharwar Craton, has been subdivided into a series of crustal tectonic domains (Figure 1). These are the Coorg (Santosh et al., 2015; Santosh et al., 2016), Salem (Clark et al., 2009b), Nilgiri (Raith et al., 1990; Harris et al., 1994) and Madras Blocks (Harris et al., 1994; Santosh et al., 2003b) in the north, which are separated from more southerly domains by the Palghat-Cauvery shear zone system (Collins et al., 2007a; Clark et al., 2009a). To the south of the Palghat-Cauvery shear zone system are the northern and southern Madurai Blocks that are distinguished on the basis of different protolith ages (Plavsa et al., 2012; Plavsa et al., 2014; Clark

et al., 2015). The Trivandrum Block is located to the south of the southern Madurai Block, from which it is separated by the Achankovil Zone (Drury et al., 1984; Sacks et al., 1997; Cenki et al., 2004; Chetty et al., 2006; Taylor et al., 2014). The southernmost domain, the Nagercoil Block, lies at the southern tip of peninsular India (Johnson et al., 2015; Kröner et al., 2015) (Fig. 1).

Cambrian deformation and granulite facies metamorphism in the Trivandrum Block has generally been attributed to the Malagasy Orogeny (550-510 Ma) and linked to the assembly of Gondwana (Collins & Pisarevsky, 2005; Santosh et al., 2009; Collins et al., 2014). The rocks in the Trivandrum Block are dominated by garnetand biotite-bearing felsic gneiss (leptynite) and garnet-sillimanite-biotite garnet-biotiteor sillimanite-cordierite gneiss (khondalite), with minor calc-silicate, quartzite and mafic granulite (Ravindra Kumar et al., 1985; Chacko et al., 1987; Yoshida et al., 1991; Chacko et al., 1992; Jackson & Santosh, 1992; Raith & Srikantappa, 1993; Harley & Santosh, 1995; Braun et al., 1998; Fonarev et al., 2000; Nandakumar & Harley, 2000; Nair & Chacko, 2002; Morimoto et al., 2004; Shabeer et al., 2005; Braun, 2006; Tadokoro et

Metamorphism and charnockites in Trivandrum

Harley & Nandakumar, 2014). The Trivandrum that the rocks followed a clockwise P-T evolution Block also contains particularly good examples orthopyroxene-bearing felsic granulites of (hereafter termed charnockites) that are commonly developed within garnet-biotite gneiss (Ravindra Kumar et al., 1985; Hansen et al., 1987; Raith & Srikantappa, 1993; Endo et al., 2013; Taylor et al., 2014). Charnockites within the Trivandrum Block have two main modes of occurrence: (1) decimetre-scale incipient charnockites with diffuse contacts that generally occur within the garnet-biotite gneisses and are interpreted to have a metamorphic origin; and (2) massive charnockite that forms discrete outcrops that have no reported contact relationships with garnetbiotite or metapelitic gneisses, and which are often ascribed an igneous origin or interpreted as an end-product of the incipient charnockitisation process (Ravindra Kumar et al., 1985; Srikantappa et al., 1985; Harley & Santosh, 1995; Rajesh & Santosh, 2004; Rajesh & Santosh, 2012; Touret & Huizenga, 2012). This study focuses on incipient 3. FIELD RELATIONSHIPS AT KAKKOD charnockites.

evolution recorded by rocks of the Trivandrum Block is the subject of on-going debate. Some authors have suggested peak temperatures in excess of 950°C and pressures up to ~12 kbar (Morimoto et al., 2004; Tadokoro et al., 2008). By contrast, other studies have documented lower pressures and a decrease in metamorphic grade towards the southwest from 900-1050 °C at ~8.5-9.5 kbar at the southern margin of the Achankovil Zone to 800–900 °C and 4.5–6.0 kbar further south (Chacko et al., 1996; Nandakumar & Harley, 2000; garnet in the leucogranite sheets typically occurs Pattison et al., 2003; Shabeer et al., 2005; Collins as grain aggregates 1-2 centimetres across and,

al., 2008; Endo et al., 2013; Collins et al., 2014; et al., 2014). However, there is general consensus (Cenki et al., 2004; Shabeer et al., 2005; Tadokoro et al., 2008; Collins et al., 2014).

> A large proportion of U-Pb zircon data from rocks across the Trivandrum Block suggest zircon grew at ~515 Ma (Collins et al., 2007b), which was originally interpreted to constrain the age of peak metamorphism and later interpreted as the age of melt crystallization (Taylor et al., 2014). Taylor et al. (2014) constrained the age of peak metamorphism in the Trivandrum Block to c. 580-560 Ma based on U-Pb dating of monazite. Harley and Nandakumar (2014) suggested high temperature conditions prevailed until 545-535 Ma. Following peak metamorphism, Taylor et al. (2014) suggested that an episode of alkali-bearing fluid ingress occurred at ~500 Ma resulting in the modification of the accessory phases and the development of the distinctive patchiness observed in the outcrop.

# **QUARRY**

The pressure-temperature-time (P-T-t) The dominant rock type within the quarry at Kakkod is a pale-grey garnet-biotite gneiss (Fig. 2a). The gneiss has a centimetre-scale gneissic foliation defined by biotite with numerous pink garnet porphyroblasts. Garnet occurs mainly within 5-10 millimetre wide leucosome veins (Fig. 2b) that are parallel to the regional foliation, as well as within larger leucogranite sheets that vary from 5 centimetres to 3 metres in thickness. The leucogranite is coarser grained than the garnet-biotite gneiss and lacks biotite. The



**Fig. 2:** Field photographs of Kakkod quarry. (a) Kakkod quarry showing three main rock types; garnet–sillimanite– cordierite gneiss (metapelitic gneiss) to the west with dark incipient charnockite patches within the grey garnet–biotite gneiss to the east. (b) Garnet–biotite gneiss with white leucosome patches. (c) Metapelitic gneiss. (d) Metapelitic gneiss (dark coloured) outcropping on top of the garnet–biotite gneiss with white leucogranite sheet. (e) Pegmatite dyke crosscutting the garnet–biotite gneiss with yellow-brown monazite aggregates visible (f) Close-up of garnet–biotite gneiss and charnockite with a transition zone in-between.

less commonly, as large euhedral to subhedral and the metapelitic gneiss is exposed. The two grains 1.0–1.5 centimetres across. At the western rock types are always separated by a thin (5–10 end of the quarry (Fig. 2a) a layer of migmatitic cm) garnet-bearing leucogranite sheet that is garnet–sillimanite–cordierite gneiss (hereafter similar in mineralogy to the leucogranite described metapelitic gneiss) is exposed (Fig. 2c, d). No above (Fig. 2d). A number of small dykes (~10–12 direct contact between the garnet–biotite gneiss cm wide) of undeformed coarse-grained monazite-

#### Metamorphism and charnockites in Trivandrum

cross cut the foliation within the garnet-biotite 1) and as laths defining the gneissic foliation, is gneiss (Fig. 2e).

Incipient charnockites at Kakkod are characterized by the occurrence of diffuse, irregular dark patches that occur exclusively within the garnet-biotite gneiss (Fig. 2a, f). These patches comprise orthopyroxene-bearing quartzofeldspathic granofels ranging from 50 centimetres to 2 metres across and have no clear preferred orientation. A 2-5 centimetre transition zone between the garnet-biotite gneiss and the charnockite is characterised by a decrease in the abundance of biotite and a gradual change in colour into the darker green charnockite (Fig. 2f). Incipient charnockites rarely cross cut the leucogranite, although charnockite patches occur commonly at the margins of some of the larger leucogranite bodies. In this paper we present and discuss data collected from five samples that are representative of these various rock types.

### 4. PETROGRAPHY

#### 4.1 Garnet-biotite gneiss

The garnet–biotite gneiss (I11-004K) is migmatitic and dominated by quartz (30-35%) and feldspar (35–40%). Garnet (10–14%) occurs as two distinct populations. Type-1 garnets are isolated rounded porphyroblasts (~3-6 mm) containing inclusions of biotite (Fig. 3a) and are located within the melanosome. Type-2 garnets occur as subhedral to anhedral clusters of grains 2 mm or less in size containing inclusions of both quartz and biotite and are located within the leucosome (Fig. 3b). Biotite (around 10%, 1-2 mm) is interpreted to record two generations of growth. The first, which biotite gneiss. The remainder of the sample is

and biotite-bearing but garnet-absent pegmatite occurs as inclusions within garnet (Fig. 3a, b - Bt interpreted to have been stable during the prograde evolution and at the metamorphic peak. The second generation, which occurs as randomly orientated grains and replacing garnet at its margins (Fig. 3a, b - Bt 2), is interpreted as retrograde. The sample also contains minor ilmenite (~1%, ~1 mm). Most of the (partially sericitized) feldspar is perthite (30-35%, 2-4 mm) with minor plagioclase (2-5%, 1–2 mm); myrmekite is also present. The peak assemblage of the garnet-biotite gneiss sample I11-004K is interpreted as garnet, K-feldspar, quartz, biotite, ilmenite, plagioclase and melt. Along with some biotite, minor chlorite is interpreted to be retrograde.

> Large grains of monazite (~240 µm) occur within K-feldspar and quartz, with some grains occurring near or directly adjacent to biotite. Back-scattered electron imaging (BSE) of monazite reveals low BSE response cores with complex irregular recrystallised zones displaying a high BSE response (Fig. 4a). Zircon (~100 µm) displays oscillatory-zoned cores under cathodoluminescence (CL) imaging with uniform CL response rims that sometimes truncate the zoning within the cores (Fig. 4b).

> 4.2 Transitional zone between garnet-biotite gneiss and charnockite

> Sample I11-004C was collected from a gradational transition zone between garnet-biotite gneiss and charnockite (i.e. similar to Fig. 2f). Biotite (5-10%, 0.5–1.0 mm) and garnet (5–10%, 1–1.5 mm) are present but less abundant than in the garnet-



**Fig. 3:** Thin section photomicrographs. (a) Garnet–biotite gneiss with type-1 garnet porphyroblast. (b) Garnet–biotite gneiss with type-2 garnet porphyroblasts. (c) Transition zone showing garnet that has reacted with  $H_2O/melt$  to form retrograde biotite. (d) Partially retrogressed subhedral orthopyroxene within the charnockite with straight grain boundaries preserved. Biotite is seen replacing the orthopyroxene grain to the right on the image. (e) Orthopyroxene within the charnockite partially replaced by chlorite and other hydrosilicates. (f) Fully retrogressed orthopyroxene and anhedral garnets within the charnockite (g) Inclusion poor anhedral garnets (type-2) from the metapelitic gneiss. (h) Metapelitic gneiss with elongate garnet porphyroblasts (type-1) containing inclusions of sillimanite. (i) Metapelitic gneiss with sillimanite, green spinel and garnet porphyroblasts surrounded by variably pinitised cordierite.



**Fig. 4:** BSE and CL images for monazite and zircon from all samples. Marked ages are <sup>206</sup>Pb /<sup>238</sup>U SHRIMP ages for zircon and <sup>207</sup>Pb /<sup>235</sup>U SHRIMP ages for monazite, both with 1σ errors. Circles represent LA-ICP-MS analytical spots that were placed over SHRIMP spots. (a) Monazite BSE images from the garnet–biotite gneiss (I11-004K). Monazite shows low BSE response cores with recrystallised zones of high BSE response. (b) Zircon CL images from the garnet–biotite gneiss with inherited oscillatory-zoned zircon cores and uniform to sector-zoned rims. (c) BSE images of monazite from the transition zone (I11-004C) showing low BSE response cores and recrystallised zones with high BSE response. (d) Monazite BSE images from the pegmatite (I11-006V) showing variable BSE response and limited zoning. A few grains have low BSE response recrystallised zones. (e) BSE images of monazite from the charnockite (I11-008C) with uniform BSE response and no internal structures. (f) Zircon CL images from the charnockite with a population of equant sector-zoned soccer ball zircon and a population of inherited oscillatory-zoned cores with molecular base images from the metapelitic gneiss (TB-14-025) with most monazite showing low BSE response cores and high BSE response. (h) Zircon CL images from the metapelitic gneiss and a few grains with quite uniform BSE response. (h) Zircon CL images from the metapelitic gneiss and high BSE response recrystallised zones, and a few grains with quite uniform BSE response. (h) Zircon CL images from the metapelitic gneiss with recrystallised zones, and a few grains with quite uniform BSE response. (h) Zircon CL images from the metapelitic gneiss with recrystallised zones, and a few grains with quite uniform BSE response. (h) Zircon CL images from the metapelitic gneiss with recrystallised zones, and a few grains with quite uniform BSE response. (h) Zircon CL images from the metapelitic gneiss with recrystallised zones, and a few grains with quite uniform BSE response. (h) Zircon CL images from th

dominated by quartz (35-40%, 1-4 mm), perthite 2 garnet from the garnet-biotite gneiss. Garnet (35-40%, 1-3 mm) and plagioclase (5-10%, 1-3 is commonly surrounded by an intergrowth of mm). Garnet has irregular grain boundaries with biotite and quartz, consistent with a reaction quartz and biotite inclusions, similar to type- with melt (Fig. 3c). Some myrmekite is present.

#### Metamorphism and charnockites in Trivandrum

hydrous phases (Fig. 3c). Monazite is similar to that within the garnet-biotite gneiss, with low BSE response cores and high BSE response recrystallised zones (Fig. 4e). Likewise, the zircon grains have a similar appearance to those in the garnet-biotite gneiss, with oscillatory-zoned cores and homogeneous rims.

#### 4.3 Garnet-bearing charnockite

Sample I11-008C, a charnockite patch from within the garnet-biotite gneiss, is coarse grained and darker in colour than the host gneiss. The sample is dominated by irregular grains of feldspar (40-45% perthite 1–3 mm; 5–10% plagioclase, 1–3 mm) and quartz (35-40%, 1-4 mm) with some myrmekite. Orthopyroxene (2-3%, 0.5-2 mm)occurs as discrete subhedral grains in contact with quartzofeldspathic minerals (Fig. 3d, e, f) and does not appear to replace any ferromagnesian minerals, suggesting that it grew in equilibrium with other matrix minerals in the charnockite. All orthopyroxene grains are retrogressed at their margins and along cleavage plains (Fig. 3d, e) to a fine-grained aggregate of hydrous minerals including chlorite, with many grains completely pseudomorphed (Fig. 3f). Minor biotite (2-5%, 1–2 mm) generally occurs adjacent to or replacing orthopyroxene (Fig. 3d, f). Garnet (2-5%) forms irregular porphyroblasts 1-4 mm in diameter containing quartz inclusions, similar to the type-2 garnets of the garnet-biotite gneiss (Fig. 3f). Ilmenite ( $\sim 1\%$ ,  $\sim 1$  mm) and chlorite occur as minor phases. The main equilibrium assemblage of this sample is interpreted to be orthopyroxene, garnet,

Orthopyroxene (0.5–2.0 mm) is completely K-feldspar, quartz, plagioclase, ilmenite and melt. retrogressed to chlorite and other fine-grained Given suggestions that incipient charnockite forms by fluid-driven recrystallisation, we acknowledge that this might not be the peak assemblage (an issue we address below using phase equilibria modelling). Biotite and chlorite are considered to be retrograde.

> Monazite (~240 µm) shows uniform BSE response with no obvious zoning (Fig 4e). On the basis of CL imaging, zircon within the charnockite occurs in two forms: (i) grains with oscillatoryzoned cores with either uniform or sector-zoned rims (~160 µm) and, (ii) equant 'soccer-ball' grains (~130 µm) (Vavra et al., 1996; Schaltegger et al., 1999; Kelly & Harley, 2005) (Fig. 4f).

#### 4. 4 Metapelitic gneiss

The metapelitic gneiss (TB-14-025) is meso- to melanocratic and migmatitic, comprising layers of melanosome and leucosome. Garnet (20-22%, 0.5-4.5 mm) is present in both melanosome and leucosome as two different types. Type-1 garnets, which are more abundant in melanosome, are anhedral, inclusion-rich (including sillimanite, plagioclase and biotite), elongate, and aligned parallel to the foliation (Fig. 3h). Type-2 garnets are inclusion-poor, anhedral (Fig. 3g) and occur within the leucosome. Sillimanite (20-25%) is abundant within the melanosome and defines the foliation, occurring as euhedral grains ranging from 0.5 to 2.0 mm in length (Fig. 3c). Sillimanite also occurs as inclusions in type-1 garnet that define a foliation subparallel to the matrix foliation. Perthite (15–18%, 0.5–4.0 mm) is present both in the melanosome and leucosome, whereas quartz (8-10%, 1-2 mm) is present only

Metamorphism and charnockites in Trivandrum

occurs as anhedral grains in the matrix of the feldspar is perthite comprising an approximate 1:1 quartz-free melanosome. The rock also contains minor plagioclase (2%, 0.1-0.5 mm), ilmenite (1%, 0.1–1.0 mm) and pyrite (<1%, 0.1–1.0 mm). Twinned and variably pinitised cordierite (~20%, 1-4 mm) surrounds garnet, sillimanite, ilmenite, spinel and biotite. Matrix biotite (7-10%, 0.1-2.0 mm) occurs as two generations. The first is present as inclusions within garnet and anhedral grains enclosed by cordierite (Fig. 3i – Bt 1). The second generation occurs as randomly orientated grains within the matrix and replacing garnet in both the melanosome and leucosome (Fig. 3g - Bt 2). The peak assemblage of this sample is interpreted to 5. ANALYTICAL METHODS be garnet, ilmenite, plagioclase, K-feldspar, biotite 5.1 Phase equilibria modelling and melt with sillimanite and spinel only present in the melanosome and quartz only present in the Metamorphic P-T conditions were constrained leucosome. Cordierite and some of the biotite is interpreted to be retrograde.

Zircon (~200 µm) occurs within quartz, feldspar and near ilmenite, biotite and sillimanite. Monazite (~60-100 µm) is present as inclusions within garnet, cordierite, K-feldspar, quartz and adjacent to sillimanite, ilmenite and spinel. Monazite generally shows low BSE response cores with lobate high BSE response recrystallised zones (Fig. 4g) although some grains are uniform (Fig. 4g). Zircon is recrystallised with most primary oscillatory-zoned cores replaced by uniform low-CL response domains (Fig. 4h). Some grains also have rims with uniform CL response (Fig. 4h).

### 4.5 Pegmatite

Sample I11-006V is dominated by quartz (20-

in the leucosome. Spinel (2-3%, 0.2-1.0 mm) of which are 2 to 4mm across. The majority of ratio of sodic to potassic feldspar lamellae, along with minor plagioclase (~10%). Yellow monazite (~1 mm) is found both as clusters and isolated grains. It occurs as inclusions within biotite, within and in close association with ilmenite (~1%, 1-2 mm), and rarely within feldspar (both perthite and minor plagioclase). BSE imaging of monazite reveals little or no zoning in the majority of grains. Unzoned monazite shows high to low BSE response with a few grain showing low BSE response recrystallised zones (Fig. 4d).

using isochemical P-T pseudosections in the model pelite system Na<sub>2</sub>O-CaO-K<sub>2</sub>O- $FeO-MgO-Al_2O_3-SiO_2-H_2O-TiO_2-O$ (NCKFMASHTO). Pseudosections were calculated using THERMOCALC 3.40i and the internally consistent thermodynamic dataset of Holland and Powell (2011)(specifically the tcds62 dataset generated on 6 February 2014). The phases considered were: garnet (Grt), silicate melt (Liq), ternary feldspar (Kfs, Pl), muscovite (Ms), biotite (Bt), orthopyroxene (Opx), cordierite (Crd), ilmenite (Ilm) and magnetite-spinel (Mt, Spl). Activity-composition models are from White et al. (2014a). Mineral abbreviations follow Kretz (1983) and Whitney and Evans (2010).

Bulk rock compositions for I11-004K, I11-008C and TB-14-025 (garnet-biotite gneiss, charnockite and metapelitic gneiss) were 25%), feldspar (~60%) and biotite (15–20%), all determined by X-ray fluorescence analysis using

| Chapter 2                      | Metamorphism and charnockites in Trivandrum |                  |           |      |      |      |      |                   |        |      |        |
|--------------------------------|---------------------------------------------|------------------|-----------|------|------|------|------|-------------------|--------|------|--------|
|                                |                                             |                  |           |      |      |      |      |                   |        |      |        |
|                                | Measured compositions from XRF (mol %)      |                  |           |      |      |      |      |                   |        |      |        |
| Sample                         | SiO <sub>2</sub>                            | TiO <sub>2</sub> | $AI_2O_3$ | 0    | FeO  | MgO  | CaO  | Na₂O              | K₂O    | LOI  | Total  |
| I11-004K Garnet-biotite gneiss | 76.32                                       | 0.19             | 9.39      | 0.39 | 2.56 | 1.07 | 2.56 | 4.61              | 1.23   | 1.69 | 100.01 |
| 111-005C Charnockite           | 74.72                                       | 0.16             | 9.23      | 0.35 | 2.27 | 1.04 | 2.6  | 4.59              | 1.36   | 3.67 | 99.99  |
| TB-14-025 Metapelitic gneiss   | 64.83                                       | 0.59             | 11.93     | 1.34 | 6.62 | 3.66 | 1.30 | 3.49              | 3.36   | 2.87 | 99.99  |
|                                | Modelled Bulk compositions (mol%)           |                  |           |      |      |      |      |                   |        |      |        |
| Sample                         | SiO <sub>2</sub>                            | TiO <sub>2</sub> | $AI_2O_3$ | 0    | FeO  | MgO  | CaO  | Na <sub>2</sub> O | $K_2O$ | LOI  | Total  |
| I11-004K Garnet-biotite gneiss | 76.53                                       | 0.19             | 9.42      | 0.11 | 2.57 | 1.07 | 2.57 | 4.63              | 1.23   | 1.69 | 100.01 |
| 111-005C Charnockite           | 77.00                                       | 0.16             | 9.52      | 0.11 | 2.34 | 1.08 | 2.68 | 4.73              | 1.40   | 1.00 | 100.02 |
| TB-14-025 Metapelitic gneiss   | 65.45                                       | 0.60             | 12.04     | 0.40 | 6.68 | 3.69 | 1.32 | 3.53              | 3.39   | 2.9  | 100.00 |

Table 1: Bulk rock compositions as measured by XRF and modelled composition with modified ferric values. All values are in mol.%. Fe2O3 concentrations are recast into equivalent concentrations of FeO (added to the ferrous FeO concentration) and O (Diener & Powell, 2010).

a Panalytical 2404 instrument at Franklin and implying some oxidation of the rock after the Marshall College, Pennsylvania; ferric and ferrous iron contents were determined by titration at the same institution. The bulk compositions (as mol.%) used in pseudosections are provided in Table 1. Although Mn-bearing solution models have recently been calibrated (White et al., 2014b), Mn has a negligible effect on phase stability at high–T and was excluded from the model system (Johnson et al., 2015). Modelled H<sub>2</sub>O contents are taken from the total loss-on-ignition amounts in XRF data, except for the charnockitic composition in which a lower value of 1 mol.% was used to account for the significant hydrous retrogression of orthopyroxene in this sample.

Based on petrographic observations, none of the samples contained magnetite as a peak phase, an interpretation supported by energy dispersive spectral analysis using the TM3030 Tabletop Microscope (using Swift ED3000 at 15kv), in which all analysed opaque phases were ilmenite. Preliminary phase equilibria calculations using the measured amount of ferric iron oxide (Fe<sub>2</sub>O<sub>3</sub>, modelled in THERMOCALC as O in the bulk composition, Diener and Powell (2010); Table 1) contained no fields in which the interpreted peak assemblage did not coexist with magnetite,

metamorphic peak (either during exhumation and/or weathering of the rock or during sample preparation). To better constrain Fe<sub>2</sub>O<sub>3</sub> contents at the metamorphic peak,  $T/P-M_{Fe^2O3}$  pseudosections were calculated for all modelled rocks, where  $M_{Fe2O3}$ is a binary compositional range expressing variable ferric iron contents (molecular proportion of Fe<sub>2</sub>O<sub>3</sub> in the rock) from the titrated values (at X=0) to a minimal Fe<sub>2</sub>O<sub>3</sub> content in the rock of 0.01 mol.% (at X=1; see supplementary data Fig. S1-3). These diagrams show that magnetite is removed from the interpreted peak assemblage at appropriate P-T conditions (> 5 kbar, c. 900 °C, see below) if X is increased to a value of  $\sim 0.7$ , equivalent to decreasing the molecular proportion of Fe<sub>2</sub>O<sub>3</sub> in the rock to 30% of the measured value. Thus, for the charnockite and garnet-biotite gneiss, which have very similar measured Fe<sub>2</sub>O<sub>3</sub> concentrations of 0.39 and 0.36 mol.% respectively, we have used a single Fe<sub>2</sub>O<sub>3</sub> concentration of 0.11 mol.% for pseudosection modelling, while a corresponding value of 0.40 mol.% was used for the metapelitic gneiss (also equal to  $\sim 30\%$  of the measured value).

#### 5.2 SHRIMP U-Pb geochronology

Chapter 2

Grains of monazite from all samples (and zircon from metapelitic gneiss) were extracted from polished thin sections (in situ) along with immediately adjacent minerals as 2-mm diameter pucks using a coring piece on a Dremel drill. Nineteen pucks were mounted and cast in a 25mm diameter epoxy disk. Samples were cleaned and coated with a 30 µm gold coat to ensure conductivity during SIMS analysis. In addition to thin section mounts, grain separates of monazite and zircon were prepared via traditional methods of disaggregation, magnetic and heavy liquid separation. These grains were mounted in 25mm diameter epoxy discs, polished then cleaned before applying a 30 µm gold coat. Mounts were characterised using BSE imaging for monazite with a Zeiss EVO 40XVP SEM and Tescan Mira3 FESEM, and CL imaging for zircon with a Philips XL 30 and a Tescan Mira3 FESEM (both at the John de Laeter Centre of Mass Spectrometry housed at Curtin University).

U–Pb isotopic data of zircon and monazite were collected using the Sensitive High Resolution Ion Microprobe (SHRIMP II) based in the John de Laeter Centre, Curtin University. The mass filtered  $O_2$ - primary beam strength was 0.3 nA with a 10 µm spot size for monazite, and 1.9 nA with a 20 µm spot size for zircon. A 6-scan duty cycle and a mass resolution of ≈5000 were used during analysis (Kennedy & de Laeter, 1994; de Laeter & Microprobe (Surdance and smearing. In comparison the analysis (Kennedy & de Laeter, 1994; de Laeter & Microprobe (Surdance and smearing. In comparison the analysis (Leudwig, 2003; Ludwig, 2009) II and Isoplot 3.75 (Ludwig, 2003; Ludwig, 2009) Standards were located in a separate mount for the Standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were located in a separate mount for the standards were locat

analysis of monazite and zircon in thin section and this mount was Au-coated at the same time as their respective samples. For monazite, INDIA (Curtin internal laboratory standard, 509 Ma) was used as a primary standard (Korhonen et al., 2011) and GM-3 as a secondary standard (Curtin internal laboratory standard, 488 Ma). The same standards were used in the monazite grain mount. NBS glass (610, 612) was used for all zircon and monazite analyses to calibrate the position of the <sup>204</sup>Pb peak. For zircon analyses, BR266 (Stern & Amelin, 2003) was used as a primary standard and Temora 2 (Black et al., 2003) as a secondary standard in both grain and in situ mounts. Secondary standards (Temora 2 (417 Ma) and GM-3 (488 Ma)) for all sessions were within error (Temora 2:  $414 \pm 4$  Ma,  $413 \pm 5$  Ma; GM-3:  $488 \pm 5$  Ma,  $488 \pm 3$  Ma) of reported ages. <sup>207</sup>Pb/<sup>235</sup>U monazite ages were used for reported ages and ranges over <sup>206</sup>Pb/<sup>238</sup>U ages because of reduced effects of fractionation via incorporation of intermediate daughter products from <sup>230</sup>Th decay (Kirkland et al., 2009). Based on our data 207Pb/235U and 206Pb/238U monazite ages are within  $\sim$  5% discordance and are near equivalent to each other, allowing for use of Terra-Wasserburg concordia plots. A high degree of discordance and smearing along concordia is typical of U-Pb zircon and monazite data from southern India. Recrystallised, inherited zircon show a large variation in discordance (up to 48%) due to partial U-Pb resetting. In comparison the majority of metamorphic zircon are less than 10% discordant. For the purpose of calculating metamorphic ages concordance is defined by the  $2\sigma$  error ellipse overlapping with concordia (Spencer et al., 2015). Metamorphic zircon age

are younger than ~1500 Ma (Spencer et al., 2015). Pooled age data from multiple grains is reported either as a weighted mean age (if MSWD <2.5) or a range of ages (if MSWD > 2.5). Error ellipses on concordia diagrams are at the  $2\sigma$  level. Weighted means were calculated at 95% confidence. Errors cited for individual spot analysis in the text and data tables include errors from counting statistics, errors from the common Pb correction and U-Pb calibration errors based on reproducibility of U-Pb measurements of the standard, and are at the  $1\sigma$  level. A minimum error of 1% was assigned to the external spot-to-spot error to reflect the longterm performance of the SHRIMP. Zircon was not analysed from the transition zone due to its similar morphology to that within the garnet-biotite gneiss. Complete data tables for all monazite and zircon geochronology can be found in supplementary data Tables S1 and S2.

Chapter 2

5.3 LA-ICP-MS REE analysis of monazite, zircon and garnet

Rare earth element (REE) data were collected using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) on an ASI Resolution M-50 with a 193-nm wavelength Ar–F excimer laser with an Agilent 7700 mass spectrometer at the GeoHistory Facility, John de Laeter Centre, Curtin University. Analyses were made directly on top of all SHRIMP spots in monazite and zircon in both in situ and grain mounts. Garnet (core and rims) within the garnet–biotite gneiss (I11-004K), charnockite (I11-008C) and metapelitic gneiss (TB-14-025) were also analysed in thin sections. Garnet was analysed using a 50-µm spot size, zircon with a 23-µm spot size and monazite with a 33-

µm spot size. NIST glasses were used as reference material, specifically the 610 and 612 glasses with 610 used as the primary standard. Stoichiometric major elements were used for calibration of trace elements in each phase. Stoichiometric Si was used as the internal standardisation element for both zircon (14.76 wt%) and garnet (18 wt%). Ce (230526 ppm) was used as the internal standardisation element for monazite (Buick et al., 2010). All REE ppm values were normalized to CI chondrite values from Anders and Grevesse (1989), given as  $X_N$  values (X = relevant element). Europium anomalies were evaluated using Eu/Eu\* values (Eu/Eu\* =  $Eu_N/0.5*(Sm_N + Gd_N)$ ). Timeresolved data for all data points were reviewed following each session using the Iolite software package (Paton et al., 2010; Paton et al., 2011) and any monazite analyses that sampled inclusions (e.g. thorite) were removed. LREE data from zircon and garnet are not reported because relatively high values indicate that the LA-ICP-MS technique has sampled LREE-rich inclusions as well as the host mineral (e.g. LREE in zircon and garnet indicate monazite inclusions). Complete REE data tables can be found in supplementary data Tables S3, S4 and S5.

#### **6. RESULTS**

6.1 Phase equilibria modelling

In the P-T pseudosection for sample I11-004K (garnet-biotite gneiss; Fig. 5a) the calculated solidus is located at ~ 700–725 °C. The stability field for the inferred peak assemblage of garnet, ilmenite, K-feldspar, plagioclase, quartz, and melt both with and without biotite is highlighted, as natural biotite contains fluorine that will expand



its stability to temperatures higher than predicted Magnetite is predicted to be stable at pressures of in the model system. These fields encompass a less than 7 kbar at 700 °C and less than 5 kbar at 950 P-T range of 4.6 to >10 kbar and 790–940 °C. At of the peak field. However, given that we adjusted are predicted to be stable, neither of which occur the bulk Fe<sub>2</sub>O<sub>3</sub> content specifically to move the magnetite stability field to lower pressure the P-T

In the P-T pseudosection for sample I11-008C (charnockite; Fig. 5b) the calculated solidus is located at ~ 735–750 °C. The stability field for the interpreted peak assemblage of garnet, orthopyroxene, ilmenite, plagioclase, K-feldspar, quartz and melt occurs at 820–950 °C at 4.9–9.0 kbar. At lower temperatures biotite is predicted.

Magnetite is predicted to be stable at pressures of less than 7 kbar at 700 °C and less than 5 kbar at 950 °C, and therefore defines the lower pressure limit of the peak field. However, given that we adjusted the bulk Fe<sub>2</sub>O<sub>3</sub> content specifically to move the magnetite stability field to lower pressure the *P*–*T* position of this field does not provide independent constraints on the metamorphic conditions in our samples. Instead, we take the lack of cordierite, which is predicted to be stable at P < 4.5 kbar, to provide a more robust lower pressure limit to peak conditions in this sample.

In the P-T pseudosection for sample TB-

Metamorphism and charnockites in Trivandrum

14-025 (metapelitic gneiss; Fig. 5c) the calculated predicted only at low pressures (below 7 kbar at 700 °C and below 4 kbar at 920 °C) for the chosen Fe<sub>2</sub>O<sub>3</sub> content. The bulk composition of this sample contains both melanosome and leucosome and the pseudosection generated for this composition has quartz stable across the entire P-T range. Due to spinel only being stable in the quartz-free melanosome we have chosen to ignore it from the peak assemblage for this whole rock pseudosection. The stability field of the interpreted peak assemblage of garnet, ilmenite, sillimanite, plagioclase, K-feldspar, quartz and melt (both with and without biotite to account for likely differences between the natural and modelled stabilities of biotite) occurs at conditions of 740-960 °C and > 5.6 kbar. Cordierite, which is stable at P < 6-6.5kbar, provides the lower pressure limit to the peak assemblage.

#### 6.2 Monazite SHRIMP U-Pb dating

Monazite was analysed in thin section from a variety of textural settings such as inclusions in K-feldspar, quartz, garnet, cordierite and adjacent to ilmenite, biotite, sillimanite and spinel. No relationship was found between the textural location of accessory phases and their respective ages. Complete data tables for monazite U–Pb analyses can be found in supplementary data Table S1.

#### 6.2.1 Garnet-biotite gneiss

Fifteen analyses were performed on monazite grains from sample I11-004K. Core and recrystallised zone textures were targeted that had

14-025 (metapelitic gneiss; Fig. 5c) the calculated previously been identified through BSE imaging. solidus is located at ~ 730–760 °C. Magnetite is Low BSE response monazite cores from the predicted only at low pressures (below 7 kbar garnet–biotite gneiss yielded a range of  $^{207}$ Pb/ $^{235}$ U at 700 °C and below 4 kbar at 920 °C) for the spot ages from 594 ± 8 to 529 ± 10 Ma (n=6) and chosen Fe<sub>2</sub>O<sub>3</sub> content. The bulk composition Th/U ratios of 16.6–26.6. The recrystallised zones of this sample contains both melanosome and yield a range of  $^{207}$ Pb/ $^{235}$ U spot ages from 587 ± 10 leucosome and the pseudosection generated for to 507 ± 17 Ma (n=9) and Th/U ratios of 30.6–87.1 this composition has quartz stable across the entire (Fig. 6a).

#### 6.2.2 Transition zone

Twenty-nine spots from ten grains were analysed from sample I11-004C. Ten analyses of low BSE response monazite cores yielded a weighted mean  $^{207}Pb/^{235}U$  age of 584 ± 8 Ma (MSWD=0.7, n=10) and Th/U ratios of 17.1–23.5 with the high BSE response recrystallised zones giving a range of  $^{207}Pb/^{235}U$  spot ages from 593 ± 13 to 517 ± 13 Ma and Th/U ratios of 20.0–98.4 (Fig. 6b).

#### 6.2.3 Charnockite

Only two monazite grains were found in sample I11-008C. Both appear uniform, with no zoning or high BSE response recrystallised zones, and yielded a weighted mean  $^{207}Pb/^{235}U$  age of 505 ± 12 Ma (MSWD=1.8, n=6) and Th/U ratios of 6.9–83.9 (Fig. 6c).

#### 6.2.4 Metapelitic gneiss

Seventeen monazite grains were analysed from sample TB-14-025. The concordant monazite cores gave a range of  ${}^{207}$ Pb/ ${}^{235}$ U ages from 586 ± 5 to 512 ± 6 Ma (n=12) and Th/U ratios of 4.0–45.9. A few discordant cores define a discordia with an upper intercept of 1946 ± 24 Ma (MSWD=0.66, n=5) (Fig. 6d). The lower intercept of this discordant array is based on the onset of high-temperature conditions using the oldest metamorphic monazite spots and



Fig. 6: U–Pb monazite and zircon data for the samples in this study. Colours indicate textural location the analysis (see online version): red- grain core; light blue- rim (zircon) or recrystallised zones (monazite); green- 'soccerball' zircon; dark blue- recrystallised zircon. (a) All monazite analyses for the garnet–biotite gneiss. (b) All monazite analyses for the transition zone with the weighted mean age of monazite cores. (c) All monazite analyses for the charnockite. (d) All monazite analyses for the metapelitic gneiss with a few inherited monazite defining a discordia. The lower intercept of this discordant array is based on the onset of high-temperature conditions using the oldest metamorphic monazite spots and should not be interpreted as a true metamorphic age. (e) Younger population of monazite analyses from the metapelitic gneiss. (f) All monazite analyses for the pegmatite with the weighted mean age of the recrystallised zones. (g) All zircon analyses for the garnet–biotite gneiss with a few inherited zircon defining a discordia. The lower intercept of this discordant array is a mean age of the complete range of rim ages. (h) All zircon core and rim analyses for the charnockite with discordia through discordant inherited zircon. Lower intercept of this discordant array is based on the onset of high-temperature conditions using the oldest rims and should not be interpreted as a true metamorphic age. (i) All analyses of the 'soccerball' zircon from the charnockite with weighted mean age of all analyses. (j) All zircon analyses for the metapelitic gneiss with a few inherited mean age of all analyses. (j) All zircon analyses for the charnockite with weighted mean age of the complete rims and should not be interpreted as a true metamorphic age. (ii) All analyses of the 'soccerball' zircon from the charnockite with weighted mean age of all analyses.

Metamorphism and charnockites in Trivandrum

should not be interpreted as a true metamorphic 6.3.2 Charnockite e). The recrystallised zones yielded a range of  $^{207}$ Pb/ $^{235}$ U ages from 595 ± 6 to 513 ± 7 Ma (n=15) and Th/U ratios of 6.2–47.8.

### 6.2.5 Pegmatite

A total of seventeen analyses were conducted on monazite from sample I11-006V. The cores of nine grains gave a range of <sup>207</sup>Pb/<sup>235</sup>U spot ages from 586  $\pm$  12 to 510  $\pm$  9 Ma (n=14) and Th/U ratios of 11.0–30.3. The low BSE response outer recrystallised zones yielded a younger concordant population with a weighted mean <sup>207</sup>Pb/<sup>235</sup>U age of  $512 \pm 10$  Ma (MSWD=1.5, n=3) and Th/U ratios of 5.5–17.1 (Fig. 6f).

#### 6.3 Zircon SHRIMP U-Pb dating

Zircon was analysed within grain mounts except for the metapelitic gneiss sample, which was analysed in thin section. Complete data tables for zircon U-Pb analyses can be found in supplementary data Table S2.

### 6.3.1 Garnet-biotite gneiss

A total of eleven zircon U-Pb analyses were performed on the garnet-biotite gneiss (I11-004K). Two oscillatory cores were analysed with ages falling along a discordia trend (MSWD=2.0, n=11) that has a poorly constrained upper intercept at 2015  $\pm$  140 Ma and a lower intercept of 513  $\pm$ 20 Ma, a mean age of the range of rim analyses (Fig. 6g). The rims yielded a range of <sup>206</sup>Pb/<sup>238</sup>U spot ages from  $538 \pm 11$  to  $492 \pm 6$  Ma (n=9).

age. The majority of ages are younger than c. 590 Twenty-nine U–Pb analyses were performed on Ma and plot close to the concordia line (Fig. 6d, zircon from the charnockite (II1-008C). The oscillatory zoned cores fall along a discordia with a poorly defined upper intercept of 2238  $\pm$  110 Ma and a lower intercept 572  $\pm$  23 Ma (MSWD=0.43, n=5; the lower intercept is based on the onset of high-temperature conditions using the oldest rims and should not be interpreted as a true metamorphic age) (Fig. 6h). The rims yielded a range of  ${}^{206}\text{Pb}/{}^{238}\text{U}$  spot ages from  $589 \pm 23$  Ma to  $496 \pm 6$  (n=22). Zircon from this sample with a 'soccer-ball' morphology yielded a concordant population with a weighted mean <sup>206</sup>Pb/<sup>238</sup>U age of  $563 \pm 14$  Ma (MSWD=1.7, n=5) (Fig. 6i).

#### 6.3.3 Metapelitic gneiss

Five U–Pb analyses were performed in thin section on zircon from the metapelitic gneiss (TB-14-025). This number was limited by the very low abundance of zircon and by cracks that left only a small portion of each grain available for analysis. Zircon grains were contained in quartz and K-feldspar and adjacent to ilmenite, biotite and sillimanite. No relationship was found between the textural location of accessory phases and their respective ages. The rim and recrystallised areas yielded a single concordant age population with a weighted mean  ${}^{206}\text{Pb}/{}^{238}\text{U}$  age of 552 ± 17 Ma (MSWD=0.38, n=5) (Fig. 6j).

#### 6.4 Rare Earth Element mineral chemistry

Key REE concentrations and ratios for monazite, zircon and garnet have been summarised in Table 2. A complete table of analysed trace elements for these phases can be found in supplementary data Tables S3, S4 and S5 respectively.

#### 6.4.1 Monazite

Garnet-biotite gneiss (111-004K). The cores and recrystallised zones have similar negative M-HREE slopes (Yb<sub>N</sub>/Gd<sub>N</sub> of 0.001-0.008 and 0.001-0.004 respectively) but with a relative HREE enrichment of almost one order of magnitude more in the most of the cores (Lu<sub>N</sub> = 75–146 ppm/chondrite, n=8) compared to the recrystallised zones (Lu<sub>N</sub> = 13-59ppm/chondrite, n=13) (Fig. 7a). A few cores have HREE concentrations similar to the recrystallised zones (Lu<sub>N</sub> = 16–30 ppm/chondrite, n=4). Some of the cores have less pronounced Eu anomalies than the recrystallised zones with Eu/Eu\* values of Eu anomalies than the recrystallised zones with 0.002-0.006 and 0.002-0.004, respectively.

Transition zone (111-004C). Monazite from the transition zone sample shows similar M-HREE *Pegmatite (111-006V)*. The cores and recrystallised negative slopes for cores and recrystallised zones zones both show a negative M-HREE slope with  $Yb_N/Gd_N$  values of 0.001–0.002 and 0.0004– with  $Yb_N/Gd_N = 0.004-0.006$  and 0.004–0.005 0.002 respectively. The recrystallised zones are respectively (Fig. 7e). The cores are slightly more relatively more depleted in the M-HREE ( $Lu_N$  = 8–57 ppm/chondrite, n=21) compared to the cores The Eu anomaly is the same for the cores and  $(Lu_{N} = 62-82 \text{ ppm/chondrite}, n=9)$ . One core recrystallised zones with Eu/Eu\* values of 0.003had similar HREE concentration to recrystallised 0.005 and 0.004–0.005 respectively. zones (21 ppm/chondrite). The Eu anomaly is the same from core to recrystallised zones with Eu/ 6.4.2 Zircon Eu\* values of 0.001–0.004 (Fig. 7b).

charnockite shows no internal variation and has a  $Yb_N/Gd_N = 8-16$  (Fig. 7f). These cores have a less M-HREE negative slope with Yb<sub>N</sub>/Gd<sub>N</sub> of 0.001 and Eu/Eu\* of 0.002 (Fig. 7c).

Metapelitic gneiss (TB-14-025). Monazite cores The rims exhibit a more pronounced negative Eu from the metapelitic gneiss have a negative M- anomaly (Eu/Eu\*= 0.03-0.38). HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.0003-0.026). Those

cores that preserved old discordant U-Pb ages have relatively high HREE concentrations ( $Lu_N$ = 778–942 ppm/chondrite, n=2) that are higher than those of recrystallised zones, while other cores have lower concentrations (Lu<sub>N</sub> = 5-425ppm/chondrite, n=10) comparable to those in the recrystallised zones (Lu<sub>N</sub> = 3-253 ppm/chondrite, n=9) (Fig. 7d). The recrystallised zones also have a negative M-HREE slope  $(Yb_N/Gd_N = 0.0002-$ 0.007) and a large spread of HREE concentrations, although the majority are lower than those of core analyses (Lu<sub>N</sub> = 3-7 ppm/chondrite, n=6). Some of the cores preserve less pronounced negative Eu/Eu\* values of 0.002-0.075 and 0.002-0.034 respectively.

enriched in HREE than the recrystallised zones.

Garnet-biotite gneiss (111-004K). Two distinct HREE patterns are present. Oscillatory-zoned Charnockite (111-008C). Monazite from the cores show a steep positive M-HREE slope with pronounced negative Eu anomaly (Eu/Eu\*= 0.70-0.97). Zircon rims show a flat HREE pattern (Yb<sub>N</sub>/  $Gd_{N} = 0.7-1.3$ ) on a chondrite-normalised plot.



Fig. 7: Representative zircon, monazite and garnet REE analyses for samples in this study. Colours indicate textural location the analysis (see online version): red- core; light blue- rim (zircon) or recrystallised zones (monazite); green-Soccer ball zircon; dark blue- recrystallised zircon. (a) Garnet-biotite gneiss, monazite cores show little variation except for a few with low HREE compared to the recrystallised zones with lower HREE concentrations and almost an order of magnitude of variation. (b) Transition zone, monazite shows similar separation of cores and recrystallised zones to the garnet-biotite gneiss. (c) Charnockite, monazite recrystallised zones showing no variation in HREE. (d) Metapelitic gneiss, the monazite recrystallised zones mainly cluster at low HREE concentrations with a few grains with higher concentrations of HREE. The monazite cores show a high degree of scatter to the HREE and a range of Eu anomalies. (e) Pegmatite, monazite shows little differentiation between cores and recrystallised zones. (f) Garnet-biotite gneiss, zircon cores show a positive M-HREE slope with a flat M-HREE slope to the rims. (g) Charnockite, positive M-HREE slope to the cores with a less positive M-HREE slope to the rims and the soccer ball zircon. (h) Metapelitic gneiss, recrystallised zircon shows near flat M-HREE slope with some scatter, except one grain with a negative HREE slope. The zircon rim shows a near flat M-HREE slope. (i) Garnet-biotite gneiss, type-1 garnet (solid lines) show a slightly negative M-HREE slope for both cores and rims with slightly enriched rims. Type-2 garnet (dashed lines) show flat M-HREE slopes for both cores and rims. (j) Transition zone, garnet shows scatter and reduced concentration of HREE to the rims with an almost flat M-HREE slopes and little variation to the HREE concentration of the cores. (k) Charnockite, garnet from the charnockite shows a near flat M-HREE slope for the cores and rims with no separation. (1) Metapelitic gneiss, type-1 garnet (solid lines) show a negative M-HREE slope with slightly enriched cores and minor scatter to the rims. Type-2 garnet (dashed lines) show almost flat M-HREE slope with some limited scatter to cores and rims.

Metamorphism and charnockites in Trivandrum

| Monazite              |                     |           |             |                |                   |                                           |               |             |  |  |
|-----------------------|---------------------|-----------|-------------|----------------|-------------------|-------------------------------------------|---------------|-------------|--|--|
| Sample                | Textural position   | (maa) Y   | Ca (ppm)    | Si (ppm)       | Th (ppm)          | (mag) U                                   | Yb/Gd         | Eu/Eu*      |  |  |
| Garnet-biotite gneiss | Core                | 548-4140  | 6630-10890  | BDL-6710       | 91100-159800      | 9270-15870                                | 0.001-0.008   | 0.002-0.006 |  |  |
| l11-004K              | Recrystallised zone | 473–1370  | 10180-12240 | 4200-17100     | 146300-226400     | 5730-14900                                | 0.001-0.004   | 0.002-0.004 |  |  |
|                       |                     |           |             |                |                   |                                           |               |             |  |  |
| Transition zone       | Core                | 2222-3643 | 6690-9100   | 210-1710       | 91400-133800      | 8310–11340                                | 0.001-0.002   | 0.001-0.004 |  |  |
| l11-004C              | Recrystallised zone | 337–2695  | 6320-10410  | 1200-5020      | 115000-252700     | 3990-8510                                 | 0.0004-0.002  | 0.001-0.004 |  |  |
|                       |                     |           |             |                |                   |                                           |               |             |  |  |
| Charnockite           | Recrystallised zone | 1101–1640 | 1880–13390  | 98–2880        | 23200-279600      | 4390–4890                                 | 0.001         | 0.002       |  |  |
| I11-008C              |                     |           |             |                |                   |                                           |               |             |  |  |
| Metapelitic gneiss    | Core                | 346-19900 | 2860-11200  | BDL-16500      | 32410-120100      | 2890-10480                                | 0.0003-0.026  | 0.002-0.075 |  |  |
| TB-14-025             | Recrystallised zone | 287-11260 | 6010-9970   | 2100-24300     | 64500-201900      | 1682-8560                                 | 0.0002-0.007  | 0.002-0.034 |  |  |
|                       |                     |           |             |                |                   |                                           |               |             |  |  |
| Pegmatite             | Core                | 1214–1890 | 7170–14400  | BDL-17100      | 97700-183900      | 10970-40400                               | 0.004-0.006   | 0.003-0.005 |  |  |
| I11-006V              | Recrystallised zone | 1250-1363 | 4520-9600   | BDL-8300       | 46900-151200      | 11810–17500                               | 0.004-0.005   | 0.004-0.005 |  |  |
|                       |                     |           |             |                |                   |                                           |               |             |  |  |
| Zircon                |                     |           |             |                |                   |                                           |               |             |  |  |
| Sample                | Textural position   | Y (ppm)   | Th/U        | Yb/Gd          | Eu/Eu*            |                                           |               |             |  |  |
| Garnet-biotite gneiss | Core                | 816–1450  | 0.03-0.075  | 8.21-16.41     | 0.97-0.70         |                                           |               |             |  |  |
| l11-004K              | Rim                 | 98–130    | 0.04–0.13   | 0.74-1.28      | 0.03-0.38         |                                           |               |             |  |  |
|                       |                     |           |             |                |                   |                                           |               |             |  |  |
| Charnockite           | Core                | 115–980   | 0.11-0.31   | 11.70–14.26    | 0.13-0.28         |                                           |               |             |  |  |
| 111-008C              | Rim                 | 414–1309  | 0.07-0.23   | 1.40-9.69      | 0.004-0.06        |                                           |               |             |  |  |
|                       | 'Soccerball' zircon | 124–178   | 0.07-0.09   | 2.09-2.63      | All Eu values BDL |                                           |               |             |  |  |
| Metanelitic aneiss    | Bim                 | 138       | 0 125       | 0.30           | 0.29              |                                           |               |             |  |  |
| TB-14-025             | Recrystallised      | 37-326    | 0.012-0.24  | 0.05           | 0.25              |                                           |               |             |  |  |
| 10 14 020             | 1 loor yolallood    | 07 020    | 0.012 0.24  | 0.00 1.20      | 0.04 0.20         |                                           |               |             |  |  |
| Garnet                |                     |           |             |                |                   |                                           |               |             |  |  |
| Samplo                | Toxtural position   | V (nnm)   | Vb/Gd       | <b>Eu/Eu</b> * | Table 2: Su       | ummary tabl                               | e of composi  | itional     |  |  |
| Garnet-biotite gneiss | Type 1 - Core       | 121–141   | 0.53-0.91   | 0.001-0.002    |                   |                                           |               |             |  |  |
| l11-004K              | Type 1 - Rim        | 117–141   | 0.58-0.84   | 0.005          | ranges of L       | A-ICP-MS                                  | REE and oti   | ner         |  |  |
|                       | Type 2 - Core       | 79–117    | 0.06-0.12   | 0.001-0.010    | elements fr       | om monazite                               | e. zircon and | garnet.     |  |  |
|                       | Type 2 - Rim        | 103–126   | 0.17-0.23   | 0.001-0.004    |                   |                                           | -,            | 8           |  |  |
|                       |                     |           |             |                | Values are        | in ppm for si                             | ingular elem  | ents or     |  |  |
| Transition zone       | Core                | 94–150    | 0.31-0.44   | 0.002-0.005    | nnm/chond         | nnm/chondrite for REF_BDI_below detection |               |             |  |  |
| I11-004C              | Rim                 | 4–13      | 0.012-0.038 | 0.005          | ppm/enond         | THE IOI KEE                               |               |             |  |  |
|                       |                     |           |             |                | limit.            |                                           |               |             |  |  |
| Charnockite           | Core                | 106-123   | 0.43-1.19   | 0.002-0.006    |                   |                                           |               |             |  |  |
| I11-008C              | Rim                 | 94–122    | 0.44-1.35   | 0.001-0.005    |                   |                                           |               |             |  |  |
|                       |                     |           |             |                |                   |                                           |               |             |  |  |
| Metapelitic gneiss    | Type 1 - Core       | 53–84     | 0.042-0.13  | 0.005-0.008    |                   |                                           |               |             |  |  |

0.043-0.091 0.005-0.011

0.175-0.363 0.005-0.007

0.173-0.457 0.004-0.006

BDL- Below detection limit

TB-14-025

Charnockite (111-008C). Zircon in the charnockite displays two distinct HREE patterns. Oscillatory- Metapelitic gneiss (TB-14-025). Recrystallised zoned cores have a positive M–HREE slope  $(Yb_N/$  $Gd_{N} = 11.7-14.26$ ), and a small Eu anomaly (Eu/ Eu\*=0.13-0.28) (Fig. 7g). Zircon rims show a less positive M-HREE slope ( $Yb_N/Gd_N = 1.4-9.69$ ) and have similar to more pronounced Eu anomalies than the cores (Eu/Eu\*= 0.004-0.060). Soccer ball zircon displays a similar M-HREE slope (Yb<sub>N</sub>/  $Gd_{N} = 2.09-2.63$ ) and concentrations to the zircon rims (Fig. 7g) with all Eu values below detection limits.

Type 1 - Rim

Type 2 - Core

Type 2 - Rim

56-75

72–100

78–121

zircons in the metapelite show a near flat M-HREE slope, except for one analysis (PA1-1.1) having a negative M-HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.06-1.28). This analysis also has lower Y concentration (37.5 ppm) compared to the other zircon in this sample. These zircons all have negative Eu anomalies (Eu/  $Eu^* = 0.04-0.25$ ) (Fig. 7h). The one rim analysed has a similar M-HREE slope to the recrystallised zircon (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.39) and a similar Eu anomaly compared to the recrystallised zircon (Eu/Eu\* = *Chapter 2* 0.29).

#### 6.4.3 Garnet

*Garnet–biotite gneiss (I11-004K).* Type-1 garnet cores show a negative M–HREE slope  $(Yb_N/Gd_N = 0.53-0.91)$  on a chondrite-normalised plot with Eu anomalies yielding Eu/Eu\* values = (0.001-0.002)(Fig. 7i). The rims show a similar M–HREE slope on a chondrite-normalised plot  $(Yb_N/Gd_N = 0.58-$ 0.84), with a less pronounced Eu anomaly (Eu/ Eu\* = 0.005) and relative enrichment in M–HREE compared to the cores (Fig 7i).

Type-2 garnet shows limited core to rim variation and has a near flat M–HREE slope on a chondrite-normalised plot with Yb<sub>N</sub>/Gd<sub>N</sub> values of 0.06–0.12 for cores and slightly steeper slopes of 0.17–0.23 for the rims. The Eu anomaly is in the cores covers a range of values that includes the rims with Eu/Eu\* values of 0.0005–0.010 in the cores and 0.001–0.004 in the rims (Fig 7i).

*Transition zone (111-004C)*. Garnet cores display a flat M–HREE slope on a chondrite-normalised plot (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.31–0.44) with the rims showing a negative M–HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.012– 0.038) (Fig. 7j). There is more variation in Eu anomaly in the cores compared to the rims with Eu/ Eu\* values of 0.002–0.005 and 0.005 respectively.

*Charnockite (111-008C).* The cores and rims of the garnets from the charnockite show slightly negative to flat M–HREE slopes on a chondrite-normalised plot  $(Yb_N/Gd_N = 0.43-1.19 \text{ and } 0.44-1.35 \text{ respectively})$  and Eu/Eu\* of 0.002–0.006 for cores and 0.001–0.005 for rims (Fig. 7k).

cores and rims show a negative M–HREE slope  $(Yb_N/Gd_N = 0.042-0.13 \text{ and } 0.043-0.091 \text{ respectively})$  with the majority of core analyses at higher HREE concentrations (Fig. 71). The cores show a higher degree of scatter in the HREE than the rims. There is little variation in Eu anomaly between cores and rims in these garnets (Eu/Eu\* values of 0.005–0.008 and 0.005–0.011 respectively).

Type-2 garnet core and rims show similar near flat to slightly negative M–HREE slopes with Yb<sub>N</sub>/Gd<sub>N</sub> values of 0.175–0.363 and 0.173–0.457 respectively (Fig. 71). Both cores and rims show a spread in HREE concentrations but the rims show more scatter. There is little variation in Eu anomaly between the cores and rims in these garnets (Eu/ Eu\* = 0.005–0.007 and 0.004–0.006 respectively).

#### 7. DISCUSSION

7.1 Pressure-temperature evolution

As all of the studied samples were collected from the same locality and no major structural discontinuities were observed that could have led to the juxtaposition of units with different tectonic histories, we assume all rocks share a common P-T-t history. We have modelled this history using pseudosections calculated in the NCKFMASHTO system, which can successfully account for all observed peak minerals with the exception of biotite and spinel. Small quantities of biotite are interpreted as part of the peak assemblage in both the metapelitic gneiss and the garnet-biotite gneiss (Fig. 3a, i), but biotite is likely to be stable at temperatures higher than those predicted in the NCKFMASHTO system due to additional

Metapelitic gneiss (TB-14-025). Type-1 garnet components, in particular fluorine, which has been



Fig. 8: Summary diagram of P-T estimates. Peak fields for each modelled P-T pseudosection are overlain to show a common field of peak conditions outlined in black. Mineral isopleths show predicted modal proportions of orthopyroxene in the charnockite composition. Dashed blue lines indicate the possible conditions through which the post peak evolution might have passed based on the growth of retrograde cordierite within the metapelitic gneiss. No prograde evolution is proposed because partial melting and melt segregation mean that the present-day bulk rock compositions are not representative of prograde conditions.

reported in incipient charnockites and associated and has been excluded from the inferred peak rock types from southern India (Chacko et al., assemblage in the modelled pseudosection as this 1987; Stähle et al., 1987; Nair & Chacko, 2002; was calculated for a bulk composition that contains Santosh et al., 2003a; Ravindra Kumar, 2004). For both melanosome and leucosome causing quartz to this reason, both biotite-bearing and biotite-absent be predicted across the whole modelled interval. fields have been included in the inferred peak P-Tconditions for the garnet-biotite and metapelitic that peak assemblages in the three main rock types gneisses. Spinel within the metapelitic gneiss is at Kakkod have P-T stability fields of 4.6 to >10 only stable within only the quartz-free melanosome kbar and 790–940 °C (garnet-biotite gneiss, Fig.

This pseudosection modelling predicts

Metamorphism and charnockites in Trivandrum

5a), 4.9–9.0 kbar and 820–960 °C (garnet-bearing charnockite, Fig. 5b) and 5.6 to >10 kbar, 740 °C to > 960 °C (metapelitic gneiss Fig. 5c). While these fields are different, there is a region of overlap (highlighted in Fig. 8) suggesting peak conditions of 6–9 kbar 830–925 °C. Such conditions are consistent with many peak P-T estimates from elsewhere in the Trivandrum block (Chacko et al., 1987; Santosh, 1987; Nandakumar & Harley, 2000; Pattison et al., 2003; Collins et al., 2014). On this basis we infer that mineral assemblages in the garnet–biotite gneiss, charnockite and metapelitic gneiss were stabilised at similar P-T conditions.

The metapelitic gneiss is best suited to constrain the P-T path at Kakkod as it contains a relatively low-variance mineral assemblage compared to the other samples and is a fairly typical (albeit residual) aluminous metapelite. However, due to the effects of melt loss, the calculated pseudosections based on residual compositions are not suitable for accurately constraining the prograde path (White & Powell, 2002; Diener et al., 2013) and therefore we focus here on the retrograde evolution. The growth of cordierite and biotite in the metapelite is interpreted to record high-temperature retrograde decompression to around 6.5-5.5 kbar followed by cooling (Fig. 8). The lack of orthopyroxene in this sample suggests that pressures did not drop below  $\sim 5$  kbar (Fig. 5c), and this is also consistent with the lack of orthopyroxene in the garnet-biotite gneiss (Fig.5a). This evolution is likely to be part of a clockwise P-T path and is similar to many paths reported from other areas in southern India (Nandakumar & Harley, 2000; Shabeer et al., 2002; Cenki et al., 2004; Collins et al., 2014; Clark et al., 2015; Johnson et al., 2015). It is important to note that all

three samples can be modelled with a single P-T path, although the P-T path suggested in Figure 8, which shows decompression from ~ 8 to ~ 6 kbar, is not a unique solution (for example a path with a smaller pressure decrease from ~ 7 to 6 kbar could also explain the observed assemblages).

Our findings that mineral assemblages in all three main rock types at Kakkod are stable at similar P-T conditions conflict with the conclusions of Endo et al. (2013), who argued that the metapelitic gneiss preserves evidence for higher-grade conditions than the garnet-biotite gneiss and charnockite. However, while Endo et al. (2013) used P-T pseudosections to derive estimates for peak metamorphic conditions in garnet-biotite gneiss and charnockite, they were unable to use this approach for the metapelite because this rock type was not exposed in the quarry that they studied. Instead they relied on the earlier study of Tadokoro et al. (2008) who used Zn-in-spinel barometry and feldspar-solvus thermometry to propose peak P-T conditions of 10-12 kbar and 900-1000°C for the Trivandrum Block metapelite. Tadokoro et al. (2008) provided only very brief descriptions of mineral-chemical relationships in their samples, and little information on how they selected mineral compositions for conventional thermobarometry, which makes it difficult to evaluate their P-T estimates. However, our results allow for a simpler and more consistent interpretation of metamorphic P-T conditions in the Trivandrum Block, and we therefore prefer a model in which all rocks underwent peak metamorphism and a high-T decompression within a pressure interval of 9–6 kbar.

formation

Chapter 2

As highlighted above. the matrix peak charnockite assemblage containing liquid, garnet, orthopyroxene, ilmenite, K-feldspar, plagioclase and quartz is predicted to be stable at conditions of 820-960 °C and ~ 4.9-9.0 kbar, and this field overlaps with those inferred for peak metamorphic assemblages in other rock compositions (Fig. 8). Thus it is permissible that the orthopyroxenebearing charnockite assemblage formed at the same time as peak assemblages in the host garnet-biotite gneiss. A similar conclusion was reached by Endo et al. (2013) even though they assumed different peak conditions for the metapelite (as discussed above). Although charnockite stabilisation at the metamorphic peak is our preferred interpretation, the microstructural relationships are ambiguous and orthopyroxene may also have grown during high-temperature retrograde decompression. Mineral isopleths of orthopyroxene (Fig. 8) permit either of these scenarios, and the very low abundance of orthopyroxene in these felsic bulk compositions leads to large uncertainties in both observed and predicted mineral modes.

The modelled stability of orthopyroxene differs significantly between the charnockite and garnet-biotite gneiss (maximum pressure limits of 9 and 5 kbar, respectively) and this must reflect a difference in bulk composition between these two rock types. However, these two compositions are very similar (Table 1), making it difficult to precisely determine the components that are controlling orthopyroxene stability at Kakkod. Previous comparisons of incipient charnockite and host garnet-biotite gneiss in the Trivandrum

7.2 A case for peak-metamorphic charnockite Block have identified small differences in the concentrations of components such as SiO<sub>2</sub>, K<sub>2</sub>O, Na<sub>2</sub>O, MgO and FeO/Fe<sub>2</sub>O<sub>3</sub>, but there seems little consistency in the magnitude of these variations or even in which rock has the higher and which the lower concentration (e.g. Hansen et al., 1987; Raith & Srikantappa, 1993; Endo et al., 2013). A recent study by Endo et al. (2012) of similar rocks further north in the Madurai Block used pseudosection modelling to argue that orthopyroxene in charnockite patches was stabilised by less-oxidised conditions; our study also indicates that ferric iron exhibits a strong control on orthopyroxene stability. In particular, a  $P-M_{Fe2O3}$  pseudosection calculated for the Kakkod charnockite sample indicates that orthopyroxene is stabilised to higher pressures with a small reduction in the ferric/ferrous ratio (Fig. S2). However, our final P-T pseudosections (Fig. 5) were calculated for identical Fe<sub>2</sub>O<sub>2</sub> concentrations in the charnockite and garnet-biotite gneiss, and marginally higher Fe<sub>2</sub>O<sub>3</sub>/(Fe<sub>2</sub>O<sub>3</sub>+FeO) values in the charnockite, indicating that ferric iron is not responsible for the differences in orthopyroxene stability in our models.

> The exact compositional variables that control the stability of orthopyroxene between the two rock compositions at Kakkod is not yet known, although we emphasize that the very low abundance of mafic minerals in these highly felsic bulk rock compositions means that their stability will be sensitive to small variations in bulk chemistry. Similarly, it is unclear what might have caused these local compositional variations, with insufficient information available to determine whether they were inherited from the protolith or a result of syn-metamorphic fluid flow.

quarry

Zircons from the garnet-biotite gneiss and charnockite show oscillatory-zoned cores (Fig. 4b, f) and are interpreted to be inherited from the protolith to the garnet-biotite gneiss. The ages of these inherited cores fall within known ages of inherited Palaeoproterozoic igneous zircons for the Trivandrum Block (Fig. 6b, e) (Collins et al., 2007b; Collins et al., 2014) and show steep M-HREE slopes indicative of growth without garnet (Fig. 7f, g) (Hoskin & Schaltegger, 2003). A number of monazites from the metapelitic gneiss (Fig. 6g) also show older discordant ages (> c. 650 Ma) and again fall along a discordia with a Palaeoproterozoic upper intercept. These are likewise interpreted to be inherited grains that have undergone Pb-loss during the Late Neoproterozoic - Cambrian metamorphic event, and they have the most enriched HREE of any of monazite analyses.

The onset of high-grade metamorphism at Kakkod is interpreted to have occurred at c. 590 Ma based on the oldest metamorphic monazite ages (Fig. 9), an age that is consistent with other studies from the Trivandrum and Nagercoil Blocks (Taylor et al., 2014, Johnson et al., 2015). Monazite cores in the garnet-biotite gneiss, transition zone and metapelitic gneiss are all enriched in HREE suggesting they grew before or during the appearance of a HREE- enriched phase (i.e. c. 590 Ma) (Fig. 7a, b, c, d) (Hermann & Rubatto, 2003; Rubatto et al., 2006). This HREEenriched phase is assumed to be garnet, which is present in all samples except the pegmatite. The monazite from the metapelitic gneiss has M-

HREE concentrations an order of magnitude larger 7.3 Timing of peak metamorphism at Kakkod than the other samples (due to influence of HREEenriched inherited monazite) and also has a greater spread of HREE contents (Fig. 7d). This scatter in HREE for the non-inherited monazite in the metapelitic gneiss and the few low HREE cores in the garnet-biotite gneiss and the transition zone is interpreted to represent the increasing influence of a HREE phase (i.e. garnet growth) during monazite crystallisation.

> The type-1 garnets in both garnet-biotite gneiss and metapelitic gneiss are interpreted to be prograde with slightly negative M-HREE slopes (Hermann & Rubatto, 2003). The type-2 garnets from the garnet-biotite and metapelitic gneiss as well as the transition zone and charnockite are interpreted to be peritectic and grew in the presence of zircon based on their near flat M-HREE slope (Hokada & Harley, 2004). In both the garnet-biotite gneiss and the metapelitic gneiss the rims of type-1 garnet were likely modified by the influx of REE-enriched partial melt, resulting in rim compositions closer to type-2. The population of equant 'soccer ball' metamorphic zircon in the charnockite is interpreted to have precipitated as high-T subsolidus growth (Schaltegger et al., 1999; Harley et al., 2007) at  $562 \pm 22$  Ma (Fig. 6f), rather than during post-peak melt crystallisation due to their age and sector zoned 'soccer ball' texture (Vavra et al., 1996; Schaltegger et al., 1999; Kelly & Harley, 2005). The 'soccer ball' zircon is inferred to have equilibrated with the flat-REE type-2 garnets is inferred to have equilibrated with flat-REE garnet in the charnockite, which is equivalent to type-2 garnet in other rock types. This is corroborated by the near 1:1  $D_{REE}$  (zircon/ garnet) ratio between garnet and the 'soccer ball'



**Fig. 9:** Summary diagram of all monazite and zircon U–Pb geochronological data for Kakkod (excluding analyses of older inherited grains). Data are shown as box and whisker plots to illustrate the age spread of each analysis type. Box shape indicates the mineral (monazite versus zircon), while colours indicate the textural location of the analyses (see online version): red- core; light blue- rim (zircon) or recrystallised zones(monazite); green- Soccer ball zircon; dark blue- recrystallised zircon. Monazite is given as <sup>207</sup>Pb/<sup>235</sup>U ages. Zircon is given as <sup>206</sup>Pb /<sup>238</sup>U ages. The box represents the interquartile range (the middle 50% (median- horizontal bar) of the data from the 25th to 75th percentile), the whiskers represent the minimum and maximum ages within 1.5\*interquartile range with outliers marked with an 'X'. Some of overlap between the age ranges is likely a representation of the analytical uncertainty of the data. Major events interpreted from geochronology are outlined by arrowed intervals based on quartile ranges and ignoring outliers.

zircon (Taylor et al., 2015). The garnet rims from the transition zone show HREE concentrations nearly an order of magnitude lower than any of the other samples. These low HREE concentrations are interpreted to reflect the retrograde reaction observed at garnet margins to an intergrowth of biotite and quartz, which is not seen in the other

samples. The trend of increasing negative Eu anomaly from core to rim in zircon (garnet-biotite gneiss and charnockite), monazite (garnet-biotite gneiss, metapelitic gneiss) and garnet (garnetbiotite gneiss) could indicate the increasing crystallisation of plagioclase likely from partial melt whilst zircon, monazite and garnet was

#### Metamorphism and charnockites in Trivandrum

recrystallising/growing or the presence of plagioclase before recrystallisation, sequestering much of the Eu (Johnson et al., 2015). Some samples show little to no differentiation in Eu anomalies between cores and rims.

Rims on inherited zircon from the charnockite contain a number of different ages that potentially relate to (1) partial to full recrystallisation during prograde metamorphism and (2) neocrystallisation during subsequent melt crystallisation (Vavra et al., 1996; Schaltegger et al., 1999; Kelly & Harley, 2005). The onset of melt crystallisation is interpreted to have occurred at c. 540 Ma based on the upper quartile distribution of zircon rim ages from the charnockite (Fig. 9). The majority of zircon crystallised between ~ 540-510 Ma matching that found in other studies of the Trivandrum Block and adjacent areas (Harley & Nandakumar, 2014; Taylor et al., 2014; Johnson et al., 2015). The ages calculated for the monazite cores and metamorphic zircon rims define a window of prograde to peak metamorphism of  $\sim$  50 Myr from the onset at 590 Ma to 540 Ma, followed by a further 30 Myr during which melt crystallised (Fig. 9).

The zircon from the metapelitic gneiss shows remnants of oscillatory zoning that has become diffuse through recrystallisation (Hoskin & Black, 2000; Wang et al., 2014). Unlike similar zircon from the garnet–biotite gneiss and charnockite with partly reset premetamorphic ages and steep positive M–HREE slopes, this zircon from the metapelitic gneiss gives a concordant c. 550 Ma metamorphic age and mostly has flat HREE patterns interpreted as a result of recrystallisation and growth in the presence of garnet (Fig. 7h). The one analysis of recrystallised zircon with low HREE also has the youngest spot age and is interpreted to represent increasing recrystallisation with age. Metamorphic zircon rims in all samples are likely a result of post-peak melt crystallization (Roberts & Finger, 1997; Kelsey et al., 2008). Monazite cores from the pegmatite are interpreted to be inherited from the garnet-biotite gneiss with ages ranging from c. 580-512 Ma (Fig. 9). REE in the pegmatite monazite cores show similar HREE concentrations and M-HREE slope to monazites in the garnet-biotite gneiss (Fig. 7e). The ages from the recrystallised areas (weighted mean  $^{207}\text{Pb}/^{235}\text{U}$  age 512 ± 10 Ma) are interpreted to represent the emplacement of the pegmatite (Fig. 9).

#### 7.4 Age of post-peak fluid event

Lobate high-Th recrystallised zones in monazite grains (Fig. 4; Table 2) are interpreted to be the result of coupled dissolution-reprecipitation. These textures are similar to those observed in previous experimental and empirical studies (Harlov & Hetherington, 2010; Harlov et al., 2011; Williams et al., 2011; Kelly et al., 2012), and based on comparisons with the experiments Taylor et al. (2014) interpreted the same features in incipient charnockites at the nearby locality of Kottavattom to have formed during post-peak influx of hydrous alkali-rich fluid.

Monazite ages from the Kakkod samples show variable amounts of resetting (Pb-loss) with some grains showing distinct sections (lobate dissolution-reprecipitation structures) that are variably reset, and others with no internal structures at all that are fully reset, recording the

Metamorphism and charnockites in Trivandrum

youngest ages of any of the samples. The effects of incomplete Pb-loss manifests itself as the presence of discordant monazite ages within the metapelitic gneiss (Fig. 6g) and the large spread of ages along concordia to a younger age. Similar manifestations of Pb-loss can occur in zircon from prolonged high-T localities like the Rayner Complex in Antarctica (Halpin et al., 2012). This spread is particularly well developed in the monazite analyses from the garnet-biotite gneiss and metapelitic gneiss (Fig. 6a, d, e). This spread along concordia records a range of ages from c. 590 Ma down to around c. 490 Ma. Samples that record the large spread in ages all contain fluid-related coupled dissolution-reprecipitation textures in the monazite (Fig. 4a, d, e). From our data the transition zone monazite appears to have seen the least overprint with limited smearing along concordia, and also shows coupled dissolution-reprecipitation textures. Monazite from the charnockite has no internal structures and recorded the youngest ages of any of the samples. We suggest that this represents complete resetting of the monazite in the charnockite, with partially reset monazite from the other samples smearing down concordia towards this same age. The significance of this apparently greater degree of fluid-driven monazite resetting in the charnockite is unclear, not least because only two monazite grains were found in the single sample of charnockite analysed in this study, and more analyses of more samples would be needed to establish if the charnockite monazite truly saw more resetting than monazite in other rock types.

The monazite recrystallised zones in the garnet-biotite gneiss, metapelitic gneiss and

transition zone show large variations in HREE, with consistently lower concentrations compared to their respective cores (Fig. 7a, b, d). This is interpreted to represent the modification of monazite in the presence of garnet, after this latter phase had sequestered HREE.

Ages of c. 525-490 Ma for the monazite population in the charnockite and the youngest monazite recrystallised zones from the transition zone, garnet-biotite gneiss, and metapelitic gneiss are interpreted as the time of fluid infiltration and coupled dissolution-reprecipitation of monazite (Fig. 9). Based on the overlap between the inferred ages of melt crystallisation (~ 540-510 Ma) and hydrous fluid influx (~ 525-490 Ma), and the presence of the pegmatite dyke that cuts across the garnet-biotite gneiss, we suggest that the fluids were sourced from a local melt system, perhaps at deeper crustal levels, that crystallised slightly later than melt in the Kakkod samples. This is similar to the source of fluids proposed by Taylor et al. (2014). The presence of the coupled dissolutionreprecipitation textures within monazite from the garnet-biotite gneiss, transition zone, metapelitic gneiss as well as the homogenous charnockite monazite indicate that fluid influx was pervasive throughout the whole outcrop which reinforces the study by Taylor et al. (2014).

#### 8. CONCLUSIONS

• Phase relationships in all three rock types at Kakkod (garnet–biotite gneiss, charnockite, and metapelitic gneiss) are consistent with peak metamorphic conditions of c. 830–925°C and 6–9 kbar.

• Peak metamorphism was followed by high-temperature decompression best recorded by

Metamorphism and charnockites in Trivandrum

retrograde growth of cordierite and/or biotite in the metapelitic gneiss.

• The onset of high-grade metamorphism is dated at c. 590 Ma with melt crystallisation starting at c. 540 Ma. The majority of zircon grew at 540–510 Ma, which is taken as when most of the melt at Kakkod crystallised.

• Orthopyroxene-bearing charnockite assemblages replaced local patches of the garnet-biotite gneiss at or soon after peak metamorphism. They must reflect local compositional heterogeneities in the garnetbiotite gneiss, although we cannot determine if these heterogeneities were inherited from the protolith or introduced by high-temperature fluid influx.

• T-P-X sections highlight the sensitivity of orthopyroxene stability in metafelsic rocks to the local oxidation state, but this does not seem to have been the controlling factor in charnockite formation at Kakkod.

• Later lower-temperature fluid influx at c. 525–490 Ma led to coupled dissolutionreprecipitation of monazite and variable resetting of its U–Pb isotope system. Based on comparisons with monazite textures in experiments, we follow Taylor et al. (2014) in suggesting that these fluids were aqueous and perhaps rich in alkalis.

• The presence of coupled dissolutionreprecipitation textures in monazite from all samples at Kakkod indicates that late fluid flux was pervasive throughout the outcrop. It is likely to have driven hydrous retrogression of the charnockite, but played no role in its stabilization.

• The timing of monazite modification at Kakkod is very close to final melt crystallisation ages from this and other localities. This suggests that fluid influx was linked to cooling and solidification of local (and possibly deeper) melt systems, and could be related to the pegmatite dyke at Kakkod with a crystallisation age of  $\sim 512$  Ma.

#### ACKNOWELDGEMENTS

Zircon and monazite U–Pb analyses were carried out using the SHRIMP II Ion Microprobe at the John de Laeter Centre for Isotope Research, Perth, managed by Allen Kennedy. LA-ICP-MS REE analyses were carried out at the GeoHistory Facility, John de Laeter Centre, Curtin University. Financial support for this project was provided by an ARC DECRA fellowship to CC and ARC Discovery Project Grant DP150102773 to ICWF and CC. We thank J. Halpin, S. Harley and N. Daczko for their thorough reviews and G. Clarke for his editorial handling.

# REFERENCES

- Anders, E. & Grevesse, N., 1989. Abundances of the elements: meteoric and solar. Geochimica et Cosmochimica Acta, 53, 197–214.
- Black, L.P., Kamo, S.L., Allen, C.M. et al., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200, 155–170.
- Braun, I., 2006. Pan-African granitic magmatism in the Kerala Khondalite Belt, southern India. Journal of Asian Earth Sciences, 28, 38–45.
- Braun, I., Montel, J.-M. & Nicollet, C., 1998. Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chemical Geology including Isotope Geoscience, 146, 65–68.
- Buick, I.S., Clark, C., Rubatto, D., Hermann, J., Pandit, M. & Hand, M., 2010. Constraints on the Proterozoic evolution of the Aravalli-Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos, 120, 511–528.
- Cenki, B., Braun, I. & Bro€cker, M., 2004. Evolution of the continental crust in the Kerala Khondalite Belt, southern-most India: evidence from Nd isotope mapping, U-Pb and Rb-Sr geochronology. Precambrian Research, 134, 275–292.
- Chacko, T., Ravindra Kumar, G.R. & Newton, R.C., 1987. Metamorphic P-T conditions of the Kerala (South India) Khondalite Belt, a granulite facies supracrustal terrain. The Journal of Geology, 95, 343–358.
- Chacko, T., Ravindra Kumar, G.R., Meen, J.K. & Rodgers, J.W., 1992. Geochemistry of high-grade supracrustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites, South India. Precambrian Research, 55, 469–489.
- Chacko, T., Lamb, M. & Farquhar, J., 1996. Ultra-high tem- perature metamorphism in the Kerala Khondalite Belt. Gondwana Research Group Memoir, 3, 157–165.
- Chetty, T.R.K., Fitzsimons, I.C.W., Brown, L., Dimri, V.P. & Santosh, M., 2006. Crustal structure and tectonic evolution of the Southern Granulite Terrane, India: introduction. Gondwana Research, 10, 3–5.

Clark, C., Collins, A.S., Santosh, M., Taylor, R. & Wade, B.P., 2009a. The P-T-t architecture of a Gondwanan suture: REE, U-Pb and Ti-in-zircon thermometric constraints from the Palghat Cauvery shear system, South India. PrecambrianResearch, 174, 129–144.

Chapter 2

- Clark, C., Collins, A.S., Timms, N.E., Kinny, P., Chetty, T.R.K. & Santosh, M., 2009b. SHRIMP U-Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. Gondwana Research, 16, 27–36.
- Clark, C., Healy, D., Johnson, T. et al., 2015. Hot orogens and supercontinent amalgamation: a Gondwanan example from southern India. Gondwana Research, 28(4), 1310–1328.
- Collins, A.S. & Pisarevsky, S.A., 2005. Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth-Science Reviews, 71, 229–270.
- Collins, A.S., Clark, C., Sajeev, K., Santosh, M., Kelsey, D.E. & Hand, M., 2007a.Passage through India: the Mozambique Ocean suture, high-pressure granulites and the Palghat-Cauvery shear zone system. Terra Nova, 19, 141–147.
- Collins, A.S., Santosh, M., Braun, I. & Clark, C., 2007b. Age and sedimentary provenance of the Southern Granulites, South India: U-Th-Pb SHRIMP secondary ion mass spectrometry. Precambrian Research, 155, 125–138.
- Collins, A.S., Clark, C. & Plavsa, D., 2014. Peninsula India in Gondwana: the tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Research, 25(1), 190–203.
- Diener, J.F.A. & Powell, R., 2010. Influence of ferric iron on the stability of mineral assemblages. Journal of Metamorphic Geology, 28, 599–613.
- Diener, J.F.A., White, R.W., Link, K., Dreyer, T.S. & Mood- ley, A., 2013. Clockwise, low-P metamorphism of the Aus granulite terrain, southern Namibia, during the Mesoproterozoic Namaqua Orogeny. Precambrian Research, 224, 629–652.
- Drury, S.A., Harris, N.B.W., Holt, R.W., Reeves-Smith, G.J. & Wightman, R.T., 1984. Precambrian tectonics and crustal evolution in South India. The Journal of Geology, 92, 3–20.

Metamorphism and charnockites in Trivandrum

- Endo, T., Toshiaki, T., Santosh, M. & Shaji, E., 2012. Phase equilibrium modeling of incipient charnockite formation in NCKFMASHTO and MnNCKFMASHTO systems: a case study from Rajapalaiyam, Madurai Block, southern India. Geoscience Frontiers, 3, 801–812.
- Endo, T., Toshiaki, T., Santosh, M., Shimizu, H. & Shaji, E., 2013. Granulite formation in a Gondwana fragment: petrology and mineral equilibrium modeling of incipient charnockite from Mavadi, southern India. Mineralogy and Petrology, 107, 727–738.
- Fonarev, V.I., Konilov, A.N. & Santosh, M., 2000. Multistage metamorphic evolution of the Trivandrum Granulite Block, Southern India. Gondwana Research, 3, 293–314.
- Fyfe, W.S., 1973. The granulite facies, partial melting and the Archaean crust. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 273, 457–461.
- Halpin, J.A., Daczko, N.R., Milan, L.A. & Clarke, G.L., 2012. Decoding near-concordant U-Pb zircon ages spanning several hundred million years: recrystallisation, metamictisation or diffusion? Contributions to Mineralogy and Petrology, 163, 67–85.
- Hansen, E.C., Janardhan, A.S., Newton, R.C., Prame, W.K.B.N. & Kumar, G.R.R., 1987. Arrested charnockite formation in southern India and Sri Lanka. Contributions to Mineralogy and Petrology, 96, 225–244.
- Harley, S.L. & Nandakumar, V., 2014. Accessory mineral behaviour in granulite migmatites: a case study from the Kerala Khondalite Belt, India. Journal of Petrology, 55, 1965–2002.
- Harley, S.L. & Santosh, M., 1995. Wollastonite at Nuliyam, Kerala, souterhn India: a reassessment of CO2-infiltration and charnockite formation at a classic locality Contributions to Mineralogy and Petrology, 120, 83–94.
- Harley, S.L., Kelly, N.M. & Mo€ller, A., 2007. Zircon beha- viour and the thermal histories of mountain chains. Elements, 3, 25–30.
- Harlov, D.E. & Hetherington, C.J., 2010. Partial high-grade alteration of monazite using alkalibearing fluids: experiment and nature. American Mineralogist, 95, 1105–1108.

Harlov, D.E., Wirth, R. & Hetherington, C.J., 2011. Fluid-mediate partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology, 162, 329–348.

Chapter 2

Harris, N.B.W., Santosh, M. & Taylor, P.N., 1994. Crustal evolution in South India: constraints from Nd isotopes. The Journal of Geology, 102, 139–150.

- Hermann, J. & Rubatto, D., 2003. Relating zircon and mon- azite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology, 21, 833–852.
- Hokada, T. & Harley, S.L., 2004. Zircon growth in UHT leu- cosome: constraints from zircongarnet rare earth elements (REE) relations in Napier Complex, East Antarctica. Journal of Mineralogical and Petrological Sciences, 99, 180–190.
- Holland, T.J.B. & Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.
- Hoskin, P.W.O. & Black, L.P., 2000. Metamorphic zircon for- mation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 423–439.
- Hoskin, P.W.O. & Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27–62.
- Jackson, D.H. & Santosh, M., 1992. Dehydration reaction and isotope front transport induced by CO2 infiltration at Nuliyam, South India. Journal of Metamorphic Geology, 10, 365–382.
- Johnson, T., Clark, C., Taylor, R., Santosh, M. & Collins, A.S., 2015. Prograde and retrograde growth of monazite in migmatites: an example from the Nagercoil Block, southern India. Geoscience Frontiers, 6, 373–387.
- Kelly, N.M. & Harley, S.L., 2005. An integrated microtextu- ral and chemical approach to zircon geochronology: refin- ing the Archaean history of the Napier Complex, east Antartica. Contributions to Mineralogy and Petrology, 149, 57–84.

Metamorphism and charnockites in Trivandrum

- Kelly, N.M., Harley, S.L. & Möller, A., 2012. Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chemical Geology, 322–323, 192–208.
- Kelsey, D.E., Clark, C. & Hand, M., 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsam- mitic granulites. Journal of Metamorphic Geology, 26, 199–212.
- Kennedy, A.K. & de Laeter, J.R., 1994. The performance characteristics of the WA SHRIMP II ion microprobe. US Geological Survey Circular, 1107, 166.
- Kirkland, C.L., Whitehouse, M.J. & Slagstad, T., 2009. Fluid-assisted zircon and monazite growth within a shear zone: a case study from Finnmark, Arctic Norway. Contributions to Mineralogy and Petrology, 158, 637–657.
- Korhonen, F.J., Saw, A.K., Clark, C., Brown, M. & Bhat- tacharya, S., 2011. New constraints on UHT metamorphism in the Eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology. Gond- wana Research, 20, 764–781.
- Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68, 277-279.
- Kröner, A., Santosh, M., Hegner, E. et al., 2015. Palaeopro- terozoic ancestry of Pan-African high-grade granitoids in southernmost India: implications for Gondwana reconstructions. Gondwana Research, 27, 1–37.
- de Laeter, J.R. & Kennedy, A.K., 1998. A double focussing mass spectrometer for geochronology. International Journal of Mass Spectrometry, 178, 43–50.
- Ludwig, K.R., 2003. Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Spe- cial Publication, 2, 70.
- Ludwig, K.R., 2009. SQUID II. A user's manual. Berkeley Geochronological Center Special Publication, 2, 100.
- Morimoto, T., Santosh, M., Tsunogae, T. & Yoshimura, Y., 2004. Spinel+Quartz association from the Kerala Khon- dalites, southern India: evidence for ultra-high temperature metamorphism. Journal of Mineralogical and Petrological Sciences, 99, 257–278.

- Nair, R. & Chacko, T., 2002. Fluid-absent melting of high- grade semi-pelites: P-T constraints on orthopyroxene forma- tion and implications for granulite genesis. Journal of Petrology, 43, 2121–2142.
- Nandakumar, V. & Harley, S.L., 2000. A reappraisal of the pressure-temperature path of granulites from the Kerala Khondalite Belt, southern India. The Journal of Geology, 108, 687–703.
- Newton, R.C., 1989. Metamorphic fluids in the deep crust. Annual Review of Earth and Planetary Sciences, 17, 385–412.
- Newton, R.C., 1992. Charnockitic alteration: evidence for CO2 infiltration in granulite facies metamorphism. Journal of Metamorphic Geology, 10, 383–400.
- Newton, R.C. & Tsunogae, T., 2014. Incipient charnockite: characterization at the type localities. Precambrian Research, 253, 38–49.
- Newton, R.C., Smith, J.V. & Windley, B.F., 1980. Carbonic metamorphism, granulites and crustal growth. Nature, 288, 45–50.
- Paton, C., Woodhead, J., Hellstrom, J., Hergt, J., Greig, A. & Maas, R., 2010. Improved laser ablation U–Pb zircon and geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11, 1–36.
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J., 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518.
- Pattison, D.R.M., Chacko, T., Farquhar, J. & McFarlane, R.M., 2003. Temperature of granulitefacies metamorphism: constraints from experimental phase equilibria and thermo- barometry corrected for retrograde exchange. Journal of Petrology, 44, 867–900.
- Perchuk, L.L., Safonov, O.G., Gerya, T.V., Fu, B. & Harlov, D.E., 2000. Mobility of components in metasomatic trans- formation and partial melting of gneisses: an example from Sri Lanka. Contributions to Mineralogy and Petrology, 140, 212–232.

- Plavsa, D., Collins, A.S., Foden, J.F. et al., 2012. Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block. Precambrian Research, 198–199, 77–93.
- Plavsa, D., Collins, A.S., Payne, J.L., Foden, J.D., Clark, C. & Santosh, M., 2014. Detrital zircons in basement metasedimentary protoliths unveil the origins of southern India. Bulletin of the Geological Society of America, 126, 791–812.
- Raith, M. & Srikantappa, C., 1993. Arrested charnockite formation at Kottavattam, southern India. Journal of Metamor- phic Geology, 11, 815–832.
- Raith, M., Srikantappa, C., Ashamanjari, K.G. & Spiering, B., 1990. The granulite terrane of the Nilgiri Hills (Southern India): characterization of high-grade metamorphism. Gran- ulites and Crustal Evolution (eds. Vielzeuf, D. & Vidal, Ph), pp. 339–365. Springer, The Netherlands.
- Rajesh, H.M. & Santosh, M., 2004. Charnockite magmatism in southern India. Proceedings of the Indian Academy of Sciences. A Earth and Planetary Sciences, 113, 565–585.
- Rajesh, H.M. & Santosh, M., 2012. Charnockites and charnockites. Geoscience Frontiers, 3, 1-8.
- Ravindra Kumar, G.R., 2004. Mechanism of arrested charnockite formation at Nemmara, Palghat region, south- ern India. Lithos, 75, 331–358.
- Ravindra Kumar, G.R., Srikantappa, C. & Hansen, E.C., 1985. Charnockite formation at Ponmudi in southern India. Nature, 313, 207–209.
- Roberts, M.P. & Finger, F., 1997. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology, 25, 319–322.
- Rubatto, D., Hermann, J. & Buick, I.S., 2006. Temperature and bulk composition contrl on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47, 1973–1996.
- Sacks, P.E., Nambiar, C.G. & Walters, L.J., 1997. Dextral Pan-African shear along the Southwestern edge of the Achankovil Shear Belt, South India: constraints on Gond- wana reconstructions. The Journal of Geology, 105, 275–284.
- Santosh, M., 1987. Cordierite gneisses of southern Kerala, India: petrology, fluid inclusions and implications for crustal uplift history. Contributions to Mineralogy and Petrology, 96, 343–356.
- Santosh, M. & Omori, S., 2008. CO<sub>2</sub> flushing: a plate tectonic perspective. Gondwana Research, 13, 86–102.
- Santosh, M., Tagawa, M., Taguchi, S. & Yoshikura, S., 2003a. The Nagercoil Granulite Block, southern India: petrology, fluid inclusions and exhumation history. Journal of Asian Earth Sciences, 22, 131–155.
- Santosh, M., Yokoyama, K., Biju-Sekhar, S. & Rogers, J.J.W., 2003b. Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: impli- cations on the history of supercontinents. Gondwana Research, 6, 29–63.
- Santosh, M., Maruyama, S. & Sato, K., 2009. Anatomy of a Cambrian suture in Gondwana: pacific-type orogeny in southern India. Gondwana Research, 16, 321–341.
- Santosh, M., Yang, Q.Y., Shaji, E., Tsunogae, T., Mohan, M.R. & Satyanarayanan, M., 2015. An exotic Mesoarchean microcontinent: the Coorg Block, southern India. Gondwana Research, 27, 165–195.
- Santosh, M., Yang, Q.Y., Shaji, E., Mohan, M.R., Tsunogae, T. & Satyanarayanan, M., 2016. Oldest rocks from Peninsular India: evidence for Hadean to Neoarchean crustal evolution. Gondwana Research, 29, 105–135.
- Schaltegger, U., Fanning, C.M., Günther, D., Maurin, J.C., Schulmann, K. & Gebauer, D., 1999. Growth, annealing and recrystallization of zircon and preservation of monazite in highgrade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminesecence and microchemical evidence. Contributions to Mineralogy and Petrology, 134, 186–201.
- Shabeer, K.P., Sajeev, K., Okudaira, T. & Santosh, M., 2002. Two-stage spinel growth in the highgrade metapelites of the central Kerala Khondalite Belt: implications for prograde P-T path. Journal of Geosciences, Osaka City University, 45, 29–43.

Metamorphism and charnockites in Trivandrum

- Shabeer, K.P., Santish-Kumar, M., Armstrong, R. & Buick, I.S., 2005. Constraints on the timing of Pan-African gran- ulite-facies metamorphism in the Kerala Khondalite Belt of southern India: SHRIMP mineral ages and Nd isotopic sys- tematics. The Journal of Geology, 113, 95–106.
- Spencer, C.J., Kirkland, C.L. & Taylor, R.J.M., 2015. Strategies toward statistically robust interpretations of in situ U– Pb zircon geochronology. Geoscience Frontiers, doi:10.1016/ j.gsf.2015.11.006.
- Srikantappa, C., Raith, M. & Spiering, B., 1985. Progressive charnockitization of a leptynitekhondalite suite in southern Kerala, India-evidence for formation of charnockites through decrease in fluid pressure? Journal of the Geological Society of India, 26, 849–892.
- Stacey, J.S. & Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26, 207–221.
- Stähle, H.J., Raith, M., Hoernes, S. & Delfs, A., 1987. Element mobility during incipient granulite formation at Kabbaldurga, Southern India. Journal of Petrology, 28, 803–834.
- Stern, R.S. & Amelin, Y., 2003. Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chemical Geology, 197, 111–142.
- Tadokoro, H., Tsunogae, T. & Santosh, M., 2008. Metamor- phic P-T path of eastern Trivandrum Granulite Block, southern India: implications for regional correlation of lower crustal fragments. Journal of Mineralogical and Petrological Sciences, 103, 279–284.
- Taylor, R., Clark, C., Fitzsimons, I.C.W. et al., 2014. Post- peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India. Con- tributions to Mineralogy and Petrology, 168, 1–17.
- Taylor, R., Harley, S.L., Hinton, R.W., Elphick, S., Clark, C. & Kelly, N.M., 2015. Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes. Journal of Metamorphic Geology, 33, 231–248.
- Touret, J.L.R. & Huizenga, J.M., 2012. Charnockite microstructures: from magmatic to metamorphic. Geoscience Frontiers, 3, 1–9.

Chapter 2 Metamorphism and charnockites in Trivandrum

Vavra, G., Gebauer, D., Schmid, R. & Compston, W., 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 122, 337–358.

- Wang, W., Dunkley, E., Clarke, G.L. & Daczko, N.R., 2014. The evolution of zircon during low-P partial melting of metapelitic rocks: theoretical predictions and a case study from Mt Stafford, central Australia. Journal of Metamorphic Geology, 32, 791–808.
- White, R.W. & Powell, R., 2002. Melt loss and the preservation of granulite facies mineral assemblages. Journal of Metamorphic Geology, 20, 621–632.
- White, R.W., Powell, R., Holland, T.J.B., Johnson, T. & Green, E.C.R., 2014a. New mineral activitycomposition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32, 261–286.
- White, R.W., Powell, R. & Johnson, T., 2014b. The effect of Mn on mineral stability in metapelites revisited: new a-x relations for manganese-bearing minerals. Journal of Meta- morphic Geology, 32, 809–828.
- Whitney, D.L. & Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.
- Williams, M.L., Jercinovic, M.J., Harlov, D.E., Budzyn', B. & Hetherington, C.J., 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology, 283, 218–225.
- Yoshida, M., Santosh, M. & Shirahata, H., 1991. Geochemistry of gneiss-granulite transformation in the "incipient charnockite" zones of southern India. Mineralogy and Petrology, 45, 69–83.

#### Supplementary material: See Appendix B

## Reappraising the *P*–*T* evolution of the Rogaland–Vest Agder Sector, southwestern Norway

Eleanore Blereau<sup>1\*</sup>, Tim E. Johnson<sup>1</sup>, Chris Clark<sup>1</sup>, Richard J. M. Taylor<sup>1</sup>, Peter D. Kinny<sup>1</sup>, Martin Hand<sup>2</sup>

<sup>1</sup>Department of Applied Geology, The Institute of Geoscience Research (TIGeR), Curtin University, GPO Box U1987, Perth WA 6845, Australia.

<sup>2</sup>Centre for Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, Adelaide 5005, South Australia

This article is published in Geoscience Frontiers, vol 8, pp. 1–14. http://dx.doi.org/10.1016/j.gsf.2016.07.003 and reprinted with permission in Appendix A.

#### ABSTRACT

The Rogaland-Vest Agder Sector of southwestern Norway comprises high-grade metamorphic rocks intruded by voluminous plutonic bodies that include the ~1000 km<sup>2</sup> Rogaland Igneous Complex (RIC). New petrographic observations and thermodynamic phase equilibria modelling of three metapelitic samples collected at various distances (30 km, 10 km and ~10 m) from one of the main bodies of RIC anorthosite were undertaken to assess two alternative P-T-t models for the metamorphic evolution of the area. The results are consistent with a revised two-phase evolution. Regional metamorphism followed a clockwise P-T path reaching peak conditions of ~850-950 °C and ~7-8 kbar at ~1035 Ma followed by high-temperature decompression to ~5 kbar at ~950 Ma, and resulted in extensive anatexis and melt loss to produce highly residual rocks. Subsequent emplacement of the RIC at ~930 Ma caused regional-scale contact metamorphism that affected country rocks 10 km or more from their contact with the anorthosite. This thermal overprint is expressed in the sample proximal to the anorthosite by replacement of sillimanite by coarse intergrowths of cordierite plus spinel and growth of a second generation of garnet, and in the intermediate (10 km) sample by replacement of sapphirine by coarse intergrowths of cordierite, spinel and biotite. The formation of late biotite in the intermediate sample may suggest the rocks retained small quantities of melt produced by regional metamorphism and remained at temperatures above the solidus for up to 100 Ma. Our results are more consistent with an accretionary rather than a collisional model for the Sveconorwegian Orogen.

#### **1. INTRODUCTION**

a metamorphic province dominated by high-grade models generally require long timescales for the gneisses and intrusive igneous rocks (Maijer et al., 1981; Tobi et al., 1985; Jansen and Tobi, 1987; Maijer et al., 1987). Together these rocks represent accretionary orogens such conditions may be the core of the ca 1200–900 Ma Sveconorwegian Orogen (Falkum and Petersen, 1980; Falkum, 1985). The intrusive rocks include the Rogaland Igneous Complex (RIC) that is exposed over ~1000 km<sup>2</sup> and comprised largely of three massiftype anorthosite plutons emplaced around 930 Ma (Schärer et al., 1996). Two contrasting tectonic models have been proposed to explain the evolution of the Sveconorwegian Orogen, one involving continent-continent collision (Bingen et al., 2008) and the other involving protracted subduction-

accretion (Slagstad et al., 2013; Coint et al., The Rogaland–Vest Agder Sector of SW Norway is 2015; Roberts and Slagstad, 2015). Collisional rocks to reach high-grade metamorphism (Clark et al., 2011; Slagstad et al., 2013), whereas in attained much faster (Slagstad et al., 2013; Coint et al., 2015). However, clockwise P-T paths are not diagnostic of either tectonic setting (Brown, 2007).

> The role of the RIC in the metamorphic history of the gneisses of the Rogaland-Vest Agder Sector is controversial, and two different P-T-tmodels have been advanced (Fig. 3). Möller et al. (2003) and Tomkins et al. (2005) proposed a twostage metamorphic evolution, in which an upper amphibolite facies regional event characterized



Chapter 3

by a clockwise P-T evolution was followed by ultra-high temperature (UHT) metamorphism at lower pressure related to intrusion of the RIC. By contrast, Drüppel et al. (2013) proposed a singlestage, protracted clockwise regional metamorphic evolution that reached a UHT metamorphic peak some 70 Ma prior to emplacement of the RIC; in this model, high-grade metamorphism and intrusion are considered to have been unrelated.

In this study, we combine new petrographic observations with phase equilibria modelling of three metapelitic samples collected at different distances from the RIC (30 km, 10 km and <50 m) to re-evaluate their metamorphic evolution. We discuss the implications of the results for the tectonic evolution of the Sveconorwegian Belt.

#### 2. REGIONAL GEOLOGY

The rocks of southern Scandinavia experienced three Proterozoic orogenic events: in Sweden and Finland the ca 1900–1750 Ma Svecofennian

Fig. 1: Map showing the main geological subdivisions of
Scandinavia (after Bergh et al., 2012). Abbreviations: TTelemarkia Terrane; B- Bamble Sector; O- Oslo Graben;
K- Kongsberg Sector; I- Idefjorden Terrane; ES- Eastern
Segment; C- Caledonides; TIB- Transcandinavian Igneous
Belt; SF- Svecofennian Domain; WG- Western Gneiss
Region.

orogeny, in SE Norway and Sweden the ca 1750-1550 Ma Gothian orogeny, and in southern Norway and SW Sweden the ca 1200-900 Ma Sveconorwegian orogeny (Andersen et al., 2002). The Sveconorwegian Belt lies to the west of the Svecofennian Domain and the ca 1850-1650 Ma Transcandinavian Igneous Belt and is bounded obliquely to the northwest by the Caledonides (Fig. 1). It comprises a number of lithotectonic domains, including the Eastern Segment, Idefjorden Terrane, Bamble, Kongsberg and Telemarkia Terranes, all of which are bounded by major shear zones (Fig. 1). The Telemarkia Terrane is interpreted to have formed in a short magmatic event between 1520-1480 Ma (Bingen et al., 2005; Bingen et al., 2006; Bogdanova et al., 2008; Roberts and Slagstad, 2015) and is further divided into the Telemark, Hardangervidda, Sudal and Rogaland-Vest Agder Sectors (Fig. 2).

The focus of this study, the Rogaland– Vest Agder (RVA) Sector, is a high-grade gneiss complex intruded by voluminous synorogenic plutons that represents the core of the Sveconorwegian Orogen (Falkum and Petersen, 1980; Falkum, 1985). The complex consists of felsic orthogneiss, much of which contains orthopyroxene, and subordinate garnet-bearing paragneiss (Hermans et al., 1975; Falkum, 1982, 1985; Tobi et al., 1985; Bingen et al., 2005; Tomkins et al., 2005; Coint et al., 2015), with minor



Fig. 2: Geological map of the Rogaland-Vest Agder Sector of southwest Norway (after Coint et al. (2015), MUL from Vander Auwera et al. (2011) and mineral isograds from Bolle et al. (2010)). Samples from this study are marked as large white stars with locations from previous studies as smaller black stars.

amphibolite, quartzite, calc-silicate and marble (Huijsmans et al., 1981; Falkum, 1982, 1985; Tobi of intrusive rocks; (i) the Sirdal Magmatic Belt et al., 1985; Jansen and Tobi, 1987; Bingen et al., (SMB); (ii) the hornblende-biotite granites (HBG) 2005; Harlov, 2011). The orthopyroxene-bearing and (iii) the Rogaland Igneous Complex (RIC). orthogneiss is variably migmatitic, in which The 1060-1020 Ma SMB, which covers an aerial migmatised varieties have protolith ages of ca 1450 Ma whereas non-migmatised varieties have younger protolith ages of ca 1230-1210 Ma (Coint textures (Slagstad et al., 2013; Coint et al., 2015). et al., 2015). Migmatitic garnet-bearing paragneiss contains abundant garnet as well as sillimanite and/or cordierite-bearing layers indicating pelitic to semi-pelitic protoliths (Hermans et al., 1975; Coint et al., 2015). Detrital zircon U-Pb ages between ca 3000-1200 Ma have been reported from one of these migmatitic metapelites (Tomkins the source rocks, which were probably ca 1500 et al., 2005).

The RVA Sector contains three suites extent of ~10,000 km<sup>2</sup>, is a weakly deformed calcalkaline granitic batholith that preserves igneous The main constituent is porphyritic biotite granite with lesser amounts of leucogranite, garnet granite and zones rich in xenoliths including migmatitic gneiss (Coint et al., 2015). The arclike compositions of the SMB (Slagstad et al., 2013) may reflect characteristics inherited from Ma calc-alkaline metavolcanics and granitoid

#### *Reappraising the P–T evolution of Rogaland*

rocks such as are common in southern Norway, in particular in the Telemark and Hardangervidda Sector (Coint et al., 2015).

The 990–932 Ma HBG suite occurs as discrete 'A-type' plutons that crop out across the Telemarkia Terrane (Bogaerts et al., 2003; Vander Auwera et al., 2011). The range in composition in the HBG Suite from gabbronorite to granite (50–77 wt% SiO<sub>2</sub>) is interpreted to reflect extreme fractional crystallization of several batches of basaltic magma (Bogaerts et al., 2003). The HBG suite was likely derived from an undepleted to slightly depleted hydrous mafic source that was underplated during a previous orogenic event (Bogaerts et al., 2003; Vander Auwera et al., 2011; Vander Auwera et al., 2014).

The ~1000 km<sup>2</sup> RIC, also referred to as the Rogaland Anorthosite Complex (Pasteels et al., 1979; Schärer et al., 1996; Bogaerts et al., 2003; Westphal et al., 2003) and Rogaland Anorthosite Province (Sauer et al., 2013; Coint et al., 2015), is composed of three massif-type anorthosites (Egersund-Ogna, Håland-Heleren and Åna-Sira) as well as a large layered polyphase intrusion (Bjerkreim-Sokundal lopolith), two smaller leuconorite bodies (Hidra and Garsaknatt) and a small number of mafic dykes (high-Al gabbros to orthopyroxene monzonorite) (Pasteels et al., 1979; Wilmart et al., 1991; Vander Auwera and Longhi, 1994; Nijland et al., 1996; Schärer et al., 1996; Duchesne and Wilmart, 1997; Bolle et al., 2002; Marker et al., 2003; Möller et al., 2003; Bolle et al., 2010). The three anorthosite massifs contain subophitic aggregates of megacrystic plagioclase and aluminous orthopyroxene within fine-grained leuconorite (Schärer et al., 1996; Bybee et al., inclusions within orthopyroxene megacrysts in the Egersund-Ogna, Håland-Heleren and Åna-Sira anorthosites are identical within uncertainty at ca 930 Ma (Schärer et al., 1996). Based on the complex spread of zircon U-Pb ages reported by Möller et al. (2003) the RIC is suggested by Coint et al. (2015) to have had a protracted, episodic emplacement history. The margin of the Egersund-Ogna massif has a magmatic foliation parallel to both its boundary and to the foliation of the adjacent host gneisses (Schärer et al., 1996; Bolle et al., 2002) that has been used as evidence for diapiric emplacement of a ~1150 °C crystal mush (Duchesne and Michot, 1987; Longhi et al., 1993; Schärer et al., 1996; Bolle et al., 2002). The anorthosites were emplaced at mid crustal depths (minimum of 5.0-7.7 kbar, ~20-30 km) based on conventional thermobarometry and numerical modelling (Wilmart and Duchesne, 1987; Barnichon et al., 1999).

Within the RIC, the Bjerkreim-Sokundal lopolith is a layered intrusion with four main phases; a basal phase of anorthosite-leuconorite and norite with rhythmic layering is overlain by monzonorite that is in turn overlain by monzonite and, lastly, by quartz monzonite (Versteeve, 1975; Wilmart et al., 1991; Duchesne and Wilmart, 1997; Bolle et al., 2002). The lopolith, which is separated from the anorthosite intrusions by a thin septum of gneissic country rocks, was emplaced at approximately the same time (Wilmart et al., 1991; Vander Auwera and Longhi, 1994; Schärer et al., 1996; Duchesne and Wilmart, 1997). Geochemical and isotopic data indicate that the RIC had a relatively anhydrous, lower crustal source (Bogaerts et al., 2003) with more recent studies 2014). U-Pb ages of zircon and baddeleyite suggesting that the parent magmas originated



**Fig. 3:** Two alternative P-T models proposed for the Rogaland–Vest Agder sector (modified after Drüppel et al. (2013)); two-stage metamorphic evolution (Möller et al., 2003; Tomkins et al., 2005) versus protracted, single-stage metamorphic evolution (Drüppel et al., 2013).

at the Moho with anorthosite formation tied to protracted magmatism in a convergent arc (Bybee et al., 2014). Previous studies suggest multiple parental melt compositions for the RIC suite, with source rocks possibly ranging from high Al-basalt to primitive orthopyroxene monzonorite (Vander Auwera et al., 2011, and references within).

The high-grade gneisses of the RVA Sector are considered by some authors to have experienced a polymetamorphic evolution, and to preserve textural evidence for a regional metamorphic event followed by a high temperature contact metamorphic overprint (Verschure et al., 1980; Maijer et al., 1981; Wielens et al., 1981; Demaiffe and Michot, 1985; Jansen et al., 1985; Tobi et al., 1985; Maijer, 1987; Bingen and van Breemen, 1998; Möller et al., 2003; Tomkins et al., 2005; Coint et al., 2015). Evidence for an amphibolite facies regional metamorphic event (commonly termed M1) at ca 1035 Ma (Tomkins et al., 2005) is based on isotopic data from a garnet-biotite-sillimanite metapelite,  $\sim 25 - 30$ km from the contact with the RIC (Möller et al.,

2003). Coint et al. (2015) also suggests a similar age of regional metamorphism of ca 1030 Ma. The subsequent growth in this rock of cordierite containing zircon dated at ca 955 Ma indicates that peak metamorphic conditions were followed by decompression (shown in red, Fig. 3) (Möller et al., 2003; Tomkins et al., 2005). These events predate the emplacement of the RIC at ca 930 Ma (Schärer et al., 1996), which caused largescale contact metamorphism (M2) at UHT conditions (shown in blue, Fig. 3)(Scharer et al., 1996; Möller et al., 2003; Westphal et al., 2003). Pressure-temperature estimates of ~750 °C at 5-7 kbar for the regional event and 700-1050 °C at ~4 kbar for the contact metamorphism were derived using conventional thermobarometry (Jansen et al., 1985). A later retrograde overprint (so-called M3) to upper amphibolite to granulite facies at 908 Ma (550-700 °C and 3-5 kbar) is interpreted to be related to the isobaric cooling of intrusive bodies with the partial replacement of high grade minerals such as osumilite (Kars et al., 1980; Maijer et al., 1981; Wielens et al., 1981; Jansen et al., 1985; Bol et al., 1989; Nijland et al., 1996; Möller et al., 2003; Tomkins et al., 2005; Bolle et al., 2010).

*Reappraising the P–T evolution of Rogaland* 

In contrast to the previous interpretations, Drüppel et al. (2013) reinterpreted the gneisses as having experienced a single, long-lived regional metamorphic event that peaked at UHT conditions some 70 Ma prior to intrusion of the RIC (shown in green, Fig. 3). This interpretation, based on phase equilibria modelling in the Na<sub>2</sub>O–CaO–K<sub>2</sub>O–FeO– MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O–TiO<sub>2</sub> (NCKFMASHT) model system of samples ~10 km from the RIC contact, indicated peak conditions of ~1000 °C at ~7.5 kbar were followed by near isothermal decompression to <5.5 kbar at 900–1000 °C

#### *Reappraising the P–T evolution of Rogaland*

(M2) before near isobaric cooling (Drüppel et al., 2013). These authors concluded that no second thermal pulse is recorded by the silicate mineral assemblage in the RVA Sector. Zircon U–Pb ages are consistent with a metamorphic age at ca 1000 Ma; epitaxial xenotime yields U–Pb ages within error of the emplacement of the RIC at ca 930 Ma (Drüppel et al., 2013).

A series of high-T mineral-in isograds, including inverted pigeonite in felsic orthogneiss, osumilite in paragneiss, orthopyroxene in felsic orthogneiss and clinopyroxene in granodioritic gneiss, are broadly parallel to the margin of the RIC (Fig. 2) (Hermans et al., 1975; Pasteels et al., 1979; Sauter, 1981; Jansen et al., 1985; Tobi et al., 1985; Maijer, 1987; Bol et al., 1989). These isograds represent a temperature range from ~700 °C at the orthopyroxene-in isograd to over 900 °C (UHT) at the pigeonite-in isograd (Jansen et al., 1985; Tobi et al., 1985; Bol et al., 1989; Möller et al., 2003; Tomkins et al., 2005). Whereas most studies have interpreted the osumilite and pigeonite-in isograds as the products of contact metamorphism at ca 930 Ma superimposed upon granulite to amphibolitefacies regional metamorphic assemblages, others regard the orthopyroxene isograd to pre-date the contact event (Bingen and van Breemen, 1998), More recently, Coint et al. (2015) have proposed that the orthopyroxene-in isograd separates granulite-facies rocks to the west from nonmetamorphosed granites to the east and should not be regarded as an isograd at all.

# 3. SAMPLE DESCRIPTIONS AND PETROLOGY

Three samples collected from different distances from the RIC-country rock contact were

investigated in order to evaluate their metamorphic histories. Hereafter, these samples are referred to as distal (collected  $\sim$ 30 km from the RIC), intermediate ( $\sim$ 10 km) and proximal ( $\sim$ 10 m), as shown in Fig. 2. Mineral abbreviations follow Kretz (1983) and Whitney and Evans (2010).

#### 3.1. Distal sample (N 58°49'49.4", E 6°16'49.2")

The distal sample (ROG13/11) is a garnet– sillimanite–cordierite metapelite collected a short distance up-grade of the orthopyroxene-in isograd. The sample site, ~400m NW of Giljastølsvatnet, is ~5 km north of the sample locality of Degeling et al. (2001) and Tomkins et al. (2005) (Fig. 2). The sample is a migmatite comprising melanosome rich in garnet, sillimanite and cordierite and garnet-bearing leucosomes that are continuous at an outcrop scale and oriented sub-parallel to the regional foliation (Fig. 4a).

In thin section, the melanosome contains anhedral garnet porphyroblasts (2-8 mm) within which abundant inclusions of sillimanite define a folded foliation that curves into parallelism with the matrix foliation (Fig. 4b, c) that is also defined by sillimanite (0.2-1 mm). Variably pinitised cordierite (2-6 mm, 10-15%) surrounds garnet, sillimanite, ilmenite and quartz (Fig. 4b, c). Minor feldspar is also present within the matrix. Minor singular grains of ilmenite (0.5-1 mm) is partially to completely replaced by intergrowths of differently orientated rutile and chlorite. The leucosome is composed of sub-equal proportions of quartz (2-6 mm), plagioclase (1-4 mm) and K-feldspar (2-4 mm), along with anhedral to rounded garnet (1-3 mm) that contains abundant inclusions of quartz but no sillimanite (Fig. 4d).



Fig. 4: Field photograph and photomicrographs from the 'Distal' locality. a- Garnet-cordierite-sillimanite melanosome with garnet-bearing leucosome at outcrop scale. b- Garnet porphyroblast within melanosome (xpl) containing ilmenite, sillimanite and minor biotite inclusions, surrounded by pinitised cordierite and sillimanite. c- Garnet porphyroblast within melanosome with sillimanite inclusions defining a relict foliation. Coarse sillimanite in the matrix defines a new foliation. d- Peritectic garnet with quartz inclusions within leucosome, with late biotite. e- Back scattered electron (BSE) image showing ilmenite being replaced by an intergrowth of rutile and chlorite within the melanosome.

Minor biotite is present (0.5–1 mm) along with inclusions is regarded as a peritectic product of small amounts of muscovite.

The interpreted peak in sample ROG13/11 is garnet, sillimanite, minerals. plagioclase, K-feldspar, quartz, ilmenite and melt. Matrix garnet containing sillimanite inclusions is interpreted to mainly represent subsolidus growth, whereas leucosome garnet that lacks sillimanite

melting reactions consuming biotite. Cordierite assemblage and biotite are considered to be retrograde



Fig. 5: Field photographs from the 'Intermediate' locality. a- Dark sapphirine granulite layer with completely replaced garnet. b- Sapphirine granulite and orthopyroxene gneiss containing partially replaced garnets with orthopyroxene coronas. c- Irregular dark layers of sapphirine granulite interleaved with orthopyroxene gneiss, cut by minor faults.

6°10'1.4")

The intermediate sample (ROG13/10) is a residual sapphirine-bearing metapelite from a locality near Ivesdal, ~10 km NE of the RIC contact (Fig. 2), which has been described previously by Hermans et al. (1976) and Drüppel et al. (2013). The exposure consists of irregular, dark sapphirine-bearing layers within a host orthopyroxene-bearing gneiss (Figs 5). Minor and sporadically dispersed large garnets  $(\sim 3-8 \text{ cm})$  within the sapphirine-bearing granulite and, less commonly, within the orthopyroxene gneiss have coronae of orthopyroxene with or without plagioclase, and in some cases have been replaced completely (Fig. 5a, b). Garnet-

3.2. Intermediate sample (N 58°42'9.7", E bearing leucosome occurs as rare patches within orthopyroxene gneiss. Sparse quartz veins occur within, and cross-cut both lithologies. Irregular orthopyroxene-rich selvedges and schlieren occur within the orthopyroxene gneiss and occasionally along contacts between orthopyroxene gneiss and sapphirine-bearing metapelite.

> In thin section, subhedral to euhedral sapphirine porphyroblasts (1-8 mm, 10-15%) are partially to completely replaced by coarse intergrowths of spinel and cordierite, along with variable amounts of biotite that appears to be replacing cordierite (Fig. 6a, b, d). The matrix consists of cordierite (0.5-3 mm), orthopyroxene (0.5-3 mm), plagioclase (0.5-2 mm), K-feldspar (0.5-1 mm) and biotite (up to 2 mm) (Fig.



Fig. 6: Photomicrographs from the 'Intermediate' locality. a- Sapphirine porphyroblast rimmed by spinel plus cordierite and a cordierite rim separating the symplectite from orthopyroxene. b- Sapphirine partially replaced by a spinel-cordierite symplectite, with later biotite replacing cordierite within the symplectite. An outer rim of cordierite is present between the symplectite and orthopyroxene. c- Irregular grains of orthopyroxene and cordierite within the matrix with some grains almost completely surrounded by late biotite. d- Spinel plus cordierite symplectite with biotite partially replacing cordierite.

sapphirine porphyroblasts by layers of cordierite 5°46'59.0") and spinel plus cordierite (Fig. 6a, b). Feldspar grains are variably sericitised. Spinel contains The proximal sample ROG14/5 is from country ilmenite and minor exsolved magnetite. Quartz is rocks ~10 m from the northwest margin of absent.

contained an earlier assemblage of sapphirine, orthopyroxene, plagioclase, K-feldspar, cordierite, ilmenite and melt that later underwent replacement of sapphirine and orthopyroxene by coarse intergrowths of spinel and cordierite. Subsequent growth of biotite may reflect retrograde reaction in the presence of melt.

6c). Orthopyroxene grains are separated from 3.3. Proximal sample (N 58°35'46.5", E

the RIC (Fig. 2). The sample is a migmatitic We interpret sample ROG13/10 to have garnet-sillimanite-spinel-cordierite metapelitic gneiss (Fig. 7a) that is intruded by several small sheets of garnet-bearing anorthosite (Fig. 7b). The metapelite consists of melanosome rich in garnet and cordierite, within which occurs narrow, foliation-parallel leucosome layers (<1 cm in width). Larger (~0.5-1 m) irregular bodies of garnet-bearing and garnet-free leucosome cross-cut the foliation and contain schollen of



Fig. 7: Field photographs and photomicrographs from the 'Proximal' locality. a- Garnet-sillimanite-cordierite-spinel migmatite overprinted by a large irregular garnet-bearing leucosome containing shollen of the metapelite. b- Metapelite with intruded anorthosite sheet. c- Garnet porphyroblast with secondary garnet overgrowing spinel. d- Sillimanite partly replaced by spinel plus cordierite, with some of the spinel replaced by diaspore.

melanosome (Fig. 7a). Minor quartz veins are also mm) containing sillimanite inclusions (Fig. 7c, d). present. The anorthosite sheets are discontinuous, up to 15 cm wide and 4 m in length and oriented parallel to the foliation (Fig. 7b).

In thin section, sample ROG14/5 is dominated by melanosome containing equant to elongate anhedral garnet porphyroblasts (0.5-4

A second generation of garnet forms narrow (~100 µm) rims around pre-existing garnet porphyroblasts and adjacent to spinel (Fig. 7c, d). Coarse matrix sillimanite (0.5-4 mm) defines a foliation that wraps around garnet, and is partially replaced by intergrowths of spinel plus cordierite (Fig. 7d).

Chapter 3

| Sample                                                                               | SiO <sub>2</sub> | TiO₂ | $Al_2O_3$ | 0    | FeO  | MgO   | CaO  | Na₂O | K₂O  | LOI  | Total |
|--------------------------------------------------------------------------------------|------------------|------|-----------|------|------|-------|------|------|------|------|-------|
| ROG13/11 (Distal)                                                                    | 68.95            | 0.78 | 12.95     | 0.67 | 6.86 | 3.68  | 1.39 | 1.82 | 2.80 | 0.10 | 100   |
| ROG13/10 (Intermediate)                                                              | 51.45            | 0.64 | 14.98     | 1.13 | 6.73 | 17.99 | 1.33 | 1.78 | 2.94 | 1.03 | 100   |
| ROG14/5 (Proximal)                                                                   | 63.19            | 0.83 | 16.71     | 0.57 | 9.29 | 4.85  | 1.28 | 1.11 | 2.06 | 0.11 | 100   |
| Table 1: Bulk compositions as molar oxide (mol %) used in phase equilibria modelling |                  |      |           |      |      |       |      |      |      |      |       |

Spinel occurs both within the symplectite and as quartz, aggregates of grains surrounded by a thin rind cordierite, ilmenite, rutile and magnetite-spinel. of cordierite or garnet (Fig. 7d). The leucosome Osumilite was not included as there is no solution contains large (2–8 mm) slightly elongate grains along with smaller (0.5-2 mm) grains of quartz, plagioclase (1–2 mm) and K-feldspar (1–2 mm). Cordierite surrounds garnet, sillimanite and, less commonly, quartz and spinel (1-2 mm) and is sometimes intergrown with K-feldspar (Fig. 7d). Minor ilmenite is partially to completely replaced by late intergrowths of rutile and chlorite.

This sample is interpreted to contain an earlier assemblage of garnet, sillimanite, plagioclase, K-feldspar, quartz, spinel, ilmenite and melt. Replacement of sillimanite by cordierite plus spinel, and growth of a second generation of garnet occurred subsequently.

#### 4. PHASE EQUILIBRIA MODELLING

Metamorphic P-T conditions were constrained using P-T, P-X and T-X pseudosections modelled in the Na<sub>2</sub>O-CaO-K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-O system using THERMOCALC 3.40i and the internally consistent thermodynamic dataset of Holland and Powell (2011) (specifically the tc-ds62 dataset generated on 06/02/2014). Activity-composition models are from White et al. (2014a). Although Mn-bearing solution models have been calibrated (White et al., 2014b), Mn has a negligible effect at high temperatures and was not considered (Johnson et al., 2015). Calculations consider the phases garnet, silicate melt, plagioclase, K-feldspar, sillimanite, sapphirine,

muscovite, biotite, orthopyroxene, model calibrated against the ds6 dataset.

Bulk rock compositions were determined by X-ray fluorescence analysis using a Panalytical 2404 XRF unit at Franklin and Marshall College, Pennsylvania, for which ferric and ferrous iron contents were determined by titration. The bulk compositions (expressed as mol.% oxides) used in the pseudosections are given in Table 1. Modelled H<sub>2</sub>O contents were constrained using T-X or P-Xpseudosections ranging from a quantity assuming all analysed loss on ignition (LOI) as H<sub>2</sub>O to lower values (0.1 mol.%). The H<sub>2</sub>O content chosen for P-T modelling was such that the solidus intersected, or was as close as possible to the field containing the interpreted peak assemblage (see Supplementary data Fig. S1-3). Calculations using the composition of the distal sample (ROG13/11), the most altered of the studied rocks, measured ferric iron concentrations were too high with all calculated fields containing magnetite, which is not observed in the rock. Thus, to account for post-peak oxidation, appropriate ferric iron contents were constrained using a P-X pseudosection ranging from the titrated value (1.31 mol.% Fe<sub>2</sub>O<sub>3</sub>) to a minimal content (0.01 mol.%; see Supplementary data Fig. S4). A value of X = 0.5 (Fe<sub>2</sub>O<sub>3</sub> = O = 0.67 mol.%) was chosen, as it is the minimum required to eliminate magnetite from the interpreted peak assemblage. Note that the stability field of spinel in nature is likely to be larger than the calculated



**Fig. 8:** Modelled P-T pseudosection of the distal sample (ROG13/11) with peak field outlined in red and solidus marked by a black dashed line. The interpreted, clockwise P-T path traces the post-peak growth of cordierite and biotite. Positioning of the P-T path is based on modal isopleths generated using TCInvestigator (Pearce et al., 2015).

stability due to the presence of minor components (e.g. Zn, V, Cr) that cannot currently be modelled (Tajčmanová et al., 2009). Drüppel et al. (2013) report average concentrations of  $Cr_2O_3$  and ZnO in spinel in the sapphirine-bearing sample as 0.07 and 0.15 wt. %, respectively (Drüppel et al., 2013). For reference, P-T pseudosections contoured for the abundance of particular phases calculated using TCInvestigator (Pearce et al., 2015) are given in the Supplementary data (Fig. S5).

#### 4.1. Distal sample

In the P-T pseudosection for sample ROG13/11 (Fig. 8), the solidus for the chosen H<sub>2</sub>O content is located at ~830 °C at pressures above 7 kbar. Between 6–7 kbar the solidus inflects to higher temperatures (~970 °C) due to the presence of cordierite that partitions some of the H<sub>2</sub>O that at

#### *Reappraising the P–T evolution of Rogaland*

higher pressures is contained within melt. For the chosen ferric iron content and P-T range, ilmenite is stable throughout and magnetite is predicted only at low temperatures and pressures. The interpreted peak assemblage of garnet, sillimanite, plagioclase, K-feldspar, quartz. ilmenite and melt occupies a large stability field at >850 °C and >6 kbar (outlined in red, Fig. 8). At lower temperatures biotite is stable, and at lower pressures cordierite, which occurs replacing garnet at its margins, is predicted. The calculated stability fields of spinel and orthopyroxene occur at higher temperatures and lower pressures than the inferred peak, respectively.

#### 4.2. Intermediate sample

In the P-T pseudosection for sample ROG13/10 (Fig. 9) the solidus for the chosen H<sub>2</sub>O content is located at ~900-950 °C. The stability field for the interpreted earlier assemblage of sapphirine, orthopyroxene, plagioclase, K-feldspar, cordierite, ilmenite and melt is relatively narrow (in T) between 910-980 °C and between 4 and 8 kbar (outlined in red, Fig. 9). Cordierite is consumed at higher T and biotite is predicted at lower T, and garnet is stable at higher P and spinel at lower P. Compositional isopleths of Al-in-orthopyroxene are shown on Fig. 9. Maximum measured values of X(Al) (Al cations in the formula unit based on six oxygens) from samples from this locality are 0.18 according to Drüppel et al. (2013), and this isopleth, along with the one sigma uncertainty on its position, is shown as the shaded field. The measured Al content in orthopyroxene is consistent with the higher pressure part of the preferred peak field, implying peak conditions of around 7-8 kbar





Temperature (°C) Fig. 9: Modelled P-T pseudosection of the intermediate sample (ROG13/10) with peak field outlined in red,

solidus marked by a black dashed line and y(opx) isopleths marked by fine dashed lines labelled with their respective values. Grey shaded area indicates uncertainty on the y(opx)=0.18 isopleth. The presence of garnet defines the upper pressure limit of the peak assemblage, while cordierite defines the lower temperature limit. The star indicates the interpreted peak conditions reached during regional metamorphism. The illustrated portion of the P-Tpath traces the growth of spinel and cordierite and later biotite. Positioning of the P-T path is based on modal isopleths generated using TCInvestigator (Pearce et al., 2015).

and 900-950 °C (Fig. 9). The subsequent evolution of the rock, expressed by the growth of cordierite, spinel and biotite at the expense of sapphirine, requires significantly lower pressures but similar temperatures that was followed by cooling into fields containing biotite.

#### 4.3. Proximal sample

In the P-T pseudosection for proximal sample ROG14/5 (Fig. 10), the solidus for the chosen H<sub>2</sub>O content is located at ~815 °C above 6.3 kbar but inflects to higher temperatures (~950–975 °C) below 6 kbar due to the presence of cordierite which

Temperature (°C) **Fig. 10:** Modelled P-T pseudosection of the proximal sample (ROG14/5) with peak field outline in red and solidus marked by a black dashed line. The interpreted P-T path traces the growth of spinel, cordierite and secondary garnet.

850

800

IIm Crd Mag

750

4

700

Crd Spl

900

950

1000

partitions some of the H<sub>2</sub>O that, at higher pressures, is contained within melt. The interpreted earlier assemblage of garnet, sillimanite, plagioclase, K-feldspar, quartz, ilmenite and melt but without spinel, defines a large stability field at 820 to >1000 °C and ~6 to >10 kbar (outlined in red, Fig. 10); spinel is predicted to become stable at higher temperatures. As spinel may be stabilised by nonsystem components, our preferred interpretation is that the earlier assemblage is consistent with the high T end of the modelled spinel-absent field or with the field containing spinel (i.e. >900 °C and >6 kbar). The subsequent evolution of this sample, indicated by the replacement of sillimanite by cordierite and spinel and the growth of a second generation of garnet and cordierite (shown by the arrow on Fig. 10), require lower pressures ( $\sim 5-6$ kbar) but similar temperatures.

## Chapter 3

## 5. DISCUSSION

5.1 P-T conditions of regional metamorphism

At a distance of ~30 km from the contact, the distal sample is considered to be beyond the effects of contact metamorphism associated with the emplacement of the RIC and to preserve the regional metamorphic history. This is supported by a pronounced regional foliation and the lack of symplectitic replacement of porphyroblast phases that characterises the other samples. Petrographic observations coupled with phase equilibria modelling suggest that this sample experienced a clockwise regional P-T path, reaching peak conditions of >850 °C at >6 kbar. Partial replacement of garnet by cordierite implies high-temperature decompression to conditions of ~850 °C at 5 kbar, while the growth of biotite implies crystallisation of the last vestiges of melt upon cooling. A P-T path consistent with these observations is shown on Fig. 8. Peak conditions are poorly constrained due to the size and the calculated compositional and modal homogeneity of the phases within the inferred peak field. The high temperature subsolidus prograde path is constrained to the sillimanite field, with no evidence for the former presence of kyanite.

The inferred early assemblages developed within the intermediate sample (sapphirine, orthopyroxene, plagioclase, K-feldspar, cordierite, ilmenite and melt) and the proximal sample (garnet, sillimanite plagioclase, K-feldspar, quartz, ilmenite, spinel and melt), are similarly consistent with growth during regional metamorphism. Modelling of these compositions gives P-T conditions that are similar to those derived for the distal sample, namely 900–950 °C and ~7–8

kbar for the intermediate sample (Fig. 9) and >900 °C and >6 kbar for the proximal sample (Fig. 10). Clearly, all three samples cannot have followed an identical regional P-T path. However, we propose that a generalised, clockwise regional metamorphic evolution was experienced by all samples, which attained peak conditions of around 850-950 °C at 7-8 kbar, and was followed by hightemperature decompression to ~5 kbar, followed by near isobaric cooling (Fig. 8). Under such conditions, pelitic and greywacke protoliths will produce significant quantities of melt (Johnson et al., 2008; White et al., 2014a), most of which will have been lost to higher crustal levels to leave low a (H<sub>2</sub>O) granulite facies residua, consistent with observation.

Clockwise regional P-T paths were proposed by both Tomkins et al. (2005) and Drüppel et al. (2013). However, our inferred regional peak conditions are at least ~200 °C higher than those reported by Tomkins et al., (2005) based on conventional thermobarometry, and ~50 °C lower than the UHT regional conditions proposed by Drüppel et al. (2013), based on phase equilibria modelling (Fig. 11). Possible reasons for these differences are detailed below.

#### 5.2. P-T conditions of contact metamorphism

Petrographic observations of the intermediate and proximal samples in conjunction with phase equilibria modelling suggest a two-stage evolution which we equate to: (i) high- to ultra-high *T* regional metamorphism with associated partial melting and melt loss (detailed above); and (ii) subsequent high- to ultra-high *T* contact metamorphism of the residual rocks caused by emplacement of the RIC.



similar samples have strikingly bulk compositions, confirmed by the similarity in the reaction textures have been described elsewhere P-T pseudosections for each (see Figs 8 & 10). However, the petrographic features of the rocks are very different. Both are inferred to have had a regional peak assemblage containing garnet, textures are consistent with contact metamorphic sillimanite, plagioclase, K-feldspar, quartz, ilmenite, and melt, with the proximal sample inferred to have additionally contained a small quantity of spinel. However, the proximal sample contains a second generation of garnet (and spinel) that is lacking from the distal sample. In addition, sillimanite in the proximal sample is extensively replaced by a coarse intergrowth of cordierite plus spinel, whereas sillimanite in the distal sample is pristine. We interpret the coarse intergrowths of cordierite and spinel after sapphirine in the intermediate sample and after sillimanite in the

Importantly, the distal and proximal that formed as a result of heating associated with emplacement of the RIC. Similar prograde (Pitra and Waal, 2001; White et al., 2002; Johnson et al., 2004).

In the proximal sample, the reaction conditions of ~950 °C at ~5 kbar (Fig. 10, 11). In the intermediate sample, the reaction textures are consistent with temperatures of ~950 °C and lower pressures of  $\sim$ 3–4 kbar (Fig. 9, 11). The lower pressures inferred for the intermediate sample suggests it was at higher levels in the crust when the RIC was emplaced and implies tilting of the section and/or differential uplift and erosion post intrusion of the RIC. Overall, the pressures inferred for the contact metamorphism (3-6 kbar, Fig. 11) are similar to those reported by other authors (Möller et al., 2003; Tomkins proximal sample as prograde reaction products et al., 2005). The high temperatures inferred for

sample may suggest the anorthosite sits at shallow levels beneath these rocks. However, with no borehole data, the similarity in density between the anorthosite and host gneisses makes this difficult to test using geophysical means.

Chapter 3

Within the intermediate sample, the growth of biotite replacing cordierite in the spinelcordierite symplectites, which are themselves replacing sapphirine, suggests that the rocks may have retained small quantities of melt and that, on cooling and exhumation from the regional peak, the intermediate sample did not cross the solidus before the onset of contact metamorphism. This could indicate that the rocks stayed at high temperature for 100 Ma or more.

Our interpretation that the intermediate and proximal samples followed a two-stage P-Tevolution (Fig. 11), with contact metamorphism superimposed upon the regional metamorphic evolution path, differs from the work of Drüppel et al. (2013). These authors suggest the rocks followed a clockwise, single-stage regional metamorphic evolution peaking at UHT conditions based on their interpretation that the age of UHT metamorphism pre-dates the intrusion of the RIC. We suggest that the  $1021 \pm 23$  to  $999 \pm 17$  Ma metamorphic ages of Drüppel et al. (2013) may represent growth of zircon from crystallising melt following peak metamorphism at ca 1035 Ma (Tomkins et al., 2005).

#### 5.3. P-T evolution of the RVA Sector

We present a revised P-T evolution for gneisses of the RVA Sector during the Sveconorwegian orogeny: For rocks outside the influence of the

the contact metamorphism in the intermediate RIC (our distal sample), regional metamorphism followed a clockwise P-T path with peak conditions of ~850-950 °C at ~7-8 kbar followed by high-temperature, retrograde decompression to conditions of ~900 °C at 5 kbar and, subsequently, isobaric cooling to below 700 °C (Fig. 11). Whereas the distal sample preserves no compelling evidence for having experienced contact metamorphism, rocks closer to the RIC (our intermediate and proximal samples) contain evidence for a static thermal overprint (contact metamorphism) that records pressures of 3-6 kbar and reached a maximum temperature in the sample immediately adjacent to the RIC contact of over 950 °C.

> The proposed P-T evolution outlined in this study reconciles the previous interpretations made by Degeling et al. (2001) and Drüppel et al. (2013). Degeling et al. (2001) underestimated the temperature of peak regional metamorphism by ~200 °C, due to their reliance on petrogenetic grids in the KFMASH model system, which is an oversimplification of natural rocks (White et al., 2007; White et al., 2014a), and by their use of conventional thermobarometric techniques which, due to post-peak diffusion, commonly lead to underestimates of peak temperatures (Fitzsimons and Harley, 1994; Pattison et al., 2003). Assuming our results are reliable, Drüppel et al. (2013) overestimated the temperature experienced by the rocks at Ivesdal, our intermediate locality, by ~50 °C. This is most likely due to their omission of ferric iron (modelled as O) from their model system, that affects the bulk  $X_{(M\sigma)}$  of the modelled composition. In particular, these authors used an older solution model for sapphirine that does not include ferric iron, which can significantly reduce

(Kelsey et al., 2005; Wheller and Powell, 2014). et al. (2013a) to develop an alternative Andean-Furthermore, Drüppel et al. (2013) rely in part on spinel to constrain their P-T trajectories. However, the presence of elements such as Cr and Zn that are not currently incorporated into thermodynamic models, will stabilise spinel to lower temperatures than predicted by the pseudosection modelling (Tajčmanová et al., 2009).

Chapter 3

5.4. Implications for the tectonic setting of the suites. Sveconorwegian orogeny

The revised metamorphic evolution proposed here has implications for tectonic models for the development of the RVA Sector during the Sveconorwegian orogeny. There are at present two different tectonic models for the Sveconorwegian orogeny, a continent-continent collisional model proposed by Bingen et al. (2008) and an accretionary model of Slagstad et al. (2013a), which has been further refined by Coint et al. (2015). The collisional model postulates that at ~1140 Ma Fennoscandia collided with an as yet unidentified continent (possibly Amazonia), resulting in widespread Barroviantype regional metamorphism. At ~930 Ma a phase of orogenic collapse was initiated that resulted in the emplacement of the RIC and formation of a regional-scale UHT contact aureole (Bingen et al., 2008). The long timescales of high-temperature conditions interpreted in this study are sufficient for the generation of high-grade metamorphic conditions within a collisional system (Clark et al., 2011). However, the lack of any obvious colliding continental block and the evidence for a series of magmatic events with arc-like chemistry

the temperature at which sapphirine is stable that post-date the proposed collision led Slagstad style accretionary model to explain the geological evolution of SW Norway. According to Slagstad et al. (2013a), the long-lived accretionary margin underwent periodic extension and compression (as a result of steep and flat slab subduction) and to alternate between periods of metamorphism (1020-990 Ma) and magmatism (1050-1020 and 990-920 Ma) to generate the SMB, HBG and RIC

> In contrast to the P-T-t proposed by Drüppel et al. (2013), which consists of a single clockwise P-T loop with UHT metamorphism occurring 10-15 Myr after the cessation of SMB magmatism, Slagstad and co-workers argued that the metamorphic history of rocks in SW Norway could not have been produced by a collisional orogeny (Slagstad et al., 2013b). They suggest that to generate temperatures of ~1000 °C at mid to lower crustal depths in a collisional system requires on the order of ca 100 Ma (e.g. Clark et al., 2011; Clark et al., 2015).

> All of the available evidence from this and previous studies indicates that a period of crustal thickening must have occurred prior to the attainment of peak regional metamorphic conditions (Bingen et al., 2008; Drüppel et al., 2013; Slagstad et al., 2013a). Possible mechanisms for crustal thickening include collision, flat-slab subduction and accretion. Whilst continental collision is a key part of the four-phase model of Bingen et al. (2008), with subduction interpreted to have ceased at 1140 Ma, this is inconsistent with the presence of the 1060-1020 Ma calc-alkaline SMB as well as the presence of contemporaneous and later arc-related features across the terranes

of the Sveconorwegian Belt. These include the RIC formed. Most geochronology of the RIC widespread arc geochemical signatures (Brewer et al., 2002; Andersen et al., 2007; Corfu and Laajoki, 2008; Petersson et al., 2015), multiple periods of back-arc basin formation (Brewer et al., 2002; Söderlund and Ask, 2006; Söderlund et al., 2006; Andersen et al., 2007; Spencer et al., 2014; Petersson et al., 2015) and related bimodal magmatism (Söderlund and Ask, 2006; Bingen et al., 2008; Corfu and Laajoki, 2008; Spencer et al., 2014) as well as the overall younging to the west caused by westerly arc retreat with subduction beneath Fennoscandia (Slagstad et al., 2013a; Spencer et al., 2014 and references within; Coint et al., 2015; Petersson et al., 2015; Roberts and Slagstad, 2015).

Chapter 3

Flat-slab subduction has been previously proposed by Slagstad et al. (2013a) to have driven crustal thickening and develop medium-P, high-T regional metamorphism within the geographically restricted area of the RVA Sector. This interpretation is consistent with magmatism starting 15 Myr prior to the onset of regional metamorphism, in which the magmas could not have been produced from partial melting related to crustal thickening (Slagstad et al., 2013a, b). Therefore, we therefore favour the Slagstad et al. (2013a) accretionary model for the RVA Sector. Similar styles of accretionary tectonics have been invoked to form regional-scale granulite facies terranes in a number of other Mesoproterozoic Orogens (Karlstrom et al., 2001; Clark et al., 2014; Korhonen et al., 2014) and have been singled out 6. CONCLUSIONS as sites of crustal growth and granulite generation throughout Earth history (Collins, 2002; Cawood and Buchan, 2007), at least since the Archaean.

indicates that it was emplaced in a restricted time span at ~930 Ma. However, Coint et al. (2015) hypothesise that it may have had a protracted, episodic emplacement history based on the complex spread of zircon U-Pb ages that may record multiple intrusive events and resulted in the formation of complex growth and dissolution of zircon and monazite over an extended time interval (<1000 Ma to 920 Ma) (Möller et al., 2003 and references within). In the absence of unequivocal geochronological evidence that suggests emplacement over a prolonged period, we favour a short-lived intrusive event at ~930 Ma, with magmas emplaced into rocks that still retained small amounts of melt. Small volumes of melt in the rocks could have resulted in the reported zircon textures (Möller et al., 2003) and a single thermal pulse is consistent with the relatively simple petrographic textures documented in this study and the pluton sub-parallel isograds observed at the map scale. There is no clear evidence for slab breakoff as the causal mechanism for generation of the RIC. Recent work by Bybee et al. (2013) suggests that the RIC formed as part of a long-lived magmatic system, consistent with an accretionary setting. It is difficult to determine what caused the end of the Sveconorwegian orogeny as this margin was significantly modified during the Caledonian orogeny, leaving no obvious geological record of what previously lay to the west.

Regional metamorphism in the RVA Sector during the Sveconorwegian orogeny followed a clockwise P-T path attaining peak conditions of ~850-950 °C and ~7-8 kbar at ca

More problematic is exactly how the

1035 Ma. Partial melting and melt loss led to the production of highly residual rock compositions.

• Rocks located up to at least 10km from the RIC experienced an additional static, lowpressure, high-temperature event ~100 Myr after the peak of regional metamorphism that reached a maximum *T* of ~950 °C at 3–6 kbar. The source of this additional heat was the RIC itself, which was emplaced into slightly cooler but residual crust and resulted in the series of high-*T* isograds concentric with its margin.

• The collisional model of Bingen et al. (2008) cannot satisfactorily explain the metamorphic and magmatic evolution of the Sveconorwegian orogeny in the RVA Sector as it lacks a plausible heat source to drive UHT metamorphism. A model that has the Sveconorwegian Orogen as an east facing accretionary margin that experienced long-lived subduction associated with periods of flat slab subduction, rollback and arc accretion, akin to that proposed by Slagstad et al. (2013) better explains the metamorphic and magmatic evolution of the RVA Sector.

#### ACKNOWELDGEMENTS

We thank two anonymous reviewers for their detailed comments and Prof. M. Santosh for his editorial handling. Financial support for this project was provided by an ARC DECRA fellowship (DE120103067) to CC.

- Andersen, T., Griffin, W. L., and Pearson, N. J., 2002. Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. Journal of Petrology 43(9), 1725-1747.
- Andersen, T., Griffin, W. L., and Sylvester, A. G., 2007. Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U-Pb and Lu-Hf isotope evidence from granites and gneisses in Telemark, southern Norway. Lithos 93, 273-287.
- Barnichon, J. D., Havenith, H., Hoffer, B., Charlier, R., Jongmans, D., and Duchesne, J. C., 1999. The deformation of the Egersund-Ogna anorthosite massif, south Norway: finite-element modelling of diapirism. Tectonophysics 303, 109-130.
- Bergh, S. G., Chattopadhya, A., Ravna, E. K., Corfu, F., Kullerud, K., Swaan, K. B., Armitage, P. E. B., Myhre, P. I., and Holdsworth, R. E., 2012. Was the Precambrian basement of Western Troms and Lofoten-Vesterålen in northern Norway linked to the Lewisian of Scotland? A comparison of crustal components, tectonic evolution and amalgamation history, In: Sharkov, E. (Ed) Tectonics Recent Advances. In Tech Open Access Publisher, 283-330.
- Bingen, B., Nordgulen, Ø., and Viola, G., 2008. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology 88, 43-72.
- Bingen, B., Skår, Ø., Marker, M., Sigmond, E. M. O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R. D., and Liégeois, J-P., 2005. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norwegian Journal of Geology 85, 87-116.
- Bingen, B., Stein, H. J., Bogaerts, M., Bolle, O., and Mansfeld, J., 2006. Molybdenite Re–Os dating constrains gravitational collapse of the Sveconorwegian orogen, SW Scandinavia. Lithos 87, 328-346.
- Bingen, B., and van Breemen, O., 1998. U–Pb monazite ages in amphibolite- to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contributions to Mineralogy and Petrology 132, 336-353.
- Bogaerts, M., Scaillet, B., Liégeois, J.-P., and Vander Auwera, J., 2003. Petrology and geochemistry of the Lyngdal granodiorite (Southern Norway) and the role of fractional crystallization in the genesis of Proterozoic ferro-potassic A-type granites. Precambrian Research 124, 149-184.

- Bogdanova, S. V., Bingen, B., Gorbatschev, R., Kheraskova, T. N., Kozlov, V. I., Puchkov, V. N., and Volozh, Y. A., 2008. The East European craton (Baltica) before and during the assembly of Rodinia. Precambrian Research, 160, 23-45.
- Bol, L. C. G. M., Maijer, C., and Jansen, B. H., 1989. Premetamorphic lateritisation in Proterozoic metabasites of Rogaland, SW Norway. Contributions to Mineralogy and Petrology 103, 306-316.
- Bolle, O., Diot, H., Liégeois, J.-P., and Auwera, J. V., 2010. The Farsund intrusion (SW Norway): a marker of late-Sveconorwegian (Grenvillian) tectonism emplaced along a newly defined major shear zone. Journal of Structural Geology 32, 1500-1518.
- Bolle, O., Trindade, R. I. F., Bouches, J. L., and Duchesne, J.-C., 2002. Imaging downward granitic transport in the Rogaland Igneous Complex, SW Norway. Terra Nova 14, 87-92.
- Brewer, T. S., Åhäll, K. I., Darbyshire, D. P. F., and Menuge, J. F., 2002. Geochemistry of late Mesoproterozoic volcanism in southwestern Scandinavia: implications for Sveconorwegian/ Grenvillian plate tectonic models. Journal of the Geological Society, London 159, 129-144.
- Brown, M., 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49, 193-234.
- Bybee, G. M., Ashwal, L. D., Shirey, S. B., Horan, M., Mock, T., and Andersen, T. B., 2014. Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho. Earth and Planetary Science Letters 389, 74–85.
- Cawood, P. A., and Buchan, C., 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews 82, 217-256.
- Clark, C., Fitzsimons, I. C. W., Healy, D., and Harley, S. L., 2011. How does the continental crust get really hot?. Elements 7, 235-240.
- Clark, C., Healy, D., Johnson, T., Collins, A. S., Taylor, R., Santosh, M., and Timms, N. E., 2015. Hot orogens and supercontinent amalgamation: A Gondwanan example from southern India. Gondwana Research 28(4), 1310-1328.

Chapter 3 Reappraising the P–T evolution of Rogaland

- Clark, C., Kirkland, C. L., Spaggiari, C. V., Oorschot, C., Wingate, M. T. D., and Taylor, R. J., 2014. Proterozoic granulite formation driven by mafic magmatism: An example from the Fraser Range Metamorphics, Western Australia. Precambrian Research 240, 1-21.
- Coint, N., Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., and Sørensen, B. E., 2015. The Late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: Relationships between magmatism and metamorphism and implications for Sveconorwegian orogenesis. Precambrian Research 265, 57-77.
- Collins, W. J., 2002. Hot orogens, tectonic switching, and creation of continental crust. Geology 30(6), 535-538.
- Corfu, F., and Laajoki, K., 2008. An uncommon episode of mafic magmatism at 1347 Ma in the Mesoproterozoic Telemark supracrustals, Sveconorwegian orogen–Implications for stratigraphy and tectonic evolution. Precambrian Research 160, 299-307.
- Degeling, H., Eggins, S., and Ellis, D. J., 2001. Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineralogical Magazine 65(6), 749-758.
- Demaiffe, D., and Michot, J., 1985. Isotope geochronology of the Proterozoic crustal segment of Southern Norway: a review. In: Tobi, A. C. & Touret, J. L. R. (Eds) The Deep Proterozoic Crust in the North Atlantic Provinces, D. Reidel Publishing Co, 411-435.
- Drüppel, K., Elsäßer, L., Brandt, S., and Gerdes, A., 2013. Sveconorwegian Mid-crustal Ultrahightemperature Metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS Geochronology and Pseudosections of Sapphrine Granulites and Associated Paragneisses. Journal of Petrology 54(2), 305-350.
- Duchesne, J.-C., and Wilmart, E., 1997. Igneous charnockites and related rocks from the Bjerkreim-Sokndal Layered Intrusion (Southwest Norway): a jotunite (hypersthene monzodiorite)-derived A-type granitoid suite. Journal of Petrology 38(3), 337-369.
- Duchesne, J. C., and Michot, J., 1987. The Rogaland intrusive masses: Introduction. In: Maijer, C. & Padget, P. (Eds) The geology of Southernmost Norway. Norges Geologisk Undersøkelse Special Publication 1, 48-59.

*Reappraising the P–T evolution of Rogaland* 

- Falkum, T., 1982. Geologisk kart over Norge, berggrunnskart MANDAL, 1:250,000. Norges Geologisk Undersøkelse.
- Falkum, T., 1985. Geotectonic evolution of southern Scandinavia in light of a late-Proterozoic platecollision. In: Tobi, A. C. & Touret, J. L. R. (Eds) The Deep Proterozoic Crust in the North Atlantic Provinces, D. Reidel Publishing Co, 309-322.
- Falkum, T., and Petersen, J. S., 1980. The Sveconorwegian orogenic belt, a case of late-Proterozoi platecollision: Geologische Rundschau 69(3), 622-647.
- Fitzsimons, I. C. W., and Harley, S. L., 1994. The influence of retrograde cation exchange on granulite P–T estimates and a convergence technique for the recovery of peak metamorphic conditions. Journal of Petrology 35(2), 543-576.
- Harlov, D. E., 2011. Petrological and experimental application of REE- and actinide-bearing accessory mineral to the study of Precambrian high-grade gneiss terrains. Geological Society of America Memoirs 207, 13-24.
- Hermans, G. A. E. M., Hakstege, A. L., Jansen, J. B. H., and Poorter, R. P. E., 1976. Sapphrine occurrence near Vikeså in Rogaland, Southwestern Norway. Norsk Geologisk Tidsskrift 56, 397-412.
- Hermans, G. A. E. M., Tobi, A. C., Poorter, R. P. E., and Maijer, C., 1975. The high-grade metamorphic Precambrian of the Sirdal-Ørsdal area, Rogaland/Vest-Agder, South-west Norway. Norges Geologisk Undersøkelse 318, 51-74.
- Holland, T. J. B., and Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology 29, 333-383.
- Huijsmans, J. P. P., Kabel, A. B. E. T., and Steenstra, S. E., 1981. On the structure of high-grade metamorphic Precambrian terrain in Rogaland, south Norway. Norsk Geologisk Tidsskrift 61, 183-192.
- Jansen, B. H., Blok, R. J. P., Bos, M., and Scheelings, M., 1985. Geothermometry and geobarometry in Rogaland and preliminary results from the Bamble area, S Norway. In: Tobi, A. C. & Touret, J. L. R. (Eds) The Deep Proterozoic Crust in the North Atlantic Provinces, D. Reidel Publishing Co, 499-516.

- Jansen, B. H., and Tobi, A. C., 1987. Introduction to the Faurefjell metasediments: In: Maijer, C. & Padget, P. (Eds) The geology of Southernmost Norway. Norges Geologisk Undersøkelse Special Publication 1, 88-89.
- Johnson, T., Brown, M., Gibson, R. & Wing, B., 2004. Spinel-cordierite symplectites replacing andalusite: evidence for melt-assisted diapirism in the Bushveld Complex, South Africa. Journal of Metamorphic Geology 22, 529–545.
- Johnson, T., Clark, C., Taylor, R., Santosh, M., and Collins, A. S., 2015. Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India. Geoscience Frontiers 6(3), 373-387.
- Johnson, T. E., White, R. W. & Powell, R., 2008. Partial melting of metagreywacke a calculated mineral equilibria study. Journal of Metamorphic Geology, 26, 837–853.
- Karlstrom, K. E., Åhäll, K. I., Harlan, S. S., Williams, M. L., McLelland, J., and Geissman, J. W., 2001. Long-lived (1.8-1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research 111, 5–30.
- Kars, H., Jansen, B. H., Tobi, A. C., and Poorter, R. P. E., 1980. The metapelitic rocks of the polymetamorphic Precambrian of Rogaland, SW Norway: Part II- Mineral relations between cordierite, hercynite and magnetite within the osumilite-in isograd. Contributions to Mineralogy and Petrology 74, 235-244.
- Kelsey, D. E., White, R. W., and Powell, R., 2005. Calculated phase equilibria in K<sub>2</sub>O–FeO–MgO– Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O for silica-undersaturated sapphrine-bearing mineral assemblages. Journal of Metamorphic Geology 23, 217-239.
- Korhonen, F. J., Clark, C., Brown, M., and Taylor, R. J. M., 2014. Taking the temperature of Earth's hottest crust. Earth and Planetary Science Letters 408, 341-354.

Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277-279.

Longhi, J., Fram, M. S., Auwera, J. V., and Montieth, J. N., 1993. Pressure effects, kinetics, and rheology of anorthositic and related magmas. American Mineralogist 78, 1016-1030.

*Reappraising the P–T evolution of Rogaland* 

- Maijer, C., 1987. The metamorphic envelope of the Rogaland intrusive complex. Norges Geologisk Undersøkelse- Special Publication 1, 68-73.
- Maijer, C., Andriessen, P. A. M., Hebeda, E. H., Jansen, B. H., and Verschure, R. H., 1981. Osumilite, an approximately 970 Ma old high-temperature index mineral of the granulite-facies metamorphism in Rogaland, SW Norway. Geologie en Mijnbouw 60, 267-272.
- Marker, M., Schiellerup, H., Meyer, G., Robins, B., and Bolle, O., 2003. Introduction to the geological map of the Rogaland Anorthosite Province 1:75000. Norges Geologisk Undersøkelse- Special Publication 9, 109-116.
- Möller, A., O'Brien, P. J., Kennedy, A., and Kröner, A., 2002. Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. Journal of Metamorphic Geology 20, 727-740.
- Möller, A., O'Brien, P. J., Kennedy, A., and Kröner, A., 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: Vance, D. Müller, W. & Villa, I. M. (Eds) Geochronology: Linking the Isotopic Record with Petrology and Textures. The Geological Society, London, Special Publications 220, 65-81
- Nijland, T. G., Maijer, C., and de Haas, G.-J. L. M., 1996. The Stokkafjell Troctolite, SW Norway: its bearing on the early P-T evolution of the Rogaland terrane. Neues Jahrbuch fur Mineralogie Abhandlungen 171, 91-117.
- Pasteels, P., Demaiffe, D., and Michot, J., 1979. U–Pb and Rb–Sr geochronology of the eastern part of the south Rogaland igneous complex, southern Norway. Lithos 12, 199-208.
- Pattison, D. R. M., Chacko, T., Farquhar, J., and McFarlane, R. M., 2003. Temperature of granulitefacies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology 44(5), 867-900.
- Pearce, M. A., White, A. J. R., and Gazley, M. F., 2015. TCInvestigator: automated calculation of mineral mode and composition contour for THERMOCALC pseudosections. Journal of Metamorphic Geology 33, 413-425.

Petersson, A., Scherstén, A., Bingen, B., Gerdes, A., and Whitehouse, M. J., 2015. Mesoproterozoic continental growth: U–Pb–Hf–O zircon record in the Idefjorden Terrane, Sveconorwegian Orogen. Precambrian Research 261, 75-95.

Chapter 3

- Pitra, P., and Waal, S. A. D., 2001. High-temperature, low-pressure metamorphism and development of prograde symplectites, Marble Hall Fragment, Bushveld Complex (South Africa). Journal of Metamorphic Geology 19(3), 311-325.
- Rivers, T., 1997. Lithotectonic elements of the Grenville Province: review and tectonic implications. Precambrian Research 86,117–154.
- Roberts, N. M. W. and Slagstad, T., 2015. Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86-0.9 Ga accretionary orogeny in southwest Fennoscandia. International Geology Review 57, 1582-1606.
- Sauer, S., Slagstad, T., Andersen, T., and Kirkland, C. L., 2013. Zircon Lu-Hf isotopes in high-alumina orthopyroxene megacrysts from the Neoproterozoic Rogaland Anorthosite Province, SW Norway: A window into the Sveconorwegian lower crust. EGU General Assembly Conference Abstracts 15, 13958.
- Sauter, P. C. C., 1981. Mineral relations in siliceous dolomites and related rocks in the high-grade metamorphic Precambrian of Rogaland, SW Norway. Norsk Geologisk Tidsskrift 61, 35-45.
- Schärer, U., Wilmart, E., and Duchesne, J-C., 1996. The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway. Earth and Planetary Science Letters 139, 335-350.
- Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., and Schiellerup, H., 2013a. A non-collisional, accretionary Sveconorwegian orogen. Terra Nova 25, 30-37.
- Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., and Schiellerup, H., 2013b. A non-collisional, accretionary Sveconorwegian orogen – Reply. Terra Nova 25(2), 169-171.
- Söderlund, U., and Ask, R., 2006. Mesoproterozoic bimodal magmatism along the Protogine Zone, S Sweden: three magmatic pulses at 1.56, 1.22 and 1.205 Ga, and regional implications. GFF 128, 303-310.

*Reappraising the P–T evolution of Rogaland* 

- Söderlund, U., Elming, S.-Å., Ernst, R. E., and Schissel, D., 2006. The Central Scandinavian Dolerite Group–Protracted hotspot activity or back-arc magmatism? Constraints from U–Pb baddeleyite geochronology and Hf isotopic data. Precambrian Research 150, 136-152.
- Spencer, C. J., Roberts, N. M. W., Cawood, P. A., Hawkesworth, C. J., Prave, A. R., Antonini, A. S. M., Horstwood, M. S. A., and EIMF, 2014. Intermontane basins and bimodal volcanism at the onset of the Sveconorwegian Orogeny, southern Norway. Precambrian Research 252, 107-118.
- Tajčmanová, L., Konopásek, J., and Košler, J., 2009. Distribution of zinc and its role in the stability of spinel in high-grade felsic rocks of the Moldanubian domain (Bohemian Massif). European Journal of Mineralogy 21, 407-418.
- Tobi, A. C., Hermans, G. A. E. M., Maijer, C., and Jansen, B. H., 1985. Metamorphic zoning in the high-grade Proterozoic of Rogaland-Vest Agder, SW Norway. In: Tobi, A. C. & Touret, J. L.R. (Eds)The Deep Proterozoic Crust in the North Atlantic Provinces, D. Reidel Publishing Co., 477-497
- Tomkins, H. S., Williams, I. S., and Ellis, D. J., 2005. In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. Journal of Metamorphic Geology 23, 201-215.
- Vander Auwera, J., Bolle, O., Bingen, B., Liégeois, J.-P., Bogaerts, M., Duchesne, J.-C., Waele, B. D., and Longhi, J., 2011. Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth-Science Reviews 107, 375-397.
- Vander Auwera, J., Bolle, O., Dupont, A., Pin, C., Paquette, J.-L., Charlier, B., Duchesne, J.-C., Mattielli, N., and Bogaerts, M., 2014. Source-derived heterogeneities in the composite (charnockitegranite) ferroan Farsund intrusion (SW Norway). Precambrian Research 251, 141-163.
- Vander Auwera, J., and Longhi, J., 1994. Experimental study of a joutunite (hypersthene monzodiorite): constraints on the parent magma composition and crystallization conditions (P, T, fO<sub>2</sub>) of the Bjerkreim-Sokndal layered intrusion (Norway). Contributions to Mineralogy and Petrology 118, 60-78.
- Verschure, R. H., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Maier, W. D., Priem, H. N. A., and Verdurmen, E. A. T., 1980. On the thermal stability of Rb–Sr and K–Ar biotite systems: evidence from coexisting Sveconorwegian (ca 870 Ma) and Caledonian (ca 400 Ma) biotites in SW Norway. Contributions to Mineralogy and Petrology 74, 245-252.

- Versteeve, A. J., 1975. Isotope geochronology in the high-grade metamorphic Precambrian of Southwestern Norway. Norges Geologisk Undersøkelse 318, 1-50.
- Westphal, M., Schumacher, J. C., and Boschert, S., 2003. High-Temperature Metamorphism and the Role of Magmatic Heat Sources at the Rogaland Anorthosite Complex in Southwestern Norway. Journal of Petrology 44(6), 1145-1162.
- Wheller, C. J., and Powell, R., 2014. A new thermodynamic model for sapphirine: calculated phase equilibria in K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>. Journal of Metamorphic Geology 32, 287-299.
- White, R. W., Powell, R., and Clarke, G. L., 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>. Journal of Metamorphic Geology 20, 41-55.
- White, R. W., Powell, R., and Holland, T. J. B., 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology 25, 511-527.
- White, R. W., Powell, R., Holland, T. J. B., Johnson, T., and Green, E. C. R., 2014a. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology 32, 261-286.
- White, R. W., Powell, R., and Johnson, T., 2014b. The effect of Mn on mineral stability in metapelites revisited: new a-x relations for manganese-bearing minerals. Journal of Metamorphic Geology 32, 809-828.
- Whitney, D. L., and Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185-187.
- Wielens, J. B. W., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Priem, H. N. A., Verdurmen,
  E. A. T., and Verschure, R. H., 1981. Isotope geochronology in the High-grade metamorphic
  Precambrian of Southwestern Norway: new data and reinterpretations. Norges Geologisk
  Undersøkelse 359, 1-30.

*Reappraising the P–T evolution of Rogaland* 

- Wilmart, E., Clocchiatti, R., Duchesne, J.-C., and Touret, J. L. R., 1991. Fluid inclusions in charnockites from the Bjerkreim-Sokndal massif (Rogaland, southwestern Norway): fluid origin and in situ evolution. Contributions to Mineralogy and Petrology 108, 453-462.
- Wilmart, E., and Duchesne, J.-C., 1987. Geothermobarometry of igneous and metamorphic rocks around the Åna-sira anorthosite massif: Implications for the depth of emplacement of the South Norwegian anorthosites. Norsk Geologisk Tidsskrift 67, 185-196.

### Supplementary material: See Appendix C
## Constraining the timing of prograde metamorphism in long-lived hot orogens

Eleanore Blereau<sup>1\*</sup>, Chris Clark<sup>1</sup>, Fred Jourdan<sup>1,2</sup>, Tim E. Johnson<sup>1</sup>, Richard J. M. Taylor<sup>1</sup>, Peter D. Kinny<sup>1</sup>, Martin Hand<sup>3</sup> and Ela Eroglu<sup>2,4</sup>

<sup>1</sup>Department of Applied Geology, The Institute of Geoscience Research (TIGeR), Curtin University, GPO Box U1987, Perth WA 6845, Australia.

<sup>2</sup>Western Australian Argon Isotope Facility, John de Laeter Centre, Curtin University, GPO Box U1987, Perth WA 6845, Australia.

<sup>3</sup>Centre for Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, Adelaide 5005, South Australia

<sup>4</sup>Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth WA 6845, Australia.

This article is under review in GEOLOGY (since June 7 2017)

#### ABSTRACT

We present results of the first <sup>40</sup>Ar/<sup>39</sup>Ar dating of osumilite, a high-temperature mineral that occurs in volcanic and high-grade metamorphic rocks. The metamorphic osumilite studied here is from the Rogaland–Vest Agder Sector, Norway, an area that experienced high temperatures (>850°C) for ~100 Myr. The results of diffusion experiments indicate that, for a cooling rate of 10°C/Ma and a crystal radius of 175  $\mu$ m, the closure temperature for argon in osumilite is high (~770°C). The large grain size of osumilite in the Rogaland rocks (~1 cm) allows for the preservation of two apparent age populations. The first dates growth of osumilite during prograde granulite facies regional metamorphism at ca 1070– 1050 Ma; the second population records growth and equilibration during contact metamorphism at ca 920–880 Ma following emplacement of the Rogaland Igneous Complex. The ability to date osumilite provides a valuable new thermochronometer that can be used to constrain the timing and duration of high-temperature magmatic and metamorphic events and potentially archaeological events.

#### **1. INTRODUCTION**

Establishing robust temporal constraints on longlived orogenic events and associated pressuretemperature-time (P-T-t) paths is key to developing an in-depth, quantitative understanding of the processes of mountain building and collapse. There is increasing evidence to suggest that the deep crust of some large orogenic belts may have remained at high temperatures (>800 °C) in which melt is likely to have been present for long durations (>>10 Myrs; e.g. Clark et al., 2015; Kelsey and Hand, 2015; Harley, 2016). The presence of melt exerts a fundamental control on the strength of the lower crust and its ability to flow and redistribute mass. As such, accurate P-T-t information is critical to the construction of robust and realistic thermo-rheological models of the crust (Jamieson and Beaumont, 2013; Gerya, 2014; Sizova et al., 2014).

A well-recognised complication when attempting to establish the duration of orogenic events where temperatures are elevated for >>10 Myrs is that the geochronometers most commonly applied to constrain the timing of part of the P-Tevolution, such as zircon or monazite, are subject to modification by diffusion thereby limiting their ability to constrain the timing of prograde to peak events (Kelsey and Hand, 2015; Harley, 2016). By contrast, major rock forming minerals commonly have much larger grain sizes (100s to 1000s of µm versus 10s to 100s of µm for zircon and monazite) resulting in far greater diffusional length scales that greatly increase the potential of preserving age information from the prograde and peak portions of the P-T evolution. In addition, the growth and breakdown of major rock forming minerals can be forward modelled using thermodynamic datasets and software (e.g. THERMOCALC) enabling direct constraints to be placed on the timing of mineral growth along a P-T path. However, at temperatures >500 °C and/or where cooling rates are slow (<20°C Myr<sup>1</sup>), these isotopic systems are also open to diffusion (Baxter and Scherer, 2013; Smit et al., 2013). Therefore, it is crucial to seek out minerals that are resistant to elemental

#### Constraining the timing of prograde metamorphism



diffusion at high temperatures and that have a grain size sufficiently large to preserve the age information near the peak of metamorphism.

Here we present the first 40Ar/39Ar analyses of osumilite, a K-bearing silicate mineral that is found in both volcanic and hightemperature metamorphic rocks. Using an example from Rogaland, SW Norway, we use diffusion experiments to demonstrate a high closure temperature of the Ar system in osumilite, and thermodynamic modelling to constrain the metamorphic conditions under which it grew. The utility of osumilite as a high temperature chronometer opens up a number of applications, such as dating volcanism (Miyashiro, 1956; Balassone et al., 2008), high and ultrahigh temperature regional metamorphism (Ellis et al., 1980; Adjerid et al., 2013) and potentially archaeological events through analysing the byproducts of ceramic making processes (Artioli et al., 2013).

## 2. GEOLOGICAL SETTING AND SAMPLE DESCRIPTION

The Rogaland–Vest Agder Sector (RVA) of southwestern Norway experienced a long-lived ( $\sim$ 100 Myr) high–*T* metamorphic evolution

**Fig. 1:** Simplified geological map of the Rogaland Vest– Agder Sector with sample location (N 58°38'37.12", E 6°6'48.90"; WGS 84), modified after Coint et al. (2015). GC-Gneiss complex; SMB-Sirdal Magmatic Belt; HBG-Hornblende-biotite granites; RIC-Rogaland Igneous Complex; C-Caledonides; Osm–in- osumilite isograd; Pgt–in- pigeonite isograd.

during the Sveconorwegian orogeny. Regional metamorphism reached peak conditions of ~850– 950°C and 7–8 kbar at ca 1035 Ma (Degeling et al., 2001; Möller et al., 2003; Drüppel et al., 2013; Laurent et al., 2016; Blereau et al., 2017). On emplacement of the Rogaland Igneous Complex (RIC) at ca 930 Ma (Schärer et al., 1996), rocks up to 10 km from the margin of the RIC experienced contact metamorphism, with conditions of ~950°C and 3–6 kbar at the RIC–country rock contact (Tomkins et al., 2005).

The studied osumilite occurs in a migmatite (ROG13/2)  $\sim$  2 km from the RIC contact (Fig. 1). Osumilite, which comprises  $\sim 20\%$  of the rock, occurs in the melanosome where it coexists with orthopyroxene, quartz, spinel/magnetite, ilmenite and rare garnet. The leucosome mainly comprises plagioclase, K-feldspar, orthopyroxene and quartz (Fig. 2a). Based on petrographic observations, minor biotite is interpreted to be retrograde. Osumilite occurs in two different textural associations: (i) as large grains (~10 mm), the outer parts of which are intergrown with quartz (Fig. 2a) and, (ii) as rims ( $\sim 0.3-0.5$  mm wide) at the margins of rare garnet (Fig. S1). The large grains of osumilite (type i) are interpreted to have grown during the prograde to peak regional evolution, whereas the osumilite overgrowths replacing garnet (type ii) are interpreted to have grown during the subsequent contact metamorphism. In some places both variants of osumilite are replaced

#### Constraining the timing of prograde metamorphism



**Fig. 2:** A- TIMA mineral map of the osumilite migmatite (ROG13/2) with colour mineral legend, abbreviations after Kretz (1983). Single large grain of osumilite (red box). B- Modelled pseudosection of ROG13/2 with osumilite stability at low-P (outlined in red) compared to the P-T conditions determined by Blereau et al., (2017) (blue boxes).

by a symplectitic intergrowth of cordierite–K-feldspar–quartz  $\pm$  orthopyroxene (Fig. 2a).

#### **3. METHODS AND RESULTS**

Detailed methods are given in Appendix 1. A pseudosection in the Na<sub>2</sub>O–CaO–K<sub>2</sub>O–FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O–TiO<sub>2</sub>–O model system for sample ROG13/2 indicates that osumilite was stable with melt at >815°C and <7.2 kbar (Fig. 2b), broadly consistent with existing *P*–*T* constraints for both regional and contact metamorphism (Blereau et al., 2017).

For  $^{40}Ar/^{39}Ar$ dating, fifty-five inclusionalteration-free fragments of osumilite and were hand picked from the 355-450 µm size fraction following SELFRAG electrical pulse disaggregation of samples. Fragments were loaded into a 1.9 x 0.3 cm Cd-shielded aluminium disc then irradiated for 40 hours in the Oregon State University TRIGA reactor (Oregon, USA). <sup>40</sup>Ar/<sup>39</sup>Ar analyses (Appendix 2) were performed on eight single-grain aliquots using a laser and furnace on a MAP 215-50 mass spectrometer at the Western Australian Argon Isotope Facility, part of the John de Laeter Centre at Curtin University. There were no obvious optical differences between the analysed fragments.

Of the eight analyses, six produced <sup>40</sup>Ar/<sup>39</sup>Ar plateau ages associated with probability of fit values (P, which are considered to be statistically valid if >0.05) between 0.16 and 0.59, and each was calculated from combined steps representing >73% of the total <sup>39</sup>Ar released (Fig. 3). The results fall into two age clusters, with two fragments yielding plateau ages of  $1070.0 \pm$ 2.1  $[\pm 3.3^*]$  (\*=internal error plus decay constant error,  $2\sigma$ ) and  $1055.7 \pm 3.2$  [ $\pm 4.0$ ] Ma and another four yielding younger plateau ages ranging from  $920.6 \pm 2.1$  [ $\pm 2.9$ ] to  $880.3 \pm 2.4$  [ $\pm 3.1$ ] Ma (Fig. 3). The remaining two fragments did not yield a statistically acceptable plateau (Appendix 1, Fig. S2). Although the apparent ages of the remaining two fragments converge on the two age clusters defined by the other analyses, they are not discussed further.

Diffusion parameters in osumilite were measured on three aliquots of five fragments, heated in stages using a Pond Engineering furnace. <sup>39</sup>Ar was chosen as the diffusant with each



**Fig. 3:** <sup>40</sup>Ar/<sup>39</sup>Ar age spectra and respective plateau ages. Steps included in the plateaux are shaded grey; errors on the plateau ages are  $2\sigma$ . The errors in square brackets are the internal error plus the decay constant error ( $2\sigma$ ).

extraction step lasting 10 minutes (2 minutes with increasing temperature, then 8 minutes at a fixed temperature). The fraction of <sup>39</sup>Ar released and the duration of each step were used to calculate the D values (Dodson, 1973), which are shown on Arrhenius plots (Fig. S4). Activation energy  $(E_{a})$  and pre-exponential frequency factor  $(D_{a})$ were calculated from the arrays defined on the Arrhenius plots. Calculations used a crystal radius of 175 µm (the smallest grain size analysed) and a spherical geometry. The three experimental runs yielded a range of  $E_a$  and related  $D_0$  values (Table 1). The corresponding closure temperatures  $(T_{c})$ and their uncertainties  $(2\sigma)$  were calculated using a Monte Carlo simulation (Scibiorski et al., 2015) incorporating the uncertainties of  $E_a$ ,  $D_0$  and crystal radius.

For a cooling rate of 10 °C/Ma (e.g. Cassata et al., 2009; Cassata et al., 2011) and a crystal radius of 175  $\mu$ m, the  $E_a$  and  $D_o$  values

#### *Constraining the timing of prograde metamorphism*

correspond to a range of  $T_c$  values (Table 1). The  $E_a$  and  $D_0$  values, and consequently the lower calculated  $T_c$ , of the third run, are considerably lower than the first two runs. This might be the result of grain fracturing (osumilite has no discernable cleavage), facilitating escape of argon. The Ar closure temperature of osumilite has a lower limit of ~600 °C but the similarity between the results of experiment 1 and 2 and the relatively small  $2\sigma$  error on experiment 1 implies a  $T_c$  closer to 770°C for a crystal radius of 175 µm. A  $T_c$  of 770°C makes osumilite is one of the most retentive crystals to argon diffusion, comparable with clinopyroxene (~750°C) (Cassata et al., 2011).

#### 4. DISCUSSION

The six osumilite fragments that produced <sup>40</sup>Ar/<sup>39</sup>Ar plateau ages yielded two distinct age clusters that correspond with known high-*T* metamorphic events in the RVA Sector. The TIMA mineral map in Figure 2a shows a grain of osumilite with approximate dimensions of >10,000 by 5000  $\mu$ m. In such large grains, isotopic equilibration of Ar by diffusion is unlikely, preserving a gradient in <sup>40</sup>Ar/<sup>39</sup>Ar with older apparent ages toward the core (Harrison, 1983). Using the diffusion parameters of experiment 1 (Table 1), the core of a grain with a radius of 5000  $\mu$ m would have an approximate closure temperature of ~910°C for a cooling rate of 10°C/Ma.

The distribution of ages is further illustrated by diffusion models generated using the ArArDiff algorithm (Jourdan and Eroglu, 2017) that show the theoretical shape of <sup>40</sup>Ar/<sup>39</sup>Ar age spectra obtained for an osumilite grain of a given radius and time-temperature history. Due



**Fig. 4:** A- Modelled age spectra for a 5000 μm radius grain of osumilite (Parameters summarised in Appendix 1, Table S1). B- Temperature-time path (shaded) defined by phase equilibria (Blereau et al., 2017), U–Pb monazite and <sup>40</sup>Ar/<sup>39</sup>Ar osumilite geochronology.

to the range of possible temperatures for regional and contact metamorphism (Blereau et al., 2017), two alternative diffusion models were calculated based on the coldest (~800–900°C) and hottest (~900–950°C) temperatures proposed for the two events (Table S1, Fig. 4). In the lower temperature scenario, the modelled 5000  $\mu$ m radius osumilite grain developed a strong internal age profile (Fig. 4a) with apparent ages ranging from ca 1055 Ma in the core to ca 870 Ma at the edge of the grain. For such a profile, ~35% of the gas release steps would yield apparent ages of 1030 Ma or older (Fig. 4a). These results demonstrate how various fragments of a single large crystal that experienced the Rogaland metamorphic history would yield a series of plateau ages spanning 180 million years. Furthermore, since a 175  $\mu$ m-radius grain fragment represents only 3.5% of the radius of a 5000- $\mu$ m radius crystal, the step-age gradient measured for the 175  $\mu$ m grain would be small enough (3.5% of <sup>39</sup>Ar released on Fig. 4a) to yield the observed plateau age.

In the higher temperature scenario it was not possible to generate step ages older than the age of the contact metamorphism (> 930 Ma) (Fig. 4a.), suggesting that the lower temperature scenario is more realistic. However, even with the lower temperature model, the 1070 Ma age obtained for the oldest grain (Fig. 3) could not be achieved using the model parameters listed

*Constraining the timing of prograde metamorphism* 

in Table S1. One possible reason for this is that the numerical models do not account for pressure effects. A lithostatic pressure of 5 kbar could cause approximately 10–15°C difference in closure temperature (Lister and Baldwin, 1996), resulting in an age shift of 6 Ma towards older ages, still not within error of 1070 Ma. Alternatively, unaccounted factors might influence the retention of Ar in osumilite or that factors such as the initial age of crystallization (here considered to be 1070 Ma) might be inaccurate.

Finally, the results of the lower temperature model suggest that, in order to retain a ca 1050 Ma age signature, the temperature conditions during the metamorphic evolution must not have exceeded ~900°C within rocks ~2km from the RIC, broadly comparable to the lower-*T* estimates of Blereau et al., (2017).

Existing geochronology on monazite constrained peak regional metamorphism in Rogaland to ca 1035 Ma, with a few older monazite ages at ca 1060-1050 Ma (Laurent et al., 2016). However, as a result of growing during the prograde evolution, osumilite provides age constraints along the prograde path. The older osumilite  ${}^{40}\text{Ar}/{}^{39}\text{Ar}$  age of  $1070 \pm 2.1$  Ma provides a refined estimate for prograde heating through approximately 815°C (based on phase equilibria modelling). Contact metamorphism resulted in both additional osumilite growth around the margins of garnet (type ii), and equilibration of the outer regions of larger osumilite grains (type i) at 920-900 Ma. The youngest age, ca 880 Ma, is interpreted to represent cooling after which no further growth or modification of osumilite occured. The combination of high closure temperature, large grain size of osumilite and the

similarity between the U–Pb and <sup>40</sup>Ar/<sup>39</sup>Ar ages all provide evidence for the <sup>40</sup>Ar/<sup>39</sup>Ar ages reported here to not be the product of excess argon.

Osumilite has previously been interpreted by some as a mineral that grew only as the result of contact metamorphism in the RVA Sector (e.g. Tobi et al., 1985). However, some osumilite grain fragments preserve ages that predate the contact metamorphism by more than 100 Myr, demonstrating that the mapped osumilite isograd in the RVA sector is not a true contact metamorphic isograd, but formed in appropriate bulk compositions during regional metamorphism associated with the Sveconorwegian Orogeny, as has previously been suggested by Drüppel et al. (2013).

The <sup>40</sup>Ar/<sup>39</sup>Ar closure temperature of osumilite (up to  $771 \pm 11^{\circ}$ C for a 175 µm-radius grain and a cooling rate of 10°C/Ma) is higher than the <sup>40</sup>Ar/<sup>39</sup>Ar closure temperatures of equivalent sized pyroxene (~750°C; Cassata et al., 2011) and hornblende (~550°C; Harrison, 1981). Osumilite also has the advantage of potentially growing to very large grain sizes increasing its retentiveness to Ar (Fig. 4a), making it very suitable for providing insight into extreme crustal conditions and prolonged orogenic processes. A knowledge of the <sup>40</sup>Ar/<sup>39</sup>Ar diffusional properties as determined in this study allows the T-t history to be deduced. This information is not typically obtainable from other high-temperature geochronometers, such as zircon and monazite, due to their small grain size and limitations on the analytical spot sizes.

#### **5. CONCLUSIONS**

Osumilite provides a novel means of retrieving T-t points along a high-T prograde metamorphic

path, allowing for better constraints on the duration of orogenesis. Grain size permitting, osumilite may retain multiple age populations in high-grade terrains as it is very resilient to Ar diffusion. <sup>40</sup>Ar/<sup>39</sup>Ar dating of osumilite provides geochronological data that can be directly connected to thermodynamic modelling, a feature not as readily applicable to accessory minerals such as monazite and zircon. Using the diffusion systematics of osumilite and the presence of certain age populations, additional constraints on the maximum temperatures experienced can be interpreted. Osumilite is also present within igneous rocks and in by-products of the ceramic making process and therefore this technique can be applied to a wider set of geological and archaeological problems than those discussed here.

#### ACKNOWLEDGEMENTS

<sup>40</sup>Ar/<sup>39</sup>Ar analyses and diffusion experiments were carried out at the West Australian Argon Isotope Facility (WAAIF) of the John de Laeter Centre, Curtin University. The Tescan Integrated Mineral Analysis (TIMA) instrument at the John de Laeter Centre, was funded by a grant from the Australian Research Council (LE140100150) and is operated with the support of the Geological Survey of Western Australia, University of Western Australia and Murdoch University. Financial support for this project was provided by an ARC DECRA fellowship (DE120103067) to CC. Many thanks to Fawna Korhonen for supplying the updated *a-X* models.

- Adjerid, Z., Godard, G., Ouzegane, K. H., and Kienast, J.-R., 2013, Multistage progressive evolution of rare osumilite-bearing assemblages preserved in ultrahigh-temperature granulites from In Ouzzal (Hoggar, Algeria): Journal of Metamorphic Geology, v. 31, p. 505–524.
- Artioli, G., Angelini, I., and Nestola, F., 2013, New milarite/osumilite-type phase formed during ancient glazing of an Egyptian scarab: Applied Physics A, v. 110, no. 2, p. 371-377.
- Balassone, G., Mormone, A., Rossi, M., Bernardi, A., Fisch, M., Armbruster, T., Malsy, K., and Berger, A., 2008, Crystal chemical and structural characterisation of an Mg-rich Osumilite from Vesuvius volcano (Italy): European Journal of Mineralogy, v. 20, p. 713-720.
- Baxter, E. F., and Scherer, E. E., 2013, Garnet Geochronology: Timekeeper of Tectonometamorphic Processes: Elements, v. 9, no. 6, p. 433.
- Blereau, E., Johnson, T. E., Clark, C., Taylor, R. J. M., Kinny, P. D., and Hand, M., 2017, Reappraising the P-T evolution of the Rogaland-Vest Agder Sector, southwestern Norway: Geoscience Frontiers, v. 8, no. 1, p. 1–14.
- Cassata, W. S., Renne, P. R., and Shuster, D. L., 2009, Argon diffusion in plagioclase and implications for thermochronometry: A case study from the Bushveld Complex, South Africa: Geochimica et Cosmochimica Acta, v. 73, no. 21, p. 6600-6612.
- Cassata, W. S., Renne, P. R., and Shuster, D. L., 2011, Argon diffusion in pyroxenes: Implications for thermochronometry and mantle degassing: Earth and Planetary Science Letters, v. 304, no. 3–4, p. 407–416.
- Clark, C., Healy, D., Johnson, T., Collins, A. S., Taylor, R., Santosh, M., and Timms, N. E., 2015, Hot orogens and supercontinent amalgamation: A Gondwanan example from southern India: Gondwana Research, v. 28, no. 4, p. 1310-1328.
- Coint, N., Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., and Sørensen, B. E., 2015, The Late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: Relationships between magmatism and metamorphism and implications for Sveconorwegian orogenesis: Precambrian Research, v. 265, p. 57-77.

*Constraining the timing of prograde metamorphism* 

- Degeling, H., Eggins, S., and Ellis, D. J., 2001, Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown: Mineralogical Magazine, v. 65, no. 6, p. 749-758.
- Dodson, M. H., 1973, Closure temperature in cooling geochronological and petrological systems: Contributions to Mineralogy and Petrology, v. 40, no. 3, p. 259-274.
- Drüppel, K., Elsäßer, L., Brandt, S., and Gerdes, A., 2013, Sveconorwegian Mid-crustal Ultrahightemperature Metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS Geochronology and Pseudosections of Sapphrine Granulites and Associated Paragneisses: Journal of Petrology, v. 54, no. 2, p. 305-350.
- Ellis, D. J., Sheraton, J. W., England, R. N., and Dallwitz, W. B., 1980, Osumilite-sapphirine-quartz granulites from Enderby Land Antarctica - mineral assemblages and reactions: Contributions to Mineralogy and Petrology, v. 72, p. 123-143.
- Gerya, T., 2014, Precambrian geodynamics: Concepts and models: Gondwana Research, v. 25, no. 2, p. 442-463.
- Harley, S. L., 2016, A matter of time: The importance of the duration of UHT metamorphism: Journal of Mineralogical and Petrological Sciences, v. 111, p. 50–72.
- Harrison, T. M., 1981, Diffusion of 40Ar in Hornblende: Contributions to Mineralogy and Petrology, v. 78, p. 324-331.
- Harrison, T. M., 1983, Some observations on the interpretation of 40Ar/39Ar age spectra: Chemical Geology, v. 41, p. 319-338.
- Jamieson, R. A., and Beaumont, C., 2013, On the origin of orogens: Geological Society of America Bulletin, v. 125, no. 11-12, p. 1671.
- Jourdan, F., and Eroglu, E., 2017, 40Ar/39Ar and (U-Th)/He model age signatures of elusive mercurian and venusian meteorites: Meteoritics & Planetary Science, v. In press.
- Kelsey, D. E., and Hand, M., 2015, On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings: Geoscience Frontiers, v. 6, p. 311-356.

Kretz, R., 1983, Symbols for rock-forming minerals: American Mineralogist, v. 68, p. 277-279.

- Laurent, A. T., Seydoux-Guillaume, A.-M., Duchene, S., Bingen, B., Bosse, V., and Datas, L., 2016, Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts: Contributions to Mineralogy and Petrology, v. 171, no. 11, p. 94.
- Lister, G. S., and Baldwin, S. L., 1996, Modelling the effect of arbitrary P-T-t histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh: Tectonophysics, v. 253, no. 1, p. 83-109.
- Miyashiro, A., 1956, Osumilite, a new silicate mineral, and its crystal structure: American Mineralogist, v. 41, p. 104-116.
- Möller, A., O'Brien, P. J., Kennedy, A., and Kröner, A., 2003, Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway): Geological Society, London, Special Publications, v. 220, no. From: Vance, D., Müller, W., & Villa, I. M. (eds) 2003. Geochronology: Linking the Isotopic Record with Petrology and Textures., p. 65-81.
- Schärer, U., Wilmart, E., and Duchesne, J-C., 1996, The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway: Earth and Planetary Science Letters, v. 139, p. 335-350.
- Scibiorski, E., Tohver, E., and Jourdan, F., 2015, Rapid cooling and exhumation in the western part of the Mesoproterozoic Albany-Fraser Orogen, Western Australia: Precambrian Research, v. 265, p. 232-248.
- Sizova, E., Gerya, T., and Brown, M., 2014, Contrasting styles of Phanerozoic and Precambrian continental collision: Gondwana Research, v. 25, no. 2, p. 522-545.
- Smit, M. A., Scherer, E. E., and Mezger, K., 2013, Lu–Hf and Sm–Nd garnet geochronology: Chronometric closure and implications for dating petrological processes: Earth and Planetary Science Letters, v. 381, p. 222-233.
- Tobi, A. C., Hermans, G. A. E. M., Maijer, C., and Jansen, B. H., 1985, Metamorphic zoning in the high-grade Proterozoic of Rogaland-Vest Agder, SW Norway: The Deep Proterozoic Crust in the North Atlantic Provinces, p. 477-497.

Chapter 4 Constraining the timing of prograde metamorphism

Tomkins, H. S., Williams, I. S., and Ellis, D. J., 2005, In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway: Journal of Metamorphic Geology, v. 23, p. 201-215.

## Supplementary material: See Appendix D

# Using accessory minerals to unravel thermal histories in polymetamorphic terranes: an example from Rogaland, SW Norway

Eleanore Blereau<sup>1\*</sup>, Chris Clark<sup>1</sup>, Richard J. M. Taylor<sup>1, 2</sup>, Peter D. Kinny<sup>1</sup>, Tim E. Johnson<sup>1</sup>, Eleanor Sansom<sup>1</sup>, Martin Hand<sup>3</sup>

<sup>1</sup>Department of Applied Geology, The Institute of Geoscience Research (TIGeR), Curtin University, GPO Box U1987, Perth WA 6845, Australia.

<sup>2</sup>Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom

<sup>3</sup> Centre for Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, Adelaide 5005, South Australia

This article is under review in the Journal of Metamorphic Geology (since June 23 2017)

#### ABSTRACT

The age spectra from accessory minerals from the Rogaland-Vest Agder Sector (RVA) in southwestern Norway are complex and difficult to interpret due to polymetamorphism and prolonged residence at high temperatures. A suite of samples collected various distances from the Rogaland Igneous Complex (RIC) (30 km, 10 km, 2 km and at the contact) were used to study the effects of anorthosite emplacement on the country rocks of the RVA as well as to investigate the effects of high to ultra-high temperature (UHT) metamorphism on the rare earth element (REE) systematics of zircon. Prograde (regional) heating sufficient to recrystallise zircon occurred at  $1059 \pm 12$  Ma, culminating in peak metamorphism at c. 1035–995 Ma and final melt crystallisation outside the aureole at  $951 \pm 14$  Ma. Samples within the aureole of the RIC show a continuum of ages rather than two discrete age peaks, with no clear melt crystallisation event until c. 900 Ma, some 30 Myr after the emplacement of the RIC. This is explained by prolonged residence at high-temperature and a slow cooling rate following regional metamorphism. Diffusion modelling shows that the REE in recrystallised zircon may be modified sufficiently to reflect the surrounding geochemical environment rather than the growth conditions of the original zircon and so can provide additional constraints on the metamorphic T-t path. The observed variations in zircon REE across the sample suite suggest that the RIC was emplaced rapidly, as a series of pulses between 1 and 5 Myr in overall duration.

#### 1. INTRODUCTION

The U-Pb decay schemes are the most commonly used radiogenic isotope systems for constraining timescales of metamorphism within high-grade metamorphic terranes. However, the perturbation of U-Pb and trace elements within accessory minerals such as zircon at high temperatures is a problem, especially in situations where high-Tconditions were prolonged (Clark et al., 2015; Halpin, Daczko, Milan, & Clarke, 2012; Harley, Kelly, & Möller, 2007; Kelly & Harley, 2005). The partitioning of REE between zircon and garnet is now widely used for linking accessory minerals to a metamorphic evolution (Rubatto, 2002; Rubatto & Hermann, 2007; Taylor et al., 2015; Taylor, Kirkland, & Clark, 2016). This approach is readily applicable to newly grown

zircon, or grains undergoing coupled dissolutionreprecipitation, but these processes require fluids or melt which may be scarce within residual high–T granulites, leaving recrystallisation as the dominant mechanism by which zircon may be modified. Recrystallised zircon may not record REE information representative of later events due to the slow pace of solid-state diffusion (Cherniak & Watson, 2003). However, diffusion is strongly temperature and time dependent, increasing the cumulative effects of diffusion during prolonged high–T metamorphism.

The Sveconorwegian Belt of SW Norway and Sweden has experienced a complex orogenic history including emplacement of anorthosite massifs. Much of SW Norway also shows little or no evidence for later overprinting from Caledonian tectonothermal events (Verschure et Using accessory minerals to unravel thermal histories

2. REGIONAL GEOLOGY

The regional geology of the RVA has been

al., 1980). This allows for an investigation into the thermal effects of anorthosite emplacement on the surrounding country rocks as well as providing a natural laboratory to investigate the geochemical effects of prolonged high-T on geochronometers. The geological history of the Rogaland-Vest Agder Sector (RVA) is well constrained and has been the focus of many investigations (Bingen, Nordgulen, & Viola, 2008 and references within; Blereau et al., 2017; Drüppel, Elsäßer, Brandt, & Gerdes, 2013; Laurent et al., 2016; Möller, O'Brien, Kennedy, & Kröner, 2003; Tomkins, Williams, & Ellis, 2005) making this region an ideal case study. Blereau et al. (2017) re-evaluated the P-T evolution of the RVA sector, concluding that the RVA sector experienced a two-stage rather than single-stage evolution, in which a high-grade regional event was followed by a later contact metamorphic event coeval with the emplacement of the voluminous anorthosite bodies (cf. Drüppel et al., 2013; Möller et al., 2003; Tomkins et al., 2005). Blereau et al. (2017) also provided evidence that high-temperature conditions were maintained in the interval between peak regional and later contact metamorphism.

Chapter 5

In this study, we integrate SHRIMP U– Pb data and LA–ICP–MS REE compositions of zircon, monazite and garnet to constrain the timing of metamorphism and to investigate the variability in response of geochronometers to distance from the RIC. We also use diffusion modelling to provide additional constraints to the T-t history, based on the modification of REE in recrystallised zircon, providing insight into the assembly of the RIC. described most recently by Blereau et al. (2017). Here we summarise previous geochronological studies and the timing of geological events of the Sveconorwegian Belt. Three Proterozoic orogenic events are recorded in southern Scandinavia: the 1.9-1.75 Ga Svecofennian Orogeny, the 1.75-1.55 Ga Gothian Orogeny and the 1.2-0.9 Ga Sveconorwegian Orogeny (Andersen, Griffin, & Pearson, 2002) during which the Rogaland Igneous Complex (RIC) was emplaced. The Sveconorwegian Belt connects with the Fennoscandia Foreland and is comprised of a number of lithotectonic domains: the Eastern Segment, Idefjorden Terrane, Bamble-Kongsberg Terranes and Telemarkia Terrane, all of which are separated by major shear zones (Figure 1a). The Sveconorwegian Belt has previously been interpreted to have developed in a continentcontinent collision setting (Bingen et al., 2008). However, in more recent studies the tectonic setting has been proposed to record protracted subduction-accretion (Blereau et al., 2017; Coint et al., 2015; Roberts & Slagstad, 2015; Slagstad, Roberts, & Kulakov, 2017; Slagstad, Roberts, Marker, Røhr, & Schiellerup, 2013; Spencer et al., 2014). The Sveconorwegian Belt has experienced periods of pre- to syn-Sveconorwegian magmatism including 1920–1640 Ma (Fennoscandian Foreland, TIB, Eastern Segment), 1659-1455 Ma (Eastern Segment, Idefjorden, Bamble, Kongsberg, Telemarkia), 1399–1204 Ma (Eastern Segment, Idfjorden, Telemarkia), 1198-1130 Ma (Bamble, Telemarkia) (Bingen & Solli, 2009 and references within) and 1060-914 Ma (Idefjorden, Bamble, Telemarkia) (Bingen & Solli, 2009 and



**Fig. 1:** a- Map showing the main geological domains of Scandinavia (after Bergh et al., 2012). Abbreviations: T- Telemarkia Terrane; B- Bamble Sector; O- Oslo Graben; K- Kongsberg Sector; I- Idefjorden Terrane; ES- Eastern Segment; C- Caledonides; TIB- Transcandinavian Igneous Belt; SF- Svecofennian Foreland (Domain); WG- Western Gneiss Region. b- Geological map of the Rogaland-Vest Agder Sector (mineral isograds from Bolle, Diot, Liégeois, & Auwera, 2010; after Coint et al., 2015; and MUL from Vander Auwera et al., 2011). Samples from this study are marked as white stars with locations from previous studies marked as smaller black stars.

references within; Coint et al., 2015; Slagstad et al., 2013).

The Telemarkia Terrane was formed during a magmatic event at 1555-1459 Ma with no older magmatic rocks currently known (Bingen et al., 2008; Bingen & Solli, 2009). The Telemarkia Terrane is subdivided into the Telemark, Hardangervidda, Sudal and Rogaland-Vest Agder Sectors (Figure 1b), the latter of which is the focus of this study. The RVA is a high-grade gneiss complex composed mainly of orthopyroxenebearing felsic orthogneisses and subordinate paragneisses. Migmatised garnet-bearing orthogneisses have recorded protolith ages of c. 1450 Ma, while non-migmatised orthogneisses have recorded protolith ages of 1210-1230 Ma (Coint et al., 2015). A migmatitic paragneiss has recorded inherited, detrital zircon ages between

3.0–1.2 Ga (Tomkins et al., 2005). Sapphirine granulites (paragneisses) have recorded detrital zircon 207Pb/206Pb ages ranging from  $1841 \pm 26$  to  $1220 \pm 40$  Ma and  $1501 \pm 21$  to  $1265 \pm 54$  Ma (Drüppel et al., 2013).

The RVA has been intruded by three synorogenic magmatic suites: the 1060–1020 Ma Sirdal Magmatic Belt (Coint et al., 2015; Slagstad et al., 2013); the 970–932 Ma hornblende-biotite granites (Bogaerts, Scaillet, Liégeois, & Vander Auwera, 2003; Vander Auwera et al., 2011); and the 930–920 Ma RIC (Bogaerts et al., 2003; Pasteels, Demaiffe, & Michot, 1979; Schärer, Wilmart, & Duchesne, 1996; Westphal, Schumacher, & Boschert, 2003). The emplacement of the RIC is interpreted to form a contact aureole represented by a series of approximately concentric isograds mapped in the surrounding gneiss complex,

*Using accessory minerals to unravel thermal histories* 

including pigeonite and osumilite (-in) (Figure 1). SHRIMP U-Pb dating of zircons by Möller et al. (2003) from a combination of ortho- and paragneisses within the aureole yielded five <sup>206</sup>Pb/<sup>238</sup>U age populations: c. 1050 Ma (magmatic cores), c. 1035 Ma (magmatic cores), c. 1000 Ma (metamorphic zircon),  $927 \pm 7$  Ma (metamorphic rims, n=11) and 908 ± 9 Ma (metamorphic rims, lower Th/U, n=6). LA-ICP-MS dating of monazite from an osumilite-bearing paragneiss within the aureole by Laurent et al. (2016) vielded similar age populations to Möller et al. (2003), with three age population interpreted:  $1034 \pm 6$  Ma (sulphate rich core),  $1005 \pm 7$  Ma (secondary sulphate-bearing domains) and 935 ± 7 Ma (S-free Y-rich domains). SHRIMP U-Pb dating of zircons by Tomkins et al. (2005) from a metapelitic gneiss outside the aureole yielded a range of <sup>206</sup>Pb/<sup>238</sup>U age populations also: c. 3.05-1.34 Ga (detrital zircon), c. 1.04-0.97 Ga (recrystallised zircon),  $1035 \pm 9$  Ma (metamorphic zircon, n=10) and 955 ± 8 Ma (metamorphic zircon in cordierite, n=14). Tomkins et al. (2005) also defined an upper age limit of  $1068 \pm 14$  Ma for regional metamorphism. LA-ICP-MS U-Pb dating of zircons from a sapphirine granulite (paragneiss) within the aureole by Drüppel et al. (2013) yielded <sup>207</sup>Pb/<sup>206</sup>Pb ages ranging from 1064  $\pm$  38 to 989  $\pm$  49 Ma (metamorphic rims), 1029  $\pm$  32 to 993  $\pm$  23 Ma (metamorphic zircon) with a Concordia age of  $1006 \pm 4$  Ma calculated from one sample (14 zircon rims, 4 xenotime analyses). Single grains of xenotime yielded <sup>207</sup>Pb/<sup>206</sup>Pb ages ranging from c. 1001 to 979 Ma with epitaxial xenotime yielding younger Concordia ages of 933  $\pm$  5 Ma (n=8), and 928  $\pm$  10 Ma (n=3) (Drüppel et al., 2013). Based on differing interpretations of the geochronological data, two different ages for peak regional metamorphism have been proposed: c. 1035 Ma (Laurent et al., 2016; Tomkins et al., 2005) and c. 1006 Ma (Drüppel et al., 2013). While there is general agreement that the RIC was emplaced at c. 930 Ma (Bingen et al., 2008; Roberts & Slagstad, 2015; Schärer et al., 1996; Vander Auwera et al., 2011).

#### **3. SAMPLE DESCRIPTIONS**

Geochronology and REE geochemistry were conducted on five samples from the RVA in order to determine the duration of the contact metamorphism subsequent to the regional metamorphic event, as well as the effects of high-grade metamorphism on U-Pb and REE systematics in zircon and monazite. Three samples were collected in the regionally metamorphosed country rocks, at various distances from the RIC contact - ROG13/11 - 30 km, ROG13/10 - 10 km, and ROG13/2 - 2 km. Two further samples - metapelite ROG14/5 and anorthosite ROG14/8 were collected adjacent to the contact. Three of these samples (ROG13/11, ROG13/10 and ROG14/5) were described in detail by Blereau et al. (2017) and are summarised below with additional zircon and monazite morphological information. The petrographic and accessory mineral descriptions for the two remaining samples (ROG13/2 and ROG14/8) are presented below.

3.1 Garnet–sillimanite–cordierite migmatite (ROG13/11, 30 km)

This sample is of a migmatitic metapelite 30 km from the RIC (Figure 1b). The rock comprises

#### Using accessory minerals to unravel thermal histories

foliated melanosome rich in garnet, sillimanite and cordierite together with felsic stromatic leucosome containing peritectic garnet (Blereau et al., 2017).

Chapter 5

Zircon occurs within the leucosome and melanosome as equant to slightly elongate grains 25–200 µm long. Some of the grains contain oscillatory-zoned cores with bright cathodoluminescence (CL) response, that are surrounded and sometimes truncated by uniform rims of dark CL response (Figure 2a i, iv). Other grains show internal features commonly associated with recrystallisation such as diffuse, remnant oscillatory zoning with dark CL response (Figure 2a ii, iii), resembling the 'ghost textures' of Hoskin and Black (2000).

Monazite  $(40-100 \ \mu\text{m})$  occurs throughout the sample in association with garnet, cordierite, sillimanite, ilmenite and K-feldspar. The studied grains appeared internally uniform in backscattered electron (BSE) images (Figure 2f).

3.2 Sapphirine–orthopyroxene–cordierite–spinel granulite (ROG13/10, 10 km)

This sample is from a residual, silica undersaturated, sapphirine-bearing granulite (paragneiss) situated approximately 10 km from the RIC (Blereau et al., 2017) (Figure 1b).

Zircon (20–100  $\mu$ m) occurs throughout the sample in association with cordierite, biotite, orthopyroxene and spinel. Grain shapes vary from equant to elongate along the c-axis. The zircon grains contain bright CL response oscillatoryzoned cores (Figure 2b i, ii) as well as more diffuse 'ghost zoning' (Hoskin & Black, 2000) indicative of recrystallization (Figure 2b iii, iv). Some grains have uniform, presumed recrystallised areas with dark CL response that appear to truncate the zoning of the bright CL cores (Figure 2b i, ii). No monazite was found in this sample.

3.3 Osumilite–orthopyroxene–spinel migmatite (ROG13/2, 2 km)

This sample is from a migmatite situated approximately 2 km from the RIC (Figure 1b). The rock consists of melanosome containing osumilite, orthopyroxene, spinel, garnet, quartz and feldspar, and leucosome containing quartz, K-feldspar (perthite) and plagioclase. Osumilite occurs as large, irregular shaped, pale purple grains (>5 mm) that are colourless to pale pink in thin section, some containing inclusions of spinel/ magnetite and garnet (Figure 3a, b). Osumilite also occurs in fine-grained symplectites with quartz and cordierite. (Figure 3d, e). Orthopyroxene occurs in trails of (0.5-4 mm) grains aligned with the fabric and contains inclusions of quartz, spinel/ magnetite, ilmenite and biotite. Garnet (~0.2 mm) is present as relict inclusions within osumilite. Quartz occurs as large elongate grains (~4-6 mm) in the leucosome as well as smaller grains (~1 mm) in the melanosome. Cordierite occurs intergrown with K-feldspar, quartz and sometimes orthopyroxene, together with inclusions of opaques/spinel and phlogopite (Figure 3b, d). The symplectite of cordierite-K-feldspar-quartz  $(\pm \text{ orthopyroxene})$  appears to be retrograde after osumilite (Figure 3 b, d) (Bhattacharya & Kar, 2002; Ellis, Sheraton, England, & Dallwitz, 1980; Kelsey, 2008; Korhonen, Brown, Clark, & Bhattacharya, 2013). Small sheets (~0.1 mm) of late phlogopite occur in K-feldspar and next to



**Fig 2:** Representative zircon and monazite grains imaged using CL (zircon) and BSE imaging (monazite). Marked spots are LA–ICP–MS spots placed over SHRIMP spots, except for ROG13/10 (SHRIMP spots only). a- Zircons from ROG13/11, i, iv- Grains with bright CL response cores and dark uniform overgrowths. ii, iii- Recrystallised zircons with diffuse zoning. b- Zircons from ROG13/10, i- Bright CL response core with dark uniform recrystallised zircon. ii-iv-Recrystallised zircon with diffuse oscillatory zoning. c- Zircon from ROG13/2, i- Recrystallised oscillatory zoned core with dark overgrowth. ii, iii- oscillatory zoned inherited cores with dark recrystallised area. iv- Bright CL response sector zoned grain. v- Recrystallised grain with bright CL response overgrowth. d- Zircon from ROG14/5, i, iv- Sector zoned zircon. ii, iii- Recrystallised zircon with convoluted zoning. e- Zircon from ROG14/8, i, iii- Recrystallised zircon with dark overgrowths. ii, iv- recrystallised zircon with bright CL response regions. f- Monazite from ROG13/11, i-iv- uniform BSE response monazite. g- Monazite from ROG13/2, i-iii- uniform BSE response monazite. h- Monazite from ROG14/5, i, iv- Inclusion free monazite with limited variation in BSE response.



some of the opaque grains in cordierite.

Zircon grains in this sample are variable in size (50-200 µm) and shape and show complex internal structures in CL. Grains either contain oscillatory-zoned cores with moderate CL response (Figure 2c ii) or recrystallised cores with diffuse oscillatory-zoning (Fig 2c iii, v) that are truncated and surrounded by uniform overgrowths. One sector-zoned grain was also analysed (Figure



an osumilite-orthopyroxene-spinel migmatite. a- PPL photomicrograph of a large osumilite grain with inclusion of spinel/magnetite and garnet and osumilite intergrowth with quartz. b- PPL photomicrograph of the intergrowth of cordierite-K-feldspar-opaque replacing osumilite. c-XPL photomicrograph of twinning within a large osumilite grain. d- BSE image of osumilite intergrowth with quartz being replaced by cordierite-K-feldspar and in places by an intergrowth of cordierite-K-feldspar-orthopyroxene. e-BSE image of osumilite intergrown with quartz occurring next to orthopyroxene and quartz.

2c iv). Overgrowths show variable CL response from dark (Figure 2c, i) to bright (Figure 2c iii, v). A few grains of monazite (100-400 µm) were extracted from the sample for analysis also. These show no internal variation in BSE images (Figure 2g).

Using accessory minerals to unravel thermal histories

3.4 Garnet–sillimanite–cordierite–spinel migmatite (ROG14/5, at contact)

This sample is of a migmatitic garnet–sillimanite– cordierite–spinel metapelitic gneiss located at the contact of the RIC (Figure 1b). The sample consists of melanosome rich in garnet and cordierite together with small mm-scale leucosome (Blereau et al., 2017).

Zircon grains (60 - 200)μm) from this sample have multifaceted 'soccer ball' morphologies indicating metamorphic recrystallization (Vavra et al., 1996). Internally, they are either sector zoned (Figure 2d i, iv) or weakly zoned to uniform in their CL response (Figure 2d ii, iii). Monazite grains in this sample are similar in size (100-200 µm) to the zircon grains; many host sillimanite inclusions (Figure 2h i). A number of monazite grains show minor brightness variation in BSE images (Figure 2h i), others display no variation in BSE response (Figure 2h iii).

3.5 Garnet-bearing anorthosite (ROG14/8, at contact)

This sample was obtained from adjacent to ROG14/5 (Figure 1b) and is one of a series of garnet-bearing anorthosite sheets ( $\sim$ 30 cm to  $\sim$ 2 m long,  $\sim$ 5–10 cm wide) that intrude into the country rock (garnet–sillimanite–spinel– cordierite metapelitic gneiss) adjacent to the main RIC contact (Figure 4a). The anorthosite sheets are parallel to the foliation of the surrounding migmatite. The sample is dominated by equant, 1–2 mm subhedral plagioclase that shows minor sericitization (Figure 4b, c). Orthopyroxene

occurs in millimetre scale layers as subhedral to anhedral grains of varying size (1-8 mm) (Figure 4b, c). Garnet forms clusters of small, subhedral, inclusion-free grains (<1 mm) and larger euhedral grains (~1.5 mm) (Figure 4b). Minor phases are ilmenite (~0.5 mm), biotite (~1 mm) and quartz (1-2 mm).

Only zircon was analysed from this sample as there were no monazite grains large enough for analysis. The zircon grains (50–300  $\mu$ m) have oscillatory cores (Figure 2e i, ii, iv) with some cores showing more diffuse zoning with low CL response (Figure 2e iii), surrounded, and sometimes crosscut by sector-zoned to uniform regions with high CL response (Figure 2e iv). A few grains have overgrowths with low CL response (Figure 2e i, iii).

#### 4. ANALYTICAL METHODS

All sample preparation and analytical work was conducted using the facilities of the John de Laeter Centre, Curtin University, including the SelFRAG Electric Pulse Disaggregation (EPD) unit, Tescan Mira3 FESEM, SHRIMP II ion microprobe and GeoHistory Facility LA-ICP-MS.

#### 4.1 SHRIMP U-Pb geochronology

Monazite and zircon from sample ROG13/11 and zircon from sample ROG13/10 were extracted from polished thin sections for in situ analysis as 2 mm diameter pucks, using a coring piece on a Dremel drill. The pucks were cast in 25 mm diameter epoxy discs that were cleaned and gold-coated prior to SIMS analysis. In addition, monazite and zircon grain separates were obtained from all samples. Samples were disaggregated



**Fig 4:** Field photograph and photomicrographs of ROG14/8, a garnet-bearing anorthosite sample within a garnetcordierite-sillimanite-spinel migmatite. a- Field photograph of the garnet-bearing anorthosite sheet aligned with the foliation of the surrounding garnet-sillimanite-spinel migmatite, (after Blereau et al., 2017). b- PPL photomicrograph of coarse aggregates of orthopyroxene and garnet grains. c- XPL photomicrograph showing the plagioclase rich matrix.

using a SelFRAG EPD unit, except for ROG14/5 from which grains were released using traditional crushing methods. All separates were prepared via magnetic and heavy liquid separation. Selected grains were mounted in 25 mm diameter epoxy discs that were polished, cleaned and Au-coated prior to SIMS analysis. Grains were imaged using BSE imaging for monazite and CL imaging for zircon, with a Tescan Mira3 FESEM.

U–Pb isotopic data for zircon and monazite were collected using a SHRIMP II high mass-resolution SIMS ion microprobe. The mass-filtered  $O_2$ - primary beam settings were: for monazite 0.3 nA, 10 µm spot size, and for zircon 1.8 nA, 20 µm spot size. A 6-scan duty cycle was used, with mass resolution set at >5000 (de Laeter & Kennedy, 1998; Kennedy & de Laeter, 1994). NBS glass was used to calibrate the position of the <sup>204</sup>Pb peak.

Age data were processed using SQUID II (v2.5) and Isoplot (v3.75) (Ludwig, 2003, 2009). Corrections of measured isotopic ratios for common Pb were based on Stacey and Kramers (1975) model parameters. For the analysis of thin section mounts, standards were located in a separate mount that was gold coated at the same time. For zircon analyses, BR266 (Stern & Amelin, 2003) was used as the primary standard and Temora 2 (Black et al., 2003) or Plešovice (Sláma et al., 2008) as a secondary standard. Both secondary standards were within error of their reported ages for each analytical session Chapter 5 Using accessory minerals to unravel thermal histories

(Temora 2:  $413 \pm 4$ ,  $415 \pm 4$ ; Plešovice: 341 $\pm$  5). For monazite analyses, Curtin internal laboratory standard INDIA (509 Ma) was used as the primary standard (Korhonen, Saw, Clark, Brown, & Bhattacharya, 2011) and Curtin internal laboratory standard GM-3 (488 Ma) was used as a secondary standard (Secondary standard ages from each session: GM-3:  $485 \pm 6$ ,  $482 \pm 6$ , 485 $\pm$  6). <sup>206</sup>Pb/<sup>238</sup>U ages were used for monazite pooled ages. Corrections for excessive counts on <sup>206</sup>Pb and matrix effects related to Th content were conducted on monazite sessions (based on Fletcher, McNaughton, Davis, & Rasmussen, 2010), some spots were still discordant after correction and were excluded from the calculation of any pooled ages.

Uncertainties cited in the text and data tables for individual spot analyses include errors from counting statistics, errors from the common Pb correction and U–Pb calibration errors based on the reproducibility of U–Pb measurements of the primary standards and are cited at the  $1\sigma$  level. A minimum error of 1% was assigned to the external spot-to-spot error in Pb/U for the standard, reflecting the long-term performance of the SHRIMP. Error ellipses on Concordia diagrams are presented at the  $2\sigma$  level. Uncertainties of weighted mean ages are quoted at 95% confidence unless indicated.

4.2 REE analysis by LA-ICP-MS

Rare earth element (REE) and other trace element compositions of zircon, monazite and garnet were measured using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA– ICP–MS) on an ASI Resolution M-50 193-nm wavelength Ar-F excimer laser with an Agilent 7700 mass spectrometer. Analyses of monazite and zircon were made directly over selected SHRIMP spots. Garnets were analysed in thin section, and in one case from a grain mount (ROG13/2). A 33 um spot size was used for garnet, a 23 µm spot size for zircon and a 15 µm spot size for monazite. For garnet and zircon analysis, ablation length was 30 seconds with a repetition rate of 7 Hz. For monazite analysis, ablation length was with 20 seconds with a repetition rate of 4 Hz. NIST glasses (610, 612) (Pearce et al., 1997) were used as calibration reference materials. NIST 610 was used as the primary standard for garnet, while GJ1 (Liu et al., 2010) was used for zircon calibration and 44069 (Aleinikoff et al., 2006) was used for monazite calibration. Stoichiometric major element compositions were used for calibration of trace elements in zircon (Zr = 43.14 wt%) and garnet (Si = 18 wt%). For monazite analyses, Ce (230526 ppm) was used as an internal normalisation element (Buick et al., 2010; Taylor et al., 2014). Time-resolved data were reviewed following each session using the Iolite software package (Paton, Hellstrom, Paul, Woodhead, & Hergt, 2011; Paton et al., 2010), in order to detect and eliminate data affected by inclusions. All REE plots use the chondrite normalisation values of Anders and Grevesse (1989).

#### 5. RESULTS

5.1 Zircon U-Pb Geochronology

Data tables for zircon U–Pb analyses can be found in supplementary data Table S1. Concordia plots summarising the results are presented in Figure 5. Typical discordance is less than 10% for zircon,



**Fig 5:** Zircon U–Pb Concordia diagrams. Analyses are shaded for the textural location of the analysis: red – oscillatory zoned core, blue – recrystallised zircon, green – zircon rim, purple – sector zoned zircon. See online version for colour.

however in some cases ancient Pb-loss has resulted in some analyses falling along a discordia trend.

5.1.1 Garnet–sillimanite–cordierite migmatite (ROG13/11 – 30 km)

Fifteen U–Pb analyses were performed on zircon grains from ROG13/11 (Figure 5a). Six

oscillatory-zoned cores yielded concordant to slightly discordant ages ranging from 1917  $\pm$  6 (<sup>207</sup>Pb/<sup>206</sup>Pb) to 1140  $\pm$  43 Ma (<sup>206</sup>Pb/<sup>238</sup>U), with Th/U ratios of 0.77–0.23. Analyses of parts of grains showing diffuse, recrystallised oscillatory zoning yielded discordant <sup>206</sup>Pb/<sup>238</sup>U ages ranging from 1292  $\pm$  14 to 1126  $\pm$  11 Ma and younger concordant <sup>206</sup>Pb/<sup>238</sup>U ages ranging from 1098  $\pm$ 

| Chapter 5 | Using accessor | y minerals to unro | avel thermal histories |
|-----------|----------------|--------------------|------------------------|
|-----------|----------------|--------------------|------------------------|

14 to  $1009 \pm 15$  Ma (Th/U= 0.18–0.03). Three analyses of zircon rims form a concordant group with a weighted mean  ${}^{206}Pb/{}^{238}U$  age of  $957 \pm 15$  Ma (MSWD= 0.62, prob= 0.54, n=3; Th/U=0.11–0.03).

5.1.2 Sapphirine–orthopyroxene–cordierite– Spinel granulite (ROG13/10 – 10 km)

Twenty-seven U-Pb analyses were performed on zircon grains from ROG13/10 (Figure 5b). A group of seven concordant analyses of oscillatoryzoned cores yielded a weighted mean <sup>206</sup>Pb/<sup>238</sup>Pb age of  $1535 \pm 14$  (MSWD=1.7, prob=0.12, n=7; Th/U= 0.33-0.25). Zircon showing textures in CL indicative of recrystallization yielded a mixture of discordant and concordant data with 206Pb/238U ages ranging from  $1502 \pm 19$  to  $1133 \pm 14$  Ma with the largest range of Th/U ratios (Th/U=0.32-0.10). A number of additional oscillatory zoned zircon cores younger than the oldest recrystallised core vielded a mixture of discordant and concordant data with  ${}^{206}\text{Pb}/{}^{238}\text{U}$  ages ranging from  $1496 \pm 15$ to  $1304 \pm 25$  Ma with Th/U ratios of 0.40–0.21. Two uniform recrystallised domains yielded the youngest  ${}^{206}Pb/{}^{238}U$  ages of  $1076 \pm 12$  and  $1055 \pm$ 13 Ma, and also have the lowest Th/U ratios (Th/ U = 0.18 - 0.09).

5.1.3 Osumilite–orthopyroxene–spinel migmatite (ROG13/2 - 2 km)

Eleven U–Pb analyses were performed on zircon grains from ROG13/2 (Figure 5c). Four oscillatory-zoned cores yielded  $^{206}$ Pb/ $^{238}$ Pb ages ranging from 1574 ± 27 to 1113 ± 13 Ma (Th/U=0.43–0.12). Analyses from more recrystallised

parts of grains yielded an overlapping range of  $^{206}Pb/^{238}Pb$  ages from  $1476 \pm 19$  to  $1011 \pm 18$  Ma (Th/U=1.02–0.18). Three analyses of overgrowths (both bright and dark in CL) yielded a weighted mean  $^{206}Pb/^{238}U$  age of  $920 \pm 13$  Ma (MSWD=1.7, prob=0.18, n=3; Th/U= 1.08–0.54). The youngest  $^{206}Pb/^{238}U$  age,  $899 \pm 15$  Ma with a Th/U ratio of 2.79, was obtained from the only sector-zoned grain analysed.

5.1.4 Garnet–sillimanite–cordierite–spinel migmatite (ROG14/5 – at contact)

Nine U–Pb analyses were performed on zircon grains from ROG14/5 (Figure 5d). Three sector zoned zircons yielded  ${}^{206}Pb/{}^{238}U$  ages ranging from 1025 ± 15 to 950 ± 14 Ma with Th/U ratios of 0.09–0.03. Analyses of recrystallised zircon yielded concordant to slightly discordant  ${}^{206}Pb/{}^{238}U$  ages ranging from 996 ± 12 to 919 ± 18 Ma with a broader range of Th/U ratios of 0.14–0.02.

5.1.5 Garnet-bearing anorthosite (ROG14/8 - at contact)

Twenty-nine U–Pb analyses were performed on zircons from sample ROG14/8 (Figure 5e). The oldest  $^{206}Pb/^{238}U$  ages of  $1045 \pm 17$  and  $1036 \pm 11$  were obtained from two unzoned zircon cores with poor CL response (Th/U= 0.50–0.25). Recrystallised zircon with diffuse oscillatory zoning yielded a range of younger  $^{206}Pb/^{238}U$  ages from  $1017 \pm 11$  to  $926 \pm 12$  Ma with Th/U ratios of 0.51–0.09. Three overgrowths with poor CL response yielded the youngest  $^{206}Pb/^{238}U$  ages with a weighted mean of  $917 \pm 12$  Ma (MSWD=0.21, prob=0.81, n=3) and the highest Th/U ratios (Th/



Fig 6: Monazite U–Pb Concordia diagrams. Analyses are shaded for Th/U content. See online version for colour. U= 0.72-0.59).

#### 5.2 Monazite U-Pb Geochronology

Data tables for monazite U–Pb analyses can be found in supplementary data Table S2. Concordia plots summarising the results are presented in Figure 6. Typical discordance is less than 10% for monazite.

Using accessory minerals to unravel thermal histories

5.2.1 Garnet–sillimanite–cordierite migmatite (ROG13/11 – 30 km)

Eighteen U–Pb analyses were performed on monazite grains from this sample. The analyses overlap Concordia (Figure 6a) and show a range of  ${}^{206}Pb/{}^{238}U$  ages from  $1038 \pm 11$  to  $960 \pm 11$  Ma (Th/U = 40–1.6) with the twelve oldest analyses forming a cluster on Concordia (the remaining analyses spread along Concordia and have lower Th/U ratios) with a weighted mean  ${}^{206}Pb/{}^{238}U$  age of  $1028 \pm 7$  Ma (MSWD=0.37, prob=0.96, n=12).

5.2.2 Osumilite–orthopyroxene–spinel migmatite (ROG13/2 – 2 km)

Seven U–Pb analyses were performed on monazite grains from this sample. The analyses overlap Concordia (Figure 6b) and have  ${}^{206}$ Pb/ ${}^{238}$ U ages ranging from 1037 ± 11 to 983 ± 12 Ma (Th/U = 40–2.2).

5.2.3 Garnet–sillimanite–cordierite–spinel migmatite (ROG14/5 – at contact)

Eighteen U–Pb analyses were performed on monazite grains from this sample, each concordant to within error. <sup>206</sup>Pb/<sup>238</sup>U ages range from 990 ± 11 to 886 ± 11 Ma (Th/U = 88–10) (Figure 6c). Sillimanite inclusion-bearing cores (983 ± 11 to 931 ± 11) and inclusion-free monazite cores (990 ± 11 to 915 ± 11) show similar ranges of ages. Brighter BSE response recrystallised areas on inclusion-bearing (954 ± 11 to 886 ± 11) and absent (968 ± 11 to 895 ± 10) cores also show similar ranges of ages.



**Fig 7:** REE/Chondrite normalised plots for zircon and garnet. Zircon REE analyses are shaded for age, garnet analyses are shaded for analysed texture. See online version for colour. Zircon REE analyses –a-d. Garnet analyses from ROG13/11 -e: grt1 contains a sillimanite rich core, inclusion poor rims. Resorbed garnet is located next to cordierite, related to garnet break down and is the most enriched. Grt2 is located within the leucosome and is interpreted as peritectic with inclusion rich cores and inclusion poor rims. Garnet from ROG13/2 -f: grt1 was picked from a mineral separate. Grt2 is small garnet grain within osumilite. Garnet from ROG14/5 -g: grt1 are inclusion free porphyroblasts, grt2grt1 secondary garnet nucleating on primary garnet, grt2spl secondary garnet nucleating on spinel, grt2ilm secondary garnet nucleating on ilmenite. Garnet from ROG14/8 -h: grt1 is a large garnet porphyroblast. grt2 are small garnet grains.

#### Using accessory minerals to unravel thermal histories

#### 5.3 Rare Earth Elements

Chapter 5

REE and other trace elements were analysed from selected concordant zircon and monazite grains in all garnet-bearing samples. Texturally distinct generations of garnet (e.g. inclusion free rims, inclusion bearing cores) in thin section was also analysed for trace elements. Results can be found in supplementary data Tables S3–S6 respectively, and summarised on chondrite-normalised plots in Figures 7 and 8.

#### 5.3.1 Zircon

Garnet-sillimanite-cordierite migmatite (ROG13/11 - 30 km). Analyses of oscillatory zoned zircon cores show moderately positive middle-to-heavy REE (M-HREE) slopes with normalised (<sub>N</sub>) Yb/Gd (Yb<sub>N</sub>/Gd<sub>N</sub>) = 7.2-8.4 and an order of magnitude of range in the normalised HREE abundances (Lu<sub>N</sub> = 840-1708 (n=2) (Figure 7a). Analyses of recrystallised zircon display steep positive M-HREE slope also with greater variation than the cores with  $Yb_{N}/Gd_{N} =$ 5.1–12.4 and  $Lu_N = 486-2354$  (n=4). Both the cores and recrystallised zircon have a similar range of negative Eu anomalies with Eu/Eu\* (Eu/  $Eu^*=Eu_N/0.5^*(Sm_N + Gd_N))$  values of 0.06-0.3 and 0.07-0.3 respectively. A dark BSE response rim was analysed, and has a steep M-HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 122) as a result of having lower MREE concentrations ( $Gd_N = 38.1$ ) than the other analyses (Gd<sub>N</sub> = >76.8).

Osumilite-orthopyroxene-spinel migmatite(ROG13/2 - 2 km). Oscillatory zoned zircon cores $display positive M-HREE slope with Yb_N/Gd_N =$  6.9–16.4, with some scatter to the M–HREE (Gd<sub>N</sub> = 33-417;  $Lu_N = 1630-3589$  (n=4)) and a range of negative Eu anomalies (Eu/Eu\* = 0.03-0.2) (Figure 7b). Recrystallised zircon shows some variation, with one flat M-HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 1.6;  $Lu_N = 166$ ), and one steep slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 16.8;  $Lu_N = 2856$ ) but both analyses have similar negative Eu anomalies (Eu/Eu\* = 0.03-0.05). Two dark CL response rims (R13-2-4 and R13-2-10) were analysed with flat to shallow M-HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.7-3.4) and are depleted in HREE relative to the cores (Lu<sub>N</sub> = 522-128). Dark CL rims show a negative Eu anomaly with some values below detection (Eu/Eu\* = 0.04). One bright CL response rim (R13-2-7) yielded a moderate M-HREE slope ( $Yb_N/Gd_N = 5.5$ ), more enriched in HREE ( $Lu_N = 868$ ) than the dark rims with a negative Eu anomaly (Eu/Eu\* = 0.06). One bright CL response sector zoned grain (R13-2-8) was analysed yielding a moderate M-HREE slope with  $Yb_N/Gd_N = 4.2$  with similar HREE concentrations as the bright rim (Lu<sub>N</sub> = 938) and has the most prominent negative Eu anomaly of any of the analyses (Eu/Eu\* = 0.002).

*Garnet–sillimanite–cordierite–spinel migmatite* (*ROG14/5 – at contact*). Sector zoned zircon yielded slightly negatively sloped to flat M– HREE (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.4–0.8) (Figure 7c) with similar HREE concentrations (Lu<sub>N</sub> = 41.6–63.0, n=4) and yielded a negative Eu anomaly (Eu/Eu\* = 0.02) to Eu below detection limit. Recrystallised zircon analysis yielded similar M–HREE slopes (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.22–0.82) similar HREE concentrations (Lu<sub>N</sub> = 45.3–61.3, n=3) with two of the analyses (R114-5-1 and R114-5-2) showing positive Eu anomalies (Eu/Eu\* = 2.15–2.16) with

Using accessory minerals to unravel thermal histories

the remaining analysis displaying a negative Eu anomaly (R114-5-9;  $Eu/Eu^* = 0.01$ ).

Garnet-bearing anorthosite (ROG14/8 - at contact). Two uniform dark CL response recrystallised cores yielded consistent steep M-HREE slope  $(Yb_N/Gd_N = 14.8-15.6)$  limited scatter in the HREE (Lu<sub>N</sub> = 1296-2634, n=2) and similar negative Eu anomalies (Eu/Eu\* = 0.04–0.08) (Figure 7d). Recrystallised zircon with diffuse oscillatory zoning displayed moderate to steep M-HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 5.6-52.4) with almost half an order of magnitude of scatter to the HREE (Lu<sub>N</sub> = 971–4967, n=16) with a range of negative Eu anomalies (Eu/Eu\* = 0.02-0.1). One sector zoned core yielded the only flat M-HREE slope ( $Yb_N/Gd_N = 0.5$ ) with lower HREE concentrations ( $Lu_{N} = 60.1$ ) but a similar negative Eu anomaly (Eu/Eu\* = 0.03). Bright CL response, recrystallised zircon also yielded steep M-HREE slope with little variation ( $Yb_N/Gd_N = 21.3-29.3$ ) with less variation to HREE ( $Lu_N = 1498-2761$ , n=4) compared to the dark CL recrystallised zircon and prominent negative Eu anomalies (Eu/Eu\* = 0.03-0.09) to Eu below detection limit. Dark uniform CL response overgrowths show steep M-HREE slope  $(Yb_N/Gd_N = 17.2-76.4)$  with some scatter to the HREE ( $Lu_N = 1984-5066$ , n=3) with negative Eu anomalies (Eu/Eu\* = 0.03-0.04) to Eu below detection limit.

#### 5.3.2 Garnet

Garnet-sillimanite-cordieritemigmatite(ROG13/11-30 km). Nine analyses were conductedon a garnet porphyroblast (grt1) from within themelanosome, with sillimanite inclusion rich cores

and inclusion free rims. All grt1 analyses show a 'convex' pattern with a pronounced decrease in the HREE in the core  $(Yb_N/Gd_N = 0.12-2.1; Dy_N)$ = 306–911, n=3;  $Lu_N = 36-591$ , n=3) and a range of Y values (450-1000 ppm) (Figure 7e). The inclusion free rims show similar MREE values but have elevated HREE relative to cores (Yb<sub>N</sub>/  $Gd_N = 0.70 - 1.33$ ;  $Dy_N = 391 - 816$ ;  $Lu_N = 114 - 334$ (n=4)) as well as a smaller range of Y values (250-539 ppm). Both the core and rim have negative Eu anomalies with the rim being slightly less pronounced with Eu/Eu\* values of 0.005-0.02 and 0.009-0.02 respectively. Resorption texture associated with the formation of cordierite show increased HREE values (Lu<sub>N</sub> = 348-591, n=2), with flat to near flat M-HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.99-2.1) and negative Eu anomalies (Eu/Eu\* = 0.006-0.02) and the highest Y concentrations (958-1037 ppm).

Garnet within the leucosome (grt2) shows quartz inclusions in the core and an inclusion-free rim. The inclusion-rich core shows moderate M–HREE slopes (Yb<sub>N</sub>/Gd<sub>N</sub> = 3.9-4.6) with a small amount of spread to the M–HREE (Dy<sub>N</sub> = 153-267; Lu<sub>N</sub> = 377-679 (n=4)) and lower Y values (290–452 ppm) compared to the melanosome core. The inclusion-free rim shows a flat M–HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.9-1.2) with less spread to the HREE compared to the inclusion rich core (Lu<sub>N</sub> = 86.4-123, n=4). Both the core and rim have negative Eu anomalies (Eu/Eu\* values of 0.02 and 0.02–0.03 respectively) with the cores having higher Y values than the rims (Y = 290-452 ppm and 267-310 ppm respectively).

Osumilite-orthopyroxene-spinelmigmatite(ROG13/2 - 2 km). The only garnet present in thin

Using accessory minerals to unravel thermal histories

section occurred within osumilite (grt1). Three analyses on grt1 yielded a steep M–HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 23.1–23.7) with a slight enrichment from Ho to Tm with a slight depletion in Yb but overall enrichment in HREE (Lu<sub>N</sub> = 26296– 28231, n=3) (Figure 7f). All analyses yielded high Y values (Y = 11640–12100 ppm).

Chapter 5

Four analyses (3 core, 1 rim) were conducted on a whole garnet grain (grt2) as a mineral separate mounted in epoxy. REE values from this grain showed moderate M–HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 8.4–9.1) with flat HREE approximately an order of magnitude lower than the garnet included in osumilite. The rim of grt2 is more enriched in HREE and Y than the core (Lu<sub>N</sub> = 2914–3033 (n=3) and 5136 (n=1) respectively; Y = 7100 ppm and 4210–4380 ppm respectively). Both have negative Eu anomalies but the grt2 is more pronounced with Eu/Eu\* values of 0.005– 0.009 compared to 0.01–0.02 in grt1.

Garnet-sillimanite-cordierite-spinel migmatite (ROG14/5 - at contact). Four analyses were conducted on inclusion free primary garnet (grt1) with near flat H–MREE slopes  $(Yb_N/Gd_N = 0.9-$ 1.9) with almost half an order of magnitude of spread to the HREE ( $Lu_N = 96.3-445$ , n=2) and a pronounced Eu anomaly (Eu/Eu\*=0.01-0.04) with limited spread in Y (Y = 301-391 ppm) (Figure 7g). Secondary garnet (grt2) was also analysed on primary garnet (grt2<sub>grt1</sub>), around ilmenite (grt2<sub>ilm</sub>) and around spinel (grt2<sub>sp</sub>) (three analyses each). Grt2<sub>grt1</sub> showed similar M-HREE slope (Yb<sub>N</sub>/Gd<sub>N</sub> = 0.98-2.7) to grt1 but with a slight depletion in M-HREE (Lu<sub>N</sub> = 77.0–296, n=2) and Y (Y = 207– 275 ppm), and shows a negative Eu anomaly (Eu/  $Eu^* = 0.04-0.05$ ). Both  $grt2_{ilm}$  and  $grt2_{sp}$  shows

similar near flat M–HREE slopes  $(Yb_N/Gd_N = 1.1-1.5 \text{ and } 0.6-1.1 \text{ respectively})$  with garnet around spinel being the most depleted in M–HREE and Y  $(Lu_N = 32.5-64.2, n=3; Y = 95-205 \text{ ppm})$  followed by garnet around ilmenite  $(Lu_N = 54.7-125.1, n=3; Y = 76-161 \text{ ppm})$ . Both grt2<sub>ilm</sub> and grt2<sub>sp</sub> are depleted in M–HREE relative to grt2<sub>grt1</sub>.

Garnet-bearing anorthosite (ROG14/8 - at contact). Sample contains large subhedral (grt1), and small subhedral garnet (grt2). Eight analyses were conducted on grt1 that is surrounded by plagioclase. Grt1 cores show near flat M-HREE slope  $(Yb_N/Gd_N = 1.8-2.5)$  with limited scatter to the HREE (Lu<sub>N</sub> = 410–540, n=4) and Y (Y = 791-899 ppm) (Figure 7h). Grt1 rims show similar near flat M-HREE slope  $(Yb_N/Gd_N = 2.9 -$ 3.6) but with more scatter to the HREE (Lu<sub>N</sub> = 532–905, n=4) and higher Y than the cores (Y = 769-1134 ppm). Four analyses were conducted on grt2. Grt2 show steep M-HREE slopes (Yb<sub>N</sub>/  $Gd_{N} = 16.5 - 18.5$ ) compared to grt1 with similar HREE concentrations and limited scatter (Lu<sub>N</sub> = 3214-4148, n=4) but relative enrichment of Y concentrations (Y = 1940-2400 ppm).

#### 5.3.3 Monazite

Garnet-sillimanite-cordieritemigmatite(ROG13/11 - 30 km). Monazite grains from thissample show negative M-HREE slopes  $(Yb_N/Gd_N = 0.001-0.02)$  with an order of magnitude ofscatter to the HREE (Lu\_N = 36-580, n=16) (Figure8a). All analyses show negative Eu anomalieswith Eu/Eu\* values of 0.002-0.005 and Y valuesranging from 833-22210 ppm.



Fig 8: Monazite U–Pb Concordia diagrams. Analyses are shaded for Th/U content. See online version for colour.

Osumilite-orthopyroxene-spinel migmatite (ROG13/2 - 2 km). Monazite from this sample shows no internal textural variation. Negative M-HREE slopes are variable with no consistent group  $(Yb_N/Gd_N = 0.02-0.16)$ , and more than an order of magnitude of scatter to the HREE (Lu<sub>N</sub> = 453-123505, n=7) (Figure 8b). All analyses show negative Eu anomalies with one analysis with a less prominent negative anomaly (Eu/ Eu\* =0.002-0.006) with Y values ranging from 48400-12280 ppm.

Garnet-sillimanite-cordierite-spinel migmatite (ROG14/5 - at contact). Sillimanite inclusionbearing and inclusion-free, darker BSE response cores both show negative M-HREE slopes (Yb<sub>N</sub>/

 $Gd_{N} = 0.001 - 0.004$  and 0.001 - 0.02 respectively) with an order of magnitude of scatter to the HREE  $(Lu_{N} = 20-53 (n=3) \text{ and } 18-253 (n=6) \text{ respectively})$ and negative Eu anomalies (Eu/Eu\*=0.001-0.002 and 0.001-0.004 respectively) (Figure 8c). The inclusion-free cores have a slightly larger range of Y values than the inclusion bearing cores with values of 1709-5610 ppm and 1850-2428 ppm respectively. Brighter BSE response recrystallised areas on inclusion bearing and inclusion free cores both show negative M-HREE slopes (Yb<sub>N</sub>/Gd<sub>N</sub> =0.001-0.008 and 0.002-0.006 respectively) with an order of magnitude of scatter to the HREE ( $Lu_{N}$ ) = 23-84 (n=3) and 26-103 (n=5) respectively) and negative Eu anomalies (Eu/Eu\* = 0.004 and 0.001–0.004 respectively). Similar to the cores the recrystallised areas associated with inclusion-free cores (Y=1629-4780 ppm) show a larger range of Y values than the recrystallised areas of inclusionbearing monazite (Y=1404-3011 ppm). Analysis of sillimanite inclusion-bearing and inclusion-free monazite are similar in their M-HREE patterns, however the rims of both show slightly elevated HREE values.

#### 6. DISCUSSION

6.1 Metamorphic events in SW Norway

Having two temporally close metamorphic events, regional and contact, in the same geographical area provides some challenges for the determination of distinct time frames for each. Indeed they may be so intrinsically linked as to make some aspects indistinguishable. However, the sampling strategy employed in this study, with samples from varying distances from the RIC, enables some distinction to be made between samples far enough removed Using accessory minerals to unravel thermal histories

from the intrusion that they have been modified only by regional metamorphism (ROG13/11, 13/10), from those dominated by the extreme conditions close to the anorthosite intrusion (ROG14/5).

Chapter 5

The interval of regional metamorphism recorded by ROG13/11 falls between a cluster of zircon ages at ~1052 Ma, and a later cluster at ~955 Ma (Figure 9). The ~1052 Ma cluster comprises analyses of inherited zircon grains that have been recrystallised and fully isotopically reset at high–T (falling at the end of a discordant array), whilst the later cluster is defined by zircon rims resulting from the crystallisation of partial melt (based on rim textures combined with youngest ages) (Taylor et al., 2016). The zircon analyses falling within the 1052 Ma age peak show characteristically low Th/U ratios expected of grains formed or recrystallised during metamorphism (Harley et al., 2007; Hoskin & Black, 2000; Hoskin & Schaltegger, 2003; Schaltegger et al., 1999) related to the expulsion of Pb and Th during recrystallisation (Harley et al., 2007; Hoskin & Black, 2000). All of the analyses of metamorphic monazite in this sample fall within this time window also, with a major peak at ~1025 Ma. REE abundances in zircon from ROG13/11 show an order of magnitude more scatter of the M-HREE in recrystallised zircon when compared to oscillatory zoned cores. Garnet from ROG13/11 exhibits the most geochemical and textural variation of all the samples (Figure 7e); preserving M-HREE patterns indicative of growth during fluid absent partial melting (Grt1 core; Hermann & Rubatto, 2003), growth with higher concentrations of partial melt (Grt1 rim; Hermann & Rubatto, 2003), peritectic growth

(Grt2; Rubatto, 2002) and later resorption (Resorbed Grt1).

Few zircon analyses from ROG13/10 vielded metamorphic ages (as defined by ROG13/11), likely due to the anhydrous (residual), unreactive nature of the bulk composition, hindering additional zircon growth (e.g. Vavra, Gebauer, Schmid, & Compston, 1996). However, two uniform recrystallised areas yielded the youngest ages of  $1076 \pm 12$  and  $1055 \pm 13$  Ma. These fall at the end of a discordant array, within error of the oldest regional metamorphic ages recorded in ROG13/11. A pooled weighted mean age of the ~1050 Ma recrystallised zircon from ROG13/11 and the two recrystallised areas from ROG13/10 yielded a weighted mean <sup>206</sup>Pb/<sup>238</sup>U age of  $1059 \pm 12$  Ma (MSWD=0.98, prob=0.40,  $n=4, 2\sigma$ ), interpreted to date the recrystallisation of zircon during prograde heating (~>700°C). This age is within error of <sup>40</sup>Ar/<sup>39</sup>Ar osumilite ages interpreted to represent prograde regional growth (Blereau et al., In review). Prograde recrystallisation of zircon is further corroborated by the oldest monazite analyses from ROG13/11, with two grains yielding the same age of  $1038 \pm 11$ Ma, within error of the pooled age. Our  $1059 \pm 12$ Ma interpreted age of prograde heating predates previous onset estimates (~1035 Ma: Bingen et al., 2008) and previous estimates of peak regional metamorphism by ~25-55 Ma (c. 1006 Ma: Drüppel et al., 2013; c. 1034 Ma: Laurent et al., 2016; c. 1035 Ma: Möller et al., 2003). The interval for peak regional metamorphism indicated in this study, 1035–995 Ma, is based on the majority of monazite ages ( $1028 \pm 7$  Ma) and on the youngest recrystallised zircon (1009 ± 15 Ma) from ROG13/11. This interval lies within the range



of previous estimates for peak metamorphism (Drüppel et al., 2013; Laurent et al., 2016; Möller et al., 2003). The bulk of monazite growth is generally interpreted to occur immediately after the metamorphic peak during melt crystallisation (Clark et al., 2014; Kelsey, Clark, & Hand, 2008) but can also occur during prograde metamorphism (Johnson, Clark, Taylor, Santosh, & Collins, 2015; Taylor et al., 2016).

Zircon rims interpreted to be the result of final regional melt crystallisation are dated at  $951 \pm 14$  Ma based on the youngest analysis, after which no further zircon or monazite growth occurred in the samples that experienced regional metamorphism only. This age is within error of the c. 955 Ma age previously reported for zircon growth related to garnet breakdown during

#### Using accessory minerals to unravel thermal histories

**Fig 9:** Relative probability plots of all concordant U–Pb zircon and monazite SHRIMP analyses. Samples are arranged according to their relative distance from the pluton. Zircon and monazite data is given as 206Pb/238U ages. All inherited and recrystallised zircon that may be partially reset are shown as filled grey plots; distinguished from zircon (of a range of textures) recording ages related to the onset of regional metamorphism and younger. 1 – Svecofennian Orogeny, 2 – Gothian Orogeny, 3 – Sveconorwegian Orogeny, 4–Regional melt crystallisation. decompression (Tomkins et al., 2005).

Following regional metamorphism, high–*T* conditions were prolonged and accentuated by the intrusion of the RIC (Blereau et al., 2017). This is reflected in the monazite and zircon ages in samples ROG13/2, 14/5 and 14/8, that extend beyond the period of regional metamorphism defined above (~1050–950 Ma) to ages relating to the RIC (~932 Ma: Schärer et al., 1996) and younger.

Zircon and monazite data for ROG13/2 (2 km from the RIC) include analyses recording regional metamorphic ages between ~1030 and 970 Ma. However, in addition, three analyses of zircon rims record a weighted mean age of 920  $\pm$  13 Ma, within error of the emplacement of the RIC. The youngest zircon age from ROG13/2 is from a sector-zoned grain interpreted to have crystallised from melt, with an age of 899  $\pm$  15 Ma, within error of the previously mentioned population of rims.

The samples on the RIC contact lack any ages older than the time of onset of regional metamorphism (c. 1050 Ma). Zircon overgrowths from ROG14/8 yielded a weighted mean age of  $917 \pm 15$  Ma, within error of ages of  $928 \pm 9$  and  $919 \pm 8$  Ma obtained from recrystallised zircon in ROG14/5. Monazite from ROG14/5 yielded

#### Using accessory minerals to unravel thermal histories

the youngest ages of any sample, ranging from  $990 \pm 11$  to  $886 \pm 11$  Ma, as well as the most depleted HREE concentrations, with consistently flat M-HREE. With reduced distance from the RIC, M-HREE in zircon show reduced scatter (homogenisation) while M-HREE in garnet show simpler textural and geochemical relationships (e.g. core and rims only), compared to the distal samples that experienced only regional metamorphism. A single zircon analysis (a sector zoned core) from ROG14/8 shows the same, negative sloping M-HREE pattern (Figure 7d) as analyses from the metapelite sample ROG14/5 (Figure 7c). Flat M-HREE slopes were also recorded from the core and rim of a large garnet (grt1) within ROG14/8, with smaller garnet grains showing steep M-HREE slopes (grt2; Figure 7h). It is likely that both the zircon and grt1 (Figure 7h) in the anorthosite sheet have been entrained from the metapelite given the similarities in REE patterns and ages of both samples, with grt1 being interpreted as xenocrystic.

Based on the continuum of zircon and monazite ages in all samples from within the aureole (ROG13/2, 14/5 and 14/8) and the lack of evidence for new zircon growth at c. 955 Ma (only recrystallised zircon is present), the samples within the aureole show little evidence for significant cooling following regional metamorphism prior to the emplacement of the RIC (Blereau et al., 2017; Blereau et al., in review), and are thus interpreted to have experienced very slow cooling following regional metamorphism. This interpretation is preferred over a more cyclic evolution, which would require multiple reheating and re-melting events in already residual lithologies as a result of significant cooling in-between events in order to allow for the growth of the observed meltbearing mineral reaction microstructures in the aureole samples during contact metamorphism as well as the growth of new zircon. Whilst a more cyclic scenario cannot be entirely ruled out, it is far simpler for the region to have stayed above the solidus than cooling and re-melting residual lithologies repeatedly.

Based on the results presented here and by Blereau et al. (2017) and Blereau et al. (In review), high temperature conditions in the RVA Sector were prolonged; prograde regional conditions sufficient to modify zircon were reached at 1059  $\pm$  12 Ma with peak metamorphism (temperatures of ~850-950°C) reached at c. 1035-995 Ma. Final melt crystallisation within the most distal sample occurred at  $951 \pm 14$  Ma. Samples closer to the RIC show no clear melt crystallisation event at 951  $\pm$  14 Ma due to limited cooling until after the c. 930 Ma contact metamorphic event (~950°C at the RIC contact) (Figure 9). Final melt crystallisation in samples from within the aureole was delayed by c. 50 Myr (to c. 900 Ma based on youngest zircon and monazite ages, compared to  $951 \pm 14$  Ma) due to the contact event. Therefore, we conclude that high temperature conditions were sustained in the RVA Sector for ~100-160 Myr, (cf. Drüppel et al., 2013).

#### 6.2 Modification of REE during high-T conditions

Rare Earth Element abundances in zircon and monazite can be used to interpret growth conditions as well as potential modification by processes such as fluid-induced coupled dissolution-reprecipitation or recrystallisation (Taylor et al., 2016). In this study, monazite
*Chapter 5* Using accessory minerals to unravel thermal histories

textures were relatively simple, with no textural evidence for modification by fluids or partial melts. Rare Earth Elements also showed limited variations in concentration, defining no distinct geochemical trends associated with increasing temperatures from the RIC. Variations in REE between samples do not correlate with bulk compositional differences (13/11 and 14/5metapelitic, 13/2 high-Mg metapelite). This combination of features is interpreted to suggest monazite was growing throughout the hightemperature metamorphic evolution, potentially along both the prograde and retrograde path (cf. Johnson et al., 2015), providing information on the duration of high-T conditions. In this context the mechanism of monazite growth (dominantly neocrystallisation) is not able to record systematic changes in the REE related to the thermal history of the RVA. By contrast, there is little evidence for new growth of zircon in samples inferred to have been melt-bearing until crystallisation of the last vestiges of melt and none at all in highly residual samples. The chemistry and recorded metamorphic ages in zircon are therefore interpreted to be related to recrystallisation and diffusion over neocrystallisation. Recrystallised zircon, unlike monazite, shows a systematic variation in REE with increasing temperature in association with decreasing distance from the RIC.

Zircon and garnet both favour HREE and can influence each other during growth and during elevated temperatures when the geochemical system is open to diffusive processes. The partitioning relationships of REE between garnet and zircon have been quantified experimentally (Johnson et al., 2015; Rubatto & Hermann, 2007) and are readily applicable to neocrystallised zircon and to zircon undergoing coupled dissolution-reprecipitation, making it possible to interpret whether such zircon grew in a garnet-bearing or garnet-absent system. However, the same partitioning relationships may not be present in recrystallised zircon, even when garnet has been present during the entire metamorphic evolution, due to the sluggish nature of volume diffusion during recrystallisation that is also affected by grain size, temperature and duration at high temperature. The modification of REE is further complicated by different elements having different diffusivities (e.g. Dy < Pb < Yb) (Cherniak, Hanchar, & Watson, 1997; Cherniak & Watson, 2001; Johnson et al., 2015; Rubatto & Hermann, 2007), potentially causing mixed analyses due to incomplete modification of all REE within an analytical volume (Taylor et al., 2016). Whether the REE in recrystallised zircon will equilibrate fully to record abundance patterns similar to those of contemporary neocrystallised zircon depends on the conditions and timescale of metamorphism.

We have calculated theoretical diffusion profiles to model the changes in REE composition that would be expected during recrystallisation of an originally igneous zircon (with steep

$$C = Co \times \frac{1}{2} \left\{ erf\left[\frac{a+r}{2\sqrt{(Dt)}}\right] + erf\left[\frac{a-r}{2\sqrt{(Dt)}}\right] \right\} - \left\{ \left(\frac{1}{r}\right)\sqrt{\left(\frac{Dt}{\pi}\right)} \times \left(exp\left[\frac{-(a-r)^2}{4Dt}\right] - exp\left[\frac{-(a+r)^2}{4Dt}\right] \right) \right\}$$
(1)

| Chapter 5                                                |            | Using accessory minerals to unravel thermal histories |            |            |                         |                      |  |  |
|----------------------------------------------------------|------------|-------------------------------------------------------|------------|------------|-------------------------|----------------------|--|--|
| Element                                                  | IR (Å)     | $E_a$                                                 |            | $D_{0}$    | Table 1: Para           | meters used for      |  |  |
| La                                                       | 1.16       | 1298 ±172                                             |            | 9.76E+17   | the calculation         | n of diffusion       |  |  |
| Pr                                                       | 1.126      | $1100 \pm 112$                                        |            | 1.96E+13   | coefficients            | and diffusion        |  |  |
| Nd                                                       | 1.109      | $1017 \pm 88$                                         |            | 2.10E+11   | coefficients us         | ed in diffusion      |  |  |
| Sm                                                       | 1.079      | 897 ±57                                               |            | 2.88E+08   | modelling I             |                      |  |  |
| Eu                                                       | 1.066      | 856 ±47                                               |            | 2.91E+07   | modening. I             | K- Ionic Tadius,     |  |  |
| Gd                                                       | 1.053      | 820 ±41                                               |            | 4.12E+06   | $E_a$ - activation      | energy, $D_0$ - pre- |  |  |
| Tb                                                       | 1.04       | 791                                                   | ±36        | 8.19E+05   | exponential fa          | ictor. IR from       |  |  |
| Dy                                                       | 1.027      | 768 ±35                                               |            | 2.29E+05   | Shannon (1976)          | for coordination     |  |  |
| Но                                                       | 1.015      | 753 ±35                                               |            | 9.52E+04   | number: 8, valence: 3+. |                      |  |  |
| Er                                                       | 1.004      | 743                                                   | ±38        | 5.50E+04   |                         |                      |  |  |
| Tm                                                       | 0.994      | 739                                                   | ±42        | 4.13E+04   |                         |                      |  |  |
| Yb                                                       | 0.985      | 737 ±47                                               |            | 3.78E+04   |                         |                      |  |  |
| Lu                                                       | 0.977      | 739 ±52                                               |            | 4.01E+04   |                         |                      |  |  |
| Diffusion coefficients (m <sup>2</sup> s <sup>-1</sup> ) |            |                                                       |            |            |                         |                      |  |  |
| T (°C)                                                   | 850        | 900                                                   | 950        | 1000       | 1050                    | 1100                 |  |  |
| Gd                                                       | 2.1226E-30 | 7.4758E-29                                            | 1.9678E-27 | 4.0061E-26 | 6.4945E-25              | 8.5952E-24           |  |  |
| Tb                                                       | 6.0721E-30 | 1.9089E-28                                            | 4.5266E-27 | 8.3707E-26 | 1.2416E-24              | 1.5132E-23           |  |  |
| Dy                                                       | 1.6654E-29 | 4.7510E-28                                            | 1.0305E-26 | 1.7552E-25 | 2.4130E-24              | 2.7408E-23           |  |  |
| Но                                                       | 3.8870E-29 | 1.0301E-27                                            | 2.0880E-26 | 3.3415E-25 | 4.3363E-24              | 4.6691E-23           |  |  |
| Er                                                       | 8.2141E-29 | 2.0596E-27                                            | 3.9684E-26 | 6.0604E-25 | 7.5320E-24              | 7.7913E-23           |  |  |
| Tm                                                       | 1.5637E-28 | 3.7681E-27                                            | 7.0002E-26 | 1.0337E-24 | 1.2454E-23              | 1.2517E-22           |  |  |
| Yb                                                       | 2.7518E-28 | 6.4509E-27                                            | 1.1684E-25 | 1.6856E-24 | 1.9875E-23              | 1.9579E-22           |  |  |
| Lu                                                       | 4.3139E-28 | 9.9435E-27                                            | 1.7733E-25 | 2.5220E-24 | 2.9346E-23              | 2.8559E-22           |  |  |

M-HREE;  $C_o$ ) to a modified composition in equilibrium with garnet (flat M-HREE;  $C_{Ea}$ ), for different temperature conditions and timescales. A composition in equilibrium with garnet was used for the modified composition  $C_{Eq}$ , as all of the samples analysed for REE in this study have garnet present. ROG13/11 shows textural evidence for having contained garnet throughout the metamorphic evolution. Due to increased textural complexity the presence of garnet in ROG14/5 for the duration of the metamorphic evolution is less clear but cannot be ruled out, hence for the purposes of the modelling, all samples are assumed to have had garnet present during the entire metamorphic evolution. The light REE (La-Eu) were not considered due to large possible variations in their concentration and given that the process being modelled involves a

M-HREE rich phase (i.e. garnet). The modelling algorithm required simplification of the typically prismatic zircon grain shape to a spherical volume and the assumption that only volume diffusion was acting, with no additional influences on diffusion rates (e.g. radiation damage, fluids). A radius 'r' of 50 µm (representing a zircon grain 100 µm in the shortest dimension) was used for the spherical volume, within which, multiple ~20 µm SHRIMP spots could theoretically be placed. In the model, the diffusant element is initially distributed uniformly (with concentration  $C_{\alpha}$ ) within the 50 µm radius sphere and diffuses into an infinite volume, with concentration (C) calculated at time periods of interest (t = Myr, between 0.5– 200 Myr) at the radius of interest (a, where  $a \leq$ r). When  $C_{Eq}$  for a diffusing element is reached, the concentration of that element is buffered for



**Fig 10:** Modelled diffusion profiles of Dy and Yb in a theoretical zircon for different T-t scenarios. See online version for colour.

the remainder of the run. For these calculations, a corrected version of equation 3.8 of Crank (1975) was used (Equation 1): see below.

The formula was corrected from that published in Crank (1975) where both error functions (*erf*) had the same sign (+) within the numerator, resulting in unusual curve profiles.

Diffusion coefficients (D in m<sup>2</sup>s<sup>-1</sup>) for Dy and Yb for a range of temperatures (850– 1100°C) were calculated using the Arrhenius functions of Cherniak et al. (1997). Using the polynomial relationships between ionic radius (IR), activation energy ( $E_a$ ) and pre-exponential factor ( $D_b$ ) from Cherniak et al. (1997),  $E_a$  and



Fig 11: Diffusion-modified M–HREE compositions expected for a 20  $\mu$ m SHRIMP spot analysis on the edge of the modelled theoretical zircon. Compositions are given for set temperature or time periods. See online version for colour.

Using accessory minerals to unravel thermal histories

 $D_{a}$  values for the remaining M-HREE were extrapolated to calculate D values for all pertinent elements (Table 1). The uncertainty on  $E_a$  from the Arrhenius functions (Cherniak et al., 1997) generates a wide range of possible diffusion coefficients; for the purpose of this model we used the average diffusion coefficient of each element. Diffusion profiles were calculated in MATLAB using Equation 1 and are shown in Figure 10 for Dy and Yb. Diffusion profiles in Figure 10 show the strong control of temperature on diffusional modification, with increased propagation of the modification front from rim to core with increasing temperature. Time is also an important factor, with longer time periods at lower temperatures also causing perturbation to the trace elements at the edge of the grain. The differing amounts of modification between Dy and Yb highlight the increased diffusivity of HREE over MREE due to their smaller ionic radii.

The same suite of temperature conditions and time periods used to generate the diffusion profiles of Dy and Yb were used to calculate profiles for the remaining M-HREE (Gd-Lu). To simulate a 20 µm diameter SHRIMP spot placed on the edge of the theoretical zircon, an average REE composition was extracted from each set of profiles (Table S7). The calculated compositions were averaged from 1 µm segments along the diffusion profile that were then assigned to a section of the 20 µm circular spot area and normalised with respect to chondritic REE abundances using the values of Anders and Grevesse (1989). The results show that for temperatures of 850–900°C, even after extended time periods, little to no modification to the M-HREE occurs (Figure 11). This implies that REE within recrystallised zircon

from rocks experiencing such conditions will be largely representative of the original zircon composition as long as volume diffusion is the only process acting. Prolonged periods at 950°C have the potential to cause significant modification to the REE, but will not cause complete equilibration within the analytical volume. However, at much more extreme temperatures for relatively short periods of time it is possible to fully equilibrate zircon, with near flat to slightly curved patterns being produced. 1000°C, an important temperature in UHT metamorphism, appears to be a key threshold at which large amounts of modification becomes possible, albeit still requiring very long time periods at this temperature for near complete modification of all REE. By varying the placement of the analytical spot along the modelled profiles, the resultant theoretical spread of REE compositions generated by incomplete modification is shown (Figure 12a-d) (Table S7).

#### 6.3 Implications for the assembly of the RIC

The diffusion modelling presented above can help explain the systematic variations of the zircon REE profiles observed among the Rogaland samples. REE abundance patterns in recrystallised zircon are scattered with no evidence for equilibration with garnet REE across most of the studied region except in close proximity with the RIC, where all recrystallised zircon appears to be in equilibrium with garnet. Based on the thermodynamic and diffusion modelling of Blereau et al. (2017) and Blereau et al. (In review), sample ROG13/11, the most distant from the RIC, only experienced regional metamorphism at ~850–900°C for at least 100 Myr. The prediction of the REE diffusion



model for such conditions matches the observed limited modification and a degree of scatter in the M-HREE arising from variations in the original REE concentrations of the grains (Figure 12a-b, 7a). In contrast, ROG14/5 on the RIC contact potentially reached more extreme temperatures, given that the anorthosite intrusion temperature is estimated at ~1200°C (Westphal et al., 2003). In order to achieve the flat REE patterns in apparent equilibrium with garnet observed in ROG14/5 (Figure 7c), for average rates of diffusion, the sample would need to have reached either ~1100°C for 1 to 5 Myr or ~1050°C for >10 Myr (Figure 12c-d). The period of emplacement of the RIC has been previously constrained by geochronology to <10 Myr (Schärer et al., 1996), therefore the 1100°C scenario is more likely. Emplacement of the RIC in a single magmatic pulse would see most heat lost to the surrounding country rock without generating a significant temperature change at the contact, and certainly would not sustain elevated temperatures for >1 Myr (Cao, Kaus, & Paterson, 2016). The simplest geodynamic scenario that would generate significant heating at the contact for up to 5 Myr but also limited heating at greater distances is a rapid multiple-pulse intrusion (Cao et al., 2016) of the RIC.

#### *Using accessory minerals to unravel thermal histories*

**Fig 12:** Theoretical REE datasets from multiple spot analyses on the modelled zircon: a- 100 Myr at 850°C; b- 100 Myr at 900°C; c- 5 Myr at 1050°C; d- 1 Myr at 1100°C. Red circles represent 20  $\mu$ m SHRIMP spots. The grey lines represent  $C_o$  (steep) and  $C_{Eq}$  (flat) compositions, *r*- modelled radius (50  $\mu$ m). See online version for colour.

Previous 2-D thermal modelling by Westphal et al. (2003) undertaken to explain the distribution of high-T mineral isograds adjacent to the intrusion, suggested a two-pulse scenario; an initial pulse to raise the country rock temperatures followed by emplacement (3 Myr later) of a smaller hotter intrusion over 2 Myr. However, their modelling used a starting country rock temperature of 600°C; ~200°C colder than the minimum temperatures preceding contact metamorphism interpreted by recent studies (Blereau et al., In review; Blereau et al., 2017). An initial country rock temperature of  $\geq$  800°C would reduce the rate of heat loss, enabling the retention of extreme temperatures at the RIC contact, and reducing the required assembly time of the RIC to less than 5 Myr. However, the higher initial country rock temperature combined with Westphal's model would also increase the temperature effects in the surrounding country rocks to a degree that is not seen within the recrystallised zircon. Westphal's model required a large thermal aureole in order to generate the metamorphic isograds. Recent studies have shown that the osumilite (Blereau et al., In review) and orthopyroxene (Coint et al., 2015) isograds are not true contact isograds, but the location of appropriate bulk composition effected by regional metamorphism or the mix between several granulite facies events respectively. The intrusion of many small pulses over 1-5 Myr would generate a smaller but higher temperature aureole

| Chapter | 5 |  |
|---------|---|--|
| Chubier | 2 |  |

Using accessory minerals to unravel thermal histories

whilst also prolonging high-temperatures in the surrounding rocks with minimal modification.

**ACKNOWLEDGEMENTS** Financial support for this project was provided by an ARC DECRA fellowship (DE120103067) to CC.

## 7. CONCLUSIONS

Prograde heating temperatures to sufficient to recrystallise zircon was reached at  $1059 \pm 12$  Ma with peak metamorphism occurring at c. 1035-995 Ma and final melt crystallisation outside the aureole by  $951 \pm 14$  Ma.

Samples within the RIC aureole show a continuum of ages rather than two discrete age events, with no clear melt crystallisation event until after the emplacement of the RIC (c. 900 Ma). This is explained by prolonged residence at hightemperature conditions associated with a slow cooling rate following regional metamorphism.

Whilst largely considered as immobile, under appropriate high-grade conditions REE abundances in recrystallised zircon may be modified and possibly equilibrated to reflect the contemporary geochemical environment of the host rock rather than that of the growth conditions of the original zircon.

REE in recrystallised zircon can provide additional constraints on the T-t path experienced during metamorphism as long as volume diffusion is the main process acting.

Based on REE-in-zircon diffusion modelling, the emplacement of the RIC occurred rapidly as multiple magmatic pulses over 1 to 5 Myr, resulting in significantly elevated temperatures at the contact but minimal modification of rocks at a greater distance; retaining high temperatures for longer than the rocks far removed from the aureole.

- Aleinikoff, J. N., Schenck, W. S., Plank, M. O., Srogi, L., Fanning, C. M., Kamo, S. L., & Bosbyshell, H. (2006). Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geological Society of America Bulletin, 118(1-2), 39.
- Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoric and solar. Geochimica et Cosmochimica Acta, 53, 197-214.
- Andersen, T., Griffin, W. L., & Pearson, N. J. (2002). Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. Journal of Petrology, 43(9), 1725-1747.
- Bergh, S. G., Chattopadhya, A., Ravna, E. K., Corfu, F., Kullerud, K., Swaan, K. B., . . . Holdsworth, R.
  E. (2012). Was the Precambrian basement of Western Troms and Lofoten-Vesterålen in northern Norway linked to the Lewisian of Scotland? A comparison of crustal components, tectonic evolution and amalgamation history: INTECH Open Access Publisher.
- Bhattacharya, S., & Kar, R. (2002). High-temperature dehydration melting and decompressive P–T path in a granulite complex from the Eastern Ghats, India. Contributions to Mineralogy and Petrology, 143(2), 175-191.
- Bingen, B., Nordgulen, Ø., & Viola, G. (2008). A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology, 88, 43-72.
- Bingen, B., & Solli, A. (2009). Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltic: synopsis for detrital zircon provenance studies. Norwegian Journal of Geology, 89, 267-290.
- Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korscha, R. J., & Foudoulis, C. (2003). TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200, 155-170.
- Blereau, E., Clark, C., Jourdan, F., Johnson, T. E., Taylor, R. J. M., Kinny, P. D., . . . Eroglu, E. (In review). Constraining the timing of prograde metamorphism in long-lived hot orogens.

Using accessory minerals to unravel thermal histories

- Blereau, E., Johnson, T. E., Clark, C., Taylor, R. J. M., Kinny, P. D., & Hand, M. (2017). Reappraising the P-T evolution of the Rogaland-Vest Agder Sector, southwestern Norway. Geoscience Frontiers, 8(1), 1–14.
- Bogaerts, M., Scaillet, B., Liégeois, J.-P., & Vander Auwera, J. (2003). Petrology and geochemistry of the Lyngdal granodiorite (Southern Norway) and the role of fractional crystallization in the genesis of Proterozoic ferro-potassic A-type granites. Precambrian Research, 124, 149-184.
- Bolle, O., Diot, H., Liégeois, J.-P., & Auwera, J. V. (2010). The Farsund intrusion (SW Norway): a marker of late-Sveconorwegian (Grenvillian) tectonism emplaced along a newly defined major shear zone. Journal of Structural Geology, 32, 1500-1518.
- Buick, I. S., Clark, C., Rubatto, D., Hermann, J., Pandit, M., & Hand, M. (2010). Constraints on the Proterozoic evolution of the Aravalli–Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos, 120, 511-528.
- Cao, W., Kaus, B. J. P., & Paterson, S. (2016). Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations. Tectonics, 35(6), 1575-1594.
- Cherniak, D. J., Hanchar, J. M., & Watson, E. B. (1997). Rare-earth diffusion in zircon. Chemical Geology, 134(4), 289-301.
- Cherniak, D. J., & Watson, E. B. (2001). Pb diffusion in zircon. Chemical Geology, 172(1-2), 5-24.
- Cherniak, D. J., & Watson, E. B. (2003). Diffusion in zircon. Reviews in mineralogy and geochemistry, 53(1), 113-143.
- Clark, C., Healy, D., Johnson, T., Collins, A. S., Taylor, R., Santosh, M., & Timms, N. E. (2015). Hot orogens and supercontinent amalgamation: A Gondwanan example from southern India. Gondwana Research, 28(4), 1310-1328.
- Clark, C., Kirkland, C. L., Spaggiari, C. V., Oorschot, C., Wingate, M. T. D., & Taylor, R. J. (2014). Proterozoic granulite formation driven by mafic magmatism: An example from the Fraser Range Metamorphics, Western Australia. Precambrian Research, 240, 1-21.

Chapter 5 Using accessory minerals to unravel thermal histories

Coint, N., Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., & Sørensen, B. E. (2015). The Late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: Relationships between magmatism and metamorphism and implications for Sveconorwegian orogenesis. Precambrian Research, 265, 57-77.

Crank, J. (1975). The Mathematics of Diffusion: 2d Ed.: Oxford University Press.

- de Laeter, J. R., & Kennedy, A. K. (1998). A double focussing mass spectrometer for geochronology. International Journal of Mass Spectrometry, 178, 43-50.
- Drüppel, K., Elsäßer, L., Brandt, S., & Gerdes, A. (2013). Sveconorwegian Mid-crustal Ultrahightemperature Metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS Geochronology and Pseudosections of Sapphrine Granulites and Associated Paragneisses. Journal of Petrology, 54(2), 305-350.
- Ellis, D. J., Sheraton, J. W., England, R. N., & Dallwitz, W. B. (1980). Osumilite-sapphirine-quartz granulites from Enderby Land Antarctica - mineral assemblages and reactions. Contributions to Mineralogy and Petrology, 72, 123-143.
- Fletcher, I. R., McNaughton, N. J., Davis, W. J., & Rasmussen, B. (2010). Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite. Chemical Geology, 270, 31-44.
- Halpin, J. A., Daczko, N. R., Milan, L. A., & Clarke, G. L. (2012). Decoding near-concordant U– Pb zircon ages spanning several hundred million years: recrystallisation, metamictisation or diffusion? Contrib Mineral Petrol, 163(1), 67-85.
- Harley, S. L., Kelly, N. M., & Möller, A. (2007). Zircon behaviour and the thermal histories of mountain chains. Elements, 3, 25-30.
- Hermann, J., & Rubatto, D. (2003). Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology, 21, 833-852.
- Hoskin, P. W. O., & Black, L. P. (2000). Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 423-439.

Using accessory minerals to unravel thermal histories

- Hoskin, P. W. O., & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53(1), 27–62.
- Johnson, T., Clark, C., Taylor, R., Santosh, M., & Collins, A. S. (2015). Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India. Geoscience Frontiers, 6(3), 373-387.
- Kelly, N. M., & Harley, S. L. (2005). An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antartica. Contributions to Mineralogy and Petrology, 149, 57-84.
- Kelsey, D. E. (2008). On ultrahigh-temperature crustal metamorphism. Gondwana Research, 13, 1-29.
- Kelsey, D. E., Clark, C., & Hand, M. (2008). Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology, 26, 199-212.
- Kennedy, A. K., & de Laeter, J. R. (1994). The performance characteristics of the WA SHRIMP II ion microprobe. US Geological survey circular, 1107, 166.
- Korhonen, F. J., Brown, M., Clark, C., & Bhattacharya, S. (2013). Osumilite-melt interactions in the ultrahigh temperatures granulites: phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats Provincee, India. Journal of Metamorphic Geology, 31, 881-907.
- Korhonen, F. J., Saw, A. K., Clark, C., Brown, M., & Bhattacharya, S. (2011). New constraints on UHT metamorphism in the Eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology. Gondwana Research, 20, 764-781.
- Laurent, A. T., Seydoux-Guillaume, A.-M., Duchene, S., Bingen, B., Bosse, V., & Datas, L. (2016). Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts. Contributions to Mineralogy and Petrology, 171(11), 94.
- Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., & Chen, H. (2010). Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15), 1535-1546.

Using accessory minerals to unravel thermal histories

Ludwig, K. R. (2003). Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 4, 70.

Chapter 5

- Ludwig, K. R. (2009). SQUID II: A user's manual. Berkeley Geochronological Center Special Publication, 5, 110.
- Möller, A., O'Brien, P. J., Kennedy, A., & Kröner, A. (2003). Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(From: Vance, D., Müller, W., & Villa, I. M. (eds) 2003. Geochronology: Linking the Isotopic Record with Petrology and Textures.), 65-81.
- Pasteels, P., Demaiffe, D., & Michot, J. (1979). U–Pb and Rb–Sr geochronology of the eastern part of the south Rogaland igneous complex, southern Norway. Lithos, 12, 199-208.
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508-2518.
- Paton, C., Woodhead, J., Hellstrom, J., Hergt, J., Greig, A., & Maas, R. (2010). Improved laser ablation U–Pb zircon and geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11, 1-36.
- Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., & Chenery, S. P. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, 21, 115-144.
- Roberts, N. M. W., & Slagstad, T. (2015). Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86–0.9 Ga accretionary orogeny in southwest Fennoscandia. International Geology Review, 57(11-12), 1582-1606.
- Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184, 123-138.
- Rubatto, D., & Hermann, J. (2007). Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241, 38-61.

Using accessory minerals to unravel thermal histories

- Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C., Schulmann, K., & Gebauer, D. (1999). Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminesecence and microchemical evidence. Contributions to Mineralogy and Petrology, 134, 186-201.
- Schärer, U., Wilmart, E., & Duchesne, J-C. (1996). The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway. Earth and Planetary Science Letters, 139, 335-350.
- Shannon, R. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767.
- Slagstad, T., Roberts, N. M. W., & Kulakov, E. (2017). Linking orogenesis across a supercontinent; the Grenvillian and Sveconorwegian margins on Rodinia. Gondwana Research, 44, 109-115.
- Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., & Schiellerup, H. (2013). A non-collisional, accretionary Sveconorwegian orogen. Terra Nova, 25, 30-37.
- Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., . . . Whitehouse, M. J. (2008). Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis'. Chemical Geology, 249, 1–35.
- Spencer, C. J., Roberts, N. M. W., Cawood, P. A., Hawkesworth, C. J., Prave, A. R., Antonini, A. S. M., . . . EIMF. (2014). Intermontane basins and bimodal volcanism at the onset of the Sveconorwegian Orogeny, southern Norway. Precambrian Research, 252, 107-118.
- Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a twostage model. Earth and Planetary Science Letters, 26, 207-221.
- Stern, R. S., & Amelin, Y. (2003). Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chemical Geology, 197, 111-142.
- Taylor, R., Clark, C., Fitzsimons, I. C. W., Santosh, M., Hand, M., Evans, N., & McDonald, B. (2014). Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India. Contrib Mineral Petrol, 168(2), 1-17.

Chapter 5 Using accessory minerals to unravel thermal histories

Taylor, R., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., & Kelly, N. M. (2015). Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes. Journal of Metamorphic Geology, 33, 231–248.

- Taylor, R. J. M., Kirkland, C. L., & Clark, C. (2016). Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos, 264, 239-257.
- Tomkins, H. S., Williams, I. S., & Ellis, D. J. (2005). In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. Journal of Metamorphic Geology, 23, 201-215.
- Vander Auwera, J., Bolle, O., Bingen, B., Liégeois, J.-P., Bogaerts, M., Duchesne, J.-C., . . . Longhi, J. (2011). Sveconorwegian massif-type anorthosites and related granitoids result from postcollisional melting of a continental arc root. Earth-Science Reviews, 107, 375-397.
- Vavra, G., Gebauer, D., Schmid, R., & Compston, W. (1996). Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 122, 337-358.
- Verschure, R. H., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Maier, W. D., Priem, H. N. A., & Verdurmen, E. A. T. (1980). On the thermal stability of Rb–Sr and K–Ar biotite systems: evidence from coexisting Sveconorwegian (ca 870 Ma) and Caledonian (ca 400 Ma) biotites in SW Norway. Contributions to Mineralogy and Petrology, 74, 245-252.
- Westphal, M., Schumacher, J. C., & Boschert, S. (2003). High-Temperature Metamorphism and the Role of Magmatic Heat Sources at the Rogaland Anorthosite Complex in Southwestern Norway. Journal of Petrology, 44(6), 1145-1162.

## Supplementary material: See Appendix E

Conclusions and future research directions

Chapter 6

# CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

## Conclusions and future research directions

This thesis endeavoured to investigate and constrain the effects of metamorphic, melt and fluid processes in the lower crust through the application of a range of analytical techniques in a petrochronological approach. The chapters in this thesis investigated two high-grade terranes as case studies, with the aim of providing new and additional constraints on the duration and conditions of metamorphism, evaluate previous interpretations, whilst studying the effects of prolonged high temperatures and lower crustal processes on common geochronometer minerals zircon and monazite. The following discussion summarises the state of knowledge in regard to the key outcomes of this study in terms of the aims defined in the introduction. This chapter also discusses potential areas for future research.

# 1. TIMING, CONDITIONS AND CONTROLLING FACTORS ON HIGH-T METAMORPHIC PROCESSES IN SOUTHERN INDIA AND SOUTHWESTERN NORWAY

1.1 S India (Chapter 2)

Kakkod was a previously unstudied incipient charnockite locality that provided an opportunity in this thesis to investigate the charnockite formation process and assess the scale over which this process acted (localised or regional), whilst also providing new geochronological and P-Tconstraints. The P-T conditions of the Trivandrum Block (TB) as well as the mechanism through which incipient charnockites form (a purely fluid related process or a metamorphic process) have both been highly debated for many years. SHRIMP U-Pb dating of zircon and monazite constrained the onset of high-T conditions to ca590 Ma with the onset of melt crystallisation following peak metamorphism at ca 540 Ma, with high temperatures sustained for ~50 Myrs. The majority of zircon growth was associated with melt crystallisation, forming zircon rims between ca 540-510 Ma. Zircon rims older than 540 Ma (up to ca 590 Ma) were also analysed but were less prevalent. These ages are consistent with previous ages of metamorphism within the TB. A later fluid event was dated using monazite between ca 525-490 Ma, causing perturbation of existing monazite through Pb loss within the regions undergoing coupled dissolutionreprecipitation. From the presence of fluid related monazite textures in each rock type the fluid event was interpreted to be pervasive through the whole outcrop, similar to the nearby charnockite locality Kottavattom (Taylor et al., 2014). The closeness in age between melt crystallisation and the fluid event is interpreted to suggest that the fluid influx was linked to cooling of the local melt system. Kakkod also provided a unique opportunity to constrain the P-T conditions of charnockite formation as well as providing additional constraints on metamorphic conditions of the TB due to the fact that all three main rock types found in the TB (garnet-biotite gneiss, incipient charnockite and metapelite) were present. Using the latest thermodynamic dataset ('ds62' released early 2014), metamorphic forward modelling of the three rock types yielded consistent peak metamorphic conditions of 830-925°C and 6-9 kbar. Modelling and dating of these rocks showed that incipient charnockite formation (i.e. the patchy appearance of orthopyroxene within an originally

#### Conclusions and future research directions

orthopyroxene-free gneiss) could occur as part of the metamorphic evolution rather than being an exclusively fluid related process. Based on mineral textures and phase equilibria, orthopyroxene could have grown during peak metamorphism and was retrogressed by the later fluid event recorded by monazite. However, our study could not completely rule out previous interpretations at this point (i.e. orthopyroxene grew from the later fluid), with further investigations required into the control of local variations of bulk composition on the growth of orthopyroxene. If the growth of orthopyroxene is indeed a peak metamorphic process, based on the fluid source and the absence of fluid modification to zircon that was recorded at Kottavattom (Taylor et al., 2014), the formation of the characteristic patchy appearance of incipient charnockites likely occurred on a localised scale rather than as a widespread fluid event as previously postulated.

#### 1.2 SW Norway (Chapter 3–5)

The Rogaland–Vest Agder Sector (RVA) in SW Norway had two contrasting P-T evolution from previous studies: (1) a polymetamorphic evolution (Möller et al., 2003; Tomkins et al., 2005) and (2) a singular P-T evolution (Drüppel et al., 2013), with the emplacement of the Rogaland Igneous Complex (RIC) having a relationship to the generation of high temperatures in the former evolution but not the latter. This thesis aimed to re-evaluate the timing and conditions of metamorphism in Rogaland to discern which P-Tevolution is most appropriate and to determine if the emplacement of the RIC was a controlling factor or a product of metamorphism. Both of these aims were assessed by using a transect of samples at different distances from the RIC. The most removed sample (~30 km from the RIC) experienced regional metamorphism along singular clockwise P-T path, peaking at 850-950°C and 7-8 kbar, followed by decompression and slow cooling (Chapter 3). Rocks less than and up to 10 km from the RIC experienced similar regional peak conditions but also experienced a secondary event up to ~950°C and 3-6 kbar. No significant cooling was interpreted in between the two events, with cooling occuring after the second event based on the presence of secondary melt related microstructures within residual samples (Chapter 3). The second event is interpreted to be a contact metamorphic event tied to the emplacement of the RIC based on the spatial distribution of the second event, confirming a polymetamorphic evolution for the RIC.

Osumilite provided а potential opportunity to directly link age data to phase equilibria by being potentially datable using <sup>40</sup>Ar/<sup>39</sup>Ar (containing ~4wt% potassium) and by having quantified thermodynamic models for its stability in P-T space. This kind of direct connection cannot be made with zircon and monazite. Osumilite also had the added appeal as a mineral stable in high temperature terranes to potentially retain age information in relation to high temperatures, something that is very difficult to do with most thermochronometers. With the exception of pyroxene ( $T_c$  of >700°C), most argon analyses relate to cooling through temperatures below granulite facies due to low closure temperatures. Phase equilibria modelling was conducted on the osumilite samples and yielded comparable conditions to previous modelling,

#### Conclusions and future research directions

but the modelling of the osumilite sample is only broadly consistent with modelling in Chapter 3 as osumilite cannot be modelled in the current thermodynamic data set ('ds62', only available in 'ds55' which was used in Chapter 4). The P-T conditions of both metamorphic events were further refined in Chapter 4 through diffusion modelling using the 40Ar/39Ar systematics of osumilite ( $T_a \sim 770^{\circ}$ C for 175 µm grain radius and a cooling rate of 10°C/Myr). In order to preserve the recorded age populations, metamorphic temperatures must not have exceeded ~900°C within rocks ~2 km from the RIC (for both regional and contact metamorphism), indicating conditions reached the lower-T end of the earlier mentioned phase equilibria estimates (Chapter 4).

Diffusion modelling of zircon in Chapter 5 showed that rocks at the contact of the RIC experienced 1100°C for between 1-5 Myr in order to sufficiently modify REE in zircon to achieve equilibrium. In order to achieve and maintain such conditions, this T-t scenario requires a rapid multiple pulse emplacement model for the RIC (Chapter 5), differing from previous two pulse emplacement models (Westphal et al., 2003). The discontinuity in temperature between phase equilibria and diffusion modelling (~950°C compared to 1100°C from diffusion modelling) is potentially a product of the inability to model osumilite in 'ds6' (ROG14/5 contains intergrowths of cordierite + K-feldspar that could be formed after replacing osumilite), the lack of minor elements in mineral models (in particular Zn in spinel, which is highly abundant in ROG13/10 and to a lesser extent in the other contact metamorphosed samples) and the simple nature of the diffusion model.

A range of different ages for peak metamorphism have been reported from previous studies (~1035 Ma: Möller et al., 2003; Tomkins et al., 2005; Laurent et al., 2016; or ~1000 Ma: (Drüppel et al., 2013) with limited constraints on prograde heating. Only the emplacement age of the RIC at ca 930 Ma is widely accepted. In Chapter 4, using the <sup>40</sup>Ar/<sup>39</sup>Ar method, osumilite was successfully dated using single grain aliquots from a mineral separate. Picking grain fragments from a mineral separate is typical for <sup>40</sup>Ar/<sup>39</sup>Ar analysis, however, this was conducted before the true grain size of osumilite was realised: due to its colourless nature the grain size of osumilite was not apparent until TIMA maps were conducted, resulting in the identification of very large grains (at least a 1 cm in diameter). The very large grain size allowed for the preservation of older ages (ca 1070-1050 Ma) within the core and the youngest ages at the edge of the grain as well as in later osumilite growth around garnet (ca 920-880 Ma). By using a mineral separate, none of the analysed grain fragments had any context, so future osumilite studies should, where able, use micro-drilling approaches to generate textural context. The oldest <sup>40</sup>Ar/<sup>39</sup>Ar ages are interpreted to relate to prograde heating with the growth of large osumilite grains at ca 1070-1050 Ma (Chapter 4), ages that are also seen in zircon marking the end of a discordant resetting trend associated with recrystallisation within distal regionally metamorphosed samples (Chapter 5). Peak regional metamorphism is interpreted based on monazite and zircon to fall between ca 1035-995 Ma, between previous estimates, with final regional melt crystallisation at  $951 \pm 14$  Ma (Chapter 5). Samples closer to the RIC did not experience this melt crystallisation

Conclusions and future research directions

event, containing zircon and monazite recording ages younger than *ca* 950 Ma, with no melt crystallisation (i.e. neocrystallisation) till 30 Myr after the emplacement of the RIC at *ca* 900 Ma. The youngest osumilite ages are interpreted to relate to the edge of the large grains as well later osumilite growth around garnet during contact metamorphism (*ca* 920–880 Ma). This new geochronology extended previous estimates of the time-scale of high-*T* metamorphism in SW Norway to at least 100 Myr to ~150 Myr.

# 2. TECTONIC IMPLICATIONS FOR SW NORWAY

Two tectonic models have been previously proposed for SW Norway and more broadly the Sveconorwegian Belt as a whole. In Chapter 3, based on an assessment of current literature, the earlier continent-continent collisional model proposed by Bingen et al. (2008) could not satisfactorily explain the metamorphic and magmatic evolution of the Sveconorwegian Belt, based on features such as the presence subduction related magmatic suites postdating proposed subduction cessation, as well as contemporaneous and later arc-related features. The accretionary model suggested by Slagstad et al. (2013) and developed further by Coint et al. (2015) and Roberts and Slagstad (2015), permits crustal thickening sufficient to generate the recorded metamorphic conditions (3-8 kbar) whilst explaining the distribution of magmatic suites and metamorphic events as well as the progressive younging of terranes from east to west. This model is more consistent with the P-T results of Chapter 3 as well as the geochronological and geodynamic results of Chapters 4 and 5. Whilst

diffusion modelling in **Chapter 5** showed that the RIC was assembled rapidly as a series of multiple pulses, the exact mechanism to generate the anorthosite magmas remains unclear. Increased understanding on the generation of anorthositic melts and the required tectonic settings may provide additional insight into the tectonic setting of the Sveconorwegian Belt.

# 3. BEHAVIOUR OF TRADITIONAL GEOCHRONOMETERS DURING HIGH-T CONDITIONS

3.1 S India (Chapter 2)

Zircon from Kakkod showed protracted growth during high-T conditions, recorded as zircon overgrowths with a range of ages, but showed no textural features related to fluid influx, unlike the nearby charnockite locality Kottavattom (Taylor et al., 2014). Zircon at Kakkod was controlled by the presence of melt, permitting neocrystallisation over recrystallisation, which dominates in melt absent conditions. Due to their formational relationship, zircon showed no effects of bulk compositional variation between the garnetbiotite gneiss and the incipient charnockite, with both lithologies showing zircon overgrowths by retaining melt, seen in outcrop as numerous largescale leucogranites and small-scale leucosomes. Zircon growth in the metapelite was limited and all grains showed recrystallisation as a result of a more residual composition, with the metapelite displaying a smaller amount of melt in outcrop compared to the other lithologies. Monazite at Kakkod, like Kottavattom, best records the fluid event, containing coupled dissolutionreprecipitation textures in connection with the

#### Conclusions and future research directions

youngest monazite ages in all lithologies. As mentioned above the fluid source is interpreted to be locally sourced from the crystallisation of the local melt system, supported by the lack of fluid modification of zircon at Kakkod, indicating a different fluid composition to that experienced by Kottavattom (Taylor et al., 2014). The proportion or activity of fluid may also be deduced from monazite. Monazite from within the charnockite show increased amounts of modification as well as the youngest ages; potentially indicating a larger volume of fluid or the fluid was more active in the rock evolution, either interpretation is plausible as the charnockite shows the most alteration.

#### 3.2 SW Norway (Chapter 5)

The conditions experienced by zircon and monazite within the Rogaland samples are more highly varied as a number of different bulk compositions were used, with different levels of partial melting/melt extraction, variable temperature for the contact metamorphosed samples, as well as all samples being very anhydrous. Zircon was present within all samples and was mainly modified through recrystallisation due to the extreme temperatures and anhydrous nature of the samples. All samples bar one saw new zircon growth in relation to crystallisation of melt, with the most residual sample (ROG13/10) showing only recrystallisation of zircon. The effect of variable temperature during contact metamorphism on the recorded age range is highlighted by ROG13/10 and ROG14/8, both of which contained only zircon but are located at different distances from the RIC (10 km and at the contact respectively). As a consequence

of experiencing more extreme temperatures during contact metamorphism, a larger range of zircon ages was recorded in ROG14/8 as a result of increased diffusional modification during recrystallisation. Similar distributions of zircon ages were also recorded in the monazite-bearing contact sample ROG14/5. Neocrystallisation as zircon overgrowths only occurred during the samples respective melt crystallisation event (i.e. distal samples after regional, samples closer to the RIC after contact metamorphism), with the exception of ROG13/10 due to complete melt extraction. Monazite showed little to no internal textures within all samples, with monazite growth interpreted to be controlled by precipitation within appropriate composition and conditions. No fluid related textures were present, consistent with the anhydrous nature of the samples. REE in zircon showed a systematic variation with distance from the RIC, with increasing modification of REE towards equilibrium with garnet with decreasing distance from the RIC. Whilst thought to be typically immobile during most geological conditions, through diffusion modelling, REE in zircon were shown to be modifiable during geologically short-lived extreme temperature conditions as well as during prolonged UHT conditions. This allows diffusion of REE-in-zircon to be used to provide constraints on the duration and temperature of metamorphism. Diffusion modelling determined that the rocks at the contact of the RIC experienced temperatures of ~1100°C in order for the system to achieve geochemical equilibrium. The attainment of such temperatures for a given time period in order to achieve zircon re-equilibration also provided constraints on the method of emplacement of the RIC (as mentioned

#### Conclusions and future research directions

above).

# 4. THE IMPORTANCE OF A PETROCHRONOLOGICAL APPROACH IN ASSESSING HIGH-GRADE TERRANES

Due to the large array of processes acting during lower crustal metamorphism it can be difficult to unravel what processes were acting when as well as the true duration of events, as no single rock may record the entire metamorphic evolution. The application of petrochronological techniques in Chapters 2-5 allowed the quantification of the time-scales of metamorphism (S India: ~50 Myr; SW Norway: ~100-150 Myr), refining previous estimates in Rogaland in particular. Despite the prolonged nature of high-T conditions, by using a range of samples and techniques, quantitative P-T-t paths were derived for both case studies. Both regions experienced regional style metamorphism, with SW Norway being characterised by a secondary more localised contact metamorphic event and S India experiencing a later fluid event. These events were recorded in both case studies as a combination of different internal textures within geochronometers, variations in geochemistry and microstructures connected to geochronological populations and phase equilibria.

This thesis shows that zircon and monazite, if present, are adept at recording and preserving a wide array of geochronological and geochemical data even when exposed to prolonged high temperatures. Whilst not entirely impervious to modification due to the increased action of many processes at elevated temperatures, this modification may be used to provide additional information on the durations and conditions of metamorphism and is not a hindrance to petrochronological studies if all potential affects and limitations are properly considered. Nonetheless, the availability of zircon and monazite and the information recorded is strongly affected by key lower crustal processes, such as the availability of melt and the presence of fluids. The unique combination and interaction of particular processes along a metamorphic evolution will result in a unique data set and mineral paragenesis. Whilst both case studies produced geochronological data sets that from the outset appear similar (older inherited ages, discordant trends to younger populations, spreads of younger data along concordia), the processes controlling and causing this age distribution are dissimilar. At Kakkod the distribution of zircon ages was controlled by neocrystallisation resulting in protracted zircon growth; compared to Rogaland where recrystallisation was the dominant process affecting zircon, smearing ages along concordia due to Pb loss. Monazite in Rogaland provided information on the duration of metamorphism, where as at Kakkod monazite best recorded fluid infiltration, with the duration of metamorphism best defined by zircon. This contrasting behaviour between regions and individual geochronometers makes a petrochronological approach even more critical, as the combination of geochronological information with textural, petrological and geochemical information was key in identifying the involvement or action of a combination of different processes as well as differentiating between the factors controlling the distribution of ages. The application of multiple geochronometers where available is also highly beneficial due to their variable response to evolving geodynamic and geochemical systems. Monazite can provide

Conclusions and future research directions

complimentary information to zircon by growing throughout supra-solidus conditions (and sometimes during sub-solidus conditions) where zircon may not grow or react depending on the geochemical system. Both the consideration of the effects of sample characteristics on recorded age and geochemical information as well as the careful categorisation of internal geochronometer textures within a wider petrological context are of equal importance to unravelling complex metamorphic terranes and quantitative petrochronological studies and should be the focus of detailed analysis within every study.

## 5. FUTURE RESEARCH DIRECTIONS

-Further investigation is required into the effects of subtle compositional variations on the stability of orthopyroxene in charnockites. In particular, identifying which compositional variables are responsible. The variable amount of fluid flux recorded across the outcrop could also be further investigated.

-Future studies could conduct texturally constrained sampling of osumilite grains as well as a trace element/structural investigation into the distribution of cores and rims in osumilite to better quantify the range of ages recorded. Further study into the complex diffusion behaviour of osumilite could also be conducted (i.e. cycled step heating). -Detailed geodynamic modelling could be conducted, applying this new data, to better understand the emplacement/formation of the RIC and the tectonic setting of the RVA Sector.

- Bingen, B., Nordgulen, Ø., and Viola, G., 2008, A four-phase model for the Sveconorwegian orogeny, SW Scandinavia: Norwegian Journal of Geology, v. 88, p. 43-72.
- Coint, N., Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., and Sørensen, B. E., 2015, The Late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: Relationships between magmatism and metamorphism and implications for Sveconorwegian orogenesis: Precambrian Research, v. 265, p. 57-77.
- Drüppel, K., Elsäßer, L., Brandt, S., and Gerdes, A., 2013, Sveconorwegian Mid-crustal Ultrahightemperature Metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS Geochronology and Pseudosections of Sapphrine Granulites and Associated Paragneisses: Journal of Petrology, v. 54, no. 2, p. 305-350.
- Laurent, A. T., Seydoux-Guillaume, A.-M., Duchene, S., Bingen, B., Bosse, V., and Datas, L., 2016, Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts: Contributions to Mineralogy and Petrology, v. 171, no. 11, p. 94.
- Möller, A., O'Brien, P. J., Kennedy, A., and Kröner, A., 2003, Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway): Geological Society, London, Special Publications, v. 220, no. From: Vance, D., Müller, W., & Villa, I. M. (eds) 2003. Geochronology: Linking the Isotopic Record with Petrology and Textures., p. 65-81.
- Roberts, N. M. W., and Slagstad, T., 2015, Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86–0.9 Ga accretionary orogeny in southwest Fennoscandia: International Geology Review, v. 57, no. 11-12, p. 1582-1606.
- Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., and Schiellerup, H., 2013, A non-collisional, accretionary Sveconorwegian orogen: Terra Nova, v. 25, p. 30-37.
- Taylor, R., Clark, C., Fitzsimons, I. C. W., Santosh, M., Hand, M., Evans, N., and McDonald, B., 2014, Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India: Contrib Mineral Petrol, v. 168, no. 2, p. 1-17.

Conclusions and future research directions

- Tomkins, H. S., Williams, I. S., and Ellis, D. J., 2005, In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway: Journal of Metamorphic Geology, v. 23, p. 201-215.
- Westphal, M., Schumacher, J. C., and Boschert, S., 2003, High-Temperature Metamorphism and the Role of Magmatic Heat Sources at the Rogaland Anorthosite Complex in Southwestern Norway: Journal of Petrology, v. 44, no. 6, p. 1145-1162.

Bibliography

Chapter 7

# BIBLIOGRAPHY

- Adjerid, Z., Godard, G., Ouzegane, K. H., and Kienast, J.-R., 2013, Multistage progressive evolution of rare osumilite-bearing assemblages preserved in ultrahigh-temperature granulites from In Ouzzal (Hoggar, Algeria): Journal of Metamorphic Geology, v. 31, p. 505–524.
- Ahrens, L. H., 1965, Some observations on the uranium and thorium distributions in accessory zircon from granitic rocks: Geochimica et Cosmochimica Acta, v. 29, no. 6, p. 711-716.
- Aleinikoff, J. N., Schenck, W. S., Plank, M. O., Srogi, L., Fanning, C. M., Kamo, S. L., and Bosbyshell, H., 2006, Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite: Geological Society of America Bulletin, v. 118, no. 1-2, p. 39.
- Anders, E., and Grevesse, N., 1989, Abundances of the elements: Meteoric and solar: Geochimica et Cosmochimica Acta, v. 53, p. 197-214.
- Andersen, T., Griffin, W. L., and Pearson, N. J., 2002, Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence: Journal of Petrology, v. 43, no. 9, p. 1725-1747.
- Andersen, T., Griffin, W. L., and Sylvester, A. G., 2007, Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U-Pb and Lu-Hf isotope evidence from granites and gneisses in Telemark, southern Norway: Lithos, v. 93, p. 273-287.
- Andersson, J., Möller, C., and Johansson, L., 2002, Zircon geochronology of migmatite gneisses along the Mylonite Zone (S Sweden): a major Sveconorwegian terrane boundary in the Baltic Shield: Precambrian Research, v. 114, no. 1–2, p. 121-147.
- Andrehs, G., and Heinrich, W., 1998, Experimental determination of REE distributions between monazite and xenotime: potential for temperature-calibrated geochronology: Chemical Geology, v. 149, no. 1–2, p. 83-96.
- Artioli, G., Angelini, I., and Nestola, F., 2013, New milarite/osumilite-type phase formed during ancient glazing of an Egyptian scarab: Applied Physics A, v. 110, no. 2, p. 371-377.
- Ashwal, L. D., Tucker, R. D., and Zinner, E. K., 1999, Slow cooling of deep crustal granulites and Pbloss in zircon: Geochimica et Cosmochimica Acta, v. 63, no. 18, p. 2839-2851.

Bibliography

- Ayers, J. C., Miller, C., Gorisch, B., and Milleman, J., 1999, Textural development of monazite during high-grade metamorphism: Hydrothermal growth kinetics, with implications for U,Th-Pb geochronology, American Mineralogist, Volume 84, p. 1766.
- Balassone, G., Mormone, A., Rossi, M., Bernardi, A., Fisch, M., Armbruster, T., Malsy, K., and Berger, A., 2008, Crystal chemical and structural characterisation of an Mg-rich Osumilite from Vesuvius volcano (Italy): European Journal of Mineralogy, v. 20, p. 713-720.
- Baldwin, J. A., and Brown, M., 2008, Age and duration of ultrahigh-temperature metamorphism in the Anápolis-Itauçu Complex, Southern Brasília Belt, central Brazil - constraints from U-Pb geochronology, mineral rare earth element chemistry and trace-element thermometry: Journal of Metamorphic Geology, v. 26, p. 213-233.
- Barnichon, J. D., Havenith, H., Hoffer, B., Charlier, R., Jongmans, D., and Duchesne, J. C., 1999, The deformation of the Egersund-Ogna anorthosite massif, south Norway: finite-element modelling of diapirism: Tectonophysics, v. 303, p. 109-130.
- Baxter, E. F., Caddick, M. J., and Dragovic, B., 2017, Garnet: A Rock-Forming Mineral Petrochronometer: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 469.
- Baxter, E. F., and Scherer, E. E., 2013, Garnet Geochronology: Timekeeper of Tectonometamorphic Processes: Elements, v. 9, no. 6, p. 433.
- Bea, F., and Montero, P., 1999, Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy: Geochimica et Cosmochimica Acta, v. 63, no. 7–8, p. 1133-1153.
- Bea, F., Pereira, M. D., and Stroh, A., 1994, Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study): Chemical Geology, v. 117, no. 1, p. 291-312.
- Bergh, S. G., Chattopadhya, A., Ravna, E. K., Corfu, F., Kullerud, K., Swaan, K. B., Armitage, P. E.
  B., Myhre, P. I., and Holdsworth, R. E., 2012, Was the Precambrian basement of Western Troms and Lofoten-Vesterålen in northern Norway linked to the Lewisian of Scotland? A comparison of crustal components, tectonic evolution and amalgamation history, INTECH Open Access Publisher, Tectonics- Recent Advances, 283-330 p.

Bibliography

- Bhattacharya, S., and Kar, R., 2002, High-temperature dehydration melting and decompressive P–T path in a granulite complex from the Eastern Ghats, India: Contributions to Mineralogy and Petrology, v. 143, no. 2, p. 175-191.
- Bingen, B., Birkeland, A., Nordgulen, Ø., and Sigmond, E. M. O., 2001, Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments: Precambrian Research, v. 108, p. 293-318.
- Bingen, B., Nordgulen, Ø., and Viola, G., 2008, A four-phase model for the Sveconorwegian orogeny, SW Scandinavia: Norwegian Journal of Geology, v. 88, p. 43-72.
- Bingen, B., Skår, Ø., Marker, M., Sigmond, E. M. O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R. D., and Liégeois, J-P., 2005, Timing of continental building in the Sveconorwegian orogen, SW Scandinavia: Norwegian Journal of Geology, v. 85, p. 87-116.
- Bingen, B., and Solli, A., 2009, Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltic: synopsis for detrital zircon provenance studies: Norwegian Journal of Geology, v. 89, p. 267-290.
- Bingen, B., Stein, H. J., Bogaerts, M., Bolle, O., and Mansfeld, J., 2006, Molybdenite Re–Os dating constrains gravitational collapse of the Sveconorwegian orogen, SW Scandinavia: Lithos, v. 87, p. 328-346.
- Bingen, B., and van Breemen, O., 1998, U–Pb monazite ages in amphibolite- to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway: Contributions to Mineralogy and Petrology, v. 132, p. 336-353.
- Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korscha, R. J., and Foudoulis, C., 2003, TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology: Chemical Geology, v. 200, p. 155-170.
- Blereau, E., Clark, C., Jourdan, F., Johnson, T. E., Taylor, R. J. M., Kinny, P. D., Hand, M., and Eroglu, E., In review, Constraining the timing of prograde metamorphism in long-lived hot orogens: Geology.

Bibliography

Blereau, E., Johnson, T. E., Clark, C., Taylor, R. J. M., Kinny, P. D., and Hand, M., 2017, Reappraising the P-T evolution of the Rogaland-Vest Agder Sector, southwestern Norway: Geoscience Frontiers, v. 8, no. 1, p. 1–14.

- Boehnke, P., Watson, E. B., Trail, D., Harrison, T. M., and Schmitt, A. K., 2013, Zircon saturation rerevisited: Chemical Geology, v. 351, p. 324-334.
- Bogaerts, M., Scaillet, B., Liégeois, J.-P., and Vander Auwera, J., 2003, Petrology and geochemistry of the Lyngdal granodiorite (Southern Norway) and the role of fractional crystallization in the genesis of Proterozoic ferro-potassic A-type granites: Precambrian Research, v. 124, p. 149-184.
- Bogdanova, S. V., Bingen, B., Gorbatschev, R., Kheraskova, T. N., Kozlov, V. I., Puchkov, V. N., and Volozh, Y. A., 2008, The East European craton (Baltica) before and during the assembly of Rodinia: Precambrian Research, v. 160, p. 23-45.
- Bol, L. C. G. M., Maijer, C., and Jansen, B. H., 1989, Premetamorphic lateritisation in Proterozoic metabasites of Rogaland, SW Norway: Contributions to Mineralogy and Petrology, v. 103, p. 306-316.
- Bolle, O., Diot, H., Liégeois, J.-P., and Auwera, J. V., 2010, The Farsund intrusion (SW Norway): a marker of late-Sveconorwegian (Grenvillian) tectonism emplaced along a newly defined major shear zone: Journal of Structural Geology, v. 32, p. 1500-1518.
- Bolle, O., Trindade, R. I. F., Bouches, J. L., and Duchesne, J.-C., 2002, Imaging downward granitic transport in the Rogaland Igneous Complex, SW Norway: Terra Nova, v. 14, p. 87-92.
- Braun, I., 2006, Pan-African granitic magmatism in the Kerala Khondalite Belt, southern India: Journal of Asian Earth Sciences, v. 28, p. 38-45.
- Braun, I., Montel, J.-M., and Nicollet, C., 1998, Electron microprobe dating of monazites from highgrade gneisses and pegmatites of the Kerala Khondalite Belt, southern India: Chemical Geology including Isotope Geoscience, v. 146, p. 65-68.
- Brewer, T. S., Åhäll, K. I., Darbyshire, D. P. F., and Menuge, J. F., 2002, Geochemistry of late Mesoproterozoic volcanism in southwestern Scandinavia: implications for Sveconorwegian/ Grenvillian plate tectonic models: Journal of the Geological Society, London, v. 159, p. 129-144.

- Brown, M., 2007, Metamorphic conditions in orogenic belts: a record of secular change: International Geology Review, v. 49, no. 3, p. 193-234.
- Brown, M., and Korhonen, F. J., 2009, Some remarks on melting and exteme metamorphism of crustal rocks: Physic's and Chemistry of the Earth's Interior, p. 67-87.
- Buick, I. S., Clark, C., Rubatto, D., Hermann, J., Pandit, M., and Hand, M., 2010, Constraints on the Proterozoic evolution of the Aravalli–Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry: Lithos, v. 120, p. 511-528.
- Buick, I. S., Hermann, J., Williams, I. S., Gibson, R. L., and Rubatto, D., 2006, A SHRIMP U–Pb and LA-ICP-MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa: Lithos, v. 88, no. 1–4, p. 150-172.
- Bybee, G. M., Ashwal, L. D., Shirey, S. B., Horan, M., Mock, T., and Andersen, T. B., 2014, Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magmaa source and magmatic processes at the Moho: Earth and Planetary Science Letters, v. 389, p. 74-85.
- Cao, W., Kaus, B. J. P., and Paterson, S., 2016, Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations: Tectonics, v. 35, no. 6, p. 1575-1594.
- Cassata, W. S., Renne, P. R., and Shuster, D. L., 2009, Argon diffusion in plagioclase and implications for thermochronometry: A case study from the Bushveld Complex, South Africa: Geochimica et Cosmochimica Acta, v. 73, no. 21, p. 6600-6612.
- Cassata, W. S., Renne, P. R., and Shuster, D. L., 2011, Argon diffusion in pyroxenes: Implications for thermochronometry and mantle degassing: Earth and Planetary Science Letters, v. 304, no. 3–4, p. 407–416.
- Cawood, P. A., and Buchan, C., 2007, Linking accretionary orogenesis with supercontinent assembly: Earth-Science Reviews, v. 82, p. 217-256.
- Cenki, B., Braun, I., and Bröcker, M., 2004, Evolution of the continental crust in the Kerala Khondalite Belt, southernmost India: evidence from Nd isotope mapping, U-Pb and Rb-Sr geochronology: Precambrian Research, v. 134, p. 275-292.

Chacko, T., Lamb, M., and Farquhar, J., 1996, Ultra-high temperature metamorphism in the Kerala Khondalite Belt: Gondwana Research Group Memoir, v. 3, p. 157-165.

- Chacko, T., Ravindra Kumar, G. R., Meen, J. K., and J. W. Rodgers, J, 1992, Geochemistry of highgrade supracrustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites, South India: Precambrian Research, v. 55, p. 469-489.
- Chacko, T., Ravindra Kumar, G. R., and Newton, R. C., 1987, Metamorphic P–T conditions of the Kerala (South India) Khondalite Belt, a granulite facies supracrustal terrain: The Journal of Geology, v. 95, no. 3, p. 343-358.
- Chen, R.-X., Zheng, Y.-F., and Xie, L., 2010, Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements, U–Th–Pb and Lu–Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen: Lithos, v. 114, no. 1–2, p. 132-154.
- Cherniak, D. J., Hanchar, J. M., and Watson, E. B., 1997, Rare-earth diffusion in zircon: Chemical Geology, v. 134, no. 4, p. 289-301.
- Cherniak, D. J., and Pyle, J. M., 2008, Th diffusion in monazite: Chemical Geology, v. 256, no. 1–2, p. 52-61.
- Cherniak, D. J., and Watson, E. B., 2001, Pb diffusion in zircon: Chemical Geology, v. 172, no. 1–2, p. 5-24.
- Cherniak, D. J., and Watson, E. B., 2003, Diffusion in zircon: Reviews in mineralogy and geochemistry, v. 53, no. 1, p. 113-143.
- Cherniak, D. J., Watson, E. B., Grove, M., and Harrison, T. M., 2004, Pb diffusion in monazite: a combined RBS/SIMS study1: Geochimica et Cosmochimica Acta, v. 68, no. 4, p. 829-840.
- Chetty, T. R. K., Fitzsimons, I. C. W., Brown, L., Dimri, V. P., and Santosh, M., 2006, Crustal structure and tectonic evolution of the Southern Granulite Terrane, India: introduction: Gondwana Research, v. 10, no. 1-2, p. 3-5.
- Clark, C., Collins, A. S., Santosh, M., Taylor, R., and Wade, B. P., 2009a, The P–T–t architecture of a Gondwanan suture: REE, U–Pb and Ti-in-zircon thermometric constraints from the Palghat Cauvery shear system, South India: Precambrian Research, v. 174, p. 129-144.

**Bibliography** 

- Clark, C., Collins, A. S., Timms, N. E., Kinny, P., Chetty, T. R. K., and Santosh, M., 2009b, SHRIMP U– Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India: Gondwana Research, v. 16, p. 27-36.
- Clark, C., Fitzsimons, I. C. W., Healy, D., and Harley, S. L., 2011, How does the continental crust get really hot?: Elements, v. 7, p. 235-240.
- Clark, C., Healy, D., Johnson, T., Collins, A. S., Taylor, R., Santosh, M., and Timms, N. E., 2015, Hot orogens and supercontinent amalgamation: A Gondwanan example from southern India: Gondwana Research, v. 28, no. 4, p. 1310-1328.
- Clark, C., Kirkland, C. L., Spaggiari, C. V., Oorschot, C., Wingate, M. T. D., and Taylor, R. J., 2014, Proterozoic granulite formation driven by mafic magmatism: An example from the Fraser Range Metamorphics, Western Australia: Precambrian Research, v. 240, p. 1-21.
- Clarke, G. L., Powell, R., and Guiraud, M., 1989, Low-pressure granulite facies metapelitic assemblages and corona textures from MacRobertson Land, east Antarctica: the importance of Fe2O3 and TiO2 in accounting for spinel-bearing assemblages: Journal of Metamorphic Geology, v. 7, no. 3, p. 323-335.
- Cocherie, A., and Albarede, F., 2001, An improved U-Th-Pb age calculation for electron microprobe dating of monazite: Geochimica et Cosmochimica Acta, v. 65, no. 24, p. 4509-4522.
- Cocherie, A., Legendre, O., Peucat, J. J., and Kouamelan, A. N., 1998, Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination: implications for lead behaviour in monazite: Geochimica et Cosmochimica Acta, v. 62, no. 14, p. 2475-2497.
- Coint, N., Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., and Sørensen, B. E., 2015, The Late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: Relationships between magmatism and metamorphism and implications for Sveconorwegian orogenesis: Precambrian Research, v. 265, p. 57-77.
- Collins, A. S., Clark, C., and Plavsa, D., 2014, Peninsula India in Gondwana: the tectonothermal evolution of the Southern Granulite Terraine and its Gondwanan counterparts: Gondwana Research, v. 25, no. 1, p. 190-203.

Bibliography

Collins, A. S., Clark, C., Sajeev, K., Santosh, M., Kelsey, D. E., and Hand, M., 2007a, Passage through India: the Mozambique Ocean suture, high-pressure granulites and the Palghat-Cauvery shear zone system: Terra Nova, v. 19, p. 141-147.

Collins, A. S., and Pisarevsky, S. A., 2005, Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens: Earth-Science Reviews, v. 71, p. 229-270.

- Collins, A. S., Santosh, M., Braun, I., and Clark, C., 2007b, Age and sedimentary provenance of the Southern Granulites, South India: U-Th-Pb SHRIMP secondary ion mass spectrometry: Precambrian Research, v. 155, p. 125-138.
- Collins, W. J., 2002, Hot orogens, tectonic switching, and creation of continental crust: Geology, v. 30, no. 6, p. 535-538.
- Compston, W., Williams, I. S., and Clement, S. W., U-Pb ages within single zircons using a sensitive high mass-resolution ion microprobe1982, p. 593-595.
- Corfu, F., Hanchar, J. M., Hoskin, P. W. O., and Kinny, P., 2003, Atlas of zircon textures: Reviews in mineralogy and geochemistry, v. 53, no. 1, p. 469-500.
- Corfu, F., and Laajoki, K., 2008, An uncommon episode of mafic magmatism at 1347 Ma in the Mesoproterozoic Telemark supracrustals, Sveconorwegian orogen–Implications for stratigraphy and tectonic evolution: Precambrian Research, v. 160, p. 299-307.
- Cottle, J. M., Jessup, M. J., Newell, D. L., Horstwood, M. S. A., Noble, S. R., Parrish, R. R., Waters, D. J., and Searle, M. P., 2009a, Geochronology of granulitized eclogite from the Ama Drime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya: Tectonics, v. 28, no. 1, p. 1–25.
- Cottle, John M., Searle, Michael P., Horstwood, Matthew S. A., and Waters, David J., 2009b, Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(–Th)–Pb Geochronology: The Journal of Geology, v. 117, no. 6, p. 643-664.

Crank, J., 1975, The Mathematics of Diffusion: 2d Ed., Oxford University Press.

Bibliography

- Cutts, K. A., Kelsey, D. E., and Hand, M., 2013, Evidence for late Paleoproterozoic (ca 1690–1665 Ma) high- to ultrahigh-temperature metamorphism in southern Australia: Implications for Proterozoic supercontinent models: Gondwana Research, v. 23, no. 2, p. 617-640.
- Dahl, P. S., Hamilton, M. A., Jercinovic, M. J., Terry, M. P., Williams, M. L., and Frei, R., 2005, Comparative isotopic and chemical geochronometry of monazite, with implications for U-Th-Pb dating by electron microprobe: An example from metamorphic rocks of the eastern Wyoming Craton (U.S.A.): American Mineralogist, v. 90, no. 4, p. 619.
- Davis, D. W., Krogh, T. E., and Williams, I. S., 2003, Historical development of zircon geochronology: Reviews in mineralogy and geochemistry, v. 53, no. 1, p. 145-181.
- de Laeter, J. R., and Kennedy, A. K., 1998, A double focussing mass spectrometer for geochronology: International Journal of Mass Spectrometry, v. 178, p. 43-50.
- Degeling, H., Eggins, S., and Ellis, D. J., 2001, Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown: Mineralogical Magazine, v. 65, no. 6, p. 749-758.
- Demaiffe, D., and Michot, J., 1985, Isotope geochronology of the Proterozoic crustal segment of Southern Norway: a review: The Deep Proterozoic Crust in the North Atlantic Provinces, p. 499-516.
- Diener, J. F. A., and Powell, R., 2010, Influence of ferric iron on the stability of mineral assemblages: Journal of Metamorphic Geology, v. 28, p. 599-613.
- Diener, J. F. A., White, R. W., Link, K., Dreyer, T. S., and Moodley, A., 2013, Clockwise, low-P metamorphism of the Aus granulite terrain, southern Namibia, during the Mesoproterozoic Namaqua Orogeny: Precambrian Research, v. 224, p. 629-652.
- Dodson, M. H., 1973, Closure temperature in cooling geochronological and petrological systems: Contributions to Mineralogy and Petrology, v. 40, no. 3, p. 259-274.
- Drüppel, K., Elsäßer, L., Brandt, S., and Gerdes, A., 2013, Sveconorwegian Mid-crustal Ultrahightemperature Metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS Geochronology and Pseudosections of Sapphrine Granulites and Associated Paragneisses: Journal of Petrology, v. 54, no. 2, p. 305-350.
Drury, S. A., Harris, N. B. W., Holt, R. W., Reeves-Smith, G. J., and Wightman, R. T., 1984, Precambrian Tectonics and Crustal Evolution in South India: The Journal of Geology, v. 92, no. 1, p. 3-20.

- Duchesne, J.-C., and Wilmart, E., 1997, Igneous charnockites and related rocks from the Bjerkreim-Sokndal Layered Intrusion (Southwest Norway): a jotunite (hypersthene monzodiorite)-derived A-type granitoid suite: Journal of Petrology, v. 38, no. 3, p. 337-369.
- Duchesne, J. C., and Michot, J., 1987, The Rogaland intrusive massives: introduction: Norges Geologisk Undersøkelse- Special Publication, v. 1, p. 48-59.
- Dumond, G., Goncalves, P., Williams, M. L., and Jercinovic, M. J., 2015, Monazite as a monitor of melting, garnet growth and feldspar recrystallization in continental lower crust: Journal of Metamorphic Geology, v. 33, no. 7, p. 735-762.
- Ellis, D. J., Sheraton, J. W., England, R. N., and Dallwitz, W. B., 1980, Osumilite-sapphirine-quartz granulites from Enderby Land Antarctica - mineral assemblages and reactions: Contributions to Mineralogy and Petrology, v. 72, p. 123-143.
- Endo, T., Toshiaki, T., Santosh, M., and Shaji, E., 2012, Phase equilibrium modeling of incipient charnockite formation in NCKFMASHTO and MnNCKFMASHTO systems: A case study from Rajapalaiyam, Madurai Block, southern India: Geoscience Frontiers, v. 3, no. 6, p. 801-812.
- Endo, T., Toshiaki, T., Santosh, M., Shimizu, Hisako, and Shaji, E., 2013, Granulite formation in a Gondwana fragment: petrology and mineral equilibrium modeling of incipient charnockite from Mavadi, southern India: Mineralogy and Petrology, v. 107, no. 5, p. 727–738.
- Engi, M., Lanari, P., and Kohn, M. J., 2017, Significant Ages—An Introduction to Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 1.
- Erickson, T. M., Pearce, M. A., Taylor, R. J. M., Timms, N. E., Clark, C., Reddy, S. M., and Buick, I. S., 2015, Deformed monazite yields high-temperature tectonic ages: Geology, v. 43, no. 5, p. 383.
- Falkum, T., 1982, Geologisk kart over Norge, berggrunnskart MANDAL, 1:250,000: Norges Geol. Unders.
- Falkum, T., 1985, Geotectonic evolution of southern Scandinavia in light of a late-Proterozoic platecollision: The Deep Proterozoic Crust in the North Atlantic Provinces, p. 309-322.

- Falkum, T., and Petersen, J. S., 1980, The Sveconorwegian orogenic belt, a case of late-Proterozoi platecollision: Geologische Rundschau, v. 69, no. 3, p. 622-647.
- Feng, R., Machado, N., and Ludden, J., 1993, Lead geochronology of zircon by LaserProbe-inductively coupled plasma mass spectrometry (LP-ICPMS): Geochimica et Cosmochimica Acta, v. 57, no. 14, p. 3479-3486.
- Fernández-Suárez, J., Gutiérrez-Alonso, G., Jenner, G. A., and Jackson, S. E., 1998, Geochronology and geochemistry of the Pola de Allande granitoids (northern Spain): their bearing on the Cadomian-Avalonian evolution of northwest Iberia: Canadian Journal of Earth Sciences, v. 35, no. 12, p. 1439-1453.
- Ferry, J. M., and Watson, E. B., 2007, New thermodynamic models and revised calibrations for the Tiin-zircon and Zr-in-rutile thermometers: Contributions to Mineralogy and Petrology, v. 154, no. 4, p. 429-437.
- Fitzsimons, I. C. W., and Harley, S. L., 1994, The influence of retrograde cation exchange on granulite P–T estimates and a convergence technique for the recovery of peak metamorphic conditions: Journal of Petrology, v. 35, no. 2, p. 543-576.
- Fitzsimons, I. C. W., Kinny, P. D., Wetherley, S., and Hollingsworth, D. A., 2005, Bulk chemical control on metamorphic monazite growth in pelitic schists and implications for U–Pb age data: Journal of Metamorphic Geology, v. 23, no. 4, p. 261-277.
- Fletcher, I. R., McNaughton, N. J., Davis, W. J., and Rasmussen, B., 2010, Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite: Chemical Geology, v. 270, p. 31-44.
- Flowerdew, M. J., Millar, I. L., Vaughan, A. P. M., Horstwood, M. S. A., and Fanning, C. M., 2006, The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons: Contributions to Mineralogy and Petrology, v. 151, no. 6, p. 751-768.
- Fonarev, V. I., Konilov, A. N., and Santosh, M., 2000, Multistage metamorphic evolution of the Trivandrum Granulite Block, Southern India: Gondwana Research, v. 3, no. 3, p. 293-314.

**Bibliography** Fornelli, A., Langone, A., Micheletti, F., Pascazio, A., and Piccarreta, G., 2014, The role of trace element partitioning between garnet, zircon and orthopyroxene on the interpretation of zircon U-Pb ages: an example from high-grade basement in Calabria (Southern Italy): International Journal of Earth Sciences, v. 103, no. 2, p. 487-507.

- Foster, G., Gibson, H. D., Parrish, R., Horstwood, M., Fraser, J., and Tindle, A., 2002, Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite: Chemical Geology, v. 191, no. 1-3, p. 183-207.
- Foster, G., Kinny, P., Vance, D., Prince, C., and Harris, N., 2000, The significance of monazite U-Th-Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry: Earth and Planetary Science Letters, v. 181, no. 3, p. 327-340.
- Foster, G., Parrish, R. R., Horstwood, M. S. A., Chenery, S., Pyle, J., and Gibson, H. D., 2004, The generation of prograde P-T-t points and paths; a textural, compositional, and chronological study of metamorphic monazite: Earth and Planetary Science Letters, v. 228, no. 1–2, p. 125-142.
- Fraser, G., Ellis, D., and Eggins, S., 1997, Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks: Geology, v. 25, no. 7, p. 607.
- Friend, C. R. L., Strachan, R. A., Kinny, P. D., and Watt, G. R., 2003, Provenance of the Moine Supergroup of NW Scotland: evidence from geochronology of detrital and inherited zircons from (meta)sedimentary rocks, granites and migmatites: Journal of the Geological Society, v. 160, no. 2, p. 247.
- Froude, D. O., Ireland, T. R., Kinny, P. D., Williams, I. S., Compston, W., Williams, I. R. t., and Myers, J. S., 1983, Ion microprobe identification of 4,100-4,200 Myr-old terrestrial zircons: Nature, v. 304, no. 5927, p. 616-618.
- Fryer, B. J., Jackson, S. E., and Longerich, H. P., 1993, The application of laser ablation microprobeinductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)-Pb geochronology: Chemical Geology, v. 109, no. 1, p. 1-8.
- Fyfe, W. S., 1973, The granulite facies, partial melting and the Archaean crust: Phiosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 273, no. 1235, p. 457-461.

- Gauthiez-Putallaz, L., Rubatto, D., and Hermann, J., 2016, Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis: Contributions to Mineralogy and Petrology, v. 171, no. 2, p. 15.
- Geisler, T., Schaltegger, U., and Tomaschek, F., 2007, Re-equilibration of Zircon in Aqueous Fluids and Melts: Elements, v. 3, no. 1, p. 43.
- Gervasoni, F., Klemme, S., Rocha-Júnior, E. R. V., and Berndt, J., 2016, Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts: Contributions to Mineralogy and Petrology, v. 171, no. 3, p. 21.
- Gerya, T., 2014, Precambrian geodynamics: Concepts and models: Gondwana Research, v. 25, no. 2, p. 442-463.
- Gibson, H. D., Carr, S. D., Brown, R. L., and Hamilton, M. A., 2004, Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y–Th–U X-ray mapping: Chemical Geology, v. 211, no. 3–4, p. 237-260.
- Gordon, S. M., Whitney, D. L., Teyssier, C., and Fossen, H., 2013, U–Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction: Lithos, v. 170–171, p. 35-53.
- Gratz, R., and Heinrich, W., 1997, Monazite-xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO4-YPO4: American Mineralogist, v. 82, no. 7-8, p. 772-780.
- Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., and Palin, R. M., 2016, Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks: Journal of Metamorphic Geology, v. 34, no. 9, p. 845-869.
- Halpin, J. A., Daczko, N. R., Milan, L. A., and Clarke, G. L., 2012, Decoding near-concordant U– Pb zircon ages spanning several hundred million years: recrystallisation, metamictisation or diffusion?: Contrib Mineral Petrol, v. 163, no. 1, p. 67-85.

Bibliography

Hanchar, J. M., and Miller, C. F., 1993, Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories: Chemical Geology, v. 110, no. 1, p. 1-13.

- Hanchar, J. M., and Rudnick, R. L., 1995, Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths: Lithos, v. 36, no. 3, p. 289-303.
- Hansen, E. C., Janardhan, A. S., Newton, R. C., Prame, W. K. B. N., and Kumar, G. R. R., 1987, Arrested charnockite formation in southern India and Sri Lanka: Contributions to Mineralogy and Petrology, v. 96, p. 225-244.
- Harley, S. L., 1986, A sapphirine-cordierite-garnet-sillimanite granulite from Enderby Land, Antarctica: implications for FMAS petrogenetic grids in the granulite facies: Contributions to Mineralogy and Petrology, v. 94, no. 4, p. 452-460.
- Harley, S. L., 2016, A matter of time: The importance of the duration of UHT metamorphism: Journal of Mineralogical and Petrological Sciences, v. 111, p. 50–72.
- Harley, S. L., and Kelly, N. M., 2007, The impact of zircon–garnet REE distribution data on the interpretation of zircon U–Pb ages in complex high-grade terrains: An example from the Rauer Islands, East Antarctica: Chemical Geology, v. 241, no. 1–2, p. 62-87.
- Harley, S. L., Kelly, N. M., and Möller, A., 2007, Zircon behaviour and the thermal histories of mountain chains: Elements, v. 3, p. 25-30.
- Harley, S. L., Kinny, P. D., Snape, I., and Black, L. P., Zircon chemistry and the definition of events in Archaean granulite terrains2001, Volume 37, p. 511-513.
- Harley, S. L., and Nandakumar, V., 2014, Accessory mineral behaviour in granulite migmatites: a case study from the Kerala Khondalite Belt, India: Journal of Petrology, v. 55, no. 10, p. 1965-2002.
- Harley, S. L., and Nandakumar, V., 2016, New evidence for Palaeoproterozoic high grade metamorphism in the Trivandrum Block, Southern India: Precambrian Research, v. 280, p. 120-138.

- Harley, S. L., and Santosh, M., 1995, Wollastonite at Nuliyam, Kerala, souterhn India: a reassessment of CO2-infiltration and charnockite formation at a classic locality: Contrib Mineral Petrol, v. 120, p. 83-94.
- Harlov, D. E., 2011, Petrological and experimental application of REE- and actinide-bearing accessory mineral to the study of Precambrian high-grade gneiss terrains: Geological Society of America Memoirs, v. 207, p. 13-24.
- Harlov, D. E., and Hetherington, C. J., 2010, Partial high-grade alteration of monazite using alkalibearing fluids: Experiment and nature: American Mineralogist, v. 95, p. 1105-1108.
- Harlov, D. E., Wirth, R., and Hetherington, C. J., 2011, Fluid-mediate partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer: Contributions to Mineralogy and Petrology, v. 162, p. 329-348.
- Harris, N. B. W., Santosh, M., and Taylor, P. N., 1994, Crustal evolution in South India: constraints from Nd isotopes: The Journal of Geology, v. 102, no. 2, p. 139-150.
- Harrison, T. M., 1981, Diffusion of 40Ar in Hornblende: Contributions to Mineralogy and Petrology, v. 78, p. 324-331.
- Harrison, T. M., 1983, Some observations on the interpretation of 40Ar/39Ar age spectra: Chemical Geology, v. 41, p. 319-338.
- Hermann, J., and Rubatto, D., 2003, Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust: Journal of Metamorphic Geology, v. 21, p. 833-852.
- Hermann, J., Rubatto, D., Korsakov, A., and Shatsky, V. S., 2001, Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan): Contributions to Mineralogy and Petrology, v. 141, no. 1, p. 66-82.
- Hermans, G. A. E. M., Hakstege, A. L., Jansen, J. B. H., and Poorter, R. P. E., 1976, Sapphrine occurrence near Vikeså in Rogaland, Southwestern Norway: Norsk Geologisk Tidsskrift, v. 56, p. 397-412.

Bibliography

Hermans, G. A. E. M., Tobi, A. C., Poorter, R. P. E., and Maijer, C., 1975, The high-grade metamorphic Precambrian of the Sirdal-Ørsdal area, Rogaland/Vest-Agder, South-west Norway: Norges Geol. Unders., v. 318, p. 51-74.

- Hirata, T., and Nesbitt, R. W., 1995, U-Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique: Geochimica et Cosmochimica Acta, v. 59, no. 12, p. 2491-2500.
- Högdahl, K., Majka, J., Sjöström, H., Nilsson, K. P., Claesson, S., and Konečný, P., 2012, Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden: Contributions to Mineralogy and Petrology, v. 163, no. 1, p. 167-188.
- Hokada, T., and Harley, S. L., 2004a, Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations in Napier Complex, East Antarctica: Journal of Mineralogical and Petrological Sciences, v. 99, p. 180-190.
- Hokada, T., and Harley, S. L., 2004b, Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations in Napier Complex, East Antarctica: Journal of Mineralogical and Petrological Sciences, v. 99, no. 4, p. 180-190.
- Holder, R. M., Hacker, B. R., Kylander-Clark, A. R. C., and Cottle, J. M., 2015, Monazite trace-element and isotopic signatures of (ultra)high-pressure metamorphism: Examples from the Western Gneiss Region, Norway: Chemical Geology, v. 409, p. 99-111.
- Holland, T. J. B., and Powell, R., 2011, An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids: Journal of Metamorphic Geology, v. 29, p. 333-383.
- Horn, I., Rudnick, R. L., and McDonough, W. F., 2000, Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology: Chemical Geology, v. 164, no. 3–4, p. 281-301.
- Hoskin, P. W. O., and Black, L. P., 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon: Journal of Metamorphic Geology, v. 18, p. 423-439.

- Hoskin, P. W. O., and Ireland, T. R., 2000, Rare earth element chemistry of zircon and its use as a provenance indicator: Geology, v. 28, no. 7, p. 627-630.
- Hoskin, P. W. O., and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in mineralogy and geochemistry, v. 53, no. 1, p. 27–62.
- Huijsmans, J. P. P., Kabel, A. B. E. T., and Steenstra, S. E., 1981, On the structure of high-grade metamorphic Precambrian terrain in Rogaland, south Norway: Norsk Geologisk Tidsskrift, v. 61, p. 183-192.
- Ireland, T. R., Clement, S., Compston, W., Foster, J. J., Holden, P., Jenkins, B., Lanc, P., Schram, N., and Williams, I. S., 2008, Development of SHRIMP: Australian Journal of Earth Sciences, v. 55, no. 6-7, p. 937-954.
- Ireland, T. R., and Williams, I. S., 2003, Considerations in zircon geochronology by SIMS: Reviews in Mineralogy and Geochemistry, v. 53, no. 1, p. 215-241.
- Jackson, D. H., and Santosh, M., 1992, Dehydration reaction and isotope front transport induced by CO2 infiltration at Nuliyam, South India: Journal of Metamorphic Geology, v. 10, p. 365-382.
- Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology: Chemical Geology, v. 211, no. 1–2, p. 47-69.
- Jamieson, R. A., and Beaumont, C., 2013, On the origin of orogens: Geological Society of America Bulletin, v. 125, no. 11-12, p. 1671.
- Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J. O., and Spandler, C., 2008, Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite– xenotime phase relations from 250 to 610 °C: Journal of Metamorphic Geology, v. 26, no. 5, p. 509-526.
- Janots, E., Engi, M., Rubatto, D., Berger, A., Gregory, C., and Rahn, M., 2009, Metamorphic rates in collisional orogeny from in situ allanite and monazite dating: Geology, v. 37, no. 1, p. 11.

Bibliography

Jansen, B. H., Blok, R. J. P., Bos, M., and Scheelings, M., 1985, Geothermometry and geobarometry in Rogaland and preliminary results from the Bamble area, S Norway: The Deep Proterozoic Crust in the North Atlantic Provinces, p. 499-516.

- Jansen, B. H., and Tobi, A. C., 1987, Introduction to the Faurefjell metasediments: Norges Geologisk Undersøkelse- Special Publication, v. 1, p. 88-89.
- Johnson, T., Brown, M., Gibson, R., and Wing, B., 2004, Spinel–cordierite symplectites replacing andalusite: evidence for melt-assisted diapirism in the Bushveld Complex, South Africa: Journal of Metamorphic Geology, v. 22, no. 6, p. 529-545.
- Johnson, T., Clark, C., Taylor, R., Santosh, M., and Collins, A. S., 2015, Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India: Geoscience Frontiers, v. 6, no. 3, p. 373-387.
- Johnson, T. E., White, R. W., and Powell, R., 2008, Partial melting of metagreywacke: a calculated mineral equilibria study: Journal of Metamorphic Geology, v. 26, no. 8, p. 837-853.
- Jöns, N., and Schenk, V., 2011, The ultrahigh temperature granulites of southern Madagascar in a polymetamorphic context: implications for the amalgamation of the Gondwana supercontinent: European Journal of Mineralogy, v. 23, no. 2, p. 127.
- Jourdan, F., and Eroglu, E., 2017, 40Ar/39Ar and (U-Th)/He model age signatures of elusive Mercurian and Venusian meteorites: Meteoritics & Planetary Science, p. 884-905.
- Jourdan, F., Mark, D. F., and Verati, C., 2014, Advances in 40Ar/39Ar dating: from archaeology to planetary sciences – introduction: Geological Society, London, Special Publications, v. 378, no. 1, p. 1–8.
- Karlstrom, K. E., Åhäll, K. I., Harlan, S. S., Williams, M. L., McLelland, J., and Geissman, J. W., 2001, Long-lived (1.8-1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia: Precambrian Research, v. 111, p. 5–30.
- Kars, H., Jansen, B. H., Tobi, A. C., and Poorter, R. P. E., 1980, The metapelitic rocks of the polymetamorphic Precambrian of Rogaland, SW Norway: Part II- Mineral relations between cordierite, hercynite and magnetite within the osumilite-in isograd: Contributions to Mineralogy and Petrology, v. 74, p. 235-244.

Keay, S., Lister, G., and Buick, I., 2001, The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece: Tectonophysics, v. 342, no. 3–4, p. 275-312.

Kelley, S., 2002, K-Ar and Ar-Ar Dating: Reviews in Mineralogy and Geochemistry, v. 47, no. 1, p. 785.

- Kelly, N. M., Clarke, G. L., and Harley, S. L., 2006, Monazite behaviour and age significance in polymetamorphic high-grade terrains: A case study from the western Musgrave Block, central Australia1: Lithos, v. 88, no. 1–4, p. 100-134.
- Kelly, N. M., and Harley, S. L., 2004, Orthopyroxene–Corundum in Mg–Al-rich Granulites from the Oygarden Islands, East Antarctica: Journal of Petrology, v. 45, no. 7, p. 1481-1512.
- Kelly, N. M., and Harley, S. L., 2005, An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antartica: Contributions to Mineralogy and Petrology, v. 149, p. 57-84.
- Kelly, N. M., Harley, S. L., and Möller, A., 2012, Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration: Chemical Geology, v. 322-323, p. 192-208.
- Kelsey, D. E., 2008, On ultrahigh-temperature crustal metamorphism: Gondwana Research, v. 13, p. 1-29.
- Kelsey, D. E., Clark, C., and Hand, M., 2008, Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites: Journal of Metamorphic Geology, v. 26, p. 199-212.
- Kelsey, D. E., and Hand, M., 2015, On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings: Geoscience Frontiers, v. 6, p. 311-356.
- Kelsey, D. E., and Powell, R., 2011, Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na<sub>2</sub>O-CaO-K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-ZrO<sub>2</sub> system: Journal of Metamorphic Geology, v. 29, no. 1, p. 151-166.

Bibliography

Kelsey, D. E., White, R. W., and Powell, R., 2005, Calculated phase equilibria in K<sub>2</sub>O–FeO–MgO– Al<sub>2</sub>O<sub>3</sub>–Si<sub>2</sub>O–H<sub>2</sub>O for silica-undersaturated sapphrine-bearing mineral assemblages: Journal of Metamorphic Geology, v. 23, p. 217-239.

Kennedy, A. K., and de Laeter, J. R., 1994, The performance characteristics of the WA SHRIMP II ion microprobe: US Geological survey circular, v. 1107, p. 166.

- Ketchum, J. W. F., Jackson, S. E., Culshaw, N. G., and Barr, S. M., 2001, Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology: Precambrian Research, v. 105, no. 2–4, p. 331-356.
- Kirkland, C. L., Erickson, T. M., Johnson, T. E., Danišík, M., Evans, N. J., Bourdet, J., and McDonald,
  B. J., 2016, Discriminating prolonged, episodic or disturbed monazite age spectra: An example from the Kalak Nappe Complex, Arctic Norway: Chemical Geology, v. 424, p. 96-110.
- Kirkland, C. L., Whitehouse, M. J., and Slagstad, T., 2009a, Fluid-assisted zircon and monazite growth within a shear zone: a case study from Finnmark, Arctic Norway: Contrib Mineral Petrol, v. 158, p. 637-657.
- Kirkland, C. L., Whitehouse, M. J., and Slagstad, T., 2009b, Fluid-assisted zircon and monazite growth within a shear zone: a case study from Finnmark, Arctic Norway: Contributions to Mineralogy and Petrology, v. 158, no. 5, p. 637-657.
- Kohn, M. J., and Kelly, N., 2017, Petrology and Geochronology of Metamorphic Zircon: Microstructural Geochronology: Planetary Records Down to Atom Scale, v. 232, p. 35.
- Kohn, M. J., and Malloy, M. A., 2004, Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations: Geochimica et Cosmochimica Acta, v. 68, no. 1, p. 101-113.
- Kohn, M. J., and Penniston-Dorland, S. C., 2017, Diffusion: Obstacles and Opportunities in Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 103.
- Kohn, M. J., Wieland, M. S., Parkinson, C. D., and Upreti, B. N., 2005, Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core: Journal of Metamorphic Geology, v. 23, no. 5, p. 399-406.

- Korhonen, F. J., Brown, M., Clark, C., and Bhattacharya, S., 2013a, Osumilite-melt interactions in the ultrahigh temperatures granulites: phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats Provincee, India: Journal of Metamorphic Geology, v. 31, p. 881-907.
- Korhonen, F. J., Clark, C., Brown, M., Bhattacharya, S., and Taylor, R., 2013b, How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India: Precambrian Research, v. 234, p. 322-350.
- Korhonen, F. J., Clark, C., Brown, M., and Taylor, R. J. M., 2014, Taking the temperature of Earth's hottest crust: Earth and Planetary Science Letters, v. 408, p. 341-354.
- Korhonen, F. J., Powell, R., and Stout, J. H., 2012, Stability of sapphirine + quartz in the oxidised rocks of the Wilson Lake terrane, Labrador: calculated equilibria in NCKFMASHTO: Journal of Metamorphic Geology, v. 30, p. 21-36.
- Korhonen, F. J., Saito, S., Brown, M., and Siddoway, C. S., 2010, Modeling multiple melt loss events in the evolution of an active continental margin: Lithos, v. 116, p. 230-248.
- Korhonen, F. J., Saw, A. K., Clark, C., Brown, M., and Bhattacharya, S., 2011, New constraints on UHT metamorphism in the Eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology: Gondwana Research, v. 20, p. 764-781.
- Košler, J., Fonneland, H., Sylvester, P., Tubrett, M., and Pedersen, R.-B., 2002, U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques: Chemical Geology, v. 182, no. 2–4, p. 605-618.
- Kretz, R., 1983, Symbols for rock-forming minerals: American Mineralogist, v. 68, p. 277-279.
- Kröner, A., Santosh, M., Hegner, E., Shaji, E., Geng, H., Wong, J., Xie, H., Wan, Y., Shang, C. K., Liu, D., Sun, M., and Nanda-Kumar, V., 2015, Palaeoproterozoic ancestry of Pan-African highgrade granitoids in southernmost India: Implications for Gondwana reconstructions: Gondwana Research, v. 27, p. 1-37.
- Kröner, A., Wan, Y., Liu, X., and Liu, D., 2014, Dating of zircon from high-grade rocks: Which is the most reliable method?: Geoscience Frontiers, v. 5, no. 4, p. 515-523.

Kylander-Clark, A. R. C., Hacker, B. R., and Cottle, J. M., 2013, Laser-ablation split-stream ICP petrochronology: Chemical Geology, v. 345, p. 99-112.

- Lanari, P., and Engi, M., 2017, Local Bulk Composition Effects on Metamorphic Mineral Assemblages: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 55.
- Laurent, A. T., Seydoux-Guillaume, A.-M., Duchene, S., Bingen, B., Bosse, V., and Datas, L., 2016, Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts: Contributions to Mineralogy and Petrology, v. 171, no. 11, p. 94.
- Li, X.-h., Liang, X.-r., Sun, M., Guan, H., and Malpas, J. G., 2001, Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation: Chemical Geology, v. 175, no. 3–4, p. 209-219.
- Lister, G. S., and Baldwin, S. L., 1996, Modelling the effect of arbitrary P-T-t histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh: Tectonophysics, v. 253, no. 1, p. 83-109.
- Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., and Chen, H., 2010, Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS: Chinese Science Bulletin, v. 55, no. 15, p. 1535-1546.
- Longhi, J., Fram, M. S., Auwera, J. V., and Montieth, J. N., 1993, Pressure effects, kinetics, and rheology of anorthositic and related magmas: American Mineralogist, v. 78, p. 1016-1030.
- Ludwig, K. R., 2003, Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronological Center Special Publication, v. 4, p. 70.
- Ludwig, K. R., 2009, SQUID II: A user's manual: Berkeley Geochronological Center Special Publication, v. 5, p. 110.
- Mahan, K. H., Goncalves, P., Williams, M. L., and Jercinovic, M. J., 2006, Dating metamorphic reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield: Journal of Metamorphic Geology, v. 24, no. 3, p. 193-217.
- Maijer, C., 1987, The metamorphic envelope of the Rogaland intrusive complex: Norges Geologisk Undersøkelse- Special Publication, v. 1, p. 68-73.

- Maijer, C., Andriessen, P. A. M., Hebeda, E. H., Jansen, B. H., and Verschure, R. H., 1981, Osumilite, an approximately 970 Ma old high-temperature index mineral of the granulite-facies metamorphism in Rogaland, SW Norway: Geol. Mijnbouw, v. 60, p. 267-272.
- Marker, M., Schiellerup, H., Meyer, G., Robins, B., and Bolle, O., 2003, Introduction to the geological map of the Rogaland Anorthosite Province 1:75000: Norges Geologisk Undersøkelse- Special Publication, v. 9, p. 109-116.
- Martin, A. J., Gehrels, G. E., and DeCelles, P. G., 2007, The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal: Chemical Geology, v. 244, no. 1–2, p. 1-24.
- McFarlane, C. R. M., Connelly, J. N., and Carlson, W. D., 2005, Monazite and xenotime petrogenesis in the contact aureole of the Makhavinekh Lake Pluton, northern Labrador: Contributions to Mineralogy and Petrology, v. 148, no. 5, p. 524-541.
- McFarlane, C. R. M., Connelly, J. N., and Carlson, W. D., 2006, Contrasting response of monazite and zircon to a high-T thermal overprint: Lithos, v. 88, no. 1–4, p. 135-149.
- Mezger, K., and Krogstad, E. J., 1997, Interpretation of discordant U-Pb zircon ages: An evaluation: Journal of Metamorphic Geology, v. 15, no. 1, p. 127-140.
- Miyashiro, A., 1956, Osumilite, a new silicate mineral, and its crystal structure: American Mineralogist, v. 41, p. 104-116.
- Möller, A., O'Brien, P. J., Kennedy, A., and Kröner, A., 2002, Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon: Journal of Metamorphic Geology, v. 20, p. 727-740.
- Möller, A., O'Brien, P. J., Kennedy, A., and Kröner, A., 2003, Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway): Geological Society, London, Special Publications, v. 220, no. From: Vance, D., Müller, W., & Villa, I. M. (eds) 2003. Geochronology: Linking the Isotopic Record with Petrology and Textures., p. 65-81.

- Montel, Kornprobst, and Vielzeuf, 2000, Preservation of old U-Th-Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Morocco): Journal of Metamorphic Geology, v. 18, no. 3, p. 335-342.
- Morimoto, T., Santosh, M., Tsunogae, T., and Yoshimura, Y., 2004, Spinel+Quartz association from the Kerala Khondalites, southern India: evidence for ultra-high temperature metamorphism: Journal of Mineralogical and Petrological Sciences, v. 99, p. 257-278.
- Morrissey, L. J., Hand, M., Kelsey, D. E., and Wade, B. P., 2016, Cambrian High-temperature Reworking of the Rayner–Eastern Ghats Terrane: Constraints from the Northern Prince Charles Mountains Region, East Antarctica: Journal of Petrology, v. 57, no. 1, p. 53-92.
- Motoyoshi, Y., Hensen, B. J., and Matsueda, H., 1990, Metastable growth of corundum adjacent to quartz in a spinel-bearing quartzite from the Archaean Napier Complex, Antarctica: Journal of Metamorphic Geology, v. 8, no. 1, p. 125-130.
- Nagasawa, H., 1971, Partitioning of Eu and Sr between coexisting plagioclase and K-feldspar: Earth and Planetary Science Letters, v. 13, no. 1, p. 139-144.
- Nair, R., and Chacko, T., 2002, Fluid-absent melting of high-grade semi-pelites: P-T constraints on orthopyroxene formation and implications for granulite genesis: Journal of Petrology, v. 43, no. 11, p. 2121-2142.
- Nandakumar, V., and Harley, S. L., 2000, A reappraisal of the pressure-temperature path of granulites from the Kerala Khondalite Belt, southern India: The Journal of Geology, v. 108, no. 6, p. 687-703.
- Nemchin, A. A., Horstwood, M. S. A., and Whitehouse, M. J., 2013, High-spatial-resolution geochronology: Elements, v. 9, no. 1, p. 31-37.
- Newton, R. C., 1989, Metamorphic fluids in the deep crust: Annual Review of Earth and Planetary Sciences, v. 17, p. 385-412.
- Newton, R. C., 1992, Charnockitic alteration: evidence for CO2 infiltration in granulite facies metamorphism: Journal of Metamorphic Geology, v. 10, p. 383-400.

- Newton, R. C., Smith, J. V., and Windley, B. F., 1980, Carbonic metamorphism, granulites and crustal growth: Nature, v. 288, p. 45-50.
- Newton, R. C., and Tsunogae, T., 2014, Incipient charnockite: characterization at the type localities: Precambrian Research, v. 253, p. 38-49.
- Nijland, T. G., Maijer, C., and de Haas, G.-J. L. M., 1996, The Stokkafjell Troctolite, SW Norway: its bearing on the early P-T evolution of the Rogaland terrane: Neues Jahrbuch fur Mineralogie Abhandlungen, v. 171, p. 91-117.
- Nutman, A. P., McGregor, V. R., Shiraishi, K., Friend, C. R. L., Bennett, V. C., and Kinny, P. D., 2002, ≥3850 Ma BIF and mafic inclusions in the early Archaean Itsaq Gneiss Complex around Akilia, southern West Greenland? The difficulties of precise dating of zircon-free protoliths in migmatites: Precambrian Research, v. 117, no. 3, p. 185-224.
- Palin, R. M., Weller, O. M., Waters, D. J., and Dyck, B., 2016, Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations: Geoscience Frontiers, v. 7, no. 4, p. 591-607.
- Pasteels, P., Demaiffe, D., and Michot, J., 1979, U–Pb and Rb–Sr geochronology of the eastern part of the south Rogaland igneous complex, southern Norway: Lithos, v. 12, p. 199-208.
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J., 2011, Iolite: freeware for the visualisation and processing of mass spectrometric data: Journal of Analytical Atomic Spectrometry, v. 26, p. 2508-2518.
- Paton, C., Woodhead, J., Hellstrom, J., Hergt, J., Greig, A., and Maas, R., 2010, Improved laser ablation U–Pb zircon and geochronology through robust downhole fractionation correction: Geochemistry, Geophysics, Geosystems, v. 11, p. 1-36.
- Pattison, D. R. M., Chacko, T., Farquhar, J., and McFarlane, R. M., 2003, Temperature of granulitefacies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange: Journal of Petrology, v. 44, no. 5, p. 867-900.
- Pearce, M. A., White, A. J. R., and Gazley, M. F., 2015, TCInvestigator: automated calculation of mineral mode and composition contour for THERMOCALC pseudosections: Journal of Metamorphic Geology, v. 33, p. 413-425.

- Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., and Chenery, S. P., 1997, A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials: Geostandards Newsletter, v. 21, p. 115-144.
- Perchuk, L. L., Safonov, O. G., Gerya, T. V., Fu, B., and Harlov, D. E., 2000, Mobility of components in metasomatic transformation and partial melting of gneisses: an example from Sri Lanka: Contrib Mineral Petrol, v. 140, no. 2, p. 212-232.
- Petersson, A., Scherstén, A., Bingen, B., Gerdes, A., and Whitehouse, M. J., 2015, Mesoproterozoic continental growth: U–Pb–Hf–O zircon record in the Idefjorden Terrane, Sveconorwegian Orogen: Precambrian Research, v. 261, p. 75-95.
- Piazolo, S., Fontaine, A. L., Trimby, P., Harley, S., Yang, L., Armstrong, R., and Cairney, J. M., 2016, Deformation-induced trace element redistribution in zircon revealed using atom probe tomography: Nature Communications, v. 7, p. 10490.
- Pidgeon, R. T., 1992, Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications: Contributions to Mineralogy and Petrology, v. 110, no. 4, p. 463-472.
- Pitra, P., and Waal, S. A. D., 2001, High-temperature, low-pressure metamorphism and development of prograde symplectites, Marble Hall Fragment, Bushveld Complex (South Africa): Journal of Metamorphic Geology, v. 19, no. 3, p. 311-325.
- Plavsa, D., Collins, A. S., Foden, J. F., Kropinski, L., Santosh, M., Chetty, T. R. K., and Clark, C., 2012, Delineating crustal domains in Peninsular India: Age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block: Precambrian Research, v. 198-199, p. 77-93.
- Plavsa, D., Collins, A. S., Payne, J. L., Foden, J. D., Clark, C., and Santosh, M., 2014, Detrital zircons in basement metasedimentary protoliths unveil the origins of southern India: Bulletin of the Geological Society of America, v. 126, p. 791-812.
- Poitrasson, F., Chenery, S., and Bland, D. J., 1996, Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications: Earth and Planetary Science Letters, v. 145, no. 1, p. 79-96.

- Poitrasson, F., Chenery, S., and Shepherd, T. J., 2000, Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration:: Implications for U-Th-Pb geochronology and nuclear ceramics: Geochimica et Cosmochimica Acta, v. 64, no. 19, p. 3283-3297.
- Pyle, J. M., and Spear, F. S., 1999, Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions: Geological Materials Research, v. 1, no. 6, p. 1-49.
- Pyle, J. M., and Spear, F. S., 2000, An empirical garnet (YAG) xenotime thermometer: Contributions to Mineralogy and Petrology, v. 138, no. 1, p. 51-58.
- Pyle, J. M., and Spear, F. S., 2003, Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire, American Mineralogist, Volume 88, p. 338.
- Pyle, J. M., Spear, F. S., Rudnick, R. L., and McDonough, W. F., 2001, Monazite–Xenotime–Garnet Equilibrium in Metapelites and a New Monazite–Garnet Thermometer: Journal of Petrology, v. 42, no. 11, p. 2083-2107.
- Raith, M., and Srikantappa, C., 1993, Arrested charnockite formation at Kottavattam, southern India: Journal of Metamorphic Geology, v. 11, p. 815-832.
- Raith, M., Srikantappa, C., Ashamanjari, K. G., and Spiering, B., 1990, The granulite terrane of the Nilgiri Hills (Southern India): characterization of high-grade metamorphism, in Vielzeuf, D., and Vidal, P., eds., Granulites and Crustal Evolution, Springer Netherlands, p. 339-365.
- Rajesh, H. M., and Santosh, M., 2004, Charnockite magmatism in southern India: Proceedings of the Indian Academy of Sciences. A Earth and Planetary Sciences, v. 113, p. 565-585.
- Rajesh, H. M., and Santosh, M., 2012, Charnockites and charnockites: Geoscience Frontiers, v. 3, no. 6, p. 1-8.
- Rapp, R. P., Ryerson, F. J., and Miller, C. F., 1987, Experimental evidence bearing on the stability of monazite during crustal anaatexis: Geophysical Research Letters, v. 14, no. 3, p. 307-310.
- Rasmussen, B., and Muhling, J. R., 2007, Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism: Contributions to Mineralogy and Petrology, v. 154, no. 6, p. 675-689.

Ravindra Kumar, G. R., 2004, Mechanism of arrested charnockite formation at Nemmara, Palghat region, southern India: Lithos, v. 75, p. 331-358.

- Ravindra Kumar, G. R., Srikantappa, C., and Hansen, E. C., 1985, Charnockite formation at Ponmudi in southern India: Nature, v. 313, no. 17, p. 207-209.
- Rivers, T., 1997, Lithotectonic elements of the Grenville Province: review and tectonic implications: Precambrian Research, v. 86, p. 117–154.
- Roberts, M. P., and Finger, F., 1997, Do U–Pb zircon ages from granulites reflect peak metamorphic conditions?: Geology, v. 25, p. 319-322.
- Roberts, N. M. W., and Slagstad, T., 2015, Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86–0.9 Ga accretionary orogeny in southwest Fennoscandia: International Geology Review, v. 57, no. 11-12, p. 1582-1606.
- Rubatto, D., 2002, Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism: Chemical Geology, v. 184, p. 123-138.
- Rubatto, D., 2017, Zircon: The Metamorphic Mineral: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 261.
- Rubatto, D., Chakraborty, S., and Dasgupta, S., 2013, Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology: Contributions to Mineralogy and Petrology, v. 165, no. 2, p. 349-372.
- Rubatto, D., and Hermann, J., 2003, Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones: Geochimica et Cosmochimica Acta, v. 67, no. 12, p. 2173-2187.
- Rubatto, D., and Hermann, J., 2007, Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks: Chemical Geology, v. 241, p. 38-61.

- Rubatto, D., Hermann, J., Berger, A., and Engi, M., 2009, Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps: Contributions to Mineralogy and Petrology, v. 158, p. 703-722.
- Rubatto, D., Hermann, J., and Buick, I. S., 2006, Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, Central Australia): Journal of Petrology, v. 47, no. 10, p. 1973-1996.
- Rubatto, D., Williams, I. S., and Buick, I. S., 2001, Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia: Contributions to Mineralogy and Petrology, v. 140, no. 4, p. 458-468.
- Sacks, P. E., Nambiar, C. G., and Walters, L. J., 1997, Dextral Pan–African Shear along the Southwestern Edge of the Achankovil Shear Belt, South India: Constraints on Gondwana Reconstructions: The Journal of Geology, v. 105, no. 2, p. 275-284.
- Sanislav, I. V., 2011, A long-lived metamorphic history in the contact aureole of the Mooselookmeguntic pluton revealed by in situ dating of monazite grains preserved as inclusions in staurolite porphyroblasts: Journal of Metamorphic Geology, v. 29, no. 2, p. 251-273.
- Santosh, M., 1987, Cordierite gneisses of southern Kerala, India: petrology, fluid inclusions and implications for crustal uplift history: Contributions to Mineralogy and Petrology, v. 96, p. 343-356.
- Santosh, M., Maruyama, S., and Sato, K., 2009, Anatomy of a Cambrian suture in Gondwana: Pacifictype orogeny in southern India: Gondwana Research, v. 16, p. 321-341.
- Santosh, M., and Omori, S., 2008, CO2 flushing: A plate tectonic perspective: Gondwana Research, v. 13, p. 86-102.
- Santosh, M., Tagawa, M., Taguchi, S., and Yoshikura, S., 2003a, The Nagercoil Granulite Block, southern India: petrology, fluid inclusions and exhumation history: Journal of Asian Earth Sciences, v. 22, p. 131-155.
- Santosh, M., Yang, Q. Y., Shaji, E., Mohan, M. R., Tsunogae, T., and Satyanarayanan, M., 2016, Oldest rocks from Peninsular India: evidence for Hadean to Neoarchean crustal evolution: Gondwana Research, v. 29, no. 1, p. 105-135.

- Santosh, M., Yang, Q. Y., Shaji, E., Tsunogae, T., Mohan, M. R., and Satyanarayanan, M., 2015, An exotic Mesoarchean microcontinent: the Coorg Block, southern India: Gondwana Research, v. 27, no. 1, p. 165–195.
- Santosh, M., Yokoyama, K., Biju-Sekhar, S., and Rogers, J. J. W., 2003b, Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: implications on the history of supercontinents: Gondwana Research, v. 6, no. 1, p. 29-63.
- Sauer, S., Slagstad, T., Andersen, T., and Kirkland, C. L., 2013, Zircon Lu-Hf isotopes in high-alumina orthopyroxene megacrysts from the Neoproterozoic Rogaland Anorthosite Province, SW Norway: A window into the Sveconorwegian lower crust: EGU General Assembly Conference Abstracts, v. 15, p. 13958.
- Sauter, P. C. C., 1981, Mineral relations in siliceous dolomites and related rocks in the high-grade metamorphic Precambrian of Rogaland, SW Norway: Norsk Geologisk Tidsskrift, v. 61, p. 35-45.
- Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C., Schulmann, K., and Gebauer, D., 1999, Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminesecence and microchemical evidence: Contributions to Mineralogy and Petrology, v. 134, p. 186-201.
- Schärer, U., 1984, The effect of initial230Th disequilibrium on young UPb ages: the Makalu case, Himalaya: Earth and Planetary Science Letters, v. 67, no. 2, p. 191-204.
- Schärer, U., Wilmart, E., and Duchesne, J-C., 1996, The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway: Earth and Planetary Science Letters, v. 139, p. 335-350.
- Schmitt, A. K., and Vazquez, J. A., 2017, Secondary Ionization Mass Spectrometry Analysis in Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 199.
- Schmitz, M. D., and Bowring, S. A., 2003, Ultrahigh-temperature metamorphism in the lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal Craton, southern Africa: Geological Society of America Bulletin, v. 115, no. 5, p. 533.

- Scibiorski, E., Tohver, E., and Jourdan, F., 2015, Rapid cooling and exhumation in the western part of the Mesoproterozoic Albany-Fraser Orogen, Western Australia: Precambrian Research, v. 265, p. 232-248.
- Seydoux-Guillaume, A.-M., Montel, J.-M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J.-L., Janots, E., and Wirth, R., 2012, Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers: Chemical Geology, v. 330-331, p. 140-158.
- Shabeer, K. P., Sajeev, K., Okudaira, T., and Santosh, M., 2002, Two-stage spinel growth in the highgrade metapelites of the central Kerala Khondalite Belt: implications for prograde P–T path: Journal of Geosciences, Osaka City University, v. 45, no. 3, p. 29-43.
- Shabeer, K. P., Santish-Kumar, M., Armstrong, R., and Buick, I. S., 2005, Constraints on the timing of Pan-African granulite-facies metamorphism in the Kerala Khondalite Belt of southern India: SHRIMP mineral ages and Nd isotopic systematics: The Journal of Geology, v. 113, no. 1, p. 95-106.
- Shannon, R., 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides: Acta Crystallographica Section A, v. 32, no. 5, p. 751-767.
- Shazia, J. R., Harlov, D. E., Suzuki, K., Kim, S. W., Girish-Kumar, M., Hayasaka, Y., Ishwar-Kumar, C., Windley, B. F., and Sajeev, K., 2015, Linking monazite geochronology with fluid infiltration and metamorphic histories: Nature and experiment: Lithos, v. 236-237, p. 1–15.
- Sizova, E., Gerya, T., and Brown, M., 2014, Contrasting styles of Phanerozoic and Precambrian continental collision: Gondwana Research, v. 25, no. 2, p. 522-545.
- Slagstad, T., Roberts, N. M. W., and Kulakov, E., 2017, Linking orogenesis across a supercontinent; the Grenvillian and Sveconorwegian margins on Rodinia: Gondwana Research, v. 44, p. 109-115.
- Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., and Schiellerup, H., 2013a, A non-collisional, accretionary Sveconorwegian orogen: Terra Nova, v. 25, p. 30-37.
- Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., and Schiellerup, H., 2013b, A non-collisional, accretionary Sveconorwegian orogen Reply: Terra Nova, v. 25, no. 2, p. 169-171.

| <i>Chapter</i> 2 | 7 Bibliography |
|------------------|----------------|
|                  |                |

Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J., 2008, Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis`: Chemical Geology, v. 249, p. 1–35.

- Smit, M. A., Scherer, E. E., and Mezger, K., 2013, Lu–Hf and Sm–Nd garnet geochronology: Chronometric closure and implications for dating petrological processes: Earth and Planetary Science Letters, v. 381, p. 222-233.
- Smithies, R. H., Howard, H. M., Evins, P. M., Kirkland, C. L., Kelsey, D. E., Hand, M., Wingate, M. T. D., Collins, A. S., and Belousova, E., 2011, High-Temperature Granite Magmatism, Crust–Mantle Interaction and the Mesoproterozoic Intracontinental Evolution of the Musgrave Province, Central Australia: Journal of Petrology, v. 52, no. 5, p. 931-958.
- Söderlund, U., and Ask, R., 2006, Mesoproterozoic bimodal magmatism along the Protogine Zone, S Sweden: three magmatic pulses at 1.56, 1.22 and 1.205 Ga, and regional implications: GFF, v. 128, p. 303-310.
- Söderlund, U., Elming, S.-Å., Ernst, R. E., and Schissel, D., 2006, The Central Scandinavian Dolerite Group–Protracted hotspot activity or back-arc magmatism? Constraints from U–Pb baddeleyite geochronology and Hf isotopic data: Precambrian Research, v. 150, p. 136-152.
- Spear, F. S., and Pyle, J. M., 2010, Theoretical modeling of monazite growth in a low-Ca metapelite: Chemical Geology, v. 273, no. 1–2, p. 111-119.
- Spencer, C. J., Kirkland, C. L., and Taylor, R. J. M., 2015, Strategies toward statistically robust interpretations of in situ U–Pb zircon geochronology: Geoscience Frontiers, v. 7, no. 4, p.581-589.
- Spencer, C. J., Roberts, N. M. W., Cawood, P. A., Hawkesworth, C. J., Prave, A. R., Antonini, A. S. M., Horstwood, M. S. A., and EIMF, 2014, Intermontane basins and bimodal volcanism at the onset of the Sveconorwegian Orogeny, southern Norway: Precambrian Research, v. 252, p. 107-118.
- Srikantappa, C., Raith, M., and Spiering, B., 1985, Progressive charnockitization of a leptynitekhondalite suite in southern Kerala, India-evidence for formation of charnockites through decrease in fluid pressure?: Journal of the Geological Society of India, v. 26, no. 12, p. 849-892.

- Stacey, J. S., and Kramers, J. D., 1975, Approximation of terrestrial lead isotope evolution by a twostage model: Earth and Planetary Science Letters, v. 26, p. 207-221.
- Stähle, H. J., Raith, M., Hoernes, S., and Delfs, A., 1987, Element mobility during incipient granulite formation at Kabbaldurga, Southern India: Journal of Petrology, v. 28, no. 5, p. 803-834.
- Stepanov, A. S., Hermann, J., Rubatto, D., and Rapp, R. P., 2012, Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks: Chemical Geology, v. 300–301, p. 200-220.
- Stern, R. S., and Amelin, Y., 2003, Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass: Chemical Geology, v. 197, p. 111-142.
- Štípská, P., Hacker, B. R., Racek, M., Holder, R., Kylander-Clark, A. R. C., Schulmann, K., and Hasalova, P., 2015, Monazite dating of prograde and retrograde P–T–d paths in the Barrovian terrane of the Thaya window, Bohemian Massif: Journal of Petrology, v. 56, no. 5, p. 1007-1035.
- Suzuki, K., and Adachi, M., 1991, Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime: GEOCHEMICAL JOURNAL, v. 25, no. 5, p. 357-376.
- Suzuki, K., and Adachi, M., 1994, Middle Precambrian detrital monazite and zircon from the hida gneiss on Oki-Dogo Island, Japan: their origin and implications for the correlation of basement gneiss of Southwest Japan and Korea: Tectonophysics, v. 235, no. 3, p. 277-292.
- Tadokoro, H., Tsunogae, T., and Santosh, M., 2008, Metamorphic P-T path of eastern Trivandrum Granulite Block, southern India: implications for regional correlation of lower crustal fragments: Journal of Mineralogical and Petrological Sciences, v. 103, p. 279-284.
- Tajčmanová, L., Konopásek, J., and Košler, J., 2009, Distribution of zinc and its role in the stability of spinel in high-grade felsic rocks of the Moldanubian domain (Bohemian Massif): European Journal of Mineralogy, v. 21, p. 407-418.
- Taylor, R., Clark, C., Fitzsimons, I. C. W., Santosh, M., Hand, M., Evans, N., and McDonald, B., 2014, Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India: Contrib Mineral Petrol, v. 168, no. 2, p. 1-17.

- Taylor, R., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., and Kelly, N. M., 2015a, Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes: Journal of Metamorphic Geology, v. 33, p. 231–248.
- Taylor, R. J. M., Clark, C., Harley, S. L., Kylander-Clark, A. R. C., Hacker, B. R., and Kinny, P. D., 2017, Interpreting granulite facies events through rare earth element partitioning arrays: Journal of Metamorphic Geology, p. 1-17.
- Taylor, R. J. M., Clark, C., Johnson, T. E., Santosh, M., and Collins, A. S., 2015b, Unravelling the complexities in high-grade rocks using multiple techniques: the Achankovil Zone of southern India: Contributions to Mineralogy and Petrology, v. 169, no. 5, p. 51.
- Taylor, R. J. M., Kirkland, C. L., and Clark, C., 2016, Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes: Lithos, v. 264, p. 239-257.
- Taylor-Jones, K., and Powell, R., 2010, The stability of sapphirine + quartz: calculated phase equilibria in FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–TiO<sub>2</sub>–O: Journal of Metamorphic Geology, v. 28, no. 6, p. 615-633.
- Tiepolo, M., 2003, In situ Pb geochronology of zircon with laser ablation–inductively coupled plasma– sector field mass spectrometry: Chemical Geology, v. 199, no. 1–2, p. 159-177.
- Tobi, A. C., Hermans, G. A. E. M., Maijer, C., and Jansen, B. H., 1985, Metamorphic zoning in the high-grade Proterozoic of Rogaland-Vest Agder, SW Norway: The Deep Proterozoic Crust in the North Atlantic Provinces, p. 477-497.
- Tomkins, H. S., and Pattison, D. R. M., 2007, Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia: Journal of Metamorphic Geology, v. 25, no. 4, p. 401-421.
- Tomkins, H. S., Powell, R., and Ellis, D. J., 2007, The pressure dependence of the zirconium-in-rutile thermometer: Journal of Metamorphic Geology, v. 25, no. 6, p. 703-713.
- Tomkins, H. S., Williams, I. S., and Ellis, D. J., 2005, In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway: Journal of Metamorphic Geology, v. 23, p. 201-215.

- Touret, J. L. R., and Huizenga, Jan Marten, 2012, Charnockite microstructures: From magmatic to metamorphic: Geoscience Frontiers, v. 3, no. 6, p. 1-9.
- Tucker, N. M., Hand, M., Kelsey, D. E., and Dutch, R. A., 2015, A duality of timescales: Short-lived ultrahigh temperature metamorphism preserving a long-lived monazite growth history in the Grenvillian Musgrave–Albany–Fraser Orogen: Precambrian Research, v. 264, p. 204-234.
- Vander Auwera, J., 1993, Diffusion controlled growth of pyroxene-bearing margins on amphibolite bands in the granulite facies of Rogaland (Southwestern Norway): implications for granulite formation: Contributions to Mineralogy and Petrology, v. 114, p. 203-220.
- Vander Auwera, J., Bolle, O., Bingen, B., Liégeois, J.-P., Bogaerts, M., Duchesne, J.-C., Waele, B. D., and Longhi, J., 2011, Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root: Earth-Science Reviews, v. 107, p. 375-397.
- Vander Auwera, J., Bolle, O., Dupont, A., Pin, C., Paquette, J.-L., Charlier, B., Duchesne, J.-C., Mattielli, N., and Bogaerts, M., 2014, Source-derived heterogeneities in the composite (charnockitegranite) ferroan Farsund intrusion (SW Norway): Precambrian Research, v. 251, p. 141-163.
- Vander Auwera, J., and Longhi, J., 1994, Experimental study of a joutunite (hypersthene monzodiorite): constraints on the parent magma composition and crystallization conditions (P, T, fO2) of the Bjerkreim-Sokndal layered intrusion (Norway): Contributions to Mineralogy and Petrology, v. 118, p. 60-78.
- Vavra, G., 1990, On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study: Contributions to Mineralogy and Petrology, v. 106, no. 1, p. 90-99.
- Vavra, G., Gebauer, D., Schmid, R., and Compston, W., 1996, Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study: Contributions to Mineralogy and Petrology, v. 122, p. 337-358.
- Vavra, G., and Schaltegger, U., 1999, Post-granulite facies monazite growth and rejuvenation during Permian to Lower Jurassic thermal and fluid events in the Ivrea Zone (Southern Alps): Contributions to Mineralogy and Petrology, v. 134, no. 4, p. 405-414.

| Chapter 7 | Bibliography |
|-----------|--------------|
|           |              |

Verschure, R. H., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Maier, W. D., Priem, H. N. A., and Verdurmen, E. A. T., 1980, On the thermal stability of Rb–Sr and K–Ar biotite systems: evidence from coexisting Sveconorwegian (ca 870 Ma) and Caledonian (ca 400 Ma) biotites in SW Norway: Contributions to Mineralogy and Petrology, v. 74, p. 245-252.

- Versteeve, A. J., 1975, Isotope geochronology in the high-grade metamorphic Precambrian of Southwestern Norway: Norges Geol. Unders., v. 318, p. 1-50.
- Vielzeuf, D., 1983, The spinel and quartz associations in high grade xenoliths from Tallante (S.E. Spain) and their potential use in geothermometry and barometry: Contributions to Mineralogy and Petrology, v. 82, no. 4, p. 301-311.
- Viete, D. R., and Lister, G. S., 2017, On the significance of short-duration regional metamorphism: Journal of the Geological Society, v. 174, no. 3, p. 377.
- Villaseca, C., Martín Romera, C., De la Rosa, J., and Barbero, L., 2003, Residence and redistribution of REE, Y, Zr, Th and U during granulite-facies metamorphism: behaviour of accessory and major phases in peraluminous granulites of central Spain: Chemical Geology, v. 200, no. 3–4, p. 293-323.
- Walsh, A. K., Kelsey, D. E., Kirkland, C. L., Hand, M., Smithies, R. H., Clark, C., and Howard, H. M., 2015, P–T–t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia: Gondwana Research, v. 28, no. 2, p. 531–564.
- Wang, W., Dunkley, E., Clarke, G. L., and Daczko, N. R., 2014, The evolution of zircon during low-P partial melting of metapelitic rocks: theoretical predictions and a case study from Mt Stafford, central Australia: Journal of Metamorphic Geology, v. 32, p. 791-808.
- Ward, C. D., McArthur, J. M., and Walsh, J. N., 1992, Rare Earth Element Behaviour During Evolution and Alteration of the Dartmoor Granite, SW England: Journal of Petrology, v. 33, no. 4, p. 785-815.
- Watson, E. B., and Harrison, T. M., 1983, Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types: Earth and Planetary Science Letters, v. 64, no. 2, p. 295-304.

- Watson, E. B., and Harrison, T. M., 2005, Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth: Science, v. 308, no. 5723, p. 841.
- Watson, E. B., Wark, D. A., and Thomas, J. B., 2006, Crystallization thermometers for zircon and rutile: Contributions to Mineralogy and Petrology, v. 151, no. 4, p. 413.
- Watt, G. R., Burns, I. M., and Graham, G. A., 1996, Chemical characteristics of migmatites: accessory phase distribution and evidence for fast melt segregation rates: Contributions to Mineralogy and Petrology, v. 125, no. 1, p. 100-111.
- Westphal, M., Schumacher, J. C., and Boschert, S., 2003, High-Temperature Metamorphism and the Role of Magmatic Heat Sources at the Rogaland Anorthosite Complex in Southwestern Norway: Journal of Petrology, v. 44, no. 6, p. 1145-1162.
- Wheller, C. J., and Powell, R., 2014, A new thermodynamic model for sapphirine: calculated phase equilibria in K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>: Journal of Metamorphic Geology, v. 32, p. 287-299.
- White, R. W., and Powell, R., 2002, Melt loss and the preservation of granulite facies mineral assemblages: Journal of Metamorphic Geology, v. 20, p. 621-632.
- White, R. W., Powell, R., and Clarke, G. L., 2002, The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>: Journal of Metamorphic Geology, v. 20, p. 41-55.
- White, R. W., Powell, R., and Holland, T. J. B., 2007, Progress relating to calculation of partial melting equilibria for metapelites: Journal of Metamorphic Geology, v. 25, p. 511-527.
- White, R. W., Powell, R., Holland, T. J. B., Johnson, T., and Green, E. C. R., 2014a, New mineral activity-composition relations for thermodynamic calculations in metapelitic systems: Journal of Metamorphic Geology, v. 32, p. 261-286.
- White, R. W., Powell, R., and Johnson, T., 2014b, The effect of Mn on mineral stability in metapelites revisited: new a-x relations for manganese-bearing minerals: Journal of Metamorphic Geology, v. 32, p. 809-828.

Bibliography

Whitehouse, M. J., and Kamber, B. S., 2003, A rare earth element study of complex zircons from early Archaean Amîtsoq gneisses, Godthåbsfjord, south-west Greenland: Precambrian Research, v. 126, no. 3–4, p. 363-377.

Whitehouse, M. J., and Platt, J. P., 2003, Dating high-grade metamorphism- constraints from rare-earth elements in zircon and garnet: Contributions to Mineralogy and Petrology, v. 145, p. 61-74.

- Whitehouse, M. J., Ravindra Kumar, G. R., and Rimša, A., 2014, Behaviour of radiogenic Pb in zircon during ultrahigh-temperature metamorphism: an ion imaging and ion tomography case study from the Kerala Khondalite Belt, southern India: Contributions to Mineralogy and Petrology, v. 168, no. 2, p. 1042.
- Whitney, D. L., and Evans, B. W., 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, p. 185-187.
- Wielens, J. B. W., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Priem, H. N. A., Verdurmen,
  E. A. T., and Verschure, R. H., 1981, Isotope geochronology in the High-grade metamorphic
  Precambrian of Southwestern Norway: new data and reinterpretations: Norges Geol. Unders., v. 359, p. 1-30.
- Williams, I. S., Buick, I. S., and Cartwright, I., 1996, An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia\*: Journal of Metamorphic Geology, v. 14, no. 1, p. 29-47.
- Williams, I. S., Compston, W., Collerson, K. D., Arriens, P. A., and Lovering, J. F., 1983, A reassessment of the age of the Windmill metamorphics, Casey area: Antarctic Earth Science. Austral Acad Sci, Canberra, p. 73-76.
- Williams, M. L., and Jercinovic, M. J., 2002, Microprobe monazite geochronology: putting absolute time into microstructural analysis: Journal of Structural Geology, v. 24, no. 6–7, p. 1013-1028.
- Williams, M. L., and Jercinovic, M. J., 2012, Tectonic interpretation of metamorphic tectonites: integrating compositional mapping, microstructural analysis and in situ monazite dating: Journal of Metamorphic Geology, v. 30, no. 7, p. 739-752.

- Williams, M. L., Jercinovic, M. J., Goncalves, P., and Mahan, K., 2006, Format and philosophy for collecting, compiling, and reporting microprobe monazite ages: Chemical Geology, v. 225, no. 1–2, p. 1-15.
- Williams, M. L., Jercinovic, M. J., Harlov, D. E., Budzyń, B., and Hetherington, C. J., 2011, Resetting monazite ages during fluid-related alteration: Chemical Geology, v. 283, p. 218-225.
- Williams, M. L., Jercinovic, M. J., Mahan, K. H., and Dumond, G., 2017, Electron Microprobe Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 153.
- Williams, M. L., Jercinovic, M. J., and Terry, M. P., 1999, Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories: Geology, v. 27, no. 11, p. 1023.
- Wilmart, E., Clocchiatti, R., Duchesne, J.-C., and Touret, J. L. R., 1991, Fluid inclusions in charnockites from the Bjerkreim-Sokndal massif (Rogaland, southwestern Norway): fluid origin and in situ evolution: Contributions to Mineralogy and Petrology, v. 108, p. 453-462.
- Wilmart, E., and Duchesne, J.-C., 1987, Geothermobarometry of igneous and metamorphic rocks around the Åna-sira anorthosite massif: Implications for the depth of emplacement of the South Norwegian anorthosites: Norsk Geologisk Tidsskrift, v. 67, p. 185-196.
- Wing, B. A., Ferry, J. M., and Harrison, T. M., 2003, Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology: Contributions to Mineralogy and Petrology, v. 145, no. 2, p. 228-250.
- Wolf, M. B., and London, D., 1994, Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms: Geochimica et Cosmochimica Acta, v. 58, no. 19, p. 4127-4145.
- Wu, Y.-B., Gao, S., Zhang, H.-F., Yang, S.-H., Jiao, W.-F., Liu, Y.-S., and Yuan, H.-L., 2008a, Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China: evidence from zircon U–Pb age, trace element and Hf isotope composition: Contributions to Mineralogy and Petrology, v. 155, no. 1, p. 123-133.

- Wu, Y.-B., Zheng, Y.-F., Gao, S., Jiao, W.-F., and Liu, Y.-S., 2008b, Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen: Lithos, v. 101, no. 3–4, p. 308-322.
- Wu, Y. B., Zheng, Y. F., Zhang, S. B., Zhao, Z. F., Wu, F. Y., and Liu, X. M., 2007, Zircon U–Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting: Journal of Metamorphic Geology, v. 25, no. 9, p. 991-1009.
- Xie, L., Zhang, Y., Zhang, H., Sun, J., and Wu, F., 2008, In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite: Chinese Science Bulletin, v. 53, no. 10, p. 1565-1573.
- Yakymchuk, C., 2017, Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth: Lithos, v. 274–275, p. 412-426.
- Yakymchuk, C., and Brown, M., 2014a, Behaviour of zircon and monazite during crustal melting: Journal of the Geological Society, v. 171, no. 4, p. 465.
- Yakymchuk, C., and Brown, M., 2014b, Consequences of open-system melting in tectonics: Journal of the Geological Society, v. 171, no. 1, p. 21.
- Yakymchuk, C., Clark, C., and White, R. W., 2017, Phase Relations, Reaction Sequences and Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 13.
- Yoshida, M., Santosh, M., and Shirahata, H., 1991, Geochemistry of gneiss-granulite transformation in the "incipient charnockite" zones of southern India: Mineralogy and Petrology, v. 45, p. 69-83.
- Yuan, H.-L., Gao, S., Dai, M.-N., Zong, C.-L., Günther, D., Fontaine, G. H., Liu, X.-M., and Diwu, C., 2008, Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS: Chemical Geology, v. 247, no. 1–2, p. 100-118.
- Yurimoto, H., Duke, E. F., Papike, J. J., and Shearer, C. K., 1990, Are discontinuous chondritenormalized REE patterns in pegmatitic granite systems the results of monazite fractionation?: Geochimica et Cosmochimica Acta, v. 54, no. 7, p. 2141-2145.

- Zack, T., Moraes, R., and Kronz, A., 2004, Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer: Contributions to Mineralogy and Petrology, v. 148, no. 4, p. 471-488.
- Zhao, L., Zhou, X., Zhai, M., Santosh, M., and Geng, Y., 2015, Zircon U–Th–Pb–Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane: Gondwana Research, v. 28, no. 1, p. 246-261.
- Zhou, X., Zhao, G., Wei, C., Geng, Y., and Sun, M., 2008, EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton: American Journal of Science, v. 308, no. 3, p. 328-350.
- Zhu, X. K., and O'Nions, R. K., 1999, Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: a case study from the Lewisian terrain: Earth and Planetary Science Letters, v. 171, no. 2, p. 209-220.
- Zhu, X. K., O'Nions, R. K., Belshaw, N. S., and Gibb, A. J., 1997, Significance of in situ SIMS chronometry of zoned monazite from the Lewisian granulites, northwest Scotland: Chemical Geology, v. 135, no. 1, p. 35-53.

Every reasonable effort has been made to acknowledge the owners of copyright material. I would be pleased to hear from any copyright owner who has been omitted or incorrectly acknowledged.

## Appendix A

This appendix contains formatted copies of all published papers contained within this thesis, author contributions and copyright information where required.

Contents:

Paper 1 (Chapter 2): 'Constraints on the timing and conditions of high-grade234metamorphism, charnockite formation and fluid–rock interaction in the234Trivandrum Block, southern India' as published in the Journal of MetamorphicGeology.

Paper 2 (Chapter 3): 'Reappraising the P-T evolution of the Rogaland–Vest242Agder Sector, southwestern Norway' as published in *Geoscience Frontiers*.242Paper 3 (Chapter 4): Author contributions for 'Constraining the timing of258prograde metamorphism in long-lived hot orogens'.258

Paper 4 (Chapter 5): Author contributions for 'Using accessory minerals to260unravel thermal histories in polymetamorphic terranes: an example fromRogaland, SW Norway'.

Appendix A

## **Statement of Authorship**

Title of Paper: Constraints on the timing and conditions of high-grade metamorphism,

charnockite formation and fluid-rock interaction in the

Trivandrum Block, southern India

Publication Status:PublishedImage: Accepted for PublicationImage: Submitted for PublicationImage: PublicationPublication Style

Publication Details:

Blereau, E., Clark, C., Taylor, R. J. M., Johnson, T. E., Fitzsimons, I. C. W., and Santosh M., 2016. Constraints on the timing and conditions of high-grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India. Journal of Metamorphic Geology, 34, 527–549. doi:10.1111/jmg.12192.

## Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate's thesis.

Name of Principal Author (Candidate): Eleanore R. Blereau

<u>Contributions to the Paper:</u> Conducted sample preparation, geochronological and geochemical data collection, processing and interpretation, petrography, phase equilibria modelling and drafting the manuscript

Overall percentage: 75%

Signature

Name of Co-Author: Chris Clark

<u>Contributions to the Paper:</u> Assisted with data interpretation, petrography and editing of the manuscript, field work

Overall percentage: 7%

Digitally signed by Chris Clark Date: 2017.07.07 09:53:25 +08'00'

Hereau

Date: 7 / 7 /2017

7 / 7 /2017

Date:

Signature

Name of Co-Author: Richard J. M. Taylor

<u>Contributions to the Paper:</u> Assisted with geochronological and geochemical data collection, processing and interpretation and editing of the manuscript, field work Overall percentage: 7%

Signature

Date: 7 / 4 /2017
First Authored Papers

Name of Co-Author: Tim E. Johnson

<u>Contributions to the Paper:</u> Assisted with data interpretation, phase equilibria modelling, petrography and editing of the manuscript Overall percentage: 7%

Signature

Date: 7 / 7 /2017

Name of Co-Author: Ian C. W. Fitzsimons Contributions to the Paper: Assisted with editing of the manuscript Overall percentage: 2%

Signature

Date: 11 / 4 /2017

Name of Co-Author: M. Santosh

<u>Contributions to the Paper:</u> Assisted with editing of the manuscript and field logistics Overall percentage: 1%

Signature

Santal Date: 28 / 3 /2017

Copyright: Please see below for copyright license for typeset Chapter 2.

RightsLink Printable License

## JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Jul 01, 2017

This Agreement between Eleanore R Blereau ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

| License Number                         | 4140040837595                                                                                                                                                 |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| License date                           | Jul 01, 2017                                                                                                                                                  |
| Licensed Content Publisher             | John Wiley and Sons                                                                                                                                           |
| Licensed Content Publication           | Journal of Metamorphic Geology                                                                                                                                |
| Licensed Content Title                 | Constraints on the timing and conditions of high-grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India |
| Licensed Content Author                | E. Blereau,C. Clark,R. J. M. Taylor,T. E. Johnson,I. C. W. Fitzsimons,M. Santosh                                                                              |
| Licensed Content Date                  | May 19, 2016                                                                                                                                                  |
| Licensed Content Pages                 | 23                                                                                                                                                            |
| Type of use                            | Dissertation/Thesis                                                                                                                                           |
| Requestor type                         | Author of this Wiley article                                                                                                                                  |
| Format                                 | Print and electronic                                                                                                                                          |
| Portion                                | Full article                                                                                                                                                  |
| Will you be translating?               | No                                                                                                                                                            |
| Title of your thesis /<br>dissertation | A Petrochronological Investigation of Metamorphic, Melt and Fluid Related Processes in Lower Crustal Rocks from Southwestern Norway and Southern India        |
| Expected completion date               | Jul 2017                                                                                                                                                      |
| Expected size (number of pages)        | 300                                                                                                                                                           |
| Requestor Location                     | Eleanore R Blereau<br>14 Onslow St<br>Chidlow                                                                                                                 |
|                                        | Perth, Western Australia 6556<br>Australia<br>Attn: Eleanore R Blereau                                                                                        |
| Publisher Tax ID                       | EU826007151                                                                                                                                                   |
| Billing Type                           | Invoice                                                                                                                                                       |
| Billing Address                        | Eleanore R Blereau<br>14 Onslow St<br>Chidlow                                                                                                                 |
|                                        | Perth, Australia 6556<br>Attn: Eleanore R Blereau                                                                                                             |
| Total                                  | 0.00 AUD                                                                                                                                                      |
| <b>T</b> 1.0 IV                        |                                                                                                                                                               |

Terms and Conditions

## TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work

https://s100.copyright.com/AppDispatchServlet

1/5

#### RightsLink Printable License

(collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your RightsLink account (these are available at any time at http://mvaccount.copyright.com).

### **Terms and Conditions**

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This license, and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner.For STM Signatory Publishers clearing permission under the terms of the <u>STM Permissions Guidelines</u> only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.
- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto
- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE

https://s100.copyright.com/AppDispatchServlet

#### RightsLink Printable License

MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.

- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.
- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.
- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.

https://s100.copyright.com/AppDispatchServlet

3/5

#### RightsLink Printable License

- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

## WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article.

## The Creative Commons Attribution License

The <u>Creative Commons Attribution License (CC-BY</u>) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

### Creative Commons Attribution Non-Commercial License

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

## Creative Commons Attribution-Non-Commercial-NoDerivs License

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

### Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html

**Other Terms and Conditions:** 

#### v1.10 Last updated September 2015

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

https://s100.copyright.com/AppDispatchServlet

First Authored Papers

The accepted and formatted version of the paper 'Constraints on the timing and conditions of high-grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India' is unable to be reproduced here due to copyright restrictions. The paper 'Constraints on the timing and conditions of high-grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India' can instead be accessed via DOI: 10.1111/jmg.12192.

First Authored Papers

# **Statement of Authorship**

Title of Paper: Reappraising the P-T evolution of the Rogaland-Vest Agder Sector,

southerwestern Norway

Publication Status:PublishedImage: Accepted for PublicationImage: Submitted for PublicationImage: PublicationPublication Style

Publication Details:

Blereau, E., Johnson, T. E., Clark, C., Taylor, R. J. M., Kinny, P. D., and Hand, M., 2017. Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway. Geoscience Frontiers, 8, 1–14. doi: http://dx.doi.org/10.1016/j.gsf.2016.07.003

## Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate's thesis.

Name of Principal Author (Candidate): Eleanore R. Blereau Contributions to the Paper: Conducted sample preparation, field work, phase equilibria modelling, petrography, sample interpretation and drafting of the manuscript Overall percentage: 74%

Signature

Name of Co-Author: Tim E. Johnson

<u>Contributions to the Paper</u>: Assisted with phase equilibria modelling, petrography, sample interpretation and editing of the manuscript

Overall percentage: 6%

MA

Geneau

Date: 7 / 7 /2017

7 / 7 /2017

Date:

Date:

Signature

Name of Co-Author: Chris Clark Contributions to the Paper: Assisted with field work, sample interpretation and editing of the manuscript Overall percentage: 6%

Signature

Name of Co-Author: Richard J. M. Taylor

<u>Contributions to the Paper:</u> Assisted with field work, sample interpretation and editing of the manuscript

Overall percentage: 6%

Date:

by Chris Clark Date: 2017.07.07 09:54:30 +08'00'

e: 7 / 4 /2017

7 / 7 /2017

Signature

*First Authored Papers* 

Name of Co-Author: Peter D. Kinny

<u>Contributions to the Paper:</u> Assisted with field work, sample interpretation and editing of the manuscript

Overall percentage: 6%

Signature

Date: 7 / 7 /2017

Name of Co-Author: Martin Hand

<u>Contributions to the Paper:</u> Assisted with field work and editing of the manuscript Overall percentage: 2%

Signature

JK KQ

Date: 10 / 4 /2017

Copyright: Geoscience Frontiers is a completely Open Access journal with the included article: *Blereau, E., Johnson, T. E., Clark, C., Taylor, R. J. M., Kinny, P. D., and Hand, M., 2017. Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway. Geoscience Frontiers, 8, 1–14. doi: http://dx.doi.org/10.1016/j. gsf.2016.07.003*, freely reproduced completely with no copyright infringements as a part of this thesis by the first author. See https://creativecommons.org/licenses/by-nc-nd/4.0/ for more information if neccessary.

## Geoscience Frontiers 8 (2017) 1–14



## Research paper

## Reappraising the *P*–*T* evolution of the Rogaland–Vest Agder Sector, southwestern Norway



<sup>a</sup> Department of Applied Geology, The Institute for Geoscience Research (TIGeR), Curtin University, Perth 6845, Western Australia, Australia <sup>b</sup> Centre for Tectonics, Resources and Exploration (TRAX), School of Earth and Environmental Sciences, University of Adelaide, Adelaide 5005, South Australia, Australia

#### ARTICLE INFO

## Article history Received 14 April 2016 Received in revised form

12 July 2016 Accepted 16 July 2016 Available online 10 August 2016

Keywords: UHT Phase equilibria modelling Rogaland Igneous Complex THERMOCALC Sveconorwegian Orogen

## ABSTRACT

The Rogaland-Vest Agder Sector of southwestern Norway comprises high-grade metamorphic rocks intruded by voluminous plutonic bodies that include the  $\sim 1000 \text{ km}^2$  Rogaland Igneous Complex (RIC). New petrographic observations and thermodynamic phase equilibria modelling of three metapelitic samples collected at various distances (30 km, 10 km and ~10 m) from one of the main bodies of RIC anorthosite were undertaken to assess two alternative P-T-t models for the metamorphic evolution of the area. The results are consistent with a revised two-phase evolution. Regional metamorphism followed a clockwise *P*-*T* path reaching peak conditions of ~850–950 °C and ~7–8 kbar at ~1035 Ma followed by high-temperature decompression to ~5 kbar at ~950 Ma, and resulted in extensive anatexis and melt loss to produce highly residual rocks. Subsequent emplacement of the RIC at ~930 Ma caused regional-scale contact metamorphism that affected country rocks 10 km or more from their contact with the anorthosite. This thermal overprint is expressed in the sample proximal to the anorthosite by replacement of sillimanite by coarse intergrowths of cordierite plus spinel and growth of a second generation of garnet, and in the intermediate (10 km) sample by replacement of sapphirine by coarse intergrowths of cordierite, spinel and biotite. The formation of late biotite in the intermediate sample may suggest the rocks retained small quantities of melt produced by regional metamorphism and remained at temperatures above the solidus for up to 100 Ma. Our results are more consistent with an accretionary rather than a collisional model for the Sveconorwegian Orogen.

© 2016, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

#### 1. Introduction

The Rogaland-Vest Agder Sector of SW Norway is a metamorphic province dominated by high-grade gneisses and intrusive igneous rocks (Maijer et al., 1981; Tobi et al., 1985; Jansen and Tobi, 1987; Maijer, 1987). Together these rocks represent the core of the ca. 1200-900 Ma Sveconorwegian Orogen (Falkum and Petersen, 1980; Falkum, 1985). The intrusive rocks include the Rogaland Igneous Complex (RIC) that is exposed over  $\sim 1000 \text{ km}^2$  and comprised largely of three massif-type anorthosite plutons emplaced around 930 Ma (Schärer et al., 1996). Two contrasting tectonic models have been proposed to explain the evolution of the Sveconorwegian Orogen, one involving continent-continent collision (Bingen et al., 2008) and the other involving protracted subduction-accretion (Slagstad et al., 2013a,b; Coint et al., 2015; Roberts and Slagstad, 2015). Collisional models generally require long timescales for the rocks to reach high-grade metamorphism (Clark et al., 2011; Slagstad et al., 2013a,b), whereas in accretionary orogens such conditions may be attained much faster (Slagstad et al., 2013a,b; Coint et al., 2015). However, clockwise P-T paths are not diagnostic of either tectonic setting (Brown, 2007).

The role of the RIC in the metamorphic history of the gneisses of the Rogaland–Vest Agder Sector is controversial, and two different P-T-t models have been advanced (Fig. 3). Möller et al. (2003) and Tomkins et al. (2005) proposed a two-stage metamorphic evolution, in which an upper amphibolite facies regional event characterized by a clockwise P-T evolution was followed by ultra-high

http://dx.doi.org/10.1016/j.gsf.2016.07.003

http://www.weisenergipear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/opear.com/op ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

CrossMark

<sup>\*</sup> Corresponding author. E-mail address: eleanore.blereau@postgrad.curtin.edu.au (E. Blereau). Peer-review under responsibility of China University of Geosciences (Beijing).

2



Figure 1. Map showing the main geological subdivisions of Scandinavia (after Bergh et al., 2012). Abbreviations: T – Telemarkia Terrane; B – Bamble Sector; O – Oslo Graben; K – Kongsberg Sector; I – Idefjorden Terrane; ES – Eastern Segment; C – Caledonides; TIB – Transcandinavian Igneous Belt; SF – Svecofennian Domain; WG – Western Gneiss Region.

temperature (UHT) metamorphism at lower pressure related to intrusion of the RIC. By contrast, Drüppel et al. (2013) proposed a single-stage, protracted clockwise regional metamorphic evolution that reached a UHT metamorphic peak some 70 Ma prior to emplacement of the RIC; in this model, high-grade metamorphism and intrusion are considered to have been unrelated.

In this study, we combine new petrographic observations with phase equilibria modelling of three metapelitic samples collected at different distances from the RIC (30 km, 10 km and <50 m) to reevaluate their metamorphic evolution. We discuss the implications of the results for the tectonic evolution of the Sveconorwegian Belt.

#### 2. Regional geology

The rocks of southern Scandinavia experienced three Proterozoic orogenic events: in Sweden and Finland the *ca*. 1900–1750 Ma Svecofennian orogeny, in SE Norway and Sweden the *ca*. 1750–1550 Ma Gothian orogeny, and in southern Norway and SW Sweden the *ca*. 1200–900 Ma Sveconorwegian orogeny (Andersen et al., 2002). The Sveconorwegian Belt lies to the west of the Svecofennian Domain and the *ca*. 1850–1650 Ma Transcandinavian Igneous Belt and is bounded obliquely to the northwest by the Caledonides (Fig. 1). It comprises a number of lithotectonic domains, including the Eastern Segment, Idefjorden Terrane, Bamble, Kongsberg and Telemarkia Terranes, all of which are bounded by major shear zones (Fig. 1). The Telemarkia Terrane is interpreted to

E. Blereau et al. / Geoscience Frontiers 8 (2017) 1-14

have formed in a short magmatic event between 1520–1480 Ma (Bingen et al., 2005, 2006; Bogdanova et al., 2008; Roberts and Slagstad, 2015) and is further divided into the Telemark, Hardangervidda, Sudal and Rogaland–Vest Agder Sectors (Fig. 2).

The focus of this study, the Rogaland-Vest Agder (RVA) Sector, is a high-grade gneiss complex intruded by voluminous synorogenic plutons that represents the core of the Sveconorwegian Orogen (Falkum and Petersen, 1980; Falkum, 1985). The complex consists of felsic orthogneiss, much of which contains orthopyroxene, and subordinate garnet-bearing paragneiss (Hermans et al., 1975; Falkum, 1982, 1985; Tobi et al., 1985; Bingen et al., 2005; Tomkins et al., 2005; Coint et al., 2015), with minor amphibolite, quartzite, calc-silicate and marble (Huijsmans et al., 1981; Falkum, 1982, 1985; Tobi et al., 1985; Jansen and Tobi, 1987; Bingen et al., 2005; Harlov, 2011). The orthopyroxene-bearing orthogneiss is variably migmatitic, in which migmatised varieties have protolith ages of ca. 1450 Ma whereas non-migmatised varieties have younger protolith ages of ca. 1230-1210 Ma (Coint et al., 2015). Migmatitic garnet-bearing paragneiss contains abundant garnet as well as sillimanite and/or cordierite-bearing layers indicating pelitic to semi-pelitic protoliths (Hermans et al., 1975; Coint et al., 2015). Detrital zircon U-Pb ages between ca. 3000-1200 Ma have been reported from one of these migmatitic metapelites (Tomkins et al., 2005).

The RVA Sector contains three suites of intrusive rocks: (1) the Sirdal Magmatic Belt (SMB); (2) the hornblende-biotite granites (HBG) and (3) the Rogaland Igneous Complex (RIC). The 1060–1020 Ma SMB, which covers an aerial extent of ~10,000 km<sup>2</sup>, is a weakly deformed calc-alkaline granitic batholith that preserves igneous textures (Slagstad et al., 2013a,b; Coint et al., 2015). The main constituent is porphyritic biotite granite with lesser amounts of leucogranite, garnet granite and zones rich in xenoliths including migmatitic gneiss (Coint et al., 2013a,b) may reflect characteristics inherited from the source rocks, which were probably *ca*. 1500 Ma calc-alkaline metavolcanics and granitoid rocks such as are common in southern Norway, in particular in the Telemark and Hardangervidda Sector (Coint et al., 2015).

The 990–932 Ma HBG suite occurs as discrete 'A-type' plutons that crop out across the Telemarkia Terrane (Bogaerts et al., 2003; Vander Auwera et al., 2011). The range in composition in the HBG Suite from gabbronorite to granite (50–77 wt.% SiO<sub>2</sub>) is interpreted to reflect extreme fractional crystallization of several batches of basaltic magma (Bogaerts et al., 2003). The HBG suite was likely derived from an undepleted to slightly depleted hydrous mafic source that was underplated during a previous orogenic event (Bogaerts et al., 2013; Vander Auwera et al., 2014).

The  $\sim 1000 \text{ km}^2$  RIC, also referred to as the Rogaland Anorthosite Complex (Pasteels et al., 1979; Schärer et al., 1996; Bogaerts et al., 2003; Westphal et al., 2003) and Rogaland Anorthosite Province (Sauer et al., 2013; Coint et al., 2015), is composed of three massif-type anorthosites (Egersund-Ogna, Håland-Heleren and Åna-Sira) as well as a large layered polyphase intrusion (Bierkreim-Sokndal lopolith), two smaller leuconorite bodies (Hidra and Garsaknatt) and a small number of mafic dykes (high-Al gabbros to orthopyroxene monzonorite) (Pasteels et al., 1979; Wilmart et al., Vander Auwera and Longhi, 1994; Nijland et al., 1996; 1991: Schärer et al., 1996; Duchesne and Wilmart, 1997; Bolle et al., 2002; Marker et al., 2003; Möller et al., 2003; Bolle et al., 2010). The three anorthosite massifs contain subophitic aggregates of megacrystic plagioclase and aluminous orthopyroxene within finegrained leuconorite (Schärer et al., 1996; Bybee et al., 2014). U-Pb ages of zircon and baddeleyite inclusions within orthopyroxene megacrysts in the Egersund-Ogna, Håland-Heleren and Åna-Sira anorthosites are identical within uncertainty at ca. 930 Ma (Schärer



Figure 2. Geological map of the Rogaland-Vest Agder Sector of southwest Norway (after Coint et al. (2015), MUL from Vander Auwera et al. (2011) and mineral isograds from Bolle et al. (2010)). Samples from this study are marked as large white stars with locations from previous studies as smaller black stars.

et al., 1996). Based on the complex spread of zircon U–Pb ages reported by Möller et al. (2003), the RIC suggested by Coint et al. (2015) has a protracted, episodic emplacement history. The margin of the Egersund-Ogna massif has a magmatic foliation parallel to both its boundary and to the foliation of the adjacent host gneisses (Schärer et al., 1996; Bolle et al., 2002) that has been used as evidence for diapiric emplacement of a ~1150 °C crystal mush (Duchesne and Michot, 1987; Longhi et al., 1993; Schärer et al., 1996; Bolle et al., 2002). The anorthosites were emplaced at mid crustal depths (minimum of 5.0–7.7 kbar, ~20–30 km) based on conventional thermobarometry and numerical modelling (Wilmart and Duchesne, 1987; Barnichon et al., 1999).

Within the RIC, the Bjerkreim-Sokndal lopolith is a layered intrusion with four main phases; a basal phase of anorthosite-leuconorite and norite with rhythmic layering is overlain by monzonorite that is in turn overlain by monzonite and, lastly, by quartz monzonite (Versteeve, 1975; Wilmart et al., 1991; Duchesne and Wilmart, 1997; Bolle et al., 2002). The lopolith, which is separated from the anorthosite intrusions by a thin septum of gneissic country rocks, was emplaced at approximately the same time (Wilmart et al., 1991; Vander Auwera and Longhi, 1994; Schärer et al., 1996; Duchesne and Wilmart, 1997). Geochemical and isotopic data indicate that the RIC had a relatively anhydrous, lower crustal source (Bogaerts et al., 2003) with more recent studies suggesting that the parent magmas originated at the Moho with anorthosite formation tied to protracted magmatism in a convergent arc (Bybee et al., 2014). Previous studies suggested multiple parental melt compositions for the RIC suite, with source rocks possibly ranging from high Al-basalt to primitive orthopyroxene monzonorite (Vander Auwera et al., 2011, and references therein).

The high-grade gneisses of the RVA Sector are considered by some authors to have experienced a polymetamorphic evolution, and to preserve textural evidence for a regional metamorphic event followed by a high temperature contact metamorphic overprint (Verschure et al., 1980; Maijer et al., 1981; Wielens et al., 1981; Demaiffe and Michot, 1985; Jansen et al., 1985; Tobi et al., 1985; Maijer, 1987; Bingen and van Breemen, 1998; Möller et al., 2003; Tomkins et al., 2005; Coint et al., 2015). Evidence for an amphibolite facies regional metamorphic event (commonly termed M<sub>1</sub>) at ca. 1035 Ma (Tomkins et al., 2005) is based on isotopic data from a garnet-biotite-sillimanite metapelite,  $\sim 25-30$  km from the contact with the RIC (Möller et al., 2003). Coint et al. (2015) also suggested a similar age of regional metamorphism of ca. 1030 Ma. The subsequent growth in this rock of cordierite containing zircon dated at ca. 955 Ma indicates that peak metamorphic conditions were followed by decompression (shown in red, Fig. 3) (Möller et al., 2003; Tomkins et al., 2005). These events predate the emplacement of the RIC at ca. 930 Ma (Schärer et al., 1996), which caused large-scale contact metamorphism (M2) at UHT conditions (shown in blue, Fig. 3) (Schärer et al., 1996; Möller et al., 2003; Westphal et al., 2003). Pressure-temperature estimates of ~750 °C at 5-7 kbar for the regional event and 700-1050 °C at ~4 kbar for the contact metamorphism were derived using

3

4



Figure 3. Two alternative *P*–*T* models proposed for the Rogaland–Vest Agder sector (modified after Drippel et al., 2013); two-stage metamorphic evolution (Möller et al., 2003; Tomkins et al., 2005) versus protracted, single-stage metamorphic evolution (Drippel et al., 2013).

conventional thermobarometry (Jansen et al., 1985). A later retrograde overprint (so-called M<sub>3</sub>) to upper amphibolite to granulite facies at 908 Ma (550–700 °C and 3–5 kbar) is interpreted to be related to the isobaric cooling of intrusive bodies with the partial replacement of high grade minerals such as osumilite (Kars et al., 1980; Maijer et al., 1981; Wielens et al., 1981; Jansen et al., 1985; Bol et al., 1989; Nijland et al., 1996; Möller et al., 2003; Tomkins et al., 2005; Bolle et al., 2010).

In contrast to the previous interpretations, Drüppel et al. (2013) reinterpreted the gneisses as having experienced a single, long-lived regional metamorphic event that peaked at UHT conditions some 70 Ma prior to intrusion of the RIC (shown in green, Fig. 3). This interpretation, based on phase equilibria modelling in the Na<sub>2</sub>O–CaO–K<sub>2</sub>O–FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O–TiO<sub>2</sub> (NCKFMASHT) model system of samples ~ 10 km from the RIC contact, indicated peak conditions of ~ 1000 °C at ~ 7.5 kbar were followed by near isothermal decompression to <5.5 kbar at 900–1000 °C (M<sub>2</sub>) before near isobaric cooling (Drüppel et al., 2013). These authors concluded that no second thermal pulse is recorded by the silicate mineral assemblage in the RVA Sector. Zircon U–Pb ages are consistent with a metamorphic age at *ca*. 1000 Ma; epitaxial xenotime yields U–Pb ages within error of the emplacement of the RIC at *ca*. 930 Ma (Drüppel et al., 2013).

A series of high-T mineral-in isograds, including inverted pigeonite in felsic orthogneiss, osumilite in paragneiss, orthopyroxene in felsic orthogneiss and clinopyroxene in granodioritic gneiss, are broadly parallel to the margin of the RIC (Fig. 2) (Hermans et al., 1975; Pasteels et al., 1979; Sauter, 1981; Jansen et al., 1985; Tobi et al., 1985; Maijer, 1987; Bol et al., 1989). These isograds represent a temperature range from ~700 °C at the orthopyroxene-in isograd to over 900 °C (UHT) at the pigeonite-in isograd (Jansen et al., 1985; Tobi et al., 1985; Bol et al., 1989; Möller et al., 2002, 2003; Tomkins et al., 2005). Whereas most studies have interpreted the osumilite and pigeonite-in isograds as the products of contact metamorphism at ca. 930 Ma superimposed upon granulite to amphibolite-facies regional metamorphic assemblages, others regard the orthopyroxene isograd to pre-date the contact event (Bingen and van Breemen, 1998), More recently, Coint et al. (2015) have proposed that the orthopyroxene-in isograd separates granulite-facies rocks to the west from non-metamorphosed granites to the east and should not be regarded as an isograd at all.

## E. Blereau et al. / Geoscience Frontiers 8 (2017) 1–14

## 3. Sample descriptions and petrology

Three samples collected from different distances from the RIC–country rock contact were investigated in order to evaluate their metamorphic histories. Hereafter, these samples are referred to as distal (collected ~30 km from the RIC), intermediate (~10 km) and proximal (~10 m), as shown in Fig. 2. Mineral abbreviations follow Kretz (1983) and Whitney and Evans (2010).

## 3.1. Distal sample (N58°49'49.4", E6°16'49.2")

The distal sample (ROG13/11) is a garnet—sillimanite—cordierite metapelite collected a short distance up-grade of the orthopyroxene-in isograd. The sample site, ~400 m NW of Giljastølsvatnet, is ~5 km north of the sample locality of Degeling et al. (2001) and Tomkins et al. (2005) (Fig. 2). The sample is a migmatite comprising melanosome rich in garnet, sillimanite and cordierite and garnet-bearing leucosomes that are continuous at an outcrop scale and oriented sub-parallel to the regional foliation (Fig. 4a).

In thin section, the melanosome contains anhedral garnet porphyroblasts (2–8 mm) within which abundant inclusions of sillimanite define a folded foliation that curves into parallelism with the matrix foliation (Fig. 4b, c) that is also defined by sillimanite (0.2–1 mm). Variably pinitised cordierite (2–6 mm, 10–15%) surrounds garnet, sillimanite, ilmenite and quartz (Fig. 4b, c). Minor feldspar is also present within the matrix. Minor singular grains of ilmenite (0.5–1 mm) are partially to completely replaced by intergrowths of differently orientated rutile and chlorite. The leucosome is composed of sub-equal proportions of quartz (2–6 mm), plagioclase (1–4 mm) and K-feldspar (2–4 mm), along with anhedral to rounded garnet (1–3 mm) that contains abundant inclusions of quartz but no sillimanite (Fig. 4d). Minor biotite is present (0.5–1 mm) along with small amounts of muscovite.

The interpreted peak assemblage in sample ROG13/11 is garnet, sillimanite, plagioclase, K-feldspar, quartz, ilmenite and melt. Matrix garnet containing sillimanite inclusions is interpreted to mainly represent subsolidus growth, whereas leucosome garnet that lacks sillimanite inclusions is regarded as a peritectic product of melting reactions consuming biotite. Cordierite and biotite are considered to be retrograde minerals.

## 3.2. Intermediate sample (N58°42'9.7", E6°10'1.4")

The intermediate sample (ROG13/10) is a residual sapphirinebearing metapelite from a locality near Ivesdal, ~10 km NE of the RIC contact (Fig. 2), which has been described previously by Hermans et al. (1976) and Drüppel et al. (2013). The exposure consists of irregular, dark sapphirine-bearing layers within a host orthopyroxene-bearing gneiss (Fig. 5). Minor and sporadically dispersed large garnets ( $\sim$  3–8 cm) within the sapphirine-bearing granulite and, less commonly, within the orthopyroxene gneiss have coronae of orthopyroxene with or without plagioclase, and in some cases have been replaced completely (Fig. 5a, b). Garnetbearing leucosome occurs as rare patches within orthopyroxene gneiss. Sparse quartz veins occur within, and cross-cut both lithologies. Irregular orthopyroxene-rich selvedges and schlieren occur within the orthopyroxene gneiss and occasionally along contacts between orthopyroxene gneiss and sapphirine-bearing metapelite.

In thin section, subhedral to euhedral sapphirine porphyroblasts (1-8 mm, 10-15%) are partially to completely replaced by coarse intergrowths of spinel and cordierite, along with variable amounts of biotite that appears to be replacing cordierite (Fig. 6a, b, d). The matrix consists of cordierite (0.5-3 mm), orthopyroxene



E. Blereau et al. / Geoscience Frontiers 8 (2017) 1-14

Figure 4. Field photograph and photomicrographs from the 'Distal' locality. (a) Garnet–cordierite–sillimanite melanosome with garnet-bearing leucosome at outcrop scale. (b) Garnet porphyroblast within melanosome (xpl) containing ilmenite, sillimanite and minor bioitie inclusions, surrounded by pinitised cordierite and sillimanite. (c) Garnet porphyroblast within melanosome with sillimanite inclusions defining a relict foliation. Coarse sillimanite in the matrix defines a new foliation. (d) Peritectic garnet with quartz inclusions within leucosome, with late biotite. (e) Back scattered electron (BSE) image showing ilmenite being replaced by an integrowth of rutile and chlorite within the melanosome.

(0.5-3 mm), plagioclase (0.5-2 mm), K-feldspar (0.5-1 mm) and biotite (up to 2 mm) (Fig. 6c). Orthopyroxene grains are separated from sapphirine porphyroblasts by layers of cordierite and spinel plus cordierite (Fig. 6a, b). Feldspar grains are variably sericitised. Spinel contains ilmenite and minor exsolved magnetite. Quartz is absent.

We interpret sample ROG13/10 to have contained an earlier assemblage of sapphirine, orthopyroxene, plagioclase, K-feldspar, cordierite, ilmenite and melt that later underwent replacement of sapphirine and orthopyroxene by coarse intergrowths of spinel and cordierite. Subsequent growth of biotite may reflect retrograde reaction in the presence of melt.

6

E. Blereau et al. / Geoscience Frontiers 8 (2017) 1–14



Figure 5. Field photographs from the 'Intermediate' locality. (a) Dark sapphirine granulite layer with completely replaced garnet. (b) Sapphirine granulite and orthopyroxene gneiss containing partially replaced garnets with orthopyroxene coronas. (c) Irregular dark layers of sapphirine granulite interleaved with orthopyroxene gneiss, cut by minor faults.

### 3.3. Proximal sample (N58°35′46.5″, E5°46′59.0″)

The proximal sample ROG14/5 is from country rocks ~10 m from the northwest margin of the RIC (Fig. 2). The sample is a migmatitic garnet-sillmanite-spinel-cordierite metapelitic gneiss (Fig. 7a) that is intruded by several small sheets of garnet-bearing anorthosite (Fig. 7b). The metapelite consists of melanosome rich in garnet and cordierite, within which occurs narrow, foliation-parallel leucosome layers (<1 cm in width). Larger (~0.5–1 m) irregular bodies of garnet-bearing and garnet-free leucosome cross-cut the foliation and contain schollen of melanosome (Fig. 7a). Minor quartz veins are also present. The anorthosite sheets are discontinuous, up to 15 cm wide and 4 m in length and oriented parallel to the foliation (Fig. 7b).

In thin section, sample ROG14/5 is dominated by melanosome containing equant to elongate anhedral garnet porphyroblasts (0.5–4 mm) containing sillimanite inclusions (Fig. 7c, d). A second generation of garnet forms narrow ( $\sim$ 100 µm) rims around preexisting garnet porphyroblasts and adjacent to spinel (Fig. 7c, d). Coarse matrix sillimanite (0.5–4 mm) defines a foliation that wraps around garnet, and is partially replaced by intergrowths of spinel plus cordierite (Fig. 7d). Spinel occurs both within the symplectite and as aggregates of grains surrounded by a thin rind of cordierite or garnet (Fig. 7d). The leucosome contains large (2-8 mm) slightly elongate grains along with smaller (0.5-2 mm) grains of quartz, plagioclase (1-2 mm) and K-feldspar (1-2 mm). Cordierite surrounds garnet, sillimanite and, less commonly, quartz and spinel (1-2 mm) and is sometimes intergrown with K-feldspar (Fig. 7d). Minor ilmenite is partially to completely replaced by late intergrowths of rutile and chlorite.

This sample is interpreted to contain an earlier assemblage of garnet, sillimanite, plagioclase, K-feldspar, quartz, spinel, ilmenite and melt. Replacement of sillimanite by cordierite plus spinel, and growth of a second generation of garnet occurred subsequently.

#### 4. Phase equilibria modelling

Metamorphic *P*–*T* conditions were constrained using *P*–*T*, *P*–X and *T*–X pseudosections modelled in the Na<sub>2</sub>O–CaO–K<sub>2</sub>O–FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O–TiO<sub>2</sub>–O system using THERMOCALC 3.40i and the internally consistent thermodynamic dataset of Holland and Powell (2011) (specifically the tc-ds62 dataset generated on 06/02/2014). Activity–composition models are from White et al. (2014a). Although Mn-bearing solution models have been



Figure 6. Photomicrographs from the 'Intermediate' locality. (a) Sapphirine porphyroblast rimmed by spinel plus cordierite and a cordierite rim separating the symplectite from orthopyroxene. (b) Sapphirine partially replaced by a spinel-cordierite symplectite, with later biotite replacing cordierite within the symplectite. An outer rim of cordierite is present between the symplectite and rohopyroxene. (c) Irregular grains of orthopyroxene and cordierite within the matrix with some grains almost completely surrounded by late biotite. (d) Spinel plus cordierite symplectite with biotite partially replacing cordierite.

calibrated (White et al., 2014b), Mn has a negligible effect at high temperatures and was not considered (Johnson et al., 2015). Calculations consider the phases garnet, silicate melt, plagioclase, Kfeldspar, sillimanite, sapphirine, quartz, muscovite, biotite, orthopyroxene, cordierite, ilmenite, rutile and magnetite-spinel. Osumilite was not included as there is no solution model calibrated against the ds6 dataset.

Bulk rock compositions were determined by X-ray fluorescence analysis using a Panalytical 2404 XRF unit at Franklin and Marshall College, Pennsylvania, for which ferric and ferrous iron contents were determined by titration. The bulk compositions (expressed as mol.% oxides) used in the pseudosections are given in Table 1. Modelled H<sub>2</sub>O contents were constrained using *T*–*X* or *P*–*X* pseudosections ranging from a quantity assuming all analysed loss on ignition (LOI) as H<sub>2</sub>O to lower values (0.1 mol.%). The H<sub>2</sub>O content chosen for *P*–*T* modelling was such that the solidus intersected, or was as close as possible to the field containing the interpreted peak assemblage (see Supplementary data Figs. S1–3). Calculations using the composition of the distal sample (ROG13/11), the most altered of the studied rocks, measured ferric iron concentrations were too high with all calculated fields containing magnetite, which is not observed in the rock. Thus, to account for post-peak oxidation, appropriate ferric iron contents were constrained using a P-X pseudosection ranging from the titrated value (1.31 mol.% Fe<sub>2</sub>O<sub>3</sub>) to a minimal content (0.01 mol.%; see Supplementary data Fig. S4). A value of X = 0.5 (Fe<sub>2</sub>O<sub>3</sub> = O = 0.67 mol.%) was chosen, as it is the minimum required to eliminate magnetite from the interpreted peak assemblage. Note that the stability field of spinel in nature is likely to be larger than the calculated stability due to the presence of minor components (e.g. Zn, V, Cr) that cannot currently be modelled (Tajčmanová et al., 2009). Drüppel et al. (2013) reported average concentrations of Cr<sub>2</sub>O<sub>3</sub> and ZnO in spinel in the sapphirine-bearing sample as 0.07 and 0.15 wt.%, respectively. For reference, P-T pseudosections contoured for the abundance of particular phases calculated using TCInvestigator (Pearce et al., 2015) are given in the Supplementary data (Fig. S5).

#### 4.1. Distal sample

In the *P*–*T* pseudosection for sample ROG13/11 (Fig. 8), the solidus for the chosen  $H_2O$  content is located at ~830 °C at pressures above 7 kbar. Between 6–7 kbar the solidus inflects to higher

7



Figure 7. Field photographs and photomicrographs from the 'Proximal' locality. (a) Garnet-sillimanite-cordierite-spinel migmatite overprinted by a large irregular garnet-bearing leucosome containing schollen of the metapelite. (b) Metapelite with intruded anorthosite sheet. (c) Garnet porphyroblast with secondary garnet overgrowing spinel. (d) Sillimanite partly replaced by spinel plus cordierite, with some of the spinel replaced by diaspore.

temperatures (~970 °C) due to the presence of cordierite that partitions some of the H<sub>2</sub>O that at higher pressures is contained within melt. For the chosen ferric iron content and *P*–*T* range, ilmenite is stable throughout and magnetite is predicted only at low temperatures and pressures. The interpreted peak assemblage

of garnet, sillimanite, plagioclase, K-feldspar, quartz, ilmenite and melt occupies a large stability field at >850 °C and >6 kbar (outlined in red, Fig. 8). At lower temperatures biotite is stable, and at lower pressures cordierite, which occurs replacing garnet at its margins, is predicted. The calculated stability fields of spinel and

| Bulk compositions as molar ox | ide (mol.%) us   | ed in phase o    | equilibria moo                 | lelling. |      |       |      |                   |                  |
|-------------------------------|------------------|------------------|--------------------------------|----------|------|-------|------|-------------------|------------------|
| Sample                        | SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | 0        | FeO  | MgO   | CaO  | Na <sub>2</sub> O | K <sub>2</sub> O |
| ROG13/11 (Distal)             | 68.95            | 0.78             | 12.95                          | 0.67     | 6.86 | 3.68  | 1.39 | 1.82              | 2.80             |
| ROG13/10 (Intermediate)       | 51.45            | 0.64             | 14.98                          | 1.13     | 6.73 | 17.99 | 1.33 | 1.78              | 2.94             |
| ROG14/5 (Proximal)            | 63.19            | 0.83             | 16.71                          | 0.57     | 9.29 | 4.85  | 1.28 | 1.11              | 2.06             |

orthopyroxene occur at higher temperatures and lower pressures than the inferred peak, respectively.

#### 4.2. Intermediate sample

T-1.1. 4

In the P-T pseudosection for sample ROG13/10 (Fig. 9) the solidus for the chosen H<sub>2</sub>O content is located at ~900-950 °C. The stability field for the interpreted earlier assemblage of sapphirine, orthopyroxene, plagioclase, K-feldspar, cordierite, ilmenite and melt is relatively narrow (in T) between 910-980 °C and between 4 and 8 kbar (outlined in red, Fig. 9). Cordierite is consumed at higher T and biotite is predicted at lower T, and garnet is stable at higher P and spinel at lower P. Compositional isopleths of Al-in-orthopyroxene are shown in Fig. 9. Maximum measured values of X(Al) (Al cations in the formula unit based on six oxygens) from samples from this locality are 0.18 according to Drüppel et al. (2013), and this isopleth, along with the one sigma uncertainty on its position, is shown as the shaded field. The measured Al content in orthopyroxene is consistent with the higher pressure part of the preferred peak field, implying peak conditions of around 7–8 kbar and 900–950  $^\circ\text{C}$ (Fig. 9). The subsequent evolution of the rock, expressed by the growth of cordierite, spinel and biotite at the expense of sapphirine, requires significantly lower pressures but similar temperatures that was followed by cooling into fields containing biotite.

#### 4.3. Proximal sample

In the P-T pseudosection for proximal sample ROG14/5 (Fig. 10), the solidus for the chosen H<sub>2</sub>O content is located at -815 °C above 6.3 kbar but inflects to higher temperatures (~950–975 °C) below 6 kbar due to the presence of cordierite which partitions some of the H<sub>2</sub>O that, at higher pressures, is contained within melt. The interpreted earlier assemblage of garnet, sillimanite, plagioclase, K-feldspar, quartz, ilmenite and melt but without spinel, defines a large stability field at 820 to >1000 °C and ~6 to >10 kbar (outlined in red, Fig. 10); spinel is predicted to become stable at higher temperatures. As spinel may be stabilised by non-system components, our preferred interpretation is that the earlier assemblage is consistent with the high T end of the modelled spinel-absent field or with the field containing spinel (i.e.  $>\!900$   $^\circ C$  and  $>\!6$  kbar). The subsequent evolution of this sample, indicated by the replacement of sillimanite by cordierite and spinel and the growth of a second generation of garnet and cordierite (shown by the arrow in Fig. 10), require lower pressures ( $\sim 5-6$  kbar) but similar temperatures.

#### 5. Discussion

#### 5.1. P-T conditions of regional metamorphism

At a distance of  $\sim$  30 km from the contact, the distal sample is considered to be beyond the effects of contact metamorphism

associated with the emplacement of the RIC and to preserve the regional metamorphic history. This is supported by a pronounced regional foliation and the lack of symplectitic replacement of porphyroblast phases that characterises the other samples. Petrographic observations coupled with phase equilibria modelling suggest that this sample experienced a clockwise regional P-T path, reaching peak conditions of >850 °C at >6 kbar. Partial replacement of garnet by cordierite implies hightemperature decompression to conditions of ~850 °C at 5 kbar, while the growth of biotite implies crystallisation of the last vestiges of melt upon cooling. A P-T path consistent with these observations is shown in Fig. 8. Peak conditions are poorly constrained due to the size and the calculated compositional and modal homogeneity of the phases within the inferred peak field. The high temperature subsolidus prograde path is constrained to the sillimanite field, with no evidence for the former presence of kyanite.

The inferred early assemblages developed within the intermediate sample (sapphirine, orthopyroxene, plagioclase, K-feldspar, cordierite, ilmenite and melt) and the proximal sample (garnet, sillimanite plagioclase, K-feldspar, quartz, ilmenite, spinel and melt), are similarly consistent with growth during regional metamorphism. Modelling of these compositions gives P-T conditions that are similar to those derived for the distal sample, namely 900–950 °C and ~7–8 kbar for the intermediate sample (Fig. 9) and >900 °C and >6 kbar for the proximal sample (Fig. 10). Clearly,



Figure 8. Modelled P-T pseudosection of the distal sample (ROG13/11) with peak field outlined in red and solidus marked by a black dashed line. The interpreted, clockwise P-T path traces the post-peak growth of cordierite and biotite. Positioning of the P-T path is based on modal isopleths generated using TCInvestigator (Pearce et al., 2015).

9

Total

100

100

100

H<sub>2</sub>O

0.10

1.03

0.11



Figure 9. Modelled P-T pseudosection of the intermediate sample (ROG13/10) with peak field outlined in red, solidus marked by a black dashed line and y(opx) isopleths marked by fine dashed lines labelled with their respective values. Grey shaded area indicates uncertainty on the y(opx) = 0.18 isopleth. The presence of garnet defines the upper pressure limit of the peak assemblage, while cordierite defines the lower temperature limit. The star indicates the interpreted peak conditions reached during regional metamorphism. The illustrated portion of the P-T path traces the growth of spinel and cordierite and later biotite. Positioning of the P-T path is based on modal isopleths generated using TCInvestigator (Pearce et al., 2015).

all three samples cannot have followed an identical regional P-T path. However, we propose that a generalised, clockwise regional metamorphic evolution was experienced by all samples, which attained peak conditions of around 850–950 °C at 7–8 kbar, and



Figure 10. Modelled P–T pseudosection of the proximal sample (ROG14/5) with peak field outline in red and solidus marked by a black dashed line. The interpreted P–T path traces the growth of spinel, cordierite and secondary garnet.



Figure 11. Summary diagram of the revised P-T evolution of the RVA Sector, with previous models in grey. Interpreted P-T evolution for the distal (blue), intermediate (green) and proximal (red) samples. The dashed approximate prograde evolution is based on the lack of kyanite in all samples.

was followed by high-temperature decompression to ~5 kbar, followed by near isobaric cooling (Fig. 8). Under such conditions, pelitic and greywacke protoliths will produce significant quantities of melt (Johnson et al., 2008; White et al., 2014a), most of which will have been lost to higher crustal levels to leave low  $a(H_2O)$ granulite facies residua, consistent with observation.

Clockwise regional P-T paths were proposed by both Tomkins et al. (2005) and Drüppel et al. (2013). However, our inferred regional peak conditions are at least ~200 °C higher than those reported by Tomkins et al. (2005) based on conventional thermobarometry, and ~50 °C lower than the UHT regional conditions proposed by Drüppel et al. (2013), based on phase equilibria modelling (Fig. 11). Possible reasons for these differences are detailed below.

### 5.2. P-T conditions of contact metamorphism

Petrographic observations of the intermediate and proximal samples in conjunction with phase equilibria modelling suggest a two-stage evolution which we equate to: (1) high- to ultra-high T regional metamorphism with associated partial melting and melt loss (detailed above); and (2) subsequent high- to ultra-high T contact metamorphism of the residual rocks caused by emplacement of the RIC.

Importantly, the distal and proximal samples have strikingly similar bulk compositions, confirmed by the similarity in the P-Tpseudosections for each (see Figs. 8 and 10). However, the petrographic features of the rocks are very different. Both are inferred to have had a regional peak assemblage containing garnet, sillimanite, plagioclase, K-feldspar, quartz, ilmenite, and melt, with the proximal sample inferred to have additionally contained a small quantity of spinel. However, the proximal sample contains a second generation of garnet (and spinel) that is lacking from the distal sample. In addition, sillimanite in the proximal sample is extensively replaced by a coarse intergrowth of cordierite plus spinel, whereas sillimanite in the distal sample is pristine. We interpret the intermediate sample and after sillimanite in the proximal sample as

prograde reaction products that formed as a result of heating associated with emplacement of the RIC. Similar prograde reaction textures have been described elsewhere (Pitra and Waal, 2001; White et al., 2002; Johnson et al., 2004).

In the proximal sample, the reaction textures are consistent with contact metamorphic conditions of ~950 °C at ~5 kbar (Figs 10 and 11) In the intermediate sample the reaction textures are consistent with temperatures of ~950 °C and lower pressures of  $\sim$  3–4 kbar (Figs. 9 and 11). The lower pressures inferred for the intermediate sample suggests it was at higher levels in the crust when the RIC was emplaced and implies tilting of the section and/ or differential uplift and erosion post intrusion of the RIC. Overall, the pressures inferred for the contact metamorphism (3-6 kbar, Fig. 11) are similar to those reported by other authors (Möller et al. 2003; Tomkins et al., 2005). The high temperatures inferred for the contact metamorphism in the intermediate sample may suggest the anorthosite sits at shallow levels beneath these rocks. However, with no borehole data, the similarity in density between the anorthosite and host gneisses makes this difficult to test using geophysical means.

Within the intermediate sample, the growth of biotite replacing cordierite in the spinel-cordierite symplectites, which are themselves replacing sapphirine, suggests that the rocks may have retained small quantities of melt and that, on cooling and exhumation from the regional peak, the intermediate sample did not cross the solidus before the onset of contact metamorphism. This could indicate that the rocks stayed at high temperature for 100 Ma or more.

Our interpretation that the intermediate and proximal samples followed a two-stage *P*–*T* evolution (Fig. 11), with contact metamorphism superimposed upon the regional metamorphic evolution path, differs from the work of Drüppel et al. (2013). These authors suggest the rocks followed a clockwise, single-stage regional metamorphic evolution peaking at UHT conditions based on their interpretation that the age of UHT metamorphism predates the intrusion of the RIC. We suggest that the 1021  $\pm$  23 to 999  $\pm$  17 Ma metamorphic ages of Drüppel et al. (2013) may represent growth of zircon from crystallising melt following peak metamorphism at *ca*. 1035 Ma (Tomkins et al., 2005).

#### 5.3. P-T evolution of the RVA sector

We present a revised *P*–*T* evolution for gneisses of the RVA Sector during the Sveconorwegian orogeny: For rocks outside the influence of the RIC (our distal sample), regional metamorphism followed a clockwise *P*–*T* path with peak conditions of ~850–950 °C at ~7–8 kbar followed by high-temperature, retrograde decompression to conditions of ~900 °C at 5 kbar and, subsequently, isobaric cooling to below 700 °C (Fig. 11). Whereas the distal sample preserves no compelling evidence for having experienced contact metamorphism, rocks closer to the RIC (our intermediate and proximal samples) contain evidence for a static thermal overprint (contact metamorphism) that records pressures of 3–6 kbar and reached a maximum temperature in the sample immediately adjacent to the RIC contact of over 950 °C.

The proposed *P*–*T*evolution outlined in this study reconciles the previous interpretations made by Degeling et al. (2001) and Drüppel et al. (2013). Degeling et al. (2001) underestimated the temperature of peak regional metamorphism by ~200 °C, due to their reliance on petrogenetic grids in the KFMASH model system, which is an oversimplification of natural rocks (White et al., 2007, 2014a), and by their use of conventional thermobarometric techniques which, due to post-peak diffusion, commonly lead to underestimates of peak temperatures (Fitzsimons and Harley, 1994; Pattison et al., 2003). Assuming our results are reliable, Drüppel

et al. (2013) overestimated the temperature experienced by the rocks at Ivesdal, our intermediate locality, by ~50 °C. This is most likely due to their omission of ferric iron (modelled as O) from their model system, that affects the bulk X(Mg) of the modelled composition. In particular, these authors used an older solution model for sapphirine that does not include ferric iron, which can significantly reduce the temperature at which sapphirine is stable (Kelsey et al., 2005; Wheller and Powell, 2014). Furthermore, Drüppel et al. (2013) relied in part on spinel to constrain their P-T trajectories. However, the presence of elements such as Cr and Zn that are not currently incorporated into thermodynamic models, will stabilise spinel to lower temperatures than predicted by the pseudosection modelling (Tajčmanová et al., 2009).

## 5.4. Implications for the tectonic setting of the Sveconorwegian orogeny

The revised metamorphic evolution proposed here has implications for tectonic models for the development of the RVA Sector during the Sveconorwegian orogeny. There are at present two different tectonic models for the Sveconorwegian orogeny, a continent-continent collisional model proposed by Bingen et al. (2008) and an accretionary model of Slagstad et al. (2013a), which has been further refined by Coint et al. (2015). The collisional model postulates that at ~1140 Ma Fennoscandia collided with an as yet unidentified continent (possibly Amazonia), resulting in widespread Barrovian-type regional metamorphism. At ~930 Ma a phase of orogenic collapse was initiated that resulted in the emplacement of the RIC and formation of a regional-scale UHT contact aureole (Bingen et al., 2008). The long timescales of hightemperature conditions interpreted in this study are sufficient for the generation of high-grade metamorphic conditions within a collisional system (Clark et al., 2011). However, the lack of any obvious colliding continental block and the evidence for a series of magmatic events with arc-like chemistry that post-date the proposed collision led Slagstad et al. (2013a) to develop an alternative Andean-style accretionary model to explain the geological evolution of SW Norway. According to Slagstad et al. (2013a), the longlived accretionary margin underwent periodic extension and compression (as a result of steep and flat slab subduction) and to alternate between periods of metamorphism (1020-990 Ma) and magmatism (1050-1020 and 990-920 Ma) to generate the SMB, HBG and RIC suites.

In contrast to the P-T-t proposed by Drüppel et al. (2013), which consists of a single clockwise P-T loop with UHT metamorphism occurring 10–15 Myr after the cessation of SMB magmatism, Slagstad and co-workers argued that the metamorphic history of rocks in SW Norway could not have been produced by a collisional orogeny (Slagstad et al., 2013b). They suggest that to generate temperatures of ~ 1000 °C at mid to lower crustal depths in a collisional system requires on the order of *ca*. 100 Ma (e.g. Clark et al., 2011; Clark et al., 2015).

All of the available evidence from this and previous studies indicates that a period of crustal thickening must have occurred prior to the attainment of peak regional metamorphic conditions (Bingen et al., 2008; Drüppel et al., 2013; Slagstad et al., 2013a). Possible mechanisms for crustal thickening include collision, flat-slab subduction and accretion. Whilst continental collision is a key part of the four-phase model of Bingen et al. (2008), with subduction interpreted to have ceased at 1140 Ma, this is inconsistent with the presence of the 1060–1020 Ma calc-alkaline SMB as well as the presence of contemporaneous and later arc-related features across the terranes of the Sveconorwegian Belt. These include the widespread arc geochemical signatures (Brewer et al., 2002; Andersen et al., 2007; Corfu and Laajoki, 2008; Petersson et al., 2015),

multiple periods of back-arc basin formation (Brewer et al., 2002; Söderlund and Ask, 2006; Söderlund et al., 2006; Andersen et al., 2007; Spencer et al., 2014; Petersson et al., 2015) and related bimodal magmatism (Söderlund and Ask, 2006; Bingen et al., 2008; Corfu and Laajoki, 2008; Spencer et al., 2014) as well as the overall younging to the west caused by westerly arc retreat with subduction beneath Fennoscandia (Slagstad et al., 2013a: Spencer et al., 2014 and references within; Coint et al., 2015; Petersson et al., 2015; Roberts and Slagstad, 2015).

Flat-slab subduction has been previously proposed by Slagstad et al. (2013a) to have driven crustal thickening and develop medium-P, high-T regional metamorphism within the geographically restricted area of the RVA Sector. This interpretation is consistent with magmatism starting 15 Myr prior to the onset of regional metamorphism, in which the magmas could not have been produced from partial melting related to crustal thickening (Slagstad et al., 2013a,b). Therefore, we therefore favour the Slagstad et al. (2013a) accretionary model for the RVA Sector. Similar styles of accretionary tectonics have been invoked to form regional-scale granulite facies terranes in a number of other Mesoproterozoic Orogens (Karlstrom et al., 2001; Clark et al., 2014; Korhonen et al., 2014) and have been singled out as sites of crustal growth and granulite generation throughout Earth history (Collins, 2002; Cawood and Buchan, 2007), at least since the Archaean.

More problematic is exactly how the RIC formed. Most geochronology of the RIC indicates that it was emplaced in a restricted time span at ~930 Ma. However, Coint et al. (2015) hypothesised that it may have had a protracted, episodic emplacement history based on the complex spread of zircon U-Pb ages that may record multiple intrusive events and resulted in the formation of complex growth and dissolution of zircon and monazite over an extended time interval (<1000 Ma to 920 Ma) (Möller et al., 2003 and references within). In the absence of unequivocal geochronological evidence that suggests emplacement over a prolonged period, we favour a short-lived intrusive event at ~930 Ma, with magmas emplaced into rocks that still retained small amounts of melt. Small volumes of melt in the rocks could have resulted in the reported zircon textures (Möller et al., 2003) and a single thermal pulse is consistent with the relatively simple petrographic textures documented in this study and the pluton sub-parallel isograds observed at the map scale. There is no clear evidence for slab breakoff as the causal mechanism for generation of the RIC. Recent work by Bybee et al. (2014) suggested that the RIC formed as part of a long-lived magmatic system, consistent with an accretionary setting. It is difficult to determine what caused the end of the Sveconorwegian orogeny as this margin was significantly modified during the Caledonian orogeny, leaving no obvious geological record of what previously lay to the west.

#### 6. Conclusions

- (1) Regional metamorphism in the RVA Sector during the Sveconorwegian orogeny followed a clockwise P-T path attaining peak conditions of ~850–950 °C and ~7–8 kbar at ca. 1035 Ma. Partial melting and melt loss led to the production of highly residual rock compositions.
- (2) Rocks located up to at least 10 km from the RIC experienced an additional static, low-pressure, high-temperature event ~100 Myr after the peak of regional metamorphism that reached a maximum T of ~950 °C at 3–6 kbar. The source of this additional heat was the RIC itself, which was emplaced into slightly cooler but residual crust and resulted in the series of high-T isograds concentric with its margin.
- (3) The collisional model of Bingen et al. (2008) cannot satisfactorily explain the metamorphic and magmatic evolution of the

Sveconorwegian orogeny in the RVA Sector as it lacks a plausible heat source to drive UHT metamorphism. A model that has the Sveconorwegian Orogen as an east facing accretionary margin that experienced long-lived subduction associated with periods of flat slab subduction, rollback and arc accretion, akin to that proposed by Slagstad et al. (2013a,b) better explains the metamorphic and magmatic evolution of the RVA Sector.

#### Acknowledgements

We thank two anonymous reviewers for their detailed comments and Prof. M. Santosh for his editorial handling. Financial support for this project was provided by an ARC DECRA fellowship (DE120103067) to CC.

#### Appendix A. Supplementary data

Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.gsf.2016.07.003.

#### References

- Andersen, T., Griffin, W.L., Pearson, N.J., 2002. Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. Journal of Petrology 43 (9), 1725-1747.
- sen, T., Griffin, W.L., Sylvester, A.G., 2007, Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U-Pb and Lu-Hf isotope evidence from granites and gneisses in Telemark, southern Norway. Lithos 93, 273-287
- Barnichon, J.D., Havenith, H., Hoffer, B., Charlier, R., Jongmans, D., Duchesne, J.C.
- Barnichon, J.D., Havenith, H., Hoffer, B., Charlier, R., Jongmans, D., Duchesne, J.C., 1999. The deformation of the Egersund-Ogna anorthosite massif, south Norway: finite-element modelling of diapirism. Tectonophysics 303, 109–130.
   Bergh, S.G., Chattopadhya, A., Ravna, E.K., Corfu, F., Kullerud, K., Swaan, K.B., Armitage, P.E.B., Myhre, P.L., Holdsworth, R.E., 2012. Was the Precambrian basement of Western Troms and Lofoten-Vesteralen in northern Norway linked to the Lewisian of Scotland? A comparison of crustal components, tectonic evolution and amalgamation history. In: Sharkov, E. (Ed.), Tectonics Recent Advances. In Tech Open Access Publisher, pp. 283–330.
   Bingen, B., Skår, Ø., Marker, M., Sigmond, E.M.O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R.D., Liégeois, J.-P., 2005. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norwegian Journal of Geology 88, 43–72.
   Bingen, B., Skår, R., B., Bagaerts, M., Bolle, O., Mansfeld, J., 2006. Molybdenite Re–Os
- Bingen, B., Stein, H.I., Bogaerts, M., Bolle, O., Mansfeld, I., 2006, Molybdenite Re-Os
- dating constrains gravitational collapse of the Sveconvegian orogen, SW Scandinavia. Lithos 87, 328–346. Igen, B., van Breemen, O., 1998. U–Pb monazite ages in amphibolite- to granulite-
- facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwo gian Province of SW Norway. Contributions to Mineralogy and Petrology 132, 336-353
- Bogaerts, M., Scaillet, B., Liégeois, J.-P., Vander Auwera, J., 2003. Petrology and geochemistry of the Lyngdal granodiorite (Southern Norway) and the role of fractional crystallization in the genesis of proterozoic ferro-potassic A-type granites. Precambrian Research 124, 149–184.
- granites, Precambrian Research 124, 149–184. danova, S.V., Bingen, B., Gorbatschev, R., Kheraskova, T.N., Kozlov, V.I., Puchkov, V.N., Volozh, Y.A., 2008. The East European craton (Baltica) before and during the assembly of Rodinia. Precambrian Research 160, 23–45.
- Bol, L.C.G.M., Maijer, C., Jansen, B.H., 1989. Premetamorphic lateritisation in prote-rozoic metabasites of Rogaland, SW Norway. Contributions to Mineralogy and
- Petrology 103, 306–316. e, O., Diot, H., Liégeois, J.-P., Auwera, J.V., 2010. The Farsund intrusion (SW Norway): a marker of late-Sveconorwegian (Grenvillian) tectonism emplaced along a newly defined major shear zone. Journal of Structural Geology 32, 1500-1518.
- Bolle, O., Trindade, R.I.F., Bouches, J.L., Duchesne, J.-C., 2002. Imaging downward granitic transport in the Rogaland Igneous Complex, SW Norway. Terra Nova 14 87-92.
- Brewer, T.S., Åhäll, K.I., Darbyshire, D.P.F., Menuge, J.F., 2002. Geochemistry of late Brever, La, Autoria, Carlos and Carlos an
- change. International Geology Review 49, 193-234.
- Bybec, CM, Ashwal, LD, Shirey, SB, Horan, M, Mock, T., Andersen, T.B., 2014. Pyroxene megacrysts in proterozoic anorthosites: implications for tectonic setting, magma source and magmatic processes at the Moho. Earth and Plan-etary Science Letters 389, 74–85.

#### 12

#### E. Blereau et al. / Geoscience Frontiers 8 (2017) 1-14

Cawood, P.A., Buchan, C., 2007. Linking accretionary orogenesis with supercontinent

- Cawood, PA, Buchan, C. 2007, Linking activationally orogenesis with supercontinent assembly. Earth-Science Reviews 82, 217–256. Clark, C., Fitzsimons, I.C.W., Healy, D., Harley, S.L., 2011. How does the continental crust get really hof? Elements 7, 235–240. Clark, C., Healy, D., Johnson, T., Collins, A.S., Taylor, R., Santosh, M., Timms, N.E.,
- Clark, C., Heay, C., Johnson, T., Comins, K., Jaylor, K., Jantosh, W., Thimis, K.L., 2015, Hot orogens and supercontinent amalgamation: a Gondwanan example from southern India. Gondwana Research 28 (4), 1310–1328.
  Clark, C., Kirkland, C.L., Spaggiari, C.V., Oorschot, C., Wingate, M.T.D., Taylor, R.J.,
- 2014. Proterozoic granulite formation driven by mafic magmatism: an example from the Fraser Range Metamorphics, Western Australia. Precambrian Research
- 240, 1–21. nt, N., Slagstad, T., Roberts, N.M.W., Marker, M., Røhr, T.S., Sørensen, B.E., 2015. The Late Mesoproterozoic Sirdal Magmatic Belt, SW Norway: relationships between magmatism and metamorphism and implications for Sveconorwegian
- orogenesis. Precambrian Research 265, 57–77. Collins, WJ, 2002. Hot orogens, tectonic switching, and creation of continental crust. Geology 30 (6), 535–538. Corfu, F, Laajoki, K, 2008. An uncommon episode of mafic magmatism at 1347 Ma in the mesoproterozoic Telemark supracrustals, Sveconorwegian
- gen-implications for stratigraphy and tectonic evolution. Precambran Research 160, 299–307. Jeling, H., Eggins, S., Ellis, D.J., 2001. Zr budgets for metamorphic reactions, and Degeli the formation of zircon from garnet breakdown. Mineralogical Magazine 65 (6).
- Demaiffe, D., Michot, J., 1985. Isotope geochronology of the Proterozoic crustal segment of Southern Norway: a review. In: Tobi, A.C., Touret, J.L.R. (Eds.), The Deep Proterozoic Crust in the North Atlantic Provinces. D. Reidel Publishing Co, pp. 411-435.
- pel, K., Elsäßer, L., Brandt, S., Gerdes, A., 2013, Sveconorwegian mid-crustal Dri pper, A., Essaec, L., Brand, S., Geues, A., 2015. Second wegatin indectustat ultrahigh-temperature metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS geochronology and pseudosections of sapphrine granulites and associated paragneisses. Journal of Petrology 54 (2), 305–350.
- paragnesses, journal of Petrology 54 (2), 305–350. Duchesne, J.-C., Wilmart, E., 1997. Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway): a jotunite (hyper-sthene monzodiorite)-derived A-type granitoid suite. Journal of Petrology 38 (3), 337–369.
- (3), 337–369.
   Duchesne, J.C., Michot, J., 1987. The Rogaland intrusive masses: introduction. In: Maijer, C., Padget, P. (Eds.), The Geology of Southernmost Norway, Norges Geologisk Undersøkelse Special Publication, vol. 1, pp. 48–59.
   Falkum, T., 1982. Geologisk kart over Norge, berggrunnskart MANDAL, 1:250,000.
   Norges Geologisk Undersøkelse.
   Falkum, T., 1985. Geotectonic evolution of southern Scandinavia in light of a late-contention letter onliging the Content Lt R. (Eds.). The Deep Prote-
- proterozoic plate-collision. In: Tobi, A.C., Touret, J.L.R. (Eds.), The Deep Prote rozoic clust in the North Atlantic Provinces. D. Reidel Publishing Cc pp. 309–322. ng Co Falkum, T., Petersen, J.S., 1980. The Sveconorwegian orogenic belt, a case of late-

- Falkum, T., Petersen, J.S., 1980. The Sveconorwegian orogenic belt, a case of late-proterozoi plate-collision. Geologische Rundschau 69 (3), 622–647.
   Fitzsimons, I.C.W., Harley, S.L., 1994. The influence of retrograde cation exchange on granulite P–T estimates and a convergence technique for the recovery of peak metamorphic conditions. Journal of Petrology 35 (2), 543–576.
   Harlov, D.E., 2011. Petrological and experimental application of REE- and actinide-bearing accessory mineral to the study of Precambrian high-grade gneiss terrains. Geological Society of America Memoirs 207, 13–24.
   Hermans, G.A.E.M., Hakstege, A.L., Jansen, J.B.H., Poorter, R.P.E., 1976. Sapphrine occurrence near Vikeşå in Rogaland, Southwestern Norway. Norsk Geologisk Tidsskrift 56, 397–412.
   Hermans, C.A.E.M., Di, A.C., Poorter, R.P.E., Maijer, C., 1975. The high-grade
- Tidsskrift 56, 397–412.
   Hermans, G.A.E.M., Tobi, A.C., Poorter, R.P.E., Majjer, C., 1975. The high-grade metamorphic Precambrian of the Sirdal-Ørsdal area, Rogaland/Vest-Agder, South-west Norway. Norges Geologisk Undersøkelse 318, 51–74.
   Holland, T.J.B., Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology 29, 333–383.
   Huijsmans, J.P.P., Kabel, A.B.E.T., Steenstra, S.E., 1981. On the structure of high-grade metamorphic Precambrian terrain in Rogaland, south Norway. Norsk Geologisk Tidsskrift 61, 183–192.
   Jansen, B.H., Blok, R.I.P. Ros, M. Scheelings, M. 1005. Continued Science S
- Jansen, B.H., Blok, R.J.P., Bos, M., Scheelings, M., 1985, Geothermometry and get
- Jansen, B.H., Blok, R.J.P., Bos, M., Scheelings, M., 1985. Geothermometry and geobarometry in Rogaland and preliminary results from the Bamble area. S Norway, In: Tobi, A.C., Touret, J.L.R. (Eds.), The Deep Proterozoic Crust in the North Atlantic Provinces. D. Reidel Publishing Co, pp. 499–516.
   Jansen, B.H., Tobi, A.C., 1987. Introduction to the Faurefjell metasediments. In: Maijer, C., Padget, P. (Eds.), The Geology of Southernmost Norway, Norges Geologisk Undersøkelse Special Publication, vol. 1, pp. 88–89.
   Johnson, T., Brown, M., Gibson, R., Wing, B., 2004. Spinel-cordierite symplectites replacing andalusite: evidence for melt-assisted diapirism in the Bushveld Complex, South Africa. Journal of Metamorphic Geology 2, 529–545.
   Johnson, T., Clark, C., Taylor, R., Santosh, M., Collins, A.S., 2015. Prograde and retrograde growth of monazite in migmatites: an example from the Naercoil Block, southern India. Geoscience Frontiers 6 (3), 373–387.
   Johnson, T.E., White, R.W., Powell, R., 2008. Partial melting of metagreywacke a calculated mineral equilibria study. Journal of Metamorphic Geology 26, 2007–2018.

- calculated mineral equilibria study. Journal of Metamorphic Geology 26, 837-853.
- Strom, K.E., Åhäll, K.I., Harlan, S.S., Williams, M.L., McLelland, J., Geissman, J.W., 2001. Long-lived (1.8-1.0 Ga) convergent orogen in southern Laurentia, its ex-tensions to Australia and Baltica, and implications for refining Rodinia. Pre-cambrian Research 111, 5–30.

- Kars, H., Jansen, B.H., Tobi, A.C., Poorter, R.P.E., 1980. The metapelitic rocks of the
- Kars, H., Jansen, B.H., Tobi, A.C., Poorter, R.P.E., 1980. The metapelitic rocks of the polymetamorphic Precambrian of Rogaland, SW Norway: part II mineral relations between cordierite, hercynite and magnetite within the osumilite-in isograd. Contributions to Mineralogy and Petrology 74, 235–244.
  Kelsey, D.E., White, R.W., Powell, R., 2005. Calculated phase equilibria in K<sub>2</sub>O–FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O for silica-undersaturated saphrine-bearing mineral assemblages. Journal of Metamorphic Geology 23, 217–239.
  Korhonen, F.J., Clark, C., Brown, M., Taylor, R.J.M., 2014. Taking the temperature of Earth's hottest crust. Earth and Planetary Science Letters 408, 341–354.
  Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–279.
- Longhi, J., Fram, M.S., Auwera, J.V., Montieth, J.N., 1993. Pressure effects, kineti and rheology of anorthositic and related magmas. American Mineralogist 78, 1016-1030
- Noise-1030. Majer, C., 1987. The metamorphic envelope of the Rogaland intrusive complex. Norges Geologisk Undersøkelse Special Publication 1, 68–73. Maijer, C., Andressen, PA.M., Hebeda, E.H., Jansen, B.H., Verschure, R.H., 1981. Osumilite, an approximately 970 Ma old high-temperature index mineral of the granulite-facies metamorphism in Rogaland, SW Norway. Geologie en Mijn-bewut 60 JG7, 273.
- granutic racts metalino prism in logiana, 59 10, work, George en Mijie bouw 60, 267–272.
  Marker, M., Schiellerup, H., Meyer, G., Robins, B., Bolle, O., 2003. Introduction to the geological map of the Rogaland Anorthosite Province 1:75000. Norges Geo-logisk Undersøkelse Special Publication 9, 109–116.
- Möller, A., O'Brien, P.J., Kennedy, A., Kröner, A., 2002. Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. Journal of Metamorphic Geology 20, 727–740.
  Möller, A., O'Brien, P.J., Kennedy, A., Kröner, A., 2003. Linking growth episodes of
- Möller, A., O'Brien, P.J., Kennedy, A., Kröner, A., 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: Vance, D., Müller, W., Villa, I.M. (Eds.), Geochronology: Linking the Isotopic Record with Petrology and Textures, The Geological Society, London, Special Publications, vol. 220, pp. 65–81.Nijland, T.G., Maijer, C., de Haas, G.-J.L.M., 1996. The Stokkafjell Troctolite, SW Norway: its bearing on the early P-T evolution of the Rogaland terrane. Neues Jahrbuch fur Mineralogie Abhandlungen 171, 91–117.Pasteels, P., Demaiffe, D., Michot, J., 1979. U–Pb and Rb–Sr geochronology of the eastern part of the south Roealand inenous complex, southern Norway. Lithos
- eastern part of the south Rogaland igneous complex, southern Norway. Lithos 12. 199-208.
- Pattison, D.R.M., Chacko, T., Farquhar, J., McFarlane, R.M., 2003. Temperature of granulite-facies metamorphism: constraints from experimental phase equi-libria and thermobarometry corrected for retrograde exchange. Journal of Petrology 44 (5), 867-900.
- Pearce, M.A., White, A.J.R., Gazley, M.F., 2015. TCInvestigator: automated calculation rearce, M.A., White, A.J.A., Gazey, M.F., 2013. Fullwestigator: autoinated calculation of mineral mode and composition contour for THERMOCALC pseudosections. Journal of Metamorphic Geology 33, 413–425.Petersson, A., Scherstén, A., Bingen, B., Gerdes, A., Whitehouse, M.J., 2015. Meso-proterozoic continental growth: U–Pb–Hf–O zircon record in the Idefjorden

- proterozoic continental growth: U-Pb-Hf-O zircon record in the Idefjorden Terrane, Sveconorwegian Orogen. Precambrian Research 261, 75–95.
  Pitra, P, Waal, S.A.D., 2001. High-temperature, Iow-pressure metamorphism and development of prograde symplectites, marble hall fragment, Bushveld complex (South Africa). Journal of Metamorphic Geology 19 (3), 311–325.
  Roberts, N.M.W., Slagstad, T., 2015. Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86-0.9 Ga accretionary orogeny in southwest Fennoscandia. International Geology Review 57, 1582–1606 orogeny in 1582–1606.
- Sauer, S., Slagstad, T., Andersen, T., Kirkland, C.L., 2013. Zircon Lu-Hf Isotopes in High-alumina Orthopyroxene Megacrysts from the Neoproterozoic Rogaland Anorthosite Province, SW Norway: A Window into the Sveco-norwegian Lower Crust. EGU General Assembly Conference Abstracts 15, p. 13958.
- Sauter, P.C.C., 1981. Mineral relations in siliceous dolomites and related rocks in the News, News, 1991. WINESH Relations in SINCEOUS dolomites and related rocks in the high-grade metamorphic Precambrian of Rogaland, SW Norway. Norsk Geo-logisk Tidsskrift 61, 35–45.
- Iogisk Husskrift 61, 53–45.
  Schärer, U., Wilmart, E., Duchesne, J.-C., 1996. The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway. Earth and Planetary Science Letters 139, 335–350.
- Norway, Earth and Planetary Science Letters 153, 555–550. Slagstad, T., Roberts, N.M.W., Marker, M., Røhr, T.S., Schiellerup, H., 2013a. A non-collisional, accretionary Sveconorwegian orogen. Terra Nova 25, 30–37. Slagstad, T., Roberts, N.M.W., Marker, M., Røhr, T.S., Schiellerup, H., 2013b. A non-
- collisional, accretionary Sveconorwegian orogen reply. Terra Nova 25 (2), 169-171 Söderlund, U., Ask. R., 2006. Mesoproterozoic bimodal magmatism along the Pro-
- Söderlund, U., Ask, R., 2006. Mesoproterozoic bimodal magmatism along the Protogine Zone, S Sweden: three magmatic pulses at 1.56, 1.22 and 1.205 Ga, and Implications. GFF 128, 303–310.
   Söderlund, U., Elming, S.-Å., Ernst, R.E., Schissel, D., 2006. The Central Scandinavian Dolerite Group–protracted hotspot activity or back-arc magmatism? Constraints from U–Pb baddeleyite geochronology and Hf isotopic data. Precambrian Research 150, 136–152.
   Spencer, C.J., Roberts, N.M.W., Cawood, P.A., Hawkesworth, C.J., Prave, A.R., Antonini, A.S.M., Horstwood, M.S.A., EIMF, 2014. Intermontane basins and bimodal volcanism at the onset of the Sveconorwegian Orogeny, southerm Norway, Precambrian Research 252, 107–118.
   Tajemanová, L., Konopásek, J., Kosler, J., 2009. Distribution of zinc and its role in the stability of spinel in high-grade felsic rocks of the Moldanubian domain (Bohemian Massif). European Journal of Mineralogy 21, 407–418.

- *E. Blereau et al. / Geoscie* Jobi, A.C., Hermans, G.A.E.M., Maijer, C., Jansen, B.H., 1985. Metamorphic zoning in the high-grade proterozoic of Rogaland-Vest Agder, SW Norway. In: Tobi, A.C., Touret, J.L.R. (Eds.), The Deep Proterozoic Crust in the North Atlantic Provinces. D. Reidel Publishing Co., pp. 477–497
   Tomkins, H.S., Williams, I.S., Ellis, D.J., 2005. In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland. SW Norway, Journal of Metamorphic Geology 23, 201–215.
   Vander Auwera, J., Bolle, O., Bingen, B., Liégeois, J.-R., Bogaerts, M., Duchesne, J.-C., Waele, B.D., Longhi, J., 2011. Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth-Science Reviews 107, 375–397.
   Vander Auwera, J., Bolle, O., Dupont, A., Pin, C., Paquette, J.-L., Charlier, B., Duchesne, J.-C., Matielli, N., Bogaerts, M., 2014. Source-derived heterogenetics in the composite (charnockite-granite) ferroan Farsund intrusion (SW Norway). Precambrian Research 251, 141–163.
   Vander Auwera, J., Longhi, J., 1994. Experimental study of a joutunite (hypersthene monzodiorite): constraints on the parent magma composition and crystallization conditions (P. F., fog) of the Bjerkreim-Sokodal layered intrusion (Norway). Contributions to Mineralogy and Petrology 118, 60–78.
   Verschure, R.H., Andriessen, P.A.M., Boelrijk, N.A.I.M., Hebeda, E.H., Maier, W.D., Priem, H.N.A., Verdurmen, E.A.T., 1980. On the thermal stability of Rb–5r and K–Ar biotite systems: evidence from coexisting Sveconorwegian (ca 870 Ma) and Caledonian (ca 400 Ma) biotites in SW Norway. Contributions to Mineralogy and Petrology 118, 60–78.
   Versteve, A.J., 1975. Isotope geochronology in the high-grade metamorphic Precambrian of Southwestern Norway. Norges Ceologisk Undersøkelse 318, 1–50.
- IIII (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (1990) (

- Wheller, C.J., Powell, R., 2014. A new thermodynamic model for sapphirine: calculated phase equilibria in K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>. Jour-nal of Metamorphic Geology 32, 287–299.
   White, R.W., Powell, R., Clarke, G.L., 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: con-straints from mineral equilibria calculations in the system K<sub>2</sub>O-FeO-MgO-Al O. 65 U. 10 TET 65. Our super the for Metaperibic Calcular 2014. 156.
- Straints from immeral equilibria cartuators in the system s<sub>2</sub>O-reco-wgo-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>. Journal of Metamorphic Geology 20, 41–55.
  White, R.W., Powell, R., Holland, T.J.B., 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology 25, 501. 502. 502. 511-527.
- White, R.W., Powell, R., Holland, T.J.B., Johnson, T., Green, E.C.R., 2014a. New mineral

- White, R.W., Powell, R., Holland, T.J.B., Johnson, T., Green, E.C.R., 2014a. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology 32, 261–286.
   White, R.W., Powell, R., Johnson, T., 2014b. The effect of Mn on mineral stability in metapelities revisited: new a-x relations for manganese-bearing minerals. Journal of Metamorphic Geology 32, 809–828.
   Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187.
   Wielens, J.B.W., Andriessen, P.A.M., Boelrijk, N.A.LM., Hebeda, E.H., Priem, H.N.A., Verdurmen, E.A.T., Verschure, R.H., 1981. Isotope geochronology in the high-grade metamorphic Precambrian of Southwestern Norway: new data and re-interpretations. Norses Geologist Undersøkels 259, 1–30.
- grade interpretations. Norges Geologisk Undersøkelse 359, 1–30.
  Wilmart, E., Clocchiatti, R., Duchesne, J.-C., Touret, J.L.R. 1991. Fluid inclusions in charnockites from the Bjerkreim-Sokndal massif (Rogaland, southwestern Norway): fluid origin and in situ evolution. Contributions to Mineralogy and
- Petrology 108, 453–462.
   Wilmart, E., Duchesne, J.-C., 1987. Geothermobarometry of igneous and meta-morphic rocks around the Ana-siria anorthosite massifi: implications for the depth of emplacement of the South Norwegian Anorthosites. Norsk Geologisk Tidsskrift 67, 185-196.

## 14

# Statement of Authorship

Title of Paper: Constraining the timing of prograde metamorphism in long-lived hot orogens

Publication Status: 
Published

Submitted for Publication

□ Accepted for Publication □ Publication Style

Publication Details:

Blereau, E., Clark, C., Jourdan, F., Johnson, T. E., Taylor, R. J. M., Kinny, P. D., Hand, M., and Eroglu, E., in review. Constraining the timing of prograde metamorphism in long-lived hot orogens, GEOLOGY (in review since 7/6/2017).

## Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate's thesis.

Name of Principal Author (Candidate): Eleanore R. Blereau Contributions to the Paper: Assisted with diffusion modelling and conducted feild work, sample preparation, petrography, phase equilibria modelling, <sup>40</sup>Ar/<sup>39</sup>Ar data interpretation and drafting of the manuscript Overall percentage: 70%

Signature

Name of Co-Author: Chris Clark

Contributions to the Paper: Assisted with field work, <sup>40</sup>Ar/<sup>39</sup>Ar data interpretation and editing of the manuscript

Digitally signed by Chris Clark Date: 2017.07.07

Overall percentage: 7%

Overall percentage: 10%

Signature

Name of Co-Author: Fred Jourdan

Contributions to the Paper: Collected <sup>40</sup>Ar/<sup>39</sup>Ar data, diffusion modelling and assisted with <sup>40</sup>Ar/<sup>39</sup>Ar data interpretation and editing of the manuscript

Signature



4 / 4 /2017

Date: 7 / 7 /2017

Name of Co-Author: Tim E. Johnson

Contributions to the Paper: Assisted with phase equilibria modelling, interpreting <sup>40</sup>Ar/<sup>39</sup>Ar data and editing of the manuscript

Overall percentage: 7%

Date: 7 / 7 /2017

Signature

Hereau Date: 7 / 7 /2017

First Authored Papers

Name of Co-Author: Richard J. M. Taylor

<u>Contributions to the Paper:</u> Assisted with field work and editing of the manuscript Overall percentage: 2%

Signature

Date: 7 / 4 /2017

Name of Co-Author: Peter D. Kinny

<u>Contributions to the Paper:</u> Assisted with field work and editing of the manucript Overall percentage: 2%

Signature

Date: 7 / 7 / 2017

Name of Co-Author: Martin Hand

<u>Contributions to the Paper:</u> Assisted with field work and editing of the manuscript Overall percentage: 1%

Signature

1th RQ Date:

te: 10 / 4 /2017

<u>Name of Co-Author: Ela Eroglu</u> <u>Contributions to the Paper:</u> Diffusion modelling Overall percentage: 1%

Signature

Date: 4 / 4 /2017

First Authored Papers

# Statement of Authorship

Title of Paper: Using accessory minerals to unravel thermal histories in polymetamorphic

terranes: an example from Rogaland, SW Norway

Publication Status:□ Published□ Accepted for Publication□ Submitted for Publication□ Publication Style

Publication Details:

Blereau, E., Clark, C., Taylor, R. J. M., Kinny, P. D., Johnson, T. E., Sansom, E., Hand, M., in review. Using accessory minerals to unravel thermal histories in polymetamorphic terranes: an example from Rogaland, SW Norway, Journal of Metamorphic Geology (in review since 23/6/2017).

## Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that permission is granted for the publication to be included in the candidate's thesis.

Name of Principal Author (Candidate): Eleanore R. Blereau

<u>Contributions to the Paper:</u> Conducted sample preparation, field work, geochronological and geochemical data collection, processing and interpretation, diffusion modelling and drafting the manuscript

Overall percentage: 75%

Hereau

Date: 7 / 7 /2017

Signature

Name of Co-Author: Chris Clark

<u>Contributions to the Paper</u>: Assisted with field work, data interpretation, editing of the manuscript

Overall percentage: 6%

Object Clk Digitally signed by Chris Clark Distance 2017.07.07 09:56:21 +08:00' Date: 7 / 7 /2017

Signature

Name of Co-Author: Richard J. M. Taylor

<u>Contributions to the Paper</u>: Assisted with field work, geochronological and geochemical data collection, processing and interpretation, diffusion modelling and editing of the manuscript Overall percentage: 6%

Signature

| Bhile  | Date: | 7 / 4 /2017 |
|--------|-------|-------------|
| $\sim$ |       |             |

Name of Co-Author: Peter D. Kinny

<u>Contributions to the Paper:</u> Assisted with field work, data interpretation and editing of the manuscript Overall percentage: 5%

Signature

Date: 7 / 7 /2017

First Authored Papers

Name of Co-Author: Tim. E. Johnson

<u>Contributions to the Paper:</u> Assisted with data interpretation, editing of the manuscript Overall percentage: 5%

Signature

Date: 7 / 7 / 2017

<u>Name of Co-Author: Eleanor Sansom</u> <u>Contributions to the Paper:</u> Assisted with MATLAB coding for diffusion modelling Overall percentage: 2%

Signature



Date: 3 / 7 /2017

Name of Co-Author: Martin Hand Contributions to the Paper: Assisted with field work and editing of the manuscript Overall percentage: 1%

Signature

At KQ

Date: 10 / 4 /2017

## Appendix B

This appendix contains the supplementary tables S1–5 and supplementary figures S1–S3 from the paper 'Constraints on the timing and conditions of high-grade metamorphism, charnockite formation and fluid–rock interaction in the Trivandrum Block, southern India'.

## Contents:

| Table S1: All SHRIMP U-Pb analytical results for monazite              | 264 |
|------------------------------------------------------------------------|-----|
| Table S2: All SHRIMP U–Pb analytical results for zircon                | 270 |
| Table S3: All LA-ICP-MS REE and trace element results for monazite     | 273 |
| Table S4: All LA-ICP-MS REE and trace element results for zircon       | 282 |
| Table S5: All LA-ICP-MS REE and trace element results for garnet       | 285 |
|                                                                        |     |
| Figure S1: $T - X_{Fe2O3}$ pseudosection for the garnet-biotite gneiss | 302 |
| Figure S2: $P - X_{Fe2O3}$ pseudosection for the charnockite           | 303 |
| Figure S3: $P - X_{Fe2O3}$ pseudosection for the metapelitic gneiss    | 304 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | A | pp           | $\frac{enc}{r}$ |                | B            |            | ,           | <br>      |           | r         |           | Sup                | ple       | eme<br>1  | ente               | ary       | Inj       | fori      | ma.       |           | n fe      | $\frac{r}{r}$  | _na           |            | r 2         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|--------------|-----------------|----------------|--------------|------------|-------------|-----------|-----------|-----------|-----------|--------------------|-----------|-----------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|---------------|------------|-------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | Disc.      | U-Pb %      | +2        | +         | -1        | 0+        | +2                 | +1        | +         | 0+                 | +1        | +1        | 0+        | 0-        | +1        |           |                |               | Disc.      | U-Pb %      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | Disc.      | Pb-Pb<br>%  | +11       | L+        | -5        | +1        | +8                 | +3        | +4        | +2                 | +5        | +3        | +2        | -0        | +4        | L-        |                |               | Disc.      | Pb-Pb<br>%  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | 235U       |             | 3.4       | 1.9       | 1.6       | 1.7       | 2.3                | 1.8       | 1.6       | 1.6                | 1.4       | 1.4       | 1.4       | 1.5       | 1.8       | 1.7       |                |               | 235U       |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | 207Pb*/    | 7% ∓        | 0.648     | 0.683     | 0.668     | 0.679     | 0.720              | 0.729     | 0.737     | 0.740              | 0.772     | 0.767     | 0.769     | 0.770     | 0.783     | 0.765     |                |               | 207Pb*/    | ∓ %         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | 6Pb*       |             | 2.1       | 1.5       | 0.9       | 0.9       | 1.0                | 0.8       | 0.8       | 0.7                | 0.7       | 0.7       | 0.7       | 0.8       | 1.0       | 0.8       |                |               | 6Pb*       |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | 207Pb*/20  | ± %         | 0.059     | 0.059     | 0.057     | 0.058     | 0.060              | 0.059     | 0.059     | 0.059              | 0.060     | 0.060     | 0.060     | 0.059     | 0.060     | 0.058     | ore            |               | 207Pb*/20  | ₩ ∓         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | 5Pb*       |             | 1.3       | 1.2       | 1.2       | 1.2       | 1.6                | 1.4       | 1.2       | 1.4                | 1.2       | 1.2       | 1.2       | 1.2       | 1.3       | 1.5       | zone, C-C      |               | 5Pb*       |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | 238U/206   | ± %         | 12.5      | 11.9      | 11.8      | 11.8      | 11.4               | 11.2      | 11.1      | 11.0               | 10.7      | 10.7      | 10.7      | 10.6      | 10.6      | 10.5      | ystallised     |               | 238U/206   | ∓ %         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              |            |             | 7         | 0         |           |           |                    | 0         |           |                    |           |           |           |           | 0         |           | b. R-Recr      |               |            |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ╉          |   |              |                 |                |              | o*/235U    | Ma) ± 1σ    | <br>Ŧ     | Ξ         | #8        | 6∓        | Η                  | Ξ         | 6∓        | 6∓                 | 78        | #8        | ±8        | 6∓        | τ         | Ŧ         | ured 204P      |               | o*/235U    | Ma) ± 1σ    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | 207Pt      | date (      | 507       | 529       | 520       | 526       | 551                | 556       | 560       | 562                | 581       | 578       | 579       | 580       | 587       | 577       | sing meas      |               | 207Pt      | date (      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   |              |                 |                |              | Pb*        | 1σ          | ±64       | ±32       | ±22       | ±26       | ±36                | ±23       | ±21       | ±16                | ±15       | ±17       | ±16       | ±20       | ±26       | ±19       | orrected us    | pq            | Pb*        | lσ          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   | TOSH         |                 |                | hakkod       | 207Pb*/206 | date (Ma) ± | 555       | 560       | 501       | 529       | 588                | 568       | 580       | 571                | 606       | 590       | 588       | 577       | 607       | 548       | ommon Pb c     | one, Chakko   | 207Pb*/206 | date (Ma) ± |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   | S, M. SAN    |                 |                | e gneiss, C  |            |             | 7         | 6         | 9         | 9         | 8                  | 8         | 7         | 8                  | 7         | 7         | 7         | 7         | 7         | ~         | ages are c     | Transition 2  |            |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ┤          |   | NOWISZ       |                 |                | arnet-biotit | Pb/238U    | (Ma) ± 1c   | H         | +         | +         | Ĥ         | +                  | +         | +         | +                  | +         | +         | +         | +         | +         | +         | rtions. All    | 11-004C: 7    | Pb/238U    | (Ma) ± 1c   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _          |   | C. W. FII    | _               |                | -004K: G     | o 206      | () date     | 496       | 522       | 524       | 526       | 542                | 553       | 556       | 560                | 574       | 575       | 577       | 580       | 582       | 584       | enic propo     | ı sample I    | o 206      | () date     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _          |   | NSON, I.     |                 |                | ample I11    | 206P       | (c/sec      | 778       | 1912      | 1355      | 1431      | 1164               | 1681      | 1608      | 2524               | 2559      | 2049      | 2415      | 1555      | 1044      | 1640      | ate radiog     | zites from    | 206P       | (c/sec      |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |   | T. E. JOH    |                 | analyses       | ite from s   | 232Th      | 238U        | 87.08     | 19.21     | 38.18     | 39.06     | 56.75              | 37.96     | 31.82     | 17.95              | 16.99     | 26.64     | 18.55     | 47.26     | 71.39     | 30.59     | Pb* indica     | for mona      | 232Th      | 238U        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   | TAYLOR,      |                 | IMP U-Pb       | for monaz    | 232Th      | (mqq)       | 242128    | 127887    | 157578    | 136320    | 175395             | 160414    | 124013    | 114009             | 100591    | 116476    | 105287    | 154796    | 180148    | 112247    | indicated.     | tical results | 232Th      | (mqq)       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |   | ζ, R. J. M.  |                 | azite SHR      | ical results | 238U       | (mqq)       | 2873      | 6879      | 4264      | 3606      | 3193               | 4367      | 4026      | 6561               | 6119      | 4517      | 5865      | 3384      | 2607      | 3792      | r % where      | IMP analyt    | 238U       | (mqq)       |  |
| tia di la composición de la |            |   | NU, C. CLARI |                 | ll data for mo | HRIMP analy  | Spot       | no.         | 3B3-59.3L | 3B3-62.1D | 3B3-62.2M | 3B3-60.2M | 3 <b>B</b> 3-61.3L | 3B3-66.2M | 3B3-64.2M | 3 <b>B</b> 3-61.1D | 3B3-64.1D | 3B3-59.1D | 3B3-60.1D | 3B3-59.2M | 3B3-62.3L | 3B3-61.2M | -sigma (abs) c | intinued: SHR | Spot       | no.         |  |
| southern In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | soumern In |   | E. BLERE/    |                 | Table S1: A    | Table S1: S  | Texture    | Ð           | R         | C I       | R         | R         | R                  | R         | R         | c I                | c li      | c I       | c I       | R         | R I       | R         | Errors are 1   | Table S1. ct  | Texture    |             |  |

|           |        | 1      | 4 <i>p</i> p | oen    | dix    | B      |        |        |         |        |        |         |        |         | Su     | ppl    | em      | ent    | tary    | v In   | for    | ma              | itio | n f            | or      | Ch     | apt    | er.    | 2      |         |
|-----------|--------|--------|--------------|--------|--------|--------|--------|--------|---------|--------|--------|---------|--------|---------|--------|--------|---------|--------|---------|--------|--------|-----------------|------|----------------|---------|--------|--------|--------|--------|---------|
| -l        | 0+     | -      | 0+           | +1     | 0      | +1     | +4     | -1     | 0+      | 0+     |        | 0+      | +1     | 0+      | 0+     | +2     | 0+      | 0      |         | 0+     | 0+     |                 |      |                | 0.      |        | 0.     | +1     | 0.     | 0       |
| -3 -3     | +3 +3  | 4      | +2           | +3     | -2 -2  | + 9+   | +18    | -4 -   | +1 +1   | +2 +2  | - 9-   | +       | +2 +2  | +       | +2     | +11 +  | +1 +1   | -      | -7 -    | +2     | +2 +2  |                 |      |                | -1 1-   | -4     | -1 -   | +3 +3  | - 0-   | - 0-    |
| 1.4       | 2.6    | 2.5    | 1.9          | 3.9    | 2.8    | 5.2    | 2.9    | 2.4    | 2.6     | 2.9    | 2.8    | 2.6     | 2.7    | 2.4     | 2.3    | 2.5    | 3.2     | 2.4    | 2.7     | 1.5    | 1.8    |                 |      |                | 2.0     | 1.9    | 2.3    | 2.2    | 2.2    | 1.7     |
| 0.795     | 0.664  | 0.679  | 0.714        | 0.718  | 0.715  | 0.730  | 0.761  | 0.728  | 0.741   | 0.744  | 0.728  | 0.745   | 0.756  | 0.748   | 0.753  | 0.781  | 0.761   | 0.767  | 0.758   | 0.780  | 0.783  |                 |      |                | 0.782   | 0.779  | 0.786  | 0.795  | 0.793  | 0.793   |
| 0.7       | 2.2    | 1.1    | 1.3          | 1.5    | 1.2    | 1.6    | 1.2    | 1.2    | 1.1     | 1.8    | 1.9    | 1.0     | 1.0    | 0.9     | 0.9    | 1.6    | 1.3     | 0.9    | 1.4     | 0.8    | 0.8    |                 |      |                | 1.2     | 0.9    | 1.2    | 0.8    | 1.3    | 0.9     |
| 0.059     | 0.058  | 0.057  | 0.059        | 0.059  | 0.058  | 0.059  | 0.062  | 0.058  | 0.059   | 0.059  | 0.058  | 0.059   | 0.060  | 0.059   | 0.059  | 0.061  | 0.059   | 0.059  | 0.058   | 0.060  | 0.060  | Core            |      |                | 0.059   | 0.059  | 0.059  | 0.060  | 0.060  | 0.060   |
| 1.2       | 1.2    | 1.8    | 1.3          | 1.8    | 2.3    | 2.2    | 2.0    | 1.9    | 2.0     | 1.8    | 1.7    | 1.6     | 2.4    | 2.0     | 1.8    | 1.5    | 2.4     | 2.2    | 1.3     | 1.2    | 1.6    | zone, C-(       |      |                | 1.3     | 1.5    | 1.3    | 2.0    | 1.3    | 1.2     |
| 10.3      | 12.0   | 11.7   | 11.3         | 11.3   | 11.2   | 11.2   | 11.2   | 11.0   | 11.0    | 11.0   | 11.0   | 10.9    | 10.9   | 10.9    | 10.9   | 10.8   | 10.7    | 10.6   | 10.6    | 10.6   | 10.5   | rystallised     |      |                | 10.5    | 10.5   | 10.4   | 10.4   | 10.4   | 10.4    |
| 士8        | ±13    | ±13    | ±10          | ±21    | ±15    | ±28    | ±15    | ±13    | ±14     | ±16    | ±15    | ±14     | ±15    | ±13     | ±13    | ±14    | ±18     | ±14    | ±15     | ±8     | ±10    | 04Pb. R-Rec     |      |                | ±12     | ±11    | ±13    | ±13    | ±13    | ±10     |
| 594       | 517    | 526    | 547          | 549    | 548    | 557    | 574    | 555    | 563     | 564    | 556    | 565     | 572    | 567     | 570    | 586    | 575     | 578    | 573     | 585    | 587    | g measured 2    |      |                | 587     | 585    | 589    | 594    | 593    | 593     |
| ±14       | ±51    | ±37    | ±30          | ±71    | ±33    | ≠96    | ±43    | ±33    | ±36     | ±48    | ±49    | ±43     | ±25    | ±28     | ±30    | ±43    | ±46     | ±22    | ±50     | ±20    | ±19    | rrected using   |      | q              | ±33     | ±25    | ±41    | ±21    | ±38    | ±25     |
| 583       | 528    | 510    | 555          | 561    | 539    | 583    | 667    | 539    | 569     | 575    | 529    | 568     | 596    | 570     | 581    | 637    | 578     | 573    | 542     | 597    | 596    | ommon Pb cc     |      | one, Chakko    | 582     | 570    | 583    | 606    | 591    | 592     |
| ±7        | 9年     |        | ±7           | ±10    | ±12    | ±12    | ±11    | ±10    | ±11     | ±10    | 6年     | ±9      | ±13    | ±11     | ±10    | ±8     | ±13     | ±12    | ±8      | ±6     |        | vll ages are co |      | : Transition z | ±7      | - 67   | ±7     | ±11    | ±7     | ±7      |
| 597       | 514    | 530    | 546          | 547    | 550    | 550    | 551    | 559    | 561     | 562    | 562    | 564     | 566    | 566     | 567    | 573    | 574     | 579    | 581     | 583    | 585    | roportions. A   |      | ole II1-004C   | 588     | 589    | 590    | 591    | 593    | 593     |
| 2536      | 896    | 889    | 655          | 506    | 819    | 443    | 776    | 817    | 1016    | 1462   | 812    | 1048    | 1078   | 1389    | 1328   | 450    | 697     | 1543   | 601     | 1579   | 1836   | radiogenic p    |      | es from sam    | 811     | 1335   | 807    | 1640   | 719    | 1327    |
| 16.57     | 31.86  | 33.45  | 47.96        | 90.16  | 36.60  | 98.39  | 47.08  | 46.93  | 35.14   | 19.20  | 40.77  | 22.90   | 31.79  | 20.29   | 20.01  | 90.64  | 56.98   | 17.68  | 75.45   | 17.32  | 10.94  | b* indicate     |      | for monazite   | 46.56   | 19.97  | 52.76  | 17.05  | 58.06  | 18.23   |
| 97703     | 3648   | 3269   | 2563         | 2935   | 3492   | 2437   | 4016   | 2920   | 3668    | 6920   | 3066   | 3605    | 3919   | 6309    | 6498   | 1733   | 2832    | 5343   | 2291    | 5262   | 6055   | indicated. P    |      | tical results  | 2866    | 4999   | 3176   | 5049   | 2649   | 4187    |
| 6092      | 896    | 889    | 655          | 506    | 819    | 443    | 776    | 817    | 1016    | 1462   | 812    | 1048    | 1078   | 1389    | 1328   | 450    | 697     | 1543   | 601     | 1579   | 1836   | r % where       |      | IMP analy      | 811     | 1335   | 807    | 1640   | 719    | 1327    |
| EB3-66.1D | 04-8.1 | 04-6.5 | 04-7.2       | 04-1.2 | 04-5.4 | 04-2.2 | 04-3.2 | 04-9.2 | 04-10.2 | 04-3.1 | 04-7.4 | 004-5.1 | 04-4.2 | 004-1.1 | 04-2.1 | 04-6.4 | 004-7.1 | 04-9.1 | 004-9.3 | 04-8.2 | 04-5.2 | -sigma (abs) o  |      | ontinued: SHR  | 04-10.3 | 04-4.3 | 04-6.3 | 04-4.1 | 04-8.3 | 004-7.3 |
| c         | R      | R (    | R            | R      | R (    | R (    | R      | R (    | R (     | c (    | R (    | Я       | R (    | c<br>c  | с<br>С | R (    | R (     | ں<br>د | R (     | c (    | c (    | Errors are 1    |      | Table S1. c    | R (     | R (    | R (    | c (    | R (    | C       |

|         |          | 1 | 4 <i>p</i> p      | oen        | dix B       | } |         |         |                |            |             | 2       | Sup     | ple      | eme     | enta | ıry             | Inf | orn | nat | ion | ı fo              | r C         | Chapt       | er 2 | 2       |        |
|---------|----------|---|-------------------|------------|-------------|---|---------|---------|----------------|------------|-------------|---------|---------|----------|---------|------|-----------------|-----|-----|-----|-----|-------------------|-------------|-------------|------|---------|--------|
|         | 4        |   |                   | Disc.      | U-Pb %      |   | +1      | +2      |                | Disc.      | U-Pb %      | -1      | +4      | +1       | -0      |      |                 |     |     |     |     |                   | Disc.       | U-Pb %      |      | +1      | 0+     |
| -7      | -21      |   |                   | Disc.      | Pb-Pb<br>%  |   | 6       | 11      |                | Disc.      | Pb-Pb<br>%  | -8      | 17      | 7        | -1      |      |                 |     |     |     |     |                   | Disc.       | Pb-Pb<br>%  |      | 8+      | +2     |
| 2.4     | 2.5      |   |                   | '235U      |             |   | 3.2     | 3.7     |                | '235U      |             | 2.3     | 4.8     | 2.3      | 2.9     |      |                 |     |     |     |     |                   | 235U        |             |      | 1.3     | 1.3    |
| 0.789   | 0.788    |   |                   | 207Pb*/    | * %         |   | 0.598   | 0.618   |                | 207Pb*/    | ₩ ∓         | 0.635   | 0.684   | 0.668    | 0.672   |      |                 |     |     |     |     |                   | 207Pb*/     | * ≈         |      | 0.657   | 0.658  |
| 1.4     | 1.0      |   |                   | )6Pb*      |             |   | 1.3     | 1.6     |                | )6Pb*      |             | 1.4     | 1.5     | 1.3      | 1.4     |      |                 |     |     |     |     |                   | )6Pb*       |             |      | 0.8     | 0.8    |
| 0.059   | 0.057    |   |                   | 207Pb*/20  | % ∓         |   | 0.057   | 0.058   |                | 207Pb*/20  | ∓ %         | 0.056   | 0.060   | 0.059    | 0.058   |      | Core            |     |     |     |     |                   | 207Pb*/20   | + %         |      | 0.058   | 0.058  |
| 1.9     | 2.3      |   |                   | 06Pb*      |             |   | 2.9     | 1.7     |                | 06Pb*      |             | 1.3     | 2.3     | 1.3      | 1.4     |      | d zone, C-      |     |     |     |     |                   | 06Pb*       |             |      | 6.0     | 6.0    |
| 10.3    | 10.1     |   |                   | 238U/2     | 7% ∓        |   | 13.2    | 13.0    |                | 238U/2     | 7%          | 12.3    | 12.1    | 12.1     | 11.8    |      | crystallise     |     |     |     |     |                   | 238U/2      | 7%          |      | 12.3    | 12.1   |
| ±14     | ±15      |   |                   | SU         | :10         |   | ±15     | ±17     |                | SU         | :10         | ±12     | ±24     | $\pm 11$ | ±15     |      | 04Pb. R-Re      |     |     |     |     |                   | n           | :10         |      | $\pm 6$ | ±7     |
| 590     | 590      |   |                   | 207Pb*/235 | date (Ma) ± |   | 476     | 489     |                | 207Pb*/235 | date (Ma) ± | 499     | 529     | 520      | 522     |      | g measured 2    |     |     |     |     |                   | 207Pb*/235  | date (Ma) ± |      | 512     | 513    |
| ±32     | ±24      |   |                   | Pb*        | lσ          |   | ±31     | ±70     |                | Pb*        | lσ          | ±42     | ±87     | ±40      | ±56     |      | prrected using  |     |     |     |     |                   | •b*         | lσ          |      | ±19     | ±20    |
| 560     | 509      |   |                   | 207Pb*/206 | date (Ma) ± |   | 502     | 538     | Chakkod        | 207Pb*/206 | date (Ma) ± | 468     | 612     | 549      | 516     |      | ommon Pb co     |     |     |     |     |                   | 207Pb*/206I | date (Ma) ± |      | 546     | 521    |
| ±11     | ±13      |   | р                 |            | lσ          |   | ±13     | ±8      | Charnockite    |            | lα          | 7       | ±11     | ±7       | ±7      |      | Il ages are co  |     |     |     |     | hakkod            |             | lα          |      | ±4      | ±4     |
| 598     | 611      |   | skite, Chakko     | 206Pb/238U | date (Ma) ± |   | 471     | 478     | le I11-008C:   | 206Pb/238U | date (Ma) ± | 506     | 510     | 513      | 523     |      | roportions. A   |     |     |     |     | litic gneiss, C   | 206Pb/238U  | date (Ma) ± |      | 505     | 512    |
| 1349    | 1236     |   | 8C: Charnoo       | 206Pb      | (c/sec)     |   | 663     | 471     | e from samp    | 206Pb      | (c/sec)     | 629     | 473     | 646      | 544     |      | radiogenic p    |     |     |     |     | 025: Metape       | 206Pb       | (c/sec)     |      | 1841    | 1760   |
| 18.95   | 23.54    |   | mple I11-00       | 232Th      | 238U        |   | 6.85    | 40.66   | for monazite   | 232Th      | 238U        | 29.88   | 83.86   | 35.86    | 77.52   |      | b* indicate     |     |     |     |     | nple TB-14-       | 232Th       | 238U        |      | 7.59    | 19.86  |
| 4472    | 3875     |   | zite from sa      | 232Th      | (mqq)       |   | 17551   | 119409  | tical results  | 232Th      | (mqq)       | 66941   | 228374  | 86688    | 179974  |      | indicated. P    |     |     |     |     | zite from sar     | 232'Th      | (mqq)       |      | 1884    | 4132   |
| 1349    | 1236     |   | ts for mona       | 238U       | (mqq)       |   | 2649    | 3035    | UMP analy      | 238U       | (mqq)       | 2315    | 2814    | 2498     | 2399    |      | or % where      |     |     |     |     | s for mona:       | 238U        | (mqq)       |      | 256     | 215    |
| 004-6.2 | 004-10.1 |   | analytical result | Spot       | no.         |   | 008-2.3 | 008-1.1 | continued: SHF | Spot       | no.         | 008-1.3 | 008-2.1 | 008-1.2  | 008-2.2 |      | 1-sigma (abs) ( |     |     |     |     | ınalytical result | Spot        | no.         |      | PB-2.1  | PA-5.2 |
| С       | С        |   | SHRIMP :          | Texture    | Ð           |   | Ч       | R       | Table S1.      | Texture    | A           | Я       | R       | R        | R       |      | Errors are      |     |     |     |     | SHRIMP :          | Texture     | Ð           |      | С       | В      |

|        |                | 1      | 1 <i>pp</i> | pen            | dix     | В      |          |        |          |        |         |        |         |        | Suj    | ppl    | em | en              | tarj        | v Info        | orm | ati    | on.             | for            | C           | hapte         | er 2 | <i>i</i> |        |
|--------|----------------|--------|-------------|----------------|---------|--------|----------|--------|----------|--------|---------|--------|---------|--------|--------|--------|----|-----------------|-------------|---------------|-----|--------|-----------------|----------------|-------------|---------------|------|----------|--------|
| +2     | +3             | 0+     | +2          | +3             | -1      | +1     | 0+       | 0+     | +4       | 0+     | +2      | +3     | -1      | -0     | +1     | +2     |    |                 | Disc.       | U-Pb %        |     | +1     |                 |                | Disc.       | U-Pb %        |      | +1       | +2     |
| +12    | +16            | +3     | +10         | +13            | L-      | 9+     | +3       | +3     | +17      | 0+     | +10     | +15    | L-      | -2     | L+     | 8+     |    |                 | Disc.       | Pb-Pb<br>%    |     | 9+     |                 |                | Disc.       | Pb-Pb<br>%    |      | +3       | 8+     |
| 1.5    | 1.0            | 1.0    | 1.2         | 1.0            | 1.2     | 1.1    | 1.0      | 1.6    | 1.7      | 1.2    | 1.3     | 1.5    | 1.6     | 1.7    | 1.2    | 1.2    |    |                 | 235U        |               |     | 1.1    |                 |                | 235U        |               |      | 0.9      | 1.2    |
| 0.680  | 0.694          | 0.681  | 0.698       | 0.707          | 0.684   | 0.707  | 0.704    | 0.705  | 0.737    | 0.715  | 0.741   | 0.756  | 0.721   | 0.741  | 0.764  | 0.771  |    |                 | 207Pb*/     | ∓ %           |     | 0.771  |                 |                | 207Pb*/     | ± %           |      | 0.768    | 0.780  |
| 0.8    | 0.5            | 0.5    | 0.6         | 0.5            | 0.7     | 0.6    | 0.5      | 0.9    | 1.0      | 0.8    | 0.7     | 0.8    | 1.2     | 1.0    | 0.6    | 0.7    |    |                 | )6Pb*       |               |     | 0.5    |                 |                | )6Pb*       |               |      | 0.4      | 0.6    |
| 0.062  | 0.059          | 0.058  | 0.059       | 0.059          | 0.058   | 0.059  | 0.059    | 0.060  | 0.059    | 0.059  | 0.059   | 0.060  | 0.059   | 0.060  | 0.059  | 0.059  |    |                 | 207Pb*/20   | ± %           |     | 0.059  | Core            |                | 207Pb*/20   | ≠ %           |      | 0.060    | 0.061  |
| 6.0    | 0.8            | 0.8    | 6.0         | 0.8            | 6.0     | 0.8    | 0.8      | 1.0    | 1.0      | 0.0    | 0.0     | 0.0    | 6.0     | 1.0    | 0.0    | 6.0    |    |                 | )6Pb*       |               |     | 0.9    | l zone, C-      |                | )6Pb*       |               |      | 0.8      | 0.9    |
| 12.0   | 12.0           | 11.8   | 11.7        | 11.7           | 11.5    | 11.5   | 11.5     | 11.4   | 11.5     | 11.3   | 11.2    | 11.2   | 11.0    | 10.9   | 10.9   | 10.8   |    |                 | 238U/20     | ∓%            |     | 10.8   | crystallise     |                | 238U/20     | ± %           |      | 10.7     | 10.7   |
| ±8     | 9 <del>7</del> | ±5     | 9年          | 9 <del>7</del> | 9∓      | 9∓     | ±5       | ±9     | $\pm 10$ | ±7     | ±7      | ±8     | 6年      | 4      | ±7     | ±7     |    |                 | n           | lσ            |     | ±6     | 04Pb. R-Re      |                | U           | Ισ            |      | ±5       | ±7     |
| 526    | 535            | 527    | 537         | 543            | 529     | 543    | 540      | 541    | 561      | 548    | 563     | 572    | 551     | 563    | 576    | 580    |    |                 | 207Pb*/235  | date (Ma) ±   |     | 580    | measured 2      | H              | 207Pb*/235  | date (Ma) ±   |      | 578      | 585    |
| ±27    | E15            | ±13    | E17         | E14            | ±19     | E14    | E12      | ±27    | ±30      | ±19    | ±20     | ±25    | E30     | ±29    | ±17    | E18    |    | po              | ٩*<br>ا     | ъ             |     | ±12    | rected using    | od continue    | b*          | a             |      | ±10      | E17    |
| 579    | 209            | 541    | 581         | 502            | 201     | 269    | 554      | 553    | 546      | 548    | 511 5   | 546    | 523     | 555    | 508    | 517    |    | gneiss, Chakl   | 207Pb*/206P | date (Ma) ± 1 |     | 506    | mmon Pb co      | gneiss, Chakl  | 207Pb*/206P | date (Ma) ± 1 |      | 592      | 523    |
| ±4     | ±4             | ±4     | ±4          | ±4             | ±4      | ±4     | ±4       | ±5     | ±5       | ±5     | ±5      | ±5     | ±5      | ±5     | ±5     | ±5     |    | Metapelitic     |             | υ             |     | ±2     | l ages are co   | Metapelitic    |             | a             |      | ±4       | ±5     |
| 515    | 518            | 525    | 527 :       | 529            | 536 :   | 537 :  | 538      | 539 :  | 540      | 547    | 551 :   | 53 :   | 58 :    | 565    | 568 a  | 571 :  |    | : TB-14-025:    | 206Pb/238U  | late (Ma) ± 1 |     | 573    | oportions. A    | TB-14-025:     | 206Pb/238U  | late (Ma) ± 1 |      | 575      | 576    |
| 1902   | 3852 :         | 1433   | 2777 :      | 5082           | 2656 :  | 3276   | 1213     | 1287 : | 1239     | : 6661 | 2051 3  | 1684   | : 375   | 183    | 2836 : | 2610   |    | rom sample      | 206Pb       | (c/sec)       |     | 1714   | diogenic pi     | rom sample     | 206Pb       | (c/sec)       |      | 5642     | 2810   |
| 28.21  | 32.02          | 20.17  | 27.29       | 19.64          | 20.30   | 21.68  | 18.35    | 35.23  | 45.85    | 23.72  | 20.58   | 47.75  | 32.84   | 44.89  | 16.75  | 24.63  |    | r monazite f    | 232Th       | 238U          |     | 11.33  | * indicate ra   | r monazite f   | 232Th       | 238U          |      | 6.55     | 18.21  |
| 7519   | 18303          | 10910  | 10425       | 13859          | 5644    | 9583   | 8582     | 5259   | 7564     | 5153   | 5154    | 8834   | 5555    | 5085   | 4914   | 7910   |    | cal results for | 232Th       | (mqq)         |     | 4948   | ndicated. Pb    | cal results fo | 232Th       | (mqq)         |      | 3048     | 5910   |
| 275    | 591            | 559    | 395         | 729            | 338     | 457    | 483      | 154    | 170      | 225    | 259     | 191    | 206     | 140    | 303    | 332    |    | IMP analytic    | 238U        | (mdd)         |     | 451    | r % where i     | IMP analytic   | 238U        | (mdd)         |      | 481      | 335    |
| PA-1.1 | PB-6.3         | PB-6.2 | PA-3.1      | PB-4.1         | PA-16.1 | PA-2.2 | PA-13.1B | PA-6.2 | PA-2.1   | PA-4.2 | PA-17.1 | PB-5.2 | PA-12.2 | PA-6.1 | PB-7.2 | PA-3.2 |    | ontinued: SHR   | Spot        | no.           |     | PB-4.2 | 1-sigma (abs) c | ontinued: SHR. | Spot        | no.           |      | PA-13.2B | PB-8.1 |
| R      | R              | R      | R           | R              | R       | R      | R        | С      | С        | R      | R       | R      | R       | С      | С      | R      |    | Table S1 c      | Texture     | Ð             |     | С      | Errors are      | Table S1 c     | Texture     | Ð             |      | c        | С      |

|          |        | 1      | 4pp    | oen     | dix    | B      |        |                  |            |             |          | Sı             | ıpp      | oler         | ner      | itar           | ry l    | nfo      | orm          | ati      | on.            | for            | C          | hapte       | er 2 |              |          |
|----------|--------|--------|--------|---------|--------|--------|--------|------------------|------------|-------------|----------|----------------|----------|--------------|----------|----------------|---------|----------|--------------|----------|----------------|----------------|------------|-------------|------|--------------|----------|
| +2       | 0+     | 0-     | +1     | 0+      | +5     | +16    | +10    |                  | Disc.      | U-Pb %      | 0-       | +1             | 0+       | 0-           | 0+       | +1             | 0+      | -1       | -1           | 0+       |                |                | Disc.      | U-Pb %      |      | -1           | 0-       |
| $^{+10}$ | +3     | -2     | +5     | 0+      | +21    | +39    | +24    |                  | Disc.      | Pb-Pb<br>%  | 0-       | +5             | +2       | -2           | +2       | +4             | 0+      | -7       | -3           | +1       |                |                | Disc.      | Pb-Pb<br>%  |      | -3           |          |
| 1.1      | 1.1    | 1.0    | 6.0    | 0.9     | 6.0    | 1.5    | 1.0    |                  | /235U      |             | 1.7      | 1.8            | 1.8      | 1.9          | 2.0      | 1.7            | 2.1     | 2.5      | 1.8          | 2.1      |                |                | /235U      |             |      | 1.6          | 1.8      |
| 0.785    | 0.771  | 0.764  | 0.780  | 0.797   | 0.883  | 2.101  | 3.721  |                  | 207Pb*,    | ₩ ∓         | 0.636    | 0.652          | 0.666    | 0.667        | 0.674    | 0.681          | 0.707   | 0.703    | 0.716        | 0.724    |                |                | 207Pb*,    | ₩ ∓         |      | 0.730        | 0.740    |
| 0.7      | 0.4    | 0.4    | 0.4    | 0.4     | 0.4    | 0.8    | 0.5    |                  | )6Pb*      |             | 9.0      | 0.7            | 0.6      | 0.6          | 0.5      | 6.0            | 0.6     | 1.0      | 0.5          | 0.6      |                |                | )6Pb*      |             |      | 0.5          | 0.7      |
| 0.061    | 0.060  | 0.060  | 0.060  | 0.060   | 0.065  | 0.094  | 0.110  |                  | 207Pb*/20  | ± %         | 0.057    | 0.058          | 0.058    | 0.057        | 0.058    | 0.058          | 0.058   | 0.058    | 0.058        | 0.059    | Core           |                | 207Pb*/20  | ± %         |      | 0.058        | 0.059    |
| 0.9      | 1.0    | 0.8    | 0.8    | 0.8     | 0.8    | 1.3    | 0.8    |                  | )6Pb*      |             | 1.6      | 1.5            | 1.7      | 1.7          | 1.9      | 1.5            | 1.9     | 2.3      | 1.7          | 1.9      | l zone, C-     |                | )6Pb*      |             |      | 1.5          | 1.5      |
| 10.7     | 10.7   | 10.6   | 10.6   | 10.3    | 10.1   | 6.2    | 4.1    |                  | 238U/20    | 7% ∓        | 12.39    | 12.28          | 11.99    | 11.88        | 11.87    | 11.82          | 11.38   | 11.30    | 11.20        | 11.18    | rystallised    |                | 238U/20    | 7% ∓        |      | 11.02        | 10.94    |
| ±7       | 9∓     | 7      | ±5     | 7       | 9∓     | ±17    | ±15    |                  | n          | Ισ          | ±8       | <del>6</del> ∓ | 6∓       | ±10          | $\pm 10$ | <del>6</del> ∓ | ±11     | ±13      | ±9           | ±11      | 04Pb. R-Rec    |                | n          | Ισ          |      | <del>1</del> | ±10      |
| 588      | 580    | 576    | 586    | 595     | 642    | 1149   | 1576   |                  | 207Pb*/235 | date (Ma) ± | 500      | 510            | 518      | 519          | 523      | 528            | 543     | 540      | 548          | 553      | g measured 2   |                | 207Pb*/235 | date (Ma) ± |      | 557          | 563      |
| ±15      | ±10    | ±12    | =6     | ±10     | ±8     | ±16    | ±9     |                  | Pb*        | lσ          | ±12      | ±20            | ±15      | ±17          | ±14      | ±20            | ±17     | ±22      | ±12          | ±19      | orrected using |                | Pb*        | lσ          |      | ±16          | ±23      |
| 636      | 592    | 567    | 609    | 597     | 764    | 1514   | 1799   |                  | 207Pb*/206 | date (Ma) ± | 500      | 531            | 525      | 509          | 532      | 546            | 544     | 514      | 536          | 557      | ommon Pb co    | Chakkod        | 207Pb*/206 | date (Ma) ± |      | 543          | 558      |
| ±5       | ±5     | ±4     | ±4     | ±5      | ±4     | ±11    | ±11    |                  | ſ          | lσ          | ±8       | ±7             | ±8       | <del>7</del> | ±10      | ±7             | ±10     | $\pm 12$ | <del>1</del> | $\pm 10$ | All ages are c | Pegmatite, C   | J          | lσ          |      | ±8           | +8       |
| 576      | 577    | 579    | 580    | 595     | 609    | 965    | 1415   | ite, Chakkod     | 206Pb/238L | date (Ma) ± | 500      | 505            | 517      | 521          | 521      | 523            | 543     | 547      | 551          | 552      | proportions.   | ole II1-006V:  | 206Pb/238L | date (Ma) ± |      | 560          | 564      |
| 2585     | 5735   | 6050   | 6655   | 5708    | 9517   | 9486   | 9057   | 6V: Pegmat       | 206Pb      | (c/sec)     | 3667     | 2393           | 3344     | 3169         | 4203     | 3896           | 3554    | 3153     | 4953         | 2742     | radiogenic ]   | e from sam     | 206Pb      | (c/sec)     |      | 3832         | 2317     |
| 12.76    | 4.79   | 7.05   | 4.03   | 6.21    | 3.75   | 5.42   | 7.53   | nple I11-00      | 232Th      | 238U        | 5.50     | 24.67          | 13.80    | 17.12        | 13.88    | 14.34          | 20.37   | 13.94    | 13.79        | 25.52    | b* indicate    | for monazit    | 232Th      | 238U        |      | 16.34        | 30.27    |
| 3415     | 2594   | 4076   | 2816   | 2856    | 3097   | 2829   | 2952   | zite from sa     | 232Th      | (mqq)       | 33560    | 121002         | 71774    | 97874        | 126549   | 116564         | 120368  | 79929    | 113016       | 121020   | indicated. P   | tical results  | 232Th      | (mqq)       |      | 109865       | 119695   |
| 277      | 559    | 598    | 722    | 475     | 853    | 540    | 405    | ts for mona      | 238U       | (mqq)       | 6735     | 5417           | 5745     | 6314         | 10071    | 8976           | 6527    | 6333     | 9049         | 5237     | or % where     | RIMP analy     | 238U       | (mqq)       |      | 7427         | 4368     |
| PA-4.1   | PA-5.1 | PB-7.1 | PB-8.2 | PA-12.1 | PB-5.1 | PB-6.1 | PB-1.1 | analytical resul | Spot       | no.         | 006-24.4 | 006-5.2        | 006-27.1 | 006-4.2      | 006-12.1 | 006-4.1        | 006-6.2 | 006-24.3 | 006-4.3      | 006-7.2  | 1-sigma (abs)  | continued: SHI | Spot       | no.         |      | 006-11.1     | 006-22.2 |
| С        | С      | c      | С      | К       | c      | c      | С      | SHRIMP :         | Texture    | A           | R        | С              | R        | R            | С        | С              | С       | С        | С            | с        | Errors are     | Table S1.      | Texture    | A           |      | С            | C        |

|          |                | 1        | 4pp      | oen     | dix             | В |
|----------|----------------|----------|----------|---------|-----------------|---|
| -1       | -3             | -2       | -1       | -1      |                 |   |
| -3       | -17            | -14      | -6       | -5      |                 |   |
| 1.8      | 1.8            | 1.7      | 2.0      | 2.0     |                 |   |
| 0.741    | 0.722          | 0.740    | 0.777    | 0.781   |                 |   |
| 0.5      | 0.6            | 0.4      | 0.5      | 0.5     |                 |   |
| 0.059    | 0.057          | 0.057    | 0.059    | 0.059   | -Core           |   |
| 1.7      | 1.7            | 1.7      | 1.9      | 1.8     | l zone, C       |   |
| 10.90    | 10.87          | 10.70    | 10.43    | 10.41   | crystallised    |   |
| $\pm 10$ | $\pm 10$       | ±10      | ±12      | ±12     | 204Pb. R-Rec    |   |
| 563      | 552            | 563      | 584      | 586     | ng measured     |   |
| ±14      | $\pm 14$       | $\pm 10$ | ±12      | ±17     | corrected usi   |   |
| 552      | 488            | 509      | 559      | 565     | common Pb       |   |
| 6∓       | <del>6</del> 7 | 6平       | ±11      | ±10     | . All ages are  |   |
| 566      | 567            | 576      | 590      | 591     | c proportions.  |   |
| 3810     | 3248           | 6456     | 4895     | 4363    | radiogenie      |   |
| 16.86    | 19.69          | 11.00    | 14.17    | 14.62   | b* indicate     |   |
| 105552   | 103615         | 95745    | 107720   | 113088  | e indicated. I  |   |
| 6915     | 5811           | 9615     | 8397     | 8544    | or % wher       |   |
| 006-6.1  | 006-12.2       | 006-27.2 | 006-24.1 | 006-5.1 | : 1-sigma (abs) |   |
| С        | С              | С        | С        | С       | Errors are      |   |

| Supplementary | Information | for Chapter 2 | ? |
|---------------|-------------|---------------|---|
|               |             |               |   |

|                 |            | 1            | 4 <i>p</i> j | <i>en</i> | dix     | B       |                      |         |          |                      |                      |         |            |          | Su | ppl                  | ет         | ent          | ary | ' In      | for       | ma       | tio      | n fe     | or (      | Che      | apt      | er 2    | 2        |                              |
|-----------------|------------|--------------|--------------|-----------|---------|---------|----------------------|---------|----------|----------------------|----------------------|---------|------------|----------|----|----------------------|------------|--------------|-----|-----------|-----------|----------|----------|----------|-----------|----------|----------|---------|----------|------------------------------|
|                 | Disc.      | (%)          |              | 1         | -5      | -14     | -8                   | -0      | -25      | ų.                   | 42                   | 26      | 42         | 30       |    |                      | Disc.      | (%)          |     | -4        | 4         | -15      | 3        | 5        | -1        | 21       | -12      | 6       | 24       | ball'                        |
|                 | 5U         |              |              | 2.0       | 1.9     | 2.2     | 1.6                  | 2.3     | 3.7      | 2.7                  | 8.8                  | 3.9     | 4.3        | 4.7      |    |                      | 5U         |              |     | 2.0       | 5.8       | 1.8      | 3.2      | 1.8      | 2.3       | 4.0      | 3.5      | 2.4     | 3.3      | ed, SB-'Soccer               |
|                 | 207Pb*/23  | ± %          |              | 0.624     | 0.632   | 0.639   | 0.652                | 0.671   | 0.654    | 0.684                | 0.823                | 0.759   | , 160.1    | 3.711 4  |    |                      | 207Pb*/23  | ∓ %          |     | 0.625     | 0.641     | 0.626    | 0.651    | 0.656    | 0.647     | , 069.0  | 0.637    | . 699.0 | 0.718    | ecrystallis                  |
|                 | 6Pb*       |              |              | 1.6       | 1.6     | 1.8     | 1.2                  | 1.7     | 2.9 (    | 2.1                  | 7.9                  | 3.3 (   | 4.0        | 2.4      |    |                      | 6Pb*       |              |     | 1.5 (     | 6.7 (     | 1.3 (    | 3.0 (    | 1.4      | 1.7       | 3.8 (    | 2.8      | 1.8 (   | 2.9 (    | ore, RE-R                    |
|                 | 07Pb*/20   | %            |              | .057      | .057    | .056    | .057                 | .058    | .055     | .058                 | 690.                 | .063    | .094       | .114     |    |                      | 07Pb*/20   | %            |     | .057      | .058      | .056     | .058     | .058     | .057      | .061     | 056      | .059    | .062     | .Rim, C-C                    |
|                 | )*<br>2    | +            |              | 1.2 0     | 1.1     | 1.3 0   | 1.1 0                | 1.5 0   | 2.4 0    | 1.8 0                | 3.9 0                | 2.1 0   | 1.5 0      | 4.1 0    |    |                      | )* 2       | ++           |     | 1.3 0     | 1.3 0     | 1.3 0    | 1.1 0    | 1.1 0    | 1.6 0     | 1.2 0    | 2.1 0    | 1.5 0   | 1.6 0    | 206Pb. R-                    |
|                 | 238U/206PI | ± %          |              | 12.616    | 12.349  | 12.082  | 11.999               | 11.870  | 11.671   | 11.612               | 11.569               | 11.485  | 6.530      | 4.239    |    |                      | 238U/206PI | ± %          |     | 12.499    | 12.417    | 12.285   | 12.228   | 12.198   | 12.192    | 12.184   | 12.156   | 12.119  | 11.917   | of common                    |
|                 | su         | ± 1σ         |              | ±10       | ±10     | ±11     | ∓8                   | ±12     | ±19      | ±14                  | ±54                  | ±22     | ±48        | ±74      |    |                      | 5U         | ± 1σ         |     | ±10       | ±34       | ±9       | ±16      | 6#       | ±12       | ±21      | ±18      | ±12     | ±18      | Pb. f204 is %                |
|                 | 207Pb*/23  | date (Ma) ⊧  |              | 493       | 498     | 501     | 510                  | 521     | 511      | 529                  | 610                  | 573     | 1112       | 1573     |    |                      | 207Pb*/23  | date (Ma) ⊧  |     | 493       | 503       | 493      | 509      | 512      | 507       | 533      | 500      | 520     | 549      | easured 204                  |
|                 | b*         | a            |              | ±36       | ±36     | ±39     | ±26                  | ±37     | ±64      | ±45                  | ±162                 | ±70     | ±76        | ±44      |    |                      | b*         | a            |     | ±34       | ±147      | ±29      | ≠66      | ±32      | ±37       | ±82      | ±62      | ±40     | ±62      | cted using m                 |
| p               | 07Pb*/206P | ate (Ma) ± 1 |              | 97        | 77      | 51      | 81                   | 19      | 27       | 16                   | 01                   |         | 514        | 866      |    |                      | 07Pb*/206P | ate (Ma) ± 1 |     | 77        | 21        | 42       | 21       | 31       | 01        | 39       | 58       | 58      | 75       | on Pb correc                 |
| neiss, Chakko   | 5          | α   d        |              | ±6 4      | E5 4    | E7 4    | ±5 4                 | E7 5    | ±12 4    | E9 5                 | ±20 9                | E11 7   | ±13 1      | ±50 1    |    | e, Chakkod           | 5          | α<br>q       |     | ±6 4      | F6 5      | E6 4     | ±5 5     | E5 5     | E8 5      | F6 6     | ±10 4    | E7 5    | F8 6     | ges are comn                 |
| net-biotite g   | 06Pb/238U  | ate (Ma) ± 1 |              | 92 =      | 02 =    | 13 =    | 16 =                 | 21 =    | 30 =     | 33 =                 | 34 =                 | 38 =    | - 19       | 365 =    |    | g charnockit         | 06Pb/238U  | ate (Ma) ± 1 |     | 96        | : 66      | 04 3     | 07 =     | - 80     | - 80      | - 80     | 10 =     | 11 =    | 19 =     | ortions. All a               |
| 1-004K: Gai     | 204 2      | p (%         |              | .28 4     | .32 5   | .28 5   | .11 5                | .24 5   | .28 5    | .05 5                | .19 5                | 1.74 5  | 3.62 9     | 1 00.0   |    | iarnet-bearin        | 204 2      | p (%)        |     | .08 4     | l.76 4    | 0.13 5   | .22 5    | - 5      | 0.01 5    | .58 5    | .67 5    | 0.13 5  | - 5      | ogenic prop                  |
| m sample 11     | 232Th f    | 238U (       |              | ).34 (    | ).34 (  | ).56 (  | 0.27 0               | 0.20    | ).76 (   | ).65 (               | ).36 (               | 0.28    | 0.19       | .05 (    |    | II1-008C: G          | 232Th f    | 238U (       |     | .41 (     | ).30      | ).44 (   | ).55 (   | .41 -    | ).22 (    | ).35 (   | 0.71 0   | ).30 (  | .92 -    | indicate radi                |
| r zircons fro   | 232Th 2    | (mqq)        |              | 131 (     | 146 (   | 189 (   | 130 0                | 115 0   | 218 0    | 252 (                | 165 (                | 136 (   | 120 0      | 77       |    | rom sample           | 232Th 2    | (mqq)        |     | 109 0     | ) 61      | 195 0    | 170 0    | 101      | 181 (     | 191 0    | 181 0    | 180 0   | 461 (    | dicated. Pb*                 |
| il results fo   | 238U 2     | ) (udd       |              | 868       | 148     | 349     | 061                  | 585     | 2 96 J   | 102                  | 175                  | 501     |            | 664      |    | or zircons f         | 238U 2     | ) (udd       |     | 277       | 573       | 157      | 321      | 251      | 350       | 69       | 263      | 531     | 517      | 6 where inc                  |
| HRIMP analytica | Spot 2     | no. (        |              | 04G-2.1   | 04G-9.1 | 04G-3.1 | 04G-6.1 <sup>2</sup> | 04G-5.1 | 04G-10.1 | 04G-4.1 <sup>2</sup> | 04G-8.1 <sup>2</sup> | 04G-7.1 | 04G-11.1 ( | 04G-1.1A |    | alytical results for | Spot       | no. (        |     | 08C-5.1 2 | 08C-4.1 ( | 08C-16.1 | 08C-24.1 | 08C-23.1 | 08C-9.2 { | 08C-12.1 | 08C-26.1 | 08C-7.1 | 08C-14.1 | -sigma (abs) or <sup>9</sup> |
| Table S2: SI    | Texture    | Ð            |              | R 0       | R 0     | R 0     | R 0                  | R 0     | R 0      | R<br>0               | R 0                  | R 0     | c 0        | с 0      |    | SHRIMP an            | Texture    | Ð            |     | R 0       | R 0       | R 0      | R 0      | R 0      | R 0       | R 0      | R 0      | R 0     | R 0      | Errors are 1-                |
|                |            | 1            | 4 <i>pp</i> | oen      | dix       | B            |          |           |           |           |          |           |           |           | Su        | ppl       | em        | ent      | tary      | ) In     | for       | ma        | itio | n f              | or | Ch | apt | er | 2 |  |
|----------------|------------|--------------|-------------|----------|-----------|--------------|----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|----------|-----------|-----------|------|------------------|----|----|-----|----|---|--|
|                | Disc.      | (%)          |             | -1       | -6        | 7            | 24       | 19        | 19        | 3         | -2       | -5        | 7         | -22       | 6         | -17       | -28       | -6       | -26       | -22      | 48        | 15        |      | ball'            |    |    |     |    |   |  |
|                | 5U         |              |             | 6.       | .3        | .7           | .2       | 4.        | .6        | .4        | .6       | .5        | .6        | 4.        | 6.        | 8.        | .7        | 8.       | 6.        | 0.       | 1.0       | .5        |      | ed, SB-'Soccer   |    |    |     |    |   |  |
|                | 207Pb*/235 | + %          |             | 0.670 1  | 0.661 3   | 0.686 1      | 0.735 3  | 0.734 4   | 0.736 3   | 0.708 2   | 0.703 2  | 0.708 2   | 0.730 2   | 0.689 3   | 0.739 5   | 0.710 4   | 0.706 3   | 0.737 3  | 0.745 7   | 0.771 4  | 1.939 1   | 6.396 5   | _    | Recrystallise    |    |    |     |    |   |  |
|                | 06Pb*      |              |             | 1.5      | 2.7       | 1.3          | 2.7      | 4.1       | 3.1       | 1.6       | 0.9      | 0.9       | 1.6       | 2.7       | 1.4       | 2.1       | 2.5       | 2.0      | 6.8       | 2.6      | 8.4       | 2.7       |      | Core, RE-I       |    |    |     |    |   |  |
|                | 207Pb*/2   | %∓           |             | 0.058    | 0.057     | 0.059        | 0.062    | 0.062     | 0.062     | 0.059     | 0.058    | 0.058     | 090.0     | 0.056     | 090.0     | 0.057     | 0.056     | 0.058    | 0.056     | 0.057    | 860.0     | 0.136     |      | R-Rim, C-        |    |    |     |    |   |  |
|                | b*         |              |             | 1.2      | 1.9       | 1.1          | 1.7      | 1.6       | 1.9       | 1.8       | 2.4      | 2.4       | 2.0       | 2.0       | 5.7       | 4.3       | 2.8       | 3.2      | 4.0       | 3.1      | 7.1       | 4.8       |      | 206Pb.           |    |    |     |    |   |  |
|                | 238U/206F  | ∓ %          |             | 11.860   | 11.837    | 11.820       | 11.696   | 11.552    | 11.531    | 11.433    | 11.396   | 11.259    | 11.250    | 11.213    | 11.201    | 11.020    | 10.909    | 10.884   | 10.454    | 10.214   | 6.943     | 2.928     |      | of commor        |    |    |     |    |   |  |
|                | 35U        | ±lσ          |             | ±10      | ±17       | <del>1</del> | ±18      | ±25       | ±20       | ±13       | ±14      | ±14       | ±14       | ±18       | ±33       | ±26       | ±20       | ±21      | ±45       | ±23      | ±121      | ±111      |      | 4Pb. f204 is %   |    |    |     |    |   |  |
| inued          | 207Pb*/2   | date (Ma)    |             | 521      | 515       | 530          | 559      | 559       | 560       | 543       | 540      | 543       | 557       | 532       | 562       | 545       | 542       | 561      | 565       | 580      | 1095      | 2031      |      | neasured 20      |    |    |     |    |   |  |
| nakkod cont    | b*         | ь            |             | ±33      | 797       | ±28          | ±57      | ±88       | ±67       | ±35       | ±20      | ±20       | ±35       | ±61       | ±31       | ±47       | ±55       | ±43      | ±151      | ±57      | ±157      | ±46       |      | cted using m     |    |    |     |    |   |  |
| urnockite, Cł  | 07Pb*/206P | ate (Ma) ± 1 |             | 16       | 83        | 61           | 86       | 58        | 58        | 56        | 33       | 22        | 88        | 55        | 04        | 82        | 47        | 37       | 71 :      | 96       | 580       | 175       |      | ion Pb corree    |    |    |     |    |   |  |
| t-bearing cha  | 2          | p            |             | 6 5      | 10 4      | 6 5          | 9 6      | 8 6       | 10 6      | 9 5       | 13 5     | 12 5      | 11 5      | 10 4      | 30 6      | 23 4      | 15 4      | 17 5     | 23 4      | 18 4     | 58 1      | 79 2      |      | ses are comm     |    |    |     |    |   |  |
| 8C: Garne      | Pb/238U    | ; (Ma) ± 1σ  |             | +        | +         | +            | +        | +         | +         | +         | +        | +         | +         | +         | +         | +         | +         | +        | +         | +        | +         | 4 =       | _    | ions. All ag     |    | _  |     |    |   |  |
| le I11-00      | 206        | date         |             | 522      | 523       | 524          | 529      | 535       | 536       | 541       | 542      | 549       | 549       | 551       | 551       | 560       | 565       | 567      | 589       | 602      | 867       | 189       |      | c proport        |    |    |     |    |   |  |
| rom samp       | f204       | (%)          |             | 0.44     | 0.07      | :            | 0.28     | :         | 1.01      | 1         | :        | 1         | 0.09      | 0.16      | 0.04      | :         | 0.08      | :        | 0.28      | 1        | 1.21      | 0.49      |      | adiogenie        |    |    |     |    |   |  |
| or zircons f   | 232Th      | 238U         |             | 0.31     | 0.44      | 0.67         | 0.70     | 0.39      | 0.70      | 0.25      | 0.26     | 0.53      | 0.73      | 0.36      | 0.38      | 0.45      | 0.35      | 0.38     | 0.68      | 0.35     | 0.44      | 0.26      |      | o* indicate 1    |    |    |     |    |   |  |
| ical results t | 232Th      | (mqq)        |             | 180      | 129       | 208          | 191      | 101       | 164       | 183       | 155      | 265       | 168       | 88        | 97        | 113       | 87        | 94       | 182       | 86       | 167       | 94        |      | indicated. Pl    |    |    |     |    |   |  |
| IMP analyti    | 238U       | (mqq)        |             | 607      | 302       | 319          | 282      | 270       | 243       | 768       | 607      | 521       | 238       | 254       | 265       | 263       | 260       | 257      | 275       | 254      | 394       | 372       |      | r % where i      |    |    |     |    |   |  |
| continued: SHR | Spot       | no.          |             | 008C-3.1 | 008C-11.1 | 008C-13.1    | 008C-9.1 | 008C-19.1 | 008C-18.1 | 008C-29.1 | 008C-8.1 | 008C-20.1 | 008C-27.1 | 008C-21.1 | 008C-15.1 | 008C-17.1 | 008C-6.1A | 008C-2.1 | 008C-28.1 | 008C-1.1 | 008C-22.1 | 008C-25.1 |      | 1-sigma (abs) oi |    |    |     |    |   |  |
| Table S2.      | Texture    | ₽            |             | R        | R         | R            | R        | R         | R         | R         | R        | Я         | SB        | R         | SB        | SB        | SB        | R        | R         | SB       | c         | С         |      | Errors are       |    |    |     |    |   |  |

| _                 | _          | 1           | 4 <i>p</i> µ | pen     | dix     | B        |         | _       |                   | 1 |
|-------------------|------------|-------------|--------------|---------|---------|----------|---------|---------|-------------------|---|
|                   | Disc.      | (%)         |              | -7      | -10     | -5       | -10     | 8+      | ball'             |   |
|                   | 35U        |             |              | 2.8     | 4.8     | 4.9      | 5.2     | 3.8     | sed, SB-'Soccer   |   |
|                   | 207Pb*/23  | ∓ %         |              | 0.692   | 0.696   | 0.716    | 0.723   | 0.763   | Recrystallis      |   |
|                   | 206Pb*     |             |              | 0.6     | 1.8     | 1.4      | 1.8     | 2.0     | Core, RE-         |   |
|                   | 207Pb*/2   | 7% ∓        |              | 0.057   | 0.057   | 0.058    | 0.058   | 0.060   | R-Rim, C-         |   |
|                   | *de        |             |              | 2.7     | 4.5     | 4.7      | 4.9     | 3.2     | 1 206Pb.          |   |
|                   | 238U/206   | % ∓         |              | 11.432  | 11.316  | 11.152   | 10.972  | 10.897  | % of commo        |   |
|                   | 235U       | ) ± 1σ      |              | ±15     | ±26     | ±27      | ±29     | ±22     | )4Pb. f204 is 9   |   |
|                   | 207Pb*/2   | date (Ma    |              | 534     | 536     | 548      | 552     | 575     | measured 2(       |   |
| Ŧ                 | Pb*        | lσ          |              | ±14     | ±39     | $\pm 31$ | ±39     | ±44     | ected using       |   |
| eiss, Chakkoo     | 207Pb*/206 | date (Ma) ± |              | 506     | 497     | 527      | 512     | 615     | nmon Pb corr      |   |
| Aetapelitic gn    | U          | : 1σ        |              | ±14     | ±23     | ±25      | ±26     | ±17     | l ages are cor    |   |
| TB-14-025: N      | 206Pb/2381 | date (Ma) ± |              | 541     | 546     | 554      | 562     | 566     | oportions. Al     |   |
| om sample         | f204       | (%)         |              | 0.08    | 0.13    | 0.16     | 0.05    | 0.16    | adiogenic pr      |   |
| or zircons fr     | 232Th      | 238U        |              | 0.09    | 0.08    | 0.02     | 0.01    | 0.15    | o* indicate ra    |   |
| ical results f    | 232Th      | (mdd)       |              | 162     | 141     | 22       | 20      | 180     | indicated. Pt     |   |
| <b>UMP</b> analyt | 238U       | (mdd)       |              | 1806    | 1855    | 1323     | 2273    | 1265    | x % where         |   |
| continued: SHR    | Spot       | no.         |              | PB1-1.1 | PA1-1.1 | PB2-1.1  | PB2-1.2 | PB1-1.4 | · 1-sigma (abs) c |   |
| Table S2.         | Texture    | IJ          |              | R       | RE      | RE       | RE      | RE      | Errors are        |   |

Supplementary Information for Chapter 2

| Table S3: LA-I   | ICP-MS monazite REE and trace of   | element analyses: Sample II1-00   | 14K Gamet-biotite gneiss            |                                     |                                 |                                   |              |              |              |              |              |              |      |
|------------------|------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|---------------------------------|-----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
|                  | EB3 MNZ 59.1                       | EB3 MNZ 59.2                      | EB3 MNZ 59.3                        | EB3 MNZ 60.1                        | EB3 MNZ 60.2                    | EB3 MNZ 60.3                      | EB3 MNZ 61.1 | EB3 MNZ 61.2 | EB3 MNZ 61.3 | EB3 MNZ 62.1 | EB3 MNZ 62.2 | EB3 MNZ 62.3 |      |
| Presition        | c                                  | R                                 | R                                   | с                                   | R                               | R                                 | c            | R            | R            | c            | R            | R            |      |
| Y                | 548                                | 680                               | 688                                 | 2870                                | 926                             | 636                               | 3 660        | 944          | 1271         | 2840         | 827          | 1370         | A    |
| La               | 104000                             | 953.00                            | 93700                               | 102000                              | 94100                           | 95200                             | 102000       | 93300        | 96100        | 102000       | 96200        | 101 000      | pp   |
| Ce               | 230526                             | 230526                            | 230526                              | 230526                              | 230526                          | 230526                            | 230526       | 230526       | 230526       | 230526       | 230526       | 230526       | en   |
| Pr               | 28.080                             | 295.50                            | 30060                               | 28610                               | 29830                           | 29190                             | 28650        | 30100        | 30470        | 29530        | 30.260       | 29540        | dix  |
| PN               | 105000                             | 000611                            | 000811                              | 000111                              | 120000                          | 116000                            | 105000       | 118 000      | 000611       | 108000       | 113000       | 000011       | c B  |
| Sm               | 17900                              | 20600                             | 192.00                              | 24700                               | 25300                           | 1 7800                            | 23600        | 26100        | 24800        | 22500        | 21300        | 202.00       | •    |
| Eu               | 36.5                               | 17                                | 17.4                                | 2                                   | 18.8                            | 14.9                              | 54.6         | 16.6         | 28           | 51.7         | 18.5         | 33.1         |      |
| Gd               | 58.60                              | 6110                              | 5980                                | 7550                                | 7210                            | 5580                              | 7110         | 72.50        | 6910         | 7410         | 6290         | 6100         |      |
| đ                | 304                                | 281                               | 284                                 | 470                                 | 369                             | 262.2                             | 483          | 364          | 365          | 460          | 318          | 323          |      |
| Dy               | 510                                | 508                               | 517                                 | 11 64                               | 661                             | 452                               | 1204         | 677          | 743          | 1120         | 588          | 669          |      |
| Ho               | 24.8                               | 32.1                              | 32.3                                | 103.8                               | 40.8                            | 28.3                              | 103          | 41.9         | 55           | 66           | 36.5         | 57.2         |      |
| Er               | 19.3                               | 32                                | 32.1                                | 136                                 | 38.7                            | 29.1                              | 130.5        | 39           | 61.5         | 132.2        | 35.8         | 21.7         |      |
| Tm               | 66.0                               | 16.1                              | 1.71                                | 8.82                                | 2.04                            | 1,44                              | 7.97         | 1.78         | 3.87         | 8.31         | 2.01         | 4.78         |      |
| Ab               | 3.27                               | 5.59                              | 4.59                                | 29.6                                | 5.92                            | 4.68                              | 26.5         | 5.25         | 12.7         | 28           | 4.48         | 15.1         |      |
| Lu               | 0.38.5                             | 0.56                              | 0.59                                | 2.43                                | 0.64                            | 0.43                              | 2.4          | 0.59         | 1.09         | 2.74         | 0.55         | 1.44         |      |
| LaN              | 441841                             | 406.050                           | 399233                              | 433319                              | 400937                          | 405624                            | 435876       | 397529       | 409459       | 43.374.5     | 409885       | 428206       | Su   |
| PrN              | 315152                             | 331650                            | 337374                              | 321100                              | 334792                          | 327609                            | 321549       | 337823       | 341975       | 331425       | 339618       | 331538       | pp   |
| NbN              | 231211                             | 263.042                           | 259726                              | 245579                              | 266136                          | 255747                            | 232095       | 260831       | 262157       | 23 828 5     | 249116       | 242.706      | ler  |
| SmN              | 121686                             | 140041                            | 130523                              | 167913                              | 171992                          | 121006                            | 160435       | 177430       | 168593       | 152957       | 144799       | 137322       | ne   |
| EuN              | 65.2                               | 304                               | 311                                 | 964                                 | 336                             | 266                               | 975          | 296          | 500          | 923          | 330          | 591          | ntc  |
| GdN              | 29.807                             | 31078                             | 30417                               | 38403                               | 36673                           | 28383                             | 36165        | 36877        | 35148        | 37691        | 31994        | 31027        | ıry  |
| NdT              | 83.75                              | 7741                              | 7824                                | 12948                               | 10165                           | 7223                              | 13306        | 10028        | 10055        | 12672        | 8760         | 8898         | , Ir |
| DyN              | 2101                               | 2093                              | 2130                                | 4796                                | 2.724                           | 1862                              | 4961         | 2789         | 3061         | 4615         | 2423         | 2880         | ıfo. |
| HoN              | 446                                | 577                               | 581                                 | 1867                                | 734                             | 509                               | 1853         | 754          | 989          | 1781         | 656          | 1029         | rm   |
| TmN              | 121                                | 201                               | 202                                 | 856                                 | 244                             | 183                               | 821          | 245          | 387          | 83.2         | 225          | 451          | at   |
| ErN              | 41                                 | 79                                | 71                                  | 364                                 | 84                              | 60                                | 329          | 74           | 160          | 343          | 83           | 198          | ion  |
| NdY              | 20                                 | 34                                | 28                                  | 182                                 | 36                              | 29                                | 163          | 32           | 78           | 172          | 28           | 93           | ı fe |
| LuN              | 16                                 | 23                                | 24                                  | 100                                 | 26                              | 18                                | 99           | 24           | 45           | 113          | 23           | 59           | or   |
| Th (ppm)         | 13 990 0                           | 222800                            | 226400                              | 121500                              | 1 700 00                        | 223100                            | 122000       | 1463 00      | 184800       | 129600       | 170400       | 196100       | Ch   |
| U (ppm)          | 92.70                              | 7730                              | 7660                                | 122.00                              | 6910                            | 5730                              | 13390        | 10030        | 10620        | 15870        | 9870         | 9450         | ap   |
| Ca (ppm)         | 10180                              | 11620                             | 10900                               | 0868                                | 11400                           | 11260                             | 9950         | 10180        | 12240        | 10890        | 10410        | 11520        | otei |
| Si (ppm)         | 2400                               | 880.0                             | 7000                                | 2800                                | 12400                           | 12320                             | 6710         | 10900        | 74.00        | 63.00        | 12300        | 7100         | r 2  |
| Yb/Gd            | 0.001                              | 0.001                             | 0.001                               | 0.005                               | 0.001                           | 0.001                             | 0.005        | 0.001        | 0.002        | 0.005        | 0.001        | 0.003        |      |
| Eu/Eu*           | 0.005                              | 0.002                             | 0.002                               | 0.005                               | 0.002                           | 0.002                             | 0.005        | 0.002        | 0.003        | 0.005        | 0.002        | 0.004        |      |
| Values of - indi | icate elements are below detection | n limit of the instrument. Monazi | ite trace elements calibrated again | ast stoichiometric Ce fixed at 2305 | 26 ppm (Ce*)(Buick et al., 2016 | )). C-core, R-Recrystallised zone |              |              |              |              |              |              |      |

| Table S3 contin-  | tued: LA-ICP-MS monazite REE     | E and trace element analyses: Sam  | ple II1-004K Gamet-biotite gneis    | ss continued (EB3)                  |                                 |                                   |              |              |              |              |              |              |            |
|-------------------|----------------------------------|------------------------------------|-------------------------------------|-------------------------------------|---------------------------------|-----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|
|                   | EB3 MNZ 64.1                     | EB3 MNZ 64.2                       | EB3 MNZ 64.3                        | EB3 MNZ 66.1                        | EB3 MNZ 66.2                    | EB3 MNZ 66.3                      | EB3 MNZ 68.1 | EB3 MNZ 68.2 | EB3 MNZ 68.3 | EB3 MNZ 69.2 | EB3 MNZ 71.1 | EB3 MNZ 71.2 |            |
| Position          | c                                | 2                                  | ж                                   | c                                   | ж                               | н                                 | c            | c            | R            | c            | c            | c            |            |
| Υ                 | 3120                             | 1249                               | 473                                 | 23.20                               | 937                             | 1143                              | 2700         | 2700         | 1088         | 4140         | 296          | 810          | A          |
| La                | 1 036 00                         | 93.400                             | 100400                              | 101400                              | 93700                           | 00086                             | 102100       | 1 03 800     | 93100        | 001011       | 00/16        | 94900        | pp         |
| Ce                | 230526                           | 230526                             | 230526                              | 230526                              | 230526                          | 230.526                           | 230526       | 230526       | 230526       | 230526       | 230526       | 230526       | en         |
| Pr                | 29250                            | 30460                              | 29.590                              | 28850                               | 30980                           | 299.90                            | 28140        | 28260        | 29940        | 27490        | 31240        | 30460        | diy        |
| PN                | 1068.00                          | 117200                             | 110400                              | 108900                              | 001611                          | 1133.00                           | 105 000      | 105100       | 120800       | 102200       | 123100       | 118100       | ĸВ         |
| Sm                | 23780                            | 24630                              | 16900                               | 22500                               | 223.00                          | 20700                             | 22610        | 23010        | 20800        | 20530        | 25700        | 26020        | 1          |
| Eu                | 51.9                             | 17.6                               | 23                                  | 49.9                                | 19.2                            | 27.2                              | 47.7         | 44.5         | 17.7         | 50.4         | 19.8         | 20.25        |            |
| Gd                | 7550                             | 72.20                              | 5330                                | 70.60                               | 7130                            | 6250                              | 6770         | 6580         | 6980         | 6410         | 8850         | 73.50        |            |
| 4L                | 475                              | 385                                | 234.3                               | 430                                 | 363                             | 322                               | 410          | 406          | 372          | 454          | 402          | 370.3        |            |
| Dy                | 1202                             | 787                                | 387                                 | 1037                                | 669                             | 673                               | 944          | 816          | 697          | 1207         | 740          | 699          |            |
| Но                | 101.5                            | 52.9                               | 20.94                               | 84.2                                | 41.1                            | 47.3                              | 81.9         | 80.5         | 48.2         | 115.9        | 43.2         | 38.9         |            |
| Er                | 134                              | 56.6                               | 22.2                                | 106.4                               | 41.1                            | 56.6                              | 111.8        | 109.2        | 48.6         | 167.8        | 40.6         | 35.2         |            |
| Tm                | 8                                | 2.88                               | 1.19                                | 6.95                                | 1.8                             | 3.26                              | 7            | 7.2          | 2.33         | 11.83        | 1.85         | 1.39         |            |
| Yb                | 26.7                             | 8.06                               | 3.09                                | 18.7                                | 4.96                            | 10.5                              | 23           | 24.5         | 6.9          | 41.2         | 12.3         | 4.72         |            |
| Lu                | 2.34                             | 0.97                               | 0.312                               | 1.83                                | 0.64                            | 0.88                              | 1.96         | 2.08         | 0.94         | 3.54         | 0.62         | 0.52         |            |
| LaN               | 441415                           | 397955                             | 42.7780                             | 43.204.1                            | 399 233                         | 417554                            | 435023       | 442267       | 396677       | 469110       | 390712       | 404346       | Su         |
| PrN               | 328283                           | 341863                             | 332099                              | 323793                              | 347699                          | 336588                            | 315825       | 317172       | 336027       | 3 085 30     | 3 50617      | 341863       | pp         |
| NbN               | 236074                           | 259063                             | 244032                              | 240716                              | 263 263                         | 250442                            | 232.095      | 232317       | 267020       | 225906       | 2.721.04     | 261052       | lei        |
| SmN               | 161659                           | 167437                             | 114888                              | 152957                              | 151598                          | 140721                            | 153705       | 156424       | 141400       | 1395.65      | 174711       | 176886       | ne         |
| EuN               | 927                              | 314                                | 411                                 | 168                                 | 343                             | 486                               | 852          | 795          | 316          | 006          | 3.54         | 362          | nte        |
| GdN               | 38403                            | 36724                              | 27111                               | 35910                               | 362.67                          | 31790                             | 34435        | 33469        | 35504        | 32604        | 45015        | 37386        | ary        |
| NdT               | 13085                            | 10606                              | 6455                                | 11846                               | 100.00                          | 8871                              | 11295        | 11185        | 1 0248       | 12507        | 11074        | 10201        | , <i>I</i> |
| DyN               | 4953                             | 3243                               | 1595                                | 42.73                               | 2880                            | 2773                              | 3890         | 3782         | 2872         | 4.973        | 3049         | 2756         | ifo        |
| HoN               | 1826                             | 951                                | 377                                 | 1514                                | 739                             | 851                               | 1473         | 1448         | 867          | 2085         | 777          | 700          | rm         |
| TmN               | 843                              | 356                                | 140                                 | 670                                 | 259                             | 356                               | 704          | 687          | 306          | 1056         | 256          | 222          | at         |
| ErN               | 331                              | 119                                | 49                                  | 28.7                                | 74                              | 135                               | 289          | 298          | 96           | 4.89         | 76           | 57           | 101        |
| YbN               | 164                              | 50                                 | 19                                  | 115                                 | 31                              | 65                                | 142          | 151          | 42           | 2.54         | 35           | 29           | 1 fe       |
| LuN               | 96                               | 40                                 | 13                                  | 75                                  | 26                              | 36                                | 81           | 86           | 39           | 146          | 26           | 21           | or         |
| Th (ppm)          | 114100                           | 173200                             | 226400                              | 123400                              | 168 000                         | 186900                            | 98400        | 96600        | 1 760 00     | 002111       | 1598.00      | 150200       | Ch         |
| U (ppm)           | 12380                            | 94.20                              | 7680                                | 13 030                              | 9680                            | 10830                             | 11300        | 10860        | 8260         | 14990        | 12800        | 12200        | ap         |
| Ca (ppm)          | 9300                             | 10180                              | 11540                               | 9290                                | 11430                           | 11620                             | 8220         | 0116         | 10580        | 8740         | 10720        | 0616         | otei       |
| Si (ppm)          | 800                              | 7600                               | 62.00                               | 1000                                | 17100                           | 7500                              | 2140         | 3000         | 4200         | 3180         |              |              | r 2        |
| Yb/Gd             | 0.004                            | 0.004                              | 0.001                               | 0.001                               | 0.003                           | 0.001                             | 0.004        | 0.005        | 100.0        | 0.008        | 0.001        | 0.001        |            |
| Eu/Eu*            | 0.005                            | 0.002                              | 0.003                               | 0.005                               | 0.002                           | 0.003                             | 0.005        | 0.005        | 0.002        | 0.006        | 0.002        | 0.002        |            |
| Values of - indic | cate elements are below detectic | on limit of the instrument. Monazi | te trace elements calibrated again: | st stoichiometric Ce fixed at 2305. | 26 ppm (Ce*)(Buick et al., 2010 | ). C-core, R-Recry stallised zone |              |              |              |              |              |              |            |

| Table S3 continu  | ued: LA-ICP-MS monazite REE       | and trace element analyses: Sam   | ple I11-004K Gamet-biotite gnei.   | ss continued (EB3), Sample II1-01   | 04C Transition zone (004)       |                                  |             |             |             |             |             |             |              |
|-------------------|-----------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---------------------------------|----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                   | EB3 MNZ 71 3                      | 004 MNZ-1-1                       | 004 MNZ-1-2                        | 004 MNZ-2-1                         | 004 MNZ-2-2                     | 004 MNZ-3-1                      | 004 MNZ-3-2 | 004 MNZ-4-1 | 004 MNZ-4-2 | 004 MNZ-4-3 | 004 MNZ-5-1 | 004 MNZ-5-2 |              |
| Position          | c                                 | c                                 | н                                  | c                                   | К                               | c                                | К           | c           | К           | Я           | я           | c           |              |
| Y                 | 666                               | 2801                              | 382                                | 3570                                | 398                             | 3643                             | 599.9       | 3448        | 2695        | 1610        | 1610        | 3264        | Ą            |
| La                | 92800                             | 100500                            | 08700                              | 100600                              | 94700                           | 101800                           | 95410       | 01566       | 00626       | 97320       | 98450       | 983.20      | pp           |
| Ce                | 230526                            | 230526                            | 230526                             | 230526                              | 230526                          | 230526                           | 230526      | 23 05 26    | 230526      | 230526      | 230526      | 230526      | en           |
| Ρŕ                | 30750                             | 285.60                            | 28970                              | 28650                               | 29890                           | 28580                            | 29920       | 29080       | 29330       | 29.790      | 28980       | 29060       | dix          |
| PN                | 118800                            | 109.700                           | 113600                             | 108 800                             | 119500                          | 108200                           | 0.05711     | 109200      | 109500      | 114600      | 111200      | 001011      | c B          |
| Sm                | 27330                             | 24660                             | 06661                              | 25410                               | 22150                           | 24600                            | 23720       | 25280       | 24500       | 24430       | 24760       | 26070       | {            |
| Eu                | 22                                | 38.8                              | 15.82                              | 43                                  | 12.25                           | 45.9                             | 14.6        | 43.2        | 36.5        | 25.1        | 18.61       | 48.8        |              |
| Gd                | 8000                              | 06911                             | 4410                               | 12950                               | 2190                            | 12860                            | 10230       | 12480       | 11560       | 11370       | 11520       | 12500       |              |
| Tb                | 406                               | 325.5                             | 156.4                              | 410                                 | 1 77.5                          | 409                              | 231.3       | 369.3       | 327.3       | 300.7       | 309.5       | 366.7       |              |
| Dy                | 748                               | 797                               | 280.8                              | 666                                 | 303.1                           | 1013                             | 418.5       | 606         | 766         | 634         | 649         | 889         |              |
| Но                | 45.5                              | 69                                | 17.34                              | 85.3                                | 18.11                           | 85.6                             | 27.15       | 82.6        | 65.2        | 46.65       | 44.7        | 78          |              |
| Er                | 42.9                              | 89.2                              | 17.96                              | 107.2                               | 18.58                           | 107.4                            | 25.74       | 112         | 82.5        | 53.4        | 46.1        | 102.9       |              |
| Tm                | 1.77                              | S.47                              | 0.78                               | 6.51                                | 0.809                           | 6.42                             | 81.1        | 6.95        | 4.92        | 2.97        | 2.25        | 6.33        |              |
| Yb                | 5.41                              | 17.76                             | 2.69                               | 21.2                                | 2.36                            | 20.5                             | 3.55        | 22.8        | 15.69       | 9.05        | 5.99        | 20.73       |              |
| Lu                | 0.74                              | 1.56                              | 0.223                              | 1.8                                 | 0.262                           | 1.732                            | 0.347       | 1.95        | 1.39        | 0.748       | 0.522       | 1.75        |              |
| LaN               | 395398                            | 428206                            | 420537                             | 428632                              | 403494                          | 433745                           | 406519      | 42.39.88    | 417128      | 414657      | 419472      | 418918      | Su           |
| PrN               | 345118                            | 320539                            | 325140                             | 321549                              | 335466                          | 320763                           | 335802      | 326375      | 329181      | 334343      | 32.5253     | 326150      | pp           |
| NbN               | 262599                            | 242485                            | 251105                             | 240.495                             | 264147                          | 239169                           | 259726      | 2413.79     | 242042      | 253316      | 245800      | 243 369     | ler          |
| SmN               | 185792                            | 167641                            | 135 894                            | 172740                              | 150578                          | 167233                           | 161251      | 171856      | 166553      | 166077      | 168321      | 177226      | ne           |
| EuN               | 393                               | 693                               | 283                                | 768                                 | 219                             | 820                              | 261         | 771         | 652         | 448         | 332         | 871         | ntc          |
| GdN               | 40.692                            | 59461                             | 22431                              | 65870                               | 36572                           | 65412                            | 52035       | 63479       | 58800       | 57833       | 58.596      | 63581       | ary          |
| NdT               | 11185                             | 8967                              | 4309                               | 11 295                              | 4890                            | 11267                            | 6372        | 10174       | 2106        | 8284        | 8526        | 10102       | , <i>I</i> r |
| DyN               | 3082                              | 3284                              | 1157                               | 4116                                | 1249                            | 4174                             | 1 724       | 3745        | 3156        | 2612        | 2674        | 3663        | ifo          |
| HoN               | 818                               | 1241                              | 312                                | 1534                                | 326                             | 1540                             | 488         | 1486        | 1173        | 839         | 804         | 1403        | rm           |
| TmN               | 270                               | 561                               | 113                                | 675                                 | 11.7                            | 676                              | 162         | 705         | 519         | 336         | 290         | 648         | at           |
| ErN               | 73                                | 226                               | 32                                 | 269                                 | 33                              | 265                              | 49          | 287         | 203         | 123         | 93          | 262         | ion          |
| YbN               | 33                                | 109                               | 17                                 | 130                                 | 15                              | 126                              | 22          | 140         | 97          | 56          | 37          | 128         | ı fe         |
| LuN               | 30                                | 64                                | 9                                  | 74                                  | 11                              | 71                               | 14          | 80          | 57          | 31          | 21          | 72          | or           |
| Th (ppm)          | 00116                             | 114900                            | 252700                             | 122500                              | 237800                          | 129900                           | 201600      | 132400      | 115200      | 164600      | 115000      | 91400       | Ch           |
| U (ppm)           | 02211                             | 9290                              | 4250                               | 10050                               | 3990                            | 11340                            | 6340        | 10260       | 8510        | 73.00       | 6800        | 9970        | ap           |
| Ca (ppm)          | 6630                              | 7190                              | 8450                               | 769.0                               | 9690                            | 8410                             | 8990        | 8180        | 72.30       | 8980        | 63.20       | 6880        | otei         |
| Si (ppm)          | 63.00                             | 210                               | 4480                               | 840                                 | 3510                            | 916                              | 2940        | 570         | 12 00       | 2020        | 1240        | 970         | r 2          |
| Yb/Gd             | 0.001                             | 0.002                             | 0.001                              | 0.002                               | 0.000                           | 0.002                            | 0.000       | 0.002       | 0.002       | 0.001       | 0.001       | 0.002       |              |
| Eu/Eu*            | 0.002                             | 0.004                             | 0.002                              | 0.004                               | 0.001                           | 0.004                            | 0.001       | 0.004       | 0.003       | 0.002       | 0.004       | 0.002       |              |
| Values of - indic | cate elements are below detection | n limit of the instrument. Monazi | te trace elements calibrated again | st stoichiometric Ce fixed at 2305. | 26 ppm (Ce*)(Buick et al., 2010 | ). C-core, R-Recrystallised zone |             |             |             |             |             |             |              |

| Table S3 contin  | nued: LA-ICP-MS monazite REE      | 3 and trace element analysesL San  | uple II1-004C Transition zone co.  | ntinued (004)                      |                                  |                                   |             |             |             |             |             |             |      |
|------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------|-----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
|                  | 004 MNZ-5-3                       | 004 MNZ-5-4                        | 004 MNZ-6-1                        | 004 MNZ-6-2                        | 004 MNZ-6-3                      | 004 MNZ-6-4                       | 004 MNZ-6-5 | 004 MNZ-7-1 | 004 MNZ-7-2 | 004 MNZ-7-3 | 004 MNZ-7-4 | 004 MNZ-8-1 |      |
| Position         | В                                 | м                                  | м                                  | С                                  | В                                | R                                 | Я           | R           | R           | c           | R           | К           |      |
| Υ                | 838                               | 678                                | 1039                               | 3196                               | 455                              | 499                               | 720         | 337.2       | 869         | 2714        | 678         | 751         | A    |
| La               | 96340                             | 95430                              | 933.40                             | 100230                             | 98400                            | 94200                             | 03900       | 06930       | 94860       | 06636       | 93.480      | 95500       | pp   |
| Ce               | 230526                            | 230526                             | 230.526                            | 230526                             | 230526                           | 230526                            | 230526      | 230526      | 230526      | 230526      | 230526      | 230526      | en   |
| Pr               | 29270                             | 29510                              | 29710                              | 282.80                             | 28800                            | 30080                             | 29730       | 29350       | 29970       | 28820       | 30130       | 29500       | aix  |
| PN               | 1135 00                           | 1155.00                            | 116900                             | 107000                             | 111200                           | 0.062.11                          | 118200      | 113400      | 009/11      | 107120      | 000611      | 1153.00     | ¢Β   |
| Sm               | 23.690                            | 24940                              | 25490                              | 245 80                             | 20700                            | 22970                             | 26160       | 20740       | 25340       | 24190       | 24710       | 24670       |      |
| Eu               | 18.84                             | 16.26                              | 16.06                              | 42.09                              | 17.7                             | 13.01                             | 13.97       | 13.98       | 14.52       | 40.7        | 15.17       | 16.29       |      |
| Gd               | 10410                             | 11380                              | 11500                              | 11820                              | 6350                             | 9200                              | 01611       | 6410        | 11150       | 11210       | 10680       | 11210       |      |
| Tb               | 264.7                             | 279                                | 293.7                              | 352                                | 181.8                            | 202.6                             | 288.1       | 162.3       | 269.2       | 320.4       | 253.3       | 282.8       |      |
| Dy               | 525                               | 511.9                              | 585                                | 884                                | 327                              | 358                               | 525         | 260.1       | 498.9       | 747.3       | 465.4       | 517         |      |
| Но               | 35.9                              | 30.19                              | 39.14                              | 76.4                               | 19                               | 21.78                             | 31.37       | 14.88       | 30.58       | 66.03       | 30.28       | 33.37       |      |
| Er               | 38.7                              | 27.46                              | 40.5                               | 101.4                              | 19.7                             | 22.25                             | 28.05       | 15.42       | 28.56       | 86.5        | 30          | 31.8        |      |
| Tm               | 1.77                              | 1.054                              | 1.85                               | 6.32                               | 0.87                             | 0.946                             | 126         | 0.589       | 61.1        | 5.52        | 1.33        | 1.39        |      |
| γÞ               | 5.7                               | 3.4                                | 5.09                               | 21.2                               | 2.72                             | 3.39                              | 3.51        | 2.14        | 4.16        | 18.77       | 4.01        | 4.1         |      |
| Lu               | 0.459                             | 0.323                              | 0.451                              | 1.76                               | 0.207                            | 0.291                             | 0.341       | 0.188       | 0.372       | 1.51        | 0.359       | 0.353       |      |
| LaN              | 410481                            | 406604                             | 397699                             | 427056                             | 419259                           | 401363                            | 400085      | 41 2995     | 404176      | 421517      | 398296      | 406902      | SU   |
| ΡrΝ              | 328507                            | 331201                             | 333.446                            | 317396                             | 323232                           | 337598                            | 333670      | 32.94.05    | 33.6364     | 323457      | 338159      | 331089      | pp   |
| NbN              | 250884                            | 255305                             | 258400                             | 236516                             | 2458.00                          | 260610                            | 261273      | 250663      | 25 994 7    | 236782      | 263042      | 254863      | ier  |
| SmN              | 161047                            | 169545                             | 173283                             | 167.097                            | 140721                           | 156152                            | 1 778 38    | 140993      | 172264      | 164446      | 167981      | 167709      | nei  |
| EuN              | 336                               | 290                                | 287                                | 752                                | 316                              | 232                               | 249         | 250         | 259         | 727         | 271         | 291         | ntc  |
| GdN              | 52950                             | 578.84                             | 58494                              | 60122                              | 3 2299                           | 46796                             | 60580       | 32604       | 56714       | 57019       | 54323       | 57019       | ıry  |
| NdT              | 7292                              | 7686                               | 1608                               | 9697                               | 5 008                            | 5581                              | 7937        | 44.71       | 7416        | 88.26       | 69.78       | 16/2        | 11   |
| DyN              | 2163                              | 2109                               | 2410                               | 3642                               | 1347                             | 1475                              | 2163        | 1072        | 2056        | 30.79       | 1918        | 2130        | ij0  |
| HoN              | 646                               | 543                                | 704                                | 1374                               | 342                              | 392                               | 564         | 268         | 550         | 1188        | 545         | 600         | rm   |
| TmN              | 244                               | 173                                | 255                                | 638                                | 124                              | 140                               | 177         | 97          | 180         | 544         | 189         | 200         | at   |
| ErN              | 73                                | 44                                 | 76                                 | 261                                | 36                               | 39                                | 52          | 24          | 49          | 228         | 55          | 57          | ion  |
| YbN              | 35                                | 21                                 | 31                                 | 130                                | 17                               | 21                                | 22          | 13          | 26          | 116         | 25          | 25          | i JC |
| LuN              | 19                                | 13                                 | 19                                 | 72                                 | 9                                | 12                                | 14          | 8           | 15          | 62          | 15          | 15          | or ( |
| Th (ppm)         | 174200                            | 155800                             | 167000                             | 120800                             | 238900                           | 234900                            | 172500      | 23.68.00    | 172900      | 106000      | 198300      | 159800      | Ch   |
| U (ppm)          | 6730                              | 6770                               | 7290                               | 9270                               | 6600                             | 5200                              | 6380        | 5400        | 65.70       | 8310        | 58.70       | 6410        | ар   |
| Ca (ppm)         | 9490                              | 9050                               | 8730                               | 8530                               | 0066                             | 10380                             | 9500        | 9670        | 93.30       | 0699        | 9540        | 0108        | tei  |
| Si (ppm)         | 1940                              | 1700                               | 2440                               | 630                                | 4210                             | 3870                              | 2000        | 42.70       | 2790        | 01/21       | 2400        | 502.0       | r 2  |
| Yb/Gd            | 0.001                             | 0.000                              | 0.001                              | 0.002                              | 0.001                            | 0.000                             | 0.000       | 0.000       | 0.00.0      | 0.002       | 0.000       | 0.000       |      |
| Eu/Eu*           | 0.002                             | 0.004                              | 0.001                              | 0.001                              | 0.002                            | 0.004                             | 0.002       | 0.001       | 0.001       | 0.004       | 0.002       | 0.001       |      |
| Values of - indi | icate elements are below detectio | n limit of the instrument. Monazit | te trace elements calibrated again | st stoichiometric Ce fixed at 2305 | 26 ppm (Ce*)(Buick et al., 2010) | 1). C-core, R-Recrystallised zone |             |             |             |             |             |             |      |

| Table S3 contin-  | ued: LA-ICP-MS monazite REE.       | and trace element analyses: Sam   | ple II1-004C Transition zone cor   | ntinued (004), Sample II1-008C C    | hamockite (008)                  |                               |              |              |             |             |             |             |              |
|-------------------|------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|----------------------------------|-------------------------------|--------------|--------------|-------------|-------------|-------------|-------------|--------------|
|                   | 004 MNZ-8-2                        | 004 MNZ-8-3                       | 004 MNZ-9-1                        | 004 MNZ-9-2                         | 004 MNZ-9-3                      | 004 MNZ-10-1                  | 004 MNZ-10-2 | 004 MNZ-10-3 | 1-1-ZNW 800 | 2-1-ZNM 800 | 008 MNZ-1-3 | 008 MNZ-2-1 |              |
| Resition          | c                                  | R                                 | с                                  | R                                   | R                                | c                             | R            | R            | R           | R           | R           | R           |              |
| Y                 | 3522                               | 524                               | 3491                               | 803                                 | 892                              | 2222                          | 538          | 406.8        | 1570        | 1620        | 1640        | 1011        | A            |
| La                | 0.008.6                            | 94000                             | 99700                              | 97970                               | 08686                            | 105700                        | 93770        | 96380        | 89290       | 89700       | 88440       | 0600        | pp           |
| Ce                | 230526                             | 230526                            | 230526                             | 230526                              | 230526                           | 230526                        | 230526       | 230526       | 230526      | 230526      | 230526      | 230526      | en           |
| Pr                | 29080                              | 29960                             | 29320                              | 29850                               | 29460                            | 28080                         | 30020        | 2.99.30      | 31090       | 31160       | 31230       | 31130       | dix          |
| PN                | 1 097 00                           | 118490                            | 001601                             | 1152.00                             | 111500                           | 104300                        | 119500       | 0.05711      | 134400      | 134000      | 000961      | 131000      | c B          |
| Sm                | 26100                              | 23460                             | 25180                              | 22850                               | 21860                            | 21410                         | 25010        | 23240        | 21530       | 21440       | 21730       | 19770       | }            |
| Eu                | 44.5                               | 13.93                             | 42.7                               | 19.67                               | 23.8                             | 37.73                         | 13.9         | 13.73        | 15.91       | 16.39       | 16.46       | 16.89       |              |
| Gd                | 12780                              | 9630                              | 12400                              | 02.66                               | 9330                             | 10480                         | 10810        | 8650         | 8230        | 7870        | 8360        | 4160        |              |
| fL.               | 392                                | 216.1                             | 373.1                              | 244.4                               | 235                              | 311.4                         | 246.2        | 199.3        | 226.9       | 226.3       | 228.8       | 219.6       |              |
| Dy                | 938                                | 380.6                             | 929                                | 479.8                               | 499                              | 729                           | 429.3        | 328.1        | 549         | 550         | 559         | 538         |              |
| Но                | 83                                 | 23.94                             | 83.9                               | 34.47                               | 36.7                             | 52.8                          | 24.05        | 18.37        | 43.8        | 43.9        | 45.1        | 43.1        |              |
| Er                | 114.4                              | 23.58                             | 111.3                              | 39.1                                | 44.3                             | 54.7                          | 21.4         | 16.94        | 55.8        | 54.1        | 56          | 56.4        |              |
| Tm                | 7.07                               | 1.09                              | 6.8                                | 2.05                                | 2.67                             | 2.68                          | 0.766        | 0.667        | 3.06        | 2.97        | 3.24        | 3.31        |              |
| Yb                | 22.93                              | 3.5                               | 23.7                               | 6.28                                | 7.74                             | 7.11                          | 2.55         | 2.01         | 9.3         | 9.55        | 96.6        | 9.17        |              |
| Lu                | 1.93                               | 0.275                             | 1.99                               | 0.553                               | 0.69                             | 0.511                         | 0.237        | 0.207        | 0.862       | 0.739       | 0.851       | 0.729       |              |
| LaN               | 417554                             | 400511                            | 42.479.8                           | 417427                              | 421730                           | 450362                        | 399.531      | 410652       | 3 804 43    | 382190      | 376821      | 387516      | Su           |
| PrN               | 3 2 6 3 7 5                        | 33.6251                           | 329068                             | 33 501 7                            | 330640                           | 315152                        | 336925       | 335915       | 348934      | 349719      | 3 505 05    | 349383      | pp           |
| NPN               | 242485                             | 261914                            | 241158                             | 254642                              | 246463                           | 230548                        | 264147       | 259284       | 297082      | 296198      | 3 006 19    | 289567      | lei          |
| SmN               | 177430                             | 159483                            | 171176                             | 155337                              | 148606                           | 145547                        | 170020       | 157988       | 146363      | 145751      | 147723      | 134398      | ne           |
| EuN               | 795                                | 249                               | 763                                | 351                                 | 425                              | 674                           | 248          | 245          | 284         | 293         | 2.94        | 302         | nte          |
| GdN               | 65005                              | 48.983                            | 63.072                             | 50712                               | 47457                            | 533.06                        | 54985        | 43998        | 41862       | 40031       | 42523       | 21160       | ary          |
| NdT               | 10799                              | 5953                              | 10278                              | 6733                                | 6474                             | 8579                          | 678.2        | 5490         | 6251        | 6234        | 6303        | 60.50       | , <i>I</i> 1 |
| DyN               | 3865                               | 1568                              | 3828                               | 1977                                | 2056                             | 3004                          | 1769         | 1352         | 2262        | 2266        | 2303        | 2217        | ıfo          |
| NoH               | 1493                               | 431                               | 1509                               | 620                                 | 660                              | 950                           | 433          | 330          | 788         | 790         | 811         | 775         | rm           |
| TmN               | 720                                | 148                               | 700                                | 246                                 | 279                              | 344                           | 135          | 107          | 351         | 3.40        | 3.52        | 355         | at           |
| ErN               | 292                                | 45                                | 281                                | 85                                  | 110                              | 111                           | 32           | 28           | 126         | 123         | 134         | 13.7        | i01          |
| YbN               | 141                                | 22                                | 146                                | 39                                  | 48                               | 44                            | 16           | 12           | 57          | 59          | 61          | 56          | i fe         |
| LuN               | 79                                 | 11                                | 82                                 | 23                                  | 28                               | 21                            | 10           | 9            | 35          | 30          | 35          | 30          | or           |
| Th (ppm)          | 126400                             | 227600                            | 133800                             | 213200                              | 217400                           | 133100                        | 200300       | 209900       | 111100      | 114300      | 95300       | 231800      | Ch           |
| U (ppm)           | 10400                              | 58.50                             | 10220                              | 62.50                               | 6220                             | 0170                          | 7040         | 5620         | 4470        | 4670        | 4390        | 44.30       | ap           |
| Ca (ppm)          | 9100                               | 10410                             | 8080                               | 92.20                               | 9510                             | 8610                          | 8380         | 9100         | 6660        | 6160        | 5860        | 11990       | otei         |
| Si (ppm)          | 1080                               | 2900                              | 990                                | 3100                                | 3660                             | 1020                          | 2930         | 3400         | 1040        | 016         | 500         | 1560        | r 2          |
| Yb/Gd             | 0.002                              | 0.000                             | 0.002                              | 0.001                               | 0.001                            | 0.001                         | 0.000        | 0.000        | 0.001       | 100.0       | 0.001       | 0.003       |              |
| Eu/Eu*            | 100.0                              | 0.002                             | 0.001                              | 0.004                               | 0.001                            | 100.0                         | 0.004        | 100.0        | 0.002       | 0.002       | 0.002       | 0.002       |              |
| Values of - indic | cate elements are below detection. | limit of the instrument. Monazite | e trace elements calibrated agains | st stoichiometric Ce fixed at 23052 | 6 ppm (Ce*)(Buick et al., 2010). | C-core, R-Recrystallised zone |              |              |             |             |             |             |              |

| Tab               | ble S3 continued   | xd: LA-ICP-MS monazite REE a.     | and trace element analyses: Samp  | ple II1-008C Chamockite continu    | ued (008), Sample TB-14-025 Mc      | stapelitic gneiss (PA/PB)       |                                  |          |          |          |         |          |        |
|-------------------|--------------------|-----------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---------------------------------|----------------------------------|----------|----------|----------|---------|----------|--------|
|                   |                    | 008 MNZ-2-2                       | 008 MNZ-2-3                       | PA-1.1                             | PA-4.1                              | PA-4.2                          | PA-5.1                           | PA-5.2   | PA-6.1   | PA-12.1  | PA-12.2 | PA-13.1B | PB-1.1 |
| Posit             | stion              | В                                 | R                                 | R                                  | c                                   | R                               | c                                | R        | c        | R        | К       | R        | c      |
| 7                 |                    | 8611                              | 1114                              | 329                                | 3920                                | 396                             | 1960                             | 288      | 346      | 319      | 338     | 11260    | 00661  |
| La                | _                  | 90500                             | 903.00                            | 97600                              | 135300                              | 119300                          | 137600                           | 1 053 00 | 114.700  | 115900   | 006601  | 140400   | 131600 |
| c                 |                    | 230526                            | 230526                            | 230526                             | 230.526                             | 230526                          | 230526                           | 230526   | 23.05.26 | 23.052.6 | 230526  | 23 052 6 | 230526 |
| 枮                 |                    | 31160                             | 31160                             | 32220                              | 24980                               | 27070                           | 26970                            | 32300    | 31240    | 30100    | 30960   | 27200    | 26680  |
| PN                | P                  | 132100                            | 129500                            | 152700                             | 104700                              | 124700                          | 110300                           | 151200   | 141700   | 13.590.0 | 146900  | 112900   | 115700 |
| Sm                | u                  | 20040                             | 192.70                            | 21940                              | 00681                               | 18620                           | 20030                            | 20990    | 19320    | 01161    | 20840   | 21160    | 17380  |
| Eu                | _                  | 17.6                              | 17.56                             | 20.9                               | 146.5                               | 26.7                            | 353.5                            | 21.82    | 28.1     | 27.5     | 23.6    | 342      | 394    |
| В                 | Ŧ                  | 4150                              | 6580                              | 5116                               | 01801                               | 5160                            | 14660                            | 5190     | 5700     | 49.00    | 54.50   | 14580    | 11140  |
| f                 | _                  | 224.9                             | 193.2                             | £ 161                              | 775                                 | 222.7                           | 1456                             | 209.2    | 254      | 193.9    | 214.5   | 1489     | 1394   |
| Dy                | ×                  | 564                               | 460                               | 285.9                              | 8661                                | 361.1                           | 4110                             | 310      | 386      | 292      | 311.1   | 4730     | 6340   |
| Ho                | 0                  | 43.8                              | 35.76                             | 14.68                              | 159.8                               | 18.17                           | 320                              | 14.64    | 17.5     | 14.4     | 15.08   | 438      | 803    |
| Er                |                    | 58.3                              | 45.2                              | 16.62                              | 149.8                               | 18.12                           | 298                              | 14.38    | 16.4     | 16.6     | 16.69   | 509      | 1177   |
| Tm                | ц                  | 3.21                              | 2.33                              | 0.443                              | 6.16                                | 0.52                            | 13.61                            | 0.366    | 0.427    | 0.52     | 0.573   | 27.8     | 75.2   |
| γp                | _                  | 9.82                              | 7.67                              | 1.25                               | 15                                  | 1.51                            | 34.8                             | 1.38     | 1.46     | 1.17     | 1.58    | 1.18     | 240    |
| Lu                | _                  | 0.813                             | 0.606                             | 0.142                              | 1.22                                | 0.159                           | 2.86                             | 0.117    | 0.122    | 0.14     | 0.143   | 6.14     | 18.9   |
| Lal               | IN N               | 385599                            | 384746                            | 415850                             | 576481                              | 508308                          | 586280                           | 448658   | 488709   | 493822   | 468257  | 598210   | 560716 |
| PrN               | Z.                 | 349719                            | 349719                            | 323232                             | 361616                              | 280359                          | 3 0 2 6 9 4                      | 362514   | 350617   | 33.782.3 | 347475  | 30.527.5 | 299439 |
| ŊŊ                | Nb                 | 291998                            | 286251                            | 305.040                            | 337533                              | 231432                          | 243811                           | 334218   | 313218   | 300398   | 324713  | 249558   | 255747 |
| Sm                | Nn                 | 13 623 4                          | 130,999                           | 147111                             | 149150                              | 128484                          | 136166                           | 142692   | 131339   | 129912   | 141672  | 143848   | 118151 |
| Eut               | Nr                 | 314                               | 314                               | 584                                | 373                                 | 2616                            | 6313                             | 390      | 502      | 491      | 421     | 61.07    | 7036   |
| Gd.               | Nb                 | 21109                             | 334.69                            | 282.30                             | 26022                               | 54985                           | 74568                            | 26399    | 28993    | 24.924   | 27721   | 74161    | 56663  |
| Tbî               | N                  | 96196                             | 5322                              | 562.0                              | 5281                                | 21350                           | 40110                            | 5763     | 26.69    | 53.42    | 5909    | 41019    | 38402  |
| Dy                | N,N                | 23.24                             | 1895                              | 1199                               | 11.78                               | 8232                            | 16934                            | 1277     | 1590     | 1203     | 1282    | 19489    | 26123  |
| Ho.               | Ng                 | 78.8                              | 643                               | 228                                | 264                                 | 2874                            | 5755                             | 263      | 315      | 259      | 271     | 78.78    | 144.42 |
| Tm                | Nn                 | 367                               | 284                               | 11                                 | 105                                 | 943                             | 1875                             | 90       | 103      | 104      | 105     | 3203     | 7407   |
| Er                | z                  | 133                               | 96                                | 10                                 | 18                                  | 255                             | 562                              | 15       | 18       | 21       | 24      | 1149     | 3107   |
| Υp                | PN Nd              | 60                                | 47                                | 12                                 | 8                                   | 92                              | 214                              | 8        | 6        | 7        | 10      | 499      | 1477   |
| Luì               | N                  | 33                                | 25                                | 3                                  | 6                                   | 50                              | 118                              | 5        | 5        | 6        | 6       | 253      | 778    |
| ΨL                | (mqq) i            | 279600                            | 232.00                            | 000161                             | 572.00                              | 87800                           | 56700                            | 126200   | 120100   | 114800   | 134500  | 64.500   | 744 00 |
| η¢                | (udd)              | 4890                              | 4770                              | 4160                               | 368.4                               | 3280                            | 9940                             | 2939     | 2890     | 29.60    | 49.70   | 8560     | 8290   |
| Ca                | a (ppm)            | 13.390                            | 1880                              | 768.0                              | 638.0                               | 6010                            | 8540                             | 6500     | 8100     | 99.70    | 73.10   | 84.20    | 11200  |
| Si (              | (mdd)              | 28.80                             | 98                                | 15000                              | 6500                                | 1 0900                          |                                  | 6300     | 1500     | 24300    | 5700    | 2100     |        |
| ÷<br>2            | b/Gd               | 0.003                             | 0.001                             | 0.000                              | 0.000                               | 0.002                           | 0.003                            | 0.000    | 0.000    | 0.000    | 0.00.0  | 0.007    | 0.026  |
| ة<br>72           | ⊿/Eu*              | 0.002                             | 0.002                             | 0.004                              | 0.002                               | 0.017                           | 0.036                            | 0.002    | 0.003    | 0.003    | 0.003   | 0.034    | 0.048  |
| <sup>⊮</sup><br>२ | thes of - indicate | te elements are below detection l | limit of the instrument. Monazite | e trace elements calibrated again: | st stoichiometric Ce fixed at 2305. | 26 ppm (Ce*)(Buick et al., 2010 | ). C-core, R-Recrystallised zone |          |          |          |         |          |        |
| L                 |                    |                                   |                                   |                                    |                                     |                                 |                                  |          |          |          |         |          |        |

| Table S3 continu  | ted: LA-ICP-MS monazite REE       | and trace element analyses: Sam   | aple TB-14-025 Metapelitic gneis    | ss (PA/PB), Sample 111-006V Pegi    | matite (EB1)                      |                                  |          |        |        |         |          |             |      |
|-------------------|-----------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|----------------------------------|----------|--------|--------|---------|----------|-------------|------|
|                   | PB-2.1                            | PB-4.1                            | PB-4.2                              | PB-5.1                              | PB-5.2                            | PB-6.1                           | PB-6.2   | PB-7.1 | PB-7.2 | PB-8.1  | PB-8.2   | EB1 MNZ 4.1 |      |
| Presition         | с                                 | R                                 | с                                   | с                                   | R                                 | с                                | R        | c      | c      | c       | c        | c           |      |
| Y                 | 457.4                             | 3120                              | 3995                                | 7850                                | 286.5                             | 13300                            | 313.2    | 2310   | 1160   | 14980   | 11670    | 1700        | A    |
| La                | 96700                             | 128600                            | 140800                              | 142600                              | 11 080 0                          | 1393.00                          | 96500    | 133300 | 126900 | 138100  | 141100   | 90600       | pp   |
| Ce                | 230526                            | 230.526                           | 230526                              | 230.526                             | 230526                            | 230526                           | 230526   | 230526 | 230526 | 230526  | 230526   | 230526      | en   |
| Pr                | 31820                             | 29650                             | 28070                               | 27670                               | 32740                             | 28610                            | 35610    | 28230  | 29320  | 26780   | 26540    | 31080       | diy  |
| PN                | 149100                            | 131200                            | 001811                              | 111800                              | 1478.00                           | 120400                           | 002081   | 120700 | 129800 | 111200  | 110200   | 120 000     | c B  |
| Sm                | 22420                             | 203.80                            | 192.00                              | 20500                               | 17670                             | 20290                            | 24780    | 17490  | 18550  | 20000   | 20010    | 11740       | }    |
| Eu                | 15.95                             | 136.2                             | 175.1                               | 443                                 | 24.38                             | 250                              | 18.84    | 136    | 16     | 721     | 563      | 20.1        |      |
| Gd                | 48.77                             | 0096                              | 11370                               | 14520                               | 3981                              | 12380                            | 5040     | 7100   | 6130   | 13610   | 14150    | 4520        |      |
| 4L                | 179.5                             | 679                               | 867                                 | 1405                                | 143.1                             | 1250                             | 179.4    | 44.7   | 325    | 1463    | 1512     | 281         |      |
| Dy                | 304.4                             | 1749                              | 2217                                | 4000                                | 211.2                             | 4650                             | 262.3    | 1210   | 720    | 5650    | 5180     | 763         |      |
| Но                | 19.56                             | 125.5                             | 155.9                               | 291                                 | 12.61                             | 540                              | 14.16    | 92     | 48.3   | 570     | 433      | 70.3        |      |
| Er                | 25.9                              | 117.8                             | 137                                 | 257                                 | 17.87                             | 820                              | 18.2     | 86     | 40.8   | 069     | 373.8    | 99.9        |      |
| Tm                | 1.05                              | 5.21                              | 6.46                                | 11.31                               | 0.624                             | 66                               | 0.654    | 3.8    | 1.34   | 44.3    | 14.81    | 6.27        |      |
| γP                | 2.89                              | 14.36                             | 16.63                               | 29.3                                | 1.86                              | 251                              | 1.67     | 9.2    | 3.4    | 136     | 35.2     | 21.7        |      |
| Lu                | 0.273                             | 1.15                              | 1.25                                | 2.24                                | 0.168                             | 22.9                             | 0.152    | 0.76   | 0.271  | 10.32   | 2.56     | 2.09        |      |
| LaN               | 412015                            | 547934                            | 599915                              | 607584                              | 4.720.92                          | 593524                           | 411163   | 567959 | 540690 | 588411  | 601193   | 386025      | Su   |
| PrN               | 357127                            | 332.772                           | 315039                              | 310550                              | 367452                            | 321100                           | 3 996 63 | 316835 | 329068 | 300561  | 297868   | 348822      | pp   |
| NbN               | 329576                            | 290.009                           | 261052                              | 247126                              | 3 267 02                          | 266136                           | 3 994 25 | 266799 | 286914 | 245800  | 243590   | 264589      | ler  |
| SmN               | 152413                            | 138.545                           | 130523                              | 139361                              | 120122                            | 137933                           | 168457   | 118899 | 126105 | 13 5962 | 13 603 0 | 79810       | ne   |
| EuN               | 285                               | 2432                              | 3127                                | 1162                                | 435                               | 4464                             | 336      | 2429   | 1625   | 12875   | 10054    | 359         | ntc  |
| GdN               | 24807                             | 488.30                            | 57833                               | 738.56                              | 20249                             | 62970                            | 25636    | 36114  | 31180  | 69 227  | 71 974   | 22991       | ary  |
| NdT               | 4945                              | 18705                             | 238.84                              | 38705                               | 3942                              | 34435                            | 4942     | 12314  | 89.53  | 40.303  | 41653    | 7741        | , Ir |
| DyN               | 1254                              | 7206                              | 9135                                | 16481                               | 8.70                              | 19159                            | 1081     | 49.86  | 2967   | 23.280  | 21343    | 3144        | ıfo  |
| HoN               | 352                               | 2257                              | 2804                                | 5234                                | 227                               | 9712                             | 255      | 1655   | 869    | 10252   | 7788     | 1264        | rm   |
| TmN               | 163                               | 741                               | 862                                 | 1617                                | 112                               | 5160                             | 115      | 541    | 257    | 43.42   | 23.52    | 629         | at   |
| ErN               | 43                                | 215                               | 267                                 | 467                                 | 26                                | 2.727                            | 27       | 157    | 55     | 1831    | 612      | 259         | ior  |
| YbN               | 18                                | 88                                | 102                                 | 180                                 | =                                 | 1545                             | 10       | 57     | 21     | 837     | 217      | 134         | ı fe |
| LuN               | 11                                | 47                                | 51                                  | 92                                  | 7                                 | 942                              | 9        | 31     | 11     | 425     | 105      | 86          | or   |
| Th (ppm)          | 32410                             | 148000                            | 92100                               | 64710                               | 134700                            | 94000                            | 201900   | 84300  | 109500 | 79100   | 60.500   | 144200      | Ch   |
| U (ppm)           | 3120                              | 7530                              | 6540                                | 10480                               | 1682                              | 7040                             | 7420     | 3600   | 33.20  | 78.80   | 0616     | 232.00      | ap   |
| Ca (ppm)          | 28.60                             | 9370                              | 10290                               | 963.0                               | 8.700                             | 9180                             | 8110     | 68.90  | 63.60  | 98.20   | 0/ 16    | 10930       | otei |
| Si (ppm)          | 1800                              | 4900                              | 3550                                | 6200                                | 13400                             | 6100                             | 15200    | 40.00  | 43.00  | 60.00   | 16500    | 1800        | r 2  |
| Yb/Gd             | 0.001                             | 0.002                             | 0.002                               | 0.002                               | 0.001                             | 0.025                            | 0.000    | 0.002  | 0.001  | 0.012   | 0.003    | 0.006       |      |
| Eu/Eu*            | 0.002                             | 0.015                             | 0.020                               | 0.045                               | 0.003                             | 0.026                            | 0.002    | 0.018  | 0.011  | 0.075   | 0.058    | 0.004       |      |
| Values of - indic | ate elements are below detectior. | n limit of the instrument. Monazi | ite trace elements calibrated again | 1st stoichiometric Ce fixed at 2305 | \$26 ppm (Ce*)(Buick et al., 2010 | ). C-core, R-Recrystallised zone |          |        |        |         |          |             |      |

| Table         | le S3 continuec   | xd: LA-ICP-MS monazite REE a.     | and trace element analyses, Samp  | sle III-006V Pegmatite continues   | d (EB1)                            |                                 |                                  |             |             |              |              |              |              |
|---------------|-------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|---------------------------------|----------------------------------|-------------|-------------|--------------|--------------|--------------|--------------|
|               |                   | EB1 MNZ 4.2                       | EB1 MNZ 4.3                       | EB1 MNZ 5.1                        | EB1 MNZ 5.2                        | EB1 MNZ 6.1                     | EB1 MNZ 6.2                      | EB1 MNZ 7.1 | EB1 MNZ 7.2 | EB1 MNZ 11.1 | EB1 MNZ 12.1 | EB1 MNZ 12.2 | EB1 MNZ 22.1 |
| Positik       | tion              | R                                 | c                                 | c                                  | c                                  | с                               | с                                | c           | c           | c            | c            | c            | c            |
| ¥             |                   | 1362                              | 123.5                             | 1632                               | 1322                               | 1464                            | 1415                             | 1670        | 1710        | 1514         | 1890         | 1428         | 1678         |
| La            |                   | 92.700                            | 920.00                            | 894.00                             | 923.00                             | 00116                           | 91800                            | 92800       | 92.700      | 008.06       | 00516        | 92300        | 89500        |
| c             | -                 | 230526                            | 230526                            | 230.526                            | 230526                             | 230526                          | 230526                           | 230526      | 23 05 26    | 230526       | 230526       | 23 052 6     | 230526       |
| Ł             |                   | 29630                             | 30610                             | 313.70                             | 303.30                             | 31130                           | 30220                            | 31140       | 30490       | 31650        | 31450        | 30.790       | 309.50       |
| PN            |                   | 116000                            | 000811                            | 000611                             | 11 70 00                           | 123000                          | 116000                           | 124000      | 118000      | 120000       | 124000       | 120000       | 124000       |
| Sm            |                   | 12600                             | 01011                             | 11550                              | 01011                              | 13200                           | 11700                            | 13500       | 15400       | 113.70       | 13300        | 12120        | 12040        |
| Eu            |                   | 21                                | 20                                | 20                                 | 20                                 | 19                              | 21                               | 23          | 20          | 61           | 22           | 61           | 22           |
| PO            |                   | 4020                              | 4010                              | 4410                               | 393.0                              | 4630                            | 4010                             | 4410        | 43.90       | 44.50        | 4680         | 4120         | 4840         |
| f             |                   | 241.2                             | 238                               | 281                                | 239                                | 284                             | 256                              | 274         | 269         | 274          | 297          | 260          | 299          |
| Dy            |                   | 627                               | 590                               | 748                                | 809                                | 692                             | 648                              | 738         | 711         | 714          | 803          | 656          | 764          |
| Н             |                   | 53.4                              | 51.9                              | 67.8                               | 33                                 | 61.7                            | 55.4                             | 69.7        | 65.4        | 64.6         | 1.17         | 57.4         | 70.7         |
| E             |                   | 76.3                              | 69.3                              | 2.16                               | 73.4                               | 86.6                            | 78.4                             | 96.1        | 94.1        | 216          | 106.1        | 74           | 94.1         |
| Tm            |                   | 4.46                              | 4.24                              | 6.51                               | 4.83                               | 5.01                            | 5.06                             | 629         | 5.81        | 5.62         | 6.91         | 4.9          | 6.95         |
| Αŀ            |                   | 14                                | 14.2                              | 22.2                               | 14.7                               | 16                              | 15.7                             | 21.1        | 20.8        | 61           | 22.3         | 15.1         | 22           |
| Lu            | -                 | 1.19                              | 1.19                              | 2.04                               | 94/1                               | 1.32                            | 1.62                             | 161         | 1.56        | 1.63         | 1.92         | 1.47         | 2.35         |
| LaN           | 7                 | 394972                            | 066168                            | 380912                             | 393 268                            | 388155                          | 391138                           | 3 953 98    | 394972      | 386877       | 389859       | 393268       | 381338       |
| PrN           | 1                 | 33.254.8                          | 343.547                           | 352076                             | 340404                             | 3.493.83                        | 339169                           | 3 494 95    | 342200      | 355219       | 352974       | 345567       | 347363       |
| NbN           | z                 | 256189                            | 260831                            | 263926                             | 259063                             | 270778                          | 256189                           | 2.734.31    | 261273      | 264589       | 273873       | 265694       | 274978       |
| SmN           | z                 | 85.656                            | 74847                             | 78518                              | 74847                              | 89735                           | 79538                            | 91774       | 104691      | 77294        | 90415        | 82.393       | 81849        |
| EuN           | 7                 | 368                               | 354                               | 348                                | 354                                | 346                             | 366                              | 405         | 354         | 346          | 400          | 341          | 386          |
| GdN           | z                 | 20448                             | 203.97                            | 22431                              | 06661                              | 23550                           | 20397                            | 22431       | 22330       | 22.635       | 23 805       | 20956        | 24619        |
| TbN           | 7                 | 6645                              | 6556                              | 7741                               | 6584                               | 7824                            | 7052                             | 7548        | 7410        | 7548         | 8182         | 7163         | 8237         |
| DyN           | z                 | 2583                              | 2431                              | 308.2                              | 2505                               | 2851                            | 2670                             | 3.041       | 2930        | 2942         | 33.09        | 2703         | 3148         |
| HoN           | z                 | 960                               | 933                               | 1219                               | 953                                | 1110                            | 996                              | 1254        | 1176        | 1162         | 12.79        | 1032         | 1272         |
| TmN           | z                 | 480                               | 436                               | 577                                | 462                                | 545                             | 493                              | 605         | 592         | 577          | 668          | 466          | 592          |
| ErN           |                   | 184                               | 175                               | 269                                | 200                                | 207                             | 209                              | 260         | 240         | 232          | 286          | 202          | 287          |
| YbN           | z                 | 86                                | 87                                | 137                                | 90                                 | 98                              | 97                               | 130         | 128         | 117          | 13.7         | 93           | 135          |
| LuN           | 7                 | 49                                | 49                                | 84                                 | 60                                 | 54                              | 67                               | 79          | 64          | 67           | 79           | 60           | 97           |
| Th (j         | (mdd)             | 134200                            | 152300                            | 146300                             | 155900                             | 142500                          | 148200                           | 146900      | 143000      | 153700       | 147100       | 149700       | 143 900      |
| U (pi         | (uidd             | 15410                             | 200.00                            | 208.00                             | 00061                              | 23000                           | 38800                            | 3 090 0     | 23 300      | 17000        | 19100        | 15000        | 194.00       |
| Ca (j         | (mdd)             | 94.40                             | 10590                             | 11330                              | 11370                              | 11500                           | 11320                            | 11380       | 13 00 0     | 10600        | 12300        | 11400        | 11320        |
| Si (p         | (udd              | 83.00                             | 5200                              | 1660                               | 10600                              | 100                             | 6600                             |             | 10500       |              | 60.00        | 51 00        | 4280         |
| <sub>ур</sub> | (Gd               | 0.004                             | 0.004                             | 0.006                              | 0.005                              | 0.004                           | 0.005                            | 0.006       | 0.006       | 0.005        | 0.006        | 0.004        | 0.005        |
| En/E          | Eu*               | 0.004                             | 0.004                             | 0.004                              | 0.004                              | 0.003                           | 0.004                            | 0.004       | 0.003       | 0.004        | 0.004        | 0.004        | 0.004        |
| )             | ues of - indicate | te elements are below detection i | limit of the instrument. Monazite | e trace elements calibrated again: | st stoichiometric Ce fixed at 2305 | 26 ppm (Ce*)(Buick et al., 2010 | ). C-core, R-Recrystallised zone |             |             |              |              |              |              |
| l             |                   |                                   |                                   |                                    |                                    |                                 |                                  |             |             |              |              |              |              |

| Table S3 continu  | ued: LA-ICP-MS monazite REE       | and trace element analyses, Sam    | ple II1-006V Pegmatite continues    | d (EB1)                             |                                    |                               |              |              |              |              |              |              |      |
|-------------------|-----------------------------------|------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
|                   | EB1 MNZ 22.2                      | EB1 MNZ 24.1                       | EB1 MNZ 24.2                        | EB1 MNZ 24.3                        | EB1 MNZ 24.4                       | EB1 MNZ 25.1                  | EB1 MNZ 25.2 | EB1 MNZ 26.1 | EB1 MNZ 26.2 | EB1 MNZ 27.1 | EB1 MNZ 27.2 | EB1 MNZ 27.3 |      |
| Position          | с                                 | с                                  | c                                   | с                                   | R                                  | с                             | с            | с            | R            | R            | c            | с            |      |
| Y                 | 1218                              | 1763                               | 1345                                | 1214                                | 1363                               | 1690                          | 1390         | 1430         | 1250         | 1314         | 1480         | 1540         | A    |
| La                | 90300                             | 92800                              | 00906                               | 920.00                              | 87400                              | 86700                         | 95000        | 89800        | 91200        | 92300        | 00906        | 902.00       | pp   |
| Ce                | 230526                            | 230.526                            | 230526                              | 230.526                             | 230526                             | 230526                        | 230526       | 230526       | 230526       | 230526       | 230526       | 230526       | en   |
| 뇬                 | 30810                             | 31170                              | 302.20                              | 30580                               | 32030                              | 31000                         | 30400        | 30070        | 30180        | 30060        | 30130        | 30800        | dix  |
| PN                | 120000                            | 124000                             | 1140.00                             | 11 70 00                            | 127000                             | 124000                        | 116000       | 000211       | 000611       | 118000       | 116000       | 117000       | : B  |
| Sm                | 10570                             | 11610                              | 9790                                | 10050                               | 11720                              | 12000                         | 17000        | 10300        | 11280        | 10580        | 13900        | 00/11        | •    |
| Eu                | 61                                | 21                                 | 20                                  | 18                                  | 26                                 | 23                            | 21           | 61           | 18           | 61           | 21           | 21           |      |
| Gd                | 42.60                             | 4923                               | 402.0                               | 4050                                | 4800                               | 4690                          | 4640         | 4130         | 42.80        | 42.40        | 4160         | 4300         |      |
| Tb                | 250.9                             | 297.9                              | 253                                 | 235                                 | 280                                | 310                           | 236          | 257          | 253          | 249          | 259          | 275          |      |
| Dy                | 627                               | 807                                | 646                                 | 009                                 | 069                                | 719                           | 617          | 643          | 626          | 644          | 667          | 714          |      |
| Но                | 51.8                              | 74.3                               | 55.4                                | 51.1                                | 58.2                               | 66.3                          | 53.3         | 57.3         | 25           | 54.A         | 57.3         | 60.8         |      |
| Er                | 73.8                              | 105                                | 80.2                                | 6.69                                | 78.2                               | 104                           | 71           | 77.3         | 71.5         | 76.7         | 78.3         | 82.4         |      |
| Tm                | 4.63                              | 7.03                               | 5.02                                | 4.39                                | 4.47                               | 6.6                           | 4.5          | 5.51         | 4.65         | 4.82         | 5.99         | 6.3          |      |
| Yb                | 12.9                              | 22.3                               | 1.71                                | 13.6                                | 14.9                               | 17.4                          | 14.6         | 18.1         | 12.6         | 15.9         | 14.9         | 18.3         |      |
| Lu                | 1.31                              | 2.57                               | 1.57                                | 1.4                                 | 1.37                               | 1.69                          | 1.25         | 1.36         | 1.07         | 1.34         | 1.75         | 1.7          |      |
| LaN               | 384746                            | 395.398                            | 386025                              | 06616£                              | 372390                             | 3 694 08                      | 404772       | 382616       | 388581       | 393268       | 38 602 5     | 384320       | Su   |
| ΡrΝ               | 345791                            | 349832                             | 339169                              | 343210                              | 359484                             | 347924                        | 341190       | 337486       | 338721       | 337374       | 338159       | 345679       | pp   |
| NPN               | 264368                            | 274757                             | 251768                              | 258621                              | 281388                             | 274094                        | 256410       | 258621       | 262157       | 260168       | 25 663 1     | 258621       | ler  |
| SmN               | 71856                             | 789.26                             | 665 53                              | 683.21                              | 79674                              | 81577                         | 115568       | 70020        | 76683        | 71924        | 94.494       | 79538        | ne   |
| EuN               | 33.8                              | 373                                | 352                                 | 313                                 | 459                                | 409                           | 377          | 341          | 313          | 338          | 370          | 368          | ntc  |
| GdN               | 21668                             | 25041                              | 20448                               | 20600                               | 24415                              | 23856                         | 23601        | 21007        | 21770        | 21567        | 21160        | 21872        | ıry  |
| TbN               | 6912                              | 8207                               | 6970                                | 6474                                | 7713                               | 8540                          | 6501         | 7080         | 69.70        | 6860         | 7135         | 7576         | ' Ir |
| DyN               | 2583                              | 3325                               | 2662                                | 2472                                | 2843                               | 2963                          | 2542         | 2649         | 2579         | 2653         | 2748         | 2942         | ifo. |
| HoN               | 932                               | 1336                               | 996                                 | 616                                 | 1047                               | 1192                          | 959          | 1031         | 971          | 978          | 1031         | 1094         | rm   |
| TmN               | 464                               | 661                                | 505                                 | 440                                 | 492                                | 654                           | 447          | 486          | 450          | 483          | 493          | 519          | ati  |
| ErN               | 191                               | 290                                | 207                                 | 181                                 | 185                                | 273                           | 186          | 228          | 192          | 199          | 248          | 260          | ion  |
| YbN               | 79                                | 137                                | 105                                 | 84                                  | 92                                 | 107                           | 90           | Ш            | 78           | 98           | 92           | 113          | ı fe |
| LuN               | 54                                | 106                                | 65                                  | 58                                  | 56                                 | 70                            | 51           | 56           | 44           | 55           | 72           | 70           | or   |
| Th (ppm)          | 171000                            | 158300                             | 183900                              | 00226                               | 46900                              | 140000                        | 137000       | 140600       | 96900        | 151200       | 144700       | 149 000      | Ch   |
| U (ppm)           | 08601                             | 20210                              | 33700                               | 11 640                              | 11810                              | 18600                         | 12300        | 26600        | 15270        | 17500        | 30400        | 404.00       | ap   |
| Ca (ppm)          | 11700                             | 12590                              | 12700                               | 0/11/                               | 4520                               | 14400                         | 12800        | 11890        | 7290         | 9600         | 12300        | 123 00       | otei |
| Si (ppm)          | 3160                              | 5800                               | 2940                                | -                                   |                                    | 17100                         | 5000         | 47.00        | 1340         | 13 00        | 72.00        | 3650         | r 2  |
| Yb/Gd             | 0.004                             | 0.005                              | 0.005                               | 0.004                               | 0.004                              | 0.004                         | 0.004        | 0.005        | 0.004        | 0.005        | 0.004        | 0.005        |      |
| Eu/Eu*            | 0.004                             | 0.004                              | 0.005                               | 0.004                               | 0.005                              | 0.004                         | 0.003        | 0.004        | 0.004        | 0.004        | 0.004        | 0.00.4       |      |
| Values of - indic | ate elements are below detection: | i limit of the instrument. Monazit | e trace elements calibrated against | : stoichiometric Ce fixed at 230526 | 6 ppm (Ce*)(Buick et al., 2010). C | C-core, R-Recrystallised zone |              |              |              |              |              |              |      |

| _               |                                        | $A_{j}$  | ppe    | ena   | lix   | B    |       | _     |          |       | _     |       | _     | _ | Sı       | ıpp   | oler   | nei   | nta   | ry    | Inf    | ori    | na     | tio    | n fé | or Cl       | hap     | oter 2      | 2      |                                        |
|-----------------|----------------------------------------|----------|--------|-------|-------|------|-------|-------|----------|-------|-------|-------|-------|---|----------|-------|--------|-------|-------|-------|--------|--------|--------|--------|------|-------------|---------|-------------|--------|----------------------------------------|
|                 | 008C-<br>11-1                          | R        | 331    | 3.18  |       | 20.9 | 5.45  | 45.4  | 10.64    | 33.8  | 5.31  | 38.1  | 7.1   |   | 21.6     |       | 106.3  | 150.1 | 187.1 | 191.4 | 212.7  | 219.4  | 234.5  | 292.2  |      | 163.2       | 1060    | 2.21        |        |                                        |
|                 | 008C-10-1                              | R        | 980    | 8.6   | 2.32  | 29.1 | 9.1   | 101   | 31.4     | 135   | 27.3  | 233   | 47.4  |   | 7.1      | 1.0   | 51.4   | 64.7  | 94.4  | 97.1  | 132.2  | 129.8  | 158.2  | 222.2  |      | 120         | 3510    | 69.6        | 0.04   |                                        |
|                 | 008C-9-2                               | В        | 170    | 1.04  | 0.058 | 10.1 | 2.35  | 22.9  | 5.4      | 21    | 3.14  | 25.7  | 5.4   |   | 8.0      | 1.0   | 38.1   | 57.3  | 59.7  | 58.5  | 56.0   | 65.3   | 54.8   | 66.7   |      | 142         | 1510    | 3.08        | 0.04   |                                        |
|                 | 008C-8-1                               | ~        | 116.5  | 1.18  |       | 7.5  | 2.08  | 14.5  | 3.25     | 8.9   | 1.58  | 8.9   | 1.62  |   | 17.0     |       | 57.5   | 6.06  | 102.6 | 98.4  | 103.2  | 101.7  | 120.0  | 132.1  |      | 139.3       | 1910    | 1.44        |        |                                        |
|                 | 008C-6-1                               | SB       | 178.1  | 2.5   |       | 11.3 | 3.3   | 24.9  | 5.47     | 16.4  | 2.46  | 19.5  | 3.21  |   | 25.2     |       | 58.2   | 95.3  | 19.5  | 113.3 | 128.4  | 143.4  | 168.0  | 211.5  |      | 36.2        | 730     | 5.09        |        |                                        |
|                 | 08C-5-1 (                              |          | 16     | 7     | - 680 | 3.4  | .46   | 6     | 6.<br>4. | 0.4   | .47   | 7.3   | .14   |   | 4.6      | 6     | 0.0    | 7.2   | 5.3   | 2.3   | 0.6    | 3.1    | 1.8    | 14.8   |      | 1.5         | 70      | .46         | .05    |                                        |
|                 | )8C-3-1 0                              | M        | 3.8 2  | 43 3  | 0     | +    | 32 3  | 2 2   | 33 6     | 5     | 3     | 2     | 58 5  |   | .5 1     | -     | .7 6   | .7 6  | .4    | 6 7   | 7.0 8  | 8 03   | 0.8    | 1.4    |      | 8.3         | 9 00    | 59 2        | 0      |                                        |
|                 | 00000000000000000000000000000000000000 | R        | 9.5 10 | 51 2. | •     | 4    | 52 2. | 2     | 32 5.    | 9 10  | 26 2. | 18    | 21 3. |   | г.<br>10 | •     | 1.7 42 | 14 75 | .5    | 36 Ľ. | .5 10  | .4 95  | 11 0.0 | 9 15   |      | 12          | 0       | 36 2.       | •      |                                        |
|                 | 8C-1-1 00                              | R        | 5.7 14 | 2 2.  | •     | 6 8. | 9 2.  | 3 22  | 9 4.     | 5 13  | 8 2.  | 7 16  | 5 2.  |   | 17       | •     | 9 42   | 69    | 9 91  | 3 77  | 87     | 2.5 93 | .2 10  | 1 90   |      | 8           | 26      | 5           | •      |                                        |
| æ (008)         | 3-11-1 00                              | SB       | 166    | 1.2   |       | 10.  | 3.2   | 22.   | 5.1      | 16.   | 2.4   | 5 19. | 3.5   | _ | 5 8.3    | ,     | 53.    | .06   | 3 91. | 2 93. | 103    | 5 102  | .6 121 | .4 146 |      | 69.         | 53(     | 2.2         |        |                                        |
| harnockit       | -1 0040                                | υ        | 816    | 32    | 7.3   | 30.3 | 6.3   | 71.8  | 25.2     | 114.1 | 22.3  | 205.5 | 42.9  |   | 217.5    | 130.4 | 154.1  | 173.6 | 295.8 | 453.2 | 718.1  | 921.5  | 1264   | 1765   |      | 136         | 1800    | 8.21        | 0.70   |                                        |
| e II 1-008C C   | 004G-10                                | В        | 108.1  | 4.2   | 0.09  | 16.8 | 2.51  | 16.2  | 3.59     | 9.5   | 1.55  | 10.3  | 2.62  |   | 28.6     | 1.6   | 85.5   | 69.1  | 66.7  | 64.6  | 59.8   | 64.0   | 63.4   | 107.8  |      | 168         | 1300    | 0.74        | 0.03   |                                        |
| (004), Sample   | 004G-9-1                               | В        | 113    | 13.8  | 1.79  | 19.5 | 2.55  | 1.9.1 | 3.68     | 1.11  | 1.55  | 13.1  | 1.79  |   | 93.8     | 32.0  | 99.2   | 70.2  | 78.7  | 66.2  | 6.69   | 64.0   | 80.6   | 73.7   |      | 108.2       | 1130    | 0.81        | 0.33   |                                        |
| -biotite gneiss | 004G-8-1                               | c        | 1029   | 21.4  | 5.6   | 24.4 | 7.43  | 85.9  | 32.7     | 168.2 | 35.2  | 328   | 65.2  |   | 145.5    | 100.0 | 124.1  | 204.7 | 353.9 | 588.1 | 1058.5 | 1454.5 | 2018.5 | 2683.1 |      | 91.7        | 2580    | 16.26       | 0.74   |                                        |
| -004K Garnet    | 004G-7-1                               | с        | 1450   | 113   | 30.1  | 66.5 | 12.5  | 125   | 45       | 237   | 48.1  | 464   | 85.4  |   | 768.2    | 537.5 | 338.3  | 344.4 | 515.0 | 809.4 | 1491.5 | 1987.6 | 2855.4 | 3514.4 |      | 177.9       | 4620    | 8.44        | 0.97   |                                        |
| ses, Sample II1 | 004G-6-1                               | В        | 113.5  | 3.9   | 0.11  | 12.6 | 3.09  | 16    | 3.68     | 1.11  | 1.6   | 12.4  | 1.99  |   | 26.5     | 2.0   | 64.1   | 85.1  | 6.39  | 66.2  | 6.69   | 66.1   | 76.3   | 81.9   |      | 122.4       | 1370    | 1.19        | 0.04   | strument                               |
| element analy   | 004G-5-1                               | ×        | 98.6   | 7.9   | 0.73  | 12.4 | 2.21  | 15.8  | 3.13     | 8.8   | 1.55  | 13.1  | 2.47  |   | 53.7     | 13.0  | 63.1   | 6.09  | 65.1  | 56.3  | 55.4   | 64.0   | 80.6   | 101.6  |      | 92.4        | 1910    | 1.28        | 0.22   | ion limit of the in                    |
| 1 REE and trace | 004G-2-1                               | В        | 130.6  | 12.4  | 1.92  | 19.3 | 3.47  | 20    | 4.23     | 12    | 1.8   | 14.6  | 2.13  |   | 84.3     | 34.3  | 98.2   | 95.6  | 82.4  | 76.1  | 75.5   | 74.4   | 8.68   | 87.7   |      | 115.5       | 1010    | 0.92        | 0.38   | ts are below detec.                    |
| -ICP-MS zircoi  | 004G-1-1                               | с        | 1414   | 34.2  | 9.2   | 34.2 | 9.42  | 116.4 | 45.3     | 223.7 | 48.9  | 464   | 6.68  |   | 232.5    | 164.3 | 174.0  | 259.5 | 479.6 | 814.7 | 1407.8 | 2020.7 | 2855.4 | 3699.6 |      | 158.7       | 6100    | 16.41       | 0.81   | icate trace elemen<br>RF-Recrystallise |
| Table S4: LA    |                                        | Position | Y      | Sm    | Eu    | Gd   | đT    | Dy    | Но       | Tm    | Er    | γb    | Lu    |   | SmN      | EuN   | GdN    | NdT   | DyN   | HoN   | TmN    | ErN    | YbN    | LuN    |      | Th<br>(ppm) | U (ppm) | YbN/<br>GdN | Eu/Eu* | Values of - ind<br>R-Rim C-Core        |

| <br>            | A             | ppe      | enc   | lix  | B     |      |       |       |      |       |      |       |      | <br>Su   | pp   | len   | ner   | <u>ita</u> | ry    | Inj    | or     | ma     | tio    | n j | for      | C       | hap     | ote    | r 2                 | 2                  | <br> |
|-----------------|---------------|----------|-------|------|-------|------|-------|-------|------|-------|------|-------|------|----------|------|-------|-------|------------|-------|--------|--------|--------|--------|-----|----------|---------|---------|--------|---------------------|--------------------|------|
|                 |               |          |       |      |       |      |       |       |      |       |      |       |      |          |      |       |       |            |       |        |        |        |        |     |          |         |         |        |                     |                    |      |
|                 | 008C-29-1     | R        | 143.1 | 2.64 |       | 12   | 2.89  | 22    | 4.39 | 13.3  | 2.02 | 19.2  | 3.68 | <br>17.9 |      | 61.0  | 79.6  | 90.6       | 79.0  | 83.7   | 83.5   | 118.2  | 151.4  |     | 144.1    | 1960    | 1.94    |        |                     |                    |      |
|                 | 008C-28-1     | R        | 174.8 | 1.01 | 0.097 | 9.9  | 2.72  | 21.5  | 5.31 | 17.6  | 2.67 | 24    | 4.03 | 6.9      | 1.7  | 50.4  | 74.9  | 88.6       | 95.5  | 110.8  | 110.3  | 147.7  | 165.8  |     | 123      | 930     | 2.93    | 0.06   |                     |                    |      |
|                 | 008C-<br>26-1 | С        | 871   | 3.3  | 0.65  | 19.6 | 6.37  | 79.7  | 28.4 | 135   | 26.6 | 231   | 50.2 | 22.4     | 11.6 | 7.66  | 175.5 | 328.4      | 510.8 | 849.6  | 1099.2 | 1421.5 | 2065.8 |     | 125.6    | 1730    | 14.26   | 0.19   |                     |                    |      |
|                 | 008C-25.1     | С        | 414   | 1.2  | 0.25  | 12.2 | 3.5   | 35.3  | 13.9 | 65.0  | 12.8 | 118.0 | 23.2 | 7.8      | 4.5  | 62.1  | 95.9  | 145.4      | 250.0 | 409.1  | 528.9  | 726.2  | 954.7  |     | 7.67     | 800     | 11.70   | 0.13   |                     |                    |      |
|                 | 008C-24-1     | R        | 151.4 | 1.83 |       | 12.9 | 3.12  | 20.5  | 5.11 | 14.5  | 2.31 | 18.2  | 2.87 | 12.4     |      | 65.6  | 86.0  | 84.5       | 91.9  | 91.3   | 95.5   | 112.0  | 118.1  |     | 117.2    | 830     | 1.71    |        |                     |                    |      |
|                 | 008C-23-1     | R        | 218   | 2.15 | -     | 14.3 | 3.95  | 29.2  | 6.84 | 22.4  | 3.8  | 27.9  | 4.65 | 14.6     | -    | 72.7  | 108.8 | 120.3      | 123.0 | 141.0  | 157.0  | 171.7  | 191.4  |     | 96.5     | 610     | 2.36    |        |                     |                    |      |
|                 | 008C-22-1     | С        | 1309  | 10.3 | 1.85  | 32.8 | 11.09 | 126.3 | 47.2 | 197.6 | 38.6 | 349   | 6:99 | 70.0     | 33.0 | 166.8 | 305.5 | 520.4      | 848.9 | 1243.5 | 1595.0 | 2147.7 | 2753.1 |     | 213.5    | 3060    | 12.87   | 0.28   |                     |                    |      |
|                 | 008C-21-1     | R        | 145.3 | 1.65 | 0.039 | 8.8  | 3.03  | 20    | 4.61 | 15.5  | 2.11 | 13.7  | 2.97 | 11.2     | 0.7  | 44.8  | 83.5  | 82.4       | 82.9  | 97.5   | 87.2   | 84.3   | 122.2  |     | 77.9     | 640     | 1.88    | 0.02   |                     |                    |      |
|                 | 008C-20-1     | R        | 228.5 | 3.8  | -     | 15.6 | 4.15  | 30.4  | 6.87 | 25.3  | 3.54 | 28.2  | 4.57 | 25.8     |      | 79.3  | 114.3 | 125.3      | 123.6 | 159.2  | 146.3  | 173.5  | 188.1  |     | 209.7    | 1090    | 2.19    |        |                     |                    |      |
|                 | 008C-19-1     | R        | 216.6 | 1.74 | -     | 16.2 | 3.85  | 28.5  | 6.33 | 20.4  | 2.9  | 24.1  | 3.51 | 11.8     |      | 82.4  | 106.1 | 117.4      | 113.8 | 128.4  | 119.8  | 148.3  | 144.4  |     | 99.7     | 670     | 1.80    |        |                     |                    |      |
| kite (008)      | 008C-<br>18-1 | R        | 165   | 2.33 | -     | 9.5  | 2.39  | 19.6  | 5.48 | 21.6  | 3.66 | 36    | 5.9  | 15.8     |      | 48.3  | 65.8  | 80.8       | 98.6  | 135.9  | 151.2  | 221.5  | 242.8  |     | 119      | 990     | 4.58    |        |                     |                    |      |
| 008C Charnoc    | 008C-17-1     | SB       | 124   | 1.81 |       | 7.4  | 1.93  | 19    | 3.37 | 11.1  | 1.69 | 16.1  | 2.13 | 12.3     |      | 37.6  | 53.2  | 78.3       | 9.09  | 6.69   | 69.8   | 99.1   | 87.7   |     | 75.5     | 580     | 2.63    |        |                     |                    |      |
| es, Sample II1- | 008C-16-1     | R        | 175.8 | 2.16 |       | 12.9 | 2.88  | 23.1  | 5.12 | 18.3  | 2.83 | 21.5  | 3.74 | 14.7     |      | 65.6  | 79.3  | 95.2       | 92.1  | 115.2  | 116.9  | 132.3  | 153.9  |     | 149.8    | 870     | 2.02    |        |                     |                    |      |
| element analys  | 008C-15-1     | SB       | 142.5 | 2.54 |       | 9.3  | 2.39  | 20.4  | 4.5  | 12.9  | 1.95 | 16.2  | 2.65 | 17.3     |      | 47.3  | 65.8  | 84.1       | 80.9  | 81.2   | 80.6   | 7.66   | 109.1  |     | 76.4     | 560     | 2.11    |        | instrument          |                    |      |
| REE and trace   | 008C-14-1     | R        | 313   | 4.6  | 0.019 | 24.2 | 5.58  | 43.9  | 10.1 | 32.6  | 4.29 | 31.9  | 5.44 | 31.3     | 0.3  | 123.1 | 153.7 | 180.9      | 181.7 | 205.2  | 177.3  | 196.3  | 223.9  |     | 272      | 1170    | 1.59    | 0.004  | ection limit of the |                    |      |
| CP-MS zircon l  | 008C-13-1     | R        | 115   | 2.78 | _     | 9.1  | 2.02  | 15.2  | 3.31 | 10.6  | 1.38 | 10.5  | 1.85 | 18.9     | _    | 46.3  | 55.6  | 62.6       | 59.5  | 66.7   | 57.0   | 64.6   | 76.1   |     | 105      | 1030    | 1.40    | _      | nts are below dete  | ised               |      |
| intinued: LA-I0 | 008C-12-1     | R        | 135   | 2.21 | 0.072 | 10.3 | 2.38  | 16.2  | 3.21 | 11.7  | 1.56 | 12.5  | 3.02 | 15.0     | 1.3  | 52.4  | 65.6  | 66.7       | 57.7  | 73.6   | 64.5   | 76.9   | 124.3  |     | 148.7    | 1380    | 1.47    | 0.04   | dicate trace eleme  | re, RE-Recrystalli |      |
| Table S4 cc     |               | Position | Y     | Sm   | Eu    | Gd   | Tb    | Dy    | Но   | Tm    | Er   | Yb    | Lu   | SmN      | EuN  | GdN   | TbN   | DyN        | HoN   | TmN    | ErN    | YbN    | LuN    |     | Th (ppm) | U (ppm) | YbN/GdN | Eu/Eu* | Values of - in      | R-Rim, C-Cc        | 1    |

| able S4 con          | ntinued: LA-     | -ICP-MS zircon     | REE and trace        | element analys | ses, Sample TB- | 14-025 Metapeli | tic gneiss (P/ | VPB) |  |  |  |  |  |        |
|----------------------|------------------|--------------------|----------------------|----------------|-----------------|-----------------|----------------|------|--|--|--|--|--|--------|
| P.                   | A1-1.1           | PB1-1.1            | PB1-1.4              | PB2-1.1        | PB2-1.2         |                 |                |      |  |  |  |  |  |        |
| sition R             | ζE               | R                  | RE                   | RE             | RE              |                 |                |      |  |  |  |  |  |        |
| 3;                   | 17.5             | 138.5              | 106.4                | 210.4          | 326             |                 |                |      |  |  |  |  |  | Ap     |
| 1 5.                 | .02              | 43.6               | 7.5                  | 5.02           | 3.13            |                 |                |      |  |  |  |  |  | pe     |
| '                    |                  | 3.69               | 0.142                | 0.18           | 0.83            |                 |                |      |  |  |  |  |  | ndi    |
| 1                    | 4.6              | 30.6               | 16.7                 | 21.8           | 19.4            |                 |                |      |  |  |  |  |  | ix İ   |
| 2                    | .49              | 3.31               | 2.37                 | 5.56           | 6.39            |                 |                |      |  |  |  |  |  | B      |
| .6                   | 1.76             | 19.6               | 14.2                 | 35.3           | 50.2            |                 |                |      |  |  |  |  |  |        |
|                      | .28              | 3.44               | 3.45                 | 6.93           | 10.49           |                 |                |      |  |  |  |  |  |        |
|                      | .58              | 10.77              | 10.79                | 16.4           | 25.2            |                 |                |      |  |  |  |  |  |        |
| Ö                    | 1.136            | 1.59               | 1.68                 | 2.25           | 3.15            |                 |                |      |  |  |  |  |  |        |
| 0                    | 1.74             | 6.6                | 11.5                 | 15             | 20.6            |                 |                |      |  |  |  |  |  |        |
| Ö                    | 0.046            | 1.38               | 1.81                 | 2.04           | 2.89            |                 |                |      |  |  |  |  |  |        |
|                      |                  |                    |                      |                |                 |                 |                |      |  |  |  |  |  |        |
| N 34                 | 4.1              | 296.4              | 51.0                 | 34.1           | 21.3            |                 |                |      |  |  |  |  |  |        |
| '<br>Z               |                  | 65.9               | 2.5                  | 3.2            | 14.8            |                 |                |      |  |  |  |  |  | ~      |
| N 74                 | 14.3             | 155.6              | 84.9                 | 110.9          | 98.7            |                 |                |      |  |  |  |  |  | Sup    |
| N 6                  | 8.6              | 91.2               | 65.3                 | 153.2          | 176.0           |                 |                |      |  |  |  |  |  | ppl    |
| N 4(                 | 10.2             | 80.8               | 58.5                 | 145.4          | 206.8           |                 |                |      |  |  |  |  |  | ет     |
| N 2                  | 3.0              | 61.9               | 62.1                 | 124.6          | 188.7           |                 |                |      |  |  |  |  |  | en     |
| N 9.                 | 6.               | 67.8               | 67.9                 | 103.2          | 158.6           |                 |                |      |  |  |  |  |  | tar    |
| N 5.                 | ;6               | 65.7               | 69.4                 | 93.0           | 130.2           |                 |                |      |  |  |  |  |  | y I    |
| N 4.                 | 9'1              | 60.9               | 70.8                 | 92.3           | 126.8           |                 |                |      |  |  |  |  |  | nfc    |
| N 1.                 | 6                | 56.8               | 74.5                 | 84.0           | 118.9           |                 |                |      |  |  |  |  |  | orn    |
|                      |                  |                    |                      |                |                 |                 |                |      |  |  |  |  |  | ıat    |
| (ppm) 1 <sup>2</sup> | 43.6             | 241.1              | 260.3                | 24.1           | 22              |                 | _              |      |  |  |  |  |  | ior    |
| (ppm) 1:             | 514              | 1924               | 1088                 | 1171           | 1842            |                 |                |      |  |  |  |  |  | 1 fe   |
| N/ 0.                | .06              | 0.39               | 0.83                 | 0.83           | 1.28            |                 |                |      |  |  |  |  |  | or C   |
| /Eu* -               |                  | 0.29               | 0.04                 | 0.04           | 0.25            |                 |                |      |  |  |  |  |  | ha     |
| ues of - indic       | icate trace elen | nents are below de | tection limit of the | e instrument   |                 |                 |                |      |  |  |  |  |  | pte    |
| Rim, C-Core,         | 3, RE-Recrysta   | llised             |                      |                |                 |                 |                |      |  |  |  |  |  | $2r^2$ |
|                      |                  |                    |                      |                |                 |                 |                |      |  |  |  |  |  | )      |
|                      |                  |                    |                      |                |                 |                 |                |      |  |  |  |  |  |        |
|                      |                  |                    |                      |                |                 |                 |                |      |  |  |  |  |  | _      |

|                        |                  | Ap                                | pe    | nd    | ix I  | B     |       |       |       |       |       |       |       | <br>~    | Sup   | ppl    | ет     | en     | tar    | y 1    | nfe    | orn   | nat   | ior | 1 fé       | or (     | Ch                               | apte | er 2 |  |
|------------------------|------------------|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|--------|--------|--------|--------|--------|--------|-------|-------|-----|------------|----------|----------------------------------|------|------|--|
|                        | 026 GRT RIM - 5  |                                   | 129.4 | 5.43  |       | 18.1  | 3.7   | 24.9  | 4.44  | 12.94 | 1.93  | 0.84  | 1.86  | 36.9     |       | 92.1   | 101.9  | 102.6  | 79.9   | 81.4   | 79.8   | 76.9  | 76.5  |     | 0.835      |          |                                  |      |      |  |
|                        | 026 GRT RIM - 4  |                                   | 128.8 | 6.5   | -     | 19    | 3.95  | 24    | 4.75  | 13.21 | 1.86  | 0.79  | 1.84  | 44.2     | -     | 96.6   | 108.8  | 98.9   | 85.4   | 83.1   | 76.9   | 77.0  | 75.7  |     | 0.797      |          |                                  |      |      |  |
|                        | 026 GRT RIM - 3  |                                   | 117.6 | 5.47  | -     | 18    | 3.69  | 22.87 | 4.16  | 11.7  | 1.47  | 0.7   | 1.14  | 37.2     | -     | 91.6   | 101.7  | 94.2   | 74.8   | 73.6   | 60.7   | 56.3  | 46.9  |     | 0.615      | -        |                                  |      |      |  |
| ·                      | 026 GRT RIM - 2  |                                   | 121.7 | 6.21  |       | 18.8  | 3.78  | 23.8  | 4.57  | 10.85 | 1.56  | 0.78  | 1.13  | 42.2     |       | 95.6   | 104.1  | 98.1   | 82.2   | 68.3   | 64.5   | 57.8  | 46.5  |     | 0.605      |          |                                  |      |      |  |
|                        | 026 GRT RIM - 1  |                                   | 124.3 | 6.01  | 0.017 | 18.2  | 3.87  | 23.29 | 4.45  | 11.62 | 1.4   | 0.75  | 1.23  | 40.9     | 0.3   | 92.6   | 106.6  | 96.0   | 80.0   | 73.1   | 57.9   | 54.1  | 50.6  |     | 0.584      | 0.005    |                                  |      |      |  |
|                        | 026 GRT CORE - 5 |                                   | 121.4 | 5.29  |       | 17.7  | 3.72  | 23.2  | 4.31  | 12.02 | 1.84  | 0.78  | 2.09  | 36.0     |       | 0.06   | 102.5  | 95.6   | 77.5   | 75.6   | 76.0   | 81.5  | 86.0  |     | 0.906      |          |                                  |      |      |  |
|                        | 026 GRT CORE - 4 |                                   | 132.9 | 6.08  | 600.0 | 18.5  | 3.73  | 25    | 4.52  | 13.54 | 2     | 0.0   | 1.95  | <br>41.3 | 0.2   | 94.1   | 102.8  | 103.0  | 81.3   | 85.2   | 82.6   | 83.9  | 80.2  |     | 0.892      | 0.002    |                                  |      |      |  |
|                        | 026 GRT CORE - 3 |                                   | 126.1 | 4.4   |       | 19    | 3.74  | 23.59 | 4.81  | 13.15 | 1.9   | 0.95  | 1.9   | <br>29.9 |       | 96.6   | 103.0  | 97.2   | 86.5   | 82.8   | 78.5   | 83.8  | 78.2  |     | 0.867      |          |                                  |      |      |  |
| race element analyses  | 026 GRT CORE - 2 | 1-004K)                           | 130.8 | 5.6   |       | 17.6  | 3.64  | 23.5  | 4.3   | 12.69 | 2.04  | 0.0   | 2.07  | 38.1     |       | 89.5   | 100.3  | 96.8   | 77.3   | 79.9   | 84.3   | 81.7  | 85.2  |     | 0.912      |          | ection limit of the instrument   |      |      |  |
| -ICP-MS garnet REE and | 26 GRT CORE - 1  | arnet-biotite gneiss - Type 1 (II | 30.2  | 90    |       | 9.1   | 55    | 4.59  | 73    | 2.38  | 85    | 83    | 60    | <br>4.4  |       | 7.2    | 7.8    | 01.3   | 5.1    | 9.7    | 6.4    | 1.4   | 0.0   |     | .838       |          | ate trace elements are below det |      |      |  |
| Table S5: LA           | <br>0            | 9                                 | Y II  | Sm 5. | Eu -  | Gd 15 | Tb 3. | Dy 2. | Ho 4. | Tm Ii | Er 1. | Yb 0. | Lu 2. | SmN 3-   | - EuN | GdN 9. | TbN 9. | DyN II | HoN 8: | TmN 7. | ErN 74 | YbN 8 | LuN 8 |     | YbN/GdN 0. | Eu/Eu* - | Values of - indic                |      |      |  |

| Table S5 co   | continued: LA-ICP-MS garne          | t REE and trace element an        | alyses             |                    |                    |                    |                   |                   |                   |                   |
|---------------|-------------------------------------|-----------------------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|
|               |                                     |                                   |                    |                    |                    |                    |                   |                   |                   |                   |
|               | 026 GRT RIM - 6                     | 026 GRT RIM - 7                   | 026 GRT 2 CORE - 1 | 026 GRT 2 CORE - 2 | 026 GRT 2 CORE - 3 | 026 GRT 2 CORE - 4 | 026 GRT 2 RIM - 1 | 026 GRT 2 RIM - 2 | 026 GRT 2 RIM - 3 | 026 GRT 2 RIM - 4 |
|               | Garnet-biotite gneiss - Type 1 c    | continued (I11-004K)              |                    |                    |                    |                    |                   |                   |                   |                   |
| Y             | 124.3                               | 128.6                             | 133.5              | 141.1              | 134.9              | 138.6              | 141.5             | 136.6             | 135.4             | 132.4             |
| Sm            | 5.65                                | 5.9                               | 5.61               | 7.29               | 7.03               | 6.68               | 6.28              | 5.67              | 5.04              | 6.15              |
| Eu            |                                     | ,                                 | 0.009              | 0.005              |                    |                    |                   |                   |                   | 0.02              |
| Gd            | 17.3                                | 19.6                              | 18.97              | 21.7               | 21.5               | 23.3               | 20.6              | 19.4              | 19.8              | 19.1              |
| Tb            | 3.61                                | 3.75                              | 4.04               | 4.19               | 4.06               | 4.15               | 4.21              | 3.99              | 4.1               | 4.09              |
| Dy            | 22.4                                | 24.1                              | 25.2               | 27.1               | 25.3               | 26.1               | 27.7              | 25.4              | 23.9              | 25.7              |
| Но            | 4.43                                | 4.56                              | 4.48               | 4.98               | 4.65               | 4.47               | 4.97              | 4.72              | 4.53              | 4.73              |
| Tm            | 12.16                               | 12.56                             | 11.63              | 12.14              | 11.63              | 12.77              | 13.08             | 13.47             | 12.95             | 12.55             |
| Er            | 1.82                                | 1.98                              | 1.53               | 1.77               | 1.53               | 1.71               | 1.68              | 1.76              | 1.68              | 1.74              |
| Yb            | 0.76                                | 0.94                              | 0.82               | 0.77               | 0.74               | 0.59               | 0.68              | 0.68              | 0.72              | 0.7               |
| Lu            | 1.75                                | 1.8                               | 1.21               | 1.33               | 1.14               | 1.18               | 1.37              | 1.51              | 1.35              | 1.35              |
|               |                                     |                                   |                    |                    |                    |                    |                   |                   |                   |                   |
| SmN           | 38.4                                | 40.1                              | 38.1               | 49.6               | 47.8               | 45.4               | 42.7              | 38.5              | 34.3              | 41.8              |
| EuN           |                                     |                                   | 0.2                | 0.1                |                    |                    |                   |                   |                   | 0.4               |
| GdN           | 88.0                                | 2.66                              | 96.5               | 110.4              | 109.4              | 118.5              | 104.8             | 98.7              | 100.7             | <sup>97.2</sup>   |
| TbN           | 99.4                                | 103.3                             | 111.3              | 115.4              | 111.8              | 114.3              | 116.0             | 109.9             | 112.9             | 112.7             |
| DyN           | 92.3                                | 99.3                              | 103.8              | 111.7              | 104.2              | 107.5              | 114.1             | 104.7             | 98.5              | 105.9             |
| HoN           | 79.7                                | 82.0                              | 80.6               | 89.6               | 83.6               | 80.4               | 89.4              | 84.9              | 81.5              | 85.1              |
| TmN           | 76.5                                | 79.0                              | 73.2               | 76.4               | 73.2               | 80.4               | 82.3              | 84.8              | 81.5              | 0.97              |
| ErN           | 75.2                                | 81.8                              | 63.2               | 73.1               | 63.2               | 70.7               | 69.4              | 72.7              | 69.4              | 71.9              |
| YbN           | 74.6                                | 78.4                              | 56.3               | 66.6               | 59.1               | 63.6               | 62.2              | 62.0              | 64.9              | 67.6              |
| LuN           | 72.0                                | 74.1                              | 49.8               | 54.7               | 46.9               | 48.6               | 56.4              | 62.1              | 55.6              | 55.6              |
|               |                                     |                                   |                    |                    |                    |                    |                   |                   |                   |                   |
| YbN/GdN       | 0.848                               | 0.786                             | 0.584              | 0.603              | 0.541              | 0.536              | 0.593             | 0.629             | 0.644             | 0.696             |
| Eu/Eu*        |                                     |                                   | 0.002              | 0.001              |                    |                    |                   | -                 |                   | 0.005             |
| Values of - i | indicate trace elements are below a | detection limit of the instrument |                    |                    |                    |                    |                   |                   |                   |                   |
|               |                                     |                                   |                    |                    |                    |                    |                   |                   |                   |                   |
|               |                                     |                                   |                    |                    |                    |                    |                   |                   |                   |                   |
|               |                                     |                                   |                    |                    |                    |                    |                   |                   |                   |                   |
|               |                                     |                                   |                    |                    |                    |                    |                   |                   |                   |                   |

|                           | _ |                   | Ap                                 | pe    | ndi   | ix l  | <u>B</u> |       | _     |       | _     |       |       |       | <br>     | Sup    | ple    | гт<br> | eni   | tar <u>.</u> | y I    | nfc    | orn    | 1at    | ior | ı fe       | or (      | Ch                               | apte | er 2 | <br> |
|---------------------------|---|-------------------|------------------------------------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|----------|--------|--------|--------|-------|--------------|--------|--------|--------|--------|-----|------------|-----------|----------------------------------|------|------|------|
|                           |   | 017 GRT CORE - 10 |                                    | 107.7 | 12.42 | 0.043 | 38.6     | 6.85  | 32.07 | 4     | 6.7   | 0.617 | 2.81  | 0.296 | 84.4     | 0.8    | 196.3  | 188.7  | 132.1 | 71.9         | 42.2   | 25.5   | 17.3   | 12.2   |     | 0.088      | 0.005     |                                  |      |      |      |
|                           |   | 017 GRT CORE - 9  |                                    | 117.4 | 11.14 | 0.004 | 35.5     | 6.72  | 33.51 | 4.38  | 8.63  | 0.77  | 3.51  | 0.498 | 75.7     | 0.1    | 180.6  | 185.1  | 138.1 | 78.8         | 54.3   | 31.8   | 21.6   | 20.5   |     | 0.120      | 0.001     |                                  |      |      |      |
|                           |   | 017 GRT CORE - 8  |                                    | 79.4  | 12.13 | 0.017 | 31.4     | 4.93  | 22.29 | 2.74  | 4.84  | 0.418 | 1.81  | 0.181 | 82.5     | 0.3    | 159.7  | 135.8  | 91.8  | 49.3         | 30.5   | 17.3   | 11.1   | 7.4    |     | 0.070      | 0.003     |                                  |      |      |      |
|                           |   | 017 GRT CORE - 7  |                                    | 110.3 | 9.73  | 0.047 | 36.2     | 6.88  | 33.5  | 4.52  | 7.56  | 0.658 | 3.65  | 0.466 | 66.1     | 0.8    | 184.1  | 189.5  | 138.0 | 81.3         | 47.6   | 27.2   | 22.5   | 19.2   |     | 0.122      | 0.007     |                                  |      |      | c .  |
|                           |   | 017 GRT CORE - 6  |                                    | 83.8  | 12    | 0.021 | 34.5     | 5.26  | 23.1  | 2.98  | 4.82  | 0.477 | 1.93  | 0.231 | 81.6     | 0.4    | 175.5  | 144.9  | 95.2  | 53.6         | 30.3   | 19.7   | 11.9   | 9.5    |     | 0.068      | 0.003     |                                  |      |      |      |
|                           |   | 017 GRT CORE - 5  |                                    | 06    | 10.89 | 0.03  | 32.4     | 5.49  | 25.1  | 3.19  | 5.28  | 0.451 | 2.37  | 0.237 | 74.0     | 0.5    | 164.8  | 151.2  | 103.4 | 57.4         | 33.2   | 18.6   | 14.6   | 8.6    |     | 0.088      | 0.004     |                                  |      |      | с    |
|                           |   | 017 GRT CORE - 4  |                                    | 91.1  | 11.7  | 0.023 | 33.1     | 5.71  | 25.8  | 3.45  | 6.19  | 0.461 | 2.14  | 0.245 | <br>79.5 | 0.4    | 168.4  | 157.3  | 106.3 | 62.1         | 39.0   | 19.0   | 13.2   | 10.1   |     | 0.078      | 0.003     |                                  |      |      |      |
| alyses                    |   | 017 GRT CORE - 3  |                                    | 113.2 | 11.4  | 0.022 | 39.6     | 7.17  | 31.7  | 4.29  | 8.07  | 0.739 | 3.39  | 0.381 | <br>77.5 | 0.4    | 201.4  | 197.5  | 130.6 | 77.2         | 50.8   | 30.5   | 20.9   | 15.7   |     | 0.104      | 0.003     |                                  |      |      |      |
| REE and trace element and |   | 017 GRT CORE - 2  | 1-004K)                            | 109.9 | 10.71 | 0.081 | 40.1     | 7.05  | 32.1  | 4.31  | 7.77  | 0.615 | 3.08  | 0.37  | <br>72.8 | 1.4    | 204.0  | 194.2  | 132.3 | 77.5         | 48.9   | 25.4   | 19.0   | 15.2   |     | 0.093      | 0.010     | ection limit of the instrument   |      |      |      |
| tinued: LA-ICP-MS garnet  |   | 17 GRT CORE - 1   | iarnet-biotite gneiss - Type 2 (I1 | 9.8   | 0.77  | .035  | 5.3      | .18   | 8.5   | .66   | 3     | .474  | .4    | .329  | <br>3.2  | .6     | 79.6   | 70.2   | 17.4  | 5.8          | 9.6    | 9.6    | 4.8    | 3.5    |     | .082       | .005      | cate trace elements are below de |      |      |      |
| Table S5 con              |   | 0                 | 9                                  | К – 9 | Sm 1( | Eu 0. | Gd 3;    | Tb 6. | Dy 21 | Ho 3. | Tm 6. | Er 0. | Yb 2. | Lu 0. | SmN 7.   | EuN 0. | GdN I. | TbN I. | DyN 1 | HoN 6:       | TmN 39 | ErN 19 | YbN 1- | LuN 1. |     | YbN/GdN 0. | Eu/Eu* 0. | Values of - indic                |      |      |      |

| Table S5 c     | continued: LA-ICP-MS garne          | et REE and trace element a        | nalyses         |                 |                 |                 |                 |                 |                 |                 |
|----------------|-------------------------------------|-----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                |                                     |                                   |                 |                 |                 |                 |                 |                 |                 |                 |
|                | 017 GRT CORE - 11                   | 017 GRT CORE - 12                 | 017 GRT RIM - 1 | 017 GRT RIM - 2 | 017 GRT RIM - 3 | 017 GRT RIM - 4 | 017 GRT RIM - 5 | 017 GRT RIM - 6 | 017 GRT RIM - 7 | 017 GRT RIM - 8 |
|                | Garnet-biotite gneiss - Type 2 cc   | ontinued                          |                 |                 |                 |                 |                 |                 |                 |                 |
| Υ              | 100.4                               | 102.4                             | 111.2           | 118.4           | 118.2           | 119.3           | 121.8           | 118.8           | 121.7           | 116.4           |
| Sm             | 12.08                               | 12.2                              | 9.51            | 7.21            | 7.25            | 8.19            | 8.34            | 9.46            | 7.58            | 8.36            |
| Eu             | 0.02                                | 0.031                             | 0.008           | 0.004           |                 | -               | 0.009           | 0.008           | 0.007           |                 |
| Gd             | 36.5                                | 37                                | 31.3            | 29.8            | 30.3            | 29.1            | 31.2            | 28.8            | 31.9            | 29.5            |
| Tb             | 6.35                                | 6.18                              | 5.74            | 6.17            | 6               | 5.82            | 6.02            | 6.28            | 6.26            | 6.13            |
| Dy             | 28.5                                | 29.4                              | 31.4            | 30.7            | 31.68           | 32.4            | 33.11           | 32.1            | 33.1            | 30.2            |
| Ho             | 3.63                                | 4.1                               | 4.31            | 4.47            | 4.56            | 4.51            | 4.58            | 4.61            | 5.06            | 4.61            |
| Tm             | 6.38                                | 6.62                              | 8.79            | 9.48            | 9.05            | 10.03           | 9.37            | 9.03            | 9.94            | 9.04            |
| Er             | 0.478                               | 0.495                             | 0.849           | 0.969           | 0.976           | 0.98            | 0.947           | 0.892           | 0.856           | 0.858           |
| Yb             | 2.52                                | 3.07                              | 5.03            | 5.73            | 5.79            | 5.36            | 5.54            | 5.29            | 4.84            | 4.89            |
| Iu             | 0.27                                | 0.394                             | 0.667           | 0.842           | 0.719           | 0.855           | 0.832           | 0.721           | 0.726           | 0.698           |
|                |                                     |                                   |                 |                 |                 |                 |                 |                 |                 |                 |
| SmN            | 82.1                                | 82.9                              | 64.6            | 49.0            | 49.3            | 55.7            | 56.7            | 64.3            | 51.5            | 56.8 C          |
| EuN            | 0.4                                 | 0.6                               | 0.1             | 0.1             | -               | -               | 0.2             | 0.1             | 0.1             |                 |
| GdN            | 185.7                               | 188.2                             | 159.2           | 151.6           | 154.1           | 148.0           | 158.7           | 146.5           | 162.3           | 120.1           |
| TbN            | 174.9                               | 170.2                             | 158.1           | 170.0           | 165.3           | 160.3           | 165.8           | 173.0           | 172.5           | 168.9           |
| DyN            | 117.4                               | 121.1                             | 129.4           | 126.5           | 130.5           | 133.5           | 136.4           | 132.3           | 136.4           | 124.4           |
| HoN            | 65.3                                | 73.7                              | 77.5            | 80.4            | 82.0            | 81.1            | 82.4            | 82.9            | 91.0            | 82.9            |
| TmN            | 40.2                                | 41.7                              | 55.3            | 59.7            | 57.0            | 63.1            | 59.0            | 56.8            | 62.6            | 56.9            |
| ErN            | 19.8                                | 20.5                              | 35.1            | 40.0            | 40.3            | 40.5            | 39.1            | 36.9            | 35.4            | 35.5            |
| YbN            | 15.5                                | 18.9                              | 31.0            | 35.3            | 35.6            | 33.0            | 34.1            | 32.6            | 29.8            | 30.1            |
| LuN            | 11.1                                | 16.2                              | 27.4            | 34.7            | 29.6            | 35.2            | 34.2            | 29.7            | 29.9            | 28.7            |
|                |                                     |                                   |                 |                 |                 |                 |                 |                 |                 |                 |
| YbN/GdN        | 0.084                               | 0.100                             | 0.194           | 0.233           | 0.231           | 0.223           | 0.215           | 0.222           | 0.184           | 0.201           |
| Eu/Eu*         | 0.003                               | 0.004                             | 0.001           | 0.001           |                 | -               | 0.001           | 0.001           | 0.001           |                 |
| Values of - it | indicate trace elements are below d | letection limit of the instrument |                 |                 |                 |                 |                 |                 |                 |                 |
|                |                                     |                                   |                 |                 |                 |                 |                 |                 |                 | ipre            |
|                |                                     |                                   |                 |                 |                 |                 |                 |                 |                 |                 |
|                |                                     |                                   |                 |                 |                 |                 |                 |                 |                 |                 |
|                |                                     |                                   |                 |                 |                 |                 |                 |                 |                 |                 |

| _                         | <br>$A_{j}$           | ppe                                | enc   | lix  | B     |      |      |       |      |       |       |      |       | <br>Su   | pp    | len   | ner   | 1ta   | ry    | Inj   | or    | ma    | tio   | n j | for       | C        | hap                              | oter | 2 |  |
|---------------------------|-----------------------|------------------------------------|-------|------|-------|------|------|-------|------|-------|-------|------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|-----------|----------|----------------------------------|------|---|--|
|                           | 017 GRT RIM<br>BT - 6 |                                    | 103.7 | 8.05 | 0.008 | 30.3 | 5.76 | 28.2  | 3.9  | 8.27  | 0.806 | 4.38 | 0.565 | 54.7     | 0.1   | 154.1 | 158.7 | 116.2 | 70.1  | 52.0  | 33.3  | 27.0  | 23.3  |     | 0.175     | 0.001    |                                  |      |   |  |
|                           | 017 GRT RIM BT - 5    |                                    | 116.9 | 7.55 | 0.015 | 31.9 | 6.02 | 30.11 | 4.5  | 9.1   | 0.91  | 4.97 | 0.704 | 51.3     | 0.3   | 162.3 | 165.8 | 124.1 | 80.9  | 57.3  | 37.6  | 30.6  | 29.0  |     | 0.188     | 0.003    |                                  |      |   |  |
|                           | 017 GRT RIM BT - 4    |                                    | 121.9 | 8.96 | 0.009 | 32.9 | 6.25 | 32.43 | 4.75 | 10.3  | 0.97  | 5.52 | 0.716 | 60.9     | 0.2   | 167.3 | 172.2 | 133.6 | 85.4  | 64.8  | 40.1  | 34.0  | 29.5  |     | 0.203     | 0.001    |                                  |      |   |  |
|                           | 017 GRT RIM BT - 3    |                                    | 119.8 | 9.15 | 0.029 | 33.6 | 6.13 | 33.6  | 4.88 | 10.03 | 0.92  | 5.15 | 0.629 | 62.2     | 0.5   | 170.9 | 168.9 | 138.4 | 87.8  | 63.1  | 38.0  | 31.7  | 25.9  |     | 0.185     | 0.004    |                                  |      |   |  |
|                           | 017 GRT RIM BT - 2    |                                    | 120.5 | 8.48 |       | 33.1 | 6.29 | 31.2  | 4.71 | 9.02  | 0.95  | 5.27 | 0.815 | 57.6     | -     | 168.4 | 173.3 | 128.6 | 84.7  | 56.8  | 39.3  | 32.4  | 33.5  |     | 0.193     | -        |                                  |      |   |  |
|                           | 017 GRT RIM BT - 1    |                                    | 122.1 | 8.96 | 0.008 | 32.7 | 6.5  | 33.3  | 4.62 | 9.64  | 86.0  | 5.71 | 0.769 | 60.9     | 0.1   | 166.3 | 179.1 | 137.2 | 83.1  | 60.7  | 40.5  | 35.1  | 31.6  |     | 0.211     | 0.001    |                                  |      |   |  |
|                           | 017 GRT RIM - 12      |                                    | 123.1 | 8.77 | 00.00 | 33.2 | 6.24 | 32.8  | 4.67 | 8.6   | 0.97  | 6.14 | 0.727 | <br>59.6 | 0.2   | 168.9 | 171.9 | 135.1 | 84.0  | 61.7  | 40.1  | 37.8  | 29.9  |     | 0.224     | 0.001    |                                  |      |   |  |
| alyses                    | 017 GRT RIM - 11      |                                    | 126.6 | 9.18 |       | 33.9 | 6.53 | 33    | 5.05 | 6.6   | 1.06  | 5.4  | 0.85  | <br>62.4 |       | 172.4 | 179.9 | 136.0 | 90.8  | 62.3  | 43.8  | 33.2  | 35.0  |     | 0.193     |          |                                  |      |   |  |
| REE and trace element and | 017 GRT RIM - 10      | atimued                            | 119.4 | 8.22 | 0.021 | 31.8 | 6.47 | 31.5  | 4.8  | 9.51  | 0.977 | 5.27 | 0.749 | <br>55.9 | 0.4   | 161.7 | 178.2 | 129.8 | 86.3  | 59.8  | 40.4  | 32.4  | 30.8  |     | 0.200     | 0.003    | tection limit of the instrument  |      |   |  |
| ntinued: LA-ICP-MS garnet | 017 GRT RIM - 9       | Jarnet-biotite gneiss - Type 2 con | 1.61  | 3.21 | ).003 | 12   | 5.93 | 12.7  | 1.63 | .52   | .94   | 1.76 | ).747 | 55.8     | 1.0   | 62.8  | 63.4  | 34.7  | 33.3  | 9.9   | 38.8  | 5.9   | 30.7  |     | .180      | .001     | cate trace elements are below de |      |   |  |
| Table S5 con              |                       |                                    | Υ 1   | Sm 8 | Eu (  | Gd 3 | Tb 5 | Dy 3  | Ho 4 | Tm 5  | Er (  | Yb 4 | Lu (  | SmN 5    | EuN ( | GdN   | TbN   | DyN 1 | 3 NoH | 1mN 5 | ErN 3 | YbN 2 | EuN 3 |     | YbN/GdN ( | Eu/Eu* ( | Values of - indi                 |      |   |  |

|                           | - | Ap               | per                      | ndı   | x I    | 3     |       |        |       |        |        |        |       |       | S | up     | ple   | me     | ente   | ary    | , IN   | ifoi   | rm     | atı    | on       | foi | r (        | ha       | ipte                             | 2r 2 |  |
|---------------------------|---|------------------|--------------------------|-------|--------|-------|-------|--------|-------|--------|--------|--------|-------|-------|---|--------|-------|--------|--------|--------|--------|--------|--------|--------|----------|-----|------------|----------|----------------------------------|------|--|
|                           |   |                  |                          |       |        |       |       |        |       |        |        |        |       |       |   |        |       |        |        |        |        |        |        |        |          |     |            |          |                                  |      |  |
|                           |   | 019 GRT RIM - 6  |                          | 9.23  | 2.29   | -     | 7.17  | 1.09   | 3.67  | 0.291  | 0.39   | 0.014  | 0.073 | 0.058 |   | 15.6   | -     | 36.5   | 30.0   | 15.1   | 5.2    | 2.5    | 0.6    | 0.0    | 2.4      |     | 0.025      | -        |                                  |      |  |
|                           |   | 019 GRT RIM - 5  |                          | 13.92 | 2.38   | 0.009 | 9.32  | 1.36   | 4.92  | 0.419  | 0.68   | 0.074  | 0.12  | 0.015 |   | 16.2   | 0.2   | 47.4   | 37.5   | 20.3   | 7.5    | 4.3    | 3.1    | 1.8    | 0.6      |     | 0.038      | 0.005    |                                  |      |  |
|                           |   | 019 GRT RIM - 4  |                          | 8.11  | 1.88   |       | 5.77  | 0.678  | 2.57  | 0.284  | 0.267  | 0.021  | 0.063 | 0.01  |   | 12.8   |       | 29.3   | 18.7   | 10.6   | 5.1    | 1.7    | 0.9    | 0.5    | 0.4      |     | 0.018      | -        |                                  |      |  |
|                           |   | 019 GRT RIM - 3  |                          | 3.94  | 1.5    | -     | 4.5   | 0.606  | 1.57  | 0.09   | 0.071  | -      | 1     |       |   | 10.2   | -     | 22.9   | 16.7   | 6.5    | 1.6    | 0.4    | -      | -      | -        |     | -          | -        |                                  |      |  |
|                           |   | 019 GRT RIM - 1  |                          | 5.31  | 1.87   | -     | 5.63  | 0.747  | 2.02  | 0.179  | 0.164  | 0.002  | 0.047 | -     |   | 12.7   |       | 28.6   | 20.6   | 8.3    | 3.2    | 1.0    | 0.1    | 0.3    | -        |     | 0.012      |          |                                  |      |  |
|                           |   | 019 GRT CORE - 4 |                          | 150.5 | 5.48   |       | 26.6  | 5.72   | 36.4  | 6.12   | 14.08  | 1.5    | 0.69  | 1.44  |   | 37.3   |       | 135.3  | 157.6  | 150.0  | 110.1  | 88.6   | 62.0   | 56.1   | 59.3     |     | 0.414      |          |                                  |      |  |
| lyses                     |   | 019 GRT CORE - 3 |                          | 133   | 6.83   | 0.029 | 30.3  | 6.2    | 36.7  | 5.8    | 12.91  | 1.36   | 0.67  | 1.2   |   | 46.4   | 0.5   | 154.1  | 170.8  | 151.2  | 104.3  | 81.2   | 56.2   | 47.0   | 49.4     |     | 0.305      | 0.005    |                                  |      |  |
| REE and trace element an: |   | 019 GRT CORE - 2 |                          | 120   | 4.45   | 0.01  | 22.2  | 4.91   | 29.4  | 4.93   | 11.64  | 1.2    | 0.59  | 1.23  |   | 30.3   | 0.2   | 112.9  | 135.3  | 121.1  | 88.7   | 73.3   | 49.6   | 49.2   | 50.6     |     | 0.435      | 0.002    | ection limit of the instrument   |      |  |
| inued: LA-ICP-MS garnet   |   | 19 GRT CORE - 1  | ansition zone (I11-004C) |       | 71     |       | .3    | 52     | .4    | 26     | 72     | 344    | 29    |       |   | .2     |       |        | 2      | 3      | 0.     |        | 0:     | .8     | <i>L</i> |     | 449        |          | ate trace elements are below det |      |  |
| Table S5 cont             |   | 0                | Tr                       | Y 94  | Sm 3.: | Eu -  | Gd 15 | Tb 3.4 | Dy 22 | Ho 3.: | Tm 7.5 | Er 0.2 | Yb 0. | Lu 1. |   | SmN 25 | EuN - | GdN 95 | TbN 96 | DyN 92 | HoN 64 | TmN 45 | ErN 35 | YbN 41 | LuN 45   |     | YbN/GdN 0. | Eu/Eu* - | Values of - indic                |      |  |

|                               | <br>               | Ap                      | pe    | ndi  | $\frac{1}{2}$ | 8    |      |       |      |       |       |       |       | <br> | sup | ple   | ет    | eni   | tar  | y I  | nfe  | orn  | 1at  | ior | i fé    | or (   | Ch                                   | apte | er 2 | <br> |
|-------------------------------|--------------------|-------------------------|-------|------|---------------|------|------|-------|------|-------|-------|-------|-------|------|-----|-------|-------|-------|------|------|------|------|------|-----|---------|--------|--------------------------------------|------|------|------|
|                               | 022 GRT 1 CORE - 9 |                         | 107.6 | 5.41 | 0.021         | 19   | 3.68 | 22.19 | 3.79 | 9.29  | 1.1   | 8.66  | 1.07  | 36.8 | 0.4 | 9.96  | 101.4 | 91.4  | 68.2 | 58.5 | 45.5 | 53.3 | 44.0 |     | 0.551   | 0.006  |                                      |      |      |      |
|                               | 022 GRT 1 CORE - 8 |                         | 117.4 | 4.76 | 0.016         | 20.9 | 3.88 | 24.3  | 4.18 | 11.62 | 1.45  | 9.78  | 1.45  | 32.4 | 0.3 | 106.3 | 106.9 | 100.1 | 75.2 | 73.1 | 59.9 | 60.2 | 59.7 |     | 0.566   | 0.004  |                                      |      |      |      |
|                               | 022 GRT 1 CORE - 7 |                         | 120.2 | 5.61 |               | 20.1 | 3.96 | 23.92 | 4.58 | 11.37 | 1.61  | 9.98  | 1.5   | 38.1 |     | 102.2 | 109.1 | 98.6  | 82.4 | 71.6 | 66.5 | 61.4 | 61.7 |     | 0.601   |        |                                      |      |      |      |
|                               | 022 GRT 1 CORE - 6 |                         | 122.3 | 5.8  |               | 20.8 | 4.05 | 24.89 | 4.5  | 11.84 | 1.64  | 10.01 | 1.51  | 39.4 | -   | 105.8 | 111.6 | 102.6 | 80.9 | 74.5 | 67.8 | 61.6 | 62.1 |     | 0.582   |        |                                      |      |      |      |
|                               | 022 GRT 1 CORE - 5 |                         | 123.4 | 5.18 | -             | 21.1 | 3.81 | 24.3  | 4.33 | 11.98 | 1.81  | 10.06 | 1.56  | 35.2 |     | 107.3 | 105.0 | 100.1 | 77.9 | 75.4 | 74.8 | 61.9 | 64.2 |     | 0.577   |        |                                      |      |      |      |
|                               | 022 GRT 1 CORE - 4 |                         | 114.8 | 5.26 |               | 19.1 | 3.72 | 23.1  | 4.28 | 11.77 | 1.54  | 9.62  | 1.45  | 35.8 |     | 97.2  | 102.5 | 95.2  | 77.0 | 74.1 | 63.6 | 59.2 | 59.7 |     | 0.609   |        |                                      |      |      |      |
| S                             | 022 GRT 1 CORE - 3 |                         | 111.2 | 4.89 |               | 18   | 3.71 | 23.06 | 4.19 | 10.56 | 1.39  | 10.24 | 1.44  | 33.2 |     | 91.6  | 102.2 | 95.0  | 75.4 | 66.5 | 57.4 | 63.0 | 59.3 |     | 0.688   |        |                                      |      |      |      |
| KEE and trace element analyse | 022 GRT 1 CORE - 2 |                         | 115.3 | 5.38 |               | 19.8 | 3.7  | 23.2  | 3.9  | 9.75  | 1.145 | 7.11  | 0.883 | 36.6 |     | 100.7 | 101.9 | 95.6  | 70.1 | 61.4 | 47.3 | 43.8 | 36.3 |     | 0.434   |        | ction limit of the instrument        |      |      |      |
| ntinued: LA-ICP-MS garnet I   | 022 GRT 1 CORE - 1 | Charnockite (II 1-008C) | 107.8 | 5.81 |               | 19.2 | 3.37 | 22.1  | 3.91 | 9.31  | 1.305 | 7.44  | 1.016 | 39.5 | ,   | 97.7  | 92.8  | 91.1  | 70.3 | 58.6 | 53.9 | 45.8 | 41.8 |     | 0.469   |        | icate trace elements are below dete- |      |      |      |
| Table S5 coi                  |                    |                         | Υ     | Sm   | Eu            | Gd   | Tb   | Dy    | Но   | Tm    | Er    | Yb    | Lu    | SmN  | EuN | GdN   | NdT   | DyN   | HoN  | TmN  | ErN  | NdY  | LuN  |     | YbN/GdN | Eu/Eu* | Values of - ind                      |      |      |      |

| Table S5 c    | continued: LA-ICP-MS garnet           | REE and trace element analyse   | es                |                   |                   |                   |                   |                   |                   | _                |
|---------------|---------------------------------------|---------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
|               |                                       |                                 |                   |                   |                   |                   |                   |                   |                   |                  |
|               | 022 GRT 1 CORE - 10                   | 022 GRT 1 CORE - 11             | 022 GRT 1 RIM - 1 | 022 GRT 1 RIM - 2 | 022 GRT 1 RIM - 3 | 022 GRT 1 RIM - 4 | 022 GRT 1 RIM - 5 | 022 GRT 1 RIM - 6 | 022 GRT 1 RIM - 7 |                  |
|               | Chamockite continued ([111-008C       | ((                              |                   |                   |                   |                   |                   |                   |                   | ар               |
| Y             | 108.4                                 | 118.7                           | 107.9             | 110.6             | 118.7             | 112.7             | 122.5             | 121.4             | 122.1             | pe               |
| Sm            | 5.15                                  | 6.02                            | 4.93              | 5.07              | 4.7               | 4.84              | 5.12              | 5.39              | 5.5               |                  |
| Eu            | 0.008                                 | ,                               | 0.012             |                   |                   | 0.004             | 0.004             | ,                 |                   | іл I<br>Г        |
| Gd            | 19.7                                  | 19.8                            | 20.2              | 19.4              | 18.9              | 19.7              | 20.6              | 20.7              | 19.94             |                  |
| Tb            | 3.84                                  | 4.09                            | 3.71              | 3.65              | 4.01              | 3.54              | 4.04              | 3.95              | 3.99              | _                |
| Dy            | 21.96                                 | 23.4                            | 20.9              | 21.46             | 22.8              | 21.63             | 24.06             | 23.92             | 24.9              | _                |
| Но            | 3.86                                  | 4.19                            | 4.16              | 4.07              | 4.4               | 4.13              | 4.43              | 4.52              | 4.67              |                  |
| Tm            | 9.89                                  | 10.46                           | 9.76              | 10.32             | 11.35             | 11.25             | 12.56             | 11.53             | 11.81             | _                |
| Er            | 1.12                                  | 1.3                             | 1.264             | 1.38              | 1.4               | 1.5               | 1.69              | 1.52              | 1.61              |                  |
| Yb            | 7.36                                  | 8.54                            | 7.45              | 8.19              | 66.6              | 9.85              | 10.25             | 9.47              | 9.71              |                  |
| Lu            | 1.2                                   | 1.33                            | 1.12              | 1.2               | 1.5               | 1.5               | 1.63              | 1.41              | 1.4               | _                |
|               |                                       |                                 |                   |                   |                   |                   |                   |                   |                   | _                |
| SmN           | 35.0                                  | 40.9                            | 33.5              | 34.5              | 32.0              | 32.9              | 34.8              | 36.6              | 37.4              |                  |
| EuN           | 0.1                                   | -                               | 0.2               |                   | -                 | 0.1               | 0.1               |                   |                   | sup<br>m         |
| GdN           | 100.2                                 | 100.7                           | 102.7             | 98.7              | 96.1              | 100.2             | 104.8             | 105.3             | 101.4             |                  |
| TbN           | 105.8                                 | 112.7                           | 102.2             | 100.6             | 110.5             | 97.5              | 111.3             | 108.8             | 109.9             |                  |
| DyN           | 90.5                                  | 96.4                            | 86.1              | 88.4              | 93.9              | 89.1              | 1.99.1            | 98.6              | 102.6             | en               |
| NoH           | 69.4                                  | 75.4                            | 74.8              | 73.2              | 79.1              | 74.3              | 79.7              | 81.3              | 84.0              |                  |
| TmN           | 62.2                                  | 65.8                            | 61.4              | 64.9              | 71.4              | 70.8              | 79.0              | 72.6              | 74.3              | $\frac{y_{I}}{}$ |
| ErN           | 46.3                                  | 53.7                            | 52.2              | 57.0              | 57.9              | 62.0              | 69.8              | 62.8              | 66.5              | nje              |
| YbN           | 45.3                                  | 52.6                            | 45.8              | 50.4              | 61.5              | 60.6              | 63.1              | 58.3              | 59.8              |                  |
| LuN           | 49.4                                  | 54.7                            | 46.1              | 49.4              | 61.7              | 61.7              | 67.1              | 58.0              | 57.6              | 141              |
|               |                                       |                                 |                   |                   |                   |                   |                   |                   |                   |                  |
| YbN/GdN       | 0.452                                 | 0.522                           | 0.446             | 0.511             | 0.639             | 0.605             | 0.602             | 0.553             | 0.589             | $\frac{1}{2}$    |
| Eu/Eu*        | 0.002                                 | -                               | 0.003             | -                 | -                 | 0.001             | 0.001             | -                 |                   |                  |
| Values of - i | indicate trace elements are below det | tection limit of the instrument |                   |                   |                   |                   |                   |                   |                   |                  |
|               |                                       |                                 |                   |                   |                   |                   |                   |                   |                   | apie             |
|               |                                       |                                 |                   |                   |                   |                   |                   |                   |                   |                  |
|               |                                       |                                 |                   |                   |                   |                   |                   |                   |                   |                  |
|               |                                       |                                 |                   |                   |                   |                   |                   |                   |                   | _                |

|                               | 1                      | Ap                                | per   | ndi  | x I   | 3     |      |       |      |       |       |       |       | 2    | Sup   | ple   | em    | ent   | tar   | <i>y 1</i> | nfo  | orn   | ıat   | ion | i fe      | or (   | Ch                                   | apte | er 2 |     |
|-------------------------------|------------------------|-----------------------------------|-------|------|-------|-------|------|-------|------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|------------|------|-------|-------|-----|-----------|--------|--------------------------------------|------|------|-----|
|                               | 022 GRT 2 CORE - 1     |                                   | 107.8 | 4.71 |       | 13.2  | 2.91 | 19.73 | 4.12 | 66.6  | 1.19  | 6.76  | 1.028 | 32.0 |       | 67.1  | 80.2  | 81.3  | 74.1  | 62.9       | 49.2 | 41.6  | 42.3  |     | 0.620     |        |                                      |      |      |     |
|                               | 022 GRT 1 RIM - 15     |                                   | 110.8 | 5.51 | 0.005 | 18.2  | 3.53 | 22.6  | 4.2  | 10.85 | 1.42  | 8.96  | 1.32  | 37.5 | 0.1   | 92.6  | 97.2  | 93.1  | 75.5  | 68.3       | 58.7 | 55.1  | 54.3  |     | 0.596     | 0.001  |                                      |      |      |     |
|                               | <br>022 GRT 1 RIM - 14 |                                   | 118.1 | 5.8  | 0.017 | 19.4  | 3.82 | 23.2  | 4.2  | 11.06 | 1.33  | 9.52  | 1.36  | 39.4 | 0.3   | 98.7  | 105.2 | 95.6  | 75.5  | 69.6       | 55.0 | 58.6  | 56.0  |     | 0.594     | 0.004  |                                      |      |      |     |
|                               | 022 GRT 1 RIM - 13     |                                   | 113   | 5.07 | -     | 19.1  | 3.65 | 22.31 | 4.13 | 10.63 | 1.46  | 60.6  | 1.49  | 34.5 |       | 97.2  | 100.6 | 91.9  | 74.3  | 66.9       | 60.3 | 55.9  | 61.3  |     | 0.576     |        |                                      |      |      |     |
|                               | 022 GRT 1 RIM - 12     |                                   | 120.5 | 6.15 |       | 21.2  | 4.17 | 24.69 | 4.53 | 11.94 | 1.43  | 9.6   | 1.36  | 41.8 |       | 107.8 | 114.9 | 101.7 | 81.5  | 75.1       | 59.1 | 59.1  | 56.0  |     | 0.548     |        |                                      |      |      |     |
|                               | 022 GRT 1 RIM - 11     |                                   | 110.5 | 5.87 |       | 19.7  | 3.54 | 21.9  | 3.88 | 10.55 | 1.274 | 8.07  | 1.12  | 39.9 |       | 100.2 | 97.5  | 90.2  | 69.8  | 66.4       | 52.6 | 49.7  | 46.1  |     | 0.496     |        |                                      |      |      |     |
|                               | 022 GRT 1 RIM - 10     |                                   | 104.7 | 5.91 |       | 19.72 | 3.64 | 22.16 | 3.93 | 9.97  | 1.27  | 7.68  | 1.09  | 40.2 |       | 100.3 | 100.3 | 91.3  | 70.7  | 62.7       | 52.5 | 47.3  | 44.9  |     | 0.471     |        |                                      |      |      | e : |
| 3E and trace element analyses | 022 GRT 1 RIM - 9      |                                   | 102.9 | 5.37 | 0.008 | 18.8  | 3.66 | 21.03 | 4    | 9.61  | 1.27  | 7.87  | 111   | 36.5 | 0.1   | 95.6  | 100.8 | 86.7  | 71.9  | 60.5       | 52.5 | 48.4  | 45.7  |     | 0.506     | 0.002  | tion limit of the instrument         |      |      | c : |
| tinued: LA-ICP-MS garnet Rl   | 022 GRT 1 RIM - 8      | Charnockite continued (II 1-008C) | 1.9.1 | 5.24 |       | 20.3  | 3.73 | 22.91 | 4.53 | 11.78 | 1.48  | 10.09 | 1.43  | 35.6 |       | 103.3 | 102.8 | 94.4  | 81.5  | 74.1       | 61.2 | 62.1  | 58.8  |     | 0.601     |        | icate trace elements are below deter |      |      |     |
| Table S5 cont                 | )                      |                                   | Y I   | Sm 2 | Eu .  | Gd    | Tb   | Dy 2  | Ho   | Tm    | Er i  | Yb 1  | Lu    | SmN  | - EuN | GdN   | TbN   | DyN   | HoN 8 | TmN        | ErN  | ybN ( | : TuN |     | AbN/GdN ( | Eu/Eu* | Values of - indi                     |      |      |     |

| Table S5 c    | sontinued: LA-ICP-MS garnet           | REE and trace element analyse   | ies                |                    |                   |                   |                   |                   |                   | _     |
|---------------|---------------------------------------|---------------------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
|               |                                       |                                 |                    |                    |                   |                   |                   |                   |                   | ,     |
|               | 022 GRT 2 CORE - 2                    | 022 GRT 2 CORE - 3              | 022 GRT 2 CORE - 4 | 022 GRT 2 CORE - 5 | 022 GRT 2 RIM - 1 | 022 GRT 2 RIM - 2 | 022 GRT 2 RIM - 3 | 022 GRT 2 RIM - 4 | 022 GRT 2 RIM - 5 |       |
|               | Charnockite continued (I11-           | -008C)                          |                    |                    |                   |                   |                   |                   |                   | Ар    |
| Y             | 108.7                                 | 110.3                           | 106.2              | 108.7              | 102.1             | 101.9             | 101.7             | 105.8             | 97.2              | pei   |
| Sm            | 3.83                                  | 3.92                            | 4.1                | 4.19               | 4.02              | 4.15              | 3.63              | 4.54              | 3.4               | ndi   |
| Eu            | 0.013                                 | -                               | 0.013              | -                  | -                 | 0.012             |                   |                   | 0.004             | x I   |
| Gd            | 14.4                                  | 14.7                            | 13.5               | 14.55              | 13.97             | 12.68             | 13.73             | 13.6              | 12.83             | 3<br> |
| Tb            | 2.98                                  | 2.94                            | 2.97               | 3.14               | 2.88              | 3.17              | 2.88              | 2.89              | 2.95              |       |
| Dy            | 19.32                                 | 20.8                            | 20.49              | 21.1               | 19.83             | 20.48             | 20.38             | 21.47             | 19.74             |       |
| Но            | 3.97                                  | 3.93                            | 3.77               | 4.17               | 3.74              | 3.73              | 3.58              | 3.78              | 3.46              | _     |
| Tm            | 9.57                                  | 10.24                           | 9.61               | 9.64               | 6                 | 9.13              | 8.87              | 9.31              | 8.51              | _     |
| Er            | 1.21                                  | 1.31                            | 1.028              | 1.19               | 1.19              | 1.02              | 1.21              | 1.24              | 1.01              |       |
| Υb            | 7.18                                  | 6.9                             | 5.45               | 6.57               | 6.57              | 6.21              | 6.44              | 7.18              | 5.78              | _     |
| Lu            | 1.03                                  | 0.89                            | 0.812              | 0.91               | 1.01              | 0.837             | 0.88              | 0.976             | 0.745             |       |
|               |                                       |                                 |                    |                    |                   |                   |                   |                   |                   | _     |
| SmN           | 26.0                                  | 26.6                            | 27.9               | 28.5               | 27.3              | 28.2              | 24.7              | 30.9              | 23.1              |       |
| EuN           | 0.2                                   | -                               | 0.2                | -                  | -                 | 0.2               | -                 |                   | 0.1               | up    |
| GdN           | 73.2                                  | 74.8                            | 68.7               | 74.0               | 71.1              | 64.5              | 69.8              | 69.2              | 65.3              | ple   |
| TbN           | 82.1                                  | 81.0                            | 81.8               | 86.5               | 79.3              | 87.3              | 79.3              | 79.6              | 81.3              | 27    |
| DyN           | 79.6                                  | 85.7                            | 84.4               | 86.9               | 81.7              | 84.4              | 84.0              | 88.5              | 81.3              | eni   |
| HoN           | 71.4                                  | 70.7                            | 67.8               | 75.0               | 67.3              | 67.1              | 64.4              | 68.0              | 62.2              | tar.  |
| TmN           | 60.2                                  | 64.4                            | 60.5               | 60.7               | 56.6              | 57.5              | 55.8              | 58.6              | 53.6              | y I   |
| ErN           | 50.0                                  | 54.1                            | 42.5               | 49.2               | 49.2              | 42.1              | 50.0              | 51.2              | 41.7              | nfc   |
| YbN           | 44.2                                  | 42.5                            | 33.5               | 40.4               | 40.4              | 38.2              | 39.6              | 44.2              | 35.6              | orn   |
| LuN           | 42.4                                  | 36.6                            | 33.4               | 37.4               | 41.6              | 34.4              | 36.2              | 40.2              | 30.7              | iat   |
|               |                                       |                                 |                    |                    |                   |                   |                   |                   |                   | 101   |
| VbN/GdN       | 0.603                                 | 0.568                           | 0.488              | 0.546              | 0.569             | 0.593             | 0.567             | 0.639             | 0.545             | i fe  |
| Eu/Eu*        | 0.005                                 | -                               | 0.005              | -                  | -                 | 0.005             | -                 |                   | 0.002             |       |
| Values of - i | indicate trace elements are below det | tection limit of the instrument |                    |                    |                   |                   |                   |                   |                   |       |
|               |                                       |                                 |                    |                    |                   |                   |                   |                   |                   | apte  |
|               |                                       |                                 |                    |                    |                   |                   |                   |                   |                   | $r_2$ |
|               |                                       |                                 |                    |                    |                   |                   |                   |                   |                   |       |
|               |                                       |                                 |                    |                    |                   |                   |                   |                   |                   |       |

| 022 GRT 3 RIM - 3<br>022 GRT 3 RIM - 3<br>109.1<br>2.08<br>3.97<br>3.97<br>3.97<br>11.1<br>11.1<br>11.2<br>11.6<br>11.1<br>11.6<br>11.1<br>11.6<br>11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 022 GRT 3 RIM - 2<br>022 GRT 3 RIM - 2<br>107.3<br>2.46<br>2.46<br>3.91<br>18.35<br>3.91<br>10.7<br>1.55<br>10.7<br>1.55<br>10.7<br>1.55<br>10.93<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |
| 022 GRT 3 RIM - I<br>022 GRT 3 RIM - I<br>110.9<br>2.78<br>0004<br>0004<br>10.35<br>2.46<br>1.908<br>1.908<br>1.908<br>1.908<br>1.90<br>1.90<br>1.90<br>1.95<br>2.26<br>6.66<br>6.66<br>6.66<br>6.66<br>6.66<br>6.65<br>6.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
| 022 GRT 3 CORE - 3<br>114.1<br>114.1<br>2.82<br>2.82<br>0.007<br>10.78<br>10.78<br>10.78<br>10.78<br>10.2<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23                                                                                                     |                                     |
| 022 GRT 3 CORE - 2<br>107<br>107<br>107<br>103<br>2.82<br>2.82<br>10.33<br>10.33<br>1.38<br>2.61<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1.38<br>1 |                                     |
| s<br>022 GKT 3 CORE - 1<br>107<br>107<br>108<br>3.53<br>3.84<br>10.89<br>19.16<br>1.42<br>1.42<br>1.42<br>1.42<br>2.40<br>2.40<br>1.42<br>1.42<br>2.40<br>2.40<br>5.4<br>2.40<br>5.4<br>2.40<br>5.6<br>7.85<br>7.85<br>7.85<br>7.85<br>7.85<br>7.85<br>7.85<br>7.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
| EE and trace element analyse<br>94.5<br>94.5<br>94.5<br>13.87<br>13.87<br>13.87<br>13.87<br>13.87<br>13.87<br>13.87<br>13.85<br>13.85<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.82<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.62<br>0.05<br>5.72<br>0.05<br>5.72<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0          | tion limit of the instrument        |
| ifined: LA-ICP-MS garnet R inued: LA-ICP-MS garnet R 22 barnockie continued (11-008C) 66 62 61 13 14 15 15 15 16 11 15 16 16 16 16 16 16 16 16 16 16 16 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tate trace elements are below detec |
| Table S5 con           Table S5 con           Y           Y           Y           Y           Y           Y           Y           Y           Pain           Bia           Bia           Gd           Ho           Pip           Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Values of - indi                    |

| Table S   | 35 continued: LA-ICP-MS garnet l           | REE and trace element analyse | Sé       |          |          |          |          |          |          |
|-----------|--------------------------------------------|-------------------------------|----------|----------|----------|----------|----------|----------|----------|
|           |                                            |                               |          |          |          |          |          |          |          |
|           | PAGE - 1                                   | PAGE - 2                      | PAGE - 3 | PAGE - 4 | PAGE - 5 | PAGE - 6 | PAGE - 7 | PAGE - 8 | PAGE - 9 |
|           | Metapelitic gneiss - Type 1 (TB-12         | 4-025)                        |          |          |          |          |          |          |          |
| Position  | R                                          | R                             | R        | c        | c        | С        | c        | c        | c        |
| Y         | 74.8                                       | 63                            | 62.3     | 58.1     | 58.27    | 56.6     | 53.01    | 53.42    | 56.02    |
| Sm        | 4.43                                       | 3.19                          | 1.11     | 10.84    | 10.26    | 10.27    | 12.75    | 12.34    | 10.91    |
| Eu        | 0.051                                      | 0.028                         | 0.035    | 0.029    | 0.032    | 0.036    | 0.042    | 0.037    | 0.044    |
| Gd        | 26.11                                      | 21.51                         | 30.24    | 28.87    | 29.05    | 28.82    | 27.63    | 26.89    | 27.26    |
| đT        | 5.33                                       | 4.37                          | 4.74     | 4.44     | 4.396    | 4.343    | 4.252    | 4.3      | 4.43     |
| Dy        | 26.68                                      | 22.94                         | 21.5     | 20.77    | 20.46    | 20.04    | 19.13    | 19.34    | 20.64    |
| Но        | 2.962                                      | 2.561                         | 2.279    | 2.14     | 2.119    | 2.153    | 1.93     | 2.123    | 2.118    |
| Tm        | 4.24                                       | 3.65                          | 3.13     | 2.87     | 3        | 2.83     | 2.66     | 2.89     | 2.93     |
| Er        | 0.328                                      | 0.281                         | 0.28     | 0.236    | 0.232    | 0.245    | 0.194    | 0.192    | 0.224    |
| Υb        | 1.449                                      | 1.27                          | 1.22     | 1.106    | 1.23     | 1.179    | 1.006    | 1.082    | 1.107    |
| Lu        | 0.179                                      | 0.144                         | 0.144    | 0.14     | 0.139    | 0.125    | 0.108    | 0.119    | 0.143    |
|           |                                            |                               |          |          |          |          |          |          |          |
| SmN       | 30.1                                       | 21.7                          | 75.5     | 73.7     | 69.7     | 69.8     | 86.7     | 83.9     | 74.2     |
| EuN       | 0.9                                        | 0.5                           | 0.6      | 0.5      | 0.6      | 0.6      | 0.8      | 0.7      | 0.8      |
| GdN       | 132.8                                      | 109.4                         | 153.8    | 146.8    | 147.8    | 146.6    | 140.5    | 136.8    | 138.7    |
| TbN       | 146.8                                      | 120.4                         | 130.6    | 122.3    | 121.1    | 119.6    | 117.1    | 118.5    | 122.0    |
| DyN       | 109.9                                      | 94.5                          | 88.6     | 85.6     | 84.3     | 82.6     | 78.8     | 7.67     | 85.0     |
| HoN       | 53.3                                       | 46.1                          | 41.0     | 38.5     | 38.1     | 38.7     | 34.7     | 38.2     | 38.1     |
| TmN       | 26.7                                       | 23.0                          | 19.7     | 18.1     | 18.9     | 17.8     | 16.7     | 18.2     | 18.4     |
| ErN       | 13.6                                       | 11.6                          | 11.6     | 9.8      | 9.6      | 10.1     | 8.0      | 7.9      | 9.3      |
| YbN       | 8.9                                        | 7.8                           | 7.5      | 6.8      | 7.6      | 7.3      | 6.2      | 6.7      | 6.8      |
| LuN       | 7.4                                        | 5.9                           | 5.9      | 5.8      | 5.7      | 5.1      | 4.4      | 4.9      | 5.9      |
|           |                                            |                               |          |          |          |          |          |          | -        |
| YbN/Gd    | IN 0.067                                   | 0.071                         | 0.049    | 0.046    | 0.051    | 0.049    | 0.044    | 0.049    | 0.049    |
| Eu/Eu*    | 0.011                                      | 0.008                         | 0.005    | 0.005    | 0.005    | 0.006    | 0.007    | 0.006    | 0.007    |
| Values of | f - indicate trace elements are below dete | ction limit of the instrument |          |          |          |          |          |          |          |
|           |                                            |                               |          |          |          |          |          |          |          |
| 2         |                                            |                               |          |          |          |          |          |          |          |
| 96        |                                            |                               |          |          |          |          |          |          |          |
|           |                                            |                               |          |          |          |          |          |          | ]        |

| ,                            | <br>1     | Ap                                   | per      | ndi   | x I   | 3     | _     | _     | _     | _     |       |       |       |       | <br>lup  | ple   | em.   | ent   | tar   | y I  | nfo  | rm   | ıat   | ion   | fc | r(        | Ch       | api                                 | ter 2 | ? |  |
|------------------------------|-----------|--------------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|------|------|------|-------|-------|----|-----------|----------|-------------------------------------|-------|---|--|
|                              | PAGE - 18 |                                      | с        | 53.93 | 13.73 | 0.035 | 24.38 | 4.487 | 21.42 | 2.139 | 2.62  | 0.175 | 0.846 | 0.112 | 93.3     | 0.6   | 124.0 | 123.6 | 88.3  | 38.5 | 16.5 | 7.2  | 5.2   | 4.6   | _  | 0.042     | 0.006    |                                     |       |   |  |
|                              | PAGE - 17 |                                      | R        | 56.7  | 11.87 | 0.042 | 29.42 | 4.36  | 20.18 | 2.019 | 2.72  | 0.218 | 1.035 | 0.104 | <br>80.7 | 0.8   | 149.6 | 120.1 | 83.1  | 36.3 | 17.1 | 9.0  | 6.4   | 4.3   |    | 0.043     | 0.007    |                                     |       |   |  |
|                              | PAGE - 16 |                                      | R        | 57    | 13.49 | 0.032 | 28.66 | 4.185 | 18.73 | 1.957 | 2.83  | 0.239 | 1.18  | 0.111 | 91.7     | 0.6   | 145.8 | 115.3 | 77.2  | 35.2 | 17.8 | 9.9  | 7.3   | 4.6   |    | 0.050     | 0.005    |                                     |       |   |  |
|                              | PAGE - 15 |                                      | R        | 71.7  | 2.4   | 0.028 | 18.88 | 4.71  | 25.62 | 2.812 | 4.18  | 0.285 | 1.426 | 0.162 | 16.3     | 0.5   | 0.96  | 129.8 | 105.6 | 50.6 | 26.3 | 11.8 | 8.8   | 6.7   |    | 0.091     | 0.009    |                                     |       |   |  |
|                              | PAGE - 14 |                                      | с        | 53.69 | 11.65 | 0.048 | 27.94 | 4.274 | 19.39 | 1.968 | 2.655 | 0.204 | 1.105 | 0.114 | 79.2     | 0.9   | 142.1 | 117.7 | 79.9  | 35.4 | 16.7 | 8.4  | 6.8   | 4.7   |    | 0.048     | 0.008    |                                     |       |   |  |
|                              | PAGE - 13 |                                      | c        | 59.15 | 8.03  | 0.042 | 28.86 | 4.59  | 20.97 | 2.239 | 2.99  | 0.227 | 1.131 | 0.134 | 54.6     | 0.8   | 146.8 | 126.4 | 86.4  | 40.3 | 18.8 | 9.4  | 7.0   | 5.5   |    | 0.047     | 0.007    |                                     |       |   |  |
|                              | PAGE - 12 |                                      | R        | 64.9  | 8.88  | 0.041 | 30.43 | 4.9   | 23.64 | 2.478 | 3.64  | 0.262 | 1.251 | 0.151 | 60.4     | 0.7   | 154.8 | 135.0 | 97.4  | 44.6 | 22.9 | 10.8 | 7.7   | 6.2   |    | 0.050     | 0.007    |                                     |       |   |  |
| E and trace element analyses | PAGE - 11 | ed (TB-14-025)                       | R        | 74.16 | 6.71  | 0.051 | 29.67 | 5.24  | 26.01 | 2.909 | 4.08  | 0.313 | 1.46  | 0.195 | 45.6     | 0.9   | 150.9 | 144.4 | 107.2 | 52.3 | 25.7 | 12.9 | 9.0   | 8.0   |    | 0.060     | 0.009    | tion limit of the instrument        |       |   |  |
| tinued: LA-ICP-MS garnet RF  | PAGE - 10 | Metapelitic gneiss - Type 1 continut | ~        | 56.49 | .49   | 0.052 | 19.33 | 1.804 | 12.76 | 1.52  | 3.57  | 0.249 |       |       | 54.5     | 6.0   | 49.2  | 32.3  | 13.8  | 15.3 | 22.5 | 10.3 | 3.6   | 5.2   |    | 0.058     | .009     | cate trace elements are below detec |       |   |  |
| Table S5 cont                | 1         | ľ                                    | Position | Y (   | Sm 5  | Eu (  | Gd 2  | Tb 4  | Dy 2  | Ho 2  | Tm    | Er (  | Yb 1  | Lu (  | SmN      | EuN ( | GdN 1 | TbN   | DyN 5 | HoN  | TmN  | ErN  | 3 NdY | tuN ( |    | YbN/GdN ( | Eu/Eu* ( | Values of - indi                    |       |   |  |

| Table S5    | continued: LA-ICP-MS garnet              | REE and trace element analys   | es        |           |           |           |           |  |
|-------------|------------------------------------------|--------------------------------|-----------|-----------|-----------|-----------|-----------|--|
|             |                                          |                                |           |           |           |           |           |  |
|             | PAGE - 19                                | PAGE - 20                      | PAGE - 21 | PAGE - 22 | PAGE - 23 | PAGE - 24 | PAGE - 25 |  |
|             | Metapelitic gneiss - Type 1 continu      | ued (TB-14-025)                |           |           |           |           |           |  |
| Position    | с                                        | с                              | с         | R         | R         | с         | R         |  |
| Υ           | 79.2                                     | 84.1                           | 73.2      | 72.7      | 71.6      | 80        | 65.76     |  |
| Sm          | 12.16                                    | 12.51                          | 13.35     | 8.35      | 7.93      | 13.51     | 9.21      |  |
| Eu          | 0.04                                     | 0.039                          | 0.036     | 0.051     | 0.036     | 0.037     | 0.048     |  |
| Gd          | 23.41                                    | 25.27                          | 24.9      | 29.49     | 28.61     | 25.21     | 29.29     |  |
| Tb          | 4.342                                    | 4.23                           | 4.216     | 5.29      | 4.61      | 4.47      | 4.62      |  |
| Dy          | 24.1                                     | 24.64                          | 23.83     | 25.84     | 22.65     | 25.12     | 22.95     |  |
| Но          | 3.149                                    | 3.37                           | 2.853     | 2.799     | 2.544     | 3.283     | 2.517     |  |
| Tm          | 4.83                                     | 5.74                           | 4.34      | 3.81      | 3.98      | 4.94      | 3.74      |  |
| Er          | 0.417                                    | 0.514                          | 0.365     | 0.308     | 0.346     | 0.449     | 0.311     |  |
| ЧЪ          | 2.26                                     | 2.71                           | 1.78      | 1.352     | 1.72      | 2.34      | 1.59      |  |
| Lu          | 0.254                                    | 0.366                          | 0.193     | 0.147     | 0.197     | 0.316     | 0.171     |  |
|             |                                          |                                |           |           |           |           |           |  |
| SmN         | 82.7                                     | 85.0                           | 90.8      | 56.8      | 53.9      | 91.8      | 62.6      |  |
| EuN         | 0.7                                      | 0.7                            | 0.6       | 0.9       | 0.6       | 0.7       | 0.0       |  |
| GdN         | 1.9.1                                    | 128.5                          | 126.7     | 150.0     | 145.5     | 128.2     | 149.0     |  |
| TbN         | 119.6                                    | 116.5                          | 116.1     | 145.7     | 127.0     | 123.1     | 127.3     |  |
| DyN         | 99.3                                     | 101.5                          | 98.2      | 106.5     | 93.3      | 103.5     | 94.6      |  |
| NoH         | 56.6                                     | 60.6                           | 51.3      | 50.3      | 45.8      | 59.0      | 45.3      |  |
| TmN         | 30.4                                     | 36.1                           | 27.3      | 24.0      | 25.0      | 31.1      | 23.5      |  |
| ErN         | 17.2                                     | 21.2                           | 15.1      | 12.7      | 14.3      | 18.6      | 12.9      |  |
| YbN         | 13.9                                     | 16.7                           | 11.0      | 8.3       | 10.6      | 14.4      | 9.8       |  |
| LuN         | 10.5                                     | 15.1                           | 7.9       | 6.0       | 8.1       | 13.0      | 7.0       |  |
|             |                                          |                                |           |           |           |           |           |  |
| YbN/GdN     | 0.117                                    | 0.130                          | 0.086     | 0.055     | 0.073     | 0.112     | 0.066     |  |
| Eu/Eu*      | 0.007                                    | 0.007                          | 0.006     | 0.009     | 0.006     | 0.006     | 0.008     |  |
| Values of - | · indicate trace elements are below dete | ection limit of the instrument |           |           |           |           |           |  |
|             |                                          |                                |           |           |           |           |           |  |
|             |                                          |                                |           |           |           |           |           |  |
|             |                                          |                                |           |           |           |           |           |  |
|             |                                          |                                |           |           |           |           |           |  |

| ,                            | <br>    | Ap                                   | pe         | ndi  | ix l  | 8     | _     | _     | _     | _     |       |       | _    |       | 5 | bup    | ple    | гт     | ent   | tar   | y I   | nfc   | orn    | 1at    | ior   | ı fe | or (       | Ch       | ap                                  | ter 2 | 2 |  |
|------------------------------|---------|--------------------------------------|------------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|---|--------|--------|--------|-------|-------|-------|-------|--------|--------|-------|------|------------|----------|-------------------------------------|-------|---|--|
| -                            | PAG - 9 |                                      | С          | 9.77 | 12.9  | 0.044 | 27.57 | 3.938 | 19.86 | 2.816 | 5.9   | 0.669 | 4.17 | 0.516 |   | 87.7   | 0.8    | 140.2  | 108.5 | 81.8  | 50.6  | 37.1  | 27.6   | 25.7   | 21.2  |      | 0.183      | 0.007    |                                     |       |   |  |
|                              | PAG - 8 |                                      | С          | 6.62 | 12.84 | 0.043 | 27.29 | 3.841 | 20.12 | 2.977 | 6.27  | 0.704 | 4.68 | 0.562 |   | 87.3   | 0.8    | 138.8  | 105.8 | 82.9  | 53.5  | 39.5  | 29.1   | 28.8   | 23.1  |      | 0.207      | 0.007    |                                     |       |   |  |
|                              | PAG - 7 |                                      | С          | 73.6 | 11.33 | 0.039 | 24.98 | 3.526 | 18.55 | 2.784 | 5.99  | 0.719 | 4.45 | 0.576 |   | 77.0   | 0.7    | 127.1  | 97.1  | 76.4  | 50.1  | 37.7  | 29.7   | 27.4   | 23.7  |      | 0.216      | 0.007    |                                     |       |   |  |
|                              | PAG - 6 |                                      | R          | 85.8 | 14.16 | 0.033 | 28.25 | 4.01  | 21.09 | 3.171 | 6.95  | 0.827 | 5.42 | 0.704 |   | 96.3   | 0.6    | 143.7  | 110.5 | 86.9  | 57.0  | 43.7  | 34.2   | 33.4   | 29.0  |      | 0.232      | 0.005    |                                     |       |   |  |
|                              | PAG - 5 |                                      | R          | 85.3 | 14.14 | 0.029 | 26.95 | 3.87  | 20.82 | 3.122 | 6.87  | 0.874 | 5.4  | 0.64  |   | 96.1   | 0.5    | 137.1  | 106.6 | 85.8  | 56.2  | 43.2  | 36.1   | 33.2   | 26.3  |      | 0.242      | 0.004    |                                     |       |   |  |
| -                            | PAG - 4 |                                      | c          | 88.8 | 15.31 | 0.038 | 25.96 | 3.85  | 20.93 | 3.257 | 7.53  | 0.896 | 5.93 | 0.683 |   | 104.1  | 0.7    | 132.0  | 106.1 | 86.2  | 58.6  | 47.4  | 37.0   | 36.5   | 28.1  |      | 0.276      | 0.006    |                                     |       |   |  |
| -                            | PAG - 3 |                                      | c          | 91.9 | 14.81 | 0.034 | 27.7  | 3.88  | 20.88 | 3.295 | 7.53  | 0.91  | 5.89 | 0.727 |   | 100.7  | 0.6    | 140.9  | 106.9 | 86.0  | 59.3  | 47.4  | 37.6   | 36.2   | 29.9  |      | 0.257      | 0.005    |                                     |       |   |  |
| EE and trace element analyse | PAG - 2 | 025)                                 | R          | 95.1 | 14.61 | 0.035 | 28.1  | 3.83  | 21.27 | 3.43  | 7.8   | 0.966 | 6.46 | 0.786 |   | 99.3   | 0.6    | 142.9  | 105.5 | 87.6  | 61.7  | 49.1  | 39.9   | 39.8   | 32.3  |      | 0.278      | 0.005    | tion limit of the instrument        |       |   |  |
| inued: LA-ICP-MS garnet R    | AG - 1  | fetapelitic gneiss - Type 2 (TB-14-0 |            | 4.1  | 4.14  | 032   | 7.61  | 66    | 1.32  | 354   | .18   | 032   |      | 106   |   | 6.1    | 6      | 40.4   | 6.60  | 7.8   | 0.3   | 1.5   | 2.6    | 3.1    | 1.1   |      | 307        | .005     | ate trace elements are below detect |       |   |  |
| Table S5 cont                | P       | N.                                   | Position R | Y 9. | Sm 1. | Eu 0. | Gd 2  | Tb 3. | Dy 2  | Ho 3. | Tm 8. | Er 1. | Yb 7 | Lu 0. |   | SmN 9. | EuN 0. | GdN 1- | TbN   | DyN 8 | HoN 6 | TmN 5 | ErN 4. | YbN 4. | LuN 3 |      | YbN/GdN 0. | Eu/Eu* 0 | Values of - indic                   |       |   |  |

| Table S5 c     | continued: LA-ICP-MS garnet                          | REE and trace element analyse  | es       |          |          |          |          |          |          |                 |
|----------------|------------------------------------------------------|--------------------------------|----------|----------|----------|----------|----------|----------|----------|-----------------|
|                |                                                      |                                |          |          |          |          |          |          |          |                 |
|                | PAG - 10                                             | PAG - 11                       | PAG - 12 | PAG - 13 | PAG - 14 | PAG - 15 | PAG - 16 | PAG - 17 | PAG - 18 | -               |
|                | Metapelitic gneiss - Type 2<br>continued (TB-14-025) |                                |          |          |          |          |          |          |          | Арр             |
| Position       | c                                                    | К                              | R        | R        | c        | C        | c        | c        | c        | en              |
| Υ              | 72.2                                                 | 79.9                           | 78.45    | 114.2    | 96.8     | 91.3     | 94.2     | 9.66     | 9.66     | dix             |
| Sm             | 11.97                                                | 13.56                          | 13.14    | 14.55    | 14.88    | 14.43    | 14.22    | 14.98    | 14.19    | B               |
| Eu             | 0.039                                                | 0.039                          | 0.036    | 0.029    | 0.042    | 0.041    | 0.029    | 0.04     | 0.029    |                 |
| Gd             | 25.6                                                 | 29.1                           | 27.77    | 26.44    | 25.77    | 26.04    | 26.11    | 26.9     | 25.67    |                 |
| Tb             | 3.633                                                | 3.995                          | 3.943    | 3.831    | 3.579    | 3.62     | 3.6      | 3.627    | 3.634    |                 |
| Dy             | 18.56                                                | 20.33                          | 20.25    | 21.93    | 19.83    | 19.26    | 20.2     | 20.85    | 20.54    |                 |
| Но             | 2.7                                                  | 2.898                          | 2.908    | 3.85     | 3.037    | 2.995    | 3.2      | 3.487    | 3.568    |                 |
| Tm             | 5.49                                                 | 5.97                           | 6.05     | 9.86     | 7.08     | 6.62     | 7.59     | 8.2      | 8.78     |                 |
| Er             | 0.594                                                | 0.683                          | 0.7      | 1.407    | 0.951    | 0.807    | 766.0    | 1.075    | 1.14     |                 |
| Yb             | 3.71                                                 | 4.16                           | 4.29     | 96.6     | 6.42     | 5.77     | 6.62     | 7.24     | 7.64     |                 |
| Lu             | 0.413                                                | 0.45                           | 0.47     | 1.184    | 0.679    | 0.59     | 0.773    | 0.889    | 0.958    |                 |
|                |                                                      |                                |          |          |          |          |          |          |          | Su              |
| SmN            | 81.4                                                 | 92.2                           | 89.3     | 98.9     | 101.2    | 1.86     | 96.7     | 101.8    | 96.5     | ipp             |
| EuN            | 0.7                                                  | 0.7                            | 0.6      | 0.5      | 0.8      | 0.7      | 0.5      | 0.7      | 0.5      | ler             |
| GdN            | 130.2                                                | 148.0                          | 141.3    | 134.5    | 131.1    | 132.5    | 132.8    | 136.8    | 130.6    | nei             |
| NdT            | 100.1                                                | 110.1                          | 108.6    | 105.5    | 9.86     | £.99     | 99.2     | 6.66     | 100.1    | nta             |
| DyN            | 76.5                                                 | 83.8                           | 83.4     | 90.4     | 81.7     | 79.4     | 83.2     | 85.9     | 84.6     | ıry             |
| HoN            | 48.6                                                 | 52.1                           | 52.3     | 69.2     | 54.6     | 53.9     | 57.6     | 62.7     | 64.2     | Iŋ              |
| TmN            | 34.6                                                 | 37.6                           | 38.1     | 62.1     | 44.6     | 41.7     | 47.8     | 51.6     | 55.3     | for             |
| ErN            | 24.5                                                 | 28.2                           | 28.9     | 58.1     | 39.3     | 33.3     | 41.2     | 44.4     | 47.1     | ma              |
| YbN            | 22.8                                                 | 25.6                           | 26.4     | 61.5     | 39.5     | 35.5     | 40.7     | 44.6     | 47.0     | itic            |
| LuN            | 17.0                                                 | 18.5                           | 19.3     | 48.7     | 27.9     | 24.3     | 31.8     | 36.6     | 39.4     | on <sub>.</sub> |
|                |                                                      |                                |          |          |          |          |          |          |          | †01             |
| YbN/GdN        | 0.175                                                | 0.173                          | 0.187    | 0.457    | 0.301    | 0.268    | 0.307    | 0.326    | 0.360    | · C             |
| Eu/Eu*         | 0.007                                                | 0.006                          | 0.006    | 0.004    | 0.006    | 0.006    | 0.005    | 0.006    | 0.005    | haj             |
| Values of - ii | indicate trace elements are below dete               | ection limit of the instrument |          |          |          |          |          |          |          | pte             |
|                |                                                      |                                |          |          |          |          |          |          |          | r 2             |
|                |                                                      |                                |          |          |          |          |          |          |          |                 |
|                |                                                      |                                |          |          |          |          |          |          |          |                 |

| Table S5 c     | sontinued: LA-ICP-MS garnet l          | REE and trace element analyse | es       |  |  |  | _     |
|----------------|----------------------------------------|-------------------------------|----------|--|--|--|-------|
|                |                                        |                               |          |  |  |  | _     |
|                | PAG - 19                               | PAG - 20                      | PAG - 21 |  |  |  |       |
|                | Metapelitic gneiss - Type 2 contim     | ued (TB-14-025)               |          |  |  |  | Ap    |
| Position       | С                                      | R                             | R        |  |  |  | pe    |
| Υ              | 100.2                                  | 106.3                         | 121      |  |  |  | ndi   |
| Sm             | 14.09                                  | 15.24                         | 15.05    |  |  |  | ix İ  |
| Eu             | 0.034                                  | 0.033                         | 0.038    |  |  |  | B     |
| Gd             | 25.68                                  | 26.72                         | 29.05    |  |  |  | _     |
| Tb             | 3.624                                  | 3.78                          | 4.066    |  |  |  | _     |
| Dy             | 21.05                                  | 22.09                         | 23.97    |  |  |  | _     |
| Но             | 3.513                                  | 3.762                         | 4.22     |  |  |  |       |
| Tm             | 9.06                                   | 9.4                           | 10.84    |  |  |  | _     |
| Er             | 1.215                                  | 1.275                         | 1.452    |  |  |  | _     |
| Yb             | 7.71                                   | 8.72                          | 10.08    |  |  |  | _     |
| Lu             | 0.986                                  | 1.107                         | 1.276    |  |  |  | _     |
|                |                                        |                               |          |  |  |  | 2     |
| SmN            | 95.8                                   | 103.6                         | 102.3    |  |  |  | Sup   |
| EuN            | 0.6                                    | 0.6                           | 0.7      |  |  |  | ple   |
| GdN            | 130.6                                  | 135.9                         | 147.8    |  |  |  | ет    |
| TbN            | 99.8                                   | 104.1                         | 112.0    |  |  |  | eni   |
| DyN            | 86.7                                   | 91.0                          | 98.8     |  |  |  | tar   |
| HoN            | 63.2                                   | 67.7                          | 75.9     |  |  |  | y I   |
| TmN            | 57.0                                   | 59.2                          | 68.2     |  |  |  | nfc   |
| ErN            | 50.2                                   | 52.7                          | 60.0     |  |  |  | orn   |
| YbN            | 47.4                                   | 53.7                          | 62.0     |  |  |  | ıat   |
| LuN            | 40.6                                   | 45.6                          | 52.5     |  |  |  | ior   |
|                |                                        |                               |          |  |  |  | ı fe  |
| YbN/GdN        | 0.363                                  | 0.395                         | 0.420    |  |  |  | or (  |
| Eu/Eu*         | 0.005                                  | 0.005                         | 0.005    |  |  |  | Ch    |
| Values of - ii | indicate trace elements are below dete | ction limit of the instrument |          |  |  |  | api   |
|                |                                        |                               |          |  |  |  | ter 2 |
|                |                                        |                               |          |  |  |  |       |



**Fig. S1:** Garnet-biotite gneiss T-X pseudosection with varying ferric iron content (O) from the XRF measured value of 0.39 (X=0) to 0.01 (X=1). Note that higher X values in this diagram actually correspond to lower  $X_{Fe2O3}$  in the rock. A mid value of X=0.7 (black line) was selected for the final P-T diagram.



Fig. S2: Charnockite P-X pseudosection with varying ferric iron content (O) from the XRF measured value of 0.35 (X=0) to 0.01 (X=1). Note that higher X values in this diagram actually correspond to lower  $X_{Fe203}$  in the rock. A mid value of X=0.7 (black line) was selected for the final P-T diagram.



Fig. S3: Metapelitic gneiss P-X pseudosection with varying ferric iron content (O) from the XRF measured value of 1.34 (X=0) to 0.01 (X=1). Note that higher X values in this diagram actually correspond to lower  $X_{Fe2O3}$  in the rock. A mid value of X=0.7 (black line) was selected for the final P-T diagram.
# Appendix C

This appendix contains the supplementary figures S1–S5 from 'Reappraising the P-T evolution of the Rogaland–Vest Agder Sector, southwestern Norway'.

Contents:

| Figure S1: $T-X_{H20}$ pseudosection for ROG13/11                         | 308 |
|---------------------------------------------------------------------------|-----|
| Figure S2: $T - X_{H20}$ pseudosection for ROG13/10                       | 309 |
| Figure S3: $T - X_{H20}$ pseudosection for ROG14/5                        | 310 |
| Figure S4: $P-X_{Fe2O3}$ pseudosection for ROG13/11                       | 311 |
| Figure S5: Contoured pseudosections for key minerals using TCInvestigator | 312 |



**Fig. S1:**  $T-X_{H2O}$  diagram for the distal sample (ROG13/11). The peak regional assemblage is in bold, the solidus is marked with a dashed line and the modelled *X* content is marked with a red line. *X* varies from the measured LOI (*X* = 0, 4.44 mol.%) to a lower value (*X* = 1, 0.10 mol.%). Note that higher *X* values in this diagram actually correspond to lower  $X_{H2O}$  in the rock. A value of *X* = 1 was chosen for the modelled water content as the sample has experienced retrogression (e.g. pinitisation of cordierite) and to bring the solidus as close as possible to the peak assemblage to represent peak conditions.



**Fig. S2:**  $T-X_{H2O}$  diagram for the intermediate sample (ROG13/10). The peak regional assemblage is in bold, the solidus is marked with a dashed line and the modelled X content is marked with a red line. X varies from the measured LOI (X = 0, 5.70 mol.%) to a lower value (X = 1, 0.52 mol.%). Note that higher X values in this diagram actually correspond to lower  $X_{H2O}$  in the rock. A value of X = 0.9 was chosen for the modelled water content as the sample has experienced retrogression (e.g. abundant late biotite), but to also account for prograde/peak regional cordierite.



**Fig. S3:**  $T-X_{H20}$  diagram for the proximal sample (ROG14/5). The peak regional assemblage is in bold, the solidus is marked with a dashed line and the modelled *X* content is marked with a red line. X varies from the measured LOI (*X* = 0, 6.66 mol.%) to a lower value (*X* = 1, 0.10 mol.%). Note that higher *X* values in this diagram actually correspond to lower  $X_{H20}$  in the rock. A value of *X* = 1 was chosen for the modelled water content as the sample has experienced retrogression (e.g. pinitisation of cordierite) and to bring the solidus as close as possible to the peak assemblage to represent peak conditions.



**Fig. S4:**  $P-X_{Fe2O3}$  diagram for the distal sample (ROG13/11). The peak regional assemblage is in bold, the solidus is marked with a dashed line and the modelled *X* content is marked with a red line. *X* varies from the measured ferric iron (*X* = 0, 4.44 mol.%) to a lower value (*X* = 1, 0.10 mol.%). Note that higher *X* values in this diagram actually correspond to lower  $X_{Fe2O3}$  in the rock. A value of *X* = 0.5 was chosen for the modelled ferric iron content as the sample has experienced oxidation since peak metamorphism and because this was the lowest value required to remove magnetite from the modelled evolution of the sample.



**Fig. S5:** Contoured pseudosections for key minerals using TCInvestigator (Pearce et al., 2015). Distal sample (ROG13/11): a – Modal proportion of garnet. b – Modal proportion of sillimanite. c – Modal proportion of cordierite. d – Modal proportion of spinel. Intermediate (ROG13/10): e – Modal proportion of sapphirine. f – Modal proportion of orthopyroxene. g – Modal proportion of cordierite. h – Modal proportion of spinel. Proximal (ROG14/5): i – Modal proportion of sillimanite. k – Modal proportion of cordierite. 1 – Modal proportion of spinel.

Supplementary Information for Chapter 4

# Appendix D

This appendix contains Appendix 1 and 2 from the paper 'Constraining the timing of prograde metamorphism in long-lived hot orogens' as well as the two full TIMA maps used within this paper.

| Contents:                                                                |     |
|--------------------------------------------------------------------------|-----|
| Appendix 1: Detailed methodology                                         | 316 |
| Appendix 2: Summary table of <sup>40</sup> Ar/ <sup>39</sup> Ar analyses | 327 |
|                                                                          |     |

TIMA maps used in Chapter 4

Appendix 1

### Methodology:

Phase equilibria modelling:

P-T conditions for ROG13/2 were constrained by a combination of P-T and P-X pseudosections modelled within the Na<sub>2</sub>O–CaO–K<sub>2</sub>O–FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–H<sub>2</sub>O–TiO<sub>2</sub>–O system (NCKFMASHTO) using THERMOCALC 3.33i. As no compatible osumilite model for DS6 is available, modelling was conducted using DS5 (tc–ds55s, sapphirine update of Holland and Powell (1998), generated on 22/11/2003, as used by Kelsey et al. (2004) and Korhonen et al. (2013)). The modelled bulk rock composition was determined using X-ray fluorescence (XRF) analysis with this composition taken from an essentially garnet-free portion of osumilite migmatite. Modelled H<sub>2</sub>O content was constrained using a P-X at 900°C (average peak temperature for regional metamorphism from Blereau et al., 2017) with H<sub>2</sub>O concentrations ranging from low (0.1 mol%) to a maximum concentration (2.59 mol%) with all loss of ignition from XRF assumed to be H<sub>2</sub>O. A H<sub>2</sub>O content of ~50% (1.295, normalised to 1.28) was chosen as the minimum value to achieve the desired assemblage.

Calculations considered the phases: garnet, orthopyroxene, silicate melt, quartz, K-feldspar, plagioclase, sillimanite/kyanite, osumilite, ilmenite, rutile, magnetite-spinel, cordierite and biotite. Activity composition models used were as follows:

- Silicate melt, biotite, garnet: White et al., (2007).
- Cordierite: Holland and Powell (1998).
- Orthopyroxene and spinel-magnetite: White et al., (2002).
- Plagioclase and K-feldspar: Holland and Powell (2003).
- Osumilite: modified from Holland et al., (1996) by T. J. B Holland, pers. comm. via R. W.

White, April 2012; used in Korhonen et al., (2013). a-X models available on request.

- Ilmenite: White et al., (2000).
- Pure end member phases: Sillimanite, rutile, quartz.

Modelled bulk composition normalised by THERMOCALC is as follows:

| $H_2O$ | $SiO_2$ | $Al_2O_3$ | CaO  | MgO  | FeO  | K <sub>2</sub> O | Na <sub>2</sub> O | TiO <sub>2</sub> | 0    |
|--------|---------|-----------|------|------|------|------------------|-------------------|------------------|------|
| 1.28   | 67.91   | 8.41      | 1.05 | 7.48 | 6.63 | 2.15             | 2.83              | 1.04             | 1.22 |
|        |         |           |      |      |      |                  |                   |                  |      |

Mineral abbreviations follow Kretz (1983) and Whitney and Evans (2010).

Phase maps were created using the Tescan Integrated Mineral Analysis (TIMA) instrument located in the John de Laeter Centre at Curtin University and were used to locate the textural positions of osumilite (e.g. Fig. 2, S1) and interpret the mineralogical evolution.



Figure S1: Part of a TIMA map of a rare garnet-bearing domain within the melanosome with osumilite rims around garnet. Minerals after Kretz (1983).

#### 40 Ar/39 Ar analysis:

Fifty-five unaltered, inclusion free, optically transparent osumilite fragments were selected from the Rogaland sample (ROG13/2) for <sup>40</sup>Ar/<sup>39</sup>Ar dating, with size ranging from 355–450 µm. The sample was disaggregated using the SELFRAG Lab electrical pulse disaggregation (EPD) system housed in the John de Laeter Centre at Curtin University. The minerals were separated by careful hand-picking under a binocular microscope. The selected osumilite grains were thoroughly rinsed with distilled water in an ultrasonic cleaner. The osumilite came from predominantly, garnet-absent migmatite but a small amount of garnet was recovered from the disaggregated sample, indicating the disaggregation of a rare garnet-bearing domain within the bulk sample.

The disc into which the osumilite fragments were placed for irradiation contains smaller pits into which muscovite standard WA1ms was placed as a neutron fluence monitor, for which an age of 2613.0 Ma ( $\pm$  0.09%) was used (Jourdan et al., 2014).

Mean J-values computed from the WA1ms grains in each disc ranged from  $0.01033000 \pm 0.00000600 (0.058\%)$  to  $0.01033250 \pm 0.00001860 (0.18\%)$ . Mass discrimination was monitored using an automated air pipette, This indicated mean fractionation ranging from  $1.00419 \pm 0.08$  to  $1.00432 \pm 0.05$  per dalton (atomic mass unit). The correction factors for interfering isotopes were  $({}^{39}\text{Ar}/{}^{37}\text{Ar})\text{Ca} = 7.60\text{x}10\text{-}4 (\pm 1.2\%), ({}^{36}\text{Ar}/{}^{37}\text{Ar})\text{Ca} = 2.70\text{x}10\text{-}4 (\pm 1\%) \text{ and } ({}^{40}\text{Ar}/{}^{39}\text{Ar})\text{K} = 7.3\text{x}10\text{-}4 (\pm 12.4\%).$ 

Following irradiation, <sup>40</sup>Ar/<sup>39</sup>Ar analyses were performed at the Western Australian Argon Isotope Facility (WAAIF) at Curtin University following three different approaches.

Six single-fragment aliquots were step-heated for age determination using a 110 W Spectron Laser Systems continuous Nd-YAG (IR; 1064 nm) laser, rastered for approximately 1 min to ensure a homogenously distributed temperature. Three five-fragment aliquots were wrapped in copper foil and step-heated in a double vacuum high frequency Pond Engineering furnace (for diffusion modelling). Extraction temperatures were measured using a Pond Engineering thermocouple. Each extraction step last 10 minutes including 2 minutes for ramping up the temperature and 8 minutes in a steady state at the desired temperature. Each step was followed by a drop of temperature of 150°C during mass spectrometer analysis. The gas was purified in a stainless steel extraction line using two AP10 and one GP50 SAES getter. For these aliquots, Ar isotopes were measured in static mode using a MAP 215-50 mass spectrometer (resolution of ~500; sensitivity of  $4x10^{-14}$  mol/V) with a Balzers SEV 217 electron

#### Supplementary Information for Chapter 4

multiplier using 9 to 10 cycles of peak-hopping. Blanks were monitored every 3 to 4 steps. Typical <sup>40</sup>Ar blanks ranged from 1 x 10<sup>-16</sup> to 2 x 10<sup>-16</sup> mol. The data acquisition was performed using the Argus program written by M.O. McWilliams, in a LabView environment.

Two additional single-fragment aliquots were analysed on a low volume (600 cc) Thermofisher© ARGUS VI mass spectrometer, also at the Western Australian Argon Isotope Facility at Curtin University. Step-heating was undertaken using a continuous 100 W PhotoMachine©  $CO_2$ (IR, 10.4 µm) laser fired for a duration of 60 seconds. The gas was purified in an extra low-volume stainless steel extraction line of 240cc using one SAES AP10 and one GP50 getter. Ar isotopes were measured in static mode using a mass resolution of ~200. Measurements were carried out in multicollection mode using four Faraday cups to measure masses 40 to 37 and a zero-background compact discrete-dynode ion counter to measure mass 36. The relative abundance of each mass was measured simultaneously using 10 cycles of peak-hopping and 33 seconds of integration time for each mass. Detectors were calibrated to each other electronically and using Air shot beam signals.

The raw data were processed using the ArArCALC software (Koppers, 2002). Ages were calculated using the decay constants of Renne et al. (2011).

Ar isotopic data corrected for blanks, mass discrimination and radioactive decay are given in Appendix 2. Individual errors in Appendix 2 are given at the  $1\sigma$  level. Our criteria for the determination of plateaux are that plateaux must include at least 70% of the <sup>39</sup>Ar released, that plateaux must be composed of a minimum of 3 consecutive steps agreeing at 95% confidence level and satisfying a probability of fit (P) of at least 0.05. Plateau ages (Fig. 3) are given at the  $2\sigma$  level and were calculated using the mean of all the plateau steps, each weighted by the inverse of their individual variances. The uncertainties on the  ${}^{40}Ar^{*/39}Ar$  ratios of the monitor are included in the calculation of the integrated and plateau age uncertainties, but the uncertainties on the age of the monitor and on the decay constant are not (internal errors only). Fully propagated uncertainties including uncertainty on the R-value of the monitor WA1ms against FCs (Jourdan et al., 2014) and uncertainty of the decay constants using a Monte Carlo error propagation approach (Renne et al., 2010) are given with the age results in the main text. The two ARGUS analyses failed to yield acceptable plateau ages (Fig. S2), although the age spectra converge toward apparent ages of ~919 Ma and ~1066 Ma, in agreement with the plateau ages obtained with the MAP 215-50 instrument. Single fragment analysis from a mineral separate was used as the true grain size was difficult to discern until the TIMA mapping was implemented (due to the difficult nature of identifying osumilite in thin section) and there was no initial expectation that osumilite would have yielded more than one age. Future studies on large grains of osumilite should implement micro drilling or other techniques to spatially quantify the <sup>40</sup>Ar/<sup>39</sup>Ar dates.

### Diffusion modelling:

Argon temperature-controlled diffusion experiments were performed on three aliquots of five

osumilite grains fragments taken from the same sample as those used for <sup>40</sup>Ar/<sup>39</sup>Ar dating (Fig. S3). For the diffusion calculation, <sup>39</sup>Ar was selected as diffusant. Osumilite does not contain calcium so no correction for calcium interference using <sup>37</sup>Ar was required.

The fraction of <sup>39</sup>Ar and the duration of each step were used to calculate *D* values using the classic equation of Dodson (1973) for a spherical volume (Equation 1). For each sample,  $-\log D$  vs. 1000/*T* values are displayed on an Arrhenius plot (Fig. S4). The two diffusion parameters, activation energy  $E_a$  and frequency factor  $D_q$ , were calculated from the arrays defined on the Arrhenius plots, up to the temperatures at which the crystals broke down and started to melt. We used a crystal radius of 175 µm and a spherical geometry for the calculation. A spherical volume is appropriate for all grain shapes, other than platy minerals, with little effect on the diffusion results. Errors on the y-axis intercept  $D_q$  and slope  $E_a$  were calculated using a robust regression (Isoplot v3.7; (Ludwig, 2003)) since the scatter on the regression line is much larger than the uncertainties on the individual measurements.





**Figure S3:** 355–450 µm osumilite fragments from migmatite ROG13/2. Fragments to the left and right contain numerous fractures and inclusions respectively and so weren't picked into the final sample. Fragments in the centre are representative of those sent for irradiation.

The Arrhenius plots (Fig. S4) show that the <sup>39</sup>Ar gas release from the osumilite grains occurred in three distinct stages. The low-*T* stage involved rapid release of only a few percent of the total gas, forming a shallow slope on the plot and indicating fast diffusivity at low temperature (i.e. corresponding to closure temperatures of ca. 220°C (1% <sup>39</sup>Ar), 77°C (1.6% <sup>39</sup>Ar) and 69°C (4% <sup>39</sup>Ar). We interpret these data as indicating very fast release of argon via cracks and defects and coming from any potassium located in low retentive cation sites. The second stage, at higher-*T* involved slower release of most of the gas, forming a much steeper slope (Fig. S3). The third stage, whilst also steep and at even higher-*T* would correspond to an unreasonably high closure temperature (~900°C) and is interpreted as a change in the nature of osumilite when melting. The second stage was used for the determination of closure temperature. Age spectra from the diffusion experiments failed to form plateaux, which is not surprising for multigrain aliquots. Whilst these experiments potentially show evidence for domain-based diffusion, each grain fragment yielded a statistically acceptable plateau. It is unlikely therefore, that a single fragment contains multiple domains as they would not likely yield a consistent plateau.

The second part of the arrays described above yielded a range of  $E_a$  (activation energy) values and  $D_{\theta}$  (pre-exponential diffusion factor) average values, calculated for fragments with an average radius of 175 µm (summarised in Table 1, Fig S4). Based on these  $D_{\theta}$  and  $E_a$  values, the closure temperature of each aliquot was calculated using a Monte Carlo simulation run on Quantum XL<sup>TM</sup> software. This approach allows for the complete propagation of uncertainties on each value and minimizes error correlations. The simulation consisted of 10,000 random trials using a triangular distribution for the  $E_a$  and  $D_{\theta}$  values to account for the uncertainties derived for those values (Fig. S4) and a uniform distribution of radii between 175 and 250 µm to account for the true variation in size of the osumilite crystals analysed. Closure temperatures in the main text and Fig. S4 were calculated for a cooling rate of 10 °C/Ma with uncertainties at the  $2\sigma$  level. In each case, more than 90% of the uncertainty of the closure temperature values is controlled by the uncertainty on the  $E_a$  value (Fig. S5). The values calculated using Monte Carlo simulations take into account the range of possible values and distribution of each parameter rather than simply averaging each parameter, providing good estimates of the true closure temperature (Scibiorski et al., 2015).

Two alternative modelled diffusion profiles were calculated for the Rogaland osumilite using the ArArDiff algorithm (Jourdan and Eroglu, 2017). Diffusion parameters from experiment 1 were



**Figure S4:** Arrhenius plots for three furnace diffusion experiments on multigrain osumilite aliquots. The red dots are those steps from which the regression line was drawn, from which the listed values of  $E_{ab} D_{ab} Tc$  were calculated.

| Appendix I             | D                     | Supplementary Information for Chapter 4 |           |          |        |         |  |  |
|------------------------|-----------------------|-----------------------------------------|-----------|----------|--------|---------|--|--|
| <b>Diffusion Parar</b> | neters                |                                         |           |          |        |         |  |  |
|                        | $D_0 (cm^2/s)$        |                                         | Ea (kJ/mo | ol)      | Radiu  | is (μm) |  |  |
| Osumilite              | 7.47 x10 <sup>3</sup> |                                         | 461       |          | 50     | 000     |  |  |
| Crystallisation a      | ge = 1070 Ma          |                                         |           |          |        |         |  |  |
| <b>Thermal Histor</b>  | y 1 (Hot)             |                                         |           |          |        |         |  |  |
|                        | Start                 | End                                     | Duration  | Starting | Ending | Cooling |  |  |
|                        | (Ma)                  | (Ma)                                    | (Ma)      | temp.    | temp.  | rate    |  |  |
|                        |                       |                                         |           | (°C)     | (°C)   | (°C)/Ma |  |  |
| Period 1               | 1070                  | 1000                                    | 70        | 800      | 950    | -2      |  |  |
| Period 2               | 1000                  | 930                                     | 70        | 950      | 900    | 1       |  |  |
| Period 3               | 930                   | 870                                     | 60        | 950      | 700    | 4       |  |  |
| Period 4               | 870                   | 0                                       | 870       | 700      | 0      | 1       |  |  |
| Thermal Histor         | y 2 (Cold)            |                                         |           |          |        |         |  |  |
| Period 1               | 1070                  | 1000                                    | 70        | 800      | 850    | -1      |  |  |
| Period 2               | 1000                  | 930                                     | 70        | 850      | 800    | 1       |  |  |
| Period 3               | 930                   | 870                                     | 60        | 860      | 700    | 3       |  |  |
| Period 4               | 870                   | 0                                       | 870       | 700      | 0      | 1       |  |  |

Table S1: Temperature, time and diffusion parameters used in the generation of the diffusion models.



Accompanying contribution plots show which parameter out of  $E_a$ ,  $D_b$  and a (radius of grain) has the most control over the distribution.

### Appendix D Supplementary Information for Chapter 4

used with the radius of the largest grain size of 5000  $\mu$ m used. Temperature-time conditions were based on the coldest and hottest possible peak temperatures indicated for the two metamorphic events estimated by Blereau et al., (2017) and the ages of monazite from Laurent et al., (2016) (summarised in Table S1). The ArArDiff algorithm is capable of modelling up to four *T*–*t* periods, which required some simplification of the Rogaland metamorphic evolution. Periods 1–2 were set to represent heating and cooling during the regional metamorphism. Period 3 was set to represent the abrupt heating due to contact metamorphism. Period 4 was set to represent subsequent cooling. Due to the limitations of the ArArDiff algorithm, only typical analytical uncertainties on the <sup>40</sup>Ar/<sup>39</sup>Ar analyses could be propagated. The grain size used within the model only causes major variations in the outcome of the



**Figure S6:** Theoretical Ar/Ar age spectra, for the modelled Rogaland cold thermal history for osumilite, pyroxene and plagioclase.

References:

- Blereau, E., Johnson, T. E., Clark, C., Taylor, R. J. M., Kinny, P. D. & Hand, M., 2017. Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway. Geoscience Frontiers, 8, 1–14.
- Dodson, M. H., 1973, Closure temperature in cooling geochronological and petrological systems: Contributions to Mineralogy and Petrology, v. 40, no. 3, p. 259-274.
- Holland, T.J.B., Babu, E.V.S.S.K, & Waters, D.J., 1996. Phase relations of Osumilite and dehydration melting in pelitic rocks: a simple thermodynamic model for the KFMASH system. Contributions to Mineralogy and Petrology, 124, 383-394.
- Holland, T.J.B., & Powell, R., 1998. An internally consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology, 16, 309-343.
- Holland, T.J.B. & Powell, R., 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145, 492-501.
- Jourdan, F. Eroglu, E., 2017. 40Ar/39Ar and (U-Th)/He model age signatures of elusive mercurian and venusian meteorites. Meteoritics and Planetary Science, In Press.
- Jourdan, F., Frew, A., Joly, A., Mayers, C., Evans, N. J., 2014. WA1ms: A ~2.61 Ga muscovite standard for 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 141, 113–126.
- Kelsey, D. E., White, R. W., Holland, T. H., and Powell, R., 2004, Calculated phase equilibria in K<sub>2</sub>O–
   FeO–MgO–Al<sub>2</sub>O<sub>3</sub>–Si<sub>2</sub>O–H<sub>2</sub>O for sapphrine-quartz-bearing mineral assemblages: Journal of Metamorphic Geology, 22, 559-578.
- Kelsey, D. E., and Hand, M., 2015, On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings: Geoscience Frontiers, 6, 311–356.
- Koppers, A.A.P., 2002. ArArCALC-software for <sup>40</sup>Ar/<sup>39</sup>Ar age calculations. Computers & Geosciences, 28, 605–619.

- Korhonen, F. J., Brown, M., Clark, C., and Bhattacharya, S., 2013, Osumilite-melt interactions in the ultrahigh temperatures granulites: phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats Provincee, India: Journal of Metamorphic Geology, 31, 881-907.
- Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68, 277-279.
- Laurent, A. T., Seydoux-Guillaume, A.-M., Duchene, S., Bingen, B., Bosse, V., and Datas, L., 2016, Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts: Contributions to Mineralogy and Petrology, v. 171, no. 11, p. 94.
- Ludwig, K. R., 2003. Isoplot 3.00: a geochronological toolkit for Microsoft Excel: Berkeley Geochronological Centre Special Publication, v. 4.
- McDougall, I. and Harrison, M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method: Oxford University Press on Demand.
- Olierook, H.K.H., Jourdan, F., Merle, R.E., Timms, N.E., Kusznir, N., Muhling, J.R., 2016. Bunbury Basalt: Gondwana breakup products or earliest vestiges of the Kerguelen mantle plume? Earth and Planetary Science Letters, v. 440, 1–14.
- Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R., Min, K., 2011. Response to the comment by W.H. Schwarz et al. on "Joint determination of K-40 decay constants and Ar-40\*/K-40 for the Fish Canyon sanidine standard, and improved accuracy for Ar-40/Ar-39 geochronology" by PR Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 5097-5100.
- Scibiorski, E., Tohver, E., and Jourdan, F., 2015, Rapid cooling and exhumation in the western part of the Mesoproterozoic Albany-Fraser Orogen, Western Australia: Precambrian Research, v. 265, p. 232-248.
- White, R.W., Powell, R., Holland, T.J.B. & Worley, B.A., 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18, 497-511.

- White R.W., Powell R., Clarke G.L., 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 20, 41-55.
- White, R.W., Powell, R. & Holland, T.J.B., 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25, 511-527.
- Whitney, D. L., & Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.

| Appendix D                               |                                                                                                                                                                       |                                                                                                       | Su                                                                                                               | pplemen                                                                           | tary Ir                                 | ıform     | atic                                     | on f                                     | or                 | Ch                 | apt                                      | er 4                | 4                      |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|-----------|------------------------------------------|------------------------------------------|--------------------|--------------------|------------------------------------------|---------------------|------------------------|--|
| Appendix 2                               | Extraction Method = Unde<br>Heating = 60 sec<br>Isolation = 5.00 min<br>Instrument = MAP215-50<br>Lithology = Undefined<br>Lat-Lon = Undefined<br>Feature = Undefined | IGSN = Undefined<br>Preferred Age = Undefine<br>Classification = Undefined<br>Experiment Type = Undef | Mass Discrimination Law<br>Irradiation = I21140h<br>J = 0.01033250 ± 0.00000<br>WA1ms = 2613.000 ± 2.3           | Sample = ROG132-1<br>Material = osu<br>Location = Laser<br>Analyst = Fred Jourdan | Information on Ana<br>and Constants Use |           | 6M41271D<br>6M41272D                     | 6M41007D<br>6M41008D                     | 6M41006D           | 6M41003D           | 6M41001D<br>6M41002D                     | 6M40998D            | Relative<br>Abundances |  |
|                                          | defined                                                                                                                                                               | ined                                                                                                  | = POW<br>1860<br>52 Ma                                                                                           | 50                                                                                | alysis<br>ad in Cak                     |           | 70 °C<br>72 °C                           | 67 °C                                    | 66 0<br>0 0 0      | ຄ<br>ຄ<br>ິດ       | 64 9<br>ດິດິ                             | 62 °C               |                        |  |
|                                          |                                                                                                                                                                       |                                                                                                       |                                                                                                                  |                                                                                   | culation                                | Σ         | ~ ~                                      | ~ ~                                      | . <i>د</i> •       |                    | ~ ~                                      |                     |                        |  |
|                                          |                                                                                                                                                                       |                                                                                                       |                                                                                                                  |                                                                                   | 8                                       | 0.0000321 | 0.0000033<br>0.0000083                   | 0.0000062                                | 0.0000060          | 0.0000019          | 0.0000080                                | 0.0000006           | 36Ar<br>[V]            |  |
|                                          | Production Ra<br>Production Ra<br>Production Ra<br>Scaling Ratio<br>Abundance Ra<br>Atomic Weigh                                                                      | Atmospheric F<br>Production Ra<br>Production Ra<br>Production Ra                                      | Decay Consta<br>Decay Consta<br>Decay Consta<br>Decay Consta<br>Atmospheric F                                    | Age Equations<br>Negative Inter<br>Decay Consta<br>Decay Consta                   |                                         | 68.325    | 223.580<br>70.877                        | 131.169<br>49.586                        | 129.420            | 323.963            | 73.047<br>80.897                         | 999.146<br>342 700  | %1σ                    |  |
|                                          | tio 40/39(k) = 0.1<br>tio 38/39(k) = 0.1<br>tio 36/38(cl) = 20<br>K/Ca = 0.430<br>atio 40K/K = 1.17<br>t K = 39.0983 ± (                                              | (atio 38/36(a) = 1<br>tio 39/37(ca) = 0<br>tio 38/37(ca) = 0<br>tio 36/37(ca) = 0                     | nt 36Cl = 2.303<br>nt 36Cl = 2.303<br>nt 40K(EC, $\beta^*$ ) =<br>nt 40K( $\beta^-$ ) = 4.99<br>nt 40V/36(a) = 2 | s = Min et al. (20<br>sities = Allowed<br>nt 40K = 5.531 ±<br>nt 39Ar = 2.940     |                                         | 0.0002044 | 0.0000093<br>0.0000793                   | 0.0000326<br>0.0000754                   | 0.0000310          | 0.0001242          | 0.0000681                                | 0.0000346           | 37Ar<br>[V]            |  |
|                                          | 000730 ± 0.000<br>012400 ± 0.0033<br>33.00 ± 13.15<br>700 ± 0.0100 E-1<br>2.0001 g                                                                                    | 0.1869 ± 0.0002<br>1.000760 ± 0.000<br>1.000023 ± 0.000<br>1.000270 ± 0.000                           | ± 0.062 E-04 m<br>± 0.046 E-06 1/2<br>0.576 ± 0.002 E<br>55 ± 0.013 E-10<br>298.56 ± 0.30<br>298.56 ± 0.30       | 00)<br>00.013 E-10 1/a<br>± 0.029 E-07 1/l                                        |                                         | 237.992   | 831.341<br>120.285                       | 483.752<br>208.355                       | 499.289            | 125.743            | 226.622<br>1103.005                      | 453.523<br>583 485  | %1σ                    |  |
|                                          | 04 968<br>04                                                                                                                                                          | 0002<br>0002                                                                                          | a<br>⊱10 1/a<br>1/a                                                                                              |                                                                                   |                                         | 0.0030116 | 0.0010878<br>0.0001084                   | 0.0004919<br>0.0006096                   | 0.0002692          | 0.0001442          | 0.0000464                                | 0.0000042           | 38Ar<br>[V]            |  |
|                                          |                                                                                                                                                                       |                                                                                                       |                                                                                                                  |                                                                                   |                                         | 1.228     | 1.901<br>8.964                           | 2.610<br>1.828                           | 3.760              | 7.748              | 17.307                                   | 143.130<br>8 286    | %1σ                    |  |
|                                          | Inverse Isochron<br>Clustered Points                                                                                                                                  | Normal Isochron                                                                                       | Total Fusion Age                                                                                                 | Age Plateau                                                                       | Results                                 | 0.2535205 | 0.0895890<br>0.0093563                   | 0.0405386<br>0.0519169                   | 0.0235718          | 0.0124657          | 0.0041130                                | 0.0003590           | 39Ar<br>[M]            |  |
|                                          |                                                                                                                                                                       |                                                                                                       |                                                                                                                  |                                                                                   |                                         | 0.095     | 0.178<br>0.682                           | 0.237<br>0.119                           | 0.315              | 0.609              | 0.806                                    | 2.700               | %1σ                    |  |
|                                          | 60.88 ±                                                                                                                                                               | 86.20 ±                                                                                               |                                                                                                                  |                                                                                   | 40(a)/36(a) ±                           | 19.484650 | 6.892991<br>0.717857                     | 3.113395<br>3.980474                     | 1.812691           | 0.964742           | 0.318832                                 | 0.017129            | 40Ar<br>[M]            |  |
|                                          | 50.55<br>83.03%                                                                                                                                                       | 497.36<br>577.00%                                                                                     |                                                                                                                  |                                                                                   | : 2ơ                                    | 0.021     | 0.029<br>0.073                           | 0.045<br>0.051                           | 0.110              | 0.121              | 0.077                                    | 0.973               | %1σ                    |  |
|                                          | 76.78335 ± 0.16199<br>± 0.21%                                                                                                                                         | 76.94530 ± 0.19349<br>± 0.25%                                                                         | 76.81765 ± 0.15844<br>± 0.21%                                                                                    | 76.74257 ± 0.14268<br>± 0.19%                                                     | 40(r)/39(k) ± 2σ                        |           | 76.95033 ± 0.28109<br>76.98748 ± 1.12079 | 76.75463 ± 0.38882<br>76.59134 ± 0.21306 | 76.82402 ± 0.54923 | 77.34426 ± 1.00467 | 76.93173 ± 1.50927<br>76.47763 + 0.80872 | 47.21409 ± 10.42034 | 40(r)/39(k) ± 2σ       |  |
|                                          | Analytical Error ± 2.01<br>1056 13 ± 3.34<br>Full External Error ± 9.97<br>Analytical Error ± 1.60                                                                    | 1057.82 ± 3.52<br>± 0.33%<br>Full External Error ± 10.04                                              | 1056.49 ± 3.32<br>Full External Error ± 9.96<br>Analytical Error ± 1.65                                          | 1055.71 ± 3.24<br>Full External Error ± 9.93<br>Analytical Error ± 1.49           | Age ± 2σ<br>(Ma)                        |           | 1057.87 ± 2.93<br>1058.26 ± 11.66        | 1055.83 ± 4.05<br>1054.13 ± 2.22         | 1056.55 ± 5.72     | 1061.96 ± 10.43    | 1057.68 ± 15.71                          | 718.43 ± 130.85     | Age ± 2σ<br>(Ma)       |  |
| 0.0000059313<br>1%                       | 1.0000<br>1<br>0.000000691<br>0.83<br>56%<br>2.07<br>1 0000                                                                                                           | 0.57<br>78%<br>2.07                                                                                   |                                                                                                                  | 0.81<br>59%<br>2.00<br>1.0000                                                     | MSWD                                    |           | 100.01<br>100.34                         | 99.94<br>99.90                           | 99.90              | 99.94              | 99.25<br>99.64                           | 100 00              | 40Ar(r)<br>(%)         |  |
| Number of I<br>Convergenc<br>Spreading F | Error Magni<br>Number of I<br>Convergenc<br>96.86<br>9<br>20 Confiden                                                                                                 | 96.86<br>9<br>2ơ Confiden                                                                             | Ħ                                                                                                                | 96.86<br>9<br>2σ Confiden<br>Error Magnit                                         | 39Ar(k)<br>(%,n)                        |           | 35.34<br>3.69                            | 15.99<br>20.48                           | 9.30               | 4.92               | 1.62<br>3.15                             | 0.14                | 39Ar(k)<br>(%)         |  |
| *actor                                   | rification<br>De<br>De<br>Limit<br>firation                                                                                                                           | ice Limit                                                                                             | 533 ± 2539                                                                                                       | 39 ± 66<br>roe Limit<br>fication                                                  | K/Ca ± 2σ                               |           | 4123 ± 68551<br>51 ± 122                 | 535 ± 5174<br>296 ± 1234                 | 327 ± 3269         | 43 ± 109           | 26 ± 118<br>234 + 5165                   | 4 ± 41              | K/Ca ± 2σ              |  |

| Appendix D                                                                                                                                                                                                                                    | Supplemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tary Infor                              | rmation for Chapter 4                                                                                                                                                                                           |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Classification = Undefined<br>Experiment Type = Undefined<br>Extraction Method = Unde<br>Heating = 60 sec<br>Isolation = 60 sec<br>Instrument = MAP 215-50<br>Lithology = Undefined<br>Lat-Lon = Undefined - Unc<br>Feature = Undefined - Unc | Sample = ROG132-2<br>Material = osu<br>Location = Laser<br>Analyst = Fred Jourdan<br>Project = OSUMLTE_EB:<br>Mass Discrimination Law<br>Irradiation = 12140/h<br>J = 0.01033260 ± 0.00001<br>V = 10401me<br>J = 0.01033260 ± 0.00001<br>V = 10401me<br>J = 0.01033260 ± 0.00001<br>V = 10401me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Information on Ana<br>and Constants Use | 6M41299D<br>6M41299D<br>6M41295D<br>6M41296D<br>6M41296D<br>6M41296D<br>6M41299D<br>6M41300D<br>6M41300D<br>6M41303D<br>6M41303D                                                                                | Relative<br>Abundances |
| fined tefined                                                                                                                                                                                                                                 | 2016<br>= POW<br>860<br>52 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lysis<br>d in Cal                       | 61 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °                                                                                                                                                                        |                        |
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Culatio</b>                          | ~~~~~                                                                                                                                                                                                           |                        |
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000094                               | 0.0000051<br>0.0000000<br>0.00000040<br>0.0000016<br>0.0000016<br>0.0000024<br>0.0000024<br>0.0000015<br>0.0000046<br>0.0000046                                                                                 | 36Ar<br>[V]            |
| Production R<br>Production R<br>Production R<br>Production R<br>Production R<br>Scaling Ratio<br>Scaling Ratio<br>Abundance R<br>Atomic Weigh                                                                                                 | Age Equation<br>Negative Inte<br>Decay Constr<br>Decay  236.557                                 | 113.539<br>15003.917<br>741.571<br>168.502<br>329.184<br>86.065<br>267.504<br>421.232<br>564.061<br>131.703<br>120.624<br>231.990                                                                               | %1o                    |
| atio 3927(ca) =<br>atio 3927(ca) =<br>atio 3937(ca) =<br>atio 3939(t) = 0<br>atio 39238(c) = 2<br>K(Ca = 0.45(c) = 2<br>(atio 40K/K = 1,1<br>trit K = 39,0983 ±                                                                               | is = Min et al. (20<br>institutes = Allower<br>ant 40K = 5.531<br>ant 39Ar = 2.940<br>ant 3FAr = 8.230<br>ant 40K( $\beta$ ·) = 4.9<br>ant 40K( $\beta$ ·) = 4.9<br>ant 40K( $\beta$ ·) = 4.9<br>reato 40/36(a) =<br>etato 38/36(a) =<br>ant 98/36(b) = 4.9<br>reato 38/36(c) = 4.9reato 38/36                                                                                                                                                                                                                                                                | 0.0005228                               | 0.0000660<br>0.0000114<br>0.0000911<br>0.0000857<br>0.0000346<br>0.0000346<br>0.0000631<br>0.0000549<br>0.0000549<br>0.0000549<br>0.0000592<br>0.0000592                                                        | 37Ar<br>[V]            |
| 0.00023 ± 0.00<br>0.000270 ± 0.00<br>0.000730 ± 0.000<br>0.012400 ± 0.000<br>263.00 ± 13.15<br>263.00 ± 0.0100 E<br>0.0001 g                                                                                                                  | 2000)<br>4<br>4<br>4<br>4<br>1<br>1<br>2<br>2<br>3<br>5<br>5<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59.336                                  | 136.232<br>804.385<br>89.887<br>97.549<br>97.549<br>97.549<br>247.172<br>148.976<br>219.287<br>58.676<br>25.751<br>101.894<br>286.937                                                                           | %1σ                    |
| -04<br>-04<br>-04<br>-04                                                                                                                                                                                                                      | a<br>ллл<br>№<br>Ц=10<br>1/a<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0033648                               | 0.0000071<br>0.000004<br>0.0000634<br>0.0001410<br>0.0001410<br>0.0001585<br>0.0001785<br>0.00046781<br>0.00046781<br>0.0004685                                                                                 | 38Ar<br>[V]            |
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.193                                   | 62.114<br>1240.122<br>8.918<br>5.701<br>7.175<br>8.630<br>2.547<br>3.134<br>3.813<br>1.426<br>6.885<br>50.468                                                                                                   | %1σ                    |
| nverse Isochron                                                                                                                                                                                                                               | ige Plateau<br>otal Fusion Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2818955<br>Results                    | 0.0005208<br>0.000581<br>0.0054961<br>0.01186064<br>0.0118608<br>0.0116518<br>0.0165506<br>0.0365288<br>0.038632<br>0.0386328<br>0.0386328<br>0.0386328<br>0.0386328<br>0.0386328<br>0.0355187<br>0.0132544     | 39Ar<br>[V]            |
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.115                                   | 4.139<br>2.429<br>0.648<br>0.464<br>0.313<br>0.301<br>0.301<br>0.301<br>0.301<br>0.301<br>0.309<br>0.309<br>2.096                                                                                               | %1σ                    |
| 4036.38                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.685183<br>40(a)/36(a)                | 0 015399<br>0 035402<br>0 549240<br>0 6543240<br>0 6543240<br>0 664250<br>0 727561<br>2 278506<br>2 505530<br>8 628913<br>0 02832114                                                                            | 40Ar<br>MJ             |
| ± 200, 93%<br>± 15456.08<br>± 382, 92%                                                                                                                                                                                                        | ± 823.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.024<br>± 2σ                           | 0.729<br>0.545<br>0.071<br>0.092<br>0.036<br>0.042<br>0.042<br>0.044<br>0.044<br>0.044<br>0.044                                                                                                                 | %1σ                    |
| 62.68424 ± 0.36%<br>62.89228 ± 0.54974<br>62.89228 ± 0.87%                                                                                                                                                                                    | 62.64579 ±0.17221<br>±0.27%<br>62.72623 ±0.15439<br>62.72623 ±0.25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40(r)/39(k) ± 2σ                        | 52.73886 ±11.58838<br>62.08835 ±6.87088<br>63.65881 ±0.76579<br>62.87183 ±0.40827<br>62.26447 ±0.38857<br>62.50889 ±0.45345<br>62.73624 ±0.38456<br>62.73222 ±0.25496<br>62.73222 ±0.25496<br>59.72407 ±7.08328 | 40(r)/39(k) ± 2σ       |
| Full External Error ± 2.56<br>Analytical Error ± 2.56<br>Full External Error ± 0.74%<br>Full External Error ± 10.66<br>Analytical Error ± 6.23<br>(1.106)                                                                                     | 902.50 ± 3.22<br>Full External Error ± 8.85<br>Analytical Error ± 1.95<br>903.42 ± 3.10<br>Full External Error ± 8.82<br>Analytical Error ± 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Age ± 2ơ<br>(Ma)                        | 786.50 ± 140.14<br>886.17 ± 78.20<br>925.02 ± 11.77<br>914.15 ± 8.83<br>900.96 ± 5.15<br>888.40 ± 4.42<br>904.21 ± 3.86<br>903.48 ± 2.89<br>906.07 ± 5.31<br>869.06 ± 81.95                                     | Age ± 2σ<br>(Ma)       |
| 99%<br>2.15<br>1.000001221<br>0.37<br>90%<br>2.15<br>1.000<br>11<br>1.000<br>11<br>1.0002188486<br>8%                                                                                                                                         | 1.49<br>17%<br>1.2198<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSWD                                    | 109.86<br>100.03<br>99.93<br>99.78<br>99.78<br>99.78<br>99.93<br>99.98<br>99.98<br>99.98<br>99.98<br>99.98<br>100.17<br>102.45                                                                                  | 40Ar(r)<br>(%)         |
| 2a Confidenci<br>Error Magnific<br>Number of Ite<br>Convergence<br>94.69<br>8<br>2a Confidenci<br>Error Magnific<br>Convergence<br>Spreading Fac                                                                                              | 94.69<br>8<br>2or Confidenci<br>Error Magnific<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39Ar(k)<br>(%,n)                        | 0.11<br>0.19<br>1.95<br>3.05<br>3.92<br>4.13<br>5.87<br>12.96<br>14.15<br>48.78<br>4.70<br>0.17                                                                                                                 | 39Ar(k)<br>(%)         |
| e Limit<br>astion<br>ation<br>ation<br>stor                                                                                                                                                                                                   | 50 ± 48<br>∌ Limit<br>antion<br>232 ± 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K/Ca ± 2ơ                               | $2 \pm 6$<br>$20 \pm 326$<br>$26 \pm 47$<br>$43 \pm 64$<br>$51 \pm 91$<br>$145 \pm 776$<br>$113 \pm 336$<br>$286 \pm 1254$<br>$113 \pm 132$<br>$191 \pm 99$<br>$63 \pm 128$<br>$8 \pm 47$                       | K/Ca ± 2σ              |

| (                        | Chapter 4                                                                                                    | ation for C                                                                                                                      | Inforr    | entary .                                  | Suppleme                                                                                                       | L                                                                                                                                                            |                                                                                                                                          | lix D                                                                                                | Appendix                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|
| Relative<br>Abundances   | 6M41307D<br>6M41309D<br>6M41310D<br>6M4131DD<br>6M41312D<br>6M41312D                                         | 6M41314D<br>6M41315D<br>6M41316D<br>6M41316D<br>6M41317D<br>6M41319D<br>6M41320D                                                 |           | Information on Anal<br>and Constants Used | Sample = ROG 132-3<br>Material = osu<br>Location = Laser<br>Analyst = Fred Jourdan<br>Project = OSUMILTE_EB20  | Mass Discrimination Law =<br>Mass Discrimination Law =<br>Irradiation = I21140h<br>J = 0.01033250 ± 0.000018<br>WA1ms = 2613.000 ± 2.357<br>USAN = Indefined | Preferred Age = Undefined<br>Classification = Undefined<br>Experiment Type = Undefin<br>Extraction Method = Undefin<br>Heating = 60 norm | Instrument = MAP215-50<br>Lithology = Undefined<br>Lat-Lon = Undefined - Unde<br>Feature = Undefined |                           |
|                          | 62 °C<br>64 °C<br>65 °C                                                                                      | 65 °C<br>66 °C<br>67 °C<br>68 °C<br>70 °C<br>72 °C                                                                               |           | ysis<br>d in Calc                         | 016                                                                                                            | POW<br>360<br>2 Ma                                                                                                                                           | ined                                                                                                                                     | efined                                                                                               |                           |
|                          |                                                                                                              | • • • • • • •                                                                                                                    | ₽<br>0    | ulations                                  |                                                                                                                |                                                                                                                                                              |                                                                                                                                          |                                                                                                      |                           |
| 36Ar<br>[ <sup>7</sup> ] | 0000026<br>0000102<br>0000126<br>0000045<br>00000071                                                         | 0000094<br>0000071<br>0000017<br>0000081<br>0000081<br>0000065                                                                   | 0000792   |                                           |                                                                                                                |                                                                                                                                                              |                                                                                                                                          |                                                                                                      |                           |
| %1σ                      | 209.343<br>51.784<br>39.691<br><b>122.861</b><br><b>62.504</b>                                               | 47.582<br>75.836<br>368.029<br>76.257<br>255.509<br>108.952                                                                      | 24.830    |                                           | Age Equatic<br>Negative In<br>Decay Cont<br>Decay Cont<br>Decay Cont                                           | Decay Con<br>Decay Con<br>Decay Con<br>Decay Con<br>Atmospheri                                                                                               | Production<br>Production<br>Production<br>Production                                                                                     | Scaling Rat<br>Abundance<br>Atomic Wei                                                               |                           |
| 37Ar<br>[ <sup>M</sup> ] | 0.0000188<br>0.0000791<br>0.0000546<br>0.0000216<br>0.0000197                                                | 0.0000441<br>0.0001249<br>0.0000461<br>0.0001624<br>0.0001477<br>0.0001339                                                       | 0.0003442 |                                           | ons = Min et al. (20<br>tensities = Allowed<br>stant 40K = 5.531 ±<br>stant 39Ar = 2.940<br>stant 37Ar = 8.230 | stant 36Cl = 2.303<br>stant 40K(EC, $\beta^*$ ) =<br>stant 40K( $\beta^-$ ) = 4.95<br>c Ratio 40/36(a) = 2<br>c Ratio 39/36(a) = 1                           | Ratio 39/37(ca) = C<br>Ratio 38/37(ca) = C<br>Ratio 36/37(ca) = C<br>Ratio 40/39(k) = 0.1<br>Ratio 38/39(k) = 0.1                        | io K/Ca = 0.430<br>Ratio 40K/K = 1.1<br>ght K = 39.0983 ± i                                          |                           |
| %1σ                      | 598.570<br>134.550<br>216.275<br>552.225<br>604.054                                                          | 271.640<br>91.783<br>266.477<br>71.825<br>76.270<br>342.359                                                                      | 116.382   |                                           | 00)<br>± 0.013 E-10 1.<br>± 0.029 E-07 1<br>± 0.082 E-04 1                                                     | ± 0.046 E-06 1<br>0.576 ± 0.002<br>55 ± 0.013 E-1<br>298.56 ± 0.30                                                                                           | $0.000760 \pm 0.0$<br>$0.00023 \pm 0.0$<br>$0.000270 \pm 0.0$<br>$000730 \pm 0.00$<br>$012400 \pm 0.00$<br>$012400 \pm 15$               | 700 ± 0.0100 E<br>0.0001 g                                                                           |                           |
| 38Ar<br>[V]              | 0.0000063<br>0.0000323<br>0.0001592<br>0.0000929<br>0.0000929                                                | 0.0000874<br>0.0002196<br>0.0003886<br>0.0005311<br>0.0007593<br>0.0007593                                                       | 0.0024705 |                                           | <u></u>                                                                                                        | /<br>/-a<br>E101/a<br>01/a                                                                                                                                   | 00009<br>00002<br>00002<br>0091<br>3968                                                                                                  | -04                                                                                                  |                           |
| %1σ                      | 80.622<br>18.067<br>4.917<br>8.043<br>5.833                                                                  | 11.544<br>4.792<br>2.597<br>3.140<br>2.105<br>6.927                                                                              | 1.367     | _                                         |                                                                                                                |                                                                                                                                                              |                                                                                                                                          |                                                                                                      |                           |
| 39Ar<br>[V]              | 0.0006164<br>0.0031243<br>0.0127980<br>0.0082909<br>0.0088410                                                | 0.0069313<br>0.0183661<br>0.0328173<br>0.0449718<br>0.0622880<br>0.0084505                                                       | 0.2077925 | Results                                   | Age Plateau                                                                                                    | Total Fusion Age                                                                                                                                             | Normal Isochron                                                                                                                          | Inverse Isochron<br>Clustered Points                                                                 |                           |
| %1σ                      | 1.838<br>0.639<br>0.423<br>0.505<br>0.445                                                                    | 0.474<br>0.274<br>0.126<br>0.264<br>0.330                                                                                        | 0.108     |                                           |                                                                                                                |                                                                                                                                                              |                                                                                                                                          |                                                                                                      |                           |
| 40Ar<br>[M]              | 0.031198<br>0.197302<br>0.811137<br>0.517018<br>0.546914                                                     | 0.432405<br>1.140922<br>2.049572<br>2.810668<br>3.905047<br>0.527352                                                             | 12.987893 | 40(a)/36(a)                               |                                                                                                                |                                                                                                                                                              | 59.88                                                                                                                                    | 781.84                                                                                               |                           |
| %1σ                      | 0.411<br>0.142<br>0.075<br>0.075<br>0.081                                                                    | 0.066<br>0.047<br>0.028<br>0.040<br>0.032<br>0.055                                                                               | 0.017     | ± 2σ                                      |                                                                                                                |                                                                                                                                                              | ± 136.47<br>± 227.92%                                                                                                                    | ± 741.49<br>± 94.84%                                                                                 |                           |
| 40(r)/39(k) ± 2σ         | 51.87381 ± 5.64381<br>64.11788 ± 1.30991<br>63.67266 ± 0.59513<br>62.51951 ± 0.756645<br>62.09888 ± 0.636645 | 62.78957 ± 0.71350<br>62.23651 ± 0.38755<br>62.43762 ± 0.37123<br>62.55197 ± 0.18515<br>62.70580 ± 0.34046<br>62.63432 ± 0.65328 |           | 40(r)/39(k) ± 2σ                          | 62.51782 ± 0.13297<br>± 0.21%                                                                                  | 62.61748 ± 0.14779<br>± 0.24%                                                                                                                                | 62.58301 ± 0.17566<br>± 0.28%                                                                                                            | 62.62895 ± 0.21244<br>± 0.34%                                                                        |                           |
| Age ± 2σ<br>(Ma)         | 776.01 ± 68.65<br>919.12 ± 14.72<br>914.11 ± 6.71<br>901.07 ± 8.59<br>89629 ± 7.24                           | 904.13 ± 8.08<br>807.86 ± 4.41<br>900.14 ± 4.22<br>901.44 ± 2.10<br>903.18 ± 3.86<br>902.37 ± 7.41                               |           | Age ± 2σ<br>(Ma)                          | 901.05 ± 2.97<br>± 0.33%<br>Full External Error ± 8.76<br>Analytical Error ± 1.51                              | 902.18 ± 3.06<br>Full External Error ± 8.79<br>Analytical Error ± 1.68                                                                                       | 901.79 ± 3.24<br>Full External Error ± 8.86<br>Analytical Error ± 1.99                                                                   | 902.31 ± 3.51<br>Full External Error ± 8.96<br>Analytical Error ± 2.41                               |                           |
| 40Ar(i<br>(%)            | 102.49<br>101.53<br>100.26<br>100.38                                                                         | 100.65<br>100.19<br>99.97<br>100.09<br>100.02<br>100.37                                                                          |           | MSWD                                      | 1.0;<br>38%<br>2.0(<br>1.0321                                                                                  |                                                                                                                                                              | 0.6;<br>73%<br>1.0000<br>1                                                                                                               | 1.0;<br>41%<br>2.0;<br>1.0165<br>27<br>27                                                            | 0.0001149392<br>4%        |
| -) 39Ar(k)<br>(%)        | 0.30<br>6.16<br>4.25<br>3.34                                                                                 | 3.34<br>8.84<br>21.64<br>29.98<br>4.07                                                                                           |           | 39Ar(k)<br>(%,n)                          | 7 92.04<br>5 9<br>2 2 Confid<br>Error Mag                                                                      | 12                                                                                                                                                           | 3 92.04<br>9 9<br>1 2or Confid<br>1 Error Mag                                                                                            | 3 92.04<br>9<br>9<br>Error Mag<br>Converge                                                           | 3 Converge<br>5 Spreading |
| K/Ca ± 2σ                | 14 ± 169<br>17 ± 46<br>101 ± 436<br>165 ± 1820<br>193 ± 2330<br>69 ± 367                                     | 68 ± 367<br>63 ± 116<br>306 ± 1631<br>119 ± 171<br>181 ± 277<br>107 ± 733                                                        |           | K/Ca ± 2σ                                 | 27 ± 51<br>ence Limit<br>nification                                                                            | 260 ± 604                                                                                                                                                    | ence Limit<br>nification<br>f Iterations                                                                                                 | ence Limit<br>nification<br>f Iterations                                                             | y Factor                  |

| Appendix D Supplement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ntary Information for Chapter 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and Constants Use<br>and Constants Use<br>Sample = ROG132-4<br>Material = osu<br>Location = Laser<br>Analyst = Fred Jourdan<br>Project = OSUMILTE_EB:<br>Mass Discrimination Law<br>Irradiation = 21040h<br>J = 0.01033000 ± 0.00007<br>WATms = 28.294 ± 0.0007<br>WATms = 28.294 ± 0.0007<br>WATms = 28.294 ± 0.0007<br>UNATms = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0007<br>UNATMS = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relative<br>Abundances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d in Cald<br>20016<br>POW<br>10<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62 °C<br>64 °C<br>75 °C<br>88 °C<br>75 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>82 °C<br>84 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C<br>85 °C |
| 2. Julations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| , and the second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36Ar<br>MJ<br>0.000088<br>0.0000084<br>0.0000054<br>0.0000078<br>0.0000078<br>0.0000078<br>0.0000056<br>0.0000056<br>0.0000056<br>0.0000056<br>0.00000131<br>0.00000131<br>0.00000131<br>0.00000131<br>0.00000131<br>0.00000131<br>0.00000131<br>0.00000131<br>0.00000131<br>0.00000131<br>0.00000131<br>0.00000131<br>0.0000023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Age Equations<br>Decay Consta<br>Decay Consta<br>Production Ra<br>Production Ra<br>Production Ra<br>Production Ra<br>Production Ra<br>Production Ra<br>Production Ra<br>Scaling Ratio<br>Abundance R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>%10</b><br>58.309<br>99.481<br>75.764<br>75.764<br>137.965<br>137.964<br>181.327<br>84.327<br>3641.272<br>3641.272<br>70.833<br>27.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| s = Min et al. (20<br>silies = Allowed<br>nt 40K = 5.531<br>nt 39Ar = 2.940<br>nt 37Ar = 8.230<br>nt 40K(EC,E) = 4.99<br>nt 40K(EC,E) = 4.99<br>nt 40K(EC,E) = 4.99<br>nt 40K(F) = 4.99<br>nt 40K(F) = 0.937(ca) = 0<br>to 38/37(ca) = 0<br>to 38/37(ca) = 0<br>to 38/37(ca) = 0<br>to 38/38(cb) = 0.20<br>to 38/38(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37Ar<br>M<br>0.0009009<br>0.0004420<br>0.0000555<br>0.0000555<br>0.0000555<br>0.0000528<br>0.0000508<br>0.0000563<br>0.0000563<br>0.00005718<br>0.0000563<br>0.0000718<br>0.0000563<br>0.0000718<br>0.0000563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 000)<br>100)<br>1 01<br>1 0.013 E-10 1/a<br>1 0.022 E-07 1/<br>1 0.022 E-07 1/<br>1 0.022 E-04 1/<br>1 0.026 E-04 1/<br>1 0.026 E-04 1/<br>1 0.0276 ± 0.002 E<br>2 85.5 ± 0.013 E-10<br>0 2 28.56 ± 0.302<br>2 3.002732 ± 0.000<br>0 000730 ± 0.000<br>6 3.002 ± 13.15<br>6 3.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % 10<br>35.888<br>91.974<br>73.903<br>64.909<br>58.961<br>1459.753<br>148.294<br>393.063<br>54.896<br>830.786<br>830.786<br>830.786<br>830.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0<br>5<br>1<br>5<br>10<br>1/2<br>2<br>00008<br>2<br>00002<br>2<br>00002<br>2<br>968<br>968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38Ar<br>MJ<br>0.0000108<br>0.0000255<br>0.0000813<br>0.0000813<br>0.0000845<br>0.0001453<br>0.0001453<br>0.0001453<br>0.0001453<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0001635<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000175<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.0000075<br>0.00000135<br>0.0000075<br>0.00000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000135<br>0.0000055<br>0.0000135<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.0000055<br>0.000055<br>0.0000055<br>0.0000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.000055<br>0.0000555<br>0.0000555<br>0.0000555<br>0.0000555<br>0.00005555<br>0.00005555<br>0                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %10<br>45.507<br>22.127<br>7.510<br>6.938<br>8.316<br>6.283<br>8.477<br>4.587<br>6.069<br>1.986<br>12.746<br>6.9.204<br>3.3.883<br>3.3.883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Age Plateeu<br>formal Isochron<br>Normal Isochron<br>Nerses Isochron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39Ar<br>M<br>0.0002253<br>0.0061896<br>0.0061896<br>0.00678490<br>0.00077497<br>0.0007587<br>0.0139220<br>0.017587<br>0.012531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.122531096<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1225310<br>0.1255310<br>0.1255310<br>0.1255310<br>0.1255310<br>0.1255310<br>0.12553100<br>0.1255310000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %10<br>3.060<br>1.338<br>0.409<br>0.546<br>0.546<br>0.546<br>0.546<br>0.548<br>0.548<br>0.548<br>0.543<br>0.543<br>0.543<br>0.543<br>0.541<br>0.528<br>3.814<br>1.382<br>1.382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>40(a)/36(a)</b><br>7.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40Ar<br>[V]<br>0.015835<br>0.097706<br>0.489426<br>0.489426<br>0.489426<br>0.489426<br>0.489774<br>0.497840<br>0.497840<br>0.497840<br>0.497840<br>0.497840<br>0.365177<br>1.0839477<br>1.0839477<br>1.0839477<br>1.8899422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ± 1192.25<br>##########<br>± 1646.77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %10<br>0.701<br>0.178<br>0.085<br>0.047<br>0.047<br>0.047<br>0.040<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.035<br>0.035<br>0.034<br>0.035<br>0.035<br>0.034<br>0.035<br>0.034<br>0.035<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.035<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034<br>0.034000000000   |
| 40(r)/39(k) ± 2σ<br>78.13645 ± 0.18050<br>78.41241 ± 0.17855<br>78.05678 ± 0.26757<br>78.05678 ± 0.26757<br>76.00350 ± 0.34%<br>76.00350 ± 3.70279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40(r)/39(k) ± 20<br>45.02310 ± 10.82640<br>73.59168 ± 3.16314<br>78.53157 ± 0.90181<br>78.58664 ± 1.10652<br>78.58664 ± 1.1982<br>78.58866 ± 1.1982<br>78.5889 ± 0.83460<br>77.68897 ± 0.84407<br>78.03916 ± 0.32793<br>78.01262 ± 0.26204<br>78.03916 ± 1.13838<br>54.84468 ± 23.46354<br>102.17583 ± 4.75454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (Ma)<br>1083 95 ± 2.09<br>Full External Error ± 7.79<br>Full External Error ± 1.87<br>Full External Error ± 7.20<br>Analytical Error ± 7.20<br>Analytical Error ± 7.27<br>Full External Error ± 2.97<br>Full External Error ± 2.77<br>Full External Error ± 2.77<br>Full External Error ± 2.8.76<br>1047.80 ± 3.8.76<br>Full External Error ± 39.34<br>Analytical Error ± 38.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Age ± 20<br>(Ma)<br>600.56 ± 138.02<br>1022.38 ± 33.57<br>1078.18 ± 9.28<br>1074.08 ± 11.39<br>1075.94 ± 8.57<br>1075.94 ± 8.57<br>1075.94 ± 8.57<br>1075.35 ± 8.75<br>1063.35 ± 8.75<br>1063.35 ± 8.75<br>1068.75 ± 1.177<br>811.65 ± 2.79.76<br>1302.79 ± 43.20<br>Age ± 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MSW<br>0.86<br>2.15<br>1.0000<br>0.40<br>85%<br>2.26<br>1.0000<br>0.40<br>85%<br>2.26<br>1.0000<br>0.40<br>85%<br>2.26<br>1.0000<br>1.2000<br>1.22%<br>1.2000<br>1.22%<br>2.26<br>1.2000<br>1.22%<br>2.26<br>1.2000<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.20%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.                                                                                                                                                                                    | 40Ar(f)<br>(%)<br>83.79<br>98.38<br>99.49<br>99.85<br>99.85<br>99.85<br>99.85<br>99.89<br>99.75<br>99.95<br>99.76<br>99.95<br>99.76<br>99.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 90.96<br>7<br>7<br>2a Confider<br>Error Magni<br>14<br>90.96<br>7<br>2a Confider<br>Error Magni<br>Error Magni<br>Error Magni<br>Convergence<br>Convergence<br>Error Magni<br>Error Magni<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergence<br>Convergen                                                                                                                                                                                                                                                                                                                            | 39Ar(k)<br>(%)<br>0.5.12<br>0.5.25<br>0.5.2<br>2.25<br>3.09<br>2.64<br>5.78<br>5.22.06<br>5.7.8<br>5.22.06<br>5.7.90<br>1.94<br>0.08<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| KVCa ± 20<br>12.8 ± 21.8<br>17.8 ± 21.8<br>24.5 ± 14.8<br>24.5 ± 14.8<br>24.5 ± 14.8<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.200<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.2000<br>16.20000<br>16.2000<br>16.20000<br>16.2000<br>16.20000000<br>16.20000000000000 | K/Ca ± 20<br>01 ± 0.1<br>1.4 ± 2.6<br>6.0 ± 8.9<br>3.8 ± 4.9<br>5.8 ± 6.8<br>119.9 ± 3500.8<br>119.9 ± 3500.8<br>119.9 ± 352<br>22.1 ± 65.5<br>22.1 ± 554.4<br>46.0 ± 764.3<br>0.2 ± 0.4<br>4.9 ± 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| nation for Chapter 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıform     | tary In                               | upplemen                                                                                                   | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             | endix D                                                                                                                                                                          | Арр |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Relative<br>Abundances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | Information on An<br>and Constants Us | Sample = ROG132-5<br>Material = osu<br>Location = Laser<br>Analyst = Fred Jourdan<br>Project = OSUMILTE_EE | Mass Discrimination Law<br>Irradiation = I21t40h<br>J = 0.01033000 ± 0.000C<br>WA1ms = 28.294 ± 0.03 <sup>-</sup><br>IGSN = Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Preferred Age = Undefin<br>Preferred Age = Undefine<br>Classification = Undefine<br>Experiment Type = Unde<br>Extraction Method = Und<br>Heating = 60 sec<br>Isolation = 5.00 min<br>Instrument = MAP215-50 | Lithology = Undefined<br>Lat-Lon = Undefined - Un<br>Feature = Undefined                                                                                                         |     |
| 63 °C<br>64 °C<br>65 °C<br>65 °C<br>65 °C<br>67 °C<br>72 °C<br>75 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | alysis<br>ed in Cal                   | 32016                                                                                                      | / = POW<br>00600<br>7 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed<br>xd<br>lefined                                                                                                                                                                                         | ndefined                                                                                                                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ы         | culation                              |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                  |     |
| 36Ar<br>M<br>1.0000007<br>0.0000048<br>0.00000687<br>0.00000074<br>0.00000074<br>0.00000074<br>0.00000074<br>0.00000074<br>0.00000074<br>0.00000078<br>0.00000078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000431 | 6                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                  |     |
| %10<br>1248.070<br>201.471<br>231.382<br>216.807<br>135.369<br>1073.071<br>356.438<br><b>356.438</b><br><b>356.438</b><br><b>356.438</b><br><b>356.514</b><br><b>117.301</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77.797    |                                       | Age Equation<br>Negative Inte<br>Decay Const<br>Decay Const<br>Decay Const                                 | Decay Const<br>Decay Const<br>Decay Const<br>Atmospheric<br>Atmospheric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Production R<br>Production R<br>Production R<br>Production R<br>Production R<br>Production R<br>Production R                                                                                                | Abundance F<br>Atomic Weig                                                                                                                                                       |     |
| 37Ar<br>M<br>0.0001828<br>0.0002831<br>0.0002519<br>0.0000325<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00004655<br>0.00000777 | 0.0008264 |                                       | ıs = Min et al. (2<br>ınsities = Allowe<br>ant 40K = 5.531<br>ant 39Ar = 2.940<br>ant 37Ar = 8.230         | stant 33Ar = 2.940 ± 0.029 E-07 1/<br>stant 37Ar = 8.230 ± 0.082 E-04 1/<br>stant 36Cl = 2.303 ± 0.046 E-06 1/1<br>stant 40K(EC,B') = 0.576 ± 0.002 E<br>stant 40K(EC,B') = 0.455 ± 0.013 E-10<br>ice Ratio 38/36(a) = 1.0456 ± 0.0002<br>Ratio 39/37(ca) = 0.000702 ± 0.00<br>Ratio 39/37(ca) = 0.000702 ± 0.00<br>Ratio 39/37(ca) = 0.002732 ± 0.00<br>Ratio 38/37(ca) = 0.002732 ± 0.00<br>Ratio 38/37(ca) = 0.002732 ± 0.00<br>Ratio 38/37(ca) = 0.002732 ± 0.00<br>Ratio 38/38(a) = 0.201240 ± 0.003<br>Ratio 38/38(a) = 0.012400 ± 0.003<br>Ratio 38/38(a) = 0.23.00 ± 13.15<br>Incore 3.0438(b) = 0.012400 ± 0.003<br>Ratio 38/38(b) = 0.002732 ± 0.000<br>Ratio 38/38(b) = 0.012400 ± 0.003<br>Ratio 38/38(b) = 0.012400 ± 0.003<br>Ratio 38/38(b) = 0.012400 ± 0.003<br>Ratio 38/38(b) = 0.002732 ± 0.000<br>Ratio 38/38(b) = 0.012400 ± 0.003<br>Ratio 38/38(b) = 0.002732 ± 0.000<br>Ratio 38/38(b) = 0.002732 ± 0.000732 ± 0.000<br>Ratio 38/38(b) = 0.002732 ± | ≀atio 40K/K = 1.:<br>ht K = 39.0983 ±                                                                                                                                                                       |                                                                                                                                                                                  |     |
| %10<br>196.131<br>130.981<br>130.496<br>82.334<br>334.765<br>72.090<br>527.881<br>109.533<br><b>503.568</b><br><b>153.568</b><br><b>153.568</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 146.381   |                                       | 000)<br>d<br>± 0.013 E-10 1,<br>± 0.029 E-07 1<br>0 ± 0.082 E-04 1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1700 ± 0.0100 E<br>± 0.0001 g                                                                                                                                                                               |                                                                                                                                                                                  |     |
| 38Ar<br>NJ<br>0.0000260<br>0.0000674<br>0.0000877<br>0.0000877<br>0.0000887<br>0.0000885<br>0.0000885<br>0.000089164<br>0.00009164<br>0.00009164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0028498 |                                       | ,∃ ,∃ , <sub>0</sub> ,                                                                                     | /a<br>E-10 1/a<br>0 1/a<br>0 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000008<br>000002<br>000002<br>0091<br>3968                                                                                                                                                                  | -04                                                                                                                                                                              |     |
| %10<br>26.116<br>10.749<br>9.136<br>11.255<br>8.181<br>9.294<br>10.021<br>3.846<br>1.461<br>2.939<br>27.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.382     |                                       |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                  | ·   |
| 39Ar<br>M<br>0.0012390<br>0.00658872<br>0.00658607<br>0.00658607<br>0.00658607<br>0.0065872<br>0.0065872<br>0.0065872<br>0.0065872<br>0.0065973<br>0.00232688<br>0.0021822<br>0.0071882<br>0.0071882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2316541 | Results                               | Age Plateau                                                                                                | Total Fusion Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Normal Isochron                                                                                                                                                                                             | Inverse Isochron<br>Clustered Points                                                                                                                                             |     |
| %10<br>1.059<br>0.896<br>0.465<br>0.314<br>0.459<br>0.314<br>0.459<br>0.312<br>0.312<br>0.312<br>0.312<br>0.312<br>0.312<br>0.312<br>0.312<br>0.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.085     |                                       |                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                                  |     |
| 40Ar<br>M<br>0.072582<br>0.370333<br>0.430046<br>0.433046<br>0.433046<br>0.438914<br>0.446825<br>1.431138<br>5.563180<br>4.6526968<br>0.682463<br>0.682463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.130017 | 40(a)/36(a                            |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 188.5                                                                                                                                                                                                       | 3086.7                                                                                                                                                                           |     |
| %10<br>0.207<br>0.037<br>0.039<br>0.104<br>0.054<br>0.054<br>0.054<br>0.054<br>0.054<br>0.061<br>0.023<br>0.024<br>0.123<br>0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050     | ) ± 2σ                                |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 ± 481.19<br>± 255.17%                                                                                                                                                                                     | 2 ± 17865.81<br>2 ± 578.80%                                                                                                                                                      |     |
| 40(r)/39(k) ± 2σ<br>58.42140 ± 4.56459<br>62.66483 ± 1.31775<br>62.77594 ± 1.31032<br>61.92487 ± 0.9208<br>62.07201 ± 1.05043<br>61.23634 ± 0.94905<br>61.23634 ± 0.94905<br>61.23634 ± 0.93633<br>61.46501 ± 0.03633<br>60.56645 ± 0.25976<br>60.78674 ± 0.18128<br>57.81266 ± 4.45490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 40(r)/39(k) ± 2σ                      | 60.71137 ± 0.20016<br>± 0.33%                                                                              | 60.93943 ± 0.14829<br>± 0.24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.80272 ± 0.16632<br>± 0.27%                                                                                                                                                                               | 61.07795 ± 1.03289<br>± 1.69%                                                                                                                                                    |     |
| Age ± 20<br>(Ma)<br>853.78 ± 53.17<br>902.55 ± 14.94<br>903.81 ± 14.85<br>894.14 ± 10.63<br>895.81 ± 11.30<br>891.94 ± 11.30<br>888.82 ± 10.79<br>888.82 ± 10.79<br>888.82 ± 10.79<br>888.82 ± 10.79<br>888.13 ± 2.08<br>881.13 ± 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | Age ± 2σ<br>(Ma)                      | 880.26 ± 2.44<br>± 0.28%<br>Full External Error ± 6.28<br>Analytical Error ± 2.30                          | 882.88 ± 1.88<br>± 0.21%<br>Full External Error ± 6.10<br>Analytical Error ± 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 881.31 ± 2.07<br>Full External Error ± 6.15<br>Analytical Error ± 1.91                                                                                                                                      | 884.47 ± 11.86<br>Full External Error ± 13.24%<br>Analytical Error ± 11.83                                                                                                       |     |
| 40Ar(r<br>(%)<br>99.72<br>99.52<br>100.40<br>99.54<br>100.33<br>99.54<br>99.93<br>99.94<br>99.93<br>99.94<br>99.93<br>99.94<br>99.93<br>99.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | MSWD                                  | 1.82<br>16%<br>3.00<br>1.3472                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.68<br>41%<br>3.83<br>1.0000<br>1<br>0.0000000213                                                                                                                                                          | 0.63<br>43%<br>3.83<br>1.0000<br>12<br>0.0000649291<br>2%                                                                                                                        |     |
| <ul> <li>39Ar(k)</li> <li>(%)</li> <li>2.54</li> <li>2.20</li> <li>3.00</li> <li>2.23</li> <li>2.84</li> <li>2.84</li> <li>2.84</li> <li>2.84</li> <li>2.84</li> <li>2.84</li> <li>2.84</li> <li>3.004</li> <li>3.9.62</li> <li>3.2.84</li> <li>0.60</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 39Ar(k)<br>(%,n)                      | 2σ Confider<br>Error Magni                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 73.06<br>3 3<br>Error Magni<br>Number of Η<br>Convergenc                                                                                                                                                  | <ul> <li>3 73.06</li> <li>3</li> <li>4 2σ Confider</li> <li>4 Error Magni</li> <li>4 Error Magni</li> <li>4 Error Magni</li> <li>4 Convergence</li> <li>5 Spreading F</li> </ul> |     |
| K/Ca ± 20<br>3 ± 11<br>9 ± 23<br>9 ± 23<br>81 ± 1429<br>26 ± 175<br>6 ± 9<br>37 ± 36<br>30 ± 66<br>535 ± 5446<br>133 ± 408<br>82 ± 8808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | K/Ca ± 2σ                             | 135 ± 406<br>nce Limit<br>ification                                                                        | 121 ± 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nce Limit<br>ffication<br>Iterations                                                                                                                                                                        | nce Limit<br>filcation<br>Iterations<br>ce<br>Factor                                                                                                                             |     |

| Appendix D                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Supplen                                                                                                     | ientar                                 | y Inf     | formation for Chapter 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linkolay = Undefined<br>Lat-Lon = Undefined - Un<br>Feature = Undefined                                         | Mass Discriminator Law<br>Irradiation = 12140h<br>J = 0.01033000 ± 0.0000<br>WA Ims = 28.294 ± 0.037<br>IGSN = Undefined<br>Classification = Undefine<br>Classification = Undefine<br>Experiment Type = Undefine<br>Experiment Type = Undefine<br>Experiment Type = Undefine<br>Extension Mittore = Undefine<br>Extension = 5.00 min<br>Instrument = IAVP315-5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample = ROG1312-6<br>Material = osu<br>Location = Laser<br>Analyst = Fred Jourdan<br>Project = OSUMILTE EB | Information on Ana<br>and Constants Us |           | Relative<br>Abundances<br>6M42199D<br>6M42201D<br>6M42201D<br>6M42200D<br>6M42200D<br>6M42200D<br>6M42200D<br>6M42200D<br>6M42200D<br>6M42200D<br>6M4221D<br>6M42211D<br>6M42211D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| defined                                                                                                         | = POW<br>0600<br>Ma<br>d<br>d<br>fined<br>efined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2016                                                                                                        | alysis<br>ed in Ca                     |           | 61 °C<br>62 °C<br>64 °C<br>65 °C<br>65 °C<br>65 °C<br>67 °C<br>68 °C<br>70 °C<br>72 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             | lculation                              | Σ         | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             | 8                                      | 0.0000141 | 36Ar<br>M<br>M<br>0.0000065<br>0.00000089<br>0.00000072<br>0.00000010<br>0.000000050<br>0.00000050<br>0.00000050<br>0.00000025<br>0.00000025<br>0.00000025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Abumic Veigh<br>Atomic Weigh                                                                                    | Decay Consta<br>Decay Consta<br>Decay Consta<br>Atmospheric I<br>Atmospheric I<br>Production R<br>Production R<br>Production R<br>Production R<br>Production R<br>Production R<br>Production R<br>Production R<br>Production R<br>Production R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Age Equation<br>Negative Inter<br>Decay Consta<br>Decay Consta                                              |                                        | 279.847   | % IG<br>158,758<br>122,792<br>1082,452<br>1084,136<br>102,597<br>103,496<br>103,496<br>103,496<br>103,499<br>103,499<br>103,499<br>103,499<br>1042,270<br>103,499<br>1042,270<br>1042,270<br>105,671<br>219,427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| hatio 40KK = 1-10<br>11 K = 39,0983 ±                                                                           | ant $(40)$ = 2 $(20)$ = 2 $(40)$ = 2 $(40)$ = 2 $(40)$ = 4.9 ant $(40)$ ( $(\beta)$ = 4.9 ant $(40)$ ( $(\beta)$ = 4.9 Ratio $(40)$ ( $36)$ = 1 = 1 Ratio $(38)$ ( $36)$ = 1 = 1 = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 = 1 $(38)$ ( $37)$ ( $ca$ ) = 1 $(38)$ ( $38)$ ( $37)$ ( $ca$ ) = 1 $(38)$ ( $38)$ ( $37)$ ( $ca$ ) = 1 $(38)$ ( $38)$ ( $37)$ ( $ca$ ) = 1 $(38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38)$ ( $38$ | ns = Min et al. (20<br>nsities = Allowec<br>ant 40K = 5.531 ;<br>ant 39Ar = 2.940<br>ant 37Ar = 8.230       |                                        | 0.0009819 | 37Ar<br>M<br>0.0000740<br>0.0002565<br>0.0002651<br>0.0002651<br>0.0002651<br>0.0001545<br>0.0001545<br>0.0001545<br>0.0001545<br>0.0001545<br>0.0001545<br>0.0001545<br>0.0001545<br>0.0002976<br>0.0002976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0001 g                                                                                                        | ± 0.0446 E-06 1/a<br>0.576 ± 0.002 E<br>0.576 ± 0.002 E<br>288.56 ± 0.013 E-10<br>0.1869 ± 0.0002<br>0.1869 ± 0.0002<br>0.0007732 ± 0.000<br>0.0002733 ± 0.000<br>0.0002733 ± 0.000<br>0.0002733 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.0002730 ± 0.000<br>0.00002730 ± 0.000<br>0.0002730 ± 0.0002<br>0.0002730 ± 0.0002<br>0.000270  ± 0.0002700 ± 0.0002<br>0.0002700 ± 0.0002700 ± 0.0002700 ± 0.0002700000000000000000000000000000000                                                                                                                                    | 000)<br>4<br>4<br>± 0.013 E-10 1/a<br>± 0.029 E-07 1/t<br>± 0.082 E-04 1/t                                  |                                        | 174.683   | %10<br>641.476<br>185.840<br>21917.307<br>581.73.07<br>581.73.05<br>175.475<br>175.475<br>338.861<br>162.173<br>326.943<br>300.164<br>141.760<br>596.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4                                                                                                               | -10 1/a<br>11a<br>20008<br>20002<br>20002<br>20002<br>20002<br>20002<br>20002<br>20002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                        | 0.0032774 | 38Ar<br>M<br>M<br>0.0000020<br>0.0000026<br>0.0000026<br>0.0000026<br>0.0000720<br>0.0000720<br>0.0000720<br>0.0000720<br>0.0000720<br>0.0000720<br>0.0000720<br>0.0000720<br>0.0000720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ·                                                                                                               | 07 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                        | 1.291     | %10<br>335.519<br>127.160<br>27.973<br>8.300<br>11.589<br>5.595<br>5.511<br>1.562<br>5.595<br>5.511<br>2.100<br>1.553<br>5.511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rverse lsochron<br>Væreedimaled Error                                                                           | otal Fusion Age<br>tormal lacchron<br>Derestimated Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ige Plateau                                                                                                 | Results                                | 0.2733798 | 39Ar<br>M<br>0.0006512<br>0.0008041<br>0.0008048<br>0.0067039<br>0.0067039<br>0.0067039<br>0.005648<br>0.0164571<br>0.0061183<br>0.0076486<br>0.01764851<br>0.01744513<br>0.01744513<br>0.0175485<br>0.0175485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                        | 0.100     | %10<br>15.505<br>1.478<br>0.735<br>0.461<br>0.513<br>0.410<br>0.695<br>0.404<br>0.297<br>0.297<br>0.297<br>0.404<br>0.297<br>0.404<br>0.297<br>0.404<br>0.297<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0.405<br>0 |
| 1917.20                                                                                                         | 383.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             | 40(a)/36(a) =                          | 17.643074 | 40Ar<br>M<br>0.015177<br>0.067175<br>0.114318<br>0.532041<br>0.438512<br>0.438557<br>0.401000<br>0.438597<br>0.401000<br>0.489997<br>1.055382<br>1.113484<br>5.457567<br>7.422475<br>7.422475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| £ 3285.95<br>£ 171.39%                                                                                          | £ 577.42<br>£ 150.46%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             | ± 2σ                                   | 0.022     | %10<br>0.434<br>0.510<br>0.043<br>0.043<br>0.063<br>0.063<br>0.064<br>0.083<br>0.064<br>0.083<br>0.064<br>0.073<br>0.055<br>0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 64.39092 ±0.54%                                                                                                 | 64,55106 ±0.25%<br>±0.25%<br>64,40404 ±0.35821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64.26753 ±0.16637<br>±0.26%                                                                                 | $40(r)/39(k) \pm 2\sigma$              |           | 40(r)/39(k) ± 2σ<br>333.93865 ± 159.0451<br>86.81038 ± 8.59468<br>69.40764 ± 4.16590<br>66.06519 ± 0.08642<br>64.47087 ± 1.20230<br>64.7083 ± 1.31224<br>65.29180 ± 1.31224<br>64.31798 ± 0.58668<br>64.31798 ± 0.58668<br>64.419164 ± 0.21169<br>64.438678 ± 2.26274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 922.01 ± 4.02<br>Full External Error ± 7.25<br>Analytical Error ± 3.93                                          | 923.81 ± 1.96<br>Full External Error ± 6.35<br>Analytical Error ± 1.77<br>922.16 ± 4.10<br>Full External Error ± 7.29<br>Analytical Error ± 4.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 920.63 ± 2.05<br>Full External Error ± 6.36<br>Analytical Error ± 1.87                                      | Age ± 2σ<br>(Ma)                       |           | Age ± 20<br>(Ma)<br>4 2669.23 ± 667.63<br>1157.48 ± 84.54<br>922.91 ± 13.48<br>922.91 ± 13.48<br>922.91 ± 13.48<br>922.91 ± 13.48<br>922.91 ± 13.48<br>932.92 ± 15.59<br>918.75 ± 11.06<br>919.75 ± 2.38<br>923.22 ± 2.96<br>921.97 ± 2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.22<br>98%<br>2.07<br>1.0000<br>1.00<br>0.0000346943<br>3%                                                     | 0.09<br>100%<br>2.07<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.36<br>21%<br>2.00<br>1.1647                                                                               | MSWD                                   |           | 40Ar(f)<br>(%)<br>112.80<br>103.94<br>99.24<br>100.07<br>100.07<br>100.06<br>100.30<br>100.07<br>100.05<br>100.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 96.15<br>9<br>20 Confidence<br>Error Magnific<br>Number of Ite<br>Number of Ite<br>Convergence<br>Spreading Fac | 13<br>96.15<br>9 20 Confidence<br>Error Magnific<br>Number of Iter<br>Convergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96.15<br>9<br>2ơ Confidence<br>Error Magnific                                                               | 39Ar(k)<br>(%,n)                       |           | 39Ar(k)<br>(%)<br>0.29<br>0.29<br>0.29<br>0.29<br>2.94<br>2.94<br>2.94<br>2.94<br>2.94<br>2.80<br>6.02<br>6.03<br>31.111<br>42.09<br>1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ation<br>ations<br>tor                                                                                          | 120 ± 418<br>Lunit<br>ations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13 ± 30<br>⊢Umit<br>ation                                                                                   | K/Ca ± 2σ                              |           | K/Ca ± 20<br>0 ± 4<br>1 ± 5<br>326 ± 143034<br>40 ± 468<br>11 ± 38<br>20 ± 165<br>17 ± 111<br>24 ± 159<br>24 ± 159<br>24 ± 155<br>27 ± 1365<br>15 ± 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Appendix D Suppleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ntary Information for Chapter 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Information on A<br>and Constants U<br>Material = osu<br>Location = Laser<br>Analyst = Fred Jourdan<br>Project = OSUMILTE_E<br>Mass Discrimination La<br>Itradiation = 12140h<br>J = 0.0103226 ± 0.000<br>WA1ms = 2613.000 ± 2<br>Mass Discrimination La<br>Itradiation = 12140h<br>Dereferred Age = Undefined<br>Classification = Undefined<br>Classification = Undefined<br>Later undefined = Un<br>Heating = 60 cent<br>Instrument = ARGUS V<br>Lithology = Undefined<br>Later undefined - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Relative<br>Abundances<br>6M20765<br>6M20765<br>6M20770<br>6M20770<br>6M20771<br>6M20776<br>6M20776<br>6M20776<br>6M20776<br>6M20778<br>6M20778<br>6M207782<br>6M207782<br>6M207782<br>6M207782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| nalysis<br>sed in Calcul<br>ED2016<br>ED2016<br>ww = POW<br>ww = POW<br>001860<br>001860<br>001860<br>001860<br>001860<br>1.352 Ma<br>selfned<br>defined<br>defined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 °C<br>2 °C<br>2 °C<br>2 °C<br>2 °C<br>2 °C<br>2 °C<br>2 °C<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NJ<br>NJ<br>NJ<br>NJ<br>NJ<br>NJ<br>NJ<br>NJ<br>NJ<br>NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Age Equatir<br>Negative In<br>Decay Com<br>Decay Com<br>Production<br>Production<br>Scaling Rat<br>Atomic Weither<br>Atomic Weithe | %10<br>43.390<br>33.165<br>29.610<br>20.598<br>12.411<br>32.25644<br>16.298<br>97.705<br>2.191<br>2.6644<br>16.298<br>97.705<br>2.191<br>2.66312<br>2.191<br>2.66312<br>3.866<br>3.001<br>3.866<br>3.001<br>3.866<br>3.001<br>2.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ans = Min et al. (2<br>tenstites = Allowe<br>stant 40K = 5.531<br>stant 40K = 5.531<br>stant 36A = 2.93<br>stant 36Cl = 2.303<br>stant 36Cl = 2.303<br>stant 40K(FC, P)<br>e Fatio 38(37(ca) =<br>e Fatio 38(37(ca) =<br>Ratio 36(37(ca) =<br>Ratio 36(37(ca) =<br>Ratio 36(38(c) =<br>Ratio 36(38(c) = 0.303)<br>e KCa = 0.40K(K = 1.302)<br>ght K = 39.0983 = 1.302<br>ght K = 39.0983 = 1.3020<br>ght K = 30.0983 = 1.30200<br>ght K = 30.0983 = 1.30200<br>ght K                                                                                                                                                                                                                                               | 37Ar<br>[V]<br>0.0001088<br>0.0001086<br>0.0001062<br>0.0001003<br>0.00000875<br>0.00000875<br>0.00000875<br>0.00000875<br>0.00000875<br>0.00000329<br>0.0000329<br>0.0000329<br>0.0000329<br>0.00005398<br>0.00005398<br>0.0005398<br>0.0005398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2000)<br>H<br>2 0.013 E-10 1k<br>0 2 0.028 E-04 1)<br>0 2 0.028 E-00 2)<br>0 2 0.028 E-0 002<br>0 2 0.028 E-0 002<br>0 0.000723 E 0.000<br>0 0.00073 E 0.000<br>0 0.01240 0 0.000<br>283.00 2 1 3.15<br>283.00 2 1 0.100 E<br>1 0.0001 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %10<br>89.867<br>54.010<br>87.322<br>180.854<br>92.901<br>230.854<br>128.067<br>322.877<br>324.746<br>705.073<br>34.746<br>705.073<br>51.124<br>18.424<br>58.970<br>89.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38Ar<br>M<br>0.0000746<br>0.0000652<br>0.0000652<br>0.0000652<br>0.0000681<br>0.0000681<br>0.0000682<br>0.0000682<br>0.0000678<br>0.00001574<br>0.00001574<br>0.0002916<br>0.0002916<br>0.0002917871<br>0.0005937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %10<br>34,620<br>32,620<br>39,839<br>39,163<br>41,605<br>260,180<br>37,534<br>15,229<br>31,529<br>113,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,2,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,239<br>1,3,445<br>1,144<br>4,2343<br>1,1444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Results<br>annot Calculate<br>annot Calculate<br>annot Calculate<br>annot Calculate<br>annot Calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39Ar<br>N<br>0.0010154<br>0.00020132<br>0.0002555<br>0.0002596<br>0.0002966<br>0.000198<br>0.0003626<br>0.00036616<br>0.00036616<br>0.00036616<br>0.00036747<br>0.00155974<br>0.02154975<br>0.01155974<br>0.02154975<br>0.01155974<br>0.02154975<br>0.01155974<br>0.02154975<br>0.01155974<br>0.02154975<br>0.01155974<br>0.02154975<br>0.01155974<br>0.02154975<br>0.01155974<br>0.02154975<br>0.01155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.02155974<br>0.0255966<br>0.02155974<br>0.0255966<br>0.02155974<br>0.0255974<br>0.0255974<br>0.0255974<br>0.0255974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539974<br>0.025539977575757575757575757575757575757575 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %10<br>0.545<br>1.285<br>0.325<br>1.224<br>1.254<br>0.327<br>1.754<br>0.191<br>0.191<br>0.191<br>0.191<br>0.104<br>0.047<br>0.047<br>0.044<br>0.045<br>0.044<br>0.033<br>0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 40(a)/36(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40Ar<br>N<br>0.018405<br>0.0029562<br>0.0129562<br>0.0129562<br>0.0129562<br>0.017875<br>0.017875<br>0.017875<br>0.017875<br>0.017875<br>0.01984<br>0.227123<br>0.227178<br>0.240452<br>1.004872<br>1.404452<br>2.043645<br>1.004872<br>1.404452<br>2.437548<br>2.537548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ± 2σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %10<br>0.109<br>0.664<br>0.082<br>0.085<br>0.085<br>0.085<br>0.085<br>0.014<br>0.013<br>0.014<br>0.012<br>0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 40(r)/39(k) ± 2σ<br>64.08557 ± 0.02418<br>± 0.04%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>40(r)/39(k) ± 2</b> <i>o</i><br>17.78559 ± 0.36485<br>9.70118 ± 0.94385<br>30.83315 ± 0.23628<br>54.47753 ± 1.43519<br>65.27137 ± 2.60012<br>65.27137 ± 2.60012<br>65.27132 ± 0.226401<br>64.571742 ± 0.226401<br>64.37124 ± 0.027278<br>64.37124 ± 0.05862<br>64.3120 ± 0.068345<br>64.3120 ± 0.068345<br>64.11007 ± 0.04274<br>64.50503 ± 0.05823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Age ± 2σ<br>(Ma)<br>918.76 ± 2.61<br>Full External Error ± 0.28%<br>Full External Error ± 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Age ± 20<br>(Ma)<br>305.04 ± 5.76<br>1172.72 ± 16.03<br>493.67 ± 3.63<br>807.41 ± 17.16<br>807.26 ± 29.58<br>932.10 ± 26.73<br>988.88 ± 2.98<br>955.33 ± 2.24<br>955.33 ± 2.24<br>953.19 ± 15.25<br>917.64 ± 0.65<br>917.64 ± 0.65<br>912.47 ± 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| MSWD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>40Ar(r)</b><br>(%)<br>98.11<br>115.47<br>100.70<br>104.26<br>104.44<br>100.19<br>100.20<br>100.20<br>100.23<br>99.51<br>99.94<br>99.95<br>99.94<br>99.86<br>99.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 39Аг(k)<br>(%,л)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (%)<br>(%)<br>0.31<br>0.11<br>0.11<br>0.17<br>0.19<br>0.10<br>1.08<br>1.20<br>1.14<br>2.89<br>9.46<br>4.72<br>6.63<br>9.46<br>4.72<br>6.63<br>15.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| WCa ± 2σ<br>281 ± 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K/Ca ± 20<br>4 ± 7<br>1 ± 1<br>8 ± 14<br>4 ± 15<br>1 ± 2<br>3 15 ± 39<br>19 ± 49<br>37 19 ± 888<br>578 ± 1186<br>578 ± 1188<br>578 ± 1186<br>578 ± 1188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

| Appenaix D Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıpplem                                     | entar     | <i>y Information for Chapter 4</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample = ROG132-AVI2OS<br>Material = osu<br>Location = Laser<br>Anayst = Fred Jourdan<br>Project = OSUMIL TE_EB20<br>Mass Discrimination Law =<br>Irradiation = L21400<br>Mass Discrimination Law =<br>Irradiation = L006fined<br>Classification = Undefined<br>Classification = Undefined<br>Experiment Type = Undefined<br>Extraction Method = Undefined<br>Lat-Lon = Undefined<br>Lat-Lon = Undefined<br>Feature = Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Information on Analy<br>and Constants Used |           | Abundances<br>BM20795<br>6M20795<br>6M20798<br>6M20801<br>6M20802<br>6M20802<br>6M20804<br>6M20806<br>6M20806<br>6M20806<br>6M20808<br>6M20808<br>6M20808<br>6M20808<br>6M20808<br>6M20808<br>6M20808<br>6M20808<br>6M20808<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2081<br>6M2000<br>6M2081<br>6M2000<br>6M2000<br>6M2000<br>6M2000000000000000                                                                                                                                                                                                                                     |
| fined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /sis<br>I in Calc                          |           | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ulation                                    | м         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                          | 0.0000553 | O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Age Equatio<br>Decay Cons<br>Decay Cons |                                            | 3.621     | %10<br>91.490<br>79.314<br>66.333<br>268.147<br>69.514<br>140.759<br>31.044<br>41.133<br>29.711<br>9.544<br>7.348<br>12.425<br>6.224<br>5.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ns = Min et al. ( <i>j</i><br>ansities = Allows<br>ansities = Allows<br>and 40K = 5.53<br>ant 40K = 5.53<br>ant 40K(EC, P)<br>ant 40K(EC, P)<br>ant 40K(F) = 4.<br>Ratio 38/37(ca) =<br>Ratio 38/37(ca) =<br>Atatio 38/37(ca) =<br>Atatio 38/37(ca) =<br>Atatio 38/37(ca) =<br>Atatio 38/37(ca) =<br>Atatio 38/38(c) =<br>A                                                                                                                                                                                                                |                                            | 0.0003575 | 0.0000150<br>0.0000282<br>0.0000282<br>0.0000282<br>0.0000282<br>0.0000122<br>0.0000012<br>0.00000409<br>0.00000409<br>0.00000409<br>0.00000409<br>0.0000112<br>0.0000112<br>0.0000112<br>0.0000840<br>0.0000840<br>0.0000840<br>0.0000885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2000)<br>H<br>H<br>0 ± 0.013 E=10 1<br>0 ± 0.029 E=07<br>0 ± 0.022 E=04<br>3 ± 0.046 E=06<br>= 0.576 ± 0.022<br>= 0.576 ± 0.022<br>= 2.88.56 ± 0.30<br>= 0.186 § ± 0.000<br>0.0000723 ± 0.0<br>0.0000723 ± 0.0<br>0.000723 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000730 ± 0.0<br>0.000073 ± 0.0<br>0.0000730 ± 0.0<br>0.0000730 ± 0.0<br>0.0000730 ± 0.0<br>0.0000730 ± 0.0<br>0.0000730 ± 0.0<br>0.0000730 ± 0.0<br>0.0000730 ± 0.0<br>0.0000730 ± 0.0<br>0.0000000  ± 0.0<br>0.00000000 ± 0.0<br>0.000000000 ± 0.0<br>0.000000000 ± 0.0000000 ± 0.00000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | 155.584   | %10<br>948.020<br>495.925<br>65.335<br>4713.276<br>212.887<br>322.686<br>1519.229<br>116.232<br>155.162<br>129.502<br>129.502<br>67.920<br>67.920<br>77.4.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| /a<br>11/h<br>11/h<br>11/1<br>11/a<br>11/a<br>11/a<br>10/00002<br>10/00002<br>10/00002<br>13/968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | 0.0017723 | 0.0000392<br>0.0000392<br>0.00000120<br>0.00000201<br>0.00000201<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.00000271<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.00000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000280<br>0.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            | 8.753     | %10<br>98.305<br>303.922<br>437.525<br>713.611<br>197.993<br>332.967<br>140.066<br>115.828<br>869.490<br>57.413<br>30.282<br>24.883<br>24.883<br>14.883<br>13.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Age Plateau<br>Curinot Calculate<br>Total Fusion Age<br>Normal Isochron<br>Curinot Calculate<br>Curinot Calculate<br>Carinot Calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Results                                    | 0.1483640 | 0.0005510<br>0.0002499<br>0.0015182<br>0.0002498<br>0.00015182<br>0.0001498<br>0.0001498<br>0.0001486<br>0.0001486<br>0.0014167<br>0.0014167<br>0.0014167<br>0.0014167<br>0.0014167<br>0.0014167<br>0.001425752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            | 0.024     | <b>%10</b><br>1.148<br>2.785<br>3.3068<br>3.3068<br>3.3068<br>3.3068<br>0.3848<br>0.3848<br>0.3848<br>0.3848<br>0.484<br>0.484<br>0.479<br>0.045<br>0.079<br>0.0046<br>0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40(a)/36( <i>a</i>                         | 11.529260 | 0.006635<br>0.006635<br>0.002717<br>0.032064<br>0.013872<br>0.010412<br>0.013872<br>0.134630<br>0.134630<br>0.134630<br>0.134683<br>0.134683<br>0.134683<br>0.134683<br>0.134683<br>0.134683<br>0.134683<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.379830<br>0.3798500<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.379850<br>0.3799600000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i) ± 2σ                                    | 0.002     | %10<br>0.618<br>1.395<br>0.121<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.2910<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0.291<br>0 |
| 77.59780 ±0.03782<br>±0.05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40(r)/39(k) ± 2σ                           |           | 40(r)/39(k) ± 20<br>11.48022 ± 0.75000<br>10.19972 ± 1.27189<br>51.4460 ± 2.31997<br>66.47907 ± 4.60800<br>68.88234 ± 7.00120<br>82.61800 ± 0.5563<br>84.5537 ± 60.7563<br>84.5573 ± 60.7563<br>84.37179 ± 0.83886<br>85.7460 ± 0.07889<br>78.57060 ± 0.07889<br>77.74452 ± 0.07276<br>77.74505 ± 0.06578<br>77.97369 ± 0.06578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1064.59 ± 2.92<br>Full External Error ± 9.89<br>Analytical Error ± 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Age ± 2σ<br>(Ma)                           |           | (Ma)<br>202.84 ± 12.53<br>181.17 ± 20.82<br>355.11 ± 4.29<br>945.47 ± 51.84<br>977.127 ± 28.82<br>945.47 ± 51.84<br>977.89 ± 76.42<br>1115.92 ± 6.64<br>1155.74 ± 6.74<br>1155.74 ± 6.74<br>1155.74 ± 6.74<br>1155.25 ± 0.61<br>1074.65 ± 0.61<br>1076.85 ± 0.61<br>1076.12 ± 0.75<br>1066.20 ± 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSWD                                       |           | (%)<br>96.88<br>93.28<br>93.32<br>93.11<br>93.12<br>93.53<br>93.53<br>93.54<br>93.54<br>93.55<br>93.86<br>93.88<br>93.88<br>93.88<br>93.88<br>93.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39Ar(k)<br>(%,n)                           |           | (%)<br>0.37<br>0.17<br>0.17<br>0.107<br>0.107<br>0.107<br>1.025<br>0.14<br>0.107<br>1.025<br>0.14<br>0.107<br>1.025<br>0.14<br>0.15<br>1.556<br>1.556<br>1.556<br>1.557<br>2.8,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 178 ± 655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K/Ca ± 2σ                                  |           | K/Ca ± 20<br>16 ± 299<br>4 ± 38<br>3 ± 4<br>1 ± 4<br>3 ± 4<br>21 ± 134<br>68 ± 2055<br>5 ± 13<br>5 5 ± 74<br>55 ± 74<br>51 ± 76<br>51 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





## Appendix E

This appendix contains the supplementary tables S1–7 from the paper 'Using accessory minerals to unravel thermal histories in polymetamorphic terranes: an example from Rogaland, SW Norway'.

Contents:

| Table S1: Zircon SHRIMP U-Pb analyses. Analyses marked with a star are        | 340 |
|-------------------------------------------------------------------------------|-----|
| discordant and were excluded from the probability plots of Fig 8 (Chapter 4). |     |
| Table S2: Monazite SHRIMP U–Pb analyses                                       | 345 |
| Table S3: Zircon LA-ICP-MS REE and trace element analyses                     | 348 |
| (Not normalised)                                                              |     |
| Table S4: Monazite LA-ICP-MS REE and trace element analyses                   | 351 |
| (Not normalised)                                                              |     |
| Table S5: Garnet LA–ICP–MS REE and trace element analyses                     | 354 |
| Table S6: SHRIMP U–Pb ages with respective normalised REE analyses            | 360 |
| Table S7: Raw, normalised and buffered modified REE compositions from         | 364 |
| diffusion modelling and multi-spot senarios                                   |     |

|                          | <br>1                 | 4 <i>p</i> j | oen                       | dix                     | : E           |                            | _ |           |           | _        | _         |           |           | Su        | ppl       | em        | ent       | tary      | v In     | for       | ma        | itio      | n f | or                      | Ch            | apt                        | er 5 | 5        |          |
|--------------------------|-----------------------|--------------|---------------------------|-------------------------|---------------|----------------------------|---|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----|-------------------------|---------------|----------------------------|------|----------|----------|
|                          |                       |              |                           |                         | Disc.         | (%)                        |   | +2        | 0+        | +3       | +5        | +2        | +13       | +3        | +15       | +2        | L+        | +14       | L+       | +1        | 9+        | L+        |     |                         | Disc.         | (%)                        |      | -4       | -        |
|                          |                       |              |                           |                         | n             |                            |   | 1.7       | 1.3       | 3.9      | 2.2       | 2.7       | 3.5       | 1.5       | 2.9       | 6.5       | 3.4       | 1.3       | 2.2      | 1.8       | 1.8       | 1.4       |     |                         | n             |                            |      | 1.6      | 1.4      |
|                          |                       |              |                           |                         | 207Pb*/235    | 7 %                        |   | 1.57      | 1.57      | 1.67     | 1.74      | 1.82      | 1.96      | 1.98      | 2.22      | 2.09      | 2.38      | 2.82      | 3.34     | 4.58      | 4.81      | 5.20      |     |                         | 207Pb*/235    | ± %                        |      | 1.79     | 1.88     |
|                          |                       |              |                           |                         | )6Pb*         |                            |   | 0.6       | 0.7       | 2.0      | 1.5       | 2.3       | 3.3       | 0.6       | 2.7       | 5.0       | 2.9       | 0.4       | 1.5      | 0.5       | 0.5       | 0.4       |     | e<br>e                  | )6Pb*         |                            |      | 0.9      | 0.6      |
|                          |                       |              |                           |                         | 207Pb*/20     | % ∓                        |   | 0.071     | 0.071     | 0.073    | 0.075     | 0.075     | 0.080     | 0.077     | 0.084     | 0.078     | 0.084     | 0.092     | 0.096    | 0.107     | 0.112     | 0.117     |     |                         | 207Pb*/20     | = %                        |      | 0.073    | 0.075    |
|                          |                       |              |                           |                         | P*            |                            |   | 1.6       | 1.1       | 3.3      | 1.6       | 1.4       | 1.1       | 1.4       | 1.1       | 4.2       | 1.7       | 1.2       | 1.6      | 1.7       | 1.7       | 1.3       |     |                         | p*            |                            |      | 1.3      | 1.2      |
|                          |                       |              |                           |                         | 238U/206P     | + %                        |   | 6.29      | 6.25      | 6.04     | 5.90      | 5.67      | 5.62      | 5.39      | 5.24      | 5.17      | 4.86      | 4.51      | 3.97     | 3.23      | 3.23      | 3.11      |     |                         | 238U/206P     | $\pm 0\%$                  |      | 5.62     | 5.51     |
|                          |                       |              |                           |                         | n             | lσ                         |   | ±16       | ±12       | ±38      | ±23       | ±28       | ±39       | ±17       | ±34       | ±74       | ±41       | ±17       | ±32      | ±32       | ±31       | ±25       |     |                         | n             | lσ                         |      | ±17      | ±15      |
|                          |                       |              |                           |                         | 207Pb*/235    | date (Ma) ±                |   | 957       | 958       | 966      | 1025      | 1051      | 1101      | 1108      | 1187      | 1146      | 1237      | 1362      | 1491     | 1746      | 1786      | 1852      |     |                         | 207Pb*/235    | date (Ma) ±                |      | 1042     | 1074     |
|                          |                       |              |                           |                         |               |                            |   | ±12       | ±14       | ±40      | ±31       | ±46       | =66       | ±11       | ±52       | +99       | ±57       | ±8        | ±27      | ±10       | -46       | 9∓        |     |                         |               |                            |      | ±19      | ±12      |
| d, SW Norway             |                       |              |                           |                         | 207Pb*/206Pb* | date (Ma) $\pm 1\sigma$    |   | 970       | 960       | 1014     | 1061      | 1062      | 1196      | 1128      | 1300      | 1158      | 1290      | 1473      | 1550     | 1757      | 1840      | 1917      |     |                         | 207Pb*/206Pb* | date (Ma) $\pm 1\sigma$    |      | 1015     | 1070     |
| ı Rogalan                | AND                   |              |                           |                         |               | _                          |   | ±14       | ±10       | ±30      | ±15       | ±14       | ±11       | ±14       | ±11       | ±43       | ±18       | ±14       | ±21      | ±26       | ±26       | ±21       |     |                         |               |                            |      | ±13      | ±12      |
| : an example fron        | SANSOM, M. H/         |              |                           |                         | 206Pb*/238U   | date (Ma) $\pm  l  \sigma$ |   | 951       | 957       | 988      | 1009      | 1046      | 1055      | 1098      | 1126      | 1140      | 1207      | 1292      | 1449     | 1738      | 1741      | 1795      |     |                         | 206Pb*/238U   | date (Ma) $\pm  l  \sigma$ |      | 1055     | 1076     |
| hic terranes:            | INSON, E. S           |              |                           | 1                       | f204          | (%)                        |   | 0.06      | 0.14      | 0.46     | 0.05      | 3.66      | 0.94      | 0.05      | 2.22      | 0.24      | 0.25      | 0.06      | 0.17     | 0.10      | 0.09      | 0.03      |     | 0                       | f204          | (%)                        |      | 0.47     | -        |
| lymetamorp               | Y, T. E. JOH          |              |                           | le ROG13/1              | 232Th         | 238U                       |   | 0.07      | 0.11      | 0.03     | 0.03      | 0.18      | 0.15      | 0.06      | 0.45      | 0.23      | 0.70      | 0.19      | 0.48     | 0.71      | 0.48      | 0.77      |     | le ROG13/1              | 232Th         | 238U                       |      | 0.09     | 0.18     |
| stories in po            | P. D. KINN            |              | alyses                    | s from samp             | 232Th         | (mdd)                      |   | 75        | 88        | 23       | 28        | 131       | 160       | 39        | 717       | 30        | 128       | 152       | 141      | 233       | 245       | 541       |     | s from samp             | 232Th         | (mdd)                      |      | 132      | 131      |
| el thermal hi            | 1. TAYLOR,            |              | MP U-Pb an                | lts for zircon          | 238U          | (mdd)                      |   | 1048      | 785       | 894      | 938       | 720       | 1060      | 684       | 1602      | 132       | 182       | 819       | 291      | 330       | 506       | 706       |     | lts for zircon          | 238U          | (mqq)                      |      | 1478     | 714      |
| ssory minerals to unrave | AU, C. CLARK, R. J. M |              | All data for zircon SHRII | SHRIMP analytical resul | Spot          | no.                        |   | R1135-1.2 | R1137-1.4 | R113-1.2 | R1131-1.2 | R1114-1.1 | R1131-1.1 | R1118-1.1 | R1118-1.2 | R1135-1.1 | R1112-1.1 | R1137-1.1 | R113-1.1 | R1136-1.1 | R1137-1.2 | R1112-1.2 |     | SHRIMP analytical resul | Spot          | no.                        |      | 13-10_r4 | 13-10_r2 |
| Using acce               | E. BLERE              |              | Table S1: ⊭               | Table S1: S             | Texture       | Ð                          |   | R         | R         | R        | RE        | RE        | RE        | RE        | RE *      | c         | c         | RE *      | с*       | c         | C *       | C *       |     | Table S1: S             | Texture       | D                          |      | RE       | RE       |

|          |                                                      | Ap | pe                       | ndi.         | x E                     | , |          |            |            |              |              |              |             | Sı         | ıpp        | oler       | ner          | itai       | y l        | nfo        | orm        | ati        | on <sub>.</sub> | for        | · Cl        | hap        | oter        | • 5        |            |            |
|----------|------------------------------------------------------|----|--------------------------|--------------|-------------------------|---|----------|------------|------------|--------------|--------------|--------------|-------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|-----------------|------------|-------------|------------|-------------|------------|------------|------------|
|          | d, DR-                                               |    |                          | Disc.        | (%                      |   | -12      | -7         | -12        | -7           | 7            | -6           | -4          | -7         | -3         | L-         | -3           | -3         | -3         | -1         | 0-         | 0          | -1              | -3         | 2           | 0          | 2           | 2          | 2          | 3          |
| 4.       | or zone                                              |    |                          | Ī            | )                       |   | 2.1 +    | +          | - 5.1      | 8.8          | 3.5 -        | 2.1 +        | - 8.3       | +          | - 5.1      | +          | + 1.1        | + 9.1      | + 8.1      | + +        | + 8.1      | - 2        | - 5.1           |            | 2.2 -       | - 9.1      | 2.1 -       | 4.         | - 8.1      | -          |
| 1 1      | sed, S-Sect                                          |    |                          | 7Pb*/235U    | %                       |   | 14       | 86 1       | 57 1       | 56 3         | 16 3         | 71 2         | 32 2        | 1 1        | 1 1        | 1 1        | 23 1         | 23 1       | 32 1       | 29 1       | 37 1       | 86 1       | 1 1             | 1          | 16 2        | 51 1       | 50 2        | 52 1       | 54 1       | 1          |
| 2.(      | ecrystalli                                           |    |                          | 20           | +                       |   | 2.4      | 2.3        | 2.5        | 2.6          | 2.4          | 2.7          | 2.8         | 3.(        | 2.9        | 3.1        | 3.2          | 3.2        | 3.3        | 3.2        | 3.3        | 3.3        | 3.4             | 3.4        | 3.4         | 3.5        | 3.5         | 3.5        | 3.5        | 3.5        |
| 0.5      | e, RE-R                                              |    |                          | /206Pb*      |                         | _ | 1.4      | 0.5        | 1.0        | 2.3          | 1.5          | 0.3          | 1.7         | 0.4        | 0.5        | 0.4        | 0.5          | 6.0        | 1.0        | 0.8        | 1.3        | 0.4        | 0.4             | 0.7        | 6.0         | 6.0        | 1.5         | 0.6        | 0.7        | 1.0        |
| 0.078    | im, C-Cor                                            |    |                          | 207Pb*       | 7% ∓                    |   | 0.087    | 0.083      | 0.088      | 0.088        | 0.081        | 0.088        | 0.088       | 0.092      | 060.0      | 0.093      | 0.093        | 0.093      | 0.094      | 0.093      | 0.093      | 0.093      | 0.094           | 0.096      | 0.094       | 0.095      | 0.094       | 0.095      | 0.094      | 0.096      |
| 1.3      | SPb. R-R                                             |    |                          | Pb*          |                         |   | 1.5      | 1.0        | 1.0        | 3.0          | 3.2          | 2.1          | 2.2         | 1.1        | 1.4        | 1.0        | 1.6          | 1.3        | 1.5        | 1.2        | 1.3        | 1.1        | 1.4             | 1.1        | 2.0         | 1.2        | 1.5         | 1.2        | 1.6        | 1.7        |
| 5.21     | ommon 206                                            |    |                          | 238U/206     | % ∓                     |   | 4.88     | 4.88       | 4.73       | 4.53         | 4.52         | 4.46         | 4.33        | 4.19       | 4.18       | 4.12       | 3.97         | 3.97       | 3.92       | 3.90       | 3.83       | 3.83       | 3.81            | 3.80       | 3.74        | 3.73       | 3.71        | 3.70       | 3.68       | 3.57       |
| ±16      | is % of c                                            |    |                          | 5U           | : 1o                    |   | ±26      | ±14        | ±19        | ±50          | ±44          | ±28          | ±38         | ±16        | ±21        | ±16        | ±25          | ±23        | ±27        | ±21        | ±27        | ±18        | ±23             | ±19        | ±33         | ±24        | ±32         | ±21        | ±27        | ±32        |
| 1138     | 204Pb. f204                                          |    |                          | 207Pb*/235   | date (Ma) ±             |   | 1256     | 1230       | 1293       | 1318         | 1259         | 1332         | 1360        | 1417       | 1401       | 1439       | 1465         | 1465       | 1486       | 1477       | 1486       | 1495       | 1508            | 1522       | 1517        | 1529       | 1528        | 1532       | 1536       | 1574       |
| 67       | neasured                                             |    |                          |              |                         |   | ±27      | 6∓         | ±20        | ±45          | ±29          | ±7           | ±33         | ±7         | 6年         | ±7         | ±10          | ±18        | ±19        | ±15        | ±24        | +8         | ±7              | ±13        | ±17         | $\pm 1.8$  | ±28         | ±12        | ±14        | ±19        |
| 147      | orrected using 1                                     |    |                          | 07Pb*/206Pb* | ate (Ma) $\pm 1\sigma$  |   | 351      | 280        | 387        | 372          | 212          | 376          | 392         | 476        | 427        | 498        | 491          | 487        | 514        | 488        | 498        | 492        | 518             | 543        | 505         | 528        | 515         | 519        | 517        | 549        |
| 14 1     | ion Pb cc                                            |    |                          | 2            | p                       |   | 17 1     | 11         | 12 1       | 35 1         | 37 1         | 25 1         | 27 1        | 13 1.      | 17 1.      | 13 1       | 21 1.        | 17 1.      | 20 1       | 16 1.      | 18 1.      | 15 1.      | 19 1            | 14 1       | 27 1        | 17 1       | 20 1        | 17 1       | 22 1       | 24 1       |
| 1133 ±   | All ages are comn                                    |    |                          | 206Pb*/238U  | date (Ma) $\pm 1\sigma$ |   | 1201 ±   | 1202 ±     | 1237       | 1285 ±       | 1288 ±       | 1304 ±       | 1340        | 1379 ±     | 1384 ±     | 1400 ±     | 1447         | 1450 ±     | 1466 ±     | 1470       | 1496       | 1496 ±     | 1502 ±          | 1508 ±     | 1527 ±      | 1530 ±     | 1538 ±      | 1542 ±     | 1551 ±     | 1592 ±     |
| 0.03     | roportions.                                          |    | continued                | 204          | (%)                     |   | 0.22     | 0.03       | 0.21       | 0.10         | 0.05         | 80.0         | 0.25        | .07        | 60.0       | .08        | 0.15         | 0.13       | 0.13       | .02        | .06        | 90.0       | .04             | 0.06       | 0.04        | .07        | 0.24        | 0.04       | .08        | 0.12       |
| 0.10     | adiogenic p                                          |    | s ROG13/10               | 232Th 1      | 238U 0                  |   | 0.26 (   | 0.19 0     | 0.25       | 0.32 0       | 0.19 0       | 0.32         | 0.26        | 0.28 0     | 0.30 0     | 0.28       | 0.29 0       | 0.21       | 0.29 0     | 0.40       | 0.28 0     | 0.31 0     | 0.29 0          | 0.33 (     | 0.32        | 0.25       | 0.29 0      | 0.29 (     | 0.29       | 0.27       |
| 119      | Pb* indicate  <br>ability plots                      |    | s from sample            | 232Th        | (mdd)                   |   | 170      | 291        | 158        | 384          | 262          | 278          | 118         | 187        | 136        | 177        | 115          | 97         | 187        | 337        | 172        | 141        | 169             | 213        | 203         | 116        | 137         | 185        | 168        | 135        |
| 1208     | e indicated.<br>d from prob                          |    | ts for zircons           | 238U         | (mdd)                   |   | 653      | 1519       | 642        | 1186         | 1384         | 862          | 462         | 662        | 454        | 641        | 398          | 454        | 641        | 848        | 610        | 457        | 584             | 635        | 638         | 463        | 479         | 634        | 578        | 496        |
| 13-10_r7 | 1-sigma (abs) or % when<br>LR- Light rim, * excluded |    | SHRIMP analytical result | Spot         | no.                     |   | 13-10_r3 | R101-6-1.2 | R102-2-1.1 | R101-2.3-1.3 | R101-2.3-1.2 | R102-4.5-1.2 | R102-12-1.2 | R102-1-1.2 | R102-7-1.1 | R102-7-1.2 | R101-2.3-1.1 | R101-1-1.1 | R102-1-1.1 | R101-6-1.1 | R101-4-1.1 | R101-8-1.3 | R101-8-1.1      | R101-5-1.1 | R102-10-1.1 | R101-1-1.2 | R102-10-1.2 | R101-4-1.2 | R102-3-1.1 | R101-8-1.2 |
| RE       | Errors are<br>Dark rim, l                            |    | Table S1: 5              | Texture      | IJ                      |   | RE *     | RE *       | RE *       | RE           | RE           | C *          | С           | C *        | С          | RE *       | RE           | С          | С          | С          | RE         | С          | RE              | c          | С           | С          | С           | c          | С          | c          |

|                                                    |                        | Ap           | per                     | ndi. | x E    |        |         |        |        | _      |        |        |         | Sı     | ıpp     | olen | ner                    | itai         | ry l                    | nfc    | orm              | ati         | on.    | for    | · Cl   | hap    | oter   | • 5                                                |           |
|----------------------------------------------------|------------------------|--------------|-------------------------|------|--------|--------|---------|--------|--------|--------|--------|--------|---------|--------|---------|------|------------------------|--------------|-------------------------|--------|------------------|-------------|--------|--------|--------|--------|--------|----------------------------------------------------|-----------|
| sd, DR-                                            |                        | Disc.        | (%)                     |      | +3     | -2     | +3      | 9+     | -2     | +8     | L+     | -7     | -7      | +1     | -1      |      |                        | Disc.        | (%)                     | +3     | +2               | -2          | +2     | -13    | +7     | -1     | +3     | ed, DR-                                            |           |
| ctor zone                                          |                        | n            |                         |      | 4.2    | 2.9    | 1.6     | 2.8    | 2.6    | 2.5    | 4.1    | 5.1    | 4.2     | 1.6    | 2.0     |      |                        | n            |                         | 2.2    | 1.2              | 2.5         | 1.9    | 1.6    | 2.3    | 2.5    | 2.1    | ctor zone                                          |           |
| allised, S-Se                                      |                        | 207Pb*/235   | 主 %                     |      | 1.44   | 1.46   | 1.53    | 1.59   | 1.69   | 2.08   | 2.08   | 1.93   | 2.92    | 3.30   | 3.68    |      |                        | 207Pb*/235   | + %                     | 1.49   | 1.51             | 1.54        | 1.60   | 1.53   | 1.70   | 1.66   | 1.72   | allised, S-Se                                      |           |
| E-Recryst                                          |                        | Pb*          |                         |      | 3.8    | 2.6    | 1.0     | 2.2    | 1.7    | 2.2    | 3.3    | 4.6    | 4.0     | 0.6    | 0.7     |      |                        | Pb*          |                         | 0.6    | 0.6              | 1.9         | 0.8    | 1.1    | 0.6    | 2.2    | 1.5    | E-Recryst                                          |           |
| , C-Core, Rl                                       |                        | 207Pb*/206   | ± %                     |      | 0.070  | 0.069  | 0.071   | 0.073  | 0.072  | 0.080  | 0.080  | 0.074  | 0.086   | 0.093  | 0.096   |      |                        | 207Pb*/206   | ∓ %                     | 0.070  | 0.071            | 0.070       | 0.072  | 0.068  | 0.074  | 0.072  | 0.074  | , C-Core, RI                                       |           |
| b. R-Rim                                           |                        | *            |                         |      | 1.7    | 1.2    | 1.2     | 1.7    | 2.0    | 1.2    | 2.5    | 2.3    | 1.3     | 1.4    | 1.9     |      |                        | *            |                         | 2.1    | 1.1              | 1.6         | 1.7    | 1.2    | 2.2    | 1.3    | 1.4    | b. R-Rim                                           |           |
| non 206P                                           |                        | 8U/206Pb     | %                       |      | 69     | 1      | 3       | 0      | 68     | 1      | 0      | 0      | 90      | 68     | 52      |      |                        | 8U/206Pb     | %                       | 3      | 9                | 0           | 0      | 3      | 96     | 8      | 1      | non 206P                                           | Π         |
| of comr                                            |                        | 23           | ÷ 0                     | _    | 6.6    | 6.5    | 6.4     | 6.3    | 5.8    | 5.3    | 5.3    | 5.3    | 4.0     | 3.8    | 3.6     | _    |                        | 23           | Ť                       | 6.5    | 6.4              | 6.3         | 6.2    | 6.1    | 6.0    | 5.9    | 5.9    | of comr                                            |           |
| 04 is %                                            |                        | 235U         | $) \pm 1\sigma$         |      | ±38    | ±26    | ±15     | ±27    | ±26    | ±29    | ±47    | ±56    | ±58     | ±23    | ±32     |      |                        | 235U         | $) \pm 1\sigma$         | ±20    | ±12              | ±23         | ±19    | ±15    | ±23    | ±25    | ±21    | 04 is %                                            |           |
| 1 204Pb. f2                                        |                        | 207Pb*//     | date (Ma                |      | 906    | 915    | 941     | 967    | 1004   | 1142   | 1141   | 1092   | 1388    | 1482   | 1566    |      |                        | 207Pb*//     | date (Ma                | 925    | 934              | 945         | 696    | 943    | 1007   | 993    | 1016   | 1 204Pb. f2                                        |           |
| measured                                           |                        |              |                         |      | ±79    | ±53    | ±21     | ±44    | ±35    | ±43    | ∓65    | ±92    | ±76     | ±11    | ±14     |      |                        |              |                         | ±11    | $\pm 13$         | ±38         | ±17    | ±22    | ±12    | ±44    | ±29    | measure                                            |           |
| orrected using                                     |                        | 207Pb*/206Pb | late (Ma) $\pm 1\sigma$ |      | 924    | 901    | 962     | 1006   | 988    | 1198   | 1194   | 1051   | 1339    | 1490   | 1556    |      |                        | 207Pb*/206Pb | late (Ma) $\pm 1\sigma$ | 941    | 949              | <b>)</b> 32 | 086    | 872    | 1055   | 986    | 1036   | orrected using                                     |           |
| non Pb c                                           |                        |              |                         |      | ±15 9  | ±10 5  | ±11 6   | ±15 1  | ±18 9  | ±13 1  | ±25    | ±24    | ±16 ]   | ±19 1  | ±27 ] 1 |      |                        |              |                         | ±18 9  | 5 6 <del>1</del> | ±15 5       | ±16 9  | ±11 8  | ±20 1  | ±12 9  | ±13 1  | non Pb c                                           | $\square$ |
| All ages are com                                   |                        | 206Pb*/238U  | date (Ma) $\pm 1\sigma$ |      | : 668  | 921    | 932     | 950 :  | 1011   | 1113   | 1113   | 1114   | 1420    | 1476   | 1574 :  |      |                        | 206Pb*/238U  | date (Ma) $\pm 1\sigma$ | 919    | 928              | 950 :       | 964    | 975    | 985    | . 966  | 1007   | All ages are com                                   |           |
| portions.                                          |                        | 4            | -                       |      |        | 0      | 5       | 0      |        |        | 5      |        | 5       | 0      |         |      |                        | 4            | -                       |        | 0                |             |        | 3      | 9      |        | 4      | portions.                                          | Н         |
| enic pro                                           | 13/2                   | f20          | (%)                     |      | ;      | 0.3    | 0.2     | 0.0    | 0.1    | :      | 0.0    | :      | 0.1     | 0.1    | :       |      | 14/5                   | f20          | %)                      | :      | 0.0              | :           | ;      | 0.1    | 0.0    | ;      | 0.0    | enic proj                                          |           |
| te radiog                                          | ple ROG                | 232Th        | 238U                    |      | 2.79   | 1.08   | 0.45    | 0.54   | 0.18   | 0.12   | 0.28   | 1.02   | 0.40    | 0.35   | 0.43    |      | ple ROG                | 232Th        | 238U                    | 0.14   | 0.03             | 0.09        | 0.04   | 0.04   | 0.02   | 0.02   | 0.03   | te radiog                                          |           |
| . Pb* indica<br>bability plot                      | ns from sam            | 232Th        | (mdd)                   |      | 116    | 196    | 218     | 103    | 40     | 21     | 92     | 80     | 69      | 136    | 91      |      | ns from sam            | 232Th        | (mdd)                   | 116    | 17               | 60          | 23     | 23     | 18     | 11     | 17     | . Pb* indica<br>bability plot                      |           |
| re indicated<br>ed from pro                        | lts for zirco          | 238U         | (mdd)                   |      | 42     | 182    | 482     | 189    | 222    | 185    | 332    | 78     | 174     | 392    | 209     |      | lts for zirco          | 238U         | (mdd)                   | 805    | 595              | 662         | 629    | 654    | 890    | 756    | 543    | re indicated<br>ed from pro                        | -         |
| 1-sigma (abs) or % whe<br>LR- Light rim, * exclude | SHRIMP analytical resu | Spot         | no.                     |      | 13-2_8 | 13-2_4 | 13-2_10 | 13-2_7 | 13-2_3 | 13-2_2 | 13-2_5 | 13-2_9 | 13-2_11 | 13-2_6 | 13-2_12 |      | SHRIMP analytical resu | Spot         | no.                     | 14-5_1 | 14-5_8           | 14-5_3      | 14-5_9 | 14-5_7 | 14-5_4 | 14-5_2 | 14-5_6 | 1-sigma (abs) or % whe<br>LR- Light rim, * exclude |           |
| Errors are<br>Dark rim, 1                          | Table S1: 5            | Texture      | D                       |      | s      | DR     | DR      | LR     | RE     | С      | С      | RE     | С       | RE     | с       |      | Table S1: 5            | Texture      | Ð                       | RE     | RE               | S           | RE     | RE *   | RE *   | RE     | s      | Errors are<br>Dark rim, 1                          |           |
| Table S1              | : SHRIMP analytical res                               | ults for zirco                 | ns from sam                      | ple ROG14/         | /5 continued |                          |          |                            |          |             |             |           |           |              |        |               |           |         |             |
|-----------------------|-------------------------------------------------------|--------------------------------|----------------------------------|--------------------|--------------|--------------------------|----------|----------------------------|----------|-------------|-------------|-----------|-----------|--------------|--------|---------------|-----------|---------|-------------|
| Texture               | Spot                                                  | 238U                           | 232Th                            | 232Th              | f204         | 206Pb*/238U              |          | 207Pb*/206Pb*              |          | 207Pb*/23   | 5U          | 238U/2061 | Pb*       | 207Pb*/20    | 6Pb*   | 207Pb*/23     | 85U       | Disc.   |             |
| D                     | no.                                                   | (mqq)                          | (mdd)                            | 238U               | (%)          | date (Ma) $\pm 1 \sigma$ |          | date (Ma) $\pm  1  \sigma$ |          | date (Ma) : | Ε lσ        | ∓ %       |           | ∓ %          |        | ∓ %           |           | (%)     | Ŀ           |
|                       |                                                       |                                |                                  |                    |              |                          |          |                            |          |             |             |           |           |              |        |               |           |         | 1 <i>pp</i> |
| s                     | 14-5_5                                                | 526                            | 18                               | 0.03               | 0.04         | 1025                     | ±15      | 988                        | ±14      | 1013        | ±18         | 5.80      | 1.6       | 0.072        | 0.7    | 1.71          | 1.8       | 4       | oen         |
|                       |                                                       |                                |                                  |                    |              |                          |          |                            |          |             |             |           |           |              |        |               |           |         | dix         |
| Table S1              | : SHRIMP analytical res                               | ults for zirco                 | ns from sam                      | ple ROG14/         | 8/           |                          |          |                            |          |             |             |           |           |              |        |               |           |         | E           |
| Texture               | Spot                                                  | 238U                           | 232Th                            | 232Th              | f204         | 206Pb*/238U              |          | 207Pb*/206Pb*              |          | 207Pb*/23   | 5U          | 238U/2061 | Pb*       | 207Pb*/20    | 6Pb*   | 207Pb*/23     | 85U       | Disc.   |             |
| IJ                    | no.                                                   | (mdd)                          | (mdd)                            | 238U               | (%)          | date (Ma) $\pm 1 \sigma$ |          | date (Ma) $\pm  1  \sigma$ |          | date (Ma) = | Ε lσ        | 7 %       |           | ∓ %          |        | = %           |           | (%)     |             |
| R                     | R14-8-22.2                                            | 215                            | 143                              | 0.66               | -            | 913                      | ±10      | 875                        | ±30      | 902         | ±17         | 6.57      | 1.2       | 0.068        | 1.4    | 1.43          | 1.9       | -5      |             |
| R                     | R14-8-23.2                                            | 253                            | 148                              | 0.59               | -            | 916                      | ±12      | 957                        | ±21      | 928         | ±17         | 6.55      | 1.4       | 0.071        | 1.0    | 1.49          | 1.8       | +5      |             |
| R                     | R14-8-2.2                                             | 351                            | 254                              | 0.72               | -            | 922                      | $\pm 10$ | 921                        | ±19      | 922         | ±14         | 6.50      | 1.1       | 0.070        | 6.0    | 1.48          | 1.5       | -0      |             |
| RE                    | R14-8-26.2                                            | 108                            | 33                               | 0.30               | -            | 926                      | ±12      | 925                        | ±41      | 926         | ±22         | 6.47      | 1.3       | 0.070        | 2.0    | 1.49          | 2.4       | 0-      |             |
| RE                    | R14-8-2.1                                             | 132                            | 34                               | 0.26               | 0.02         | 930                      | ±11      | 966                        | ±61      | 950         | ±31         | 6.44      | 1.3       | 0.072        | 3.0    | 1.55          | 3.3       | L+      |             |
| RE                    | R14-8-10.2                                            | 108                            | 30                               | 0.28               | 0.06         | 931                      | ±12      | 956                        | ±51      | 938         | ±27         | 6.44      | 1.4       | 0.071        | 2.5    | 1.52          | 2.8       | +3      |             |
| RE                    | R14-8-14.1                                            | 138                            | 44                               | 0.32               | 0.05         | 938                      | ±11      | 1021                       | ±32      | 963         | ±20         | 6.39      | 1.3       | 0.073        | 1.6    | 1.58          | 2.0       | 6+      | Suj         |
| RE                    | R14-8-1.2                                             | 202                            | 89                               | 0.44               | 0.29         | 940                      | ±11      | 889                        | ±33      | 925         | ±19         | 6.37      | 1.2       | 0.069        | 1.6    | 1.49          | 2.0       | -6      | ppl         |
| RE                    | R14-8-6.1                                             | 188                            | 57                               | 0.30               | -            | 941                      | ±11      | 939                        | ±24      | 940         | ±16         | 6.36      | 1.2       | 0.070        | 1.2    | 1.52          | 1.7       | -0      | em          |
| RE                    | R14-8-20.1                                            | 331                            | 149                              | 0.45               | 0.12         | 942                      | $\pm 10$ | 983                        | $\pm 18$ | 954         | ±14         | 6.36      | 1.1       | 0.072        | 0.9    | 1.56          | 1.5       | +5      | ent         |
| RE                    | R14-8-26.1                                            | 137                            | 39                               | 0.29               | 0.18         | 946                      | ±11      | 1008                       | ±44      | 964         | ±24         | 6.33      | 1.3       | 0.073        | 2.2    | 1.59          | 2.5       | L+      | ary         |
| RE                    | R14-8-7.2                                             | 145                            | 43                               | 0.29               | 0.15         | 952                      | ±11      | 1012                       | ±42      | 970         | ±23         | 6.28      | 1.3       | 0.073        | 2.1    | 1.60          | 2.4       | 9+      | ) In        |
| RE                    | R14-8-21.1                                            | 472                            | 41                               | 0.09               | 0.32         | 954                      | ±14      | 980                        | ±26      | 962         | ±20         | 6.27      | 1.6       | 0.072        | 1.3    | 1.58          | 2.1       | +3      | for         |
| RE                    | R14-8-1.1                                             | 161                            | 53                               | 0.33               | 0.09         | 955                      | ±11      | 961                        | ±28      | 957         | $\pm 18$    | 6.26      | 1.2       | 0.071        | 1.3    | 1.57          | 1.8       | +1      | ma          |
| RE                    | R14-8-3.1                                             | 107                            | 31                               | 0.29               | 0.11         | 960                      | ±20      | 1002                       | ±47      | 973         | ±32         | 6.23      | 2.3       | 0.073        | 2.3    | 1.61          | 3.3       | +5      | tio         |
| RE                    | R14-8-24.2                                            | 157                            | 49                               | 0.31               | -            | 965                      | ±15      | 1013                       | ±26      | 980         | ±21         | 6.19      | 1.7       | 0.073        | 1.3    | 1.62          | 2.1       | +5      | n f         |
| RE                    | R14-8-12.2                                            | 297                            | 124                              | 0.42               | -            | 965                      | $\pm 10$ | 961                        | ±21      | 964         | ±15         | 6.19      | 1.2       | 0.071        | 1.0    | 1.58          | 1.6       | -0      | or (        |
| RE                    | R14-8-7.1                                             | 115                            | 31                               | 0.27               | 0.20         | 966                      | ±12      | 936                        | ±45      | 957         | ±25         | 6.19      | 1.4       | 0.070        | 2.2    | 1.57          | 2.6       | -3      | Ch          |
| RE                    | R14-8-13.1                                            | 136                            | 41                               | 0.30               | 0.03         | 977                      | ±12      | 956                        | ±40      | 970         | ±23         | 6.11      | 1.3       | 0.071        | 2.0    | 1.60          | 2.4       | -2      | apt         |
| Errors at<br>Dark rim | re 1-sigma (abs) or % wh<br>1, LR- Light rim, * exclu | tere indicated<br>ded from pro | l. Pb* indicat<br>bability plots | te radiogenie<br>s | c proportion | s. All ages are con      | tmon Pb  | corrected using 1          | measured | 204Pb. f20⁄ | t is % of c | ommon 206 | opb. R-Ri | m, C-Core, I | Recrys | tallised, S-S | ector zoi | ed, DR- | er 5        |
|                       |                                                       |                                |                                  |                    |              |                          |          |                            |          |             |             |           |           |              |        |               |           |         |             |
|                       |                                                       |                                |                                  |                    |              |                          |          |                            |          |             |             |           |           |              |        |               |           |         |             |
|                       |                                                       |                                |                                  |                    |              |                          |          |                            |          |             |             |           |           |              |        |               |           |         | _           |

|                               |             | 1                       | 4 <i>p</i> j | oen       | dix        | E          |           |            |            |            |            |            |            | Sı                                                    | upp | plementary Information for Chapter 5 |
|-------------------------------|-------------|-------------------------|--------------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|-------------------------------------------------------|-----|--------------------------------------|
|                               | Disc.       | (%)                     |              | L+7       | +1         | 9+         | -3        | -10        | +4         | +1         | -1         | 0-         | -6         | ed, DR-                                               |     |                                      |
|                               | D           |                         |              | 2.1       | 2.8        | 2.4        | 2.6       | 2.1        | 2.9        | 1.5        | 1.8        | 1.4        | 4.1        | ctor zon                                              |     |                                      |
|                               | 207Pb*/235  | ± %                     |              | 1.68      | 1.64       | 1.70       | 1.63      | 1.63       | 1.73       | 1.71       | 1.72       | 1.77       | 1.75       | allised, S-Se                                         |     |                                      |
|                               | 6Pb*        |                         |              | 1.1       | 1.5        | 1.6        | 1.9       | 1.6        | 2.1        | 6.0        | 1.4        | 0.8        | 3.7        | Recryst                                               |     |                                      |
|                               | 207Pb*/20   | ± %                     |              | 0.074     | 0.072      | 0.074      | 0.071     | 0.070      | 0.074      | 0.073      | 0.073      | 0.074      | 0.072      | n, C-Core, l                                          |     |                                      |
|                               | *0          |                         |              | 1.8       | 2.4        | 1.8        | 1.7       | 1.3        | 2.0        | 1.2        | 1.2        | 1.2        | 1.8        | b. R-Rir                                              |     |                                      |
|                               | 238U/206P   | ∓ %                     |              | 6.09      | 6.08       | 6.04       | 6.02      | 5.92       | 5.91       | 5.89       | 5.85       | 5.73       | 5.68       | mmon 206F                                             |     |                                      |
|                               |             | ь                       |              | ±21       | ±28        | ±24        | ±25       | ±20        | ±30        | ±15        | ±18        | ±15        | ±42        | s % of co                                             |     |                                      |
|                               | 07Pb*/235U  | ate (Ma) ± 1            |              | F 000     | 84         | F          | 81 ±      | F 08       | 118 ∃      | 013        | 016 ∃      | 036 ∃      | 027 ∃      | )4Pb. f204 is                                         |     |                                      |
|                               | 5           | 9                       |              | 23 1      | 30 9       | 32 1       | 38 9      | 32 9       | 42 1       | 1          | 27 1       | 1          | 75 1       | asured 20                                             |     |                                      |
|                               | 6Pb*        | E lσ                    | $\vdash$     | Ŧ         | Ĥ          | Ĥ          | Ĥ         | Ĥ          | 7          | Ŧ          | Ŧ          | Ŧ          | Ĥ          | sing mea                                              |     |                                      |
|                               | 207Pb*/20   | date (Ma) ⊧             |              | 1044      | 992        | 1050       | 960       | 922        | 1041       | 1019       | 1012       | 1035       | 066        | corrected us                                          |     |                                      |
|                               |             |                         |              | ±16       | ±22        | ±16        | ±16       | ±12        | ±19        | ±11        | ±11        | ±11        | ±17        | nmon Pb                                               |     |                                      |
|                               | 206Pb*/238U | date (Ma) $\pm 1\sigma$ |              | 981       | 981        | 988        | 991       | 1007       | 1007       | 1010       | 1017       | 1036       | 1045       | . All ages are cor                                    |     |                                      |
| L                             | f204        | (%)                     |              | :         | :          | 0.04       | :         | 0.03       | 0.36       | 0.10       | 0.07       | 0.00       | :          | proportions                                           |     |                                      |
| 1- DOCI 4/6                   | 232Th       | 238U                    |              | 0.35      | 0.28       | 0.28       | 0.20      | 0.31       | 0.37       | 0.50       | 0.51       | 0.50       | 0.25       | radiogenic                                            |     |                                      |
| 5                             | 232Th       | (mdd)                   |              | 68        | 42         | 32         | 135       | 45         | 75         | 138        | 161        | 137        | 4          | Pb* indicate<br>ability plots                         |     |                                      |
|                               | 238U        | (mdd)                   |              | 192       | 147        | 113        | 679       | 143        | 200        | 277        | 312        | 276        | 173        | e indicated.<br>d from prob                           |     |                                      |
| 4 Issistication of the second | Spot        | no.                     |              | R14-8-4.2 | R14-8-23.1 | R14-8-25.1 | R14-8-5.1 | R14-8-27.2 | R14-8-18.2 | R14-8-10.1 | R14-8-18.1 | R14-8-25.2 | R14-8-19.1 | 1-sigma (abs) or % where<br>LR- Light rim, * excluded |     |                                      |
| Table 01.                     | Texture     | 9                       |              | RE        | RE         | RE         | C (S)     | RE *       | RE         | RE         | RE         | RE         | RE         | Errors are<br>Dark rim,                               |     |                                      |

| _               | <br>1          | 4 <i>pp</i> | oen             | dix          | : E          |                         | _ | _          |            |         | _         |           | St        | upp       | ler        | ner     | itai       | y 1     | nfc     | orm            | ati     | on <sub>.</sub> | for     | · Cl    | hap     | oter | 5 | <br> |
|-----------------|----------------|-------------|-----------------|--------------|--------------|-------------------------|---|------------|------------|---------|-----------|-----------|-----------|-----------|------------|---------|------------|---------|---------|----------------|---------|-----------------|---------|---------|---------|------|---|------|
|                 |                |             |                 |              | Disc.        | U-Pb %                  |   | +1         | 0-         | 0+      | +1        | -1        | 0+        | -1        | 0+         | 0-      | -0         | 0-      | 0-      | +1             | -0      | 0-              | 0-      | +1      | 0+      |      |   |      |
|                 |                |             |                 |              | Disc.        | Pb-Pb<br>%              |   | -2         | 0+         | 0-      | -3        | +3        | -         | +3        | -0         | +       | 0+         | +1      | +1      | - <del>,</del> | 0+      | 0+              | 0+      | -3      |         |      |   |      |
|                 |                |             |                 |              | 35U          |                         |   | 2.3        | 2.0        | 1.7     | 1.2       | 1.1       | 1.2       | 1.2       | 1.2        | 1.5     | 1.1        | 1.3     | 1.3     | 1.4            | 1.3     | 1.1             | 1.6     | 1.2     | 1.2     |      |   |      |
|                 |                |             |                 |              | 207Pb*/2     | ± %                     |   | 1.561      | 1.644      | 1.643   | 1.635     | 1.696     | 1.676     | 1.738     | 1.729      | 1.746   | 1.739      | 1.745   | 1.753   | 1.729          | 1.759   | 1.765           | 1.770   | 1.759   | 1.774   |      |   |      |
|                 |                |             |                 |              | 6Pb*         |                         |   | 2.0        | 1.7        | 1.0     | 0.6       | 0.3       | 0.4       | 0.4       | 0.5        | 1.0     | 0.4        | 0.4     | 0.5     | 0.8            | 0.5     | 0.4             | 0.9     | 0.5     | 0.4     |      |   |      |
|                 |                |             |                 |              | 207Pb*/2(    | + %                     |   | 0.071      | 0.072      | 0.072   | 0.071     | 0.073     | 0.072     | 0.074     | 0.073      | 0.074   | 0.073      | 0.074   | 0.074   | 0.073          | 0.074   | 0.074           | 0.074   | 0.073   | 0.074   |      |   |      |
|                 |                |             |                 |              | 6Pb*         |                         |   | 1.2        | 1.1        | 1.3     | 1.1       | 1.0       | 1.1       | 1.1       | 1.0        | 1.2     | 1.0        | 1.2     | 1.2     | 1.1            | 1.2     | 1.1             | 1.3     | 1.2     | 1.2     |      |   |      |
|                 |                |             |                 |              | 238U/20      | ± %                     |   | 6.23       | 6.04       | 6.04    | 6.02      | 5.97      | 5.95      | 5.88      | 5.84       | 5.82    | 5.82       | 5.81    | 5.79    | 5.79           | 5.78    | 5.76            | 5.75    | 5.72    | 5.72    |      |   |      |
|                 |                |             |                 |              |              |                         |   | ±11        | ±10        | ±16     | ±10       | ±10       | ±10       | ±11       | ±10        | ±16     | ±10        | ±13     | ±13     | ±11            | ±13     | ±10             | ±16     | ±13     | ±13     |      |   |      |
|                 |                |             |                 |              | 7Pb*/235U    | e (Ma) ± 1σ             |   |            | _          | _       |           | 1         | 00        | 3         | 6          | 9       | 3          | 5       | 8       | 03             | 0       | 13              | 4       | 0       | 99      |      |   |      |
|                 |                |             |                 |              | 207          | date                    |   | 955        | 987        | 987     | 984       | 100       | 100       | 102       | 101        | 102     | 102        | 102     | 102     | 102            | 103     | 103             | 103     | 103     | 103     |      |   |      |
| orway           |                |             |                 |              | *0           | ь                       |   | ±40        | ±35        | ±21     | ±13       | τŦ        | 6∓        | 6∓        | ±11        | ±19     | 78         | 6平      | 6∓      | ±16            | ±10     | τŦ              | ±18     | 6∓      | 6∓      |      |   |      |
| galand, SW N    |                |             |                 |              | 207Pb*/206Pt | date (Ma) ± 10          |   | 943        | 988        | 984     | 967       | 1025      | 995       | 1045      | 1019       | 1035    | 1024       | 1029    | 1032    | 1003           | 1033    | 1034            | 1036    | 1015    | 1030    |      |   |      |
| le from Ro      | M. HANI        |             |                 |              |              |                         |   | ±11        | ±10        | ±12     | ±10       | ±10       | ±10       | ±10       | ±10        | ±11     | ±10        | ±11     | ±11     | ±10            | ±11     | ±10             | ±12     | ±11     | ±11     |      |   |      |
| ranes: an examp | N, E. SANSOM   |             |                 |              | :06Pb*/238U  | late (Ma) $\pm 1\sigma$ |   | 90         | 87         | 88      | 16        | 66        | 002       | 013       | 019        | 021     | 022        | 023     | 027     | 027            | 029     | 032             | 034     | 038     | 038     |      |   |      |
| norphic ter     | IOSNHOL        |             |                 | G13/11       | 06Pb 2       | c/sec) d                |   | 092 9      | 778 9      | 475 9   | 206 9     | 2659 9    | 659 1     | 991 1     | 227 1      | 508 1   | 0323 1     | 075 1   | 768 1   | 074 1          | 483 1   | 755 1           | 993 1   | 999 1   | 287 1   |      |   |      |
| n polymetar     | <br>NNY, T. E. |             | s               | sample RC    | 32Th 2       | 138U ((                 |   | 9.08 2     | 1.16 4     | .98 1   | 0.26 5    | 0.94 1    | 0.24 5    | 6.64 4    | 3.65 9     | 3.21 3  | 4.45 1     | .77 6   | 2 60.3  | 9.45 5         | .37 4   | 4.21 8          | .32 1   | .59 6   | 2.19 6  |      |   |      |
| istories ir     | , P. D. KI     |             | b analyse       | zite from    | 5            | 2                       |   | 1          | 3          | 6       | 4         | 1         | 4         | 3         | 1          | 3       | _          | 1       | 2       | 2              | 2       | 1               | 6       | _       | 2       |      |   |      |
| l thermal h     | TAYLOR         |             | AIMP U-P        | s for mona   | 232Th        | (mqq)                   |   | 172241     | 138669     | 15966   | 176549    | 111823    | 213132    | 154191    | 103481     | 11503   | 128676     | 11760   | 12349   | 122856         | 11262   | 106220          | 19378   | 11242   | 14806   |      |   |      |
| to unravel      | K, R. J. M.    |             | nazite SHI      | tical result | 238U         | (mqq)                   |   | 9027       | 4451       | 1599    | 4385      | 10222     | 5296      | 4208      | 7582       | 3581    | 8068       | 6655    | 5918    | 4172           | 4754    | 7474            | 2079    | 7057    | 6758    |      |   |      |
| ssory minerals  | AU, C. CLAR.   |             | All data for mo | SHRIMP analy | Spot         | no.                     |   | R11-1-15.1 | R11-1-11.2 | R31-4.1 | R11-3-3.2 | R11-1-4.1 | R11-3-4.1 | R11-3-6.1 | R11-1-16.1 | R31-3.1 | R11-1-11.1 | R31-1.1 | R31-3.2 | R11-1-8.1      | R31-2.1 | R11-1-7.1       | R31-5.1 | R31-4.2 | R31-6.1 |      |   |      |
| Using acce      | E. BLERE       |             | Table S2: 1     | Table S2: 1  | Texture      | Ð                       |   | с          | E          | С       | Е         | С         | С         | С         | С          | С       | С          | с       | С       | С              | С       | с               | c       | С       | С       |      |   |      |

|                   |               | Ap                       | per | ndi.     | x E      |          |          |          |                     |                   |               |                          | Su | ppl      | ет       | ent | ary               | v In          | iform                    | ation       | i fo     | or (     | hapt        | ter      | 5        |          |  |
|-------------------|---------------|--------------------------|-----|----------|----------|----------|----------|----------|---------------------|-------------------|---------------|--------------------------|----|----------|----------|-----|-------------------|---------------|--------------------------|-------------|----------|----------|-------------|----------|----------|----------|--|
|                   | Disc.         | U-Pb %                   |     | 0+       | +1       | +1       | -0       | -2       | inclu-              |                   | Disc.         | U-Pb %                   |    | 0+       | +1       |     |                   | Disc.         | U-Pb %                   | +1          | -0       | -0       | +1          | +1       | -1       | 0+       |  |
|                   | Disc.         | Pb-Pb<br>%               |     | 0+       | +2       | +5       | -1       | -5       | Sillimanite         |                   | Disc.         | Pb-Pb<br>%               |    | +1       | +2       |     |                   | Disc.         | Pb-Pb<br>%               | +4          | -0       | -1       | +3          | +3       | -3       | +1       |  |
|                   | 235U          |                          |     | 1.7      | 1.6      | 2.1      | 1.7      | 2.6      | in, Inc-            |                   | 235U          |                          |    | 1.4      | 1.5      |     |                   | 235U          |                          | 5.3         | 1.6      | 1.5      | 1.4         | 2.0      | 4.2      | 1.4      |  |
|                   | 207Pb*/       | ∓ %                      |     | 1.634    | 1.654    | 1.693    | 1.712    | 1.733    | dge of gra          |                   | 207Pb*/       | ∓ %                      |    | 1.755    | 1.759    |     |                   | 207Pb*/       | •% ∓                     | 1.418       | 1.414    | 1.427    | 1.481       | 1.484    | 1.450    | 1.484    |  |
|                   | )6Pb*         |                          |     | 1.0      | 1.0      | 1.4      | 1.2      | 2.3      | 3SE, E, Ec          |                   | )6Pb*         |                          |    | 0.7      | 0.8      |     |                   | )6Pb*         |                          | 5.1         | 1.0      | 0.9      | 0.7         | 1.6      | 4.0      | 0.7      |  |
|                   | 207Pb*/2      | ∓ %                      |     | 0.072    | 0.073    | 0.074    | 0.073    | 0.072    | L-Light I           |                   | 207Pb*/2      | ± %                      |    | 0.074    | 0.074    |     |                   | 207Pb*/2      | ∓ %                      | 0.070       | 0.069    | 0.069    | 0.071       | 0.071    | 0.069    | 0.070    |  |
|                   | 6Pb*          |                          |     | 1.4      | 1.3      | 1.6      | 1.2      | 1.2      | C-Core,             |                   | 6Pb*          |                          |    | 1.3      | 1.3      |     |                   | 6Pb*          |                          | 1.4         | 1.2      | 1.2      | 1.2         | 1.3      | 1.2      | 1.2      |  |
|                   | 238U/20       | ∓ %                      |     | 6.07     | 6.06     | 6.02     | 5.86     | 5.73     | sed zone,           |                   | 238U/20       | ± %                      |    | 5.79     | 5.82     |     |                   | 238U/20       | ∓ %                      | 6.79        | 6.71     | 6.66     | 6.56        | 6.55     | 6.55     | 6.51     |  |
|                   |               |                          |     | ±17      | ±16      | ±21      | ±18      | ±26      | Recrystalli         |                   |               |                          |    | ±15      | ±15      |     |                   |               |                          | ±47         | ±14      | ±14      | ±13         | ±19      | ±38      | ±13      |  |
|                   | 235U          | l) ± 1σ                  |     |          |          |          |          |          | o. RE-F             |                   | 235U          | l) ± 1σ                  |    |          |          |     |                   | 235U          | ı) ± 1σ                  |             |          |          |             |          |          |          |  |
|                   | 207Pb*/:      | date (Ma                 |     | 984      | 991      | 1006     | 1013     | 1021     | red 204Pt           |                   | 207Pb*/.      | date (Ma                 |    | 1029     | 1030     |     |                   | 207Pb*/:      | date (Ma                 | 896         | 895      | 006      | 923         | 924      | 910      | 924      |  |
|                   |               |                          |     | ±21      | ±19      | ±28      | ±24      | ±47      | ing measu           |                   |               |                          |    | ±14      | ±16      |     |                   |               |                          | ±105        | ±21      | ±19      | ±14         | ±32      | ±83      | ±14      |  |
|                   | 207Pb*/206Pb* | date (Ma) $\pm 1\sigma$  |     | 985      | 1004     | 1038     | 1008     | 988      | n Pb corrected us   |                   | 207Pb*/206Pb* | date (Ma) $\pm 1\sigma$  |    | 1033     | 1047     |     |                   | 207Pb*/206Pb* | date (Ma) $\pm 1\sigma$  | 923         | 895      | 897      | 943         | 945      | 894      | 930      |  |
|                   |               |                          |     | ±12      | ±12      | ±15      | ±12      | ±11      | are commo           |                   |               |                          |    | ±12      | ±12      |     |                   |               |                          | ±11         | ±10      | ±10      | ±10         | ±11      | ±10      | ±11      |  |
|                   | 206Pb*/238U   | date (Ma) $\pm 1 \sigma$ |     | 983      | 985      | 991      | 1015     | 1037     | ortions. All ages   | ontinued          | 206Pb*/238U   | date (Ma) $\pm 1 \sigma$ |    | 1027     | 1023     |     |                   | 206Pb*/238U   | date (Ma) $\pm 1 \sigma$ | 886         | 895      | 902      | 914         | 915      | 916      | 921      |  |
| OG13/2            | 206Pb         | (c/sec)                  |     | 1115     | 1774     | 2100     | 2478     | 15096    | genic prop          | OG13/2 cc         | 206Pb         | (c/sec)                  |    | 2128     | 2017     |     | OG14/5            | 206Pb         | (c/sec)                  | 912         | 3467     | 2997     | 3425        | 1548     | 2392     | 2269     |  |
| n sample R        | 232Th         | 238U                     |     | 40.09    | 20.19    | 26.16    | 18.65    | 2.25     | licate radio        | n sample R        | 232Th         | 238U                     |    | 29.72    | 38.45    |     | n sample R        | 232Th         | 238U                     | 87.80       | 18.57    | 19.96    | 26.86       | 53.06    | 41.79    | 32.80    |  |
| for monazite fron | 232Th         | (mqq)                    |     | 55406    | 43481    | 58728    | 57887    | 35056    | indicated. Pb* inc  | for monazite fron | 232Th         | (udd)                    |    | 68604    | 91066    |     | for monazite fron | 232Th         | (mqq)                    | 115645      | 80577    | 74116    | 120491      | 112182   | 125868   | 92413    |  |
| ical results      | 238U          | (mqq)                    |     | 1382     | 2153     | 2245     | 3104     | 15563    | r % where           | ical results      | 238U          | (mqq)                    |    | 2309     | 2368     |     | ical results      | 238U          | (mqq)                    | 1317        | 4338     | 3714     | 4486        | 2114     | 3012     | 2818     |  |
| SHRIMP analyt     | Spot          | no.                      |     | R132-5.2 | R132-5.1 | R132-2.2 | R132-4.2 | R132-1.1 | 1-sigma (abs) o     | SHRIMP analyt     | Spot          | no.                      |    | R132-2.1 | R132-1.2 |     | SHRIMP analyt     | Spot          | no.                      | R145-8.1    | R145-7.2 | R145-6.1 | R145-10.2   | R145-6.2 | R145-5.3 | R145-5.1 |  |
| Table S2:         | Texture       | A                        |     | Е        | С        | Е        | С        | С        | Errors are<br>sions | Table S2:         | Texture       | A                        |    | c        | RE       |     | Table S2:         | Texture       | Ð                        | RE<br>(Inc) | RE       | RE       | RE<br>(Inc) | С        | RE       | RE       |  |

|          |          | 1        | 1 <i>pp</i> | pendi       | x E      | 7        |          |          |          |          |                     | Suppler | mentar | y Infe | orma | tion | for ( | Chapt | er 5 |
|----------|----------|----------|-------------|-------------|----------|----------|----------|----------|----------|----------|---------------------|---------|--------|--------|------|------|-------|-------|------|
|          |          |          |             |             |          |          |          |          |          |          | -nl                 |         |        |        |      |      |       |       |      |
| -        | +        | -        | 0+          | Ŧ           | -        | -        | -1       | -1       | 0+       | -2       | anite inc           |         |        |        |      |      |       |       |      |
| -,       | ÷        | -2       | +           | +           | -5       | ή        | -3       | -2       | 0+       | L-       | - Sillima           |         |        |        |      |      |       |       |      |
| 2.0      | 1.5      | 2.5      | 1.5         | 1.3         | 3.5      | 1.4      | 1.8      | 1.6      | 1.4      | 2.6      | ain, Inc            |         |        |        |      |      |       |       |      |
| 1.481    | 1.523    | 1.516    | 1.557       | 1.587       | 1.556    | 1.576    | 1.578    | 1.601    | 1.634    | 1.599    | lge of gr           |         |        |        |      |      |       |       |      |
| 1.6      | 0.9      | 2.2      | 0.8         | 0.6         | 3.3      | 0.7      | 1.3      | 1.0      | 0.6      | 2.2      | SE, E, EG           |         |        |        |      |      |       |       |      |
| 0.069    | 0.071    | 0.070    | 0.071       | 0.072       | 0.070    | 0.071    | 0.071    | 0.071    | 0.072    | 0.070    | ; L- Light B        |         |        |        |      |      |       |       |      |
| 1.2      | 1.2      | 1.2      | 1.2         | 1.2         | 1.2      | 1.3      | 1.2      | 1.2      | 1.2      | 1.2      | C-Core              |         |        |        |      |      |       |       |      |
| 6.44     | 6.43     | 6.35     | 6.29        | 6.27        | 6.18     | 6.17     | 6.16     | 6.11     | 6.07     | 6.03     | lised zone,         |         |        |        |      |      |       |       |      |
| ±19      | ±14      | ±23      | ±14         | ±13         | ±33      | ±14      | ±17      | ±15      | ±14      | ±25      | -Recrystal          |         |        |        |      |      |       |       |      |
| 922      | 940      | 937      | 953         | 965         | 953      | 961      | 962      | 971      | 983      | 970      | red 204Pb. RE       |         |        |        |      |      |       |       |      |
| ±33      | ±18      | ±45      | ±17         | ±12         | ±67      | ±14      | ±27      | ±20      | $\pm 13$ | ±46      | sing measu          |         |        |        |      |      |       |       |      |
| 902      | 959      | 922      | 096         | 166         | 922      | 945      | 944      | 956      | 984      | 926      | on Pb corrected u   |         |        |        |      |      |       |       |      |
| ±11      | ±11      | ±10      | ±11         | ±11         | ±11      | ±11      | ±11      | ±11      | ±11      | ±11      | are comm            |         |        |        |      |      |       |       |      |
| 931      | 931      | 943      | 950         | 954         | 966      | 968      | 696      | 977      | 983      | 066      | ortions. All ages   |         |        |        |      |      |       |       |      |
| 2177     | 2905     | 4136     | 3315        | 3680        | 3331     | 2191     | 4625     | 2526     | 3152     | 3397     | ogenic pro          |         |        |        |      |      |       |       |      |
| 22.19    | 20.72    | 9.53     | 12.42       | 18.21       | 14.94    | 48.21    | 9.96     | 24.91    | 24.46    | 16.60    | idicate radio       |         |        |        |      |      |       |       |      |
| 58985    | 74178    | 43692    | 49432       | 77188       | 59039    | 137698   | 51301    | 73064    | 86992    | 61996    | e indicated. Pb* ii |         |        |        |      |      |       |       |      |
| 2658     | 3580     | 4583     | 3979        | 4238        | 3953     | 2856     | 5152     | 2933     | 3556     | 3735     | or % when           |         |        |        |      |      |       |       |      |
| R145-9.1 | R145-8.2 | R145-5.2 | R145-10.1   | R145-3.2    | R145-1.1 | R145-2.2 | R145-7.1 | R145-3.1 | R145-4.1 | R145-2.1 | l-sigma (abs)       |         |        |        |      |      |       |       |      |
| C        | C (inc)  | C        | C (inc)     | RE<br>(Inc) | c        | RE       | С        | C (inc)  | C (inc)  | C        | Errors are<br>sions |         |        |        |      |      |       |       |      |

| Using accessory  | minerals to unrave | el thermal histories | s in polymetamorp  | hic terranes: an exa | umple from Rogali | and, SW Norway   |                    |                   |                    |                  |            |             |
|------------------|--------------------|----------------------|--------------------|----------------------|-------------------|------------------|--------------------|-------------------|--------------------|------------------|------------|-------------|
|                  |                    |                      |                    |                      |                   |                  |                    |                   |                    |                  |            |             |
| E. BLEREAU, C    | CLARK, R. J. M.    | 1. TAYLOR, P. D.     | KINNY, T. E. JOF   | INSON, E. SANSC      | DM, M. HAND       |                  |                    |                   |                    |                  |            | 1           |
|                  |                    |                      |                    |                      |                   |                  |                    |                   |                    |                  |            | 4 <i>pp</i> |
| Table S3: All da | a for zircon LA-IC | P-MS REE and tr      | ace element analy: | ses                  |                   |                  |                    |                   |                    |                  |            |             |
| Table S3: LA-IC  | P-MS zircon REE    | and trace element    | analyses           |                      |                   |                  |                    |                   |                    |                  |            |             |
|                  | R1118-1.1          | R1114-1.1            | R1112-1.1          | R1136-1.1            | R1131-1.1         | R1131-1.2        | R113-1.2           | R13-2-2           | R13-2-3            | R13-2-4          | R13-2-5    | R13-2-6     |
|                  | Garnet-Silliman.   | ite-Cordierite mig   | matite (ROG13/11   | , 30 km)             |                   |                  |                    | Osumilite-Ortho   | pyroxene-Spinel 1  | migmatite (ROG13 | 3/2, 2 km) |             |
| Position         | RE                 | RE                   | С                  | С                    | RE                | RE               | R                  | С                 | RE                 | DR               | С          | RE          |
| Y                | 455.0              | 992.0                | 450.0              | 564.0                | 823.0             | 395.0            | 1216.0             | 502.0             | 340.0              | 249.2            | 701.0      | 1163.0      |
| Sm               | 3.6                | 10.7                 | 5.2                | 13.7                 | 24.3              | 2.2              | 0.5                | 1.0               | 4.8                | 6.8              | 5.6        | 7.1         |
| Eu               | 0.5                | 2.2                  | 0.2                | 2.0                  | 1.8               | 0.2              | 0.3                | 0.2               | 0.2                | 0.2              | 0.8        | 0.2         |
| Gd               | 26.4               | 32.2                 | 19.1               | 31.7                 | 24.4              | 15.1             | 7.5                | 6.4               | 25.1               | 32.4             | 30.9       | 28.6        |
| Tb               | 6.4                | 9.3                  | 4.6                | 8.2                  | 6.7               | 5.9              | 5.2                | 2.7               | 6.6                | 5.9              | 9.3        | 9.2         |
| Dy               | 53.5               | 109.2                | 50.6               | 71.0                 | 77.8              | 49.3             | 98.9               | 40.5              | 52.5               | 46.6             | 88.0       | 105.1       |
| Но               | 16.9               | 37.2                 | 16.3               | 17.8                 | 26.2              | 11.0             | 40.3               | 18.3              | 13.2               | 9.8              | 28.5       | 46.2        |
| Er               | 68.0               | 161.6                | 63.0               | 71.7                 | 113.4             | 38.8             | 203.3              | 88.0              | 33.3               | 23.6             | 109.3      | 185.6       |
| Tm               | 14.8               | 30.6                 | 10.5               | 17.7                 | 26.0              | 6.8              | 80.8               | 25.0              | 4.5                | 4.1              | 22.5       | 39.3        |
| Yb               | 146.0              | 310.0                | 113.0              | 221.1                | 249.0             | 63.1             | 756.0              | 273.0             | 32.1               | 19.7             | 254.0      | 397.0       |
| Lu               | 26.7               | 57.2                 | 20.4               | 41.5                 | 48.4              | 11.8             | 164.7              | 60.2              | 4.0                | 3.1              | 39.6       | 69.4        |
|                  |                    |                      |                    |                      |                   |                  |                    |                   |                    |                  |            |             |
|                  | R13-2-12           | R13-2-8              | R13-2-7            | R13-2-10             | R13-2-11          | R114-5-1         | R114-5-2           | R114-5-3          | R114-5-5           | R114-5-6         | R114-5-8   | R114-5-9    |
|                  | Osumilite-Ortho    | pyroxene-Spinel 1    | migmatite (ROG1    | 3/2, 2 km) continue  | p                 | Garnet-Silliman. | ite-Cordierite-Spi | nel migmatite (RC | G14/5, at the cont | act)             |            | ma          |
| Position         | С                  | S                    | LR                 | DR                   | С                 | RE               | RE                 | S                 | S                  | S                | S          | RE          |
| Y                | 1706.0             | 1223.0               | 1052.0             | 576.0                | 1363.0            | 183.5            | 124.9              | 111.5             | 155.1              | 154.7            | 116.7      | 140.2       |
| Sm               | 60.0               | 5.8                  | 5.4                | 7.4                  | 11.5              | 13.1             | 9.0                | 2.1               | 3.1                | 1.3              | 1.2        | 3.4         |
| Eu               | 2.4                | 0.0                  | 0.4                |                      | 0.2               | 19.2             | 9.0                |                   | 0.1                | 0.1              |            | 0.02        |
| Gd               | 82.0               | 43.1                 | 35.3               | 26.3                 | 36.7              | 45.3             | 17.2               | 15.7              | 20.9               | 25.9             | 15.7       | 17.6 ID     |
| Tb               | 18.2               | 15.0                 | 12.9               | 7.9                  | 12.1              | 6.0              | 2.7                | 2.5               | 4.0                | 3.9              | 3.5        | 3.7         |
| Dy               | 180.0              | 145.1                | 123.0              | 76.3                 | 127.1             | 27.1             | 19.1               | 14.9              | 24.5               | 26.4             | 19.9       | 21.0        |
| Но               | 69.4               | 45.5                 | 40.9               | 21.5                 | 52.2              | 5.1              | 4.0                | 3.5               | 4.6                | 5.3              | 3.8        | 5.1         |
|                  |                    |                      |                    |                      |                   |                  |                    |                   |                    |                  |            |             |

|                  | 202.0              | E.CCT               | 120.0                 | 4.00        |                |                   | 2.0                |                    |                    |                    | 0.0        |           |
|------------------|--------------------|---------------------|-----------------------|-------------|----------------|-------------------|--------------------|--------------------|--------------------|--------------------|------------|-----------|
| n                | 53.0               | 20.6                | 19.3                  | 9.7         | 42.4           | 1.3               | 0.9                | 1.3                | 1.4                | 1.3                | 1.0        | 2.1       |
| þ                | 467.0              | 150.2               | 159.0                 | 74.7        | 414.0          | 8.2               | 7.9                | 10.5               | 9.3                | 8.2                | 6.4        | 12.0      |
| r                | 87.2               | 22.8                | 21.1                  | 12.7        | 75.1           | 1.1               | 1.1                | 1.5                | 1.3                | 1.3                | 1.0        | 1.5       |
|                  |                    |                     |                       |             |                |                   |                    |                    |                    |                    |            |           |
| alues of - indic | ate trace elements | are below detectic  | on limit of the instr | .ument      | R-Rim, C-Core, | RE-Recrystallised | l, DR-Dark rim, Ll | R-Light rim, S-Sec | tor zoned; Only ce | oncordant data was | s analysed |           |
| able S3 contin   | ued: LA-ICP-MS z   | circon REE and tra- | ce element analyse    | Sć          |                |                   |                    |                    |                    |                    |            |           |
|                  | R148-6.1           | R148-7.1            | R148-7.2              | R148-5.1    | R148-4.2       | R148-2.1          | R148-2.2           | R148-1.1           | R148-1.2           | R148-23.2          | R148-23.1  | R148-22.2 |
|                  | Garnet bearing a   | morthosite (ROG1    | 4/8, at the contact   |             |                |                   |                    |                    |                    |                    |            | c         |
| osition          | RE                 | RE                  | RE                    | s           | RE             | RE                | R                  | С                  | RE                 | R                  | RE         | R         |
|                  | 897.0              | 607.0               | 1440.0                | 185.2       | 1101.0         | 627.0             | 1701.0             | 669.0              | 892.0              | 872.0              | 994.0      | 728.0     |
| в                | 2.5                | 1.3                 | 3.4                   | 4.5         | 3.2            | 2.1               | 0.2                | 1.8                | 1.7                | 3.4                | 4.9        | 3.7       |
| n                | 0.2                | 0.05                | 0.2                   | 0.1         | 0.3            | 0.04              | 0.1                | 0.2                | 0.1                | 0.1                | 0.1        | -         |
| þ                | 18.4               | 9.7                 | 28.9                  | 27.4        | 17.5           | 9.2               | 10.6               | 12.7               | 8.1                | 14.2               | 18.3       | 16.5      |
| 0                | 7.7                | 4.2                 | 12.0                  | 6.0         | 7.1            | 4.8               | 6.6                | 4.0                | 4.8                | 5.2                | 6.0        | 5.1       |
| y                | 88.1               | 51.8                | 130.1                 | 34.1        | 98.6           | 57.5              | 114.2              | 61.8               | 63.3               | 71.3               | 81.0       | 62.3      |
| 0                | 32.2               | 21.3                | 48.1                  | 5.4         | 40.0           | 23.4              | 58.4               | 24.2               | 30.9               | 27.3               | 30.7       | 25.7      |
|                  | 137.1              | 96.8                | 214.1                 | 13.5        | 179.1          | 107.4             | 313.0              | 110.4              | 153.4              | 150.2              | 141.3      | 115.9     |
| п                | 22.5               | 20.3                | 41.8                  | 1.5         | 36.3           | 21.1              | 66.0               | 23.3               | 36.1               | 31.4               | 27.6       | 23.7      |
| 4                | 195.8              | 203.7               | 356.0                 | 11.8        | 368.0          | 226.0             | 669.0              | 227.0              | 351.0              | 308.2              | 253.0      | 235.0     |
| _                | 33.3               | 40.4                | 61.2                  | 1.5         | 64.0           | 42.8              | 123.1              | 43.6               | 72.7               | 62.1               | 46.8       | 48.2      |
|                  |                    |                     |                       |             |                |                   |                    |                    |                    |                    |            |           |
|                  | R148-21.1          | R148-20.1           | R148-19.1             | R148-18.1   | R148-18.2      | R148-14.1         | R148-13.1          | R148-12.2          | R148-10.2          | R148-10.1          | R148-26.1  | R148-26.2 |
|                  | Garnet bearing a   | unorthosite (ROG1   | 4/8, at the contact   | ) continued |                |                   |                    |                    |                    |                    |            |           |
| osition          | RE                 | RE                  | RE#                   | RE          | RE             | RE                | RE                 | RE                 | RE                 | RE                 | RE         | RE        |
|                  | 830.0              | 1719.0              | 536.0                 | 2057.0      | 1350.0         | 955.0             | 956.0              | 2289.0             | 636.0              | 2356.0             | 978.0      | 730.0     |
| n                | 4.3                | 19.7                | 3.8                   | 20.8        | 5.4            | 3.0               | 1.9                | 16.8               | 1.3                | 11.7               | 2.8        | 2.0       |
| T                | 0.2                | 0.2                 | 0.2                   | 0.8         | 0.2            | ı                 | 0.2                | 0.6                | 0.1                | 1.0                | 0.1        | 0.2       |
| q                | 16.2               | 53.2                | 11.5                  | 60.7        | 25.1           | 17.6              | 18.0               | 59.7               | 9.3                | 53.3               | 20.8       | 11.3      |
| (                | 5.2                | 16.3                | 3.6                   | 15.9        | 7.8            | 6.1               | 5.0                | 19.1               | 3.5                | 17.8               | 7.0        | 4.9       |
| <br>             | 65.5               | 180.5               | 48.0                  | 198.7       | 110.7          | 76.5              | 74.4               | 200.7              | 171                | 2105               | 01.0       | 603       |

|      |       | 1    | 4 <i>pp</i> | oen   | dix | E |  |
|------|-------|------|-------------|-------|-----|---|--|
| 24.6 | 124.5 | 26.8 | 273.3       | 55.2  |     |   |  |
| 32.6 | 136.7 | 26.0 | 225.0       | 38.3  |     |   |  |
| 81.4 | 353.0 | 68.3 | 638.0       | 120.7 |     |   |  |
| 20.3 | 95.7  | 19.6 | 180.4       | 36.4  |     |   |  |
| 76.9 | 339.4 | 64.4 | 583.0       | 113.8 |     |   |  |
| 30.1 | 151.4 | 32.6 | 325.6       | 69.8  |     |   |  |
| 29.9 | 149.7 | 31.8 | 310.4       | 67.1  |     |   |  |
| 44.3 | 214.3 | 44.8 | 434.0       | 93.0  |     |   |  |
| 68.5 | 273.2 | 49.5 | 424.0       | 76.7  |     |   |  |
| 16.4 | 80.5  | 15.0 | 148.1       | 31.5  |     |   |  |
| 58.6 | 207.3 | 33.3 | 245.9       | 39.3  |     |   |  |
| 23.9 | 114.0 | 20.2 | 221.0       | 43.4  |     |   |  |
| Но   | Er    | Tm   | Yb          | Lu    |     |   |  |

| Supprementary injormation for Chapter 5 | Supplementary | Information | for | Chapter 5 | <b>,</b> |
|-----------------------------------------|---------------|-------------|-----|-----------|----------|
|-----------------------------------------|---------------|-------------|-----|-----------|----------|

| Ū,      | sing accesso | ory minerals to un | uravel thermal histe | ories in polymetamor   | phic terranes: an exi | umple from Rogals | ind, SW Norway    |                  |            |          |          |          |           |
|---------|--------------|--------------------|----------------------|------------------------|-----------------------|-------------------|-------------------|------------------|------------|----------|----------|----------|-----------|
|         |              |                    |                      |                        |                       |                   |                   |                  |            |          |          |          |           |
| н.      | BLEREAU      | J, C. CLARK, R.    | J. M. TAYLOR, P.     | D. KINNY, T. E. JO.    | HNSON, E. SANSC       | DM, M. HAND       |                   |                  |            |          |          |          |           |
|         |              |                    |                      |                        |                       |                   |                   |                  |            |          |          |          |           |
| Ta      | able S4: All | data for monazite  | : LA-ICP-MS REE      | 3 and trace element ar | 1alyses               |                   |                   |                  |            |          |          |          |           |
| Ta      | able S4: LA  | -ICP-MS monazit    | te REE and trace e   | lement analyses        |                       |                   |                   |                  |            |          |          |          |           |
|         |              | R113-6.1           | R111-11.1            | R111-11.2              | R111-4.1              | R111-7.1          | R113-3.2          | R113-4.1         | R111-15.1  | R31-4.1  | R31-4.2  | R31-3.1  | R31-3.2   |
|         |              | Garnet-Silliman    | iite-Cordierite mig  | matite (ROG13/11, 3    | 0 km)                 |                   |                   |                  |            |          |          |          |           |
| $P_0$   | osition      | С                  | C                    | Е                      | c                     | С                 | н                 | c                | C          | C        | С        | С        | C         |
| ×       |              | 4380               | 2380                 | 6240                   | 9320                  | 20730             | 4570              | 18200            | 15000      | 12990    | 4280     | 22210    | 10100     |
| La      | а            | 105000             | 75600                | 83200                  | 105400                | 112500            | 95200             | 102900           | 107000     | 104800   | 93800    | 106700   | 107600    |
| Ŭ       | a            | 230526             | 230526               | 230526                 | 230526                | 230526            | 230526            | 230526           | 230526     | 230526   | 230526   | 230526   | 230526    |
| Pr      |              | 28230              | 34160                | 32430                  | 27900                 | 27840             | 29960             | 28420            | 27480      | 27380    | 30490    | 28580    | 28130     |
| ž       | p            | 112300             | 144800               | 131200                 | 110100                | 103300            | 119400            | 109200           | 106400     | 104800   | 117400   | 107300   | 105900    |
| Sn      | ш            | 14340              | 18000                | 22450                  | 18160                 | 16420             | 14640             | 14650            | 16000      | 16730    | 14440    | 15970    | 17180     |
| Eu      | n            | 101                | 86                   | 236                    | 309                   | 490               | 77                | 528              | 416        | 389      | 137      | 389      | 351       |
| ğ       | р            | 9570               | 6980                 | 14710                  | 15550                 | 14490             | 7160              | 10780            | 12470      | 13760    | 0069     | 12520    | 14010     |
| Tb      | ۹<br>م       | 771                | 360                  | 1035                   | 1401                  | 1698              | 507               | 1136             | 1310       | 1359     | 488      | 1467     | 1443      |
| D       | y            | 1862               | 753                  | 2181                   | 3570                  | 6000              | 1318              | 4260             | 3868       | 3260     | 1039     | 4020     | 2853      |
| Ή       | .0           | 118                | 53                   | 141                    | 223                   | 504               | 115               | 494              | 362        | 329      | 115      | 530      | 247       |
| Er      | L            | 89                 | 52                   | 122                    | 154                   | 349               | 118               | 597              | 330        | 373      | 152      | 760      | 261       |
| Tn      | m            | 5                  | 4                    | 6                      | 8                     | 16                | 8                 | 50               | 20         | 24       | 10       | 47       | 13        |
| Yt      | p q          | 18                 | 15                   | 33                     | 30                    | 48                | 33                | 207              | 70         | 71       | 28       | 143      | 47        |
| Lu      | n            | 2                  | 1                    | 2                      | 2                     | 2                 | 2                 | 14               | 6          | 9        | 2        | 12       | 6         |
|         |              |                    |                      |                        |                       |                   |                   |                  |            |          |          |          |           |
|         |              | R31-2.1            | R31-1.1              | R31-5.1                | R31-6.1               | R132-1.2          | R132-1.1          | R132-2.1         | R132-2.2   | R132-4.2 | R132-5.1 | R132-5.2 | R145-10.1 |
|         |              | Garnet-Silliman    | ite-Cordierite mig   | matite (ROG13/11, 3    | 0 km) continued       | Osumilite-Ortho   | pyroxene-Spinel 1 | migmatite (ROG1. | 3/2, 2 km) |          |          |          |           |
| Po      | osition      | С                  | С                    | С                      | С                     | RE                | С                 | С                | Е          | С        | С        | Е        | C inc     |
| Υ       |              | 4790               | 13700                | 833                    | 19980                 | 25540             | 48400             | 13660            | 16340      | 24430    | 27800    | 12280    | 2150      |
| 1<br>35 | а            | 102900             | 109600               | 95700                  | 109000                | 100100            | 114000            | 103500           | 100700     | 96400    | 108000   | 101500   | 109400    |
| ്<br>1  | 9            | 230526             | 230526               | 230526                 | 230526                | 230526            | 230526            | 230526           | 230526     | 230526   | 230526   | 230526   | 230526    |
| L       |              |                    |                      |                        |                       |                   |                   |                  |            |          |          |          |           |

|         |          | 1       | 1 <i>pp</i> | pen     | dix    | E      |       |       |      |      |      |                       |                     | Su          | ppl                  | em         | ent   | ary    | ' In     | for     | ma     | itio  | n f   | or     | Ch    | apt   | er.    | 5    |    |  |
|---------|----------|---------|-------------|---------|--------|--------|-------|-------|------|------|------|-----------------------|---------------------|-------------|----------------------|------------|-------|--------|----------|---------|--------|-------|-------|--------|-------|-------|--------|------|----|--|
| 27870   | 103300   | 13270   | 174         | 6610    | 353    | 703    | 57    | 73    | 5    | 22   | 1    |                       |                     | R145-4.1    |                      | C inc      | 2428  | 109700 | 230526   | 29410   | 110300 | 15450 | 131   | 8710   | 510   | 808   | 57     | 50   | 2  |  |
| 31230   | 127400   | 18660   | 715         | 11560   | 698    | 2700   | 325   | 522   | 40   | 177  | 11   |                       |                     | R145-6.2    |                      | С          | 1709  | 82100  | 230526   | 33560   | 138900 | 13500 | 55    | 4363   | 223   | 425   | 38     | 45   | 2  |  |
| 30020   | 120800   | 19210   | 1626        | 15020   | 1461   | 5590   | 796   | 1550  | 155  | 740  | 70   |                       |                     | R145-6.1    |                      | RE         | 4610  | 93100  | 230526   | 30860   | 121100 | 14690 | 74    | 6240   | 426   | 1025  | 106    | 133  | 8  |  |
| 32610   | 139000   | 23950   | 943         | 18040   | 1519   | 5090   | 651   | 1131  | 103  | 450  | 44   | nclusion              |                     | R145-5.3    |                      | RE         | 4780  | 113500 | 230526   | 28070   | 103100 | 15730 | 252   | 10570  | 724   | 1327  | 109    | 103  | 5  |  |
| 30940   | 127800   | 19140   | 1091        | 12820   | 1010   | 3400   | 446   | 776   | 73   | 374  | 39   | dge of grain, Inc-ii  |                     | R145-5.2    |                      | С          | 2418  | 110900 | 230526   | 28320   | 102100 | 13530 | 125   | 6850   | 396   | 703   | 55     | 55   | 3  |  |
| 31060   | 129000   | 20290   | 1272        | 13410   | 1003   | 3047   | 373   | 584   | 49   | 207  | 24   | ystallise zone, E-E   |                     | R145-5.1    |                      | RE         | 3930  | 96800  | 230526   | 29040   | 109200 | 11730 | 47    | 5490   | 379   | 911   | 96     | 126  | 8  |  |
| 30670   | 121400   | 19860   | 4430        | 15980   | 1831   | 8000   | 1368  | 3013  | 380  | 2052 | 299  | C-Core, RE-Recr.      |                     | R145-8.2    |                      | C inc      | 1850  | 107400 | 230526   | 28770   | 105000 | 13770 | 108   | 6860   | 383   | 655   | 43     | 41   | 2  |  |
| 33060   | 138500   | 21270   | 1422        | 13870   | 1278   | 4667   | 692   | 1276  | 126  | 516  | 71   | 3uick et al., 2010).  |                     | R145-8.1    |                      | RE inc     | 1404  | 94100  | 230526   | 31730   | 124900 | 14060 | 46    | 5240   | 241   | 421   | 34     | 42   | 2  |  |
| 27530   | 108800   | 17360   | 391         | 14720   | 1646   | 4550   | 484   | 528   | 30   | 95   | 13   | 0526 ppm (Ce*)(F      | /ses                | R145-7.2    | 4/5, at the contact) | RE         | 1624  | 79600  | 230526   | 34400   | 137300 | 14150 | 37    | 5690   | 284   | 519   | 41     | 52   | 2  |  |
| 9860    | 17000    | 4450    | 1           | 060     | 77     | 36     | 6     | 6     |      |      |      | netric Ce fixed at 23 | trace element analy | 145-7.1     | migmatite (ROG1      |            | 800   | 08900  | 30526    | 8290    | 00610  | 5000  | 37    | 0400   | 00    | 316   | 1      | 5    |    |  |
| 27720 2 | 106400 1 | 16620 1 | 360 7       | 13420 6 | 1349 2 | 3130 3 | 306 1 | 330 2 | 18 1 | 51 7 | 3 1  | ed against stoichion  | monazite REE and    | R145-9.1 R  | -Cordierite-Spinel   | 0          | 874 3 | 108000 | 230526 2 | 27830 2 | 104500 | 12450 | 147 2 | 5640 1 | 299 7 | 584 1 | 17 [ 9 | 59 8 | 3  |  |
| 29140 2 | 113300   | 16750   | 223         | 080     | 728    | 1346   | 120   | 114   |      |      | 3    | elements calibrate    | ued: LA-ICP-MS      | R145-10.2 I | Garnet-Sillimanite   | RE inc (   | 1953  | 0000   | 230526   | 32430   | 125500 | 12250 |       | 1450   | 226   | 517   | 50     | 78   |    |  |
| Pr 2    | I PN     | Sm 1    | Eu 2        | Gd 5    | Tb 7   | Dy     | Ho 1  | Er 1  | Tm 5 | Yb 2 | Lu 3 | Monazite trace        | Table S4 contir     |             |                      | Position I | Y 1   | La 5   | Ce 2     | Pr 3    | I PN   | Sm 1  | Eu 5  | Gd 4   | Tb 2  | Dy 5  | Ho 5   | Er 7 | Tm |  |

|       |     | 1 | 4 <i>p</i> µ | oen                   | dix      | E       |          |           |          |          |          |       |         |        | Su  | ppl  | 'em  | ent | tary  | v In | for | ·mc                   | ation for Chapter 5 |
|-------|-----|---|--------------|-----------------------|----------|---------|----------|-----------|----------|----------|----------|-------|---------|--------|-----|------|------|-----|-------|------|-----|-----------------------|---------------------|
| 6     | 1   |   |              |                       |          |         |          |           |          |          |          |       |         |        |     |      |      |     |       |      |     |                       |                     |
| 7     | 0.4 |   |              |                       |          |         |          |           |          |          |          |       |         |        |     |      |      |     |       |      |     |                       |                     |
| 25    | 5   |   |              |                       |          |         |          |           |          |          |          |       |         |        |     |      |      |     |       |      |     |                       |                     |
| 15    |     |   |              |                       |          |         |          |           |          |          |          |       |         |        |     |      |      |     |       |      |     | clusion               |                     |
| 8     |     |   |              | c                     |          |         |          |           |          |          |          |       |         |        |     |      |      |     |       |      |     | ge of grain, Inc-in   |                     |
| 27    |     |   |              |                       |          |         |          |           |          |          |          |       |         |        |     |      |      |     |       |      |     | stallise zone, E-Ed   |                     |
| 5     | 0.5 |   |              | c                     |          |         |          |           |          |          |          |       |         |        |     |      |      |     |       |      |     | C-Core, RE-Recry      |                     |
| 9     | -   |   |              | ontinued              |          |         |          |           |          |          |          |       |         |        |     |      |      |     |       |      |     | uick et al., 2010). 0 |                     |
|       |     |   | 3145-1.1     | /5, at the contact) c | 0        | 5610    | 108600   | 230526    | 28550    | 111000   | 13950    | 165   | 5400    | 112    | 026 | 137  | 257  | 22  | 112   |      |     | 0526 ppm (Ce*)(Bi     |                     |
|       |     |   | .145-2.1     | migmatite (ROG14      |          | 550     | 05200    | 30526     | 8800     | 11200    | 4620     | 90    | 350     | 39     | 010 | 04   | 47   | 0   | 4     |      |     | netric Ce fixed at 23 |                     |
| 15 1. | -   |   | R145-2.2 R   | -Cordierite-Spinel    | REC      | 3159 4. | 93000 11 | 230526 2. | 32440 2. | 129300 1 | 14950 1. | 35 20 | 5950 8. | 342 5. | 700 | 74 1 | 90 1 | 5 1 | 21 4. | 2 3  |     | ad against stoichion  |                     |
| 28    | 2   |   | R145-3.2     | Garnet-Sillimanite    | RE inc 1 | 3011    | 114600 5 | 230526    | 27910    | 106800   | 14610    | 147 5 | 6860    | 389    | 743 | 20   | 5 06 | 6   | 16    | 1    |     | elements calibrate    |                     |
| Yb dY | Lu  |   |              |                       | Position | Y       | La       | Ce        | Pr       | PN       | Sm       | Eu    | Gd      | Tb     | Dy  | Но   | Er   | Tm  | Yb    | Lu   |     | Monazite trace        |                     |

| Come accessory III |                      |                         | netamorphic terranes: | an example from Kog | alanu, ow indiway |                |              |              |                |              |
|--------------------|----------------------|-------------------------|-----------------------|---------------------|-------------------|----------------|--------------|--------------|----------------|--------------|
|                    |                      |                         |                       |                     |                   |                |              |              |                |              |
| E. BLEREAU, C.     | CLARK, R. J. M. TAY  | TOR, P. D. KINNY, 1     | T. E. JOHNSON, E. S.  | ANSOM, M. HAND      |                   |                |              |              |                |              |
|                    |                      |                         |                       |                     |                   |                |              |              |                |              |
| Table S5: All data | for garnet LA-ICP-MS | REE and trace eleme     | int analyses          |                     |                   |                |              |              |                |              |
|                    |                      |                         |                       |                     |                   |                |              |              |                |              |
| Table S5: LA-ICP-  | MS garnet REE and tr | ace element analyses    |                       |                     |                   |                |              |              |                |              |
|                    | R1311G-1 - 1         | R1311G-1 - 2            | R1311G-1 - 3          | R1311G-1 - 4        | R1311G-2 - 1      | R1311G-2 - 2   | R1311G-2 - 3 | R1311G-2 - 4 | R1311G-2 - 5   | R1311G-3 - 1 |
|                    | Garnet-sillimanite-  | -cordierite migmatite ( | (ROG13/11, 30 km)     |                     |                   |                |              |              |                |              |
| Texture            | Grt 1 Rim            | Grt 1 Rim               | Grt 1 Rim             | Grt 1 Rim           | Grt 1 Core        | Resorbed Grt 1 | Grt 1 Core   | Grt 1 Core   | Resorbed Grt 1 | Grt 2 Core   |
| Y                  | 781.0                | 450.0                   | 1000.0                | 651.0               | 511.0             | 1037.0         | 539.0        | 250.3        | 958.0          | 452.0        |
| Sm                 | 4.3                  | 2.5                     | 6.0                   | 7.0                 | 7.8               | 7.5            | 6.7          | 8.7          | 5.6            | 10.4         |
| Eu                 | 0.1                  | 0.1                     | 0.1                   | 0.1                 | 0.1               | 0.1            | 0.1          | 0.1          | 0.1            | 0.1          |
| Gd                 | 48.8                 | 29.6                    | 55.6                  | 55.4                | 74.1              | 74.0           | 69.1         | 65.8         | 53.2           | 25.2         |
| Tb                 | 19.0                 | 11.9                    | 22.8                  | 17.4                | 23.1              | 28.0           | 22.9         | 14.0         | 20.4           | 6.2          |
| Dy                 | 147.4                | 94.9                    | 198.0                 | 129.2               | 140.1             | 221.0          | 145.0        | 74.2         | 176.7          | 64.9         |
| Но                 | 23.9                 | 15.5                    | 38.8                  | 20.8                | 19.5              | 41.9           | 19.1         | 9.4          | 38.7           | 18.7         |
| Er                 | 44.9                 | 32.2                    | 85.4                  | 44.5                | 30.7              | 92.0           | 31.1         | 16.0         | 101.2          | 70.3         |
| Tm                 | 5.6                  | 3.9                     | 10.3                  | 5.4                 | 3.0               | 10.4           | 3.0          | 1.6          | 14.1           | 12.3         |
| Yb                 | 32.8                 | 23.0                    | 61.2                  | 32.1                | 15.6              | 60.5           | 14.2         | 6.5          | 92.9           | 95.4         |
| Lu                 | 3.6                  | 2.8                     | 8.1                   | 4.0                 | 1.6               | 8.5            | 1.7          | 0.9          | 14.4           | 16.5         |
|                    |                      |                         |                       |                     |                   |                |              |              |                |              |
| SmN                | 29.0                 | 17.0                    | 40.6                  | 47.6                | 53.0              | 51.0           | 45.5         | 59.3         | 38.3           | 70.7         |
| EuN                | 1.7                  | 1.8                     | 2.2                   | 1.5                 | 1.0               | 1.2            | 2.6          | 2.2          | 2.5            | 2.4          |
| GdN                | 248.2                | 150.6                   | 282.8                 | 281.8               | 376.9             | 376.4          | 351.5        | 334.7        | 270.6          | 128.2        |
| TbN                | 523.4                | 326.7                   | 628.1                 | 480.2               | 636.4             | 771.3          | 630.9        | 384.8        | 562.0          | 171.6        |
| DyN                | 607.3                | 391.0                   | 815.8                 | 532.3               | 577.3             | 910.6          | 597.4        | 305.7        | 728.1          | 267.4        |
| HoN                | 429.3                | 279.3                   | 697.8                 | 374.5               | 350.7             | 753.6          | 343.5        | 168.5        | 696.0          | 336.3        |
| ErN                | 282.6                | 202.6                   | 537.4                 | 280.1               | 193.2             | 579.0          | 195.7        | 100.7        | 636.9          | 442.4        |
| TmN                | 229.3                | 162.4                   | 426.4                 | 221.5               | 123.1             | 431.4          | 122.3        | 65.3         | 584.3          | 508.3        |
| YbN                | 201.8                | 141.5                   | 376.6                 | 197.5               | 96.0              | 372.3          | 87.4         | 39.9         | 571.7          | 587.1        |

|       | Ŀ       | 1 <i>pp</i> | pend                                               | ix E                   | E            |                        |            |         |      |     |       |      | Sı     | ıpp   | oler   | ner   | itai   | <u>y l</u> | nfc | orm   | ati | on.   | for    | · Cl   | hap     | oter    | • 5     |         |         |
|-------|---------|-------------|----------------------------------------------------|------------------------|--------------|------------------------|------------|---------|------|-----|-------|------|--------|-------|--------|-------|--------|------------|-----|-------|-----|-------|--------|--------|---------|---------|---------|---------|---------|
| 679.0 | 4.58    | 0.024       | I Spinel, Grt2(Ilm)-                               |                        | R132G-1 - 3  | ite( ROG13/2, 2 km)    | TS         | 11640.0 | 20.3 | 0.3 | 155.3 | 66.0 | 1110.0 | 610.0 | 2850.0 | 518.0 | 3010.0 | 639.0      |     | 138.0 | 4.9 | 789.9 | 1818.2 | 4573.5 | 10971.2 | 17935.8 | 21405.0 | 18523.1 | 26296.3 |
| 590.5 | 2.11    | 0.016       | 1, Grt2(Spl) -Grt2 on                              |                        | R132G-1 - 2  | oxene-spinel migmati   | TS         | 11790.0 | 17.6 | 0.4 | 160.9 | 67.3 | 1122.0 | 620.0 | 2880.0 | 520.0 | 3070.0 | 656.0      |     | 119.6 | 6.6 | 818.4 | 1854.0 | 4623.0 | 11151.1 | 18124.6 | 21487.6 | 18892.3 | 26995.9 |
| 35.8  | 0.12    | 0.011       | Secondary Grt on Grt                               |                        | R132G-1 - 1  | Osumilite-orthopyr     | TS         | 12100.0 | 18.2 | 0.4 | 164.6 | 70.0 | 1190.0 | 641.0 | 3060.0 | 546.0 | 3230.0 | 686.0      |     | 123.7 | 7.3 | 837.2 | 1928.4 | 4903.2 | 11528.8 | 19257.4 | 22562.0 | 19876.9 | 28230.5 |
| 68.7  | 0.25    | 0.013       | r garnet, Grt2(Grt1) -                             |                        | R1311G-3 - 8 |                        | Grt 2 Rim  | 267.0   | 7.8  | 0.1 | 25.3  | 5.7  | 44.1   | 9.1   | 23.4   | 2.8   | 18.6   | 2.1        |     | 53.3  | 2.3 | 128.7 | 156.7  | 181.7  | 163.5   | 147.3   | 116.9   | 114.5   | 86.4    |
| 347.7 | 0.99    | 0.006       | ı; 14/5- Grt1- Primary                             |                        | R1311G-3 - 7 |                        | Grt 2 Rim  | 275.9   | 6.7  | 0.1 | 23.8  | 5.6  | 46.1   | 9.3   | 22.4   | 3.1   | 19.6   | 2.4        |     | 45.8  | 2.0 | 121.1 | 153.4  | 189.9  | 166.9   | 140.9   | 126.9   | 120.6   | 99.2    |
| 66.7  | 0.25    | 0.005       | irt2 - small relic grain                           |                        | R1311G-3 - 6 |                        | Grt 2 Rim  | 309.5   | 9.2  | 0.1 | 24.8  | 6.0  | 48.3   | 10.7  | 28.0   | 4.0   | 24.8   | 3.0        |     | 62.3  | 2.3 | 126.1 | 165.6  | 199.0  | 192.3   | 176.2   | 165.3   | 152.6   | 122.6   |
| 166.3 | 0.70    | 0.009       | l- mineral separate, G                             |                        | R1311G-3 - 5 | ntinued                | Grt 2 Rim  | 280.9   | 7.7  | 0.2 | 22.3  | 5.8  | 45.9   | 9.5   | 24.4   | 3.2   | 20.2   | 2.4        |     | 52.1  | 2.7 | 113.4 | 158.7  | 189.1  | 171.6   | 153.6   | 131.0   | 124.5   | 97.1    |
| 333.7 | 1.33    | 0.013       | ctic garnet; 13/2- Grt<br>grains                   |                        | R1311G-3 - 4 | tOG13/11, 30 km) coi   | Grt 2 Core | 290.3   | 6.8  | 0.1 | 15.4  | 3.8  | 37.0   | 11.3  | 40.4   | 7.2   | 54.8   | 9.3        |     | 46.2  | 1.0 | 78.3  | 105.2  | 152.5  | 202.5   | 254.2   | 296.7   | 337.2   | 384.0   |
| 114.0 | 0.94    | 0.021       | lanosome, Grt2 Perite<br>t, Grt 2- Small garnet    | ce element analyses    | R1311G-3 - 3 | ordierite migmatite (F | Grt 2 Core | 355.0   | 8.3  | 0.1 | 20.0  | 4.9  | 45.3   | 14.4  | 51.2   | 8.9   | 68.6   | 12.6       |     | 56.4  | 1.6 | 101.7 | 133.9  | 186.7  | 259.7   | 322.2   | 366.9   | 422.2   | 517.7   |
| 146.5 | 0.81    | 0.012       | 1 Sillimanite rich, Me.<br>'8- Grt 1- Large garnet | IS garnet REE and trac | R1311G-3 - 2 | Garnet-sillimanite-c   | Grt 2 Core | 299.2   | 7.6  | 0.1 | 17.6  | 4.2  | 40.7   | 12.3  | 43.0   | 7.3   | 57.2   | 9.2        |     | 51.5  | 1.1 | 89.5  | 116.3  | 167.7  | 220.7   | 270.6   | 300.0   | 352.0   | 376.5   |
| LuN   | YbN/GdN | Eu/Eu*      | Textures- 13/11- Grt<br>Grt2 on Ilmenite; 14/      | Table S5: LA-ICP-M     |              |                        | Texture    | Υ       | Sm   | Eu  | Gd    | Tb   | Dy     | Но    | Er     | Tm    | Yb     | Lu         |     | SmN   | EuN | GdN   | TbN    | DyN    | HoN     | ErN     | TmN     | YbN     | LuN     |

|         | 1      | 4 <i>pp</i>             |                        | ıdi.                  | x E         | ;<br>                 | <u> </u>          | I      | <u> </u> |     |       | <u> </u> | _     |       | upp<br>I | ler   | ner   | itai  | ry Ir | 1f01 | rma<br>I | atic  | $\frac{n f}{1}$ | or     | $\frac{Ch}{1}$ | api    | ter    | 5      |        |
|---------|--------|-------------------------|------------------------|-----------------------|-------------|-----------------------|-------------------|--------|----------|-----|-------|----------|-------|-------|----------|-------|-------|-------|-------|------|----------|-------|-----------------|--------|----------------|--------|--------|--------|--------|
| 23.45   | 0.011  | n Spinel, Grt2(Ilm)-    |                        |                       | R145G-2 - 2 |                       | Grt 2             | 207.0  | 4.6      | 0.2 | 18.8  | 4.3      | 30.4  | 7.4   | 26.0     | 4.5   | 36.5  | 5.7   |       | 31.5 | 3.4      | 95.6  | 118.5           | 125.3  | 132.9          | 163.6  | 184.3  | 224.6  | 235.4  |
| 23.08   | 0.014  | t 1, Grt2(Spl) - Grt2 o |                        |                       | R145G-2 - 1 |                       | Grt 2             | 248.7  | 7.2      | 0.2 | 19.5  | 4.5      | 33.8  | 8.7   | 31.5     | 5.9   | 43.6  | 7.2   |       | 48.6 | 2.7      | 99.2  | 123.4           | 139.3  | 156.7          | 198.2  | 245.5  | 268.3  | 295.9  |
| 23.74   | 0.015  | Secondary Grt on Gr     |                        |                       | R145G-1 - 4 | the contact)          | Grt 1             | 353.0  | 7.2      | 0.2 | 23.3  | 6.4      | 52.0  | 12.2  | 31.5     | 4.4   | 29.0  | 3.6   |       | 48.7 | 3.0      | 118.5 | 177.4           | 214.3  | 220.1          | 198.2  | 183.1  | 178.5  | 148.6  |
| 0.89    | 0.026  | / garnet, Grt2(Grt1) -  |                        |                       | R145G-1 - 3 | gmatite (ROG14/5, at  | Grt 1             | 301.0  | 11.7     | 0.1 | 27.0  | 6.8      | 49.0  | 9.1   | 22.2     | 3.2   | 20.5  | 2.3   |       | 79.5 | 2.2      | 137.3 | 186.8           | 201.9  | 162.8          | 139.7  | 133.9  | 126.2  | 96.3   |
| 1.00    | 0.024  | i; 14/5- Grt1- Primary  |                        |                       | R145G-1 - 2 | Cordierite-Spinel mi  | Grt 1             | 391.0  | 11.7     | 0.1 | 41.8  | 8.6      | 57.3  | 13.7  | 46.1     | 8.0   | 64.6  | 10.8  |       | 79.5 | 1.9      | 212.6 | 237.7           | 236.1  | 246.6          | 290.1  | 331.8  | 397.5  | 444.9  |
| 1.21    | 0.024  | rt2 - small relic grair |                        |                       | R145G-1 - 1 | Garnet-Sillimanite-   | Grt 1             | 366.0  | 10.4     | 0.1 | 37.4  | 8.3      | 56.3  | 12.6  | 42.1     | 7.1   | 54.8  | 8.2   |       | 70.4 | 2.0      | 190.2 | 227.8           | 232.0  | 225.9          | 264.9  | 291.7  | 337.2  | 338.3  |
| 1.10    | 0.033  | l- mineral separate, G  |                        |                       | R132G-2 - 4 | ontinude              | Euhedral Grt Rim  | 7100.0 | 6.3      | 0.1 | 118.5 | 67.5     | 850.0 | 269.4 | 868.0    | 133.8 | 892.0 | 124.8 |       | 43.0 | 2.3      | 602.7 | 1859.5          | 3502.3 | 4845.3         | 5462.6 | 5528.9 | 5489.2 | 5135.8 |
| 4.31    | 0.016  | tic garnet; 13/2- Grt   | grains                 | malyses               | R132G-2 - 3 | e (ROG13/2, 2 km) cc  | Euhedral Grt Core | 4210.0 | 3.9      | 0.1 | 75.0  | 40.7     | 513.0 | 159.4 | 512.0    | 78.4  | 526.0 | 70.8  |       | 26.5 | 1.8      | 381.5 | 1121.2          | 2113.7 | 2866.9         | 3222.2 | 3239.7 | 3236.9 | 2913.6 |
| 4.15    | 0.020  | anosome, Grt2 Peritec   | , Grt 2- Small garnet  | E and trace element a | R132G-2 - 2 | cene-spinel migmatite | Euhedral Grt Core | 4380.0 | 5.6      | 0.1 | 75.0  | 41.5     | 531.0 | 165.7 | 533.0    | 81.4  | 540.0 | 73.7  |       | 38.2 | 1.4      | 381.5 | 1143.3          | 2187.9 | 2980.2         | 3354.3 | 3363.6 | 3323.1 | 3032.9 |
| 3.93    | 0.016  | Sillimanite rich, Meli  | 3- Grt 1- Large garnet | A-ICP-MS garnet RE    | R132G-2 - 1 | Osumilite-orthopyrox  | Euhedral Grt Core | 4280.0 | 4.4      | 0.1 | 75.7  | 40.3     | 522.0 | 158.3 | 517.0    | 0.67  | 526.0 | 73.1  |       | 29.8 | 1.0      | 385.0 | 1110.2          | 2150.8 | 2847.1         | 3253.6 | 3264.5 | 3236.9 | 3008.2 |
| AbN/GdN | Eu/Eu* | Textures- 13/11- Grt1   | Grt2 on Ilmenite; 14/  | Table S5 continued: L |             |                       | Texture           | Å      | Sm       | Eu  | Gd    | Tb       | Dy    | Но    | Er       | Tm    | Yb    | Lu    |       | SmN  | EuN      | GdN   | TbN             | DyN    | NoH            | ErN    | TmN    | YbN    | LuN    |

| /GdN            | 8.41                                              | 8.71                  | 8.49                    | 9.11                     | 1.77                    | 1.87                    | 0.92                   | 1.51                | 2.71                     | 2.35                 |
|-----------------|---------------------------------------------------|-----------------------|-------------------------|--------------------------|-------------------------|-------------------------|------------------------|---------------------|--------------------------|----------------------|
| u*              | 0.005                                             | 0.007                 | 0.009                   | 0.007                    | 0.015                   | 0.013                   | 0.021                  | 0.036               | 0.036                    | 0.054                |
| ures-13/11-Gt   | rt1 Sillimanite rich, M<br>4/8- Grt 1- I aroe oam | felanosome, Grt2 Peri | tectic garnet; 13/2– Gi | rt1- mineral separate, ( | Grt2 - small relic grai | in; 14/5- Grt1- Primary | y garnet, Grt2(Grt1) - | Secondary Grt on Gr | t 1, Grt2(Spl) - Grt2 or | 1 Spinel, Grt2(Ilm)- |
| e S5 continued: | : LA-ICP-MS garnet 1                              | REE and trace elemen  | t analyses              |                          |                         |                         |                        |                     |                          |                      |
|                 | R145G-2 - 3                                       | R145G-2 - 4           | R145G-3 - 1             | R145G-3 - 2              | R145G-3 - 3             | R145G-4 - 1             | R145G-4 - 2            | R145G-4 - 3         | R148G-1 - 1              | R148G-1 - 2          |
|                 | Garnet-Sillimanite-                               | -Cordierite-Spinel mi | gmatite (ROG14/5, at    | t the contact) continued | ч                       |                         |                        | Garnet-bearing ano  | rthosite (ROG14/8, at    | the contact)         |
| ure             | Grt 2                                             | Grt 2                 | Grt 2 Spl               | Grt 2 Spl                | Grt 2 Spl               | Grt 2 Ilm               | Grt 2 Ilm              | Grt 2 Ilm           | Grt 1 Core               | Grt 1 Core           |
|                 | 275.0                                             | 222.0                 | 98.1                    | 161.0                    | 76.2                    | 205.0                   | 199.0                  | 95.0                | 899.0                    | 888.0                |
|                 | 5.4                                               | 4.5                   | 4.6                     | 4.4                      | 3.5                     | 4.9                     | 4.1                    | 4.0                 | 15.1                     | 14.3                 |
|                 | 0.2                                               | 0.2                   | 0.2                     | 0.2                      | 0.2                     | 0.3                     | 0.3                    | 0.3                 | 0.5                      | 0.4                  |
|                 | 24.2                                              | 21.7                  | 13.8                    | 14.6                     | 9.1                     | 17.7                    | 17.0                   | 10.5                | 58.2                     | 55.0                 |
|                 | 5.8                                               | 4.9                   | 3.0                     | 4.0                      | 2.1                     | 4.5                     | 4.2                    | 2.3                 | 15.9                     | 15.8                 |
|                 | 45.2                                              | 40.7                  | 20.5                    | 26.9                     | 13.0                    | 32.1                    | 30.7                   | 16.0                | 133.8                    | 128.2                |
|                 | 9.2                                               | 7.6                   | 3.6                     | 5.3                      | 2.5                     | 7.1                     | 6.5                    | 3.2                 | 30.1                     | 30.7                 |
|                 | 23.4                                              | 18.8                  | 7.9                     | 12.7                     | 6.0                     | 18.9                    | 18.6                   | 8.9                 | 87.6                     | 84.1                 |
|                 | 3.3                                               | 2.6                   | 1.0                     | 1.8                      | 0.9                     | 3.3                     | 3.0                    | 1.3                 | 13.0                     | 12.7                 |
|                 | 22.7                                              | 17.6                  | 6.7                     | 12.9                     | 5.5                     | 21.9                    | 21.5                   | 9.6                 | 87.7                     | 86.2                 |
|                 | 2.8                                               | 1.9                   | 0.8                     | 1.6                      | 0.9                     | 3.0                     | 2.9                    | 1.3                 | 10.6                     | 10.0                 |
|                 |                                                   |                       |                         |                          |                         |                         |                        |                     |                          |                      |
|                 | 36.4                                              | 30.7                  | 31.0                    | 29.9                     | 24.1                    | 33.0                    | 28.1                   | 26.9                | 102.7                    | 97.2                 |
|                 | 4.1                                               | 3.8                   | 4.2                     | 3.4                      | 3.1                     | 5.2                     | 4.6                    | 4.8                 | 8.3                      | 7.3                  |
|                 | 123.1                                             | 110.4                 | 70.2                    | 74.3                     | 46.3                    | 90.0                    | 86.5                   | 53.4                | 296.0                    | 279.8                |
|                 | 160.9                                             | 135.5                 | 82.1                    | 109.6                    | 59.0                    | 123.1                   | 116.3                  | 63.6                | 436.6                    | 435.5                |
|                 | 186.2                                             | 167.7                 | 84.5                    | 110.8                    | 53.6                    | 132.3                   | 126.5                  | 65.9                | 551.3                    | 528.2                |
|                 | 166.2                                             | 136.2                 | 64.2                    | 95.0                     | 44.4                    | 127.0                   | 117.6                  | 57.4                | 541.4                    | 552.2                |
|                 | 147.3                                             | 118.3                 | 49.7                    | 79.9                     | 38.0                    | 118.9                   | 117.1                  | 56.3                | 551.3                    | 529.3                |
|                 | 137.2                                             | 106.6                 | 40.9                    | 75.6                     | 35.5                    | 138.0                   | 122.7                  | 52.9                | 538.8                    | 525.2                |
|                 | 139.7                                             | 108.3                 | 41.0                    | 79.4                     | 33.7                    | 134.8                   | 132.3                  | 59.1                | 539.7                    | 530.5                |
|                 | 114.4                                             | 77.0                  | 32.5                    | 64.2                     | 36.6                    | 125.1                   | 121.0                  | 54.7                | 435.0                    | 410.3                |
|                 |                                                   |                       |                         |                          |                         |                         |                        |                     |                          |                      |

|         |        | Ap                                              | pe                    | ndı.        | x E                    |            |        |      |     |      |      |       |      | Si    | ıpp  | oler  | ner   | itai | ry I  | nfc | orm   | ati   | on <sub>.</sub> | for    | $\cdot C$ | hap    | oter   | • 5    |  |
|---------|--------|-------------------------------------------------|-----------------------|-------------|------------------------|------------|--------|------|-----|------|------|-------|------|-------|------|-------|-------|------|-------|-----|-------|-------|-----------------|--------|-----------|--------|--------|--------|--|
| 1.90    | 0.039  | 1 Spinel, Grt2(Ilm)-                            |                       | R148G-3 - 4 |                        | Grt 2      | 2400.0 | 9.7  | 0.4 | 40.8 | 16.2 | 227.0 | 92.0 | 385.0 | 71.5 | 559.0 | 85.0  |      | 65.9  | 7.5 | 207.5 | 446.3 | 935.3           | 1654.7 | 2422.9    | 2954.5 | 3440.0 | 3497.9 |  |
| 1.82    | 0.042  | : 1, Grt2(Spl) -Grt2 oi                         |                       | R148G-3 - 3 |                        | Grt 2      | 2360.0 | 11.5 | 0.3 | 41.5 | 16.6 | 220.0 | 92.1 | 407.0 | 78.6 | 635.0 | 100.8 |      | 78.2  | 6.1 | 211.1 | 457.6 | 906.5           | 1656.5 | 2561.4    | 3247.9 | 3907.7 | 4148.1 |  |
| 1.11    | 0.119  | Secondary Grt on Gr                             |                       | R148G-3 - 2 |                        | Grt 2      | 1940.0 | 8.5  | 0.3 | 33.3 | 13.0 | 185.0 | 73.3 | 314.0 | 59.6 | 487.0 | 76.2  |      | 57.8  | 5.8 | 169.4 | 357.3 | 762.3           | 1318.3 | 1976.1    | 2462.8 | 2996.9 | 3135.8 |  |
| 1.53    | 0.080  | r garnet, Grt2(Grt1) -                          |                       | R148G-3 - 1 |                        | Grt 2      | 2160.0 | 9.6  | 0.4 | 37.3 | 14.2 | 203.0 | 82.0 | 346.0 | 64.1 | 508.0 | 78.1  |      | 65.2  | 7.3 | 189.7 | 391.2 | 836.4           | 1474.8 | 2177.5    | 2648.8 | 3126.2 | 3214.0 |  |
| 1.50    | 0.084  | i; 14/5- Grt1- Primary                          |                       | R148G-2 - 4 |                        | Grt 1 Rim  | 769.0  | 12.4 | 0.4 | 41.0 | 11.5 | 101.8 | 27.2 | 86.6  | 13.5 | 98.2  | 12.9  |      | 84.3  | 7.4 | 208.5 | 317.1 | 419.4           | 489.2  | 545.0     | 556.6  | 604.3  | 531.7  |  |
| 0.73    | 0.088  | irt2 - small relic grair                        |                       | R148G-2 - 3 |                        | Grt 1 Rim  | 918.0  | 14.1 | 0.5 | 45.1 | 12.7 | 118.8 | 33.2 | 110.4 | 17.9 | 132.4 | 20.4  |      | 96.1  | 8.2 | 229.4 | 351.0 | 489.5           | 597.1  | 694.8     | 738.4  | 814.8  | 838.3  |  |
| 1.07    | 0.066  | l- mineral separate, G                          |                       | R148G-2 - 2 |                        | Grt 1 Rim  | 1134.0 | 18.2 | 0.6 | 56.7 | 16.8 | 154.0 | 41.5 | 138.0 | 21.1 | 159.0 | 22.0  |      | 123.7 | 9.8 | 288.4 | 462.8 | 634.5           | 746.4  | 868.5     | 871.9  | 978.5  | 905.3  |  |
| 0.58    | 0.083  | stic garnet; 13/2–Grt<br>grains                 | unalyses              | R148G-2 - 1 | ie contact) continued  | Grt 1 Rim  | 913.0  | 13.0 | 0.5 | 44.4 | 13.0 | 123.0 | 34.0 | 107.0 | 16.8 | 116.0 | 16.0  |      | 88.4  | 8.1 | 225.8 | 358.1 | 506.8           | 611.5  | 673.4     | 694.2  | 713.8  | 658.4  |  |
| 0.98    | 0.053  | anosome, Grt2 Perite<br>, Grt 2- Small garnet   | E and trace element   | R148G-1 - 4 | nosite (ROG14/8, at th | Grt 1 Core | 821.0  | 14.1 | 0.4 | 48.0 | 13.0 | 110.9 | 28.4 | 85.0  | 13.6 | 98.9  | 13.1  |      | 95.9  | 7.8 | 244.2 | 358.1 | 456.9           | 510.8  | 534.9     | 562.4  | 608.6  | 539.9  |  |
| 1.13    | 0.051  | Sillimanite rich, Mel<br>3- Grt 1- Large garnet | A-ICP-MS garnet RF    | R148G-1 - 3 | Garnet-bearing anorth  | Grt 1 Core | 0.197  | 13.8 | 0.5 | 50.7 | 12.9 | 110.9 | 26.9 | 80.2  | 12.7 | 86.2  | 11.4  |      | 93.8  | 8.3 | 257.9 | 354.5 | 456.9           | 483.8  | 504.7     | 525.6  | 530.5  | 467.5  |  |
| YbN/GdN | Eu/Eu* | Textures- 13/11- Grt1<br>Grt2 on Ilmenite; 14/  | Table S5 continued: I |             |                        | Texture    | Υ      | Sm   | Eu  | Gd   | Tb   | Dy    | Но   | Er    | Tm   | Yb    | Lu    |      | SmN   | EuN | GdN   | TbN   | DyN             | HoN    | ErN       | TmN    | YbN    | LuN    |  |

| Appendix E                                                            | Supplementary Information for Chapter 5 |
|-----------------------------------------------------------------------|-----------------------------------------|
| 16.58<br>0.055<br>Spinel, Grt2(Ilm)-                                  |                                         |
| 18.51<br>0.042<br>1, Grt2(Spl) - Grt2 on                              |                                         |
| 17.69<br>0.051<br>econdary Grt on Grt<br>econdary Grt on Grt          |                                         |
| 16.48<br>0.057<br>gamet, Grt2(Grt1) - S                               |                                         |
| 2.90<br>0.051<br>; 14/5-Grt1- Primary                                 |                                         |
| 3.55<br>0.050<br>5rt2 - small relic grain                             |                                         |
| 3.39<br>0.048<br>1- mineral separate, C                               |                                         |
| 3.16<br>0.051<br>Ctic gamet; 13/2-Grt<br>grains                       |                                         |
| 2.49<br>0.046<br>anosome, Grt2 Perite<br>, Grt 2- Small garnet        |                                         |
| 2.06<br>0.047<br>Sillimanite rich, Meli<br>S. Grt I- Large garnet     |                                         |
| zbN/GdN 2<br>au/Eu* (<br>extures-13/11-Grt1<br>5rt2 on Ilmenite; 14/8 |                                         |
|                                                                       | 359                                     |

|                | — | r                         | <u>4р</u> | <u>en</u>     | dix | E            | <b></b>    | 1           |         | r—       |          | _        | <u> </u>     | up       | ple      | me          | nte    | <u>ry</u> | Inj   | fori   | nai    | tior   | r fa   | <u>r (</u> | <u>Tha</u> | pte    | <u>r 5</u>          |            |          |
|----------------|---|---------------------------|-----------|---------------|-----|--------------|------------|-------------|---------|----------|----------|----------|--------------|----------|----------|-------------|--------|-----------|-------|--------|--------|--------|--------|------------|------------|--------|---------------------|------------|----------|
|                |   |                           |           |               |     |              |            | Eu/Eu*      | 0.29    | 0.07     | 0.33     | 0.23     | 0.10         | 0.06     | 0.28     | 0.002       | 0.04   | ,         | 0.06  | 0.04   | 0.22   | 0.15   | 0.03   | 0.03       | 0.11       | 2.15   | -                   | -          | 0.01     |
|                |   |                           |           |               |     |              |            | YbN/<br>GdN | 121.95  | 5.06     | 11.65    | 12.35    | 69.9         | 7.16     | 8.44     | 4.22        | 0.74   | 3.44      | 5.45  | 1.55   | 16.41  | 9.95   | 13.65  | 16.79      | 68.9       | 0.22   | 0.49                | 0.81       | 0.82     |
|                |   |                           |           |               |     |              |            | U (ppm)     | 840.0   | 666.0    | 347.0    | 523.0    | 478.0        | 439.0    | 1222.0   | 30.1        | 78.1   | 408.0     | 45.1  | 92.9   | 153.5  | 242.1  | 134.7  | 357.0      | 186.2      | 1205.0 | 368.5               | 366.0      | 361.0    |
|                |   |                           |           |               |     |              |            | Th<br>(ppm) | 24.4    | 35.1     | 200.7    | 229.2    | 76.1         | 129.2    | 71.2     | 132.4       | 160.3  | 246.7     | 94.8  | 116.8  | 25.7   | 48.0   | 68.5   | 159.4      | 204.0      | 134.3  | 16.0                | 50.6       | 37.1     |
|                |   |                           |           |               |     |              |            | LuN         | 6777.8  | 485.6    | 2353.9   | 1991.8   | 1098.8       | 839.5    | 1707.8   | 938.3       | 127.6  | 522.2     | 868.3 | 165.8  | 2477.4 | 1629.6 | 3090.5 | 2856.0     | 3588.5     | 46.5   | 41.6                | 63.0       | 61.3     |
|                |   |                           |           |               |     |              |            | YbN         | 4652.3  | 388.3    | 1907.7   | 1532.3   | 898.5        | 695.4    | 1360.6   | 924.3       | 121.2  | 459.7     | 978.5 | 197.5  | 1680.0 | 1563.1 | 2547.7 | 2443.1     | 2873.8     | 50.5   | 39.4                | 64.6       | 73.8     |
|                |   |                           |           |               |     |              |            | TmN         | 2512.4  | 281.0    | 1264.5   | 1074.4   | 611.6        | 433.9    | 731.4    | 849.6       | 169.0  | 400.8     | 797.5 | 186.8  | 1033.1 | 929.8  | 1752.1 | 1624.0     | 2190.1     | 54.5   | 40.9                | 51.7       | 86.4     |
|                |   |                           |           |               |     |              |            | ErN         | 1279.4  | 244.2    | 1017.0   | 713.7    | 427.9        | 396.5    | 451.2    | 839.5       | 148.5  | 399.0     | 755.2 | 209.6  | 553.8  | 687.9  | 1311.5 | 1168.0     | 1648.8     | 62.3   | 52.2                | 54.8       | 79.9     |
|                |   |                           |           |               |     |              |            | NoH         | 724.8   | 197.8    | 669.1    | 471.2    | 304.0        | 293.2    | 320.1    | 818.3       | 176.1  | 386.7     | 735.6 | 237.8  | 329.1  | 512.6  | 938.8  | 830.9      | 1248.2     | 92.4   | 69.1                | 63.1       | 91.7     |
| way            |   |                           |           |               |     | •            |            | DyN         | 407.5   | 203.1    | 449.9    | 320.6    | 220.4        | 208.5    | 292.5    | 597.9       | 192.0  | 314.4     | 506.8 | 216.3  | 166.9  | 362.6  | 523.7  | 433.0      | 741.7      | 111.7  | 82.0                | 61.4       | 86.5     |
| nd, SW Nor     |   |                           |           |               |     | •            |            | IbN         | 144.1   | 161.2    | 256.2    | 184.6    | 176.3        | 127.0    | 225.9    | 411.8       | 162.3  | 217.9     | 355.4 | 181.3  | 73.3   | 256.2  | 332.8  | 253.7      | 501.4      | 166.4  | 96.7                | 69.4       | 101.1    |
| rom Rogala     |   | HAND                      |           |               |     |              |            | Npg         | 38.1    | 76.8     | 163.8    | 124.1    | 134.3        | 97.2     | 161.2    | 219.2       | 164.8  | 133.8     | 179.6 | 127.7  | 32.6   | 157.2  | 186.7  | 145.5      | 417.1      | 230.4  | 6.67                | 6.97       | 89.5     |
| n example fi   |   | NSOM, M.                  |           |               |     |              |            | EuN         | 5.1     | 3.2      | 39.3     | 32.7     | 8.2          | 3.9 0.5  | 36.1     | 0.3         | 3.8    |           | 5.2   | 3.2    | 4.3    | 14.6   | 3.4    | 2.7        | 43.6       | 342.9  | <u>`</u>            | <u>`</u>   | 0.4      |
| c terranes: a  |   | SON, E. SA                |           |               |     | on           |            | SmN         | 3.5     | 15.0     | 72.7     | 165.2    | 24.5         | 35.4     | 3.1      | 39.4        | 16.2   | 50.3      | 36.7  | 32.6   | 5.7    | 38.1   | 78.2   | 18.3       | 407.9      | 89.1   | 3.2                 | 14.4       | 23.1     |
| netamorphic    |   | T. E. JOHN                |           |               |     | values: Zirc |            |             | 216.0   | 95.0     | 92.0     | 323.0    | 55.0 2       | 50.0     | 64.0     | 223.0       | 249.2  | 576.0 5   | 052.0 | 140.0  | 02.0   | 01.0   | 363.0  | 163.0 4    | 706.0 4    | 83.5 8 | 16.7 8              | 11.5       | 40.2     |
| ries in polyn  |   | D. KINNY,                 |           | a             |     | P-MS REE     | 232Th      | 238U        | .03     | .03 3    | 9 118    | 3.15 8   | .06          | .70 4    | .71 5    | 1 0.79      | 2 80.1 | .45 5     | .54   | .18 3  | .12 5  | .28 3  | .40    | .35 ]      | .43        | .14    | 0.03                | 1 60.0     | .04      |
| ermal histor   |   | AYLOR, P.                 |           | ive REE dat   |     | ised LA-IC   | 5          | 19          | =30 C   | =15 0    | =14 0    | =11 0    | =14 0        | =18 0    | =26 0    | =15 2       | =10 1  | =11 0     | :15 0 | =18 0  | =13 0  | =25 0  | =16 0  | =19 0      | 27 0       | =18 0  | 0 6                 | =15 0      | =16 0    |
| o unravel th   |   | , R. J. M. T <sub>/</sub> |           | vith respecti |     | and normal   | 06Pb*/238l | ate (Ma) ±  | 88      | ∓ 600    | 046 ±    | 055 ±    | <b>∓</b> 860 | 207 ±    | 738 ±    | <b>∓</b> 66 | 21 ±   | 32 ±      | 50 ±  | 011 ±  | 113 ±  | 113 ±  | 420 ±  | 476 ±      | 574 ±      | 19 ±   | 28 ±                | 50 ±       | 64 ≜     |
| vry minerals t |   | I, C. CLARK               |           | SIMP U-Pb v   |     | 1S U-Pb ages | ot 2       | 9           | 3-1.2 9 | 31-1.2 1 | 14-1.1 1 | 31-1.1 1 | 18-1.1 1     | 12-1.1 1 | 36-1.1 1 | 8           | 4 9    | 10 9      | -7 9  | 3      | 2 1    | 5      | _11 1  | 6 1        | 12 1       | _1 9   | 8                   | 3 9        | <u> </u> |
| ing accesso    |   | BLEREAU                   |           | ble S6: SHI   |     | ble S6: SIM  | x- Spt     | ou oo.      | R115    | 3 R115   | E R11:   | 3 R113   | 3 R113       | R11.     | R113     | 13-2        | 13-2   | د 13-2    | 13-2  | 3 13-2 | 13-2   | 13-2   | 13-2   | 3 13-2     | 13-2       | 14-5.  | 3 14-5 <sub>.</sub> | 14-5.      | E 14-5   |
| Us             |   | щ                         |           | Та            |     | Ta           | Te         | I H         | ≃       | R        | RE       | RE       | RE           | C        | C        | $^{\circ}$  | ā      | ā         | Ľ     |        | C      | C      | C      | R          | C          | RE     | 2                   | $^{\circ}$ | R        |

| _     |        |       | 4 <i>р</i> ј | en        | dix      | E         |          |           |           |          |          |           |           | _        | Suj       | ppl      | em        | ent       | arj      | , In      | for      | ma        | tio       | n f      | pr         | Ch        | apt       | er         | 5         | i |
|-------|--------|-------|--------------|-----------|----------|-----------|----------|-----------|-----------|----------|----------|-----------|-----------|----------|-----------|----------|-----------|-----------|----------|-----------|----------|-----------|-----------|----------|------------|-----------|-----------|------------|-----------|---|
| 2.16  | 0.02   | 0.02  | -            | 0.03      | 0.04     | 0.09      | 0.02     | 0.03      | ,         | 0.05     | 0.05     | 0.02      | 0.03      | 0.05     | 0.05      | 0.08     | -         | 0.05      | 0.03     | 0.07      | 0.09     | 0.040     | -         | 0.03     | 0.05       | 0.10      | 0.07      | 0.04       | 0.08      |   |
| 0.56  | 0.38   | 0.54  | 17.23        | 26.26     | 76.36    | 29.26     | 29.72    | 23.47     | 21.34     | 52.43    | 12.87    | 5.59      | 13.09     | 14.90    | 16.50     | 21.62    | 9.84      | 11.81     | 25.41    | 21.88     | 25.44    | 16.73     | 26.25     | 0.52     | 20.92      | 14.48     | 8.45      | 14.83      | 15.58     |   |
| 551.0 | 458.0  | 429.0 | 100.6        | 178.7     | 273.2    | 80.1      | 110.7    | 75.8      | 112.0     | 126.3    | 162.8    | 227.5     | 135.6     | 183.4    | 320.0     | 118.6    | 181.2     | 235.0     | 81.5     | 95.0      | 168.4    | 128.0     | 90.4      | 511.0    | 152.3      | 214.5     | 204.3     | 204.0      | 106.2     |   |
| 12.1  | 21.0   | 22.9  | 98.5         | 156.5     | 261.4    | 40.7      | 41.9     | 35.8      | 51.0      | 79.8     | 75.8     | 141.7     | 65.4      | 107.8    | 49.5      | 45.8     | 77.1      | 174.5     | 32.8     | 45.6      | 79.4     | 53.2      | 39.4      | 138.6    | 80.7       | 158.3     | 151.2     | 122.0      | 40.8      |   |
| 45.3  | 52.3   | 53.1  | 1983.5       | 2555.6    | 5065.8   | 2271.6    | 1761.3   | 1497.9    | 2761.3    | 2991.8   | 1370.4   | 1617.3    | 1576.1    | 2518.5   | 1786.0    | 1794.2   | 971.2     | 4683.1    | 1662.6   | 2872.4    | 2633.7   | 1925.9    | 1868.3    | 60.1     | 3827.2     | 4967.1    | 3156.4    | 2633.7     | 1296.3    |   |
| 48.6  | 50.5   | 57.2  | 1446.2       | 1896.6    | 4116.9   | 1681.8    | 1390.8   | 1110.2    | 1910.2    | 2160.0   | 1204.9   | 1513.2    | 1384.6    | 2190.8   | 1360.0    | 1396.9   | 1046.2    | 3587.7    | 1253.5   | 2003.7    | 2264.6   | 1556.9    | 1415.4    | 72.6     | 2670.8     | 3926.2    | 2609.2    | 2406.2     | 911.4     |   |
| 35.5  | 52.5   | 59.5  | 979.3        | 1297.5    | 2727.3   | 1107.4    | 871.9    | 809.9     | 1314.0    | 1491.7   | 929.8    | 1376.0    | 1074.4    | 1727.3   | 834.7     | 962.8    | 843.0     | 2661.2    | 838.8    | 1347.1    | 1500.0   | 1140.5    | 929.8     | 60.3     | 1851.2     | 2822.3    | 2045.5    | 1785.1     | 621.5     |   |
| 52.2  | 72.4   | 64.2  | 729.4        | 945.2     | 1969.8   | 783.5     | 675.9    | 602.3     | 942.1     | 965.4    | 862.8    | 1304.6    | 860.3     | 1347.4   | 717.4     | 694.8    | 738.8     | 2135.9    | 609.2    | 952.8     | 1127.1   | 889.2     | 679.0     | 85.0     | 1348.6     | 2221.5    | 1719.3    | 1453.7     | 506.6     |   |
| 71.2  | 94.8   | 82.7  | 462.2        | 491.0     | 1050.4   | 442.4     | 420.9    | 365.1     | 537.8     | 555.8    | 579.1    | 1054.0    | 586.3     | 865.1    | 429.9     | 435.3    | 568.3     | 1383.1    | 383.1    | 541.4     | 719.4    | 552.2     | 402.9     | 96.9     | 796.8      | 1464.0    | 1232.0    | 991.0      | 295.0     |   |
| 78.7  | 108.8  | 100.9 | 256.7        | 293.8     | 470.5    | 248.5     | 236.9    | 194.1     | 315.2     | 260.8    | 363.0    | 780.8     | 378.2     | 536.1    | 269.9     | 254.6    | 384.0     | 864.0     | 213.4    | 306.6     | 406.3    | 333.7     | 220.8     | 140.5    | 456.1      | 867.3     | 818.7     | 613.9      | 197.8     |   |
| 75.5  | 106.3  | 108.8 | 140.5        | 144.1     | 182.4    | 133.6     | 132.8    | 95.0      | 166.7     | 131.1    | 211.6    | 149.0     | 192.8     | 330.0    | 143.0     | 6.601    | 191.5     | 526.2     | 116.0    | 138.8     |          | 164.5     | 97.8      | 166.1    | 215.2      | 190.4     | 138.0     | 327.8      | 9.2       |   |
| 37.5  | 131.7  | 106.3 | 33.9         | 72.2      | 53.9     | 57.5      | 16.8     | 17.3      | 39.5      | 41.2     | 93.6     | 270.6     | 105.8     | 147.0    | 32.4      | 54.6     | 106.3     | 303.7     | 19.3     | 91.6      | 89.0     | 3.1       | 53.9      | 139.4    | 127.7      | 271.1     | 308.7     | 162.3      | 58.5      |   |
| 160.7 | 1.1    | 1.1   |              | 1.2       | 1.1      | 3.0       | 0.7      | 1.0       |           | 1.3      | 2.9      | 3.9       | 1.7       | 3.9      | 3.0       | 3.0      |           | 10.5      | . 8.0    | 3.6       | 5.2      | 2.5       | -         | 2.1      | 3.8        | 18.0      | 14.8      | 3.9        | 3.2       |   |
| 51.2  | 8.7    | 21.1  | 25.2         | 23.1      | 1.2      | 13.6      | 14.3     | 8.9       | 20.4      | 11.6     | 16.7     | 133.9     | 0.61      | 23.1     | 29.2      | 12.2     | 23.8      | 114.2     | 3.6      | 12.9      | 21.8     | 33.3      | 15.0      | 30.6     | 36.7       | 79.5      | 141.4     | 25.8       | 25.8      |   |
| 124.9 | 154.7  | 155.1 | 728.0        | 872.0     | 1701.0   | 730.0     | 627.0    | 636.0     | 955.0     | 892.0    | 897.0    | 1719.0    | 978.0     | 1440.0   | 830.0     | 669.0    | 915.0     | 2289.0    | 607.0    | 956.0     | 1101.0   | 994.0     | 654.0     | 185.2    | 1350.0     | 2356.0    | 2057.0    | 1570.0     | 536.0     |   |
| 0.02  | 0.03   | 0.03  | 0.66         | 0.59      | 0.72     | 0.30      | 0.26     | 0.28      | 0.32      | 0.44     | 0.30     | 0.45      | 0.29      | 0.29     | 0.09      | 0.33     | 0.31      | 0.42      | 0.27     | 0.30      | 0.35     | 0.28      | 0.28      | 0.20     | 0.37       | 0.50      | 0.51      | 0.50       | 0.25      |   |
| ±12   | ±13 (  | ±15 ( | ±10          | ±12       | ±10      | ±12       | ±11      | ±12       | ±11       | ±11 (    | ±11      | ±10 (     | ±11 (     | ±11      | ±14       | ±11 (    | ±15 (     | ±10       | ±12 (    | ±12 (     | ±16      | ±22       | ±16       | ±16 (    | ±19        | ±11 (     | ±11 (     | ±11 (      | ±17 (     |   |
| 966   | 1007 : | 1025  | 913          | 916       | 922      | 926 :     | 930 :    | 931 :     | 938       | 940      | 941 :    | 942       | 946       | 952 :    | 954 :     | 955      | 965 :     | 965 :     | 966      |           | 981 :    | 981 :     | 988       | 991      | 1007       | 1010      | 1017      | 1036       | 1045      |   |
| 4-5_2 | 4-5_6  | 4-5_5 | 14-8-22.2    | 14-8-23.2 | 14-8-2.2 | 14-8-26.2 | 14-8-2.1 | 14-8-10.2 | 14-8-14.1 | 14-8-1.2 | 14-8-6.1 | 14-8-20.1 | 14-8-26.1 | 14-8-7.2 | 14-8-21.1 | 14-8-1.1 | 14-8-24.2 | 14-8-12.2 | 14-8-7.1 | 14-8-13.1 | 14-8-4.2 | 14-8-23.1 | 14-8-25.1 | 14-8-5.1 | 214-8-18.2 | 14-8-10.1 | 14-8-18.1 | 214-8-25.2 | 14-8-19.1 |   |
| RE 1  | S 1    | S 1   | R R          | R R       | R B      | RE R      | RE R     | RE R      | RE R      | RE R     | RE R     | RE R      | RE R      | RE R     | RE R      | RE R     | RE R      | RE R      | RE R     | RE R      | RE       | RE R      | RE F      | C (S) F  | RE F       | RE R      | RE R      | RE F       | RE F      |   |

| mN         YbN         LuN         Th           35         430         248         69200           52         204         95         70300           79         439         247         51900           21         204         93         128300           70         185         98         65000           60         185         98         65000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mN         YbN         LuN         Th           35         430         248         69200           55         204         95         70300           79         439         247         51900           21         204         93         128300           70         185         93         128300           70         185         93         128300           70         185         93         65000           74         1274         580         88800           19         111         70         98900           938         877         473         59100           53         93         47         81600           53         93         47         81600 | mN         YbN         LuN         Th           35         430         248         69200           52         204         95         70300           79         439         247         51900           70         185         98         65000           50         185         98         65000           50         185         98         65000           50         185         98         65000           53         93         877         473         59100           53         93         47         81600         8400           53         93         47         81600         8160           53         93         237         57000         8160           53         93         237         57000         11           7         113         62200         11         127         113         62200           53         93         237         57000         11         127         113         62200 | mN         YbN         LuN         Th           35         430         248         69200           52         204         95         70300           79         439         247         51900           70         185         98         65000           50         185         98         65000           50         185         98         65000           51         204         93         128300           50         185         98         65000           51         204         93         128300           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         237         57000           54         239         60400         62200           64         236         95         53000           17         170         97         83900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mN         YbN         LuN         Th           35         430         248         69200           52         204         95         70300           79         439         247         51900           70         439         247         51900           70         439         247         51900           70         439         247         51900           50         185         98         65000           74         1274         580         88800           93         877         473         59100           93         877         473         57000           63         93         47         81600           74         236         60400           74         236         57000           8         239         60400           8         236         60400           8         42         36         103400           17         170         97         83900           17         170         97         83900           231         585         527         89100      653         1089         453<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mN         YbN         LuN         Th           35         430         248         69200           52         204         95         70300           79         439         247         51900           79         439         247         51900           70         185         98         65000           70         185         98         65000           70         185         98         65000           74         1274         580         88800           93         877         473         59100           938         877         473         59100           93         47         81600         11           70         98900         111         70         98900           17         127         113         62200         83300           17         127         113         62300         63300           8         42         36         53300         63300           17         170         97         83900         653           8         453         527         89100         65300           653         1089 <th>mN         YbN         LuN         Th           35         430         248         69200           35         430         248         69200           52         204         95         70300           79         439         247         51900           50         185         98         65000           79         439         247         51900           50         185         98         65000           74         1274         580         88800           19         111         70         98900           53         93         47         81600           653         134         337         57000           74         296         95         53000           8         77         113         62200           74         296         95         5300           8         42         36         103400           17         170         97         83900           17         170         97         83900           653         1089         453         63300           653         577         89100     <th>mn         Ybn         Lun         Th           35         430         248         69200           35         430         248         69200           79         439         247         51900           79         439         247         51900           79         439         247         51900           70         1274         580         88800           11         70         98900         65000           19         111         70         98900           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           65         314         337         57000           17         127         113         62200           8         42         36         63300           653         1089         453         5300           653         1089         453         73400           65702         12508         13300</th><th>MIN         YbN         LuN         Th           35         430         248         69200           35         430         247         51900           79         439         247         51900           79         439         247         51900           79         439         247         51900           70         98         877         51900           93         877         473         59100           93         877         473         59100           93         877         473         59100           93         877         473         59100           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           65         93         63000         63300           17         127         113         62200           17         170         97         83900           660         2302         10330         63300           653         1000         95</th><th>MIN         YbN         Lun         Th           35         430         248         69200           52         204         95         70300           79         439         247         51900           50         185         98         65000           50         185         98         65000           50         185         98         65000           51         204         93         128300           50         185         98         65000           51         204         93         128300           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           63         1127         113         62200           71         127         113         62300           65         11300         71         337         5400           65         171         008         453         63300           61         1</th><th>Min         Ybn         Lun         Th           35         430         248         69200           35         430         248         69200           52         204         95         70300           79         439         247         51900           79         439         247         51900           70         88         65000         888           70         111         70         88800           19         111         70         88900           19         111         70         88900           17         127         113         62200           87         47         81600           93         877         473         89100           17         127         113         62200           17         127         1337         57400           17         127         1815         71300           17         127         1815         71300           17         1274         984         75400           101         170         97         83300           11         126         1816         71500</th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mN         YbN         LuN         Th           35         430         248         69200           35         430         248         69200           52         204         95         70300           79         439         247         51900           50         185         98         65000           79         439         247         51900           50         185         98         65000           74         1274         580         88800           19         111         70         98900           53         93         47         81600           653         134         337         57000           74         296         95         53000           8         77         113         62200           74         296         95         5300           8         42         36         103400           17         170         97         83900           17         170         97         83900           653         1089         453         63300           653         577         89100 <th>mn         Ybn         Lun         Th           35         430         248         69200           35         430         248         69200           79         439         247         51900           79         439         247         51900           79         439         247         51900           70         1274         580         88800           11         70         98900         65000           19         111         70         98900           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           65         314         337         57000           17         127         113         62200           8         42         36         63300           653         1089         453         5300           653         1089         453         73400           65702         12508         13300</th> <th>MIN         YbN         LuN         Th           35         430         248         69200           35         430         247         51900           79         439         247         51900           79         439         247         51900           79         439         247         51900           70         98         877         51900           93         877         473         59100           93         877         473         59100           93         877         473         59100           93         877         473         59100           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           65         93         63000         63300           17         127         113         62200           17         170         97         83900           660         2302         10330         63300           653         1000         95</th> <th>MIN         YbN         Lun         Th           35         430         248         69200           52         204         95         70300           79         439         247         51900           50         185         98         65000           50         185         98         65000           50         185         98         65000           51         204         93         128300           50         185         98         65000           51         204         93         128300           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           63         1127         113         62200           71         127         113         62300           65         11300         71         337         5400           65         171         008         453         63300           61         1</th> <th>Min         Ybn         Lun         Th           35         430         248         69200           35         430         248         69200           52         204         95         70300           79         439         247         51900           79         439         247         51900           70         88         65000         888           70         111         70         88800           19         111         70         88900           19         111         70         88900           17         127         113         62200           87         47         81600           93         877         473         89100           17         127         113         62200           17         127         1337         57400           17         127         1815         71300           17         127         1815         71300           17         1274         984         75400           101         170         97         83300           11         126         1816         71500</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mn         Ybn         Lun         Th           35         430         248         69200           35         430         248         69200           79         439         247         51900           79         439         247         51900           79         439         247         51900           70         1274         580         88800           11         70         98900         65000           19         111         70         98900           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           65         314         337         57000           17         127         113         62200           8         42         36         63300           653         1089         453         5300           653         1089         453         73400           65702         12508         13300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIN         YbN         LuN         Th           35         430         248         69200           35         430         247         51900           79         439         247         51900           79         439         247         51900           79         439         247         51900           70         98         877         51900           93         877         473         59100           93         877         473         59100           93         877         473         59100           93         877         473         59100           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           65         93         63000         63300           17         127         113         62200           17         170         97         83900           660         2302         10330         63300           653         1000         95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN         YbN         Lun         Th           35         430         248         69200           52         204         95         70300           79         439         247         51900           50         185         98         65000           50         185         98         65000           50         185         98         65000           51         204         93         128300           50         185         98         65000           51         204         93         128300           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           53         93         47         81600           63         1127         113         62200           71         127         113         62300           65         11300         71         337         5400           65         171         008         453         63300           61         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Min         Ybn         Lun         Th           35         430         248         69200           35         430         248         69200           52         204         95         70300           79         439         247         51900           79         439         247         51900           70         88         65000         888           70         111         70         88800           19         111         70         88900           19         111         70         88900           17         127         113         62200           87         47         81600           93         877         473         89100           17         127         113         62200           17         127         1337         57400           17         127         1815         71300           17         127         1815         71300           17         1274         984         75400           101         170         97         83300           11         126         1816         71500                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         185           885         3757         2074         1274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         185           885         3757         2074         1274           1129         560         219         111           532         4783         1938         877           553         326         153         93           554         2077         740         314                                                                                                                                                    | 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         4783         1938         877           555         326         153         93           554         2077         740         314           554         2077         740         314           643         545         288         153           514         153         93         37           554         2077         740         314           644         1643         545         288           6149         714         217         127                                                                                        | 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         4783         1938         877           55         3757         2074         1274           532         4783         1938         877           55         326         153         93           55         3256         1533         93           564         153         93         314           55         326         153         93           564         153         545         288           57         217         740         314           665         2196         674         296           37         162         38         42           672         957         417         170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         1938         877           55         326         153         93           564         2077         740         314           444         1643         545         288           504         2077         740         314           65         326         153         93           514         1643         545         288           65         2196         674         296           65         2196         674         296           67         3323         1231         585           675         387         1231         585           675         33285         1069         706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 511         2077         835         430           536         767         352         204           917         2347         979         439           018         743         321         204           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         1938         877           555         326         153         93           554         2074         1274         1274           129         560         219         111           532         376         153         93           555         326         153         93           504         163         545         288           144         1643         545         286           145         162         38         42           6055         2196         674         296           6072         957         417         170           6055         3233         1231         585           845         3285         16653         1089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         185           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         1938         877         56           532         326         153         93           532         326         153         93           545         326         153         93           553         326         153         93           564         217         127         127           149         1643         545         288           37         162         38         42           655         2196         674         296           377         162         38         42           675         383         1231         585           377         162         38         42 <td>511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         439           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         1938         877           55         326         219         111           532         4783         1938         877           55         326         219         111           532         144         1643         545         288           544         162         345         286         147           665         2196         674         296         296           37         162         38         42         296           37         162         38         42         296           665         3323         1231         585         42           705         3325         1665</td> <td>511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         185           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         2074         1274         127           129         560         219         111           532         326         153         93           55         326         153         93           560         2196         674         296           37         162         38         42           065         2196         674         296           37         162         38         42           072         957         417         170           7165         3323         1231         585           845         3325         1653         1089           6105         7572         1700</td> <td>511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         439           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         4783         1938         877           55         326         219         111           532         1533         93         55           560         2196         674         296           57         162         38         42           065         2196         674         296           37         162         38         42           072         957         417         170           705         3323         1231         585           37         162         372         236           163         3323         1231         585           709         3175         170</td> <td>511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         439           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         4783         1938         877           55         3757         2074         1274           149         714         1643         545         288           55         326         153         93         53           560         2196         674         296         74           655         2196         674         296         74           705         3323         1231         585           705         3323         1231         585           705         3323         1231         5769           7109         7118         4260         2769           7109         3675         2177         1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         439           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         1938         877           55         326         219         111           532         4783         1938         877           55         326         219         111           532         144         1643         545         288           544         162         345         286         147           665         2196         674         296         296           37         162         38         42         296           37         162         38         42         296           665         3323         1231         585         42           705         3325         1665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         185           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         2074         1274         127           129         560         219         111           532         326         153         93           55         326         153         93           560         2196         674         296           37         162         38         42           065         2196         674         296           37         162         38         42           072         957         417         170           7165         3323         1231         585           845         3325         1653         1089           6105         7572         1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         439           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         4783         1938         877           55         326         219         111           532         1533         93         55           560         2196         674         296           57         162         38         42           065         2196         674         296           37         162         38         42           072         957         417         170           705         3323         1231         585           37         162         372         236           163         3323         1231         585           709         3175         170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 511         2077         835         430           536         767         352         204           917         2347         979         439           068         743         321         204           011         966         350         439           011         966         350         185           885         3757         2074         1274           129         560         219         111           532         4783         1938         877           55         3757         2074         1274           149         714         1643         545         288           55         326         153         93         53           560         2196         674         296         74           655         2196         674         296         74           705         3323         1231         585           705         3323         1231         585           705         3323         1231         5769           7109         7118         4260         2769           7109         3675         2177         1                                                                                                                                                                                                                                    |
| 2536         767         35           5917         2347         97           2068         743         32           4011         966         35           8885         3757         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2536         767         35           5917         2347         97           5917         2347         97           2068         743         32           4011         966         35           8885         3757         20           2129         560         21           9532         4783         15           955         326         15           955         326         15           955         326         15           955         326         15           955         326         15           955         326         15           955         326         15           955         326         15                                                    | 2536     767     35       5917     2347     97       5917     2347     97       2068     743     32       4011     966     35       8885     3757     20       8885     3757     20       2129     560     21       2129     560     21       955     326     15       955     326     16       1643     5504     2077       7444     1643     5       2149     714     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2536         767         35           5917         2347         97           5917         2347         97           5918         743         32           2068         743         32           4011         966         35           8885         3757         20           2129         560         21           2129         560         21           955         326         15           955         326         15           955         326         15           955         326         15           955         326         15           955         326         15           955         2077         74           955         2149         1643           2149         1643         5           9065         2196         6           337         162         38           337         162         38           2072         957         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2536         767         35           5917         2347         97           5917         2347         97           501         2347         97           4011         966         35           4011         966         35           8885         3757         20           8885         3757         20           2129         560         21           955         3757         20           953         4783         15           953         376         15           954         2077         74           4444         1643         54           2149         714         21           2149         714         21           2149         714         21           2149         714         21           2149         714         21           2337         162         36           337         162         36           2072         957         41           2057         3323         1           2055         3323         1           5845         3285         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2536         767         35           5917         2347         97           5917         2347         97           743         2347         97           4011         966         35           4011         966         35           885         3757         20           8855         3757         20           955         3757         20           955         3757         20           955         3757         20           955         3757         20           955         3757         20           955         3757         20           955         3757         20           955         3756         15           9504         2077         74           1444         1643         54           2149         714         21           9065         2196         67           337         162         38           337         162         38           337         162         34           11709         714         34           11709         714         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 438         13432         591           4967         5431         206           595         14710         40:           1295         17553         88!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4438         13432         591           1967         5431         206           1895         14710         400           1595         17553         888           1295         17553         888           1295         17553         888           1295         17553         888           1295         17553         888           1217         3103         95:           917         3103         95:           917         3103         95:           9752         11755         444           0055         5546         21:                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4438         13432         591           967         5431         206           555         14710         401           595         14710         401           2095         14710         401           21295         14710         401           2140         7672         212           217         3103         95:           217         3103         95:           217         3103         95:           2163         11755         44.           20055         5546         21.           2777         24722         90.           556         1384         33.           5444         4281         20           5344         18747         87           5393         11125         58.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 438     13432     591       1967     5431     206       1595     14710     401       1295     17553     888       1295     17553     888       1295     17553     888       171     3103     95:       163     15664     95:       177     3103     95:       7163     12897     556       7175     11755     44.       336     1384     33'       536     1384     33'       536     1384     33'       536     1384     33'       536     1384     33'       5344     18747     87       5344     18747     87       5344     18747     87       5344     13755     67       5344     13755     67       5344     13755     67       5344     13735     61       78303     142     32'       5344     13735     54'       7355     57     11'       5507     19230     12'       545     1735     51'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4438         13432         591           967         5431         206           1595         14710         401           1595         14710         401           1295         17553         888           1295         17553         888           1295         17553         888           1240         7672         212           117         3103         95:           1163         12897         554           11755         5446         21           9055         5546         21           9175         11755         900           5377         24722         900           5344         4281         20           5344         18747         87           93939         11125         58           9141         32963         24           1846         20972         11'           1844         18747         87           9141         32963         24           1844         1323063         24           1735         61'         12'           531         122'32'3         14'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 69990         37438           36419         13967           79095         38595           54832         31295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69990         37438           36419         13967           79095         38595           7903         31295           48678         21240           63683         40413           35504         9917           68260         37163                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69990         37438           36419         13967           79095         38595           79095         38595           54832         31295           54832         31295           63683         40413           35504         9917           63683         40413           35504         9917           63260         37163           71261         39752           49237         20055           235504         6017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69990         37438           36419         13967           79095         38595           79095         38595           54832         31295           54832         31295           48678         21240           63683         40413           35504         9917           63683         37163           35504         9917           68260         37163           71261         39752           73703         46777           30977         7636           35097         13444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69990         37438           36419         13967           79095         38595           79095         38595           54878         21240           63683         40413           35504         9917           63683         40413           35504         9917           638260         37163           71261         39752           49237         20055           73703         46777           35997         13444           73890         23939           58800         23939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69990         37438           36419         13967           79095         38595           54832         31295           54832         31295           54832         31295           48678         21240           6363         40413           35504         9917           6363         40413           35504         9917           68260         37163           71261         39752           49237         20055           73703         46777           30977         7636           30977         7636           35097         13444           74873         45344           58800         23939           58800         27839           65209         27824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69990         37438           69990         37438           5419         13967           79095         38595           5483         31295           5483         40413           63683         40413           35504         917           68260         37163           68260         37763           71261         39752           49237         20055           73703         46777           30977         7636           35097         13444           74873         45344           75005         23939           76309         23939           76309         27824           65209         27824           65209         27824           76309         27824           81282         5041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69990         37438           69990         37438           36419         13967           79095         38595           54832         31295           54832         31295           48678         21240           63633         40413           35504         9917           63633         40413           35504         9917           68260         37163           71261         39752           49237         20055           73703         46777           35097         13444           73703         46777           35097         13444           73703         45344           58800         23939           75309         40338           58800         27824           58800         27824           65209         27824           65209         27824           81282         50441           81282         50441           68210         27631           70549         35207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69990         37438           69990         37438           36419         13967           79095         38595           54832         31295           54832         31295           48678         21240           63633         40413           35504         9917           68260         37163           71261         39752           49237         20055           73703         46777           73703         46777           73703         46777           73703         46777           73703         46777           73703         46777           73703         46744           73703         46747           73703         46747           73703         46744           58800         23939           76399         40238           65209         27824           91760         41846           81282         50441           68210         27631           70549         35207           70549         35207           70549         35207           26653 <td>69990         37438           69990         37438           36419         13967           79095         38595           54832         31295           54832         31295           48678         21240           63683         40413           35504         9917           63560         37163           71261         39752           73703         46777           73703         46777           73703         46777           73703         46777           73703         46777           73703         46744           73703         46744           73703         46744           73703         46744           73703         46744           73703         46744           74873         45344           76399         40248           65209         27824           91760         41846           81282         50441           68210         27631           65209         27633           6645         26653           26653         6645           278942</td> <td>69990         37438           69990         37438           36419         13967           79095         38595           54832         31295           54832         31295           54832         31295           54833         40413           5564         9917           68260         37163           71261         39752           73703         46777           30977         7636           73703         45344           58800         23939           74873         45344           58800         23939           7656         37444           76399         40248           58800         23939           76599         40248           58800         23939           76599         40248           65209         27631           68210         27631           68210         27631           68210         27631           68210         27631           68210         27631           68210         27631           70549         35207           26645</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69990         37438           69990         37438           36419         13967           79095         38595           54832         31295           54832         31295           48678         21240           63683         40413           35504         9917           63560         37163           71261         39752           73703         46777           73703         46777           73703         46777           73703         46777           73703         46777           73703         46744           73703         46744           73703         46744           73703         46744           73703         46744           73703         46744           74873         45344           76399         40248           65209         27824           91760         41846           81282         50441           68210         27631           65209         27633           6645         26653           26653         6645           278942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69990         37438           69990         37438           36419         13967           79095         38595           54832         31295           54832         31295           54832         31295           54833         40413           5564         9917           68260         37163           71261         39752           73703         46777           30977         7636           73703         45344           58800         23939           74873         45344           58800         23939           7656         37444           76399         40248           58800         23939           76599         40248           58800         23939           76599         40248           65209         27631           68210         27631           68210         27631           68210         27631           68210         27631           68210         27631           68210         27631           70549         35207           26645                                                                                                                                                                                                                                                                                                               |
| 99524         1382           95245         1382           123453         5518           99592         9429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99524         1382           123453         5518           99592         9429           97485         1795           97486         6946           108566         6946           122366         1532           112984         6429                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99524         1382           123453         5518           123453         5518           99592         9429           97485         1795           108566         6946           122366         1532           11284         6429           113868         3975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99524     1382       123453     5518       99592     9429       99592     9429       97485     1795       108566     6946       108566     6946       122366     1532       112984     6429       116791     6268       111625     8750       98165     2446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99524         1382           99524         1382           123453         5518           99592         9429           97485         1795           97485         1795           108566         6946           112346         1532           112344         6429           116791         6268           111625         8750           98165         2446           98165         12682           118015         6982           118015         6982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99524         1382           123453         5518           123453         5518           99592         9429           97485         1795           108566         6946           112364         6429           112984         6429           116791         6268           116791         6268           111655         8750           98165         2446           118015         6982           98165         12688           130591         20366           130591         29356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99524         1382         1382           123453         5518         9592           99592         9429         5           97485         1795         9           108566         6946         6           112345         1532         11234           112586         6946         6           112584         6429         6           111655         8750         7           98165         12688         3975           118015         6982         1268           98165         12768         7           130116         19482         13051           130511         29036         130116           130116         19482         16839           130116         19482         162814           150361         79107         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99524         1382           99524         1382           123453         5518           99592         9429           97485         1795           108566         6946           122366         1532           112344         6429           1123868         3975           1116791         6268           111655         8750           98165         2446           98165         12688           98165         12768           130116         19482           130391         20356           130391         20366           133031         29036           133031         29167           133031         29167           133033         22714           137933         22714           137933         22714           137933         23714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99524         1382           99524         1382           123453         5518           99592         9429           99592         9429           97485         1795           108566         6946           122366         1532           112384         6429           116791         6268           111625         8750           98165         2446           98165         2446           98165         2446           98165         12682           98165         2446           130015         6982           98165         12768           130301         29036           130301         29036           130301         1007           130301         79107           135010         79107           135010         79107           135010         79107           135013         22714           13593         22714           144596         25393           95581         829           95581         829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99524         1382           99524         1382           123453         5518           99592         9429           97485         1795           97485         1795           97485         1795           97485         1795           97485         1795           97485         1795           97566         6946           123366         1532           112944         6429           1116791         6268           98165         2446           98165         2446           98165         2446           98165         2446           118015         6982           98165         12688           98165         12688           130516         19482           130510         79107           133010         79107           133010         79107           133010         79107           133010         79107           133010         79107           133033         22714           144596         25393           95581         829           95581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99524         1382           99524         1382           123453         5518           99592         9429           97485         1795           97485         1795           97485         1795           97485         1795           108566         6946           11805         6746           111675         8750           98165         2446           1118015         6982           98165         12688           98165         2446           118015         6982           126852         1268           98165         2446           130116         19482           130116         19482           130116         19482           133051         29036           133051         29036           133051         29036           135010         79107           13593         25714           13593         25713           95581         829           95581         829           95645         1320           95644         1320           9564                                                                                                                                                                                                                                                                                                                     |
| JULL         LULL         LULL         JULL         JULL <th< td=""><td>313131         243369         123           313131         243369         123           318967         241379         995           318957         248232         974           320763         237179         108           320763         237179         107           383389         320071         122           311111         235190         112</td><td>313131         24359         123           313131         24359         123           318967         241379         995           318957         241379         995           318957         248232         974           320763         237179         108           323389         320071         122           383389         320071         122           311111         235190         112           315713         234085         116           327048         250442         113</td><td>JULE         ZULE         <thzule< th="">         ZULE         ZULE         <thz< td=""><td>2002.1         2002.0         2002.1           313131         243369         123           318967         241379         995           318957         248232         974           320763         237179         106           320763         237179         107           320763         237179         107           31111         235190         112           315713         234085         116           315713         234085         111           312458         250442         113           312458         256442         113           312458         258338         111           335129         258621         982           342200         259505         981           308979         240495         118           350505         281609         126</td><td>200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         <t< td=""><td>2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         <t< td=""><td>Jouzont         Zouzont         Zouzont         Zouzont         Zouzont         Zouzont         Jillill         Zouzont         Jillill         Zouzont         Jillill         Jillill         Jillill         Jillill         Jillill         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillillillillillillillillillillillillill</td><td>JOLLOI         ZUDUZI         <thzuduzi< th=""> <thzuduzi< th=""> <thzuduzi< td="" th<=""><td>Jouent         Zouent         <thzouent< th=""> <thzouent< th=""> <thzouent< td="" th<=""><td>Jouzont         Z00221         Z00220         Z00220         Z00220         Z00220         Z0021         Z0022         Z01111         Z0021         Z02200         Z01220         Z0220</td></thzouent<></thzouent<></thzouent<></td></thzuduzi<></thzuduzi<></thzuduzi<></td></t<></td></t<></td></thz<></thzule<></td></th<> | 313131         243369         123           313131         243369         123           318967         241379         995           318957         248232         974           320763         237179         108           320763         237179         107           383389         320071         122           311111         235190         112                                                                                                                                                                                                                                                                                                                | 313131         24359         123           313131         24359         123           318967         241379         995           318957         241379         995           318957         248232         974           320763         237179         108           323389         320071         122           383389         320071         122           311111         235190         112           315713         234085         116           327048         250442         113                                                                                                                                                                                                                                                                                                                                                                                                                               | JULE         ZULE         ZULE <thzule< th="">         ZULE         ZULE         <thz< td=""><td>2002.1         2002.0         2002.1           313131         243369         123           318967         241379         995           318957         248232         974           320763         237179         106           320763         237179         107           320763         237179         107           31111         235190         112           315713         234085         116           315713         234085         111           312458         250442         113           312458         256442         113           312458         258338         111           335129         258621         982           342200         259505         981           308979         240495         118           350505         281609         126</td><td>200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         <t< td=""><td>2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         <t< td=""><td>Jouzont         Zouzont         Zouzont         Zouzont         Zouzont         Zouzont         Jillill         Zouzont         Jillill         Zouzont         Jillill         Jillill         Jillill         Jillill         Jillill         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillillillillillillillillillillillillill</td><td>JOLLOI         ZUDUZI         <thzuduzi< th=""> <thzuduzi< th=""> <thzuduzi< td="" th<=""><td>Jouent         Zouent         <thzouent< th=""> <thzouent< th=""> <thzouent< td="" th<=""><td>Jouzont         Z00221         Z00220         Z00220         Z00220         Z00220         Z0021         Z0022         Z01111         Z0021         Z02200         Z01220         Z0220</td></thzouent<></thzouent<></thzouent<></td></thzuduzi<></thzuduzi<></thzuduzi<></td></t<></td></t<></td></thz<></thzule<> | 2002.1         2002.0         2002.1           313131         243369         123           318967         241379         995           318957         248232         974           320763         237179         106           320763         237179         107           320763         237179         107           31111         235190         112           315713         234085         116           315713         234085         111           312458         250442         113           312458         256442         113           312458         258338         111           335129         258621         982           342200         259505         981           308979         240495         118           350505         281609         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201         200.201 <t< td=""><td>2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         <t< td=""><td>Jouzont         Zouzont         Zouzont         Zouzont         Zouzont         Zouzont         Jillill         Zouzont         Jillill         Zouzont         Jillill         Jillill         Jillill         Jillill         Jillill         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillillillillillillillillillillillillill</td><td>JOLLOI         ZUDUZI         <thzuduzi< th=""> <thzuduzi< th=""> <thzuduzi< td="" th<=""><td>Jouent         Zouent         <thzouent< th=""> <thzouent< th=""> <thzouent< td="" th<=""><td>Jouzont         Z00221         Z00220         Z00220         Z00220         Z00220         Z0021         Z0022         Z01111         Z0021         Z02200         Z01220         Z0220</td></thzouent<></thzouent<></thzouent<></td></thzuduzi<></thzuduzi<></thzuduzi<></td></t<></td></t<> | 2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01         2002.01 <t< td=""><td>Jouzont         Zouzont         Zouzont         Zouzont         Zouzont         Zouzont         Jillill         Zouzont         Jillill         Zouzont         Jillill         Jillill         Jillill         Jillill         Jillill         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillillillillillillillillillillillillill</td><td>JOLLOI         ZUDUZI         <thzuduzi< th=""> <thzuduzi< th=""> <thzuduzi< td="" th<=""><td>Jouent         Zouent         <thzouent< th=""> <thzouent< th=""> <thzouent< td="" th<=""><td>Jouzont         Z00221         Z00220         Z00220         Z00220         Z00220         Z0021         Z0022         Z01111         Z0021         Z02200         Z01220         Z0220</td></thzouent<></thzouent<></thzouent<></td></thzuduzi<></thzuduzi<></thzuduzi<></td></t<> | Jouzont         Zouzont         Zouzont         Zouzont         Zouzont         Zouzont         Jillill         Zouzont         Jillill         Zouzont         Jillill         Jillill         Jillill         Jillill         Jillill         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillilli         Zouzont         Jillillillillillillillillillillillillill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JOLLOI         ZUDUZI         ZUDUZI <thzuduzi< th=""> <thzuduzi< th=""> <thzuduzi< td="" th<=""><td>Jouent         Zouent         <thzouent< th=""> <thzouent< th=""> <thzouent< td="" th<=""><td>Jouzont         Z00221         Z00220         Z00220         Z00220         Z00220         Z0021         Z0022         Z01111         Z0021         Z02200         Z01220         Z0220</td></thzouent<></thzouent<></thzouent<></td></thzuduzi<></thzuduzi<></thzuduzi<> | Jouent         Zouent         Zouent <thzouent< th=""> <thzouent< th=""> <thzouent< td="" th<=""><td>Jouzont         Z00221         Z00220         Z00220         Z00220         Z00220         Z0021         Z0022         Z01111         Z0021         Z02200         Z01220         Z0220</td></thzouent<></thzouent<></thzouent<> | Jouzont         Z00221         Z00220         Z00220         Z00220         Z00220         Z0021         Z0022         Z01111         Z0021         Z02200         Z01220         Z0220 |
| 200 <u>419004</u> 313<br>200 438432 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 510         444064         512           200         438432         318           300         438432         316           301         447380         316           210         454623         320           300         322113         383           700         466979         311                                                                                                                                                                                                                                                                                                                                                                                 | 475004         474004         210           200         438432         318           30         447380         316           210         454623         320           210         454623         323           300         322113         383           300         454679         311           700         466979         311           100         458458         315           00         458432         327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -17         -147004         -11           000         438432         318           80         447380         316           81         454623         320           80         454623         320           80         322113         383           80         322113         383           80         322113         383           80         46979         311           900         468458         315           90         458458         315           90         438432         327           730         479335         312           730         479335         312           730         479335         312           730         479335         312           730         47755         335           309659         342         342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 512         473004         512           200         438432         318           80         447380         316           810         454623         320           810         454623         320           80         322113         383           80         322113         383           80         322113         333           90         458458         311           90         458458         315           90         458432         327           90         479335         312           90         479335         312           91         479335         312           920         479335         312           930         479335         312           930         399659         342           980         360559         342           980         464423         308           980         453467         350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CIC         +++00+4         CIC         +++100+4         CIC         118         210         211         211         211         211         211         211         211         212         212         212         212         212         212         212         212         212         212         2211         212         222         212         223         222         212         232         2211         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232         232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47.00*4         51.0           200         4.384.32         318           80         4.47.380         316           80         4.54.623         320           810         4.54.623         320           80         3.22113         383           80         3.22113         383           80         3.22113         333           80         4.54.63         315           90         4.58.458         315           90         4.58.458         315           90         4.58.458         315           90         4.58.453         327           90         4.59.355         312           91         4.793.35         312           92         4.793.35         312           930         4.917.55         336           930         4.61.62         336           930         4.60.162         336           940         4.290.58         347           4.10737         365         344           4.10737         365         344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 475004         4747004         512           200         438432         318           300         437432         318           310         454623         320           310         454623         320           310         454623         320           300         456979         311           300         466979         311           100         458458         312           300         458458         312           300         458458         312           310         47755         332           300         459457         330           301         479335         312           302         399659         342           303         407755         330           300         460162         346           300         460162         346           300         460162         346           300         460162         346           410737         365         347           300         460162         346           4500         485726         347           300         486798         348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51         31           20         447380         316           80         438432         313           80         438432         313           81         454623         320           80         454623         320           80         322113         383           80         322113         383           80         322113         383           80         322113         383           80         322113         383           90         466979         311           100         458458         312           730         479335         312           80         399659         342           80         399659         342           80         460162         330           80         460162         336           80         460162         346           810         420588         344           810         485726         346           810         485726         346           810         486728         346           810         486726         344           810         4265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47.00*1         51.0           200         438432         318           80         447380         316           810         454623         320           80         454623         320           80         322113         383           80         322113         383           80         322113         383           80         322113         383           80         322113         383           80         322113         383           910         458458         315           90         458432         312           910         458432         312           930         497755         333           930         497755         336           940         459162         347           930         461423         308           940         42058         346           940         42058         346           940         485726         346           940         485726         346           940         485726         346           940         48677         356           940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47:00-4         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0         21:0                                            |
| ±10 40.24 18200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±10         40.24         18200           ±10         36.64         4380           ±11         3.21         22210           ±10         14.45         2380           ±11         1.77         13700                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ±10         40.24         18200           ±10         36.64         4380           ±11         3.21         22210           ±10         14.45         2380           ±11         1.77         13700           ±11         2.09         10100           ±11         2.37         4790           ±11         2.37         4790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ±10         40.24         18200           ±10         36.64         4380           ±11         3.21         22210           ±10         14.45         2380           ±11         1.77         13700           ±11         2.09         10100           ±11         2.09         10100           ±11         2.37         4790           ±12         9.32         833           ±12         9.32         833           ±11         1.59         4280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±10         40.24         18200           ±10         36.64         4380           ±11         3.21         22210           ±10         14.45         2380           ±11         1.77         13700           ±11         2.09         10100           ±11         2.09         10100           ±11         2.37         4790           ±11         2.37         4790           ±11         2.37         833           ±12         9.32         833           ±11         1.59         4280           ±11         2.19         19980           ±11         2.19         19980           ±11         2.19         19980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±10         40.24         18200           ±10         36.64         4380           ±11         3.21         22210           ±10         14.45         2380           ±11         1.77         13700           ±11         2.09         10100           ±11         2.37         4790           ±11         2.37         4790           ±11         2.37         4790           ±11         2.37         4790           ±11         2.09         10100           ±12         9.32         833           ±11         1.59         4280           ±12         9.32         833           ±11         2.19         19980           ±12         40.09         12280           ±12         20.19         27800           ±12         20.19         27800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±10         40.24         18200           ±11         3.6.64         4380           ±11         3.21         22210           ±10         14.45         2380           ±11         1.77         13700           ±11         2.09         10100           ±11         2.37         4790           ±11         2.37         4790           ±11         2.37         4790           ±11         2.37         4790           ±11         2.93         833           ±11         1.59         4280           ±11         1.59         19980           ±11         2.19         19980           ±11         2.19         19980           ±12         40.09         12280           ±12         20.19         27800           ±12         20.19         27800           ±12         20.19         27800           ±12         18.65         24430           ±11         2.25         48400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H10         40.24         18200           H11         36.64         4380           H11         3.21         22210           H10         14.45         2380           H11         1.77         13700           H11         2.77         200           H11         2.77         200           H11         2.77         20730           H11         2.77         20730           H11         2.77         20730           H11         2.09         10100           H11         2.09         101300           H11         2.09         10200           H11         2.09         10200           H11         2.09         20730           H11         2.09         20730           H11         2.09         20730           H11         2.09         20730           H11         2.09         27800           H12         20.19         27800           H12         2.019         27800           H11         2.25         48400           H11         2.25         2840           H11         2.2550         25540 <td>H10         40.24         18200           H1         36.64         4380           H1         3.21         22210           H1         3.21         2330           H1         1.77         13700           H1         1.77         13700           H11         2.09         10100           H11         2.77         4790           H11         2.073         833           H11         2.09         10100           H11         2.09         12380           H11         2.19         2780           H11         2.19         2780           H12         20.19         12380           H11         2.19         2780           H11         2.19         2780           H11         2.19         2780           H11         2.25         48400           H11         2.25         1404</td> <td>±10         40.24         18200           ±11         3.6.64         4380           ±11         3.21         22210           ±10         14.45         2380           ±11         1.77         13700           ±11         2.09         10100           ±11         2.09         10100           ±11         2.09         10100           ±11         2.09         10100           ±11         2.09         10100           ±11         2.09         10100           ±12         9.32         833           ±11         1.59         4280           ±12         9.32         833           ±11         2.19         19980           ±12         2.0.19         12280           ±12         2.0.19         12280           ±12         2.0.19         12280           ±12         2.0.19         12280           ±12         2.0.19         12280           ±13         2.5540         1404           ±11         2.75         38.45         25540           ±11         8.780         1404           ±10         18.57</td> <td>H10         40.24         18200           H1         36.64         4380           H1         3.21         22210           H1         3.21         2380           H1         1.77         13700           H1         1.77         13700           H1         2.37         4790           H1         2.37         4790           H1         2.37         13700           H1         2.37         13700           H1         2.09         10100           H1         2.09         10100           H1         2.09         1333           H1         2.09         10100           H1         2.09         1360           H2         9.32         833           H1         1.59         4280           H1         2.019         12580           H1         2.019         13660           H1         2.019         1404           H1</td> | H10         40.24         18200           H1         36.64         4380           H1         3.21         22210           H1         3.21         2330           H1         1.77         13700           H1         1.77         13700           H11         2.09         10100           H11         2.77         4790           H11         2.073         833           H11         2.09         10100           H11         2.09         12380           H11         2.19         2780           H11         2.19         2780           H12         20.19         12380           H11         2.19         2780           H11         2.19         2780           H11         2.19         2780           H11         2.25         48400           H11         2.25         1404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ±10         40.24         18200           ±11         3.6.64         4380           ±11         3.21         22210           ±10         14.45         2380           ±11         1.77         13700           ±11         2.09         10100           ±11         2.09         10100           ±11         2.09         10100           ±11         2.09         10100           ±11         2.09         10100           ±11         2.09         10100           ±12         9.32         833           ±11         1.59         4280           ±12         9.32         833           ±11         2.19         19980           ±12         2.0.19         12280           ±12         2.0.19         12280           ±12         2.0.19         12280           ±12         2.0.19         12280           ±12         2.0.19         12280           ±13         2.5540         1404           ±11         2.75         38.45         25540           ±11         8.780         1404           ±10         18.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H10         40.24         18200           H1         36.64         4380           H1         3.21         22210           H1         3.21         2380           H1         1.77         13700           H1         1.77         13700           H1         2.37         4790           H1         2.37         4790           H1         2.37         13700           H1         2.37         13700           H1         2.09         10100           H1         2.09         10100           H1         2.09         1333           H1         2.09         10100           H1         2.09         1360           H2         9.32         833           H1         1.59         4280           H1         2.019         12580           H1         2.019         13660           H1         2.019         1404           H1                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (11-3-6.1         1013         ±1'           (31-3.1         1021         ±1           (31-1.1.1         1022         ±1           (31-1.1.1         1023         ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11-3-6.1         1013         ±1           031-3.1         1001         ±1           031-3.1         1022         ±1           031-1.1         1023         ±1           031-2.1         1023         ±1           031-2.1         1029         ±1           031-2.1         1029         ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UI-3-6.1         I013         ±1           031-3.1         1003         ±1           031-3.1         1021         ±1           031-1.1         1022         ±1           031-1.1         1023         ±1           031-3.2         1027         ±1           031-3.2         1027         ±1           031-3.2         1027         ±1           031-3.2         1027         ±1           031-3.2         1027         ±1           031-3.2         1027         ±1           031-3.2         1032         ±1           031-5.1         1034         ±1           031-5.1         1034         ±1           031-5.1         1034         ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11-3-6.1     1013     ±1       31-3.1     1021     ±1       11-1.1     1022     ±1       11-1.1     1023     ±1       31-3.2     1027     ±1       31-3.2     1027     ±1       31-3.2     1029     ±1       31-3.2     1029     ±1       31-5.1     1032     ±1       31-5.1     1034     ±1       31-6.1     1038     ±1       31-6.1     1038     ±1       31-6.1     1038     ±1       31-6.1     1038     ±1       31-6.1     1038     ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11-3-6.1     1013     ±1       31-3.1     1021     ±1       31-3.1     1022     ±1       31-1.1     1022     ±1       31-1.1     1023     ±1       31-3.2     1027     ±1       31-3.1     1029     ±1       31-3.1     1029     ±1       31-3.1     1032     ±1       31-3.1     1034     ±1       31-5.1     1034     ±1       31-6.1     1038     ±1       31-6.1     1038     ±1       31-5.2     983     ±1       132-5.2     991     ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-3-6.1     1013     ±1       131-3.1     1021     ±1       131-3.1     1022     ±1       131-1.1     1023     ±1       131-2.1     1027     ±1       131-2.1     1029     ±1       131-2.1     1029     ±1       131-2.1     1032     ±1       131-5.1     1032     ±1       131-5.1     1034     ±1       131-5.1     1038     ±1       131-5.1     1038     ±1       131-5.1     1038     ±1       132-5.2     983     ±1       132-5.2     991     ±1       132-4.2     1015     ±1       132-4.2     1015     ±1       132-4.1     1037     ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11-3-6.1     1013     ±11       131-3.1     1013     ±11       131-3.1     1021     ±11       131-1.1     1022     ±11       131-3.2     1027     ±1       131-3.1     1029     ±1       131-3.1     1029     ±1       131-3.1     1029     ±1       131-3.1     1029     ±1       131-5.1     1032     ±1       131-5.1     1034     ±1       131-5.1     1038     ±1       131-5.1     1038     ±1       132-5.2     981     ±1       132-5.1     985     ±1       132-5.2     991     ±1       132-4.2     1015     ±1       132-2.1     1037     ±1       132-2.1     1037     ±1       132-2.1     1037     ±1       132-2.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11-3-6.1     1013     ±11       131-3.1     1013     ±11       131-3.1     1021     ±11       131-3.1     1022     ±11       131-3.1     1022     ±1       131-3.2     1027     ±1       131-3.1     1029     ±1       131-3.1     1029     ±1       131-3.1     1029     ±1       131-5.1     1032     ±1       131-5.1     1034     ±1       131-6.1     1038     ±1       132-5.2     981     ±1       132-5.2     981     ±1       132-5.1     1037     ±1       132-5.1     1037     ±1       132-5.1     1037     ±1       132-5.1     1037     ±1       132-5.1     1037     ±1       132-2.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1       145-8.1     886     ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11-3-6.1     1013     ±1       131-3.1     1021     ±1       131-3.1     1022     ±1       131-3.1     1023     ±1       131-3.2     1027     ±1       131-3.1     1023     ±1       131-3.2     1027     ±1       131-5.1     1029     ±1       131-5.1     1032     ±1       131-5.1     1038     ±1       131-6.1     1038     ±1       131-6.1     1038     ±1       132-5.1     983     ±1       132-5.1     985     ±1       132-5.1     1015     ±1       132-5.1     1037     ±1       132-5.1     1037     ±1       132-5.1     1015     ±1       132-5.1     1015     ±1       132-5.1     1037     ±1       132-5.1     1015     ±1       132-1.1     1037     ±1       132-1.1     1037     ±1       132-1.1     1027     ±1       145-6.1     902     ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(11-3.6.1]$ $1013$ $\pm 11$ $(31-3.1]$ $1021$ $\pm 11$ $(31-3.1]$ $1022$ $\pm 11$ $(31-3.1]$ $1023$ $\pm 11$ $(31-3.1]$ $1023$ $\pm 11$ $(31-3.1]$ $1027$ $\pm 11$ $(31-3.1]$ $1029$ $\pm 11$ $(31-5.1]$ $1032$ $\pm 11$ $(31-5.1]$ $1034$ $\pm 11$ $(31-5.1]$ $1034$ $\pm 11$ $(31-5.1]$ $1038$ $\pm 11$ $(31-5.1]$ $985$ $\pm 11$ $(132-5.2)$ $981$ $\pm 11$ $(132-5.1]$ $985$ $\pm 11$ $(132-5.1]$ $985$ $\pm 11$ $(132-2.2]$ $991$ $\pm 11$ $(132-1.2]$ $10057$ $\pm 11$ $(132-1.2]$ $10027$ $\pm 11$ $(145-6.1]$ $902$ $\pm 11$ $(145-6.1]$ $902$ $\pm 11$ $(145-6.1]$ $902$ $\pm 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C R11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C R31-<br>C R31-<br>C R31-<br>C R31-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C R31-<br>C R31-<br>C R31-<br>C R31-<br>C R31-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C R31-<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C R31-<br>C | C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           E         R132           C         R132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R13-           E         R132           E         R132           C         R132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R11-           C         R11-           C         R13-           C         R13-           C         R13-           C         R132-           C         R144-           D-         D-           D-         D-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R13-           C         R13-           C         R13-           C         R132           RE         R145           RE         R145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           C         R31-           E         R132           E         R132           C         R132           C         R132           C         R132           C         R132           C         R132           RE         R145           RE         R145           RE         R145           RE         R145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|          |          | 1        | 1 <i>pp</i> | oen      | dix       | Ε        |          |          |          |          |          | _ |
|----------|----------|----------|-------------|----------|-----------|----------|----------|----------|----------|----------|----------|---|
| 67800    | 99640    | 79600    | 98800       | 00609    | 77400     | 78100    | 77600    | 125000   | 70000    | 108300   | 63300    |   |
| 49       | 103      | 35       | 20          | 32       | 53        | 58       | 253      | 68       | 49       | 28       | 124      |   |
| 95       | 167      | 91       | 33          | 49       | 134       | 76       | 689      | 127      | 79       | 58       | 268      |   |
| 210      | 327      | 144      | 67          | 118      | 189       | 232      | 897      | 260      | 171      | 83       | 428      |   |
| 650      | 190      | 369      | 256         | 344      | 456       | 564      | 1617     | 568      | 537      | 317      | 922      |   |
| 1964     | 1728     | 853      | LTT         | 986      | 1016      | 1264     | 2455     | 1338     | 1640     | 1016     | 1862     |   |
| 5468     | 3754     | 2406     | 2699        | 2897     | 2897      | 3061     | 3997     | 2884     | 5422     | 3329     | 4162     |   |
| 19945    | 10438    | 8231     | 10543       | 10901    | 9711      | 10705    | 11353    | 9419     | 19284    | 14050    | 14848    |   |
| 53764    | 27925    | 28688    | 34893       | 34842    | 33622     | 34893    | 32553    | 30264    | 52899    | 44303    | 42472    |   |
| 4500     | 839      | 2627     | 1927        | 2227     | 3100      | 2618     | 2950     | 1523     | 4232     | 2343     | 3679     |   |
| 106934   | 79742    | 84636    | 93610       | 91978    | 90211     | 99320    | 94833    | 101632   | 101971   | 105031   | 99388    |   |
| 227896   | 241379   | 230990   | 232095      | 225685   | 228338    | 236074   | 245358   | 285809   | 225243   | 243811   | 245800   |   |
| 315039   | 325926   | 312346   | 322896      | 317845   | 312795    | 313244   | 320426   | 364085   | 317508   | 330079   | 323232   |   |
| 483596   | 412441   | 460162   | 457605      | 472518   | 466127    | 488283   | 462718   | 396251   | 463997   | 467405   | 448232   |   |
| 4780     | 3930     | 1874     | 1850        | 2418     | 2150      | 3011     | 5610     | 3159     | 3800     | 2428     | 4550     |   |
| 41.79    | 32.80    | 22.19    | 20.72       | 9.53     | 12.42     | 18.21    | 14.94    | 48.21    | 9.96     | 24.46    | 16.60    |   |
| $\pm 10$ | $\pm 11$ | ±11      | ±11         | $\pm 10$ | ±11       | ±11      | $\pm 11$ | $\pm 11$ | ±11      | $\pm 11$ | ±11      |   |
| 916      | 921      | 931      | 931         | 943      | 950       | 954      | 966      | 968      | 696      | 983      | 066      |   |
| R145-5.3 | R145-5.1 | R145-9.1 | R145-8.2    | R145-5.2 | R145-10.1 | R145-3.2 | R145-1.1 | R145-2.2 | R145-7.1 | R145-4.1 | R145-2.1 |   |
| RE       | RE       | С        | C (inc)     | С        | C (inc)   | RE (Inc) | с        | RE       | С        | C (inc)  | С        |   |

Supplementary Information for Chapter 5

| University of the strate                  | Appendix         | кE                      |                     |           | Suppleme    | ntary Info | rmation f   | for Chapt  | er 5     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|---------------------|-----------|-------------|------------|-------------|------------|----------|
| example from Rogaland, SW Norway           Image: Constraint of the straint                                   | Using accessory  | mineral                 | s to unrav          | el therma | l histories | s in polym | etamorpl    | nic terran | es: an   |
| Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se        | example from R   | ogaland,                | SW Norv             | vay       |             |            |             |            |          |
| E. BLEREAU, C. CLARK, R. J. M. TAYLOR, T. E. JOHNSON, P. KINNY, E. SANSOM,<br>M. HAND           Image: Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Classical Clasclassical Classical Classical Classical Classical                                            |                  |                         |                     |           |             |            |             |            |          |
| M. HAND         Image         Image         Image         Image         Image           Table S7: Raw, normalised and buffered modified REE compositions from diffusion modelling and multi-spot senarios         Image         Image </td <td>E. BLEREAU,</td> <td>C. CLAR</td> <td>K, R. J. N</td> <td>1. TAYLO</td> <td>OR, T. E.</td> <td>JOHNSO</td> <td>N, P. KIN</td> <td>INY, E. S</td> <td>ANSOM,</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E. BLEREAU,      | C. CLAR                 | K, R. J. N          | 1. TAYLO  | OR, T. E.   | JOHNSO     | N, P. KIN   | INY, E. S  | ANSOM,   |
| Image: transmall burger of the transmal burger of the transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of transmal burger of | M. HAND          |                         |                     |           | r           |            | r           | r          |          |
| Table S7: Raw, normalised and buffered modified REE compositions from diffusion modelling and multi-spot services and buffered modified REE compositions from diffusion modelling and multi-spot services         Image: Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composition of Composite Composite Composition of Composition of Composition of Composi                |                  |                         |                     |           |             |            |             |            |          |
| elling and multi-spot services         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i <t< td=""><td>Table S7: Raw,</td><td>normalise</td><td>ed and bu</td><td>ffered mo</td><td>dified RE</td><td>EE compos</td><td>sitions fro</td><td>om diffus</td><td>ion mod-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table S7: Raw,   | normalise               | ed and bu           | ffered mo | dified RE   | EE compos  | sitions fro | om diffus  | ion mod- |
| ImageImageImageImageImageImageTable S7: Raw, normalised and buffered modified REE compositions from diffuseGdTbDyHoErTmYbLuC021.6265.08250.96717.79269.91614.52126.7524.3CEq19.663.6324.275.5615.892.4216.252.43CON1101402103204406007801000CEq N110110110110110110110110850 °C for x MyrImIm1001101101101101100.521.615.0750.7217.6869.4114.41125.7224.10121.615.0750.7217.6869.4114.41125.6824.073021.615.0750.7217.6869.4114.41125.6824.973021.615.0750.7217.6869.4114.41125.6824.973021.615.0750.7217.6869.4114.41125.6824.973021.615.0750.7217.6869.4114.41125.6824.973021.615.0750.7117.6469.4414.2512.34123.440.5 N109.93139.57208.98317.90436.84595.3277.63991.575 N109.93139.57208.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elling and multi | -spot sen               | arios               |           | r           |            | r           | r          |          |
| Table S/: Raw, normalised and buffered modified REE compositions from diffusion modelling and multi-spot services           Gd         Tb         Dy         Ho         Er         Tm         Yb         Lu           C0         21.626         5.082         50.967         17.792         69.916         14.52         126.75         24.3           CEq         19.66         3.63         24.27         5.56         15.89         2.42         16.25         2.43           CO N         110         140         210         320         440         600         780         1000           CEq N         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                         | <u> </u>            |           | 1.0 1.01    |            |             | 1:00       |          |
| Gd         Tb         Dy         Ho         Er         Tm         Yb         Lu           C0         21.626         5.082         50.967         17.792         69.916         14.52         126.75         24.3           CEq         19.66         3.63         24.27         5.56         15.89         2.42         16.25         2.43           C0 N         110         140         210         320         440         600         780         1000           CEq N         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         125.72         24.10         24.10         25.71         24.10         125.71         24.09         125.71         24.09         125.71         24.09         125.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | elling and multi | normalise<br>-spot sena | ed and but<br>arios | ffered mo | dified RE   | E compos   | sitions fro | om diffus  | ion mod- |
| C0         21.626         5.082         50.967         17.792         69.916         14.52         126.75         24.3           CEq         19.66         3.63         24.27         5.56         15.89         2.42         16.25         2.43           C0 N         110         140         210         320         440         600         780         1000           CEq N         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         125.72         24.10         24.10         24.11         14.14         125.72         24.10         23.98         110         125.38         23.98         125.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Gd                      | Tb                  | Dy        | Но          | Er         | Tm          | Yb         | Lu       |
| CEq         19.66         3.63         24.27         5.56         15.89         2.42         16.25         2.43           C0 N         110         140         210         320         440         600         780         1000           CEq N         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         125.72         24.10         24.10         24.10         24.10         24.10         24.10         24.10         24.10         24.10         24.10         24.10         24.10         24.10 <td>C0</td> <td>21.626</td> <td>5.082</td> <td>50.967</td> <td>17.792</td> <td>69.916</td> <td>14.52</td> <td>126.75</td> <td>24.3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C0               | 21.626                  | 5.082               | 50.967    | 17.792      | 69.916     | 14.52       | 126.75     | 24.3     |
| C N         110         140         210         320         440         600         780         1000           CEq N         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110 </td <td>CEq</td> <td>19.66</td> <td>3.63</td> <td>24.27</td> <td>5.56</td> <td>15.89</td> <td>2.42</td> <td>16.25</td> <td>2.43</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CEq              | 19.66                   | 3.63                | 24.27     | 5.56        | 15.89      | 2.42        | 16.25      | 2.43     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C0 N             | 110                     | 140                 | 210       | 320         | 440        | 600         | 780        | 1000     |
| 850 °C for x MyrIIIIIIIII $0.5$ 21.615.0750.7217.6869.4114.41125.7224.10121.615.0750.7217.6869.4114.41125.7224.10521.615.0750.7217.6869.4114.41125.7224.091021.615.0750.7217.6869.4114.41125.6824.073021.615.0750.7217.6869.4014.39125.3823.9810021.615.0750.7217.6769.2514.33124.4523.7220021.615.0750.7117.6469.0414.25123.4123.440.5 N109.93139.57208.98317.91436.84595.32773.63991.571 N109.93139.57208.98317.90436.84595.31773.61991.4410 N109.93139.57208.98317.90436.84595.32773.63991.573 0 N109.93139.57208.98317.90436.84595.32773.63991.573 0 N109.93139.57208.98317.90436.84595.32773.63991.573 0 N109.93139.57208.98317.90436.84595.32773.63991.571 0 N109.93139.57208.98317.90436.84595.32773.63991.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CEa N            | 110                     | 110                 | 110       | 110         | 110        | 110         | 110        | 110      |
| 0.5         21.61         5.07         50.72         17.68         69.41         14.41         125.72         24.10           1         21.61         5.07         50.72         17.68         69.41         14.41         125.72         24.10           5         21.61         5.07         50.72         17.68         69.41         14.41         125.71         24.09           10         21.61         5.07         50.72         17.68         69.41         14.41         125.68         24.07           30         21.61         5.07         50.72         17.68         69.40         14.39         125.38         23.98           100         21.61         5.07         50.72         17.67         69.25         14.33         124.45         23.72           200         21.61         5.07         50.71         17.64         69.04         14.25         123.41         23.44           0.5 N         109.93         139.57         208.98         317.91         436.84         595.32         73.63         991.57           1 N         109.93         139.57         208.98         317.90         436.84         595.31         73.61         991.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 850 °C for x My  | /r                      |                     |           |             |            |             |            |          |
| 121.61 $5.07$ $50.72$ $17.68$ $69.41$ $14.41$ $125.72$ $24.10$ 521.61 $5.07$ $50.72$ $17.68$ $69.41$ $14.41$ $125.71$ $24.09$ 1021.61 $5.07$ $50.72$ $17.68$ $69.41$ $14.41$ $125.68$ $24.07$ 3021.61 $5.07$ $50.72$ $17.68$ $69.40$ $14.39$ $125.38$ $23.98$ 10021.61 $5.07$ $50.72$ $17.67$ $69.25$ $14.33$ $124.45$ $23.72$ 20021.61 $5.07$ $50.71$ $17.64$ $69.04$ $14.25$ $123.41$ $23.44$ 0.5 N $109.93$ $139.57$ $208.98$ $317.91$ $436.84$ $595.32$ $77.63$ $991.57$ 1 N $109.93$ $139.57$ $208.98$ $317.90$ $436.84$ $595.32$ $77.3.61$ $991.44$ 10 N $109.93$ $139.57$ $208.98$ $317.90$ $436.84$ $595.29$ $73.41$ $990.67$ 30 N $109.93$ $139.57$ $208.98$ $317.90$ $436.84$ $595.29$ $73.41$ $990.67$ $30 N$ $109.93$ $139.57$ $208.98$ $317.90$ $436.84$ $595.32$ $77.63$ $991.57$ $30 N$ $109.93$ $139.57$ $208.98$ $317.90$ $436.84$ $595.32$ $73.63$ $991.57$ $30 N$ $109.93$ $139.57$ $208.98$ $317.91$ $436.84$ $595.32$ $73.63$ $991.57$ $100 N$ $109.93$ $139.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5              | 21.61                   | 5.07                | 50.72     | 17.68       | 69.41      | 14.41       | 125.72     | 24.10    |
| 5         21.61         5.07         50.72         17.68         69.41         14.41         125.71         24.09           10         21.61         5.07         50.72         17.68         69.41         14.41         125.68         24.07           30         21.61         5.07         50.72         17.68         69.40         14.39         125.38         23.98           100         21.61         5.07         50.72         17.67         69.25         14.33         124.45         23.72           200         21.61         5.07         50.71         17.64         69.04         14.25         123.41         23.44           0.5 N         109.93         139.57         208.98         317.91         436.84         595.32         773.63         991.57           1 N         109.93         139.57         208.98         317.90         436.84         595.32         773.61         991.44           10 N         109.93         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 N         109.93         139.57         208.98         317.90         436.76         594.72         771.55         986.76     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                | 21.61                   | 5.07                | 50.72     | 17.68       | 69.41      | 14.41       | 125.72     | 24.10    |
| 10         21.61         5.07         50.72         17.68         69.41         14.41         125.68         24.07           30         21.61         5.07         50.72         17.68         69.40         14.39         125.38         23.98           100         21.61         5.07         50.72         17.67         69.25         14.33         124.45         23.72           200         21.61         5.07         50.71         17.64         69.04         14.25         123.41         23.44           0.5 N         109.93         139.57         208.98         317.91         436.84         595.32         773.63         991.57           1 N         109.93         139.57         208.98         317.90         436.84         595.32         773.61         991.44           10 N         109.93         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 N         109.93         139.57         208.98         317.90         436.76         594.72         771.55         986.76           100 N         109.93         139.57         208.97         317.73         435.81         592.03         765.85         976.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                | 21.61                   | 5.07                | 50.72     | 17.68       | 69.41      | 14.41       | 125.71     | 24.09    |
| 30         21.61         5.07         50.72         17.68         69.40         14.39         125.38         23.98           100         21.61         5.07         50.72         17.67         69.25         14.33         124.45         23.72           200         21.61         5.07         50.71         17.64         69.04         14.25         123.41         23.44           0.5 N         109.93         139.57         208.98         317.91         436.84         595.32         773.63         991.57           1 N         109.93         139.57         208.98         317.90         436.84         595.32         773.61         991.44           10 N         109.93         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 N         109.93         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 N         109.93         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 N         109.93         139.57         208.98         317.90         436.84         595.32         773.63         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10               | 21.61                   | 5.07                | 50.72     | 17.68       | 69.41      | 14.41       | 125.68     | 24.07    |
| 10021.615.0750.7217.6769.2514.33124.4523.7220021.615.0750.7117.6469.0414.25123.4123.440.5 N109.93139.57208.98317.91436.84595.32773.63991.571 N109.93139.57208.98317.91436.84595.32773.63991.475 N109.93139.57208.98317.90436.84595.31773.61991.4410 N109.93139.57208.98317.90436.84595.29773.41990.6730 N109.93139.57208.98317.90436.76594.72771.55986.76100 N109.93139.57208.97317.73435.81592.03765.85976.25200 N109.93139.57208.98317.90436.84595.32773.63991.571 B110.00139.57208.98317.91436.84595.32773.63991.571 B110.00139.57208.98317.91436.84595.32773.63991.571 B110.00139.57208.98317.90436.84595.32773.63991.573 D B110.00139.57208.98317.90436.84595.32773.63991.573 D B110.00139.57208.98317.90436.84595.31773.61991.4410 B110.00139.57208.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30               | 21.61                   | 5.07                | 50.72     | 17.68       | 69.40      | 14.39       | 125.38     | 23.98    |
| 200       21.61       5.07       50.71       17.64       69.04       14.25       123.41       23.44         0.5 N       109.93       139.57       208.98       317.91       436.84       595.32       773.63       991.57         1 N       109.93       139.57       208.98       317.91       436.84       595.32       773.63       991.57         5 N       109.93       139.57       208.98       317.90       436.84       595.32       773.61       991.44         10 N       109.93       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 N       109.93       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 N       109.93       139.57       208.98       317.90       436.84       595.29       773.43       990.67         30 N       109.93       139.57       208.98       317.90       436.84       595.32       773.63       915.7         200 N       109.93       139.57       208.98       317.91       436.84       595.32       773.63       991.57         1 B       110.00       139.57       208.98       317.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100              | 21.61                   | 5.07                | 50.72     | 17.67       | 69.25      | 14.33       | 124.45     | 23.72    |
| 0.5 N         109.93         139.57         208.98         317.91         436.84         595.32         773.63         991.57           1 N         109.93         139.57         208.98         317.91         436.84         595.32         773.63         991.57           5 N         109.93         139.57         208.98         317.90         436.84         595.31         773.61         991.44           10 N         109.93         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 N         109.93         139.57         208.98         317.90         436.76         594.72         771.55         986.76           100 N         109.93         139.57         208.97         317.73         435.81         592.03         765.85         976.25           200 N         109.93         139.57         208.92         317.91         436.84         595.32         773.63         991.57           100 N         109.93         139.57         208.98         317.91         436.84         595.32         773.63         991.57           10 N         10.00         139.57         208.98         317.90         436.84         595.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200              | 21.61                   | 5.07                | 50.71     | 17.64       | 69.04      | 14.25       | 123.41     | 23.44    |
| 1 N         109.93         139.57         208.98         317.91         436.84         595.32         773.63         991.57           5 N         109.93         139.57         208.98         317.90         436.84         595.31         773.61         991.44           10 N         109.93         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 N         109.93         139.57         208.98         317.90         436.76         594.72         771.55         986.76           100 N         109.93         139.57         208.97         317.73         435.81         592.03         765.85         976.25           200 N         109.93         139.57         208.92         317.29         434.49         588.89         759.42         964.48           0.5 B         110.00         139.57         208.98         317.91         436.84         595.32         773.63         991.57           1 B         110.00         139.57         208.98         317.91         436.84         595.32         773.63         991.57           5 B         110.00         139.57         208.98         317.90         436.84         595.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5 N            | 109.93                  | 139.57              | 208.98    | 317.91      | 436.84     | 595.32      | 773.63     | 991.57   |
| 5 N         109.93         139.57         208.98         317.90         436.84         595.31         773.61         991.44           10 N         109.93         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 N         109.93         139.57         208.98         317.90         436.76         594.72         771.55         986.76           100 N         109.93         139.57         208.97         317.73         435.81         592.03         765.85         976.25           200 N         109.93         139.57         208.92         317.29         434.49         588.89         759.42         964.48           0.5 B         110.00         139.57         208.98         317.91         436.84         595.32         773.63         991.57           1 B         110.00         139.57         208.98         317.90         436.84         595.32         773.63         991.57           5 B         110.00         139.57         208.98         317.90         436.84         595.31         773.61         991.44           10 B         110.00         139.57         208.98         317.90         436.84         595.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 N              | 109.93                  | 139.57              | 208.98    | 317.91      | 436.84     | 595.32      | 773.63     | 991.57   |
| 10 N       109.93       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 N       109.93       139.57       208.98       317.90       436.76       594.72       771.55       986.76         100 N       109.93       139.57       208.97       317.73       435.81       592.03       765.85       976.25         200 N       109.93       139.57       208.92       317.29       434.49       588.89       759.42       964.48         0.5 B       110.00       139.57       208.98       317.91       436.84       595.32       773.63       991.57         1 B       110.00       139.57       208.98       317.90       436.84       595.32       773.63       991.57         5 B       110.00       139.57       208.98       317.90       436.84       595.31       773.61       991.44         10 B       110.00       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 B       110.00       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 B       110.00       139.57       208.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 N              | 109.93                  | 139.57              | 208.98    | 317.90      | 436.84     | 595.31      | 773.61     | 991.44   |
| 30 N       109.93       139.57       208.98       317.90       436.76       594.72       771.55       986.76         100 N       109.93       139.57       208.97       317.73       435.81       592.03       765.85       976.25         200 N       109.93       139.57       208.92       317.29       434.49       588.89       759.42       964.48         0.5 B       110.00       139.57       208.98       317.91       436.84       595.32       773.63       991.57         1 B       110.00       139.57       208.98       317.90       436.84       595.32       773.63       991.57         5 B       110.00       139.57       208.98       317.90       436.84       595.31       773.61       991.44         10 B       110.00       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 B       110.00       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 B       110.00       139.57       208.98       317.90       436.76       594.72       771.55       986.76         100 B       110.00       139.57       208.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 N             | 109.93                  | 139.57              | 208.98    | 317.90      | 436.84     | 595.29      | 773.41     | 990.67   |
| 100 N       109.93       139.57       208.97       317.73       435.81       592.03       765.85       976.25         200 N       109.93       139.57       208.92       317.29       434.49       588.89       759.42       964.48         0.5 B       110.00       139.57       208.98       317.91       436.84       595.32       773.63       991.57         1 B       110.00       139.57       208.98       317.91       436.84       595.32       773.63       991.57         5 B       110.00       139.57       208.98       317.91       436.84       595.32       773.63       991.57         5 B       110.00       139.57       208.98       317.90       436.84       595.31       773.61       991.44         10 B       110.00       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 B       110.00       139.57       208.98       317.90       436.84       595.29       771.55       986.76         100 B       110.00       139.57       208.97       317.73       435.81       592.03       765.85       976.25         200 B       110.00       139.57       208.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 N             | 109.93                  | 139.57              | 208.98    | 317.90      | 436.76     | 594.72      | 771.55     | 986.76   |
| 200 N       109.93       139.57       208.92       317.29       434.49       588.89       759.42       964.48         0.5 B       110.00       139.57       208.98       317.91       436.84       595.32       773.63       991.57         1 B       110.00       139.57       208.98       317.91       436.84       595.32       773.63       991.57         5 B       110.00       139.57       208.98       317.90       436.84       595.32       773.63       991.57         5 B       110.00       139.57       208.98       317.90       436.84       595.31       773.61       991.44         10 B       110.00       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 B       110.00       139.57       208.98       317.90       436.76       594.72       771.55       986.76         100 B       110.00       139.57       208.97       317.73       435.81       592.03       765.85       976.25         200 B       110.00       139.57       208.92       317.29       434.49       588.89       759.42       964.48         900 °C for x Myr       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 N            | 109.93                  | 139.57              | 208.97    | 317.73      | 435.81     | 592.03      | 765.85     | 976.25   |
| 0.5 B         110.00         139.57         208.98         317.91         436.84         595.32         773.63         991.57           1 B         110.00         139.57         208.98         317.91         436.84         595.32         773.63         991.57           5 B         110.00         139.57         208.98         317.91         436.84         595.32         773.63         991.57           5 B         110.00         139.57         208.98         317.90         436.84         595.31         773.61         991.44           10 B         110.00         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 B         110.00         139.57         208.98         317.90         436.76         594.72         771.55         986.76           100 B         110.00         139.57         208.97         317.73         435.81         592.03         765.85         976.25           200 B         110.00         139.57         208.92         317.29         434.49         588.89         759.42         964.48           900 °C for x Myr         I         I         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 N            | 109.93                  | 139.57              | 208.92    | 317.29      | 434.49     | 588.89      | 759.42     | 964.48   |
| 1 B         110.00         139.57         208.98         317.91         436.84         595.32         773.63         991.57           5 B         110.00         139.57         208.98         317.90         436.84         595.31         773.63         991.57           5 B         110.00         139.57         208.98         317.90         436.84         595.31         773.61         991.44           10 B         110.00         139.57         208.98         317.90         436.84         595.29         773.41         990.67           30 B         110.00         139.57         208.98         317.90         436.76         594.72         771.55         986.76           100 B         110.00         139.57         208.97         317.73         435.81         592.03         765.85         976.25           200 B         110.00         139.57         208.92         317.29         434.49         588.89         759.42         964.48           900 °C for x Myr         Image: State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5 B            | 110.00                  | 139.57              | 208.98    | 317.91      | 436.84     | 595.32      | 773.63     | 991.57   |
| 5 B       110.00       139.57       208.98       317.90       436.84       595.31       773.61       991.44         10 B       110.00       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 B       110.00       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 B       110.00       139.57       208.98       317.90       436.76       594.72       771.55       986.76         100 B       110.00       139.57       208.97       317.73       435.81       592.03       765.85       976.25         200 B       110.00       139.57       208.92       317.29       434.49       588.89       759.42       964.48         900 °C for x Myr       Image: State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 B              | 110.00                  | 139.57              | 208.98    | 317.91      | 436.84     | 595.32      | 773.63     | 991.57   |
| 10 B       110.00       139.57       208.98       317.90       436.84       595.29       773.41       990.67         30 B       110.00       139.57       208.98       317.90       436.76       594.72       771.55       986.76         100 B       110.00       139.57       208.97       317.73       435.81       592.03       765.85       976.25         200 B       110.00       139.57       208.92       317.29       434.49       588.89       759.42       964.48         900 °C for x Myr                  0.5       21.61       5.07       50.72       17.68       69.41       14.41       125.66       24.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 B              | 110.00                  | 139.57              | 208.98    | 317.90      | 436.84     | 595.31      | 773.61     | 991.44   |
| 30 B       110.00       139.57       208.98       317.90       436.76       594.72       771.55       986.76         100 B       110.00       139.57       208.97       317.73       435.81       592.03       765.85       976.25         200 B       110.00       139.57       208.92       317.29       434.49       588.89       759.42       964.48         900 °C for x Myr       Image: Construction of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of                                                                                                                                                                                                                                                                                                                               | 10 B             | 110.00                  | 139.57              | 208.98    | 317.90      | 436.84     | 595.29      | 773.41     | 990.67   |
| 100 B       110.00       139.57       208.97       317.73       435.81       592.03       765.85       976.25         200 B       110.00       139.57       208.92       317.29       434.49       588.89       759.42       964.48         900 °C for x Myr                  0.5       21.61       5.07       50.72       17.68       69.41       14.41       125.66       24.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 B             | 110.00                  | 139.57              | 208.98    | 317.90      | 436.76     | 594.72      | 771.55     | 986.76   |
| 200 B       110.00       139.57       208.92       317.29       434.49       588.89       759.42       964.48         900 °C for x Myr       Image: Construction of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t                                                                                                                           | 100 B            | 110.00                  | 139.57              | 208.97    | 317.73      | 435.81     | 592.03      | 765.85     | 976.25   |
| 900 °C for x Myr         20.00         50.72         17.68         69.41         14.41         125.66         24.07           1         21.61         5.07         50.72         17.68         69.41         14.41         125.66         24.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200 B            | 110.00                  | 139.57              | 208.92    | 317.29      | 434.49     | 588.89      | 759.42     | 964.48   |
| 0.5     21.61     5.07     50.72     17.68     69.41     14.41     125.66     24.07       1     21.61     5.07     50.72     17.68     69.41     14.41     125.48     24.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900 °C for x My  | /r                      |                     |           |             |            |             |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5              | 21.61                   | 5.07                | 50.72     | 17.68       | 69.41      | 14.41       | 125.66     | 24.07    |
| 1   21.61   5.0/   50.72   17.68   69.41   14.41   125.48   24.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                | 21.61                   | 5.07                | 50.72     | 17.68       | 69.41      | 14.41       | 125.48     | 24.01    |
| 5 21.61 5.07 50.71 17.66 69.19 14.41 124.26 23.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                | 21.61                   | 5.07                | 50.71     | 17.66       | 69.19      | 14.41       | 124.26     | 23.68    |
| 10 21.61 5.07 50.69 17.63 68.94 14.41 123.08 23.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10               | 21.61                   | 5.07                | 50.69     | 17.63       | 68.94      | 14.41       | 123.08     | 23.36    |

| Appendix        | x E    |        | Å      | Suppleme | ntary Info | rmation f | for Chapt | er 5   |
|-----------------|--------|--------|--------|----------|------------|-----------|-----------|--------|
| 30              | 21.61  | 5.06   | 50.56  | 17.52    | 68.17      | 13.96     | 119.48    | 22.39  |
| 100             | 21.61  | 5.05   | 50.23  | 17.25    | 66.22      | 13.28     | 110.52    | 20.04  |
| 200             | 21.60  | 5.04   | 49.85  | 16.95    | 64.05      | 12.55     | 101.47    | 17.90  |
| 0.5 N           | 109.93 | 139.57 | 208.98 | 317.90   | 436.83     | 595.32    | 773.29    | 990.36 |
| 1 N             | 109.93 | 139.57 | 208.98 | 317.90   | 436.80     | 595.32    | 772.19    | 988.06 |
| 5 N             | 109.93 | 139.57 | 208.96 | 317.59   | 435.45     | 595.31    | 764.65    | 974.29 |
| 10 N            | 109.93 | 139.57 | 208.85 | 317.01   | 433.88     | 595.29    | 757.44    | 961.25 |
| 30 N            | 109.92 | 139.50 | 208.33 | 315.11   | 429.02     | 576.69    | 735.28    | 921.22 |
| 100 N           | 109.90 | 139.25 | 206.95 | 310.29   | 416.74     | 548.81    | 680.11    | 824.73 |
| 200 N           | 109.86 | 138.96 | 205.41 | 304.90   | 403.06     | 518.59    | 624.44    | 736.52 |
| 0.5 B           | 110.00 | 139.57 | 208.98 | 317.90   | 436.83     | 595.32    | 773.29    | 990.36 |
| 1 B             | 110.00 | 139.57 | 208.98 | 317.90   | 436.80     | 595.32    | 772.19    | 988.06 |
| 5 B             | 110.00 | 139.57 | 208.96 | 317.59   | 435.45     | 595.31    | 764.65    | 974.29 |
| 10 B            | 110.00 | 139.57 | 208.85 | 317.01   | 433.88     | 595.29    | 757.44    | 961.25 |
| 30 B            | 110.00 | 139.50 | 208.33 | 315.11   | 429.02     | 576.69    | 735.28    | 921.22 |
| 100 B           | 110.00 | 139.25 | 206.95 | 310.29   | 416.74     | 548.81    | 680.11    | 824.73 |
| 200 B           | 110.00 | 138.96 | 205.41 | 304.90   | 403.06     | 518.59    | 624.44    | 736.52 |
| 950 °C for x My | yr     |        |        |          |            |           |           |        |
| 0.5             | 21.61  | 5.07   | 50.68  | 17.62    | 68.96      | 14.23     | 123.29    | 23.42  |
| 1               | 21.61  | 5.06   | 50.61  | 17.57    | 68.56      | 14.10     | 121.49    | 22.94  |
| 5               | 21.60  | 5.05   | 50.19  | 17.25    | 66.31      | 13.34     | 111.56    | 20.34  |
| 10              | 21.60  | 5.04   | 49.79  | 16.94    | 64.19      | 12.64     | 102.95    | 18.29  |
| 30              | 21.57  | 5.00   | 48.58  | 16.03    | 58.15      | 10.87     | 83.98     | 14.20  |
| 100             | 21.50  | 4.91   | 45.65  | 14.12    | 47.83      | 8.31      | 58.86     | 8.99   |
| 200             | 21.42  | 4.81   | 43.00  | 12.68    | 40.88      | 6.64      | 43.29     | 6.14   |
| 0.5 N           | 109.93 | 139.56 | 208.82 | 316.99   | 433.99     | 588.22    | 758.70    | 963.88 |
| 1 N             | 109.93 | 139.53 | 208.53 | 315.97   | 431.45     | 582.59    | 747.63    | 944.09 |
| 5 N             | 109.89 | 139.19 | 206.81 | 310.20   | 417.30     | 551.29    | 686.51    | 837.11 |
| 10 N            | 109.84 | 138.86 | 205.17 | 304.76   | 403.98     | 522.46    | 633.54    | 752.50 |
| 30 N            | 109.70 | 137.85 | 200.15 | 288.28   | 365.94     | 449.31    | 516.79    | 584.30 |
| 100 N           | 109.35 | 135.32 | 188.10 | 253.87   | 300.99     | 343.34    | 362.22    | 370.04 |
| 200 N           | 108.96 | 132.62 | 177.19 | 228.02   | 257.27     | 274.31    | 266.43    | 252.48 |
| 0.5 B           | 110.00 | 139.56 | 208.82 | 316.99   | 433.99     | 588.22    | 758.70    | 963.88 |
| 1 B             | 110.00 | 139.53 | 208.53 | 315.97   | 431.45     | 582.59    | 747.63    | 944.09 |
| 5 B             | 110.00 | 139.19 | 206.81 | 310.20   | 417.30     | 551.29    | 686.51    | 837.11 |
| 10 B            | 110.00 | 138.86 | 205.17 | 304.76   | 403.98     | 522.46    | 633.54    | 752.50 |
| 30 B            | 110.00 | 137.85 | 200.15 | 288.28   | 365.94     | 449.31    | 516.79    | 584.30 |
| 100 B           | 110.00 | 135.32 | 188.10 | 253.87   | 300.99     | 343.34    | 362.22    | 370.04 |
| 200 B           | 110.00 | 132.62 | 177.19 | 228.02   | 257.27     | 274.31    | 266.43    | 252.48 |
| 1000 °C for x M | lyr    |        |        |          |            |           |           |        |
| 0.5             | 21.59  | 5.04   | 49.91  | 17.06    | 65.14      | 12.99     | 107.40    | 19.37  |
| 1               | 21.58  | 5.02   | 49.32  | 16.63    | 62.31      | 12.11     | 97.21     | 17.06  |

| Appendix        | c E    |        | ,      | Supplemen | ntary Info | rmation f | for Chapt | er 5   |
|-----------------|--------|--------|--------|-----------|------------|-----------|-----------|--------|
| 5               | 21.50  | 4.92   | 46.17  | 14.54     | 50.36      | 9.00      | 66.07     | 10.52  |
| 10              | 21.42  | 4.83   | 43.67  | 13.16     | 43.66      | 7.39      | 50.55     | 7.46   |
| 30              | 21.20  | 4.60   | 38.69  | 10.65     | 31.83      | 4.75      | 29.24     | 4.04   |
| 100             | 20.82  | 4.29   | 32.34  | 7.75      | 21.07      | 3.03      | 19.15     | 2.76   |
| 200             | 20.57  | 4.08   | 28.84  | 6.61      | 18.09      | 2.66      | 17.35     | 2.55   |
| 0.5 N           | 109.84 | 138.91 | 205.62 | 306.82    | 409.95     | 536.68    | 660.90    | 796.93 |
| 1 N             | 109.77 | 138.40 | 203.22 | 299.19    | 392.11     | 500.21    | 598.22    | 702.01 |
| 5 N             | 109.35 | 135.56 | 190.23 | 261.46    | 316.95     | 371.71    | 406.56    | 433.06 |
| 10 N            | 108.95 | 132.98 | 179.93 | 236.65    | 274.75     | 305.18    | 311.09    | 307.06 |
| 30 N            | 107.82 | 126.75 | 159.41 | 191.62    | 200.29     | 196.09    | 179.92    | 166.46 |
| 100 N           | 105.91 | 118.06 | 133.24 | 139.45    | 132.62     | 125.03    | 117.83    | 113.52 |
| 200 N           | 104.62 | 112.46 | 118.82 | 118.84    | 113.85     | 109.91    | 106.77    | 105.01 |
| 0.5 B           | 110.00 | 138.91 | 205.62 | 306.82    | 409.95     | 536.68    | 660.90    | 796.93 |
| 1 B             | 110.00 | 138.40 | 203.22 | 299.19    | 392.11     | 500.21    | 598.22    | 702.01 |
| 5 B             | 110.00 | 135.56 | 190.23 | 261.46    | 316.95     | 371.71    | 406.56    | 433.06 |
| 10 B            | 110.00 | 132.98 | 179.93 | 236.65    | 274.75     | 305.18    | 311.09    | 307.06 |
| 30 B            | 110.00 | 126.75 | 159.41 | 191.62    | 200.29     | 196.09    | 179.92    | 166.46 |
| 100 B           | 110.00 | 118.06 | 133.24 | 139.45    | 132.62     | 125.03    | 117.83    | 113.52 |
| 200 B           | 110.00 | 112.46 | 118.82 | 118.84    | 113.85     | 110.00    | 110.00    | 110.00 |
| 1050 °C for x M | lyr    |        |        |           |            |           |           |        |
| 0.5             | 21.45  | 4.87   | 45.11  | 14.04     | 48.33      | 8.58      | 62.47     | 9.84   |
| 1               | 21.34  | 4.76   | 42.32  | 12.60     | 41.43      | 6.93      | 46.85     | 6.85   |
| 5               | 20.89  | 4.37   | 34.39  | 8.73      | 24.52      | 3.55      | 22.07     | 3.12   |
| 10              | 20.65  | 4.17   | 30.64  | 7.25      | 19.90      | 2.90      | 18.56     | 2.70   |
| 30              | 20.21  | 3.86   | 26.35  | 6.01      | 16.84      | 2.52      | 16.73     | 2.48   |
| 100             | 19.83  | 3.69   | 24.70  | 5.64      | 16.06      | 2.44      | 16.33     | 2.44   |
| 200             | 19.73  | 3.65   | 24.43  | 5.59      | 15.95      | 2.43      | 16.28     | 2.43   |
| 0.5 N           | 109.09 | 134.23 | 185.85 | 252.55    | 304.13     | 354.41    | 384.42    | 405.06 |
| 1 N             | 108.54 | 131.02 | 174.39 | 226.54    | 260.71     | 286.30    | 288.28    | 281.79 |
| 5 N             | 106.27 | 120.35 | 141.70 | 157.08    | 154.33     | 146.49    | 135.80    | 128.46 |
| 10 N            | 105.02 | 114.91 | 126.24 | 130.46    | 125.25     | 119.65    | 114.23    | 110.91 |
| 30 N            | 102.81 | 106.45 | 108.57 | 108.16    | 105.95     | 104.30    | 102.97    | 102.22 |
| 100 N           | 100.89 | 101.58 | 101.76 | 101.53    | 101.06     | 100.74    | 100.50    | 100.37 |
| 200 N           | 100.37 | 100.61 | 100.65 | 100.55    | 100.38     | 100.26    | 100.18    | 100.13 |
| 0.5 B           | 110.00 | 134.23 | 185.85 | 252.55    | 304.13     | 354.41    | 384.42    | 405.06 |
| 1 B             | 110.00 | 131.02 | 174.39 | 226.54    | 260.71     | 286.30    | 288.28    | 281.79 |
| 5 B             | 110.00 | 120.35 | 141.70 | 157.08    | 154.33     | 146.49    | 135.80    | 128.46 |
| 10 B            | 110.00 | 114.91 | 126.24 | 130.46    | 125.25     | 119.65    | 114.23    | 110.91 |
| 30 B            | 110.00 | 110.00 | 110.00 | 110.00    | 110.00     | 110.00    | 110.00    | 110.00 |
| 100 B           | 110.00 | 110.00 | 110.00 | 110.00    | 110.00     | 110.00    | 110.00    | 110.00 |
| 200 B           | 110.00 | 110.00 | 110.00 | 110.00    | 110.00     | 110.00    | 110.00    | 110.00 |
| 1100 °C for x M | lyr    |        |        |           |            |           |           |        |

| Appendix E Supplementary Information for Chapter 5 |        |        |        |        |        |        |        | er 5   |
|----------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.5                                                | 20.80  | 4.31   | 33.70  | 8.56   | 24.24  | 3.54   | 22.18  | 3.15   |
| 1                                                  | 20.54  | 4.11   | 30.00  | 7.13   | 19.74  | 2.89   | 18.61  | 2.71   |
| 5                                                  | 19.94  | 3.74   | 25.19  | 5.76   | 16.33  | 2.47   | 16.48  | 2.46   |
| 10                                                 | 19.78  | 3.67   | 24.63  | 5.64   | 16.05  | 2.44   | 16.33  | 2.44   |
| 30                                                 | 19.69  | 3.64   | 24.34  | 5.58   | 15.92  | 2.42   | 16.27  | 2.43   |
| 100                                                | 19.67  | 3.63   | 24.28  | 5.56   | 15.90  | 2.42   | 16.25  | 2.43   |
| 200                                                | 19.66  | 3.63   | 24.27  | 5.56   | 15.89  | 2.42   | 16.25  | 2.43   |
| 0.5 N                                              | 105.78 | 118.84 | 138.84 | 153.88 | 152.53 | 146.22 | 136.48 | 129.51 |
| 1 N                                                | 104.48 | 113.29 | 123.59 | 128.18 | 124.23 | 119.52 | 114.52 | 111.34 |
| 5 N                                                | 101.40 | 102.95 | 103.81 | 103.68 | 102.75 | 102.03 | 101.43 | 101.09 |
| 10 N                                               | 100.63 | 101.21 | 101.47 | 101.37 | 101.00 | 100.73 | 100.51 | 100.39 |
| 30 N                                               | 100.15 | 100.26 | 100.30 | 100.27 | 100.20 | 100.14 | 100.10 | 100.08 |
| 100 N                                              | 100.03 | 100.04 | 100.05 | 100.05 | 100.03 | 100.02 | 100.02 | 100.01 |
| 200 N                                              | 100.01 | 100.02 | 100.02 | 100.02 | 100.01 | 100.01 | 100.01 | 100.00 |
| 0.5 B                                              | 110.00 | 118.84 | 138.84 | 153.88 | 152.53 | 146.22 | 136.48 | 129.51 |
| 1 B                                                | 110.00 | 113.29 | 123.59 | 128.18 | 124.23 | 119.52 | 114.52 | 111.34 |
| 5 B                                                | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 |
| 10 B                                               | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 |
| 30 B                                               | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 |
| 100 B                                              | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 |
| 200 B                                              | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 |
|                                                    |        |        |        |        |        |        |        |        |
| 0.5 Myr for                                        | Gd     | Tb     | Dy     | Но     | Er     | Tm     | Yb     | Lu     |
| x °C                                               |        |        |        |        |        |        |        |        |
| 850                                                | 21.61  | 5.07   | 50.72  | 17.68  | 69.41  | 14.41  | 125.72 | 24.10  |
| 900                                                | 21.61  | 5.07   | 50.72  | 17.68  | 69.41  | 14.41  | 125.66 | 24.07  |
| 950                                                | 21.61  | 5.07   | 50.68  | 17.62  | 68.96  | 14.23  | 123.29 | 23.42  |
| 1000                                               | 21.59  | 5.04   | 49.91  | 17.06  | 65.14  | 12.99  | 107.40 | 19.37  |
| 1050                                               | 21.45  | 4.87   | 45.11  | 14.04  | 48.33  | 8.58   | 62.47  | 9.84   |
| 1100                                               | 20.80  | 4.31   | 33.70  | 8.56   | 24.24  | 3.54   | 22.18  | 3.15   |
| 850 N                                              | 109.93 | 139.57 | 208.98 | 317.91 | 436.84 | 595.32 | 773.63 | 991.57 |
| 900 N                                              | 109.93 | 139.57 | 208.98 | 317.90 | 436.83 | 595.27 | 773.29 | 990.36 |
| 950 N                                              | 109.93 | 139.56 | 208.82 | 316.99 | 433.99 | 588.22 | 758.70 | 963.88 |
| 1000 N                                             | 109.84 | 138.91 | 205.62 | 306.82 | 409.95 | 536.68 | 660.90 | 796.93 |
| 1050 N                                             | 109.09 | 134.23 | 185.85 | 252.55 | 304.13 | 354.41 | 384.42 | 405.06 |
| 1100 N                                             | 105.78 | 118.84 | 138.84 | 153.88 | 152.53 | 146.22 | 136.48 | 129.51 |
| 850 B                                              | 110.00 | 139.57 | 208.98 | 317.91 | 436.84 | 595.32 | 773.63 | 991.57 |
| 900 B                                              | 110.00 | 139.57 | 208.98 | 317.90 | 436.83 | 595.27 | 773.29 | 990.36 |
| 950 B                                              | 110.00 | 139.56 | 208.82 | 316.99 | 433.99 | 588.22 | 758.70 | 963.88 |
| 1000 B                                             | 110.00 | 138.91 | 205.62 | 306.82 | 409.95 | 536.68 | 660.90 | 796.93 |
| 1050 B                                             | 110.00 | 134.23 | 185.85 | 252.55 | 304.13 | 354.41 | 384.42 | 405.06 |
| 1100 B                                             | 110.00 | 118.84 | 138.84 | 153.88 | 152.53 | 146.22 | 136.48 | 129.51 |

| Appendix        | x E    |        | L      | Suppleme | ntary Info | rmation f | for Chapt | er 5   |
|-----------------|--------|--------|--------|----------|------------|-----------|-----------|--------|
| 1 Myr for x °C  |        |        |        |          |            |           |           |        |
| 850             | 21.61  | 5.07   | 50.72  | 17.68    | 69.41      | 14.41     | 125.72    | 24.10  |
| 900             | 21.61  | 5.07   | 50.72  | 17.68    | 69.41      | 14.40     | 125.48    | 24.01  |
| 950             | 21.61  | 5.06   | 50.61  | 17.57    | 68.56      | 14.10     | 121.49    | 22.94  |
| 1000            | 21.58  | 5.02   | 49.32  | 16.63    | 62.31      | 12.11     | 97.21     | 17.06  |
| 1050            | 21.34  | 4.76   | 42.32  | 12.60    | 41.43      | 6.93      | 46.85     | 6.85   |
| 1100            | 20.54  | 4.11   | 30.00  | 7.13     | 19.74      | 2.89      | 18.61     | 2.71   |
| 850 N           | 109.93 | 139.57 | 208.98 | 317.91   | 436.84     | 595.32    | 773.63    | 991.57 |
| 900 N           | 109.93 | 139.57 | 208.98 | 317.90   | 436.80     | 594.95    | 772.19    | 988.06 |
| 950 N           | 109.93 | 139.53 | 208.53 | 315.97   | 431.45     | 582.59    | 747.63    | 944.09 |
| 1000 N          | 109.77 | 138.40 | 203.22 | 299.19   | 392.11     | 500.21    | 598.22    | 702.01 |
| 1050 N          | 108.54 | 131.02 | 174.39 | 226.54   | 260.71     | 286.30    | 288.28    | 281.79 |
| 1100 N          | 104.48 | 113.29 | 123.59 | 128.18   | 124.23     | 119.52    | 114.52    | 111.34 |
| 850 B           | 110.00 | 139.57 | 208.98 | 317.91   | 436.84     | 595.32    | 773.63    | 991.57 |
| 900 B           | 110.00 | 139.57 | 208.98 | 317.90   | 436.80     | 594.95    | 772.19    | 988.06 |
| 950 B           | 110.00 | 139.53 | 208.53 | 315.97   | 431.45     | 582.59    | 747.63    | 944.09 |
| 1000 B          | 110.00 | 138.40 | 203.22 | 299.19   | 392.11     | 500.21    | 598.22    | 702.01 |
| 1050 B          | 110.00 | 131.02 | 174.39 | 226.54   | 260.71     | 286.30    | 288.28    | 281.79 |
| 1100 B          | 110.00 | 113.29 | 123.59 | 128.18   | 124.23     | 119.52    | 114.52    | 111.34 |
| 5 Myr for x °C  |        |        |        |          |            |           |           |        |
| 850             | 21.61  | 5.07   | 50.72  | 17.68    | 69.41      | 14.41     | 125.71    | 24.09  |
| 900             | 21.61  | 5.07   | 50.71  | 17.66    | 69.19      | 14.31     | 124.26    | 23.68  |
| 950             | 21.60  | 5.05   | 50.19  | 17.25    | 66.31      | 13.34     | 111.56    | 20.34  |
| 1000            | 21.50  | 4.92   | 46.17  | 14.54    | 50.36      | 9.00      | 66.07     | 10.52  |
| 1050            | 20.89  | 4.37   | 34.39  | 8.73     | 24.52      | 3.55      | 22.07     | 3.12   |
| 1100            | 19.94  | 3.74   | 25.19  | 5.76     | 16.33      | 2.47      | 16.48     | 2.46   |
| 850 N           | 109.93 | 139.57 | 208.98 | 317.90   | 436.84     | 595.31    | 773.61    | 991.44 |
| 900 N           | 109.93 | 139.57 | 208.96 | 317.59   | 435.45     | 591.34    | 764.65    | 974.29 |
| 950 N           | 109.89 | 139.19 | 206.81 | 310.20   | 417.30     | 551.29    | 686.51    | 837.11 |
| 1000 N          | 109.35 | 135.56 | 190.23 | 261.46   | 316.95     | 371.71    | 406.56    | 433.06 |
| 1050 N          | 106.27 | 120.35 | 141.70 | 157.08   | 154.33     | 146.49    | 135.80    | 128.46 |
| 1100 N          | 101.40 | 102.95 | 103.81 | 103.68   | 102.75     | 102.03    | 101.43    | 101.09 |
| 850 B           | 110.00 | 139.57 | 208.98 | 317.90   | 436.84     | 595.31    | 773.61    | 991.44 |
| 900 B           | 110.00 | 139.57 | 208.96 | 317.59   | 435.45     | 591.34    | 764.65    | 974.29 |
| 950 B           | 110.00 | 139.19 | 206.81 | 310.20   | 417.30     | 551.29    | 686.51    | 837.11 |
| 1000 B          | 110.00 | 135.56 | 190.23 | 261.46   | 316.95     | 371.71    | 406.56    | 433.06 |
| 1050 B          | 110.00 | 120.35 | 141.70 | 157.08   | 154.33     | 146.49    | 135.80    | 128.46 |
| 1100 B          | 110.00 | 110.00 | 110.00 | 110.00   | 110.00     | 110.00    | 110.00    | 110.00 |
| 10 Myr for x °C |        |        |        |          |            |           |           |        |
| 850             | 21.61  | 5.07   | 50.72  | 17.68    | 69.41      | 14.41     | 125.68    | 24.07  |
| 900             | 21.61  | 5.07   | 50.69  | 17.63    | 68.94      | 14.22     | 123.08    | 23.36  |
| 950             | 21.60  | 5.04   | 49.79  | 16.94    | 64.19      | 12.64     | 102.95    | 18.29  |

| Appendix ESupplementary Information for Chapter 5 |        |        |        |        |        |        | er 5   |        |
|---------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1000                                              | 21.42  | 4.83   | 43.67  | 13.16  | 43.66  | 7.39   | 50.55  | 7.46   |
| 1050                                              | 20.65  | 4.17   | 30.64  | 7.25   | 19.90  | 2.90   | 18.56  | 2.70   |
| 1100                                              | 19.78  | 3.67   | 24.63  | 5.64   | 16.05  | 2.44   | 16.33  | 2.44   |
| 850 N                                             | 109.93 | 139.57 | 208.98 | 317.90 | 436.84 | 595.29 | 773.41 | 990.67 |
| 900 N                                             | 109.93 | 139.57 | 208.85 | 317.01 | 433.88 | 587.74 | 757.44 | 961.25 |
| 950 N                                             | 109.84 | 138.86 | 205.17 | 304.76 | 403.98 | 522.46 | 633.54 | 752.50 |
| 1000 N                                            | 108.95 | 132.98 | 179.93 | 236.65 | 274.75 | 305.18 | 311.09 | 307.06 |
| 1050 N                                            | 105.02 | 114.91 | 126.24 | 130.46 | 125.25 | 119.65 | 114.23 | 110.91 |
| 1100 N                                            | 100.63 | 101.21 | 101.47 | 101.37 | 101.00 | 100.73 | 100.51 | 100.39 |
| 850 B                                             | 110.00 | 139.57 | 208.98 | 317.90 | 436.84 | 595.29 | 773.41 | 990.67 |
| 900 B                                             | 110.00 | 139.57 | 208.85 | 317.01 | 433.88 | 587.74 | 757.44 | 961.25 |
| 950 B                                             | 110.00 | 138.86 | 205.17 | 304.76 | 403.98 | 522.46 | 633.54 | 752.50 |
| 1000 B                                            | 110.00 | 132.98 | 179.93 | 236.65 | 274.75 | 305.18 | 311.09 | 307.06 |
| 1050 B                                            | 110.00 | 114.91 | 126.24 | 130.46 | 125.25 | 119.65 | 114.23 | 110.91 |
| 1100 B                                            | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 |
| 30 Myr for x °C                                   | ,<br>, |        |        |        | Ì      |        |        |        |
| 850                                               | 21.61  | 5.07   | 50.72  | 17.68  | 69.40  | 14.39  | 125.38 | 23.98  |
| 900                                               | 21.61  | 5.06   | 50.56  | 17.52  | 68.17  | 13.96  | 119.48 | 22.39  |
| 950                                               | 21.57  | 5.00   | 48.58  | 16.03  | 58.15  | 10.87  | 83.98  | 14.20  |
| 1000                                              | 21.20  | 4.60   | 38.69  | 10.65  | 31.83  | 4.75   | 29.24  | 4.04   |
| 1050                                              | 20.21  | 3.86   | 26.35  | 6.01   | 16.84  | 2.52   | 16.73  | 2.48   |
| 1100                                              | 19.69  | 3.64   | 24.34  | 5.58   | 15.92  | 2.42   | 16.27  | 2.43   |
| 850 N                                             | 109.93 | 139.57 | 208.98 | 317.90 | 436.76 | 594.72 | 771.55 | 986.76 |
| 900 N                                             | 109.92 | 139.50 | 208.33 | 315.11 | 429.02 | 576.69 | 735.28 | 921.22 |
| 950 N                                             | 109.70 | 137.85 | 200.15 | 288.28 | 365.94 | 449.31 | 516.79 | 584.30 |
| 1000 N                                            | 107.82 | 126.75 | 159.41 | 191.62 | 200.29 | 196.09 | 179.92 | 166.46 |
| 1050 N                                            | 102.81 | 106.45 | 108.57 | 108.16 | 105.95 | 104.30 | 102.97 | 102.22 |
| 1100 N                                            | 100.15 | 100.26 | 100.30 | 100.27 | 100.20 | 100.14 | 100.10 | 100.08 |
| 850 B                                             | 110.00 | 139.57 | 208.98 | 317.90 | 436.76 | 594.72 | 771.55 | 986.76 |
| 900 B                                             | 110.00 | 139.50 | 208.33 | 315.11 | 429.02 | 576.69 | 735.28 | 921.22 |
| 950 B                                             | 110.00 | 137.85 | 200.15 | 288.28 | 365.94 | 449.31 | 516.79 | 584.30 |
| 1000 B                                            | 110.00 | 126.75 | 159.41 | 191.62 | 200.29 | 196.09 | 179.92 | 166.46 |
| 1050 B                                            | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 |
| 1100 B                                            | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 | 110.00 |
| 100 Myr for x $^{\circ}$                          | С      |        |        |        |        |        |        |        |
| 850                                               | 21.61  | 5.07   | 50.72  | 17.67  | 69.25  | 14.33  | 124.45 | 23.72  |
| 900                                               | 21.61  | 5.05   | 50.23  | 17.25  | 66.22  | 13.28  | 110.52 | 20.04  |
| 950                                               | 21.50  | 4.91   | 45.65  | 14.12  | 47.83  | 8.31   | 58.86  | 8.99   |
| 1000                                              | 20.82  | 4.29   | 32.34  | 7.75   | 21.07  | 3.03   | 19.15  | 2.76   |
| 1050                                              | 19.83  | 3.69   | 24.70  | 5.64   | 16.06  | 2.44   | 16.33  | 2.44   |
| 1100                                              | 19.67  | 3.63   | 24.28  | 5.56   | 15.90  | 2.42   | 16.25  | 2.43   |
| 850 N                                             | 109.93 | 139.57 | 208.97 | 317.73 | 435.81 | 592.03 | 765.85 | 976.25 |

| Appendix E Supplementary Information for Chapter 5 |           |            |            |           |        |        |        |        |
|----------------------------------------------------|-----------|------------|------------|-----------|--------|--------|--------|--------|
| 900 N                                              | 109.90    | 139.25     | 206.95     | 310.29    | 416.74 | 548.81 | 680.11 | 824.73 |
| 950 N                                              | 109.35    | 135.32     | 188.10     | 253.87    | 300.99 | 343.34 | 362.22 | 370.04 |
| 1000 N                                             | 105.91    | 118.06     | 133.24     | 139.45    | 132.62 | 125.03 | 117.83 | 113.52 |
| 1050 N                                             | 100.89    | 101.58     | 101.76     | 101.53    | 101.06 | 100.74 | 100.50 | 100.37 |
| 1100 N                                             | 100.03    | 100.04     | 100.05     | 100.05    | 100.03 | 100.02 | 100.02 | 100.01 |
| 850 B                                              | 110.00    | 139.57     | 208.97     | 317.73    | 435.81 | 592.03 | 765.85 | 976.25 |
| 900 B                                              | 110.00    | 139.25     | 206.95     | 310.29    | 416.74 | 548.81 | 680.11 | 824.73 |
| 950 B                                              | 110.00    | 135.32     | 188.10     | 253.87    | 300.99 | 343.34 | 362.22 | 370.04 |
| 1000 B                                             | 110.00    | 118.06     | 133.24     | 139.45    | 132.62 | 125.03 | 117.83 | 113.52 |
| 1050 B                                             | 110.00    | 110.00     | 110.00     | 110.00    | 110.00 | 110.00 | 110.00 | 110.00 |
| 1100 B                                             | 110.00    | 110.00     | 110.00     | 110.00    | 110.00 | 110.00 | 110.00 | 110.00 |
| 200 Myr for x °                                    | C         |            |            |           |        |        |        |        |
| 850                                                | 21.61     | 5.07       | 50.71      | 17.64     | 69.04  | 14.25  | 123.41 | 23.44  |
| 900                                                | 21.60     | 5.04       | 49.85      | 16.95     | 64.05  | 12.55  | 101.47 | 17.90  |
| 950                                                | 21.42     | 4.81       | 43.00      | 12.68     | 40.88  | 6.64   | 43.29  | 6.14   |
| 1000                                               | 20.57     | 4.08       | 28.84      | 6.61      | 18.09  | 2.66   | 17.35  | 2.55   |
| 1050                                               | 19.73     | 3.65       | 24.43      | 5.59      | 15.95  | 2.43   | 16.28  | 2.43   |
| 1100                                               | 19.66     | 3.63       | 24.27      | 5.56      | 15.89  | 2.42   | 16.25  | 2.43   |
| 850 N                                              | 109.93    | 139.57     | 208.92     | 317.29    | 434.49 | 588.89 | 759.42 | 964.48 |
| 900 N                                              | 109.86    | 138.96     | 205.41     | 304.90    | 403.06 | 518.59 | 624.44 | 736.52 |
| 950 N                                              | 108.96    | 132.62     | 177.19     | 228.02    | 257.27 | 274.31 | 266.43 | 252.48 |
| 1000 N                                             | 104.62    | 112.46     | 118.82     | 118.84    | 113.85 | 109.91 | 106.77 | 105.01 |
| 1050 N                                             | 100.37    | 100.61     | 100.65     | 100.55    | 100.38 | 100.26 | 100.18 | 100.13 |
| 1100 N                                             | 100.01    | 100.02     | 100.02     | 100.02    | 100.01 | 100.01 | 100.01 | 100.00 |
| 850 B                                              | 110.00    | 139.57     | 208.92     | 317.29    | 434.49 | 588.89 | 759.42 | 964.48 |
| 900 B                                              | 110.00    | 138.96     | 205.41     | 304.90    | 403.06 | 518.59 | 624.44 | 736.52 |
| 950 B                                              | 110.00    | 132.62     | 177.19     | 228.02    | 257.27 | 274.31 | 266.43 | 252.48 |
| 1000 B                                             | 110.00    | 112.46     | 118.82     | 118.84    | 113.85 | 110.00 | 110.00 | 110.00 |
| 1050 B                                             | 110.00    | 110.00     | 110.00     | 110.00    | 110.00 | 110.00 | 110.00 | 110.00 |
| 1100 B                                             | 110.00    | 110.00     | 110.00     | 110.00    | 110.00 | 110.00 | 110.00 | 110.00 |
| N= Normalised,                                     | , B= Buff | ered to ec | luilibriun | n composi | tion   |        |        |        |
|                                                    |           |            |            |           |        |        |        |        |
| Multi-spot senar                                   | rios      |            |            |           |        |        |        |        |
| 1100 1 Myr                                         | Gd        | Tb         | Dy         | Но        | Er     | Tm     | Yb     | Lu     |
| 5-3.1                                              | 20.54     | 4.11       | 30.00      | 7.13      | 19.74  | 2.89   | 18.61  | 2.71   |
| 4.5-2.6                                            | 20.68     | 4.17       | 30.48      | 7.21      | 19.88  | 2.90   | 18.65  | 2.71   |
| 4-2.1                                              | 20.81     | 4.23       | 30.93      | 7.29      | 20.00  | 2.91   | 18.68  | 2.71   |
| 3.5-1.6                                            | 20.92     | 4.28       | 31.33      | 7.36      | 20.10  | 2.92   | 18.70  | 2.71   |
| 3.1-1.1                                            | 21.02     | 4.32       | 31.68      | 7.42      | 20.19  | 2.93   | 18.72  | 2.71   |
| 2.5-0.6                                            | 21.11     | 4.36       | 31.97      | 7.47      | 20.27  | 2.93   | 18.74  | 2.72   |
| 2.0-0.1                                            | 21.17     | 4.39       | 32.19      | 7.51      | 20.32  | 2.94   | 18.75  | 2.72   |
| 1.5-0.5                                            | 21.20     | 4.41       | 32.32      | 7.53      | 20.35  | 2.94   | 18.76  | 2.72   |

| Appendix  | кE     |        |        | Suppleme | ntary Info | rmation f | for Chapt | er 5   |
|-----------|--------|--------|--------|----------|------------|-----------|-----------|--------|
| 1-1       | 21.22  | 4.41   | 32.36  | 7.53     | 20.36      | 2.94      | 18.76     | 2.72   |
| 0.5-1.5   | 21.20  | 4.41   | 32.32  | 7.53     | 20.35      | 2.94      | 18.76     | 2.72   |
| 0.1-2     | 21.17  | 4.39   | 32.19  | 7.51     | 20.32      | 2.94      | 18.75     | 2.72   |
| 0.6-2.5   | 21.11  | 4.36   | 31.97  | 7.47     | 20.27      | 2.93      | 18.74     | 2.72   |
| 1.1-3.0   | 21.02  | 4.32   | 31.68  | 7.42     | 20.19      | 2.93      | 18.72     | 2.71   |
| 1.6-3.5   | 20.92  | 4.28   | 31.33  | 7.36     | 20.10      | 2.92      | 18.70     | 2.71   |
| 2-4       | 20.81  | 4.23   | 30.93  | 7.29     | 20.00      | 2.91      | 18.68     | 2.71   |
| 2.6-4.5   | 20.68  | 4.17   | 30.48  | 7.21     | 19.88      | 2.90      | 18.65     | 2.71   |
| 3.1-5     | 20.54  | 4.11   | 30.00  | 7.13     | 19.74      | 2.89      | 18.61     | 2.71   |
| 5-3.1 N   | 104.48 | 113.29 | 123.59 | 128.18   | 124.23     | 119.52    | 114.52    | 111.34 |
| 4.5-2.6 N | 105.17 | 114.91 | 125.58 | 129.73   | 125.09     | 119.97    | 114.74    | 111.46 |
| 4-2.1 N   | 105.83 | 116.46 | 127.43 | 131.16   | 125.85     | 120.36    | 114.93    | 111.56 |
| 3.5-1.6 N | 106.42 | 117.89 | 129.10 | 132.42   | 126.52     | 120.70    | 115.09    | 111.65 |
| 3.1-1.1 N | 106.94 | 119.15 | 130.55 | 133.49   | 127.08     | 120.99    | 115.23    | 111.72 |
| 2.5-0.6 N | 107.36 | 120.18 | 131.73 | 134.35   | 127.53     | 121.21    | 115.33    | 111.78 |
| 2.0-0.1 N | 107.66 | 120.96 | 132.61 | 134.99   | 127.86     | 121.38    | 115.41    | 111.82 |
| 1.5-0.5 N | 107.85 | 121.44 | 133.16 | 135.38   | 128.06     | 121.48    | 115.46    | 111.84 |
| 1–1 N     | 107.92 | 121.61 | 133.35 | 135.51   | 128.13     | 121.51    | 115.48    | 111.85 |
| 0.5-1.5 N | 107.85 | 121.44 | 133.16 | 135.38   | 128.06     | 121.48    | 115.46    | 111.84 |
| 0.1–2 N   | 107.66 | 120.96 | 132.61 | 134.99   | 127.86     | 121.38    | 115.41    | 111.82 |
| 0.6-2.5 N | 107.36 | 120.18 | 131.73 | 134.35   | 127.53     | 121.21    | 115.33    | 111.78 |
| 1.1-3.0 N | 106.94 | 119.15 | 130.55 | 133.49   | 127.08     | 120.99    | 115.23    | 111.72 |
| 1.6-3.5 N | 106.42 | 117.89 | 129.10 | 132.42   | 126.52     | 120.70    | 115.09    | 111.65 |
| 2–4 N     | 105.83 | 116.46 | 127.43 | 131.16   | 125.85     | 120.36    | 114.93    | 111.56 |
| 2.6-4.5 N | 105.17 | 114.91 | 125.58 | 129.73   | 125.09     | 119.97    | 114.74    | 111.46 |
| 3.1-5 N   | 104.48 | 113.29 | 123.59 | 128.18   | 124.23     | 119.52    | 114.52    | 111.34 |
| 5-3.1 B   | 110.00 | 113.29 | 123.59 | 128.18   | 124.23     | 119.52    | 114.52    | 111.34 |
| 4.5-2.6 B | 110.00 | 114.91 | 125.58 | 129.73   | 125.09     | 119.97    | 114.74    | 111.46 |
| 4-2.1 B   | 110.00 | 116.46 | 127.43 | 131.16   | 125.85     | 120.36    | 114.93    | 111.56 |
| 3.5-1.6 B | 110.00 | 117.89 | 129.10 | 132.42   | 126.52     | 120.70    | 115.09    | 111.65 |
| 3.1-1.1 B | 110.00 | 119.15 | 130.55 | 133.49   | 127.08     | 120.99    | 115.23    | 111.72 |
| 2.5-0.6 B | 110.00 | 120.18 | 131.73 | 134.35   | 127.53     | 121.21    | 115.33    | 111.78 |
| 2.0-0.1 B | 110.00 | 120.96 | 132.61 | 134.99   | 127.86     | 121.38    | 115.41    | 111.82 |
| 1.5-0.5 B | 110.00 | 121.44 | 133.16 | 135.38   | 128.06     | 121.48    | 115.46    | 111.84 |
| 1–1 B     | 110.00 | 121.61 | 133.35 | 135.51   | 128.13     | 121.51    | 115.48    | 111.85 |
| 0.5-1.5 B | 110.00 | 121.44 | 133.16 | 135.38   | 128.06     | 121.48    | 115.46    | 111.84 |
| 0.1–2 B   | 110.00 | 120.96 | 132.61 | 134.99   | 127.86     | 121.38    | 115.41    | 111.82 |
| 0.6-2.5 B | 110.00 | 120.18 | 131.73 | 134.35   | 127.53     | 121.21    | 115.33    | 111.78 |
| 1.1-3.0 B | 110.00 | 119.15 | 130.55 | 133.49   | 127.08     | 120.99    | 115.23    | 111.72 |
| 1.6-3.5 B | 110.00 | 117.89 | 129.10 | 132.42   | 126.52     | 120.70    | 115.09    | 111.65 |
| 2–4 B     | 110.00 | 116.46 | 127.43 | 131.16   | 125.85     | 120.36    | 114.93    | 111.56 |
| 2.6-4.5 B | 110.00 | 114.91 | 125.58 | 129.73   | 125.09     | 119.97    | 114.74    | 111.46 |

| Appendix E Supplementary Information for Chapter 5 |        |        |        |        |        |        |        |        |  |
|----------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| 3.1-5 B                                            | 110.00 | 113.29 | 123.59 | 128.18 | 124.23 | 119.52 | 114.52 | 111.34 |  |
| 1050 5 Myr                                         |        |        |        |        |        |        |        |        |  |
| 5-3.1                                              | 20.89  | 4.37   | 34.39  | 8.73   | 24.52  | 3.55   | 22.07  | 3.12   |  |
| 4.5-2.6                                            | 21.11  | 4.49   | 35.77  | 9.05   | 25.09  | 3.59   | 22.23  | 3.14   |  |
| 4-2.1                                              | 21.29  | 4.61   | 37.09  | 9.34   | 25.62  | 3.64   | 22.38  | 3.15   |  |
| 3.5-1.6                                            | 21.42  | 4.71   | 38.31  | 9.61   | 26.08  | 3.68   | 22.50  | 3.16   |  |
| 3.1-1.1                                            | 21.51  | 4.79   | 39.38  | 9.85   | 26.48  | 3.71   | 22.61  | 3.17   |  |
| 2.5-0.6                                            | 21.56  | 4.85   | 40.26  | 10.04  | 26.81  | 3.73   | 22.69  | 3.17   |  |
| 2.0-0.1                                            | 21.59  | 4.90   | 40.92  | 10.19  | 27.05  | 3.75   | 22.76  | 3.18   |  |
| 1.5-0.5                                            | 21.61  | 4.92   | 41.33  | 10.28  | 27.20  | 3.77   | 22.79  | 3.18   |  |
| 1–1                                                | 21.61  | 4.93   | 41.47  | 10.31  | 27.25  | 3.77   | 22.81  | 3.18   |  |
| 0.5-1.5                                            | 21.61  | 4.92   | 41.33  | 10.28  | 27.20  | 3.77   | 22.79  | 3.18   |  |
| 0.1–2                                              | 21.59  | 4.90   | 40.92  | 10.19  | 27.05  | 3.75   | 22.76  | 3.18   |  |
| 0.6-2.5                                            | 21.56  | 4.85   | 40.26  | 10.04  | 26.81  | 3.73   | 22.69  | 3.17   |  |
| 1.1-3.0                                            | 21.51  | 4.79   | 39.38  | 9.85   | 26.48  | 3.71   | 22.61  | 3.17   |  |
| 1.6-3.5                                            | 21.42  | 4.71   | 38.31  | 9.61   | 26.08  | 3.68   | 22.50  | 3.16   |  |
| 2–4                                                | 21.29  | 4.61   | 37.09  | 9.34   | 25.62  | 3.64   | 22.38  | 3.15   |  |
| 2.6-4.5                                            | 21.11  | 4.49   | 35.77  | 9.05   | 25.09  | 3.59   | 22.23  | 3.14   |  |
| 3.1-5                                              | 20.89  | 4.37   | 34.39  | 8.73   | 24.52  | 3.55   | 22.07  | 3.12   |  |
| 5-3.1 N                                            | 106.27 | 120.35 | 141.70 | 157.08 | 154.33 | 146.49 | 135.80 | 128.46 |  |
| 4.5-2.6 N                                          | 107.38 | 123.75 | 147.39 | 162.72 | 157.91 | 148.50 | 136.81 | 129.02 |  |
| 4-2.1 N                                            | 108.28 | 126.89 | 152.84 | 168.04 | 161.21 | 150.31 | 137.71 | 129.51 |  |
| 3.5-1.6 N                                          | 108.95 | 129.64 | 157.85 | 172.89 | 164.15 | 151.90 | 138.49 | 129.93 |  |
| 3.1-1.1 N                                          | 109.40 | 131.91 | 162.25 | 177.12 | 166.67 | 153.24 | 139.14 | 130.29 |  |
| 2.5-0.6 N                                          | 109.68 | 133.67 | 165.87 | 180.59 | 168.72 | 154.31 | 139.66 | 130.56 |  |
| 2.0-0.1 N                                          | 109.83 | 134.91 | 168.59 | 183.19 | 170.23 | 155.10 | 140.04 | 130.77 |  |
| 1.5-0.5 N                                          | 109.91 | 135.66 | 170.28 | 184.81 | 171.17 | 155.59 | 140.27 | 130.89 |  |
| 1–1 N                                              | 109.93 | 135.90 | 170.86 | 185.36 | 171.48 | 155.76 | 140.35 | 130.93 |  |
| 0.5-1.5 N                                          | 109.91 | 135.66 | 170.28 | 184.81 | 171.17 | 155.59 | 140.27 | 130.89 |  |
| 0.1–2 N                                            | 109.83 | 134.91 | 168.59 | 183.19 | 170.23 | 155.10 | 140.04 | 130.77 |  |
| 0.6-2.5 N                                          | 109.68 | 133.67 | 165.87 | 180.59 | 168.72 | 154.31 | 139.66 | 130.56 |  |
| 1.1 <b>-</b> 3.0 N                                 | 109.40 | 131.91 | 162.25 | 177.12 | 166.67 | 153.24 | 139.14 | 130.29 |  |
| 1.6-3.5 N                                          | 108.95 | 129.64 | 157.85 | 172.89 | 164.15 | 151.90 | 138.49 | 129.93 |  |
| 2–4 N                                              | 108.28 | 126.89 | 152.84 | 168.04 | 161.21 | 150.31 | 137.71 | 129.51 |  |
| 2.6-4.5 N                                          | 107.38 | 123.75 | 147.39 | 162.72 | 157.91 | 148.50 | 136.81 | 129.02 |  |
| 3.1-5 N                                            | 106.27 | 120.35 | 141.70 | 157.08 | 154.33 | 146.49 | 135.80 | 128.46 |  |
| 5-3.1 B                                            | 110.00 | 120.35 | 141.70 | 157.08 | 154.33 | 146.49 | 135.80 | 128.46 |  |
| 4.5-2.6 B                                          | 110.00 | 123.75 | 147.39 | 162.72 | 157.91 | 148.50 | 136.81 | 129.02 |  |
| 4-2.1 B                                            | 110.00 | 126.89 | 152.84 | 168.04 | 161.21 | 150.31 | 137.71 | 129.51 |  |
| 3.5-1.6 B                                          | 110.00 | 129.64 | 157.85 | 172.89 | 164.15 | 151.90 | 138.49 | 129.93 |  |
| 3.1-1.1 B                                          | 110.00 | 131.91 | 162.25 | 177.12 | 166.67 | 153.24 | 139.14 | 130.29 |  |
| 2.5-0.6 B                                          | 110.00 | 133.67 | 165.87 | 180.59 | 168.72 | 154.31 | 139.66 | 130.56 |  |

| Appendix    | хE     |        |        | Suppleme | ntary Info | rmation f | for Chapt | er 5    |
|-------------|--------|--------|--------|----------|------------|-----------|-----------|---------|
| 2.0-0.1 B   | 110.00 | 134.91 | 168.59 | 183.19   | 170.23     | 155.10    | 140.04    | 130.77  |
| 1.5-0.5 B   | 110.00 | 135.66 | 170.28 | 184.81   | 171.17     | 155.59    | 140.27    | 130.89  |
| 1–1 B       | 110.00 | 135.90 | 170.86 | 185.36   | 171.48     | 155.76    | 140.35    | 130.93  |
| 0.5-1.5 B   | 110.00 | 135.66 | 170.28 | 184.81   | 171.17     | 155.59    | 140.27    | 130.89  |
| 0.1–2 B     | 110.00 | 134.91 | 168.59 | 183.19   | 170.23     | 155.10    | 140.04    | 130.77  |
| 0.6-2.5 B   | 110.00 | 133.67 | 165.87 | 180.59   | 168.72     | 154.31    | 139.66    | 130.56  |
| 1.1-3.0 B   | 110.00 | 131.91 | 162.25 | 177.12   | 166.67     | 153.24    | 139.14    | 130.29  |
| 1.6-3.5 B   | 110.00 | 129.64 | 157.85 | 172.89   | 164.15     | 151.90    | 138.49    | 129.93  |
| 2–4 B       | 110.00 | 126.89 | 152.84 | 168.04   | 161.21     | 150.31    | 137.71    | 129.51  |
| 2.6-4.5 B   | 110.00 | 123.75 | 147.39 | 162.72   | 157.91     | 148.50    | 136.81    | 129.02  |
| 3.1-5 B     | 110.00 | 120.35 | 141.70 | 157.08   | 154.33     | 146.49    | 135.80    | 128.46  |
| 900 100 Myr |        |        |        |          |            |           |           |         |
| 5-3.1       | 21.61  | 5.05   | 50.23  | 17.25    | 66.22      | 13.28     | 110.52    | 20.04   |
| 4.5-2.6     | 21.63  | 5.08   | 50.97  | 17.78    | 69.57      | 14.27     | 121.60    | 22.50   |
| 4-2.1       | 21.63  | 5.08   | 50.97  | 17.79    | 69.91      | 14.50     | 125.65    | 23.71   |
| 3.5-1.6     | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.60    | 24.15   |
| 3.1-1.1     | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.74    | 24.27   |
| 2.5-0.6     | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.75    | 24.30   |
| 2.0-0.1     | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.75    | 24.30   |
| 1.5-0.5     | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.75    | 24.30   |
| 1-1         | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.75    | 24.30   |
| 0.5-1.5     | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.75    | 24.30   |
| 0.1–2       | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.75    | 24.30   |
| 0.6-2.5     | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.75    | 24.30   |
| 1.1-3.0     | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.74    | 24.27   |
| 1.6-3.5     | 21.63  | 5.08   | 50.97  | 17.79    | 69.92      | 14.52     | 126.60    | 24.15   |
| 2-4         | 21.63  | 5.08   | 50.97  | 17.79    | 69.91      | 14.50     | 125.65    | 23.71   |
| 2.6-4.5     | 21.63  | 5.08   | 50.97  | 17.78    | 69.57      | 14.27     | 121.60    | 22.50   |
| 3.1-5       | 21.61  | 5.05   | 50.23  | 17.25    | 66.22      | 13.28     | 110.52    | 20.04   |
| 5-3.1 N     | 109.90 | 139.25 | 206.95 | 310.29   | 416.74     | 548.81    | 680.11    | 824.73  |
| 4.5-2.6 N   | 110.02 | 139.94 | 210.01 | 319.72   | 437.81     | 589.77    | 748.28    | 926.05  |
| 4-2.1 N     | 110.02 | 139.94 | 210.01 | 319.96   | 439.97     | 599.00    | 773.24    | 975.79  |
| 3.5-1.6 N   | 110.02 | 139.94 | 210.01 | 319.96   | 440.02     | 599.96    | 779.08    | 993.99  |
| 3.1-1.1 N   | 110.02 | 139.94 | 210.01 | 319.96   | 440.03     | 600.00    | 779.92    | 998.88  |
| 2.5-0.6 N   | 110.02 | 139.94 | 210.01 | 319.96   | 440.03     | 600.00    | 780.00    | 999.85  |
| 2.0-0.1 N   | 110.02 | 139.94 | 210.01 | 319.96   | 440.03     | 600.00    | 780.00    | 999.98  |
| 1.5-0.5 N   | 110.02 | 139.94 | 210.01 | 319.96   | 440.03     | 600.00    | 780.00    | 1000.00 |
| 1–1 N       | 110.02 | 139.94 | 210.01 | 319.96   | 440.03     | 600.00    | 780.00    | 1000.00 |
| 0.5-1.5 N   | 110.02 | 139.94 | 210.01 | 319.96   | 440.03     | 600.00    | 780.00    | 1000.00 |
| 0.1–2 N     | 110.02 | 139.94 | 210.01 | 319.96   | 440.03     | 600.00    | 780.00    | 999.98  |
| 0.6-2.5 N   | 110.02 | 139.94 | 210.01 | 319.96   | 440.03     | 600.00    | 780.00    | 999.85  |
| 1.1-3.0 N   | 110.02 | 139.94 | 210.01 | 319.96   | 440.03     | 600.00    | 779.92    | 998.88  |

| Appendi       | x E       |            | ,<br>L     | Suppleme  | ntary Info | rmation f | for Chapt | er 5    |
|---------------|-----------|------------|------------|-----------|------------|-----------|-----------|---------|
| 1.6-3.5 N     | 110.02    | 139.94     | 210.01     | 319.96    | 440.02     | 599.96    | 779.08    | 993.99  |
| 2–4 N         | 110.02    | 139.94     | 210.01     | 319.96    | 439.97     | 599.00    | 773.24    | 975.79  |
| 2.6-4.5 N     | 110.02    | 139.94     | 210.01     | 319.72    | 437.81     | 589.77    | 748.28    | 926.05  |
| 3.1-5 N       | 109.90    | 139.25     | 206.95     | 310.29    | 416.74     | 548.81    | 680.11    | 824.73  |
| 5-3.1 B       | 110.00    | 139.25     | 206.95     | 310.29    | 416.74     | 548.81    | 680.11    | 824.73  |
| 4.5-2.6 B     | 110.00    | 139.94     | 210.01     | 319.72    | 437.81     | 589.77    | 748.28    | 926.05  |
| 4-2.1 B       | 110.00    | 139.94     | 210.01     | 319.96    | 439.97     | 599.00    | 773.24    | 975.79  |
| 3.5-1.6 B     | 110.00    | 139.94     | 210.01     | 319.96    | 440.02     | 599.96    | 779.08    | 993.99  |
| 3.1-1.1 B     | 110.00    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 779.92    | 998.88  |
| 2.5-0.6 B     | 110.00    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 780.00    | 999.85  |
| 2.0-0.1 B     | 110.00    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 780.00    | 999.98  |
| 1.5-0.5 B     | 110.00    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 780.00    | 1000.00 |
| 1–1 B         | 110.00    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 780.00    | 1000.00 |
| 0.5-1.5 B     | 110.00    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 780.00    | 1000.00 |
| 0.1–2 B       | 110.00    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 780.00    | 999.98  |
| 0.6-2.5 B     | 110.00    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 780.00    | 999.85  |
| 1.1-3.0 B     | 110.00    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 779.92    | 998.88  |
| 1.6-3.5 B     | 110.00    | 139.94     | 210.01     | 319.96    | 440.02     | 599.96    | 779.08    | 993.99  |
| 2–4 B         | 110.00    | 139.94     | 210.01     | 319.96    | 439.97     | 599.00    | 773.24    | 975.79  |
| 2.6-4.5 B     | 110.00    | 139.94     | 210.01     | 319.72    | 437.81     | 589.77    | 748.28    | 926.05  |
| 3.1-5 B       | 110.00    | 139.25     | 206.95     | 310.29    | 416.74     | 548.81    | 680.11    | 824.73  |
| 850 100 Myr   |           |            |            |           |            |           |           |         |
| 5-3.1         | 21.61     | 5.07       | 50.72      | 17.67     | 69.25      | 14.33     | 124.45    | 23.72   |
| 4-2.1         | 21.63     | 5.08       | 50.97      | 17.79     | 69.92      | 14.52     | 126.75    | 24.30   |
| 3.1-5         | 21.61     | 5.07       | 50.72      | 17.67     | 69.25      | 14.33     | 124.45    | 23.72   |
| 5-3.1 N       | 109.93    | 139.57     | 208.97     | 317.73    | 435.81     | 592.03    | 765.85    | 976.25  |
| 4-2.1 N       | 110.02    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 780.00    | 1000.00 |
| 3.1-5 N       | 109.93    | 139.57     | 208.97     | 317.73    | 435.81     | 592.03    | 765.85    | 976.25  |
| 5-3.1 B       | 110.00    | 139.57     | 208.97     | 317.73    | 435.81     | 592.03    | 765.85    | 976.25  |
| 4-2.1 B       | 110.02    | 139.94     | 210.01     | 319.96    | 440.03     | 600.00    | 780.00    | 1000.00 |
| 3.1-5 B       | 110.00    | 139.57     | 208.97     | 317.73    | 435.81     | 592.03    | 765.85    | 976.25  |
| N= Normalised | , B= Buff | ered to ec | juilibriun | n composi | tion       |           |           |         |