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Abstract Despite significant research in development of 

efficient algorithms for three carrier ambiguity resolution, 

full performance potential of the additional frequency 

signals cannot be effectively demonstrated without actual 

triple frequency data. In addition, all the proposed 

algorithms showed their difficulties in reliable resolution 

of the medium-lane and narrow-lane ambiguities in 

different long-range scenarios. In this contribution, we 

will investigate the effects of various distance-dependent 

biases, identifying the tropospheric delay to be the key 

limitation for long-range three carrier ambiguity 

resolution. In order to achieve reliable ambiguity 

resolution in regional networks with the inter-station 

distances of hundreds of kilometers, a new geometry-free 

and ionosphere-free model is proposed to fix the integer 

ambiguities of the medium-lane or narrow-lane 

observables over just several minutes without distance 

constraint. Finally, the semi-simulation method is 

introduced to generate the third frequency signals from 

dual-frequency GPS data and experimentally demonstrate 

the research findings of this paper. 
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1. Introduction 

 

Future Global Navigation Satellite Systems (GNSS) will 

transmit three or more frequency signals. The L5 (1176.45 

MHz) signal will be introduced in GPS in addition to the 

L1 (1575.42 MHz) and L2 (1227.6 MHz). The Galileo 

system will provide signals centered at E1 (1575.42 MHz), 

E6 (1278.75 MHz), E5B (1207.14 MHz) and E5A 

(1176.45 MHz) for commercial and civilian use. The 

Chinese COMPASS, the Japanese QZSS and other GNSS 

systems will also transmit multiple frequency signals. It is 

anticipated that the efficiency and the reliability of carrier 

ambiguity resolution for long inter-receiver distance can 

be significantly enhanced with additional frequency 

signals, which is rather crucial to realize real-time precise 

positioning at regional and global scales. 

In addressing ambiguity resolution with three 

frequency signals, the earliest studies by Forssell et al. 

(1997) and Vollath et al. (1998) described three carrier 

ambiguity resolution (TCAR) methods. Hatch et al. (2000) 

proposed the cascading ambiguity resolution (CAR) 

method. In fact, early TCAR and CAR methods 

essentially use the same iterative geometry-free approach 

to estimate integer ambiguities of selected optimal 

combinations having successively reduced wavelengths. Ji 

et al. (2007) defined a set of optimal combinations of 

Galileo inter-frequencies and compared their success 

probabilities of epochwise ambiguity resolution 

respectively using CAR and LAMBDA (least squares 

ambiguity decorrelation adjustment) methods. Henkel and 

Cünther (2007) investigated the integrity analysis of CAR, 

where the decorrelation transformation and search 

technique were applied in each cascading step. Richert 

and EI-Sheimy (2007) defined useful combinations for the 

three frequency GPS and Galileo systems which eliminate 

or mitigate individual error sources, alleviate excessive 

computational burdens and reduce the communication 

bandwidth. Feng (2008) proposed a more general 

geometry-based TCAR strategy which identified three 

best “virtual” signals to allow more reliable ambiguity 

resolution under certain observational conditions 

characterized by ionospheric and tropospheric delays, 

orbital discrepancy and the level of code and phase noises. 

The superior performance has been numerically 

demonstrated in Feng and Li (2008). 

Various TCAR methods developed to date could 

be classified into two basic categories, namely, geometry-

free and geometry-based integer determination models. 
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The term “geometry-free” refers to the observation model 

for ambiguity parameters without the geometric distance 

between receiver and satellite. Geometry-free TCAR 

directly estimates the float ambiguities from virtual code 

or virtual ambiguity-fixed phase measurements (Hatch et 

al. 2000; Feng et al. 2007). Consequently, the total noise 

level of virtual code and ambiguity-fixed phase must be 

distinctly smaller than the wavelength for correct 

ambiguity resolution and the implementation is simple. 

Unfortunately, this requirement cannot be always satisfied 

in the medium-lane (ML: 0.19m≤λ<0.75m) and narrow-

lane (NL: λ<0.19m) ambiguity resolution, particularly in 

the long-range case. In the geometry-based TCAR one 

can select three independent optimal combinations from 

three original signals to form linear equations, and then 

solve the least squares float ambiguities and conduct the 

search process using the methods such as LAMBDA, to 

fix the integers of these combined signals. 

The ionospheric effects can be efficiently 

minimized by selecting the ionosphere-reduced 

combinations. As a result, the ionosphere would no longer 

be the key limitation for TCAR over long inter-receiver 

distances. The question is if there are any more limiting 

factors in ambiguity resolution over long-distances. 

Unlike ionospheric effects, the tropospheric effect does 

not depend on frequency and cannot be cancelled by 

combination of signals on different frequencies. But it is 

important to understand in which cases the troposphere 

will be the limiting factor. In this paper, we will develop a 

new method that is geometry-free and ionosphere-free to 

simultaneously overcome the ionospheric and 

tropospheric effects for reliable ambiguity resolution 

without distance constraint. 

In section 2, we will present the general geometry-

free and geometry-based TCAR models for network-

based and/or rover-based ambiguity resolution process. In 

section 3, the effects of orbital, ionospheric and 

tropospheric biases are numerically examined for three 

baselines of different lengths, and the key limiting factor 

for long-range TCAR is identified. A new geometry-free 

method without ionospheric effects is proposed in section 

4 for reliable ML/NL ambiguity resolution over several 

minutes without any distance constraints. In the 

experimental section, we will introduce a semi-simulation 

method for generating the third frequency signals based 

on five sets of dual-frequency GPS data from the US 

Continuously Operating Reference Stations (CORS) 

network. With these data sets, the performance of 

geometry-based and geometry-free TCAR models for 

extra-widelane (EWL: λ≥2.93m) ambiguity resolution, 

along with the new geometry-free and ionosphere-free 

model for ML/NL ambiguity resolution, are demonstrated. 

Research findings in the paper are summarized in the final 

section. 

 

2 Geometry-free and geometry-based models for 

TCAR with distance constraints 

 

The general geometry-free and geometry-based TCAR 

models identified by the optimal combinations are 

systematically analyzed for the different purposes such as 

network-based and rover-based ambiguity resolution and 

long baseline ambiguity resolution along with position 

estimation. 

 

2.1 Fundamental GNSS combined observational models 

 

Starting from the combined double differenced (DD) code 

and phase observation equations, 
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where “Δ” is the DD operator product. The symbol ρ 

represents geometric distance from satellite to receiver, 

δorb is orbital error, δtro is the tropospheric delay, and K is 

the parameter of the first-order ionospheric delay. The 

combined DD code and phase can be expressed as 
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where the combination coefficients i, j, k are arbitrary 

integers; the symbols ΔPi and ΔΦi are DD code and phase 

measurements for the ith frequency fi. The combined 

wavelength is defined as 
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and the combined integer ambiguity is 

(i, j,k) 1 2 5N i N j N k N                       (6) 

The combined first-order ionospheric scale factor is 

defined as 
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For the brevity of notation, we denote 2
1K f  by

  
ΔδI1. 

 

 

2.2 Geometry-free TCAR models 

 

The geometry-free process starts with the EWL 

observable between two closest L-band carriers, for 

instance, L2 and L5 in the GPS case, using the combined 

code measurements on the same carriers. The ambiguity is 

resolved quite reliably by rounding the “float” value to its 

nearest integer. Traditionally, the wide-lane (WL: 

0.75m≤λ<2.93m) combination of two L-band carriers, e.g. 

L1 and L2, can be resolved also through rounding with 

assistance of the ambiguity-corrected EWL measurements 

(Hatch et al. 2000, Feng et al. 2007). With the first two 

ambiguity-corrected signals, the ambiguity of the third 

signal, e.g. L1, is resolved by rounding.  

In order to obtain the better geometry-free 

combinations, Feng et al. (2007) provide a general model 

by using three frequency measurements simultaneously, 
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where (l, m, n) and (i, j, k) are generally different sets of 

integer values, representing possible combinations. 

Virtual code and phase observables that are minimally 

affected by the combined ionospheric delay and code and 

phase noises should be considered as the better choices 

for ambiguity resolution purpose. For instance, the usual 

choices,  ΔP(1,1,0)-ΔΦ(1,-1,0) and ΔP(1,0,1)-ΔΦ(1,0,-1) for WL 

ambiguity resolution and ΔP(0,1,1)-ΔΦ(0,1,-1) for EWL 

ambiguity resolution, are free of  ionospheric effects and 

nearly minimally effected by code noises. 

In principle, the geometry-free model (10) can be 

used to estimate the ML/NL ambiguities. The problem is 

the enlarged effect of the total noise including the 

ionospheric delay and code and phase noises in the 

category of ML/NL signals that must be linearly 

independent with the first two combinations. In order to 

overcome this problem, we turn to an ambiguity-corrected 

WL signals with a relatively smaller total noise level, e.g. 

ΔΦ(1,-1,0), to determine the ML/NL ambiguity. The 

equation is given as follows, 

 
 

 

 

 

 

 

(1, 1,0) i , j,k

(1, 1,0) (1, 1,0)i, j,k i, j,k

1i, j,k

i, j,k i, j,k

i, j,k

N I

             


 

 

   
   

 

  






    (11) 

where        1, 1,0 1, 1,0 1, 1,0 1, 1,0N         is ambiguity-

corrected WL observable. In this situation, although the 

joint random noise of code and phase can be significantly 

mitigated, the residual ionospheric delay can bias the 

estimator in the long-range scenario. As a result, the 

reliable ML/NL ambiguity resolution is not possible 

unless the ionospheric delay in (11) is efficiently 

corrected. 

 

2.3 Geometry-based TCAR models 

 

In rover-end RTK processing, ambiguities are fixed along 

with position estimation, where the geometry-based 

model is usually used. For several triple frequency cases, 

Feng (2008) identified the three most useful combinations 

for each of the three frequency GNSS services based on 

the total noise level in cycles including the effects of 

orbital, ionospheric and tropospheric biases and phase 

noises, 
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with σTC being the total noise level in cycles. Any 

combination can be considered being a particular choice 

according to a certain set of error budgets in the total 

noise level. Given three sets of error budgets, typically 

representing the short, medium and long baselines 

respectively with lengths d satisfying d≤100km, 

100km<d≤200km and d≥200km, Table 1 summarizes the 

total noise level in cycles for the most useful combined 

observables in two categories: (I) EWLs and WLs in the 

rows 2 to 5 and (II) MLs and NLs in the rows 6 to 11. For 

a complete TCAR process, one usually chooses two 
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observables from category (I) and one from category (II). 

It is observed that the total noise level for EWL ΔΦ(1,-6,5) 

is 0.160 to 0.174 cycles even under the effects of large 

orbital, ionospheric and tropospheric biases in the long 

baseline assumption. This implies that ambiguity 

resolution of the EWL ΔΦ(1,-6,5) using the geometry-based 

model can be fairly reliable over long distances. Its 

ambiguity resolution success probability has been 

theoretically predicted to exceed 99% with epochwise 

measurements in long range scenarios. Along with the 

EWL signals ΔΦ(0,1,-1) preferably resolved with the 

geometry-free model (10), the DD ionospheric bias can be 

estimated and smoothed with 3 cm accuracy  over about 2 

min (Feng and Li 2008).  

In all cases, the chosen virtual signals often have 

reduced ionospheric effects relative to their wavelengths. 

It is important to notice that the geometry-based model 

cannot reduce the tropospheric delay at all.  

 
Table 1 The total noise level in cycles for geometry-based 
optimal combinations under the different given error budgets 

virtual 
signals 

Total noise level σTC (in cycles) 

σΔΦ=5 mm 

ΔδI1=10 cm 
Δδtro=5 cm 
Δδorb=1 cm 

ΔδI1=20 cm 
Δδtro=10 cm 
Δδorb=2 cm 

ΔδI1=100 cm 
Δδtro=15 cm 
Δδorb=8 cm 

ΔΦ(0,1,-1) 0.042 0.067 0.297 

ΔΦ(1,-6,5) 0.160 0.163 0.174 

ΔΦ(1,-5,4) 0.138 0.154 0.358 

ΔΦ(1,-1,0) 0.164 0.322 1.510 

ΔΦ(1,0,0) 0.590 1.180 5.376 

ΔΦ(2,-1,0) 0.502 0.999 4.012 

ΔΦ(2,0,-1) 0.486 0.968 3.752 

ΔΦ(4,-3,0) 0.468 0.913 2.044 

ΔΦ(4,0,-3) 0.487 0.951 1.998 

ΔΦ(5,-4,0) 0.532 1.031 2.249 

 

Table 2 The total noise level in meters for code and ambiguity-

corrected phase combinations under the different given error 
budgets 

virtual 
signals 

Total noise level σTM (in meters) 
σΔP=50 cm/σΔΦ=0.5 cm 

ΔδI1=10 cm 
Δδtro=5 cm 
Δδorb=1 cm 

ΔδI1=20 cm 
Δδtro=10 cm 
Δδorb=2 cm 

ΔδI1=100 cm 
Δδtro=20 cm 
Δδorb=8 cm 

ΔP(1,1,1) 0.329 0.421 1.479 

ΔP(1,0,0) 0.512 0.548 1.139 

ΔP(1,1,0) 0.382 0.451 1.349 

ΔP(77,-60,0) 1.490 1.493 1.505 

(1, 1,0)  0.141 0.278 1.306 

(1,0, 1)  0.246 0.393 1.741 

(1, 6,5)  0.521 0.531 0.568 

(1, 5,4)  0.289 0.322 0.749 

 

In geometry-based model, we must introduce at 

least three code or ambiguity-corrected phase DD 

measurements to provide the coordinate estimates and 

avoid a rank defect. Lower noised code or ambiguity-

corrected phase measurements provide stronger 

constraints to the integer estimation. One can identify the 

optimal code or ambiguity-corrected phase observables 

with the criterion similar to (12) for position solution, 

    
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The symbol σTM denotes the total noise level in meters; 

σΔP is replaced by σΔΦ if the ambiguity-corrected phase 

measurements are used. Referring to the three sets of error 

budgets presented in Table 1, Table 2 outlines the total 

noise levels in meters for four code and four ambiguity-

corrected phase measurements. It is observed that the 

ambiguity-corrected phase measurements are, in general, 

better than code measurements. For code measurements, 

ΔP(1,1,1) and ΔP(1,1,0) are the best or the geometry-based 

ambiguity resolution in short and medium baselines. For 

long baselines, the original code ΔP(1,0,0) would be a better 

choice, and the ionosphere-free code ΔP(77,-60,0) provides 

the stronger constraint when the effect of ionospheric 

delay becomes rather severe. 

 

3. Limiting factors in long-range TCAR scenarios  

 

Ionosphere is traditionally the key limitation to the long-

range ambiguity resolution with single and double 

frequency measurements. This is no longer the case with 

triple frequency measurements; the key limitation now is 

the troposphere. This conclusion is evident from the 

numerical comparison between the effects of ionospheric 

and tropospheric biases on TCAR along with the orbital 

errors. 

First the discrepancies and uncertainties of GPS 

broadcast ephemeris are assessed through comparing with 

International GNSS Services (IGS) final orbit products of 

24 hours on January 20, 2008. Differences are mostly 

smaller than 4 m as illustrated in Figure 1 where the 

colors, blue, green and red, represent three coordinate 

components. The root mean squares (RMS) of broadcast 

ephemeris errors for all available satellites are illustrated 

in Figure 2, showing the overall three-dimensional (3D) 

RMS of better than 3m. The effect of this 3D RMS orbital 

error on single differenced baseline over 100 km is 

estimated to be smaller than 1.5 cm and much smaller 
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after double differencing (Leick 2004). Moreover, the 

ultra-rapid predicted precise orbits are available in real 

time with 3D RMS of 10 cm. Thus the orbital effect is not 

of concern for long-range application. 

 

 

Figure 1 Differences of satellite coordinates from broadcast and 

precise ephemeris 
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Figure 2 RMSs of broadcast ephemeris for all satellites 

 

In the following, the effects of ionospheric and 

tropospheric biases are numerically examined for three 

baselines of different lengths and the mask elevation is set 

to 15 degrees for all computation. Figure 3 presents the 

DD ionospheric delays of three baselines with 53 km, 78 

km and 155 km in length; the magnitudes reach up to 20 

cm, 30 cm and 50 cm respectively. The contributions to 

the total noise in cycles on L1 carrier would be 1.0, 1.5 

and 2.5 respectively. This is why the ionospheric delay is 

traditionally considered the key limitation to long-range 

single and double frequency ambiguity resolution. 

However, this situation is different if third frequency 

signals are considered. Referring to subsections 2.2 and 

2.3, the effects of ionospheric delays in geometry-free and 

geometry-based TCAR models are either eliminated or 

significantly reduced. For example, EWL ΔΦ(1,-6,5), NLs 

ΔΦ(4,-3,0) and ΔΦ(4,0,-3)  have the ionospheric scale factors 

of -0.0744, 0.0902 and -0.0099 respectively, and thus they 

are insensitive to ionospheric delays in long-range 

situation. 

 

 

 

 

Figure 3 DD ionospheric delays for three baselines (length of 

baselines: upper 53km; middle 78km; lower 155km) 

 

Although the ionospheric delay can be efficiently 

mitigated in the NL combinations, the long-range TCAR 

does not become easier because of the tropospheric effect. 

In the computation of residual DD tropospheric biases, we 

use the UNB3 model to correct the one-way tropospheric 

delay where all the meteorological parameters are 
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interpolated according to the latitude and level height with 

taking the seasonal variation into account. For more 

information, one can refer to Collins (1999). Figure 4 

shows the residual DD tropospheric biases with 10 cm, 18 

cm and 25 cm in magnitudes for the baselines of 53 km, 

78 km and 155 km. Although the residual DD 

tropospheric delays are generally smaller than their 

corresponding DD ionospheric delays, they cannot be 

eliminated or reduced through combination operation. 

Therefore, the tropospheric effect is the key limitation to 

long-range TCAR performance. However, the geometry-

free model may be employed to avoid the effects of 

troposphere on ML/NL ambiguity resolution in long-

range cases. 

 

 

 

 

Figure 4 DD tropospheric delays for three baselines (lengths of 

baselines: upper 53km; middle 78km; lower 155km) 

 

4. Geometry-free and ionosphere-free model for 

distance-independent reliable TCAR 

 

The geometry-free and ionosphere-free model is free of 

both ionospheric effects and geometric terms. Incorrect 

ambiguity resolution in the network-based process will 

lead to wrong user position. Ideally, with triple frequency 

it is possible to overcome the effects of varying 

ionospheric and tropospheric biases through forming a 

geometry-free and ionosphere-free function. It is noticed 

that the EWL ambiguities are rather easy to fix and only 

two are independent amongst all EWL and WL 

combinations, and all others can be derivatives of these 

two signals. For example, the WL ambiguity ΔN(1,-1,0) is 

determined from two EWLs, ΔN(0,1,-1) and ΔN(1,-6,-5), as 

     1, 1,0 0,1, 1 1, 6,5N 5 N N                         (14) 

In fact, the ambiguity-corrected EWL observables can be 

considered as code observables with their higher 

accuracies. Thus they can be directly used to realize 

decimeter positioning over several hundred kilometers 

with assistance of filtering (Feng and Li 2008). 

Once we have fixed two EWL/WL ambiguities, 

the geometry-free and ionosphere-free combination is 

formed using their ambiguity-corrected values,  l,m,n  

and  p,q,r , and one ML/NL observable ΔΦ(i,j,k). The 

ML/NL ambiguity ΔN(i,j,k) is estimated by 
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with the total noise of 
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According to the condition of being both geometry-free 

and ionosphere-free, the coefficients are determined by 

     1 2l,m,n p,q,r i, j,k

1 2

a a

a a 1

     


  
                (17) 

Thus 

   

   

i, j,k p,q,r

1

l,m,n p,q,r

2 1

a

a 1 a

  
 
  


  

                        (18) 

The standard deviation of the ML/NL ambiguity estimator 

is calculated in cycles by 
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 i , j,kN 1013.5                        (19) 

for arbitrary choices of EWL/WL and ML/NL 

observables as shown in Table 3. Apparently, the 

ambiguity resolution performance for all schemes is 

equivalent, and the standard deviation of estimated 

ambiguity is 5.068 and 10.135 cycles respectively for 

σΔΦ=0.5 and 1 cm. It is noticed that the ionospheric and 

tropospheric effects are totally cancelled. Therefore, 

ML/NL ambiguity resolution is distance-independent and 

can be efficiently achieved by rounding the averaged float 

ambiguities in the time domain over arbitrary long 

distances. 

Referring to subsection 2.2, if reliable and rapid 

geometry-free TCAR over short-distance is of concern, 

one can choose two EWL combinations ΔP(0,1,1)-ΔΦ(0,1,-1), 

ΔP(1,1,0)-ΔΦ(1,-4,3) and one ML combination 

   1, 1,0 1,0,0   to fix all the integer ambiguities with 

measurements of a few epochs without ionospheric 

corrections. In case of the regional CORS network where 

the inter-station distances range up to hundreds of 

kilometers, the selections can include ΔP(0,1,1)-ΔΦ(0,1,-1), 

ΔP(1,1,0)-ΔΦ(1,-1,0) and any one scheme in Table 3 with (15), 

where all the distance-dependent terms cancel. The 

integers can be determined simply and reliably by 

averaging and rounding operations; the approach therefore 

is very suitable for the network-based process without 

inter-receiver distance constraint. 

 

Table 3  Geometry-free and ionosphere-free combinations for 

reliable ML/NL ambiguity resolution 

 l,m,n   p,q,r   i, j,k   i , j,kN  (in cycles) 

σΔΦ=5 mm σΔΦ=1 cm 

ΔΦ(0, 1,-1) ΔΦ(1,-6, 5) ΔΦ(1,0, 0) 5.068 10.135 

ΔΦ(0, 1,-1) ΔΦ(1,-6, 5) ΔΦ(0,1, 0) 5.068 10.135 

ΔΦ(0, 1,-1) ΔΦ(1,-6, 5) ΔΦ(0, 0,1,) 5.068 10.135 

ΔΦ(0, 1,-1) ΔΦ(1,-6, 5) ΔΦ(4,-1,-2) 5.068 10.135 

ΔΦ(0, 1,-1) ΔΦ(1,-6, 5) ΔΦ(4,-3, 0) 5.068 10.135 

ΔΦ(0, 1,-1) ΔΦ(1,-6, 5) ΔΦ(4, 0,-3) 5.068 10.135 

ΔΦ(1,-1,0) ΔΦ(1, 0, -1) ΔΦ(1, 0, 0) 5.068 10.135 

ΔΦ(1,-1,0) ΔΦ(1, 0, -1) ΔΦ(0, 1, 0) 5.068 10.135 

ΔΦ(1,-1,0) ΔΦ(1, 0, -1) ΔΦ(0, 0, 1) 5.068 10.135 

ΔΦ(1,-1,0) ΔΦ(1, 0, -1) ΔΦ(4,-1,-2) 5.068 10.135 

ΔΦ(1,-1,0) ΔΦ(1, 0, -1) ΔΦ(4,-3, 0) 5.068 10.135 

ΔΦ(1,-1,0) ΔΦ(1, 0, -1) ΔΦ(4, 0,-3) 5.068 10.135 

 

 

5. Experiment and analysis 

 

In this section, we will introduce a semi-simulation 

method proposed by Li (2008) for generating the third 

frequency signals based on existent dual-frequency GPS 

measurements to demonstrate the full TCAR potential. 

The semi-generated data can retain the consistent 

systematic biases with the real world situation. The 

method includes three main steps: (i) separate the DD 

ionospheric and tropospheric biases based on the fixed L1 

and L2 ambiguities; (ii) assess the stochastic 

characteristics of double frequency phase and code 

measurements, involving accuracy and cross correlation 

between L1 and L2 phases, to quantify the noise terms 

added to the third frequency signals; (iii) generate the 

third frequency code and phase signals using the 

estimated ionospheric and tropospheric biases and 

stochastic characteristics. Five 24-hour GPS data sets 

were collected from the US CORS 

(http://www.ngs.noaa.gov/CORS) on February 1 2008. 

All data were sampled with 1 second and the mask angle 

of 15 degrees was set in the processing. The five baseline 

lengths in units of kilometers are 53, 78, 98, 120 and 155. 

For each baseline, the third DD code (P5) and DD phase 

(L5) are semi-generated.  

 

Table 4  Success probability of ambiguity resolution for some 
frequently used optimal combinations in geometry-free or 
geometry-based models 

models 
Success probability (%) 

53 km 78 km 98 km 120 km 155 km 

ΔP(0,1,1)−ΔΦ(0,1,-1) 100.0 100.0 100.0 100.0 100.0 

ΔP(1,1,0)−ΔΦ(1,-6,5) 99.40 100.0 100.0 99.99 99.98 

ΔP(1,1,0)−ΔΦ(1,-5,4) 99.30 99.95 99.98 99.88 99.73 

ΔP(1,1,0)−ΔΦ(1,-1,0) 90.80 92.71 93.95 90.08 91.35 

ΔΦ(1,-6,5),ΔP(1,1,0) 99.99 100.0 100.0 100.0 100.0 

ΔΦ(1,-5,4),ΔP(1,1,0) 99.96 100.0 100.0 100.0 99.99 

ΔΦ(1,-6,5),ΔP(77,-60,0) 99.09 99.03 95.72 98.99 97.00 

ΔΦ(1,-5,4),ΔP(77,-60,0) 98.23 95.59 95.18 94.56 94.40 

ΔΦ(4,0,-3),

 

(1,0, 1)

 

 83.33 36.42 24.04 26.41 22.70 

ΔΦ(4,-3,0), (1, 1,0)  83.33 37.11 24.94 28.20 24.45 

 

The ambiguity resolution potentials of optimal 

combinations extensively used in general geometry-free 

or geometry-based models are evaluated from single 

http://www.ngs.noaa.gov/CORS
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epoch measurements first. We define the success 

probability to be the ratio of the number of epochs with all 

correct ambiguity fix over the total number of epochs. As 

presented in Table 4, the first column gives the model 

schemes, whereas the first four rows represents the 

geometry-free ambiguity resolution using rounding, and 

the remaining rows represents the signals used together in 

geometry-based models and LAMBDA being used to 

determine the integers. Obviously the success 

probabilities of ambiguity resolution are very high for all 

EWLs, especially for ΔΦ(0,1,-1) with geometry-free model 

and ΔΦ(1,-6,5) with geometry-based model; they are almost 

100% and distance-independent. However, the ambiguity 

resolution success probabilities for all ML and NL signals 

are much lower and strongly dependent on the baseline 

length. For instance, their success probabilities reduce 

from about 83% to 24% with baseline length from 53km 

to 155km. Therefore, it is too hard to solve ML/NL 

ambiguities using geometry-free or geometry-based 

models without giving due consideration of systematic 

biases present in long baseline data. 
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Figure 5 Success probability of ambiguity ΔN1 versus the used 
time in case of 155km baseline 

 

We now assess the efficiency of the new 

geometry-free and ionosphere-free method for ML/NL 

ambiguity resolution proposed in section 4. As illustrated 

in Table 3, the ambiguity resolution results are equivalent 

for all schemes, but the random noise in cycles is enlarged. 

Thus, we use the 7th scheme in Table 3 and average the 

float ambiguities over multiple epochs to achieve the 

correct ambiguities. The success probability of ΔN1 

versus the used time span for the 155km baseline is 

illustrated in Figure 5. Apparently, the 99% achievement 

can be obtained after 180 seconds and 100% after 360 

seconds in the generated data set. It is emphasized that the 

new method is free of both ionospheric and geometric 

effects, and thus being very suitable for the reliable 

ML/NL ambiguity resolution in network-based RTK 

process. 

 

6. Concluding remarks 

 

We have theoretically and numerically analyzed the 

geometry-free and geometry-based models for TCAR for 

different base-rover distances. In general, the EWL 

ambiguity resolution is easy and can achieve 100% 

success probability over long distance with single epoch 

measurements. The difficulty is with ambiguity resolution 

for the ML/NL signal due to the serious effect of 

tropospheric biases (after the effect of ionospheric bias is 

largely mitigated). A new geometry-free and ionosphere-

free model has been introduced for reliable ML/NL 

ambiguity resolution over multiple epochs. The 

experimental results from a 155 km baseline have 

demonstrated that the new model can efficiently 

determine the ML/NL ambiguities over several minutes 

without distance constraints. This is very promising result 

for regional network-based RTK, where successful 

ambiguity resolution may take tens of minutes to hours 

with dual-frequency data. 
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