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ABSTRACT 

Invasive plants pose serious threats to economic, social and environmental interests 

throughout the world.  Developing strategies for their management requires a range 

of information that is often impractical to collect from ground based surveys.  In 

other cases, such as retrospective analyses of historical invasion rates and patterns, 

data is rarely, if ever, available from such surveys.  Instead, historical archives of 

remotely sensed imagery provides one of the only existing records, and are used in 

this research to determine invasion rates and reconstruct invasion patterns of a ca 70 

year old exotic mesquite population (Leguminoseae: Prosopis spp.) in the Pilbara 

Region of Western Australia, thereby helping to identify ways to reduce spread and 

infill.  A model was then developed using this, and other, information to predict 

which parts of the Pilbara are most a risk.  This information can assist in identifying 

areas requiring the most vigilant intervention and pre-emptive measures.  Precise 

information of the location and areal extent of an invasive species is also crucial for 

land managers and policy makers for crafting management strategies aimed at 

control, confinement or eradication of some or all of the population.  Therefore, the 

third component of this research was to develop and test high spectral and spatial 

resolution airborne imagery as a potential monitoring tool for tracking changes at 

various intervals and quantifying the effectiveness of management strategies 

adopted.  To this end, high spatial resolution digital multispectral imagery (4 

channels, 1 m spatial resolution) and hyperspectral imagery (126 channels, 3 m 

spatial resolution) was acquired and compared for its potential for distinguishing 

mesquite from coexisting species and land covers.  These three modules of research 

are summarised hereafter.   

 

To examine the rates and patterns of mesquite invasion through space and time, 

canopies were extracted from a temporal series of panchromatic aerial photography 

over an area of 450 ha using unsupervised classification.  Non-mesquite trees and 

shrubs were not discernible from mesquite using this imagery (or technique) and so 

were masked out using an image acquired prior to invasion.  The accuracy of the 

mesquite extractions were corroborated in the field and found to be high (R2 = 0.98, 

P<0.001); however, accuracy varied between classes (R2 = 0.55 to 0.95).  Additional 

sampling may be required in some of the wider class intervals, particularly the 
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moderate density class (30 to 90%) as sampling frequency was poor within the range 

of 60 to 90%.  This is a direct result of there being relatively few quadrats available 

to be randomly selected in this class.  That is, quadrats with between 60-90% cover 

were only evident in 4% of the test area.  A more robust approach would, therefore, 

be to split this class into two (e.g. 30-60% and 60-90%) and select an additional 15 

quadrats in the 60-90% range.  The resolution of the imagery (1.4 m) precluded 

mapping shrubs smaller than 3 m2.  Rates and patterns were compared to mesquite 

invasions in its native range.  It was determined that: (i) the shift from grass to 

mesquite domination had been rapid, with rates of increase in canopy cover 

comparable to invasive populations where it is native; (ii) rate of patch recruitment 

was high in all land types (stony flats, red-loamy soils and the riparian zone), but 

patch expansion and coalescence primarily occurred over the riparian zone and red-

loamy soils; (iii) mesquite had been spread by sheep and macropods and the recent 

switch to cattle is likely to exacerbate spread as it is a far more effective dispersal 

vector; and (iv) early successional patterns, such as high patch initiation followed by 

coalescence of existing stands are similar to where mesquite is native, but patch 

mortality did not occur.   

 

A knowledge based model was used to predict which parts of the Pilbara region are 

most at risk.  Several limitations of models often employed in predicting suitability 

ranges of invasive plants were identified and include: (i) an inability to incorporate 

the notion that within a suitability range there is likely to be a scale of favourability; 

(ii) an inability to assign greater importance to evidence that is likely to have more 

importance in defining the areas suitable for invasion; and (iii) an inability to control 

the level of conservatism in the final results.  These three shortcomings were 

mitigated through the use of: (i) fuzzy membership functions to derive a range of 

favourability from poor to best; (ii) pairwise comparison to derive higher weights for 

layers perceived to be more important and vice versa; and (iii) the use of ordered 

weighted averaging to directly control the level of conservatism (or risk) inherent in 

the models produced.  Based on the outcomes of the historical reconstruction of 

spatial rates and patterns, data sources included land types, land use, and the 

derivation of a steady state wetness index from spot height data.  Model outputs were 

evaluated using two methods: the area under the curves (AUC) produced from 

relative operating characteristic (ROC) plots and by the maximum Kappa procedure.  
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Both techniques agreed that the model most representative of the validation data was 

the one assuming the most risk.  To create a Boolean output representing areas 

suitable/not suitable for invasion, optimal cut-points were derived using the point 

closest to the top left hand corner of the ROC plot and by the maximum Kappa 

method.  Both methods obtained identical cut-points, but it is argued that the 

coefficient produced by the maximum Kappa method is more easily interpreted.  The 

highest AUC was found to be 0.87 and, based on the maximum Kappa method, can 

be described as good to very good agreement with the validation records used.  

 

Digital multispectral imagery (DMSI), acquired in the visible and near infrared 

portions of the spectrum (3 visible bands, 1 near infrared) with a spatial resolution of 

1 m and hyperspectral imagery (126 bands, 3 m spatial resolution) was acquired to 

assess the potential of developing a reliable and repeatable mapping tool to facilitate 

the monitoring of spread and the effects of control efforts.  Woody vegetation was 

extracted from the images using unsupervised classification and grouped into patches 

based on contiguity.  Various statistics (e.g. maximum, minimum, median, mean, 

standard deviation, majority and variety) were assigned to these patches to garner 

more information for species separation.  These statistics were explored for their 

ability to separate mesquite from coexisting species using Tukey’s Honestly 

Significantly Different (HSD) test and, to reduce redundancy, followed by linear 

discriminant analysis.   

 

Two approaches were taken to select the patch statistics offering the best 

discrimination.  The first approach selected patch statistics that best discriminated all 

species (named “overall separation”).  This was compared to a second approach, 

which selected the best patch statistics that separated each species from mesquite on 

a pairwise basis (named “pairwise separation”).  The statistics offering the best 

discrimination were used as input in an Artificial Neural Network (ANN) to assign 

class labels.  An incremental cover evaluation, whereby producer’s accuracy was 

computed from mesquite patches grouped into various size-classes, showed that 

identification of mesquite patches smaller than 36 m2 was relatively low (43-51%) 

regardless of the method used for choosing between the patch statistics or image 

type.  Accuracy improved for patches >36 m2 (66-94%) with both approaches and 

image types.  However, both approaches used on the hyperspectral imagery were 
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more reliable at capturing patches >36 m2 than the DMSI using either approach.  The 

lowest omission and commission rates were obtained using pairwise separation on 

the hyperspectral imagery, which was significantly more accurate than DMSI using 

an overall separation approach (Z=2.78, P<0.05), but no significant differences were 

found between pairwise separation used on either media.  Consequently, all methods 

and imagery types, except for DMSI processed using overall separation, are capable 

of accurately mapping mesquite patches >36m2.  However, hyperspectral imagery 

processed using pairwise separation appears to be superior, even though not 

statistically different to hyperspectral imagery processed using overall separation or 

DMSI processed using pairwise separation at the 95% confidence level.  Mapping 

smaller patches may require the use of very high spatial resolution imagery, such as 

that achievable from unmanned airborne vehicles, coupled with a hyperspectral 

instrument.  Alternatively, management may continue to rely on visual airborne 

surveys flown at low altitude and speed, which have proven to be capable at mapping 

small and isolated mesquite shrubs in the study area used in this research.   
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1 INTRODUCTION 

1. 1 Woody Plant Invasion: A Global Phenomenon 

Invasive woody plants have been observed on every continent where arid and semi-

arid rangelands occur (Archer, 1994; Hudak and Wessman, 1998).  These plants have 

the potential to dramatically alter biodiversity (Gibbens et al., 1992), vary the 

temporal and spatial distribution of water, nitrogen and other soil resources 

(Schlesinger et al., 1990) and impact on primary production by reducing the amount 

of pastoral land available for grazing (Henessy et al., 1983; Goslee et al., 2003).   

 

The proximate causes for the recent global shift from grasslands to woodlands are 

multi-faceted and controversial.  Popular theories include globally rising carbon 

dioxide levels, which theoretically favour woody plants that have a C3 photosynthetic 

pathway over C4 grasses (Polley et al., 1994; Derner et al., 2005) and may also 

enhance the water efficiency of woody plants, thereby increasing the likelihood of 

establishment and survival in arid to semi-arid regions (Polley, 1997).  However, this 

theory is deemphasised by Archer et al. (1995) who argue that the relationship is not 

entirely cause and effect.  Relatively recent climate changes causing, for example, 

more intense episodic periods of rainfall, extended wet seasons or droughts may also 

explain some cases of proliferation (e.g. Bowman et al., 2001).  However, this is 

controversial since edaphically similar areas on adjacent paddocks have been 

observed to show dramatic differences in invasion rates (Van Auken, 2000). At the 

landscape level, woody plants that produce nutritious pods (e.g. mesquite) may have 

high invasion rates due to introduced dispersal vectors (e.g. cattle).  Mesquite has a 

thick seed coat that requires scarification, which occurs during mastication; the seed 

survives passage through the gut of cattle and is deposited in a moist, nutrient rich, 

dung (Brown and Archer, 1987; Brown and Archer, 1989; Brown and Carter, 1998).   

 

In many parts of the world, fire frequencies have decreased since settlement and 

subsequent pastoralism practices have been adopted.  These reductions in fire 

frequencies are a result of fine-fuel removal by livestock grazing, cessation of 

ignition by indigenous populations and active fire suppression.  In Australia, active 

and accidental use of fire by Aboriginals in the 40,000 years prior to European 
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settlement is well documented (e.g. Bowman, 1998), and it is thought that cessation 

of traditional Aboriginal land management has resulted in woody thickening in some 

parts of northern Australia (Bowman et al., 2001).  Sufficient fire-free intervals can 

enable some woody plants to reach an appreciable size and age whereby they become 

highly tolerant to fire and eventually overtop the herbaceous cover (Van Auken, 

2000; Scholes and Archer, 1997).  Altered fire regimes throughout the world are, 

therefore, thought to be a major cause of the invasion of woody species into 

grasslands in the recent past (Bowman, 1998; Van Auken, 2000; Bowman et al., 

2001).   

 

An increased frequency of gaps in the herbaceous layer caused by herbivory enables 

greater opportunities for woody plant establishment.  Contrarily, the long life-span of 

woody plants means that the frequency of gap formation in wooded areas is 

relatively low.  Differences in rates and frequencies of gap formation associated with 

grass and woody plant life-history traits may explain why successional transitions 

between grass and woody plant-dominated states are highly asymmetrical and why 

conversion back to grasslands is highly unlikely (Scanlan and Archer, 1991; Archer, 

1994).  Put simply, once the successional process is initiated, the probability of 

grasslands (g) converting into woodlands (w) is far greater than the reverse occurring 

(i.e. P(g w) > P(w g)) (Archer, 1994).   

1. 2 Mesquite: The Space Invader 

Mesquite is a leguminous shrub that grows to about 3 m in height and often forms 

impenetrable thickets, resulting in serious economic (e.g. lost production, increased 

control and management costs), environmental (e.g. increased land degradation, loss 

of soil moisture, altered biodiversity and provision of refuges for feral animal 

populations) and social costs (Hennessy et al., 1983; Gibbens et al., 1992; Goslee et 

al., 2003).  Mesquite was widely planted on properties throughout northern Australia 

in the early 1900s for a variety of purposes including shade, as a possible food source 

for stock (pods), and for soil stabilisation around mining sites.    By the 1920s and 

and 1930s, it was widely distributed throughout Queensland, the Northern Territory 

and Western Australia (van Klinken and Campbell, 2001).  Naturalised and hybrid 

species of mesquite are now found in every state and territory in Australia, with the 

exception of Tasmania and the Australian Capital Territory (Osmond et al., 2003).  
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Due primarily to its invasiveness, potential for spread and economic and 

environmental impacts, mesquite is regarded as one of the worst weeds in Australia, 

and is currently listed as one of the top 20 weeds of national significance to Australia 

(Thorp and Lynch, 2000).   

 

In the 1930s, mesquite was introduced to the Mardie Pastoral Station in the 

northwest Pilbara Region of Western Australia to serve as a shade and emergency 

fodder plant (Meadly, 1962).  Initially, plants showed little tendency to spread, and it 

was not until after the 1945 floods in Western Australia that the invasive potential of 

mesquite became evident.  Anecdotal evidence suggests that a small number of trees 

planted in the 1930s around the Mardie Station homestead and shearing shed rapidly 

multiplied, resulting in the worst infestation in the country (Osmond et al., 2003).  

Here, it is estimated to have established over 150,000 ha of potential grazing land, of 

which 30,000 ha has been identified as dense (van Klinken et al., 2003).   

 

Mesquite possesses many characteristics that make it a very aggressive invader of 

grasslands.  Such characteristics include an extensive root system that can access 

water from both shallow and deep soil horizons (Lopez-Portillo and Montana, 1999), 

a long life-span with low post-establishment mortality rates (Archer, 1989), an ability 

to fix nitrogen (Shearer et al., 1983) and a capability to germinate over a wide range 

of soil types, temperatures, moisture regimes and light conditions (Hennessy et al., 

1983; Gibbens et al., 1992; El-Keblawy and Al-Rawai, 2005).   

1. 3 Problem Statement 

As mentioned above, mesquite is a threatening process to rangelands throughout 

Australia.  Failure to curb invasion will only amplify its impacts as it continues to 

spread and increase in density.  Traditionally, information such as invasion processes 

and the location and spatial extent of invasive plants is acquired by field surveys; 

however, this may not always be practical or timely, particularly over large, highly 

inaccessible regional areas.  Spatial science, which in this context covers geographic 

information science and remote sensing science, offers the potential to supply this 

information in a more timely and practical manner.  Three key problems that may be 

addressable by combining ecological principles with the manipulation, extraction and 

formulation of geographic information are identified hereafter.   
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Firstly, the process of invasion needs to be considered within the context of the 

landscape in which it is invading.  There are a wide range of processes through 

which weeds can invade a landscape and these processes need to be understood prior 

to the implementation of coherent management schemes.  For example, management 

strategies may differ for invasive plants that invade along a population front, solely 

through riparian corridors or that are dispersed long distances and subsequently in-

fill.  Furthermore, it is likely that in any setting, rates of invasion will vary spatially 

and temporally and may be regulated by various factors including soil types, soil 

moisture and the presence of an effective dispersal vector and these factors need to 

be identified, and where possible, quantified.  

 

Secondly, predicting the potential distribution of invasion at a regional level offers 

important information for preventing spread into high risk areas, identifying priority 

areas to control and directing where to acquire remote sensing data to monitor for 

early outbreaks and thereby craft early intervention strategies (Morisette et al., 2006).   

 

Thirdly, a major challenge confronting ecologists and land managers in their vision 

to effectively manage invasive plant species is a lack of information concerning their 

precise location and extent.  Remote sensing offers a potential solution for mapping 

and monitoring invasive plants, but has not yet been adopted as a standard survey 

tool because of past limitations in spatial and/or spectral resolution.  This has 

hindered the mapping of plants at a sufficient resolution for targeted 

control/eradication, particularly for invasive plants that do not exhibit highly 

distinguishable biological traits relative to coexisting species present within the same 

landscape.  However, current technology can provide very high spatial resolution 

(e.g. <1 m) and very high spectral resolution imagery (e.g. >100 bands, acquired at 

10 to 15 nm intervals).  Furthermore, classification algorithms have also become 

more sophisticated since the early attempts at classifying the more challenging 

species.   

1. 4 Thesis Objectives 

Based on the above problem statement, the objectives of this study are threefold: 
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(i) Determine the rates and patterns of mesquite invasion since introduction.  

In particular, identify: 

a. Rates of invasion and compare to rates where mesquite is native; 

b. Patterns of invasion; 

c. Rates and patterns of invasion over different land types; and 

d. Whether invasion patterns are consistent with dispersal by known 

vectors. 

 

(ii) Predict the potential distribution of the mesquite population throughout 

the Pilbara Region using advanced knowledge driven modelling.  The 

parameters for the model are heavily reliant on the knowledge gained 

from objective (i) above.  In particular, this model will include suitable 

land types, soil moisture and the presence of effective dispersal vectors; 

and 

 

(iii) Determine the effectiveness of high spatial resolution digital multispectral 

imagery (e.g. 1 m) and high spectral resolution imagery (e.g. 

hyperspectral imagery) for differentiating between mesquite and 

coexisting species, with the aim of developing a robust tool for future 

mapping and monitoring.  This objective will also identify any limitations 

of the method (e.g. smallest patch size reliably detected). 

1. 5 Thesis Structure 

This thesis consists of seven chapters.  Chapter 1 introduces the problem of invasion 

of grasslands by woody weeds, potential causes and briefly describes the invasive 

plant under study (mesquite).  It then describes information that can augment 

management practices and how this information can be derived from digital 

information (e.g. geographic and remotely sensed data).  Objectives are directly 

derived from three data requirements for crafting effective management strategies.   

 

Chapter 2 reviews relevant literature and methodologies to satisfy the three 

objectives of the study (reconstructing historical invasion rates and patterns; 

construction of a suitability template for mesquite invasion and mapping mesquite 

using remotely sensed imagery).  The chapter begins with the role of remote sensing 
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for mapping individual species on the basis of distinguishable biological traits.  A 

four step methodology is presented to identify the likelihood of successful mapping 

as well as for guiding the choice of imagery and classification method.  Accuracy 

measures are also given to quantify and compare the success of mapping using 

different datasets and techniques.  The success of previous studies is reviewed for a 

wide range of image types, classification techniques and invasive plants.  The 

success of previous studies aimed at examining historical invasion rates is then 

reviewed.  Finally, methods for modelling habitat suitability are reviewed and 

advantages and disadvantages of current approaches highlighted in order to derive 

the most appropriate, novel and robust model for this study.  Methods for model 

validation are also given.   

 

Chapter 3 describes the location and characteristics of the mesquite population under 

study.  All data sources used in subsequent chapters are presented.  The main 

software packages used to analyse, present and derive the various outputs of this 

study are described.   

 

Chapter 4 focuses on objective (i) above.  Historical aerial photographs are used to 

reconstruct past rates and patterns of mesquite invasion and highlight the similarities 

and differences of this population to native range populations. This work has been 

published in the Journal of Arid Environments (Robinson et al. 2008)   

 

Chapter 5 extrapolates information derived from Chapter 4 (e.g. dispersal vectors, 

suitability to land types and the influence of soil moisture), using a knowledge driven 

approach, over the Pilbara Region to identify areas of high and low suitability for 

mesquite invasion (objective ii).  Levels of conservatism inherent in the models are 

altered by using ordered weighted averaging.  Models are validated using relative 

operating characteristic (ROC) plots and Kappa statistics.    

 

Chapter 6 examines the potential of DMSI and hyperspectral imagery for 

differentiating mesquite from coexisting species, thereby defining the precise 

location and distribution of mesquite throughout the landscape (objective iii).  

Confusion matrices and the approximate patch size that can be reliably mapped using 

these technologies are examined.  



7 

 

Chapter 7 presents a summary of the thesis, including salient conclusions and 

opportunities for further research.   
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2 LITERATURE AND METHODOLOGICAL REVIEW 

2. 1 Introduction 

This chapter reviews the role of remote sensing and spatial modelling for the study 

and management of invasive plants, with a particular focus on invasive plant 

mapping, the use of longitudinal assessment of weed invasions to understand 

invasion processes, and habitat suitability modelling.   

 

The first section covers the spectral properties of vegetation, highlighting: (i) 

changes that can be expected in the signature characteristics of different species and 

vegetation types at different phenological stages; and (ii) that species differentiation 

relies on the existence of detectable differences between the spectra of all coexisting 

species.  

 

The next section summarises the process of classifying invasive species from 

remotely sensed imagery into four broad steps:  

 

(i) examine the biological traits of the target weed and other coexisting 

species to determine if the spectra of all species are likely to be separable;  

(ii) choose appropriate imagery to maximise the chances of successful 

mapping;  

(iii) give consideration as to which classification method may be most 

appropriate; and  

(iv) assess classification accuracy.   

 

This discussion is followed by a review of a cross-section of studies aimed at 

mapping invasive plants.   

 

The third section discusses how reconstructing historical invasion patterns can assist 

in predicting future patterns, determining causes for accelerated invasion, quantifying 

the long term success of control strategies, and revealing land type preferences.  

 

The final section discusses methods to extrapolate existing knowledge over large 

areas to assist in the prioritisation of management activities.  In particular, a wide 
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range of models are reviewed in terms of their strengths and weaknesses in order to 

derive a more robust model in this research.   

2. 2 Spectral Properties of Vegetation 

Remote sensing involves the measurement and analysis of reflected radiation. 

Typical reflectance characteristics for healthy green vegetation, dead or senescent 

vegetation and dry bare soil are shown in Figure 2.1.  Around 70 to 90% of blue (e.g. 

400 to 500 nm) and red (e.g. 600 to 700 nm) light are absorbed by healthy green 

vegetation to provide energy for the process of photosynthesis.  The slight 

reflectance peak around 500 to 600 nm (green light) is known as the “green peak” 

and is the reason that most actively growing vegetation appears green to the human 

eye.  Non-photosynthetically active vegetation lacks this “green peak” (Mather, 

2004).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Typical reflectance characteristics for healthy green grass, dead or 
senescing grass and bare dry soil for the wavelength interval from 400 
to 1100 nm (adapted from Jensen, 1996).  

 

For photosynthetically active vegetation, the spectral reflectance curve rises sharply 

between approximately 700 and 800 nm and remains high in the near infrared region 

between 750 and 1350 nm.  The “red edge” refers to the region of rapid change in 

reflectance of chlorophyll at approximately 680 to 700 nm, with maximum 

P
er

ce
nt

 re
fle

ct
an

ce

60

50

40

30

20

10

400 500 600 700 1100

Blue Green Red NIR

“green peak”

“red edge”

Wavelength (nm)

Healthy green 
vegetation

Senescent green
vegetation

Dry bare soil



10 

reflectance at approximately 800-900 nm (Figure 2.1).  The “red-edge” point for 

plants undergoing greater photosynthesis will generally begin to rise at longer 

wavelengths of the near-infrared portions of the spectrum (Vogelmann, 1993).  As 

the plant senesces, the level of reflectance in the near infrared region declines first, 

with reflectance in the visible part of the spectrum not being affected significantly.  

However, the relative maximum in the green portion of the spectrum is likely to 

decline as pigments other than chlorophyll begin to dominate and the leaf begins to 

lose its greenness.  Stress (e.g. from drought, disease or herbivory) can also produce 

a spectral response that is similar to senescence (Mather, 2004). 

 

Importantly, it is the difference in the spectral reflectance curves of different land 

covers that enable their classification from remotely sensed imagery – land covers 

would not be distinguishable from one another if the spectral reflectance curves are 

almost identical.  Likewise the discrimination of plant species depends on the 

existence of detectable differences between the spectra of all coexisting species (see 

Section 2.3.1). 

2. 3 Remote Sensing for Invasive Plant Detection 

Any study aimed at mapping specific species usually proceeds in four steps.  Firstly, 

remote sensing experts, often in collaboration with ecologists and land managers, 

ascertain the likelihood that the species can be mapped with success.  This is 

normally achieved by identifying if the target species possess some distinguishable 

trait relative to other species present at and around the invasion sites (see Section 

2.3.1).  The second step is the identification of the smallest patch or individual that 

must be detected for effective management.  This step largely influences the spatial 

resolution (pixel or cell size) of the imagery required (see Section 2.3.2).  

Additionally, the spectral resolution required (e.g. the number and width of the 

spectral bands) also needs to be identified.  For example, if it is determined from step 

1 that the distinguishable characteristics of the target species are subtle, higher 

spectral resolution imagery may be required.  Identification of the spectral/spatial 

resolution required generally assists in deciding which sensor (or range of sensors) 

may be most appropriate for the task at hand.   
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The third step is to choose an appropriate classification routine, which may be 

dependent on which instrument was used to capture the imagery.  For example, a 

range of techniques that might be applicable to hyperspectral imagery (very high 

spectral resolution imagery) might not be applicable to aerial photography (see 

Section 2.3.3).  The final step involves an assessment of the accuracy of the 

classification procedure implemented.  In general, it is appropriate to outline a target 

accuracy a priori that must be achieved in order to consider the application of remote 

sensing for mapping the invasive species a success for management purposes (see 

Section 2.3.4).  

2.3.1 Step 1: Assess likelihood of successful discrimination 

Many successful studies aimed at differentiating invasive species from coexisting 

species have usually relied on timing the acquisition of remotely sensed imagery to 

coincide with a period where the focal species exhibits a unique trait, relative to 

coexisting species (Hunt et al., 2003).  Such traits can include:  

 

(i) Flower, fruit or bract colour;  

(ii) Early “green-up”/senescence or late senescence; 

(iii) Canopy architecture; 

(iv) Seasonal colouration (leaves);  

(v) Growth habit; and 

(vi) Stress/disease resulting in defoliation and colour change. 

 

Table 2.1 shows examples of studies where successful species discrimination was 

achieved on the basis of one or more of the abovementioned traits.     

2.3.1.1 Flower, fruit or bract colour 

During peak flowering, invasive plants that would otherwise be indistinguishable 

from other vegetation types may be identified and therefore timing imagery to 

coincide with this period is crucial for success.  For example, leafy spurge 

(Euphorbia esula) produces yellow bracts around June each year causing its visible 

reflectance to increase from 630 to 690 nm, which is higher than other species 

common to the area (Everitt et al., 1995).  Other species mapped on the premise of 

unique flower, bract or fruit colour are shown in Table 2.1. 
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Table 2.1 Common invasive plants, their distinguishable traits and examples of 
the best time for image acquisition. 

 

Category Species  
(Common 
Name) 

Scientific 
Name 

Distinguishing  
Traits 

Image Timing 
(Examples) 

Related 
Studies 

Huisache Acacia 
farnesiana 

Orange-yellow 
flowers 

Winter 

Mexican 
polo-verde 

Parkinsonia 
aculeata 

Yellow flowers Spring 

Everitt and 
Villarreal 
(1987) 

Common 
goldenweed 

Isocoma 
cornopifolia 

Golden-yellow 
flowers 

Early to mid 
autumn 

Everitt et 
al. (1992a) 

Drumond 
goldenweed 

Isocoma 
dummondii 

Golden-yellow 
flowers 

Late autumn 
to early 
winter 

Everitt et 
al. (1992a) 

Unique flower, 
fruit or bract 
colour 

 

Leafy spurge Euphorbia 
esula 

Bright yellow 
bracts 

Early summer Everitt et 
al. (1995) 

Early “green-up” 
and/or early 
senescence 

 

Cheatgrass 
(aka Downy 
brome) 

Bromus 
tectorum 

Early greenup and 
early senescence 

Early spring 
(for early 
greenup); 
Mid-summer 
(for early 
senescence) 

USGS 
(2003) 

Broom 
snakeweed 

Guitierezia 
sorathrae 

Erectophile (erect 
leaves) canopy 
structure. 

Any time 
during 
growing 
season 

Everitt et 
al. (1992b) 

Canopy 
architecture 
 
 
 Spiny aster Aster spinosus Erectophile (erect 

leaves) canopy 
structure. 

Any time 
during 
growing 
season 

Everitt et 
al. (1992b) 

Chinese 
tamarisk 

Tamarix 
chinensis 

Unique orange 
brown leaf colour 
in autumn 

Autumn Everitt and 
Deloach 
(1990); 
Everitt et 
al. (1996) 

Seasonal 
colouration 
(leaves) 

Redberry 
Juniper 

Juniperus 
pinchottii 

Evergreen foliage Autumn if 
other species 
are deciduous 

Everitt et 
al. (2001) 

Blackberry Rubus 
fruiticosis 

Dense thickets 
reflect higher in 
NIR region 

Summer to 
early autumn 

Frazier 
(1998); 
Ullah et al. 
(1989).   

Growth habit (e.g. 
thickets) 

Giant Reed Arundo donax Dense thickets 
reflect higher in 
NIR region 

Summer and 
autumn. 

Everitt et 
al. (2004).  

Stress/disease 
resulting in 
defoliation and 
colour change 

Oak (with oak 
wilt disease) 

Quercus spp. Defoliated 
crowns 

When most 
defoliated. 

Everitt et 
al. (1999). 

 

2.3.1.2 Early “green-up” and/or early senescence  

Invasive plants or grasses that “green-up” before the “green-up” of other species or 

senesce before other species can be good targets for mapping using remote sensing 
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technologies.  For example, cheatgrass (Bromus tectorum) “greens-up” early in the 

spring and then senesces before other grasses; and can therefore be distinguished 

from other species by acquiring imagery at green-up or senescence, or both (USGS, 

2003; Table 2.1). 

2.3.1.3 Canopy architecture  

Canopy architecture is also potentially useful for detecting invasive plants.  For 

example, due to an erectophile canopy structure (e.g. erect leaves) the near-infrared 

reflectance of broom snakeweed (Guitierezia sorathrae) and spiny aster (Aster 

spinosus) was found to be lower than that of other rangeland species in a study by 

Everitt et al. (1992b) (Table 2.1). 

2.3.1.4 Seasonal colouration (leaves) 

The reduction in chlorophyll in deciduous plants during autumn has been used 

effectively in species discrimination by allowing other more unique pigments, 

relative to other species, to be detected.  For example, Everitt and DeLoach (1990) 

and Everitt et al. (1996) mapped Chinese tamarisk (Tamarix chinensis) by taking 

advantage of its unique orange-brown colour prior to leaf drop, while coexisting 

species remained evergreen.  Mack (2005) suggests that any invasive species with 

the potential to undergo distinct seasonal colour change may a candidate for aerial 

assessment.  This principle can also be used in reverse.  For example, Everitt et al. 

(2001) successfully mapped redberry juniper (Juniperus pinchottii) by taking 

advantage of its evergreen foliage by obtaining imagery in winter when other species 

were dormant (Table 2.1). 

2.3.1.5 Growth habit 

Invasive plants that grow in monospecific stands (e.g. thickets) may produce unique 

spectral characteristics to enable detection.  The vegetative density and crown vigour 

of these stands often results in fewer gaps in their canopy, relative to individual 

plants.  As a result, the reflectance in the near infrared band is often higher than that 

of other species that do not form thickets.  Everitt et al. (2004) and Frazier (1998) 

have utilised this principle for mapping giant reed (Arundo donax) and blackberry 

(Rubus fruiticosis), respectively (Table 2.1).    
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2.3.1.6 Stress/disease resulting in defoliation and colour change 

Trees/plants that are stressed or diseased will often show signs of dieback of the 

upper crown coupled with discolouration and wilting/defoliation of the foliage.  

Everitt et al. (1999) were able to map oak (Quercus spp.) suffering from oak wilt 

disease as the defoliation effects of the disease resulted in lower reflectance values in 

the near infrared region, relative to healthy oak trees (Table 2.1) 

2.3.2 Step 2: Choose appropriate imagery for the task  

The strength of remotely sensed imagery for detecting invasive plants is a function of 

the chosen sensor’s spatial, spectral, radiometric and temporal resolution, as 

discussed hereafter. 

2.3.2.1 Spatial resolution  

Spatial resolution can be defined as a measure, in meters, of the ground projected 

instantaneous field of view (IFOV) of the sensor.  For example, the Landsat 

Thematic Mapper (herein referred to as Landsat) ground-projected IFOV is 30x30 m.  

Generally, the higher the spatial resolution the greater the resolving power of the 

sensor (Jensen, 1996).     

 

The ability to resolve light and scattered weed infestations is a commonly 

highlighted limitation of the application of remote sensing to invasive plant detection 

that is linked to the achievable spatial resolution of current remote sensing 

technologies.  For example, the required spatial resolution for mapping weed patches 

has been estimated as less than one-quarter of the smallest patches that need to be 

mapped (Hunt et al., 2005).  This ‘detection limit’ needs to be identified prior to 

obtaining imagery.  For example, sensors must be able to detect small and isolated 

populations if classification outputs are to be useful in invasive plant eradication 

programmes (c.f. Moody and Mack, 1988).  Table 2.2 highlights the spatial 

resolution of many available remotely sensed products from both airborne and 

satellite platforms.  Hence, if the intention of the study is to precisely identify the 

location of isolated/scattered invasive plants then those sensors with a spatial 

resolution higher than the weed manager’s detection limit can, in general, be ruled 

out.   
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Table 2.2 Summary of the various kinds of imagery available in terms of spatial, 
spectral, radiometric and temporal resolution. 

 
Platform Type Sensor(s)/ 

Products 
Spatial 
Resolution1 

Spectral 
Resolution 

Rad. 
Res.2 

Temporal 
Resolution 

Panchromatic e.g. <2 m Low 8 Generally 
archived 

Film 
Photography 

Colour/ 
colour 
infrared  

e.g. <2 m Low  8 On demand 

Digital 
Photography 

Colour e.g. <2 m Low  8 On demand 

Digital 
videography 

CCD 
cameras 
record to 
VHS 

Poorest of 
airborne 

Low n/a On demand 

DMSI3 0.25 to 4 m Low  12 On demand 
ADAR4 0.25 to 4 m Low 8 On demand 

Multispectral 
scanners 

MEIS5 e.g. 0.4 m Low 8 No longer 
operational 

Hymap/Probe 1 to 10 m  V. High  16 On demand 

Aircraft 

Hyperspectral  
CASI-26 1 to 10 m High  12 On demand. 
AVHRR7 1.1 km  Low  10 2 per day 

 
Low spatial 
resolution 
imagery 
 

MODIS8 250 m to 1 
km 

High  12 1-2 days 

Landsat 30 m  Low  8 16 days Moderate 
spatial 
resolution 
imagery 

SPOT-59 10 m  Low  8 26 days 

Quickbird 2.4 m  Low  11 Must be 
tasked 

High spatial 
resolution 
imagery IKONOS 4 m  Low  11 Must be 

tasked 

Satellite 
 
 
 

Hyperspectral Hyperion 30 m V. High  12 16 days 
1The spatial resolution of airborne products is dependent on the height at which the imagery is flown.  
Please consult your vendor for what is currently achievable; 2Number of bits; 3DMSI=Digital 
Multispectral Imagery; 4ADAR=Airborne Data Acquisition and Registration; 5MEIS=Multispectral 
Earth Imaging System; 6CASI=Compact Airborne Spectrographic Imager; 7AVHRR=Advanced Very 
High Resolution Radiometer; 8MODIS=Moderate Resolution Imaging Spectroradiometer; 
9SPOT=Satellite Pour l'Observation de la Terre. 
 

2.3.2.2 Spectral resolution 

Spectral resolution refers to the number and width of spectral bands of a particular 

sensor (Mather, 2004).  In general, the greater the spectral resolution, the greater the 

likelihood of distinguishing invasive plants from their surroundings (Hunt et al., 

2005).  More specifically, to provide reliable identification of a particular plant 

species on a remotely sensed image, the spectral resolution of the sensor must match 

as closely as possible to the spectral reflectance curve of the particular plant in 

question (Mather, 2004).   
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The spectral resolution achievable with current and past sensors can be broadly 

categorised into three types: panchromatic, multispectral and hyperspectral sensors.  

Panchromatic images have commonly been collected using aerial photography, 

although some satellites also have a panchromatic channel (e.g. IKONOS, SPOT, 

Landsat ETM+).  Multispectral sensors are sensitive to radiation within several 

wavelengths (e.g. Landsat 7 acquires imagery in 7 bands or “channels”) from the 

visible (red, green and blue light) and often into at least the near infrared portions of 

the spectrum.  By utilising several bands, multispectral imagery has improved power 

over panchromatic imagery for discriminating land covers.  However, as the 

bandwidths of these sensors are generally quite large, subtle differences (e.g. 

between like vegetation types) may not be distinguishable (Mather, 2004).  

Hyperspectral sensors acquire many more bands of imagery than multispectral 

imagery (e.g. >100 bands) at narrower bandwidths (e.g. 10 nm wide, but can be 

narrower).  This precise information may enable the capturing of more subtle 

differences in land covers (and, potentially, subtle differences between invasive plant 

species) than either multispectral or panchromatic imagery. 

2.3.2.3 Radiometric resolution 

Radiometric resolution refers to the number of digital quantisation levels (expressed 

in binary digits (bits)) used to store and “communicate” the data collected by the 

sensor.  In general, the greater the number of quantisation levels the greater the detail 

in the information collected by the sensor.  For example, 256 levels of grey is 

expressed using 8 bits (28), whereas 10 bit data can store up to 1024 levels of grey 

(210).  Theoretically, as the latter has a larger dynamic range of grey levels, it has an 

enhanced ability for detecting subtle differences in absorption/reflectance of land 

covers.  Table 2.2 details the radiometric resolution of many common sensors.   

2.3.2.4 Temporal resolution 

Temporal resolution refers to the revisit rate of the sensor (Jensen, 1996).  As 

discussed in Section 2.3.1, mapping invasive plants often relies on acquiring imagery 

at a specific time of the year when the target species exhibits a unique difference, 

relative to other species.   One disadvantage of some satellite products is that it can 

sometimes be difficult to acquire the imagery when these unique differences are at 
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their peak.  For example, if the temporal resolution of the satellite is many days 

apart, a distinct biological trait may be missed.  This is further magnified if weather 

conditions preclude obtaining acceptable quality (e.g. cloud free) images when it 

revisits.  Additionally, satellites that have to be tasked (e.g. QuickBird, IKONOS) 

may not be available at the most opportune times (Lass et al., 2005).  In contrast, 

airborne imagery can, in theory, be collected at most times as long as there is 

sufficient light and cloud free conditions at the height of acquisition. 

2.3.3 Step 3: Choose a classification method 

The following describes many of the classification algorithms used in the literature 

for mapping invasive plants and follows the categorisation illustrated in Figure 2.2, 

highlighting advantages and disadvantages of and between methods where 

applicable.  It is provided here for completeness and so that readers not familiar with 

the concepts have some background understanding when the algorithms are 

mentioned under the review of the past success for mapping invasive plants (Section 

2.3.5).  Readers with a sound knowledge of classification algorithms, as applied to 

different media, may choose to skip to Section 2.3.4.   

 

Figure 2.2 illustrates the different families of classification algorithms used to 

process remotely sensed imagery into meaningful classes.  While it is incorrect to 

assume that one classification method is, or always will be, superior to other 

methods, the following aims to give guidelines for choosing between many of them, 

based on hypothetical examples, the distribution of the remotely sensed data (e.g. 

parametric versus non-parametric methods) and whether a decision needs to be made 

between choosing either a soft or a hard classification.   

 

Non-parametric methods are those that do not rely on statistical information from the 

sample data (e.g. means, variances) but rather are trained on the sample data directly.  

They make no assumptions concerning the frequency distribution of the data and can 

thus incorporate non-remotely sensed data such as slope or soil type into the 

classification.  Non-metric methods, such as decision trees, can also incorporate 

nominal data into the classification.  In contrast, parametric methods use parameters 

derived from the training data, such as the mean and variance/covariance matrices for 

each of the classes.  These methods assume that the frequency distribution of each 
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class is normally distributed, and hence, if this is not the case there is justification in 

avoiding them (Mather, 2004).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  Summary of the different kinds of image processing techniques 
suitable for classifying remotely sensed imagery into meaningful 
classes. 

 

Unsupervised classification methods can be used without knowledge of the spectral 

characteristics of the land covers present in the image (i.e., training data).  In essence, 

unsupervised classification routines form clusters by grouping together pixels with 

similar spectral characteristics (Hunt et al., 2005).  In contrast, supervised 

classification routines require information (i.e., training pixels) on the spectral 

characteristics of the land covers (e.g. species types) present within the scene in order 

to group pixels of similar spectral response.  Supervised classification algorithms, 

whether parametric, non-parametric or non-metric can be dichotomised into hard or 

soft classifiers (see Figure 2.2). 

 

Hard classifiers are so named because they reach a hard decision about the class to 

which each pixel belongs.  For example, if a pixel contains a mix of land covers, the 

dominant land cover (e.g. the one with the highest percentage of cover in that pixel) 
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will be assigned (Eastman, 2006).  Unlike hard classifiers, soft classifiers defer 

making a definitive judgement of any pixel in favour of a group of statements about 

the degree of membership of that pixel in each of the possible classes.  The output is 

not a single classified land cover map, but rather a set of images (one per class) that 

express, for each pixel, the degree of membership in the class in question.   

2.3.3.1 Parametric, hard unsupervised classification: ISODATA 

Perhaps the most well known unsupervised classification is ISODATA.  This method 

repeatedly iterates over arbitrary seed values and then reassigns pixel values to 

particular clusters based on their closeness to these seed values.  As the number of 

iterations increase, the mean class values gravitate towards natural breaks in the 

distribution of image pixels (Anderson and Cobb, 2004; Mather, 2004).  The main 

benefits of this method are that it is easy to apply and no training data is required.  

The main disadvantages of this method are that the number of clusters chosen is 

arbitrary, and often requires a trial and error approach and clusters may not be well 

separated and therefore mis-classification can be significant.  Additionally, class 

labels need to be assigned by the operator, which involves a degree of subjectivity.  

Hence, any accuracy statement is assessing a combination of spectral discrimination 

and the user’s assignment to those classers.   

2.3.3.2 Parametric, hard supervised classification: maximum likelihood (ML) 

The ML algorithm uses the mean and variance/covariance data of the signatures to 

estimate the posterior probability (from Bayesian probability theory) that a pixel 

belongs to each class.  By incorporating information about the covariance between 

bands as well as their inherent variance, the ML algorithm produces what can be 

conceptualised as an elliptical zone of characterisation of the signature (Figure 2.3; 

Mather, 2004; Eastman, 2006).   

 

An advantage of the ML approach is that prior knowledge can be taken into account.  

For example, a priori knowledge of the proportion of the area to be classified that is 

covered by each class can be expressed as a vector of prior probabilities.  The 

probabilities are proportional to the area covered by each class, and can be thought of 

as weights.  A high prior probability for class i in comparison with class j means that 

any pixel selected at random is more likely to be placed in class i than class j, 
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because class i is given more weight (Mather, 2004).  A second advantage of this 

method is that, unlike the minimum-distance-to-means (MDM) classifier (see 

Section 2.3.3.3.2), it can account for spreads of data in particular spectral directions.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3   Conceptual rendition of the maximum likelihood algorithm (after 
Eastman, 2006). 

 

A disadvantage of this method is that it requires a relatively large sample size, when 

compared to many of the non-parametric methods (e.g. artificial neural networks or 

MDM), for each of the classes in order to compute a robust covariance matrix 

(Richards and Jia, 1998).  In addition, compared to MDM or the parallelepiped 

method (see Section 2.3.3.3.3) or artificial neural networks (see Section 2.3.3.3.1), 

the ML method requires considerable computation effort (Jensen, 1996).  While this 

may be considered less of an issue with contemporary computers, the increasing 

trend towards higher spatial and spectral resolution imagery will require more 

memory and processing time than for classifying conventional moderate resolution 

datasets (e.g. Landsat) and, in such cases, may be justification for using a classifier 

that is more parsimonious in terms of computer resources.   

2.3.3.3 Non-parametric, hard supervised classification 

As discussed above, non-parametric, hard classifiers are those that do not take into 

account the distribution of the data and output one class per pixel.  These include 

artificial neural networks (ANNs), the minimum-distance-to-means (MDM) 

classifier and the parallelepiped method.  These methods are discussed hereafter. 
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2.3.3.3.1 Artificial neural networks (ANNs) 

Over the last ten to fifteen years, the ANN has become an increasingly popular tool 

for the classification of remotely sensed imagery, particularly because (Lee et al., 

1990; Benediktsson et al., 1990; Atkinson and Tatnall, 1997; Mather, 2004): 

 

(i) they are free from restrictive assumptions such as requiring multivariate 

normal distributions; 

(ii) are able to generalise; 

(iii) are tolerant to noisy training data; 

(iv) do not require as extensive training sets as, for example, ML;  

(v) have been demonstrated, under some circumstances, to be a more 

accurate technique than statistical classifiers (e.g. ML); 

(vi) are faster at classification when compared to ML; and  

(vii) have the ability of simultaneously using data from different sensors or 

sources.    

 

In simplified terms, an ANN learns how to classify imagery by comparing an input (a 

pixel) to an expected output (e.g. class of the pixel, known from training data).  If 

there is a difference between the two, a set of weights are adjusted and the process is 

reiterated.  This process continues until the ANN gets the correct answers, in which 

case it is considered to have learnt all possible patterns.  The main disadvantage of 

ANNs is that they require considerable expertise in setting up the architecture (e.g. 

the number of hidden layers, the number of nodes) and choosing between some of 

the important parameters that are associated with their ability to learn (e.g. learning 

coefficient, momentum parameter, termination time).  See Mather (2004) for more 

details on these parameters.   

2.3.3.3.2 Minimum-distance-to-means (MDM) 

The MDM classifier characterises each class based on its mean position on each 

band.  To classify an unknown pixel, the distance from that pixel to each class is 

determined and assigned to that of the nearest class.  The main limitation of this 

method is related to signature variability.  If some classes are inherently more 

variable than others, there can be considerable mis-classification (Eastman, 2006).  

For example, for a particular species of deciduous shrub there may be a large 
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variability in the degree of defoliation at any one time throughout the population (e.g. 

dependent on sun light, canopy position, nutrients and water availability) which 

would create significant signature variability.  On the other hand, the land cover 

“sand” may be relatively homogenous throughout the image.  The variability of the 

two classes is illustrated by the circles, representing two standard deviations from the 

mean (Figure 2.4).   

 

 

 

 

 

 

 

 

 

Figure 2.4 Conceptual rendition of the minimum-distance-to-means algorithm 
assuming 8 bit imagery with only two bands and two classes (after 
Eastman, 2006). Using this method the unclassified pixel would have 
been incorrectly classified as “sand” (see text).  

 

From Figure 2.4 it can be seen that the unclassified pixel lies within the variability 

range of the deciduous class.  However, because of this variability, the mean 

reflectance of the unclassified pixel is actually closer to the mean for sand and will 

therefore be classed as such.  The main advantages of this method are that it is fast 

and requires fewer samples for each class, when compared to ML. 

2.3.3.3.3 Parallelepiped  

The parallelepiped method characterises each class by the range of expected values 

on each band.  This range is typically an array of standard deviations from the mean 

(e.g. ± 2 standard deviations from the mean).  These ranges form an enclosed box-

like polygon, known as the parallelepiped.  Unclassified pixels are then given the 

class of any parallelepiped box they fall into (Figure 2.5).  Whilst the parallelepiped 

is a fast and simple classifier to train and use, it has at least two fundamental 

drawbacks: (i) if a parallelepiped overlaps, the choice of class is arbitrary, as shown 

between the conifer and deciduous classes in Figure 2.5 (Mather, 2004; Eastman, 
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2006); and (ii) if a pixel falls outside the parallelepipeds then it will not be classified 

(unlike MDM and ML, which classifies all pixels) (Richards and Jia, 1998). 

 

 

 

 

 

 

 

 

 

 

Figure 2.5   Conceptual rendition of the parallelepiped classification method (after 
Eastman, 2006).  The overlapping parallelepipeds for deciduous and 
coniferous classes cannot be separated and class label will be 
arbitrary.  Pixels falling outside the parallelepipeds will not be 
classified (see text). 

 

2.3.3.4 Non-parametric, soft supervised classification 

Non-parametric, soft classifiers are capable of determining the relative proportion of 

land covers present within a pixel, and include linear spectral unmixing, matched 

filtering and an extension of matched filtering known as mixture tuned matched 

filtering.  Spectral angle mapper is considered by some authors to be in this category 

(e.g. Mather, 2004), however, the output is often ‘hardened’ to show the dominant 

landcover of each pixel by methods that are explained below (Section 2.3.3.4.3).  All 

four methods are described in more detail hereafter.   

2.3.3.4.1 Linear spectral unmixing (LSU) 

LSU assumes that a pixel is a linear combination of all spectral components (land 

covers) present in the scene.  For example, a pixel containing only a single plant 

should have the same value as reflected in a plant patch with 100% cover.  If an 

invasive plant covers 50% of a pixel and the remainder is made up of bare soil then 

the pixel value should be the mean of the reflectance values for the invasive plant 

and bare soil (Figure 2.6).   
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Figure 2.6   Hypothetical illustration of LSU (after Mather, 2004).   The unknown 
pixel is a perfect combination of grass and soil (50/50). 

 

The LSU algorithm is most effective when there are a few distinct cover types as it 

requires measurements (e.g. training data) for all cover types.  Since LSU returns a 

proportion of a land cover type for each pixel it is viewed as a valuable tool for 

monitoring changes (e.g. increases/decreases) in established invasive plant 

populations and for quantifying the success of control activities over time (Lass et 

al., 2005).  One of the benefits of LSU, when using the most common unconstrained 

approach, is the ability to obtain a residual error, which is essentially derived from 

the estimated mixture lying outside the range of 0 and 1 (known as undershoots and 

overshoots, respectively; Mather, 2004).  This residual error, calculated for each 

pixel, can be used as a measure of uncertainty in class estimation, and thus the 

method can be used in an in-process classification assessment (IPCA) whereby pixels 

exhibiting unusually high residual errors can be located in the field to identify the 

cause.  For example, there are usually three reasons why a pixel would have an 

unusually large residual error (Eastman, 2006):  

 

i) the pixel contains a mixture of more basic categories;  

ii) the pixel doesn’t resemble any of the signatures provided; and 

iii) the spectra of the target landcovers are too similar.   

 

If the cause of the large residual error is due to insufficient training data (errors i and 

ii, above), the training set can be updated and the process re-run to improve results.  
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The main weakness of LSU is that for it to work properly the spectral reflectance of 

all existing land covers need to be known (Lass et al., 2005).   

 

2.3.3.4.2 Matched-filtering and Mixture Tuned Matched Filtering 

The main attraction of matched-filtering, unlike LSU, is that it does not require the 

spectral reflectance of all land covers.  This is desirable in cases where it is not 

possible to sample all land covers or simply not desired.  Matched Filtering (MF) 

allows for the relative abundance of a particular class to be determined without 

knowledge of the other classes found within the same scene (Aspinall et al., 2002; 

Harsanyi and Chang, 1994).  Mixture tuned matched filtering (MTMF) is a related 

technique that produces an infeasibility image based on a pixels distance from the 

target species signature allowing pixels unlikely to represent the target species to be 

identified and masked out.  This procedure is reported to be useful in studies aimed 

at keeping errors of commission low (Boardman, 1998).  Both MF and MTMF are 

typically restricted to the processing of hyperspectral imagery. 

2.3.3.4.3 Spectral angle mapper (SAM) 

The SAM algorithm is typically used for processing hyperspectral imagery.  The 

SAM algorithm treats each signature as a vector in a space with dimensionality equal 

to the number of bands.  The algorithm then determines the spectral similarity 

between two spectra by calculating the angle between them and applying the 

coefficient of proportional similarity: cosine.  If the line joining the unknown pixel to 

the origin was coincident to the “Class 1” signature (Figure 2.7) the angle would be 

zero.  The cosine of zero is one, which indicates complete similarity.  The maximum 

possible angle is 90o (cos 90o=0), which implies complete dissimilarity.  If the user 

chooses only to output the range of similarity [0-1], SAM is taken to be a soft 

classifier.  However, this output is often ‘hardened’ by assigning an unknown pixel 

to the class that has the smallest angle between the signature vectors (Kruse et al., 

1993; Mather, 2004; Eastman, 2006).  For example, the unclassified pixel in Figure 

2.7 is assigned to Class 1, since the angle it subtends with the unknown pixel (α) is 

smaller than with Class 2 (β).  Users are generally required to enter the maximum 

angle that indicates the angle above which a class is likely to be too far from the 

characteristics of the signature vector to be considered a member of that class.  In 
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general, a narrow angle will produce classified images with the highest likelihood of 

matching a pure population.  As the angle is widened the classification includes 

deviations from the pure reflectance that contain a mixture of the target and spectral 

background (e.g. other species, soils, grasses) and can therefore increase errors of 

commission (see Section 2.3.4).   

 

 

 

 

 

 

 

 

 

Figure 2.7   Conceptual rendition of the SAM algorithm (after Eastman, 2006).  
The unknown pixel will be assigned to Class 1, because the angle it 
subtends is smaller than the angle it subtends for Class 2 (see text). 

2.3.3.5 Manual image interpretation 

Manual image interpretation, in the context of invasive plant mapping, is the process 

of manually delineating patches or canopies by eye.  The interpreter manually 

examines such criteria as shape, colour, texture, shadow and context to identify the 

different species present in the image.  This is usually done using panchromatic, 

colour or colour infrared aerial photography.  Interpretation is aided substantially if 

the imagery has been enhanced (e.g. filtering, histogram stretching) to improve 

sharpness (Richards and Jia, 1998).  While manual image interpretation has some 

appeal (e.g. expert knowledge of the area over which the scene was acquired, and the 

ability of the human eye to recognise shapes far easier than traditional image 

processing routines) it has two major drawbacks (Kadmon and Harari-Kremer, 

1999):  

 

(i) interpretation may not be consistent between interpreters; and  

(ii) interpretation is very time consuming and is therefore only practical over 

relatively small areas and/or where plant patch sizes are large.   
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2.3.3.6 Object-oriented (OO) classification 

All of the previous methods introduced process imagery on a pixel-by-pixel basis.  

Object-oriented classifiers, by contrast, decompose the scene into many relatively 

homogenous image objects using a multi-resolution image segmentation process.  

Classification is then performed on those objects rather than single pixels (Rango et 

al., 2003; Hay et al., 2003; Burnett and Blaschke, 2003; Laliberte et al., 2004).   

 

While OO classification may be considered a supervised classifier (it usually requires 

training data), by incorporating a range of parameters in its classification method, 

they represent something of a new paradigm in digital image processing.  Other 

information included in the classification routine can include contextual information, 

colour, texture, shadow and geometric information such as shape.  As such, OO 

classification can be viewed as an automated method to manual image interpretation 

(Laliberte et al., 2004; McGlynn and Okin, 2006).   

 

e-Cognition, developed by Definiens Imaging, is one such software produce for 

performing OO classification.  Esch et al. (2003) compare OO classification to the 

ML method and demonstrate its ability to achieve improved classification accuracy.   

2.3.4 Step 4: Assessment of classification accuracy 

No classification is complete until its accuracy is assessed (Tso and Mather, 2001).  

A basic accuracy assessment involves collecting testing data (or splitting the training 

data into two sets, of which only one is used for training the classifier) and 

computing a confusion or error matrix.  Table 2.3 gives a simple conceptualisation.  

Most studies use this matrix to compute at least four measures of accuracy (e.g. 

overall accuracy, producer’s accuracy, user’s accuracy and overall Kappa).  An 

additional method is also presented for cases where the accuracy of a specific class is 

desired that accounts for chance agreement (per-class Kappa). 

2.3.4.1 Overall accuracy 

Overall accuracy is the sum of correct predictions (shaded diagonal squares in Table 

2.3) divided by the total number of observations (e.g. 1441).  The overall accuracy 

should be treated with caution when the concern is the accuracy of only one land 

cover (e.g. the invasive plant).  Numerous examples exist in the literature that give an 
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acceptable overall accuracy, yet map some classes poorly.  If these poorly mapped 

classes happened to be the species of interest then the classification results would be 

deemed a failure.  For example, Haara and Haarala (2002) attained a respectable 

overall accuracy of 77.5%, but with accuracy of individual species ranging from 

59.2% to 85.4% (from a user’s perspective, see Section 2.3.4.3).  Similarly, Martin et 

al. (1998) obtained an overall accuracy of 77.5%, but with accuracy of individual 

species ranging from 16.6% to 100%.  Therefore, it is important to describe accuracy 

for each class.  The producer’s accuracy, the user’s accuracy and per-class Kappa are 

useful measures to this end, and are described hereafter. 

 

Table 2.3   Illustration of an error matrix and associated statistics used for 
assessing the accuracy of a classification. 

 
                                 Reference Data (Test Set) 
Classification A B C Totals User’s 

Accuracy (%) 
Errors of 

Comission (%) 
Per-class 
Kappa 

A 928 8 38 974 95 5 0.86 
B 12 97 13 122 80 20 0.78 
C 4 4 337 345 98 2 0.97 
Totals 944 109 388 1441    
Producer’s 
Accuracy (%) 

98 89 87     

Errors of Omission 
(%) 

2 11 13     

Per-class Kappa 0.95 0.88 0.83     
Overall Accuracy    94.52    
Overall Kappa    0.88    

 

2.3.4.2 Producer’s accuracy and errors of omission 

Producer’s accuracy is the proportion of the test set that is correctly assigned for each 

class.  Its complement (1- producer’s accuracy) is known as the error of omission.  

Errors of omission correspond to those pixels belonging to the class of interest that 

the classifier has failed to recognise (Richards and Jia, 1998).  For example, a 

producer’s accuracy of 98% equates to an omission error of 2% (see producer’s 

accuracy of Class A in Table 2.3).  This means that 2% of pixels were classed as 

either B or C by the classifier when they should have been assigned to Class A.  In 

the context of invasive plant management, high omission errors can underestimate 

the extent of invasion and therefore management costs.  Furthermore, invasive plants 

that are omitted from an eradication programme may expedite reinvasion.   
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2.3.4.3 User’s accuracy and errors of commission 

The user’s accuracy shows the probability that the invasive plant is actually present.  

Its complement (1- user’s accuracy) is known as the error of commission.  Errors of 

commission are those that correspond to pixels from other classes that the classifier 

has labelled as belonging to the class of interest.  For example, for a user’s accuracy 

of 95%, there is a commission error of 5% (see user’s accuracy of Class A in Table 

2.3).  In the context of invasive plant management, this means that 5% of the pixels 

classified as the invasive plant (assuming that is Class A) should have been classified 

as some other species (or land cover).  High commission errors can be costly for 

management/control programmes, particularly in difficult to access sites because of 

the cost and time taken for transport of removal crews and equipment (Lass and 

Prather, 2004).   

2.3.4.4 Overall Kappa 

The overall Kappa statistic was developed by Cohen (1960).  The basic idea behind 

the overall Kappa is that some of the apparent classification accuracy given by the 

three aforementioned measures could be due to chance.  This is especially relevant 

when some classes are more likely to be encountered during field sampling than 

others.  As a simple illustration, consider a map of just two classes where class A is 

mapped over 90% of the survey area and class B over the other 10%.  This suggests 

that a randomly selected field sampling point would have a 90% chance (a priori 

probability) of being class A.  The joint probability is then 0.81 of this point being 

correctly mapped as class A, strictly by chance.  Similarly, for class B, the joint 

probability would be 0.01, suggesting that the map would be expected to have an 

overall accuracy of 82% simply by a chance assignment of ground truth points to 

mapped classes.  This makes it hard to distinguish a good map from one that is 

simply “lucky”.  Furthermore, unlike the overall Kappa, the three aforementioned 

statistics are not appropriate for comparing between different classifications 

(Rossiter, 2004).   

 

The overall Kappa uses all cells in the matrix and not just the diagonal cells (as done 

for calculating the overall accuracy).  It can be calculated using Equation 2.1 

(Stehman, 1999): 
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where q is the number of land-cover categories; 

 pii = proportion of mapped data at row i, column i; 

pi+= proportion of mapped data in class (row) i; 

p+i= proportion of reference data in class (column) i. 

 

Landis and Koch (1977) and have suggested the following ranges of agreement for 

the Kappa statistic:  

 

(i) poor, K<0.4;  

(ii) good, 0.4<K<0.75; and  

(iii) excellent, K>0.75.   

 

Monserud and Leemans (1992) later refined these ranges and suggested that Kappa 

can be interpreted as follows:  

 

(i) no agreement, K<0.05;  

(ii) very poor, 0.05<K<0.20;  

(iii) poor, 0.20<K<0.40;  

(iv) fair, 0.40<K<0.55;  

(v) good, 0.55<K<0.70;  

(vi) very good, 0.70<K<0.85;  

(vii) excellent, 0.85<K<0.99; and  

(viii) perfect, 0.99<K<1.   

 

Negative values indicate extremely poor agreement.  The overall kappa of 0.88 for 

the sample error matrix given in Table 2.3 suggests an excellent overall 

classification. 

 

One of the drawbacks of overall Kappa is that, similar to the overall accuracy, if 

there are more than two classes being predicted, it gives no information on the 

 (2.1) 
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accuracy of one specific class of interest, and therefore may be of limited use when 

the aim is to optimise or report on the accuracy of one specific species.  In such 

cases, the per-class Kappa can be used.   

2.3.4.5 Per-class Kappa 

As mentioned above, overall accuracy and overall kappa do not take into account the 

accuracy of a specific class and the producer’s and user’s accuracy measures cannot 

be used in map to map comparisons and are not adjusted to account for chance 

agreement (see Section 2.3.4.4).  If such measures are desired, as they are in this 

research, per-class kappa (or conditional kappa) can be evaluated for each class from 

both the perspective of omission and commission errors.  This allows the 

determination of which classes within the matrix are well mapped.  Each entry in the 

error matrix is first divided by the number of pixels in the test set (e.g. 1441 in Table 

2.3) to derive a proportion.  The calculation then follows a similar logic to the overall 

Kappa, but is restricted to one row (Equation 2.2) or one column (Equation 2.3) of 

the error matrix at a time.  These are known as per-class Kappa from a user’s 

perspective and per-class Kappa from a producer’s perspective, respectively 

(Rossiter, 2004): 

 

 κ̂ i+ =(pii-(pi+ x p+i)) / (pi+ - (pi+ x p+i) (2.2) 

 κ̂ +j= (pjj-(p+j x pj+)) / (p+j - (p+j x pj+)) (2.3) 

 

where pii = proportion of mapped data at row i, column i; 

pjj = proportion of mapped data at row j, column j; 

pi+= proportion of mapped data in class (row) i; 

p+i= proportion of reference data in class (column) i; 

p+j = proportion of reference data in class (column) j; and 

pj+ = proportion of mapped data in class (row) j. 

 

The per-class Kappa values can be interpreted identically to overall Kappa, except 

they are relevant to only one class.  Table 2.3 shows that Class C has the highest per-

class Kappa from the user’s perspective (0.97), but the poorest from the producer’s 

perspective (0.83).  As such, it is important that both measures be reported. 
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The variance of per-class Kappa for user’s class i is calculated as (Congalton and 

Green, 1999): 
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where n is the number of elements in the confusion matrix.  All other parameters as 

described for Equations 2.2 and 2.3.  For producer’s class i, Equation 2.4 is permuted 

by interchanging the row (pi+) and column (p+i) summaries.   

2.3.5   Review of the past success for mapping invasive plants 

The following section summarises the success (e.g. accuracy achieved) of previous 

studies aimed at mapping invasive plants based on image type and classification 

method.   

2.3.5.1 Panchromatic aerial photography 

Panchromatic aerial photographs provide one of the longest records of remotely 

sensed imagery and are typically captured with high spatial resolution.  However, 

invasive plants rarely have spectral characteristics that enable their discrimination 

from coexisting species using automated classification routines.  At best, these 

methods have only been able to discriminate between trees and shrubs by, for 

example, introducing a size threshold post-classification (e.g. Kadmon and Harari-

Kremer, 1999; Lahav-Ginot et al., 2001).  This limitation has often led to researchers 

examining only small areas (typically less than 80 ha) where the plant has formed a 

monoculture (e.g. Goslee et al., 2003) or, where vegetation composition has been 

heterogeneous, discrimination has been achieved using manual photo interpretation 

(e.g. Fensham et al., 2002).  However, the time consuming nature of interpreting and 

manually delineating the canopies of shrubs has limited analyses to only a small area, 

to sparsely vegetated areas or to the interpretation of relatively coarse vegetation 

units (Kadmon and Harari-Kremer, 1999).   

2.3.5.2 Colour and colour-infrared aerial photography 

Literature surveyed suggests that unsupervised classification routines (e.g. 

ISODATA) have been very popular techniques for mapping invasive species from 

colour or colour infrared (CIR) aerial photography (see Table 2.4).  This is somewhat 
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surprising given its relative lack of sophistication compared to more complex 

supervised methods.  Nonetheless, the majority of these studies emphasise the 

importance of mapping using knowledge of the invasive plants biological 

characteristics during the year (e.g. showy flowers).  The accuracy of mapping 

different kinds of invasive plants with this imagery and different classification types 

can be seen in Table 2.4. 

 

While unsupervised classification has been used with success, one problem with their 

use for species level mapping remains – it is not optimised to the specific 

requirements of the user (Lark, 1995).  The underlying aim of most unsupervised 

methods (and indeed most supervised classification methods) is to optimise overall 

accuracy.  However, in the case of mapping individual species the map user is really 

only interested in the accuracy of that particular species (e.g. high per class kappa 

from both perspectives as discussed in Section 2.3.4.5) and is not necessarily overly 

concerned with the accuracy of a different cover class or indeed the overall accuracy.  

For example, a map user interested in the precise location and distribution of 

mesquite may not be concerned if water, soil or other shrub species are correctly 

classified as long as the mesquite category is accurately classified.   

 

Foody et al. (2005) uses a multi-stage classification approach to optimise the 

likelihood of correctly distinguishing sycamore (Acer pseudoplatanus) from 

coexisting species using 0.2 m resolution colour aerial photographs.  They first 

extract the maximum and 80th percentile values from all shrub/tree crowns (patches) 

and then select the best variables (e.g. maximum, 80th percentile) using discriminant 

analysis in a pairwise fashion (e.g. sycamore v ash (F. excelsior), sycamore v lime 

(Tilia cordata), sycamore v oak (Qercus robur and Q. petraea) and sycamore v 

Douglas fir (Pseudotsuga menziesii)).  Classification is performed using artificial 

neural networks (ANNs).  A simple rule-based approach is then used to determine if 

a pixel is a member of the sycamore class or not (e.g. if fir or lime then non-

sycamore and (if oak and ash then non-sycamore), else sycamore).  An accuracy of 

93.3% (number of sycamore shrubs correctly classified/number of sycamore shrubs 

known) was achieved using this method for the sycamore class.  In comparison, 

using a standard approach, which seeks only to optimise overall accuracy (i.e., one 
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that does not utilise pairwise selection to identify the best separating variables), 

sycamore was classified with only 75% accuracy.   

Table 2.4   Examples of the accuracy achieved in previous studies using various 
classification methods and either colour/colour infrared (CIR) aerial 
photography, airborne multispectral or satellite multispectral imagery. 

 
Imagery Used Invasive Plant Mapped Classification 

Method(s) 
Accuracy Author 

Sycamore (Acer 
pseudoplatanus) 

ANN Omission=17% 
Commission=7% 

Foody et 
al. (2005) 

Colour aerial 
photographs 

Various spp.  ANN 97% overall accuracy Burks et 
al. (2005) 

Chinese tallow 
(Sapium sebiferum) 

Unsupervised 95% (number 
detected/number 
known) 

Ramsey 
et al. 
(2002) 

Waterlettuce (Pistia 
stratiotes) 

Unsupervised Omission=20% 
Commission=14% 

Everitt et 
al. (2003) 

Giant salvinia 
(Salvinia molesta) 

Unsupervised Omission=11% 
Commission=11% 

Everitt et 
al. (2002) 

CIR aerial 
photographs 

Redberry juniper 
(Juniperus pinchottii) 

Unsupervised Omission=0% 
Commission=6% 

Everitt et 
al. (2001) 

Unsupervised Kappa=0.76 Yellow hawkweed 
(Hieracuim pratense) ML Kappa=0.8 

Carson et 
al. (1995) 

Yellow starthistle 
(Centaurea solstitialis) 
and St. Johnswort 
(Hypericum 
perforatum) 

Unsupervised Down to 30% cover. Lass et 
al. (1996) 

Balsim fir (Abies 
balsamea) 

Linear Regression 51% to 91% 
(depending on the 
number of defoliated 
classes used 

Leckie et 
al. (1992) 

Sicklepod (Senna 
obtusifolia) and 
horsenettle (Solanum 
carolinense) 

Discriminant 
analysis 

>75% accuracy Medlin et 
al. (2000) 

Airborne 
Multispectral  

Blackberry (Rubus 
fruticosis) 

Various image 
enhancements/ 
transformations 

Concluded omission 
confined to patches 
<5m2 

Ullah et 
al. (1989) 

ML Kappa=0.41 False Broomweed 
(Encameria 
austrotexana) 

MDM Kappa=0.61 
Anderson 
et al. 
(1993) 

Satellite 
Multispectral 

Various species ML Overall =86% Carleer 
and Wolf 
(2004) 

 

2.3.5.3 Airborne multispectral imagery 

Various airborne acquisition systems have been used to capture imagery capable of 

successfully differentiating between species.  One of the earliest uses of this kind of 

imagery was conducted by Ullah et al. (1989) who used the airborne thematic 
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mapper (ATM) for mapping blackberry invasions (Rubus fruticosus) (Ullah et al., 

1989).   

 

An airborne acquisition and registration system (ADAR) has been used for mapping 

yellow hawkweed (Hieracieum pratense) (Carson et al., 1995), St. Johns Wort 

(Hypericum perforatum) and yellow starthistle (Centaurea solstitialis) (Lass et al., 

1996).  Medlin et al. (2000) used a 4-band charged coupled device to discriminate 

the invasive plants sicklepod (Senna obtusifolia) and horsenettle (Solanum 

carolinense) from soybean (Glycine Max) crops (Medlin et al., 2000).  The 

Multispectral Electro-optical Imaging Scanner (MEIS) has been used for mapping 

defoliated Balsim fir (Abies balsamea) populations (Leckie et al., 1992).  See Table 

2.4 for more details. 

2.3.5.4 Satellite multispectral imagery 

Wang et al. (2004) compared IKONOS-2 and QuickBird imagery to map mangrove 

forests using the maximum likelihood method.  They concluded that the IKONOS-2 

imagery provided the best spectral discrimination.  This is somewhat surprising 

given that both satellites have very similar spectral resolutions and both have 11 bit 

quantisation.  However, the authors suggest that even though IKONOS-2 has poorer 

spatial resolution (compared to QuickBird), it appeared to capture a richer, more 

detailed spectral reflectance for the same ground targets.  They suggest that this 

finding can be related to a visual effect, that IKONOS-2 utilises more enriched 

colour and looks more vivid than the QuickBird image.  Carleer and Wolff (2004) 

have also successfully discriminated various tree species using IKONOS-2 imagery 

and the maximum likelihood classification, reporting an overall accuracy of 86%.   

 

Using a hand-held radiometer, set to approximate the wavelengths of Landsat, at a 

height of 2 m, Taylor (1990) demonstrated that this spectral resolution was sufficient 

to map bracken fern (Pteridium aquilinum).  However, the relatively coarse spatial 

resolution of Landsat imagery has generally been considered inappropriate for 

species level mapping (Carson et al., 1995; Hunt et al., 2003), particularly where 

vegetation types within an area of interest exhibit small-scale heterogeneity.  

Plausibly, the main utility of Landsat (and “Landsat-like”) imagery for invasive plant 

management has been to identify the spatial distribution of the most rapid change in 
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woody vegetation as a whole (e.g. Gardiner et al. 1998).  If differentiation between 

species is not required (e.g. Acacia nilotica has invaded previously treeless 

grasslands throughout the Mitchell grass plains in Queensland) then classifying 

woody vegetation in Landsat imagery equates to mapping the species under interest 

(Lawes and Wallace, 2006).  However, such scenarios are rare in practice.   

 

In an interesting study by Dewey et al. (1991), known locations of dyers woad (Isatis 

tinctoria) are overlayed on land types classified from Landsat imagery.  This enabled 

quantification of the land types most strongly associated with dyers woad and 

suggested management should target the same highly suited areas that have not yet 

been invaded. 

 

Anderson et al., (1993) present one of the few relatively successful studies that have 

used multispectral imagery with a spatial resolution of 20 m (SPOT-4) for invasive 

plant species differentiation (false broomweed (Ericameria austrotexana)) in a 

heterogenous environment.  However, they were only able to map relatively large 

stands (e.g. >0.5 ha) and state that commission errors were high when false 

broomweed was mixed with dense brush or high amounts of herbaceous biomass.  In 

addition, discrimination was only possible when grass cover was minimal.  For 

example, at one particular time of the year, the confusion between grasses and false 

broomweed resulted in 1/3rd of the study area being classed as false broomweed, 

where there was no presence.   

2.3.5.5 Hyperspectral imagery 

While aerial photography and airborne multispectral imagery has typically been the 

main data source for providing timely information on the spatial location of invasive 

plant populations in the past, this kind of imagery, in general, has relatively poor 

spectral resolution and therefore its ability to successfully discriminate between 

individual species present within the same image relies heavily on the target species 

exhibiting obvious and unique phenological or structural characteristics at some 

opportune time of the year.  However, this is not always the case and any spectral 

differences (e.g. key absorption features) between coexisting species may be masked 

by the broad spectral bands characteristic of these image acquisition systems.  

Hyperspectral imagery, with its large number of contiguous, narrow wavebands (e.g. 
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10 nm) over a wider spectral region (e.g. 400 to 2500 nm) may offer an enhanced 

potential for separating the subtle spectral differences between the target species and 

the coexisting species present within the same scene (Schmidt and Skidmore, 2003).  

Recently, the use of hyperspectral imagery to map various invasive plants has 

become more commonplace.  The results of these studies are summarised in Table 

2.5 and described in more detail below.  

Table 2.5  Examples of the accuracy achieved in previous studies using various 
classification methods and hyperspectral imagery.  Table is in 
ascending order of spatial resolution. 

 
Imagery Used Invasive plant 

Mapped 
Classification 
Method(s) 

Accuracy Author 

Parallelepiped 0.5 m resolution 
120 band from 
Surface Optics 
Scanner 

Tamarisk 
(Tamarix spp.) MTMF 

Parallelepiped produced 
higher % agreement for all 
size classes tested 

Hamada et 
al. (2007) 

1 m resolution, 36 
band from CASI-2 

Yellow 
starthistle 
(Centaurea 
solstitialis) 

LSU Max. standard 
deviation=11% 

Miao et al. 
(2006) 

ANN Kappa=0.75 1.3 m resolution, 
15 channel CASI-2 

Several spp.  
VCNNC Kappa=0.87 

Wang et al. 
(2007) 

Spotted 
knapweed 
(Centaurea 
maculosa) 

SAM Omission=43.7% 
Commission=8.1% 

2 m resolution, 48 
band – from CCD 
sensor  

Babysbreath 
(Gypsophila 
paniculata) 

SAM Omission=3.3% 
Commission=39% 

Lass et al. 
(2005) 

3 m resolution 
Hymap (126 bands) 

Hoary cress 
(Cardaria 
draba) 

MTMF Omission=18% 
Commission=21% 

Mundt et al. 
(2005) 

SAM Omission=29% 
Commission=42% 

MF Omission=39% 
Commission=47% 

3.5 m resolution 
Hymap (126 bands) 

Blackberry 
(Rubus 
fruticosis) 

MTMF Omission=19% 
Commission=9% 

Dehaan et 
al. (2007) 

3.5 m resolution 
Hymap (126 bands) 

Leafy spurge 
(Euphorbia 
esula) 

MTMF Omission=30% 
Commission=32% 

Glenn et al. 
(2005) 

5 m resolution, 128 
band - from Probe 
1 

Spotted 
knapweed 
(Centaurea 
maculosa) 

SAM Omission=3% 
Commission=3% 

Lass et al. 
(2002) 

5 m resolution, 128 
band - from Probe 
1 

Brazilian Pepper 
(Schinus 
terebinthifolius) 

SAM Omission=10% 
Commission=12% 

Lass and 
Prather 
(2004) 

20 m resolution, 
224 band AVIRIS 

Leafy spurge 
(Euphorbia 
esula) 

MTMF R2=0.69 
R2=0.79 (in prairie) 
R2=0.57 in heterogenous 
cover 

Parker-
Williams 
and Hunt 
(2002) 
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2.3.5.5.1 Studies using SAM  

Lass et al. (2002) collected hyperspectral imagery using the Probe 1 sensor, which 

records 128 spectral bands in 12 to 16 nm intervals ranging from 440 to 2,543 nm 

and, in their case, at a spatial resolution of 5 m.  SAM was used to classify the 

imagery to detect infestations of spotted knapweed (Centurea maculosa).  They 

found that large infestations could be detected regardless of the angle used in the 

SAM algorithm, but lowest overall errors were found when the angles ranged from 

10o to 11o.  Specific errors for the spotted knapweed class for the 10o to 11o angles 

showed that omission and commission errors were less than 3%, with areas with as 

little as 1 to 40% cover detected with an omission error of 1% and a commission 

error of 6%. 

 

Lass and Prather (2004) used similar imagery from the Probe 1 sensor to detect 

Brazilian pepper (Schinus terebinthifolius) using the spectral angle mapper (SAM) 

algorithm with angles of 1o to 5o and 10o.  They concluded that pure Brazilian pepper 

pixels were accurately classified but mixed Brazilian pepper pixels and sparse 

populations were poorly classified.  Poor access throughout their study site limited 

their tolerance for errors of commission (e.g. because of the cost and time for 

transport of removal crews and equipment).  Therefore, the authors suggest using a 

low spectral angle to match a pure population and then applying buffering, which is 

hypothesised to improve the probability of finding another plant nearby, on the basis 

of seed morphology and dispersal mechanisms.   

 

Lass et al. (2005) used a CCD to collect imagery in 48 bands between 415 and 953 

nm with 12 nm increments and a spatial resolution of 2 m to map spotted knapweed 

(Centaurea maculosa) and babysbreath (Gypsophila paniculata).  The SAM 

algorithm was utilised with angles of 1o to 5o and 10o.  They found that the most 

appropriate angle for spotted knapweed was 5o, and for babysbreath an angle of 4o 

gave the best accuracy.    

2.3.5.5.2 Studies using LSU 

Miao et al. (2006) implement LSU for mapping yellow starthistle (Centaurea 

solstitialis) using 36 band, 1 m resolution, CASI-2 imagery.  Uncertainty is estimated 

through monte carlo simulation.  The maximum standard deviation was 
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approximately 11%.  The authors conclude that LSU could be used for mapping 

yellow starthistle for larger regional areas (Table 2.5). 

2.3.5.5.3 Studies using MF or MTMF  

Parker-Williams and Hunt (2002) used 20 m resolution, 224 band AVIRIS imagery 

to map leafy spurge (Euphorbia esula) using the MTMF algorithm.  They found that 

overall performance for estimating percent cover of leafy spurge for all sites was 

adequate (R2=0.69) with better performance in prairie areas (R2=0.79) relative to 

sites of heterogeneous cover (R2=0.57).   

 

Glenn et al. (2005) obtained hyperspectral imagery from the HyMap sensor (126 

bands) with a spatial resolution of 3.5 m.  This sensor typically acquires imagery in 

15 nm bandwidths across the electromagnetic spectrum from 450 to 2500 nm (visible 

to short wave infrared portions of the spectrum).  They found that leafy spurge could 

be discriminated from coexisting species for patches around 5 m2 (40% cover per 

pixel) when using the MTMF algorithm.   

 

Similarly, Mundt et al. (2005) also obtained imagery from the HyMap sensor to map 

hoary cress (Cardaria draba) and obtained a producer’s accuracy of 82% for hoary 

cress infestations with greater than 30% cover (patches greater than 2.7 m2) when 

using either MTMF or SAM.  Comparisons between SAM and MTMF by Deehan et 

al. (2007) suggested that the MTMF produced the highest agreement between known 

blackberry (Rubus fruticosus sp. agg) distributions, using 3.5 m spatial resolution 

hyperspectral imagery obtained from the HyMap sensor.   

2.3.5.5.4 Studies using ANNs 

Wang et al. (2007) implement ANNs for mapping mixed vegetation communities 

found in salt marshes using CASI imagery (15 channels) with a spatial resolution of 

1.3 m.  This study compares a traditional ANN with what they call a vegetation 

community based neural network classification (VCNNC).  The main difference is 

that the VCNNC incorporates information of the relative abundance of vegetation 

types at the sub-pixel scale.  The authors report a Kappa value of 0.75 for the 

traditional ANN and 0.87 for the VCNNC (Table 2.5). 
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2.3.5.5.5 Dealing with spectral redundancy 

Because hyperspectral imagery is collected in many narrow contiguous bands there is 

significant spectral redundancy.  Most studies using hyperspectral imagery attempt to 

reduce this redundancy in some way.  Transformations exist to decorrelate and 

compact spectral information into fewer bands with decreasing data coherence 

(Lillesand and Kiefer, 2000).  Principal components analysis (PCA) is perhaps the 

best known transformation method, which is a linear solution of the reflectance data 

projected on rotated orthogonal axes in n-dimensional space (Lillesand and Kiefer, 

2000).  Green et al. (1988) present the maximum noise fraction (MNF) 

transformation, which is effectively a two phase PCA.  The first phase projects the 

mean correlated noise whitened data into its respective eigenvector space, and the 

second phase performs standard PCA on the resulting decorrelated matrix.  MNF 

transforms have been documented to be more consistent in the arrangement of data 

by band coherence than PCA (Green et al., 1988).  However, both methods have 

worked effectively in species discrimination studies (e.g. Mundt et al., 2005; 

Underwood et al., 2003).   

 

Rather than using transformed results, bands may be selected by determining the 

distance between vegetation types in hyperspectral space.  Such measures include the 

Bhattacharyya (BH) and transformed divergence (TD) distance measures (Schmidt 

and Skidmore, 2003; Martin et al., 1998).  The best combination of bands from the 

original dataset using BH is found where its sum is the highest, whilst a TD value of 

2000 suggests excellent between-class separation.  Above 1900 provides good 

separation, while below 1700 is poor (Jensen, 1996).  Formulae for these measures 

can also be found in Jensen (1996).   

 

Discriminant analysis can also be used to select the discriminatory variables (bands) 

that best separate the groups of interest (e.g. shrub/tree or grass species).  Bands 

which are not very different to the group means for the species of interest can be 

eliminated from the classification analysis.  Additionally, bands that may be 

individually good discriminators may share the same discriminating information and 

can also be eliminated on the basis that they will likely weaken the classification 

(e.g. band redundancy).  One way to eliminate redundant and other unnecessary 



41 

bands is by using a backward stepwise procedure.  For example, all bands could be 

initially considered to be “in” and the worst one is cast out at each step.  A useful 

measure at each step is the F-to-remove statistic, which tests for the significance of 

the decrease in discrimination should that band be removed from consideration.  The 

band with the largest F-to-remove makes the greatest contribution to overall 

discrimination, the band with the second largest F-to-remove is the second most 

important and so forth (Klecka, 1980).  Gong et al. (1997) and Foody et al. (2005) 

both use discriminant analysis to chose optimum bands and ancillary information 

when using hyperspectral or a combination of hyperspectral and multispectral 

imagery.   

2. 4 Spatial and Temporal Assessment of Invasion 

Assessments over time and space are essential in the study of plant invasions (Mack 

et al., 2000) and can have wide application.  For example, previous researchers have 

examined rates of population increase over different land types to predict future 

patterns, determine the proximate causes of invasion and quantify the success of 

different control strategies  (e.g. Scanlan and Archer, 1991; Brown and Carter, 1998; 

Goslee et al., 2003; Sharp and Bowman, 2004a,b).  Since invasion of woody shrubs 

occurs over decades such studies have often utilised temporal sequences of historical 

aerial photography.   

 

Knowledge of the rate of spread, proximate causes and habitat vulnerability 

facilitates the identification of areas at highest risk of invasion (Mullerova et al., 

2005).  For example, Brown and Carter (1998) have observed that the rate of A. 

nilotica invasion in the Mitchell grasslands of Queensland is far greater over riparian 

areas than upland areas.  Sharp and Bowman (2004b) have demonstrated that 

proliferation of Melaleuca minutifolia in the Victoria River District (VRD) is 

primarily regulated by water drainage and secondarily, by soil characteristics, 

leading them to suggest that favourable climatic conditions in years with an extended 

wet season were most likely cause of recruitment.  Similarly, Fensham and Fairfax 

(2003) report that substantial changes in canopy cover of various woody vegetation 

in the VRD is associated with soil type/geology and correlate vegetation thickening 

to increased precipitation since the 1970s.  Eckhardt et al. (2000) observed woody 

cover increasing by 12% over granite substrates and decreasing by 64% over basalt 
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substrates, over 58 years in Kruger National Park, South Africa.  They suggest that 

the proximate causes for the increase over granite areas were the result of decreased 

competition from grasses caused by overgrazing.  Decreases over the basalt areas 

were attributed to short-interval, prescribed burning and higher levels of nutrients 

upon which grasses can rapidly recover after heavy grazing.   

 

In southern Texas, Archer et al. (1988) and Archer (1989, 1995) concluded that 

mesquite invasion: 

 

(i) has occurred relatively recently (50 to 100 years); 

(ii) follows a process of high patch initiation followed by coalescence;  

(iii) livestock, particularly cattle, have been the dominant source of spread;  

(iv) has been regulated by different land types, with the highest rates of 

recruitment and coalescence occurring in the most mesic parts of the 

landscape; and 

(v) facilitated the ingress and establishment of subordinate woody species 

from other habitats. 

 

Laliberte et al. (2004) observed an increase in mesquite cover from 0.9% in 1937 to 

13.1% in 2003 (0.2% per year) in southern New Mexico.  Goslee et al (2003) also 

observed a net 0.2% increase in mesquite cover over 60 years (1936 to 1996) in this 

area.  Laliberte et al. (2004) attributed the increases to more prolific grazing by cattle 

and subsequent dispersion of mesquite seeds and the ability of mesquite to out-

compete grasses in periods of drought.  By tracking individual mesquite patches on 

aerial photographs Goslee et al. (2003) were able to conclude that mesquite cover 

stabilised at 43% cover and 83 patches ha-1 and that individual patches were highly 

persistent (95% of the area occupied by patches in 1936 were still occupied in 1996).  

This high persistence suggests that drought has little effect on already established 

individuals.  Patch shape complexity increased as adjacent shrubs merged, and then 

declined as those clusters filled in and became rounder.  Spatial pattern was 

quantified using Ripley’s K statistic and showed a distinct trend over time: strongly 

clustered in 1936 around dispersal foci, then random at all scales and by 1983 the 

pattern was regular at lag distances greater than 100 m, which may be related to 

increasing competition as shrubs mature.   
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Asner et al (2003) used a combination of aerial photographs and Landsat 7 (ETM+) 

imagery to study temporal mesquite invasion in northern Texas from 1937 to 1999 

over a 400 km2 region.  As mesquite was the only species at the site, linear spectral 

unmixing was capable of extracting a percentage of mesquite cover from the Landsat 

imagery.  That is, there was no possible confusion between other woody species and 

so LSU was able to discriminate between one woody species, bare soil and dry grass.  

Mesquite was extracted from the aerial photographs using a supervised classifier and 

then convolved to 30 x 30 m2 cells to coincide with the spatial resolution of Landsat.  

They concluded that rangelands not targeted for brush management experienced 

cover increases of up to 500% in 63 years.  Areas managed with herbicides, 

mechanical treatments or fire exhibited a wide range of woody cover changes 

relative to 1937 (-75% to +280%), depending on soil type and time since last 

management action.  At the integrated regional scale, there was a 30% increase in 

woody plant cover over the 63 year period (average rate of 0.5%).  Regional 

increases were greatest in riparian corridors (33%) and shallow clay uplands (26%) 

and least on upland clay loams (15%).   

 

Also in northern Texas, Ansley et al. (2001) was able to study the effects of control 

programs by comparing the rate of mesquite encroachment over two areas: an 

uncontrolled area and one controlled 20 years prior with root-ploughing.  They 

concluded that rates of increase were approximately twice as rapid on the 

uncontrolled area, and also suggest that net rates for their study area were higher than 

those attained in most studies due to higher than normal precipitation and more 

productive soils.   

2. 5 Predicting the Suitability of a Region to Plant Invasion 

Because of the impacts of plant invasions, the difficulty of eradicating an invasive 

plant once it has established, and the scarce resources available for controlling 

invasive populations, models have often been implemented to predict the suitability 

of regional areas to future invasion in an effort to prioritise management activities 

(e.g. where to survey, where to control).  The underlying principle of these models is 

that there are areas within a landscape that are more prone to colonisation than others 
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and, theoretically, by integrating variables that have a cause and effect relationship 

with the invasive traits of the species under study these areas can be identified.   

 

Models used to highlight the likelihood of a specific habitat meeting the 

requirements for invasion of a particular species can be broadly dichotomised into 

data-driven models and knowledge-driven models.   

2.5.1 Data-driven models 

Under a data-driven model, operations such as standardisation and, in some cases, 

variable importance (e.g. weight assignment) are achieved by examination of 

statistical relationships between data of evidence (e.g. where the species is present) 

and the evidential data layers (herein referred to as layers for brevity) (Bonham-

Carter, 1994).  The data-driven models used in ecological modelling can be further 

dichotomised into profile techniques and group discrimination techniques.   

2.5.1.1 Profile techniques 

Profile techniques use data on the presence of an invasive species to make 

predictions, effectively ignoring data on the absence of the species.  A well known 

profile technique is the envelope model known as BIOCLIM (Busby, 1991).  In their 

most basic form, envelope models standardise a range of climatic factors (e.g. frost 

duration, mean temperature of hottest and coldest month, mean annual precipitation, 

evaporation rates and altitude (Rouget et al., 2004; Robertson et al., 2004) to ‘1’ 

where the species is known to survive and ‘0’ for values outside this range (Boolean 

standardisation).  For example, mean temperature will be coded with the value of ‘1’ 

for all temperatures that can be tolerated by that species and 0 elsewhere.  All layers 

are combined using a Boolean AND operation (multiplication of layers), thereby 

identifying the potential range as the intersection between all grid cells assigned ‘1’.  

While envelope models have been popular tools for species distribution modelling 

(Guisan and Zimmermann, 2000), several studies have identified that (Rouget et al., 

2004; Roberston et al., 2004):  

 

(i) while they may work adequately for some species, they perform poorly 

for others; and  

(ii) they have several inherent weaknesses, including: 
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a. Boolean standardisation does not account for the fact that within the 

range of values assigned to ‘1’ there will be areas more favourable 

than others;  

b. layers that have a greater bearing on the distribution of a particular 

species are not attributed more weight in the final outcome; and  

c. the use of a conservative operator (Boolean AND) to integrate the 

datasets does not allow layers to trade-off (e.g. only one layer need be 

‘0’ for the solution to be false, yet all other ‘conditions’ may be ideal).   

2.5.1.2 Group discrimination techniques 

Group discrimination techniques require both presence data and absence data.  

Arguably the most common type of group discrimination technique used in 

ecology/distribution modelling is logistic regression (e.g. Higgins et al., 1999; 

Collingham et al., 2000; Morisette et al., 2006; Stephenson et al., 2006).  Logistic 

regression improves upon the basic envelope model by assigning a weight 

(coefficient) to each evidential layer according to their importance, and those that do 

not contribute significantly are simply removed from the model (Robertson et al., 

2004).  The ability of logistic regression to work with both continuous and 

categorical data makes it more flexible than many other data-driven models.   

 

Logistic regression has been applied to model the potential distribution of a range of 

invasive plants including: Rhododendron (R. ponticum) (Stephenson et al., 2006), 

salt ceder (Tamarix spp.) (Morisette et al., 2006) and various species of Acacia 

(Higgins et al., 1999).    Typical datasets used in these studies are flammability, soil 

moisture, soil nutrients, and land type.   

2.5.2 Knowledge-driven models 

Under knowledge-driven models, parameters such as weights, standardisation of 

layers and the appropriate layers to incorporate into the model are chosen on the 

basis of experts’ opinions (Bonham-Carter, 1994), although standardisation may be 

partially assisted using data of evidence (e.g. Robertson et al., 2004).  Knowledge-

driven models have been used far less frequently than data-driven models in 

ecological applications, yet the potential to exploit their capabilities have been well 

established in many other fields.  One exponent of a knowledge-driven model, 
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presented by Gillham et al. (2004), is the Weed Invasion Susceptibility Prediction 

(WISP) model.   

2.5.2.1 The weed invasion susceptibility prediction (WISP) model 

The WISP model uses a database to store nine parameters thought to assist in the 

successful invasion of several invasive plant species (e.g. black henbane 

(Hyoscyamus niger), perennial pepperweed (Lepidium latifolium), hoary cress 

(Cardaria glabra), spotted knapweed (Centaurea maculosa) and leafy spurge 

(Euphoriba esula)).  These parameters were developed based on expert opinion or 

literature surveys and include preferences to soil texture, soil pH, distance from 

water sources, distance from disturbances, annual precipitation, associated land 

cover, elevation, slope and aspect.  Similar to basic envelope models, the WISP 

model assigns a Boolean value of ‘1’ if a raster grid cell represents a favourable area 

for invasion and a ‘0’ elsewhere, and thus suffers from the disadvantage of not being 

able to assign degrees of favourability for each layer.  Similarly, no consideration is 

given to weight layers relative to their importance in determining a species potential 

range.  Instead, a subsequent and final step is used to tally all nine layers together.  

Grid cells receiving a value of ‘9’ (all layers suggest favourability) are seen as the 

areas most prone to that particular species, and susceptibility predictions continue to 

decline down this 9-point scale.   

2.5.2.2 Models incorporating fuzzy standardisation 

The concept of fuzzy sets was first developed by Zadeh (1965).  Unlike the crisp sets 

used in Boolean logic (e.g. envelope models), where a value can only be ‘0’ or ‘1’, 

fuzzy sets allow the transition between non-membership (0) and membership (1) to 

be gradual (Zadeh, 1965).  This transition is governed by the use of fuzzy 

membership functions, which assign a possibility value between ‘0’ and ‘1’, to each 

cell in a layer.   

 

A number of forms of membership can be used, such as sigmoidal (s-shaped) (Figure 

2.8a), j-shaped (Figure 2.8b), linear (Figure 2.8c) or user defined (Figure 2.8d) 

(Eastman, 2006).  Except for the user defined function which may have any number 

of control points, the shape of the membership function for the sigmoidal, j-shaped 

and linear functions is governed by four control points (Figure 2.8).  For example, for 
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the monotonically increasing sigmoidal function (Figure 2.8a) point ‘a’ marks the 

location where the membership function begins to rise above zero and point ‘b’, ‘c’ 

and ‘d’ mark the point where values beyond this range are all equally likely to be 

favourable (Robertson et al., 2004; Eastman, 2006).  It should be noted that the j-

shaped function approaches ‘0’ but only reaches it at infinity.  Thus the inflection 

point ‘d’ in Figure 2.8b indicates the point at which the function has a grade of 

membership of 0.5, rather than ‘0’ (Eastman, 2006).  Although fuzzy membership 

functions appear to be similar to probability functions, these two concepts are quite 

different (Zadeh, 1965): fuzzy membership functions define possibility rather than 

probability (Zadeh, 1987).   

 

 

 

 

 

 

Figure 2.8   Examples of fuzzy membership functions (FMFs): (a) monotonically 
increasing sigmoidal (s-shaped) FMF; (b) monotonically decreasing j-
shaped FMF; (c) user defined FMF; linear FMF.  Control points are 
indicated by the letters a-e.   

 

The parameters required to shape the fuzzy membership functions can be defined 

through expert judgement or through interpretation of how training data (if it exists) 

interacts with the layers of evidence.  For example, training data for riparian weeds 

may be graphed against distance from the riparian zone to indicate at what distance 

suitability begins to decline.    

 

After all layers are standardised, a choice needs to be made as to how to combine 

them.  In traditional fuzzy set theory, this has been accomplished using fuzzy 

operators.  A range of operators are available and can be used to combine different 

data layers together at intermediate stages (c.f. Bonham-Cater, 1994), before a final 

layer of habitat suitability is created.  Fuzzy operators include the fuzzy OR (which 

returns the maximum value of each coincident cell for all cells in all layers) and the 

fuzzy AND (which returns the minimum value).  The choice of operator very much 
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depends on the problem at hand, with the fuzzy AND being the most conservative 

fuzzy operator available and the fuzzy OR being the most liberal.  For example, the 

fuzzy AND will return fewer areas of susceptibility, yet present a high likelihood that 

those areas are in fact susceptible to invasion.  In addition, other fuzzy operators can 

be used where the output is a blend of coincident pixels for all layers.  Briefly, the 

fuzzy algebraic product blends pixel scores so that the output is always smaller or 

equal to the smallest contributing pixel value, whereas the fuzzy algebraic sum 

blends pixel scores so that the output is always larger or equal to the largest 

contributing pixel value.  Fuzzy gamma can be tuned to take on all possible 

combinations between the fuzzy algebraic product and the fuzzy algebraic sum, by 

adjusting an exponent (gamma parameter) towards 0 or 1, respectively.  See 

Bonham-Carter (1994) provides formulae for these fuzzy operators.   

 

Robertson et al. (2004) recognised that continuous variables are poorly represented 

by Boolean standardisation (as used in the envelope and WISP models) and therefore 

implemented fuzzy membership functions to define a grade of favourability for 

various layers (e.g. monthly potential evaporation, monthly minimum and maximum 

temperature, monthly rainfall, number of days of frost and altitude).  Data on the 

presence of each species was collected to assist in identifying the most appropriate 

fuzzy membership function.  This was achieved by plotting a frequency histogram 

for each variable (using the data on the presence of each species as a mask) and 

assessing its form (e.g. bell-shaped (normal), monotonically decreasing with 

distance).  These standardised layers were then combined in a conservative fashion 

using a fuzzy AND operator.  However, the Fuzzy AND operator was partially 

chosen to assist comparison between the results of an envelope model, which also 

uses the conservative Boolean AND operator.  Such comparisons were based on 

models for various invasive plants (Lantana camara, Ricinus communis and Solanum 

mauritianum) and cicada species (Platypleura capensis, Capicada decora and 

Platypleura deusta)).  Based on a threshold dependent measure (maximum Kappa; 

see Section 2.5.4.1) and due to the standardisation of layers using fuzzy membership 

functions, it was found that the models incorporating fuzzy membership functions 

generally performed better than those incorporating Boolean standardisation 

(envelope model), and never poorer.   
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2.5.3 Hutchinson’s niche model – impact on model choice 

Many of the models used to predict the vulnerability of a region to invasive plant 

species have a theoretical link with Hutchinson’s niche model (Schoener, 1990), 

which recognises that there are a range of favourable environmental conditions that 

may dictate where a species may reproduce and survive (termed the fundamental 

niche).  However, these areas are not always fully occupied for reasons such as 

competition between coexisting species or predation.  This subset of the fundamental 

niche is termed the realised niche.  Data-driven models assume that the species under 

study has reached its realised niche.  However, populations that are still in an active 

phase of expansion have not yet expanded to the full capacity of this niche (Goslee et 

al., 2006), and this may therefore have important consequences on the decisions 

drawn from such models.  When examining the effectiveness of a model, two 

imperative factors are likely to be (Robertson et al., 2004): 

 

(i) the cost of the number of grid cells where the species is known to occur 

yet predicted to be absent (false negatives) versus the cost of grid cells 

where the species is predicted to occur yet presently does not (false 

positives); and  

(ii) the resources available for management intervention.   

 

In the case of identifying regions at risk from invasive species (especially those 

known to still be rapidly expanding) it may be more appropriate, particularly if 

management funds are sufficient, to over predict a species potential range (i.e. allow 

a certain percentage of false positives and attempt to minimise the percentage of false 

negatives).  This will assist in management intervention before the species 

encroaches upon an area and is likely to be cheaper than post invasion detection and 

eradication (Rejmanek and Pitcairn, 2002; Robertson et al., 2004).     

2.5.4 Model validation techniques 

It is generally accepted that robust measures to validate the success of predictive 

models make use of independent data, i.e., data that have not been used to develop 

the parameters of the model (Fielding and Bell, 1997).  These data are typically 
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referred to as validation or testing data.  Two different techniques are often used for 

validation:  

 

(i) the threshold dependent measure; and  

(ii) the threshold independent measure. 

 

Both measures are discussed in detail hereafter.  

2.5.4.1 The threshold dependent measure 

Threshold dependent measures use the validation or testing data to calculate a 

confusion matrix that cross-tabulate the observed and predicted presence/absence 

patterns.  Four parameters are summarised in the confusion matrix:  

 

(i) the number of true positives (number of cases predicted when actually 

present); 

(ii) the number of false positives (number of cases predicted present when 

absent);  

(iii) the number of false negatives (number of cases predicted absent when 

present); and  

(iv) the number of true negatives (number of cases predicted absent when 

absent).   

 

False positives are sometimes referred to as Type I errors whilst false negatives are 

sometimes referred as Type II errors.  Table 2.6 gives a conceptual illustration of 

these errors.  

 
Table 2.6   The various error types used to validate a prediction model. 
 

Actual Condition
Present Absent

Test Positive

Condition Present + Positive test 
result = True Positive

Condition Absent + Positive test 
result = False Positive (Type I 

error)
Result

Negative

Condition Present + Negative test 
result = False Negative (Type II 
error)

Condition Absent + Negative result 
= True Negative 

 
 

Similar to the overall Kappa used for assessing the accuracy of classification from 

remotely sensed data, a version of Kappa can be calculated to assess the 
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effectiveness of a model.  It is calculated as follows, and its ranges can be interpreted 

in the same manner as discussed in Section 2.3.4.4 (Fielding and Bell, 1997): 

 

    κ = [(a+d)-(((a+c)(a+b) + (b+d)(c+d))/N]/[N-(((a+c)(a+b)+(b+d)(c+d))/N] (2.5) 

 

where  a = number of cases predicted when actually present (true positives); 

 b = number of cases predicted present when absent (false positives); 

 c = number of cases predicted absent when present (false negatives); 

 d = number of cases predicted absent when absent (true negatives); and 

 N = a+b+c+d. 

2.5.4.2  The threshold independent measure 

Threshold dependent measures fail to use all of the information available in a 

continuous model and choosing to arbitrarily select one particular threshold (e.g. 

testing for model accuracy for all values above 0.8, where the scale ranges from 0 to 

1) can result in bias (Fielding and Bell, 1997; Altman et al., 1994).  As such, they are 

usually only used for presence/absence models, not those that produce a range of 

suitability values.  Instead model evaluation can be achieved using a threshold 

independent measure known as the receiver or relative operating characteristic 

(ROC) plot.  ROC plots are considered to be more robust and more objective than 

threshold dependent measures (e.g. kappa statistics) since they do not rely on a single 

threshold, but rather plot the true positive fraction (TPF; equation 2.6) on the y-axis 

and the equivalent false positive fraction (FPF; equation 2.7) on the x-axis where 

(Figure 2.9) (Fielding and Bell, 1997): 

 

 TPF = a/(a+c) (2.6) 

 FPF = 1-(d/(d+b) (2.7) 

 

where parameters a-d are the same as for Equation 2.5.    

 

The area under the ROC curve (AUC) can then be calculated using the trapezoidal 

rule (Pontius and Schneider, 2001).  An AUC of 0.5 indicates that the suitability 

values are assigned at random locations throughout the region.  An AUC of 1 

indicates a perfect model (Ayalew and Yamagishi, 2005).  The ROC plot also makes 
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comparison between two or more models relatively straight-forward.  For example, if 

one of the curves is consistently above the other then clearly that one is better 

because it minimises both false negatives and false positives (Zweig and Campbell, 

1993; Fielding and Bell, 1997; Gorsevski et al., 2006)).   

 

 

Figure 2.9  Illustration of a ROC plot.  A point for each threshold is plotted with 
the percentage of true positives on the vertical axis and the percentage 
of false positives on the horizontal axis. The dashed diagonal line 
derives from an input image in which the locations of the image values 
were assigned at random (ROC=0.50). 

 

2. 6 Summary 

The use of remote sensing for mapping invasive plants relies on the target species 

exhibiting a unique spectral signature relative to the spectra of coexisting species.  

Some invasive plants have extremely obvious and unique biological traits that make 

them relatively easy targets to map with moderate spectral resolution imagery (e.g. 

colour or colour infrared aerial photographs) and comparatively simplistic 

classification methods.  However, the biological traits of some invasive plants may 

not be quite as obvious.  In these cases, hyperspectral imagery coupled with more 

advanced classification methods may be necessary.  
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Assessments of the spatial and temporal rates and patterns of weed invasion can 

reveal significant information for future management.  This includes information on 

land type preferences, causes for accelerated invasion, life cycle processes, dispersal 

vectors and recruitment rates under different environmental conditions (e.g. periods 

of extended drought or rainfall).   

 

The integration of the knowledge found from longitudinal studies of the spatial and 

temporal rates and patterns of invasion along with ground-based observations can be 

extrapolated over large areas to define areas representing various levels of 

susceptibility to invasion.  Various spatial models were reviewed to this end.  

Clearly, a robust model requires the assignment of degrees of favourability to 

evidential layers (e.g. via fuzzy membership functions) as well as the ability to assign 

more importance to evidential layers that have more influence in determining the 

invasive species most suitable habitats.  Methods to achieve this are explored in 

Chapter 5.  



54 

3 STUDY AREA AND DATASETS 

3. 1 Introduction 

This chapter describes the location and characteristics of the mesquite population 

under study.  Reference is given to methods of control, most notably that of 

biological intervention.  Climatic data are presented illustrating the arid to semi-arid 

environment of the study area.  Remotely sensed datasets are presented and are used 

for multiple purposes:  

 

(i) analysing the spatial and temporal patterns of mesquite invasion (aerial 

photographs) (Chapter 4);  

(ii) modelling the suitability of the Pilbara Region to mesquite invasion 

(Chapter 5); and 

(iii) assessing the accuracy and precision of discrimination between mesquite 

and versus coexisting species (digital multispectral imagery (DMSI) and 

hyperspectral imagery) (Chapter 6). 

 

Finally, an overview of the main software used for various analyses throughout the 

thesis is given.   

3. 2 Study Area 

The studied mesquite population is located in the Pilbara Region of Western 

Australia.  This population was initiated from intentional plantings in the 1930s to 

serve as drought fodder plants (pods) as well as for shade for livestock.  It has been 

described as a hybrid swarm of P. pallida, P. velutina and P. glandulosa var 

glandulosa (van Klinken and Campbell, 2001).  P. pallida belongs to the P. juliflora-

P. pallida complex, which is native to southern Central America, the Caribbean and 

northern South America, while P. velutina and P. glandulosa are a complex native to 

USA and Mexico (Pasiecznick et al., 2001).  All subspecies are referred to 

collectively throughout this thesis as Prosopis spp. or, simply, mesquite. 

 

Currently, the population occupies approximately 150,000 ha, of which roughly 

30,000 ha includes moderate to very dense stands (van Klinken and Campbell, 2001; 

Figure 3.1).  The core of the invasion is located on the Mardie Pastoral Station 
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(herein referred to as Mardie unless differentiation between the lease and the 

homestead is needed), and is primarily to the north and east of the Mardie Station 

homestead (UTM Zone 50: 394188E, 7656247N), situated on the Fortescue River 

floodplain (Figure 3.1).  Sheep were the main livestock on this lease from the late 

1800s, but were replaced with cattle in 2000.  Sheep and cattle have not been 

observed to browse on mesquite, although both consume mesquite pods and 

subsequently disperse seeds through their dung (Brown and Archer, 1987; Cox et al., 

1993).   

 

 
Figure 3.1   The distribution of mesquite by density class, as recorded visually from 

an airborne (helicopter) survey (see Section 3.3.1).  Grid cells are 18.5 
ha in size.  The black dot represents the location of the Mardie Station 
homestead.  The Mardie Station and Yarraloola Station labels represent 
respective lease boundaries.   

 

3.2.1 Control methods   

Control using both herbicides and the mechanical removal of trees (e.g. chain 

pulling) began in the early 1950s in the vicinity of the Mardie Station homestead.  

However, these control efforts have not succeeded in preventing its spread or 
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recovering substantial portions of land previously lost to it (Osmond et al., 2003).  

More recently (1998) biological control has been implemented in the form of a leaf-

tying moth (Geleschiidae: Evippe sp. #1; Figure 3.2a).  Activity from the leaf tier 

causes a distinctive yellowing of the leaves (Figure 3.2b).  Persistent activity from 

the leaf tier results in wilting of its leaves/partial defoliation throughout the mesquite 

population (van Klinken et al., 2003).  Since the leaf tier was released, there has been 

a significant reduction in pod production.  While it is unlikely to result in large-scale 

mortality, a potential reduction in seed numbers is likely to slow recruitment.   

 

 

Figure 3.2  (a) Biological control, leaf tier (Evippe sp. #1); (b) Close up photograph 
showing the yellowing of the leaves and partial defolation of a mesquite 
shrub caused by the leaf tier. 

 

Integrated control is also being trialled, which includes testing one or a combination 

of mechanical removal (which can work, but is expensive), biological control and 

fire.  However, the mesquite population is relatively fire resistant (c.f. Wright et al., 

1976) and only exceptionally hot fires will cause sufficient mortality.  Patchy fuel 

loads make it difficult to carry hot fires, although the increased leaf litter from 

defoliation, coupled with pushing mesquite over with chains may increase this 

likelihood (Osmond et al., 2003).   

3.2.2 Vegetation  

Vegetation composition throughout the Pilbara is highly heterogeneous, varying with 

microtopography and soil type (Beard, 1975; Mitchell and Wilcox, 1994).  The 

natural vegetation on Mardie is typical of the Pilbara Region, consisting 

predominantly of hummock grasslands and tall shrublands between eucalypt 

(a) (b) 
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dominated drainage channels (Beard, 1975).  At the study sites where the aerial 

photographs, digital multispectral and hyperspectral imagery were acquired (see 

Sections 3.3.2 to 3.3.4), Eucalyptus camaldulensis (river red gum), E. victrix 

(coolibah) and the tussock grass Eragrostis exerophilia (knottybutt neverfail grass) 

dominate heavy clay and highly absorbent calcareous alluvium soils.  On shallower 

soils and stony plains, the main woody vegetation is Acacia xiphophylla 

(snakewood), which is sparsely scattered amongst spinifex grasses, Triodia wiseana 

and T. pungens.  The exotic Cenchrus ciliaris (buffel grass) is abundant on alluvial 

and shallow stony soils.  Little or no vegetation grows on claypans and scalded soils, 

which are present throughout the floodplain (van Klinken et al., 2006).  Mesquite has 

mixed into these existing vegetation communities, and is now the most dominant 

species in the area, including along riparian zones.  Over time, there appears on most 

areas, to have been considerable in-fill of mesquite individuals, resulting in the 

formation of large, impenetrable thickets.   

3.2.3 Climate 

The climate of the Pilbara can be described as arid to semi-arid, with hot humid 

summers and warm winters in the north and hot dry summers and mild winters 

towards the southern boundary.  Frosts occur very infrequently in the Pilbara.  The 

right combination of saturated air and very low temperature is most likely to occur 

only in the lower south-east, and is therefore not an issue on the Mardie Pastoral 

Station (Van Vreeswyk et al., 2004).   

3.2.3.1 Rainfall  

The majority of the Pilbara Region is dominated by summer and early autumn 

rainfall (January – March).  The convective nature of summer rain means that large 

amounts can be received in a single fall and such falls can be very localised.  Winter 

rainfall (June – August) is usually much lower than summer and autumn, and only 

occurs, primarily, as a result of elongated southern latitude fronts.  Spring rain 

throughout the Pilbara is extremely low and usually restricted to rain in November 

preceding the opening of the wet season in December.   

 

Long-term annual rainfall, recorded on Mardie, averages 275 mm (CV=51%, n=74 

years).  On average, rainfall in summer and autumn are roughly equivalent, although 
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summer cyclones experienced at rainfall can be far more erratic, partially due to the 

number of tropical this time (Table 3.1; Figure 3.3).  Both summer and autumn 

experience roughly the same number of rain days on average.  Due to the relatively 

low frequency of rainfall (see mean number of rain days in Table 3.1), the area is 

viewed as highly to severely susceptible to drought (Van Vreeswyk et al., 2004). 

Table 3.1   Summary of monthly rainfall data for Mardie (adapted from Van 
Vreeswyk et al., 2004) 

 
Mardie  J F M A M J J A S O N D 
Mean monthly rainfall  
(mm) 

37 59 49 18 39 39 14 8 1 1 1 9 

Median monthly rainfall 
(mm) 

8 30 17 1 16 20 5 0 0 0 0 0 

Highest monthly rainfall 
(mm) 

241 675 330 180 212 275 151 117 64 24 32 171 

Mean number of rain  
Days 

3 4 3 1 3 3 2 1 0 0 0 1 
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Figure 3.3  Annual rainfall for Mardie, WA, Australia, 1930-2004.  Note: On 
average 2.5 cyclones per year cross the Pilbara coast (Van Vreeswyk 
et al., 2004).  This figure only illustrates the major cyclones that 
resulted in substantial rainfall on Mardie as reported by the 
(Australian) Bureau of Meteorology (2006).   

 

3.2.3.2 Temperature and humidity 

Mean annual temperatures on Mardie are 26oC (CV=18%, n=3307 records), with a 

mean minimum of 12oC (CV=18%, n=263) in July and a mean maximum 

temperature of 38oC (CV=6%, n=125) in January (Table 3.2).  The mean maximum 
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in January is caused, in part, by weak onshore winds at this time.  The highest 

maximum recorded in the Pilbara was recorded at Mardie (50oC, 19th February, 

1998).  Universally throughout the Pilbara the coldest month is July, however, 

Mardie averages 5.5 days with temperatures over 30oC during this period (Table 3.2).  

The coldest minimum temperature on Mardie also occurred in July (2.9oC, 10th July, 

1967).   

Table 3.2  Summary of monthly temperature data for Mardie (adapted from Van 
Vreeswyk et al., 2004) 

 
Mardie  J F M A M J J A S O N D 
Mean daily max. temp. (oC) 38 38 38 36 31 28 28 29 32 35 36 38 
Mean daily min. temp. (oC) 25 25 24 21 17 14 12 12 14 17 29 23 
Mean No. days temp. >40oC 10 7 9 2 0 0 0 0 0 3 7 9 
Mean No. days temp. >30oC 30 27 30 28 22 7 6 13 23 27 29 30 
Mean daily 9 am rel. humidity (%) 52 61 56 50 51 57 51 46 39 35 37 43 
Mean daily 3 pm rel. humidity (%) 44 50 43 35 36 38 33 30 28 31 34 39 
 

]The 9 am relative humidity throughout the year varies between 35% and 61%.  The 

lowest humidity is in spring, consistent with low rainfall for the same period.  The 

highest humidity is during late summer and corresponds with the relatively high 

amount of rainfall received, coupled with extreme temperatures.  The largest drop in 

humidity between 9 am and 3 pm occurs during the winter months (46.6% drop), and 

smallest drop occurs in summer (17.3%; Table 3.2).   

3.2.4 Topography 

The topography of the areas imaged by aerial photographs, digital multispectral and 

hyperspectral imagery is predominantly flat, sloping gently towards the northern 

coastline.  The average height over the test area where aerial photographs were 

attained is 13.5 m (standard deviation = 2 m) and ranges from 10 m along the 

riparian corridor to 16 m in the east of the image.  Average elevation for both the 

digital multispectral and hyperspectral imagery is at 10 m (standard deviation = 3 m), 

varying from 15 m at the southern most point to 3 m on the northern most point.   

Due to the relative flatness of the imaged areas, shadow effects resulting from 

topographic variation were minimal.   

3. 3 Remotely Sensed Datasets 

Several remotely sensed datasets were acquired for this study.  A temporal sequence 

of aerial photographs was sourced to provide a historical record of the spatial and 



60 

temporal rates and patterns of mesquite invasion.  DMSI and hyperspectral imagery 

were acquired to determine their effectiveness at accurately separating mesquite from 

all other land covers.  An aerial survey of mesquite distribution is used for validation 

purposes (see Figure 3.1 and Section 3.3.1).  These datasets are described in more 

detail hereafter. 

3.3.1 Airborne survey 

An airborne survey was conducted in 2004 using a R44 four-seater helicopter for 

work at low speed and altitude. Survey grid cells were fixed at 617.2 m long by 

300 m wide (18.52 ha). Grid cell dimensions were largely determined by the flying 

height (60 m), flying speed (ca 110 km/hr), observation frequencies (ca 20 seconds, 

depending on conditions) and viewing width (300 m) that were determined as 

optimal for identifying and quantifying mesquite, while still allowing large areas to 

be surveyed.   

 

Mesquite could be distinguished from other shrub species by its characteristic untidy 

appearance, the result of zig-zagged branches protruding beyond the main canopy 

(van Klinken and Campbell 2001), leaf colour, and by the high level of 

wilting/defoliation caused by the biological control agent (van Klinken et al., 2003).  

Observers recorded mesquite density or canopy cover for each grid cell.  Mesquite 

was categorised as absent, isolated (up to 70 plants/grid cell) sparse (< 20% cover), 

moderate (20-50%, crowns separated) and dense (50-100%, crowns slightly 

separated, touching or overlapping).  Photographs of the latter four classes, taken 

from the helicopter during the survey are shown in Figure 3.4.  Observers also used 

Figure 3.5 to assist in these class definitions during the survey (McDonald et al., 

1990).   
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Figure 3.4 Overhead views of mesquite brush at different aerial cover values.  
Photographs were taken from the helicopter during the survey.  

 

 

Results of the survey are presented in Figure 3.1 (page 55).  The survey was found to 

be accurate at mapping very low densities of mesquite, but examination of 

overlapping portions of the survey conducted at different times showed it to be 

unreliable at quantifying cover levels (van Klinken et al., 2007)1.  Further details of 

the survey can be found in van Klinken et al. (2007).  

 

                                                 
1 The author was a coauthor on this paper. 

Sparse Medium

Medium-dense Dense
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Figure 3.5   Typical shrub/tree densities used to categorise the percentage of 
mesquite canopy cover found within a surveyed grid cell into different 
class definitions (from McDonald et al., 1990). 

 

3.3.2 Aerial photographs 

A series of aerial photographs and flight line diagrams were examined prior to their 

acquisition in order to minimise seasonal fluctuations in mesquite’s appearance and 

to assist in the selection of photographs without cloud interference.  Two individual 

panchromatic aerial photographs were selected as temporal data points (August 1943, 

1:30,000 and August 1970, 1:40,000).  In addition, a true colour digital orthophoto 

was also selected, captured during September 2001 (1:25,000) (Figure 3.5).   

 

There was no meta-data on the time imagery was acquired (e.g. solar azimuth), but 

visual inspection of hard copies showed them to be free from shadow effects.  A test 
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area of 450 ha was pre-selected mainly because it has been the focus of other ground 

based studies on mesquite invasion (e.g. van Klinken et al., 2006).  To enable digital 

processing, the two panchromatic aerial photographs were scanned from film at a 

resolution of 1200 dots per inch (dpi) using a photogrammetric scanner.  Each image 

was georeferenced to the 2001 orthophoto using the georeferencing extension for 

ArcGIS 9.  Root-mean-square-errors were recorded to be 1.4 m for the 1943 image 

and 1.3 m for the 1970 image.  Because of the varying flight altitudes for each image, 

grain sizes ranged from 0.8 m (1943) to 0.86 m (1970).  Both images were resampled 

to 1.4 m resolution, to coincide with the resolution of the 2001 orthophoto, using 

bilinear interpolation since an attempt to use the nearest neighbour algorithm resulted 

in images that appeared blocky (Mather, 2004).  All images were clipped to the 450 

ha test area (Figure 3.6).  As this chosen area was located at the centre of the two 

panchromatic aerial photographs, the vignetting effect that commonly occurs at the 

edges of aerial photographs was avoided.   

 

The 450 ha test area was located within a single, 3700 paddock (“home” paddock) in 

order to keep any disturbance and dispersal effects by livestock as consistent as 

possible.  Anecdotal evidence suggests that mesquite was unlikely to have 

established over the test area prior to the wet season of 1945 (Meadly, 1962) with 

significant quantities of mesquite not observed north of the Mardie Station 

homestead prior to 1949 (T. Patterson, personal communication, 2004).  However, 

mesquite is the dominant shrub/tree species in the area today.  The water table is at 

approximately 8 m (Department of Environment, Western Australia, unpublished 

records) and therefore well within the reach of mesquite’s taproot (Gibbens and 

Lenz, 2001; Gile et al., 1997; Stromberg et al., 1993).  Records suggest that no 

control work was conducted in the chosen test area (Meadly, 1962).  This is 

supported from a local pastoralist (T. Patterson, personal communication, 2004) who 

has been in the area since before control work commenced and by assessment of the 

historical aerial photographs.  
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Figure 3.6   Location map and display of the chosen aerial photographs.  The 450 
ha test area is located approximately 3 km from the Mardie Station 
homestead.  

 

3.3.3 Digital multispectral imagery (DMSI)  

In November 2004, DMSI was acquired from a Cessna 182 flying at a height of 

5500 ft.  This altitude was used to ensure the imagery could be collected at 1 m 

resolution.  The sensor comprises four individual CCD cameras recording 1024 

pixels x 1024 pixels per array.  Four interchangeable narrow band-pass interference 

filters were used to generate imagery in blue (450 nm), green (550 nm), red (675 nm) 

and near-infrared (780 nm) bands with a radiometric resolution of 12 bits.  All 

imagery was georectified to the 2001 orthophoto mosaic (see Section 3.3.2) using a 

first order polynomial warping and bilinear resampling.  Mosaicing was performed 
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using a technique based on a cut-line feathering over three pixels (PCI Geomatica, 

2003).  The radiometric correction was carried out using in-house developed 

software, based on inversion of the bidirectional reflectance model proposed by 

Roujean et al. (1992).  Current corrections achieve a reduction of frame brightness of 

20%, to less than 3% variation between individual frames (SpecTerra Services, 

2003).   

 

In total, an area of 4000 ha was acquired with dimensions 16 km long and 2.5 km 

wide (see Figure 3.7).  These dimensions and the orientation of the imagery were 

chosen to minimise shadow effects, ensure tracks were included to assist ground 

truthing, maximise species variability and to enable the collection of an adequate 

sample size of the dominant vegetation types.  Enlargements of the DMSI were used 

to collect training and validation data by marking each species encountered on the 

transect (Figures 3.6) and later digitising them into the GIS. 

 

Imagery was acquired when the leaf tying moth was most active and abundant 

throughout the population causing a wilting and yellowing of the leaves (see Figure 

3.2b).  It was therefore envisaged that mesquite might be discernible from coexisting 

vegetation on the premise that: a) reflectance in the green portion of the spectrum 

will be low as pigments other than chlorophyll begin to dominate (see Section 

2.3.1.4); b) reflectance in the near infrared region will decline due to a reduction in 

the plants ability to photosynthesise (see Section 2.3.1.6); and c) growth habit 

(thickets) may also assist in providing a uniquely identifiable spectral signature (see 

Section 2.3.1.5).  Additionally, there was a desire to avoid early summer rain that 

might result in the regeneration of both grasses and mesquite shrubs.   

 

Due to the absence of marked topographic variation (see Section 3.2.4), and the use 

of imagery acquired at a single date, near noon time, and at a low altitude with a 

clear desert-like atmosphere, no atmospheric correction of the imagery was deemed 

necessary (Foody 2001; Foody et al., 2005).  In addition, since the minimum 

reflectance in the blue band was zero, atmospheric haze was expected to be 

negligible (Chavez, 1988).   
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3.3.4 Hyperspectral imagery 

HyMap hyperspectral data were collected by HyVista in November, 2005 and flown 

so as to give 3 m spatial resolution with a width of approximately 1.5 km and a 

length of 20 km (Figure 3.7). The rationale for image timing is identical to those 

mentioned for the DMSI (see Section 3.3.3), and also roughly corresponds with the 

acquisition of DMSI a year earlier; hence, an attempt was made to keep the 

appearance and phenological characteristics of mesquite consistent between image 

acquisitions.  The HyMap instrument collects 128 bands of data; however, the 

delivered data contains 126 bands because bands 1 and 32 are deleted in the 

preprocessing steps.   

 

The sensor has four spectrometers (VIS, NIR, SWIR1, SWIR2) covering the spectral 

range of 400 to 2500 nm.  Each spectrometer produces 32 spectral bands of imagery, 

which slightly overlap with an average spectral sampling interval of approximately 

15 nm (Cocks et al,. 1998).  Spectral and radiometric calibration of the HyMap 

sensor is accomplished prior to the survey and used to convert the raw digital number 

(DN) counts to radiance values in μW/cm2 nm sr.  Atmospheric correction is 

performed using the HyCorr package, which is a modified version of the 

ATmosphere REMoval (ATREM) software available from the University of 

Colorado, Boulder (Gao and Goetz, 1990; Gao et al., 1993).  ATREM is a radiative 

transfer model based on MODTRAN for calibration to absolute reflectance that 

requires no ground-based measurements.  Pixel-based estimates of water vapour are 

measured using a three channel ratioing technique of the 940 to 1140 nm 

atmospheric water vapour absorption bands (Gao et al., 1999).  HyCorr then offers a 

second, more advanced level whereby spectra are also corrected for residual noise 

and any systematic errors involved in the ATREM pass using Empirical Flat Field 

Optimal bireflectance Transformation (EFFORT) software developed by Boardman 

(1998).  Such preprocessing results in a high signal to noise ratio (e.g. >500:1), and 

thus mitigates the effect of most background noise (Cocks et al., 1998).   
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Figure 3.7   False colour composite (R=NIR, G=Red, B=Green) of the digital multispectral imagery (DMSI).  The enlargement shows an 
aerial view of the integrated trial used to test the efficacy of various control methods (see Section 3.2.1) and roughly corresponds 
to the 450 ha test area shown in the aerial photographs (Section 3.3.2). 
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Figure 3.8   False colour composite (R=800nm, G=680nm, B=550nm) of the hyperspectral imagery acquired for this study.  The enlargement 
shows an aerial view of the integrated trial used to test the efficacy of various control methods (see Section 3.2.1) and roughly 
corresponds to the 450 ha test area shown in the aerial photographs (Section 3.3.2). 
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The HyMap system is mounted on a Zeiss SM2000 gyro-stabilised platform that 

provides 5 degrees of pitch and roll correction and 8 degrees of yaw correction.  

High quality differentially corrected global positioning data coupled with a Boeing 

CMIGITS II GPS/INS inertial monitoring unit was used to provide sensor pointing 

data to precisely geo-reference the collected data (Cocks et al., 1998).     

3. 4 Datasets to Predict Suitability for Mesquite Invasion 

3.4.1 Land types of the Pilbara 

As has been observed in previous studies, mesquite shows a definite preference to 

certain land types (Robinson et al., 2008; van Klinken et al., 2007), which is further 

explored in Chapter 4.  Therefore, a mosaic of 20 diverse land types across the 

Pilbara Region was obtained from the Department of Agriculture and Food (Van 

Vreeswyk et al., 2004).   Land types were mapped following a ground-based survey 

and grouped according to whether they represent erosional or depositional surfaces 

and secondly on soil genesis and drainage features (Leighton et al. 2004; van 

Vreeswyk et al 2004; Figure 3.9).  Table 3.3 synthesises the proportions of the study 

area occupied for the mosaic of 20 land types surveyed.   

 

 

Figure 3.9   Map of the different land types throughout the Pilbara Region. 



70 

 

Table 3.3  Descriptions and proportions of the study area occupied for the 
mosaic of 20 land types surveyed. 

 
Description1 Area (Km2) % of Study Area 
Hills and ranges with spinifex grasslands 45093 40.0 
Hills and ranges with acacia shrublands  527 0.5 
Plateaux, mesas and breakaways with spinifex grasslands 1920 1.7 
Plateaux, mesas and breakaways with acacia shrublands 81 0.1 
Dissected plains with spinifex grasslands 2048 1.8 
Stony plains and hills with spinifex grasslands 1028 0.9 
Stony plains and low hills with acacia shrublands 705 0.6 
Stony plains with spinifex grasslands 21160 18.8 
Stony gilgai plains with tussock grasslands and spinifex 
grasslands 

1896 1.7 

Stony plains with acacia shrublands  1415 1.3 
Sandplains with spinifex grasslands 9759 8.7 
Wash plains on hardpan with groved mulga shrublands 5300 4.70 
Alluvial plains with soft spinifex grasslands 3978 3.5 
Alluvial plains with tussock grasslands or grassy shrublands 4004 3.6 
Alluvial plains with snakewood shrublands 1989 1.8 
Alluvial plains with halophytic shrublands 8 0.0 
River plains with grassy woodlands and shrublands and tussock 
grasslands 

6089 5.4 

Calcreted drainage plains with shrublands or spinifex 
grasslands 

1205 1.1 

Coastal plains, dunes, mudflats and beaches with tussock 
grasslands, soft spinifex grasslands and halophytic shrublands 

3469 3.1 

Salt lakes and fringing alluvial plains with halophytic 
shrublands 

977 0.9 

Totals 112,649 100 
1Land type descriptions are according to Van Vreeswyk et al. (2004)  
 

3.4.2 Pastoral potential 

The regional aerial survey (see Section 3.3.1) revealed a strong correlation with the 

above mentioned land types (and associated land systems) that had high pastoral 

potential (van Klinken et al., 2007).  Pastoral potential is based on the number of 

hectares required to sustain the nutritional requirements of a unit of cattle (carrying 

capacity) based on the pasture type(s) found within each land system (Payne and 

Mitchell, 2002).  Therefore, a layer of pastoral potential was also sourced to assist in 

the creation of a predictive model of suitability for mesquite invasion (Figure 3.10).  

Table 3.4 synthesises the area and percentage of each pastoral potential class.  Only 

approximately 18% of the area shown has moderately-high to very high pastoral 

potential.   
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Figure 3.10 Map of the six classes of pastoral potential. 
 

Table 3.4 Area and percentage of the 6 pastoral potential classes. 
 
Pastoral Potential Class Area (Km2) % of Study Area 
Very Low 48350 42.9 
Low 14080 12.5 
Moderate 32260 28.6 
Moderate-high 7250 6.4 
High 9145 8.1 
Very High 1564 1.4 
Totals 112649 100 
 

3.4.3 Land uses of the Pilbara 

A layer of land use was obtained based on observed cause-and-effect relationships 

with land use and mesquite invasion (e.g. increased invasion rates on cattle stations; 

Brown and Archer, 1987; Robinson et al., 2008) and consisted of eight classes 

(Department of Environment, unpublished records).  Figure 3.11 illustrates the 

spatial distribution of these land uses.  Table 3.5 synthesises the proportions of the 

study area occupied for the eight land uses.  
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Figure 3.11   Map of the various land uses of the Pilbara Region. 

 

Table 3.5  Descriptions and proportions of the study area occupied for the 8 land 
uses. 

 
Description  Area (Km2) % of Study Area 
Habitata/species management area 1499.1 1.3 
Livestock grazing (cattle) 67868.3 60.2 
Minimum intervention use 27227.3 24.2 
Stock route 1040.2 0.9 
Traditional indigenous uses 4968.0 4.4 
Managed resource protection 408.9 0.4 
National park 8578.8 7.6 
Strict nature reserves 1058.4 0.9 
Totals 112649 100 
 

3.4.4 Digital elevation model 

Based on knowledge that mesquite has a preference to the more mesic parts of the 

landscape (Robinson et al., 2008), existing spot-heights (point data) representing 

height above sea level and water network data were used to create an interpolated 

digital elevation model (DEM) at a resolution of 50 m using the ANUDEM 

algorithm (Figure 3.12).  Areas with poor spot height coverage were removed from 

the DEM.  As a consequence, this layer represented the spatial extents of the spatial 
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model produced.  The DEM was used to create a steady state wetness model (CTI), 

which is presented in Chapter 5.   

 

 

Figure 3.12 Digital Elevation Model (DEM) of the Pilbara Region. 
 

3. 5 Software  

ArcGIS (version 9.1; ESRI, 2004) was used to carry out the majority of GIS 

operations throughout this thesis.  IDRISI Andes (Clark University, 2006) was used 

for all image processing/classification routines.  Landscape metrics (e.g. distance to 

nearest neighbour patch and patch density) were performed in FRAGSTATS v. 3 

(McGarigal et al., 2002).  Brodgar (Highland Statistics Pty Ltd, 2006), an interface to 

R, was used for advanced statistical analyses (e.g. selecting the best discriminatory 

variables/bands using discriminant analysis).  Microsoft Excel was used for data 

synthesis.   

3. 6 Summary 

In general terms, the study area is the Mardie Pastoral Station in the northwest 

Pilbara Region of Western Australia.  Mesquite is predominantly isolated to this 

station, although small numbers exist on the adjacent Yarraloola Station.  Mesquite 

currently has an extent of around 150,000 ha, of which ca 30,000 ha is dense.  
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Various forms of control have been attempted over the last 50 to 60 years; however, 

all have failed over the long term.  Biological control was released in 1998 to curb 

further spread by limiting the energy available (via defoliation of the plants) to 

produce abundant numbers of pods.   

 

A temporal series of aerial photographs were selected to study the invasion rates and 

patterns through both time and space.  DMSI and hyperspectral imagery were 

acquired to test methods to accurately map the current distribution of mesquite.  

Other datasets (e.g. land types and land use, pastoral potential and a DEM) were 

obtained or created to assist modelling the suitability of the Pilbara Region to 

mesquite invasion.   
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4 EXAMINATION OF THE SPATIAL AND TEMPORAL RATES AND 
PATTERNS OF MESQUITE INVASION  

4. 1 Introduction  

Plant invasions pose one of the greatest threats to the world’s ecosystems (Mack et 

al., 2000).  A major challenge is to understand the processes underlying plant 

invasions, and thereby to identify opportunities for management intervention.  

Analysis of plant invasions at the landscape level has received considerable attention 

recently, because it is the scale at which spatial and temporal patterns of invasion can 

be linked to proximate causes, the rates and patterns of spread can be quantified and 

the efficacy of different management practices can be assessed  (e.g. Brown and 

Carter, 1998; Ansley et al., 2001).   

 

Historical archives of panchromatic aerial photography provide one of the few 

sources of long-term, temporal data at the resolution required to study historical 

invasion and its relationship with the landscape (Rango and Havstad, 2003).  

However, invasive plants rarely have spectral characteristics that enable their 

discrimination from coexisting species using panchromatic aerial photography and 

standard image processing techniques (e.g. Hutchinson et al., 2000; Lahav-Ginott et 

al., 2001; Manson et al., 2001; Kadmon and Harari-Kremer, 1999).  Therefore, most 

studies aimed at examining the spatial and temporal rates and patterns of plant 

invasions have been restricted to small areas (typically less than 80 ha) where the 

plant has formed a virtual monoculture (e.g. Goslee et al., 2003) or, where vegetation 

composition has been heterogeneous, have relied on manual photo interpretation (e.g. 

Ansley et al., 2001; Fensham et al., 2002).  However, as mentioned in Section 

2.5.3.1, the time consuming nature of interpreting and manually delineating the 

canopies of a species of interest often limits analyses to only a small area, to sparsely 

vegetated areas, or to the interpretation of relatively coarse vegetation units (Kadmon 

and Harari-Kremer, 1999).  Therefore, in this study, a combination of techniques is 

used in an attempt to overcome or partially overcome these limitations in order to 

extract the canopies of a mesquite population over a relatively large (450 ha) test site 

comprised of several shrub/tree species, from a temporal series of aerial 

photography.  Results of the method are assessed quantitatively and the minimum 
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detectable mesquite crown area that can be resolved using the 1.4 m resolution 

imagery is identified. 

 

Mesquite is recognised as a highly invasive plant in both its native (e.g. the 

Americas) and introduced range (Archer, 1995; van Klinken et al., 2006).  Several 

studies have sought to describe the rates and patterns of mesquite invasion in its 

native range using aerial photography, long-term demographic studies and modelling 

(e.g. Archer, 1995; Scanlan and Archer, 1991; Ansley et al., 2001; Goslee et al., 

2003).  The core observations of these studies can be summarised as follows:  

 

(i) the shift from grassland to mesquite shrubland has occurred relatively 

recently, typically in the past 50 to 100 years;  

(ii) mesquite invasion generally follows a process of high patch initiation, 

followed by coalescence;  

(iii) livestock, particularly cattle, are highly effective vectors of spread; 

and  

(iv) rates of invasion have varied according to land type, with the greatest 

amount of recruitment and coalescence occurring in the most mesic 

parts of the landscape.   

 

In this study, invasion rates and patterns are compared with those described at a 

smaller scale from its native range.  Specifically, based on the abovementioned 

observations for mesquite in its native range, this study tested whether:  

 

(i) mesquite invasion has been as rapid as that observed in its native range; 

(ii) mesquite invasion follows a process of high patch initiation followed 

by coalescence;  

(iii) dispersion is widespread soon after introduction, providing evidence of 

long distance dispersal vectors; and  

(iv) certain land types are more resistant to mesquite invasion than others.   
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4. 2 Methodology 

In order to study the spatial and temporal rates and patterns of mesquite invasion, 

mesquite first had to be extracted from the series of aerial photographs described in 

Section 3.3.2.  The method used to accomplish this is described in Section 4.2.1.  

Secondly, in order to relate such measures to different land types, they were mapped 

(see Section 4.2.2) coincident to the collection of validation data used to corroborate 

the accuracy of the mesquite extraction technique (see Section 4.2.4) during the 

September 2005 field season.  After the temporal database of mesquite canopies was 

established over the 450 ha test area, it was analysed to determine:  

 

i) the major process or processes occurring on each of the different land 

types (e.g. high patch initiation from recruitment, coalescence or a 

combination of both) (Section 4.2.3.1);  

ii)  the overall rate of increase over the entire test area and over each land 

type (Section 4.2.3.2);  

iii) the land type(s) experiencing the greatest change in cover to determine 

which land types were more resilient to invasion and which were more 

susceptible (Section 4.2.3.2);  

iv) whether there is more presence/absence of mesquite on certain land 

types (Section 4.2.3.3); and  

v) whether, as an extension of (iv), canopy cover is higher (over time) over 

certain land types where it is known to be present (Section 4.2.3.3). 

4.2.1 Image classification and construction of vegetation layers 

The high density of vegetation and relatively large test area demanded a semi-

automated technique for extracting the canopies of mesquite shrubs/trees while 

removing all other vegetation.  Figure 4.1 illustrates the algorithm used to 

accomplish this.  Firstly, all images were processed using an iterative self-organising 

clustering procedure (ISODATA).  This method begins by assigning pixel values to a 

set of arbitrary cluster means.  The arbitrary cluster means are recalculated at 

iteration and as the number of iterations increase, the mean class values gravitate 

towards natural breaks in the distribution of image pixels (Mather, 2004).  Figure 4.2 

gives a simple illustration of the ISODATA process for two iterations and two 

arbitrary cluster means.   
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Figure 4.1   Flowchart of the algorithm used to extract the mesquite canopies from 
the aerial photography. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Illustration of how the ISODATA technique assigns pixels to different 
clusters.  In this example, the pixel with a digital number of 120 has 
been reassigned to cluster 1 at iteration 2 because it is closer to 105 
than to 153.3. 

 

The required parameters of the ISODATA routine were found heuristically (20 

iterations, five clusters).  As expected, discrimination between vegetation types was 

not achieved during this step, although it did adequately distinguish between woody 

vegetation and other background landcovers.   
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The cluster representing woody vegetation was extracted to form four new raster 

layers; one for each of the time steps considered (1943, 1970, 2001 and 2004).  A 

subsequent step was required to remove native vegetation from the 1970, 2001 and 

2004 images.  This was achieved by masking out all patches of vegetation present in 

the 1943 image, which were assumed to be native (Meadly, 1962; T. Patterson, pers. 

comm.) from all subsequent imagery using the editing tools in ArcGIS 9 (ESRI, 

2004).   

4.2.2 Mapping land types 

GIS overlays of hydrography showed an obvious association between thick 

vegetation (both native shrubs and trees and mesquite) and drainage lines.  For this 

study, the riparian zone was defined as an area within 50 m of hydrography, based on 

the work by Grice et al. (2000) and Bowman et al. (2001).  The remainder was 

defined as uplands.  The riparian zone was not subclassified by soil type, but it was 

primarily red loamy soil.  Uplands were differentiated based on their edaphic 

characteristics, into two categories: stony flats (which comprised of all crusted soils, 

including hard pans and clay pans) and red loamy soils.  These land types were 

mapped using a false colour composite (near infrared, red, green) of the DMSI and 

corroborated in the field.  Stony flats were easily differentiated from red-loamy soils 

using this band combination.  Stony flats appeared as dark green areas often 

associated with Spinifex (Triodia wiseana C. Gardner and Triodia pungens R. Br.), 

which appeared blue under this combination.  Red loamy soils appeared as light 

green under this combination.   

4.2.3 Analysis of mesquite cover and temporal change  

Three methods of comparison were used to assess the relationship between mesquite 

canopy cover and the three land types (riparian zone, red loamy soils and stony flats).  

These methods are described hereafter.   

4.2.3.1 Patch dynamics 

Four processes have been reported to influence changes in mesquite cover: 

recruitment of new mesquite plants or patches; coalescence of expanding mesquite 

patches; a combination of recruitment and coalescence of mesquite patches; and 

mortality of mesquite plants (Ansley et al., 2001).  To assist identification of the 
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process that was dominant for each time-frame studied, over the entire test area or for 

each land type, two landscape metrics were computed: (i) mean distance to the 

nearest patch (m), calculated as the average Euclidean distance to the nearest 

neighbouring patch, from cell centre to cell center; and (ii) patch density, calculated 

as the average number of patches per unit area (ha) (McGarigal et al., 2002).  In 

addition, histograms were prepared showing the size class distribution of mesquite 

patches in 1970 and 2001 for each land type. 

4.2.3.2 Change detection 

A 20 x 20 m lattice of 11 250 quadrats was placed over the 1970 and 2001 images 

representing mesquite canopy cover and the percentage of cover for each quadrat 

was calculated within the GIS.  The appropriate quadrat size for change detection (20 

x 20 m) was determined by plotting the variance of estimated mesquite cover (%) 

against a range of quadrat sizes and identifying the point at which it became stable 

(Figure 4.3; Papanastasis, 1977; Greig-Smith, 1983).  Image differencing 

(subtraction of earlier image from later image) was used to detect change in mesquite 

cover for all coincident quadrats between years.  To visualise significant change 

throughout the test area, a threshold value was derived (using all quadrats) from the 

mean difference between images plus one standard deviation (Jensen, 1996).   
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Figure 4.3   Relationship between the variance of estimated mesquite cover (%) 
and quadrat size.   
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4.2.3.3 Analysis of cover 

Two tests were performed on both the 1970 and 2001 images to determine if certain 

land types are more resistant to mesquite invasion than others.  The first test aimed to 

determine if mesquite presence was dependent on land type.  Quadrats were 

converted to presence/absence and a random sample (N=200) was taken for each of 

the three land types.  The interaction of mesquite presence/absence within the 

different land types was tested using one-way between subjects ANOVA, followed 

by Tukey’s Honestly Significantly Different (HSD) test (Hair et al., 2006).   A 

second test was carried out to determine if canopy cover was higher over certain land 

types, where it was present.  To this end, a random sample of 200 quadrats from each 

land type were tested using one-way between subjects ANOVA on quadrats that had 

more than 0% cover.  Tukey’s HSD test was used to assess the differences in canopy 

cover between land types.  

4.2.4 Field verification of image processing 

To substantiate the accuracy of the semi-automated technique used to extract 

mesquite canopies from the aerial photographs, field verification was undertaken in 

September 2005.  As shrubs may have grown between the last aerial photograph 

acquisition and the time of ground truthing, the mesquite canopy extractions from the 

DMSI (acquired in November 2004) was used to support ground verification.   

 

Fifteen quadrats were randomly selected for each of the following cover classes: zero 

cover (0%); low cover (>0% and ≤30%); moderate cover (>30% and ≤90%) and high 

cover (>90%).  To assist accessibility, only quadrats within 200 m of existing tracks 

were candidates for random selection.  The 15 quadrats within the zero cover class 

were incorporated into the validation scheme to estimate the size of shrubs that were 

not reliably detectable from the spatial resolution (1.4 m) of the aerial imagery.  

 

Each of the 60 quadrats were located in the field with the aid of a Magellan eXplorist 

(100) global positioning system (GPS) and enlarged false colour composites of the 

DMSI and delineated with measuring tape.  To estimate the surface area of a 

mesquite shrub, the longest diameter of an individual shrub was first measured.  This 

length was then divided into ten equal sized segments running perpendicular to the 

longest diameter.  The length of these perpendicular segments were then recorded 
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and the surface area was then computed using Simpson’s Rule of approximate 

integration (Stewart, 1995).  The surface area of all individual shrubs within a 

randomly sampled quadrat were computed in this way.  Canopy cover of mesquite 

within each quadrat was converted to a percentage by dividing the sum of the surface 

areas by 400m2 (the size of an individual quadrat).  Where mesquite had formed a 

thicket, a quadrat was divided into twenty, 1 m intervals and depending on which 

was easier in the field, either the surface area of the thicket or that of bare soil was 

then calculated using Simpson’s Rule of approximate integration as before.  If bare 

soil was used in the calculation it was inverted.  As before, these calculations were 

converted to a percentage of canopy cover by dividing by the area of the quadrat.  All 

mesquite shrubs that were less than 1.4 m in diameter were ignored since they were 

technically not detectable using 1.4 m resolution imagery.  Additionally, for the same 

reason, shrub clumps closer than 1.4 m were measured as one unit (Goslee et al., 

2003).  Quadrats containing clustered stands of mesquite, which were common in the 

moderate and high cover classes, were divided into 1 m intervals and the area of bare 

earth was measured, also using Simpson’s Rule of approximate integration.  All field 

calculations were summed and converted to a percentage of mesquite canopy cover 

per quadrat and compared to the percentage of mesquite cover per quadrat calculated 

within the GIS.   

4. 3 Results  

4.3.1 Analysis of mesquite cover and temporal change  

Table 4.1 shows the relative proportions of the test area attributed to each of the three 

land types.  Native vegetation in 1943 was highest in the riparian zone and was low 

in the stony flats. By 2001 there was considerably more mesquite over all land types 

when compared with native vegetation found in the 1943 image.  

Table 4.1  Statistical breakdown of the canopy cover changes for the 1943, 1970 
and 2001 images over the three land types. 

1943
Land Type Area      

(ha)
Non-

mesquite 
cover    
(%)

Mesquite 
Cover     
(%)

Rate of 
change1       

(% year-1)2

Patches 
ha-1

Distance to 
Nearest 

Patch (m)

Mesquite 
Cover     
(%)

Rate of 
change1       

(% year-1)2

Patches 
ha-1

Distance to 
Nearest 

Patch (m)

Riparian 70 15.7 3.0 0.11a 44 6.5 36.0 1.16a 72 4.1
Red loamy soils 324 10.2 2.6 0.10a 34 7.7 24.2 0.78b 81 4.4
Stony flats 56 2.7 0.4 0.02b 7 17.7 11.1 0.36c 101 4.5
Total 450 10.1 2.4 0.09 24.4 0.71

1970 2001

1Calculated as linear increase in canopy cover from 1943 (0% cover) and 1973 respectively; 
2Different letters within a column represent differences in rates of change.
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4.3.2 Patch dynamics 

The total number of mesquite patches over the test area increased from 13 950 to 

31 704 over the 31-year period from 1970 to 2001.  Stony flats had a relatively low 

patch density, and a relatively high mean distance to nearest neighbour, compared to 

the riparian zone and red loamy soils in 1970, which were roughly comparable 

(Table 4.1).  Mesquite patches greater than 6 m2 were uncommon on stony flats in 

1970 suggesting that coalescence was rare (Figure 4.4a).   

 

The number of patches increased substantially between 1970 and 2001 in all size 

classes in all land types, demonstrating continued patch recruitment (Figure 4.4; 

Table 4.1). The distance between patches was similar in each land type. However, 

stony flats had a higher density of patches overall (Table 4.1), as well as in each of 

the smaller size classes, especially patches less than 6 m2 in size (Figure 4.4a).  

 

Patch density was slightly higher in red loamy soils than in the riparian zone, 

although the size distribution was similar in both land types.  Patches were up to 4.7 

ha in size (Table 4.2).  Patches larger than 100 m2 were relatively common in both 

the riparian zone and red loamy soils in 2001 (Figure 4.4b,c; Table 4.2) and would 

have been partly the result of smaller patches coalescing to form dense thickets.  

Average and median patch size was largest in the riparian zone (Table 4.2), and is 

likely to be the main factor responsible for mesquite cover (%) being higher over this 

land type than over red loamy soils (Table 4.1).   

 

Table 4.2   Summary statistics for patches greater than 100m2 in 2001, broken 
down by land type. 

 
Land Type Number of 

Patches
Patches ha-1 Median (m2) Average (m2)1 Standard 

Deviation (m2)
Maximum (m2)

Riparian 280 4.0 194 789 (216) 3614 47717
Red loamy soils 1168 3.6 180 432 (37) 1270 29572
Stony flats 55 1.0 158 180 (12) 91 619
1Values given in brackets represent the standard error.  
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Figure 4.4   Density of mesquite patches by size class for 1970 (black bars) and 
2001 (open bars): (a) stony flats, (b) red loamy soils, (c) riparian zone. 
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4.3.3 Change detection 

Mesquite canopy cover occupied 2.4% (10.7 ha) of the test area by 1970 (Table 4.1), 

and was already highly dispersed through the test area (Figure 4.5a). Canopy cover 

was not uniform throughout the test area, being much higher in the riparian zone and 

red loamy soils (Table 4.1).  Furthermore, the percentage of quadrats where canopy 

cover increased faster than the change threshold (>6.3% increase in canopy cover) 

was similar over both the riparian zone and the red-loamy soils in 1970 (15% and 

13% respectively). In contrast, few quadrats showed a significant amount of change 

over the stony flats (0.3%).   

 

Total mesquite canopy cover in 2001 was 24.4% (109.9 ha); representing an increase 

in canopy cover of approximately 0.71% year-1, assuming a linear increase from 

1970.  This was almost eight times the rate of increase observed prior to 1970. 

Again, rates of increase in canopy cover varied with land type over this period (Table 

4.1).  The most rapid change was over the riparian zone (Figure 4.5b), with 

approximately 40% of quadrats increasing faster than the change threshold (>40.1% 

increase in canopy cover).  This was followed by the red loamy soils (18.1%) and 

stony flats (1.8%).    

4.3.4 Analysis of cover 

The interaction between the presence of mesquite and each of the three land types 

was highly significant in both 1970 (F(2,597) = 70.9, P<0.01) and 2001 (F(2,597) = 33.4, 

P<0.01).  Based on Tukey’s HSD it was found that, in 1970, quadrats over the 

riparian zone were more likely to be occupied by mesquite than those over red loamy 

soils (Q = 4.7, P<0.01) or stony flats (Q = 16.4, P<0.01) and more likely to be 

occupied over red loamy soils than stony flats (Q = 11.6, P<0.01).  In 2001, there 

was no statistical difference between quadrats occupied by mesquite over the riparian 

zone or red loamy soils (Q = 2.5, P>0.01); however there were fewer quadrats 

occupied over stony flats than over the riparian zone (Q = 11.0, P<0.01) or red loamy 

soils (Q = 8.5, P<0.01). 
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Figure 4.5  The distribution of land type and mesquite across the test area 

showing presence of mesquite (circles and triangles) and increase in 
mesquite cover within a quadrat above the change threshold (circles) 
in (a) 1970 and (b) 2001.  
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As might be expected from both the change analysis (Figure 4.5) and total canopy 

cover in each land type (Table 4.1), the interaction between mesquite canopy cover 

in quadrats in which mesquite occurred and the three land types was highly 

significant in both 1970 (F(2,597) = 33.0, P<0.01) and 2001 (F(2,597) = 110.9, P<0.01).  

In 1970, Tukey’s HSD test showed that, when compared to the stony flats there was 

significantly higher mesquite cover in the riparian zone (Q = 10.3, P<0.01) and red 

loamy soils (Q = 9.2, P<0.01) but no difference between the former two land types 

(Q = 1.2, P>0.01).  In 2001, there was considerably higher mesquite canopy cover 

over the riparian zone than the stony flats (Q = 20.5, P<0.01) and red loamy soils (Q 

= 14.5, P<0.01) and considerably more cover on red loamy soils than on stony flats 

(Q = 5.9, P<0.01) (Table 4.1).  

4.3.5 Ground verification of canopy cover densities within quadrats 

The relationship between mesquite canopy cover per quadrat (%) observed in the 

field and that estimated from image processing within the 60 ground truthing 

quadrats was found to have a strong linear relationship (R2 = 0.98; Figure 4.6).  The 

strongest correlation was found within the low density class (R2 = 0.95), which is 

important as over 69% of quadrats had such canopy cover in the 2004 image.  

Canopy cover in the high cover class (>90%) were well matched in the field 

(R2=0.55), however, this correlation is stymied by the fact that image processing 

results showing >95% could only be identified as 100% cover in the field.  This class 

made up <1% of quadrats in the 2004 image, as much of the high cover had been 

removed by control methods by this time.  The correlation in the moderate density 

class was also high (R2=0.74).  However, after results were compiled it was found 

that a large gap existed between 60-90% cover.  The cause of this gap was a direct 

result of randomly sampling quadrats within such a wide class (30-90%) as there 

were more quadrats potentially selectable in the 30-60% range (14% of test area) 

than the 60-90% range (4% of test area).  A more robust approach would, therefore, 

be to select an additional 15 quadrats in the 60-90% range.  Certainty of correctly 

calculating cover from image processing in the 60-90% range can only be assumed to 

be similar to the quadrats sampled in the 30-60% range.   
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Figure 4.6   Field measurements of canopy cover plotted against estimates of 
canopy cover found from image processing within 60 randomly 
selected 20 x 20 (400 m2) quadrats (Y = 1.01x + 1.25, R2 = 0.98, 
P<0.001). 

 

Estimates of canopy cover in the zero cover class were perfect except for two 

quadrats containing one individual mesquite shrub each.  Approximately 12% of 

quadrats in 2004 were in this class.  The largest mesquite shrub found within this 

class in the field that was not detected from image processing had a canopy diameter 

of 2 m and a surface area of 2.95 m2.  Furthermore, the smallest shrub that was 

detected from image processing and corroborated in the field had a surface area of 

3.3 m2, with the longest diameter spanning 3 m with a diameter perpendicular to it of 

2 m.  Therefore, the minimum detectable canopy size, using 1.4 m resolution 

imagery, appears to be within the range of approximately 2.95 m2 and 3.3 m2.   

4. 4 Discussion 

Longitudinal studies using aerial photographs to monitor mesquite cover in its native 

range have indicated rates of increase between 0.4% year-1 and 1.2% year-1.  For 

example, rates between 0.4 and 1.2% year-1 have been observed in South Texas 

(Archer et al., 1988); 0.7 to 1.1% year-1 in New Mexico (Warren et al., 1996; Goslee 

et al., 2003); and 0.6% year-1 in Arizona (Glendening, 1952).  Differences in reported 



89 

rates of mesquite cover increases are the results of differences in initial canopy 

cover, soils, precipitation (Ansley et al., 2001), availability of dispersal agents, and 

the time it took for initial mesquite plants to reach detectable sizes.  However, from 

these reports it can be assumed that long-term increases in mesquite cover in its 

native range rarely exceeds 1% year-1 (Ansley et al., 2001).  In this study, rates of 

increase became more rapid between the two periods examined (0.09 to 0.71%    

year-1).  Rates of increase observed in the second period (0.36 to 1.16% year-1, 

depending on land type) were, thus, comparable with those observed for native range 

mesquite populations (Ansley et al., 2001). 

 

Mesquite showed a strong preference for riparian and red loamy soils over stony 

flats, as reflected by a higher rate of initial colonisation by patches, higher rate of 

increase in canopy cover and the formation of larger patches.  This could be due to 

both higher propagule pressure and higher recruitment, although it is not possible to 

differentiate these mechanisms using the data extracted from the aerial photographs.  

Stony flats have low grass cover (van Klinken et al. 2006), and herbivores are 

therefore likely to spend less time grazing, and will consequently deposit fewer seeds 

there (Andrew, 1988; Brown and Carter, 1998).  Also, stony flats present a harsh 

environment for the establishment and growth of young plants, as indicated by the 

low densities of perennial grasses and shrubs found there (van Klinken et al. 2006), 

and is a likely explanation for the relatively slow increases in patch sizes.  

Nonetheless, patch number and size did increase dramatically over stony flats in the 

period from 1970 to 2001, supporting conclusions based on demographic data that 

suggests that mesquite densities will continue to increase over all land types (van 

Klinken et al. 2006).   

 

Mesquite had already spread throughout the 450 ha site by 1970, including into areas 

that would rarely, if ever, have been inundated (e.g. stony flats), within 

approximately 35 years of being introduced to the area.  In the following 31 years 

patch formation continued, and existing patches increased in size. This invasion 

pattern is therefore consistent with dispersal occurring primarily through the gut of 

animals, rather than by extreme flood events.  An important ecological difference 

between invasive mesquite populations in its native range and the study population in 

Western Australia is the dispersal agents. A wide range of animal species consume 
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mesquite pods and subsequently disperse viable seed in both the native and 

introduced ranges (van Klinken and Campbell 2001; Pasiecznick, 2001).  The 

introduction of cattle is considered to be responsible for the rapid spread of mesquite 

within its native range from riparian zones into uplands in historical times (Brown 

and Archer, 1987).  An important factor is that a high proportion of seeds survive the 

passage through the digestive system of cattle, ca 60% (Brown and Archer, 1987).  In 

contrast, the study property in Australia had sheep through the twentieth century 

(Van Vreeswyk et al., 2004; T. Patterson pers. comm. 2004), and the most abundant 

dispersers were therefore sheep and macropods.  Sheep grind their food, and as a 

result seed survival through to the dung is very low (ca 13%; Cox et al., 1993). Seed 

survival through macropods is not known, but they grind their food in a similar 

manner to sheep (Griffiths and Barker, 1966).  Much higher rates of patch formation 

may therefore be expected in this region with the recent introduction of cattle.  

 

The invasion process mirrors the early phase of mesquite invasion in its native range, 

at least in the riparian zone and red loamy soils where coalescence of patches was 

common.  However, in its native range, Archer (1995) observed that as mesquite 

plants matured they often served as nursery sites for native shrubs, facilitating the 

ingress and establishment of subordinate woody species from other habitats.  These 

subordinate species may ultimately replace mesquite, resulting in successional 

change from grassland to mesquite shrubland to native non-mesquite shrubland 

(Archer, 1995).  Individual mesquite patches were not tracked in this study;  

however, no decline in mesquite density was recorded in any 20 x 20 m quadrat, 

suggesting that mesquite is relatively long-lived (or the study period is too short to 

detect mortality) or that dying plants are being replaced by mesquite.  Also, field 

based studies have found no evidence that mesquite is passively facilitating the 

ingress of native shrubs throughout the population studied (van Klinken et al. 2006).  

Thus, in the current context, successional change beyond mesquite shrubland seems 

unlikely.     

 

Mesquite could not be discriminated from native background shrubs and trees using 

aerial photography due to the poor spectral resolution of the aerial photographs. 

Access to an image prior to invasion by mesquite assisted in overcoming this 

constraint, although it does assume that mesquite did not replace native vegetation, 
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mesquite did not reside in the understorey of native vegetation, and that there was no 

subsequent change in native vegetation cover.  However, native vegetation that was 

removed had a similar shape and size for all subsequent years, suggesting it was not 

mesquite.  Mesquite has been introduced to several areas throughout the world, and 

in many cases after the commencement of aerial photography (e.g. Harding and Bate, 

1991).  Therefore, the methods used for mesquite extraction in this study may have 

wide application.   Notwithstanding, recent advances in object oriented image 

processing software has assisted discrimination between species in panchromatic 

imagery, typically by including such variables as shape, size, scale and colour, 

coupled with user defined membership functions such as mean brightness values and 

relationships between layers segmented at different scales (e.g. Laliberte et al., 2004; 

McGlynn and Okin, 2006).  As the three main woody vegetation types in this study 

exhibit a unique shape and the canopy size of native vegetation is consistent, this 

software may be appropriate for future studies, particularly one aimed at broad scale 

mapping of mesquite from panchromatic and other very high resolution imagery.     

 

The required spatial resolution for mapping weed patches has been estimated as less 

than one-quarter of the smallest patches that need to be mapped (Hunt et al., 2005).  

In this research it was determined that the spatial resolution of the aerial photography 

was sufficient to reliably detect individual small adults with a canopy of 

approximately 3 m2.  This suggests that a spatial resolution of approximately one-

half the size of the shrub requiring detection may be adequate for mapping mesquite.  

Current panchromatic satellite imagery provides higher spatial resolution than most 

historical aerial photography (e.g. IKONOS-2, 1 m; CartoSat-2, 0.8 m; QuickBird, 

0.61 m), and therefore may be able to detect shrubs with canopies smaller than 3 m2.  

However, the most promising options for effectively detecting and differentiating 

isolated mesquite plants from other species clearly requires similar resolution to that 

obtainable from current high resolution panchromatic imagery, but with greater 

spectral information, which is the focus of Chapter 6.   

4. 5 Summary 

Historical archives of aerial photography provide a rare data source for quantifying 

rates and characterising patterns of plant invasions.  Canopies of a ca 70 year old 

exotic mesquite population in Western Australia were extracted from a temporal 
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series of panchromatic aerial photography over an area of 450 ha using unsupervised 

classification.  Non-mesquite trees and shrubs could not be differentiated from 

mesquite, and so were masked out using an image acquired prior to invasion.  The 

accuracy of this technique was corroborated in the field and found to be high (R2 = 

0.98, P<0.001); however, accuracy varied between classes.  The strongest correlation 

was found within the low density class (R2 = 0.95), which is important as over 69% 

of quadrats had such canopy cover in the 2004 image.  Canopy cover in the high 

cover class (>90%) were well matched in the field (R2=0.55), however, this 

correlation is stymied by the fact that image processing results showing >95% could 

only be identified as 100% cover in the field.  This class made up <1% of quadrats in 

the 2004 image, as much of the high cover had been removed by control methods by 

this time.  The correlation in the moderate density class was also high (R2=0.74).  

However, there were no samples taken in the 60-90% cover class.  This was a direct 

result of randomly sampling quadrats within such a wide class (30-90%) as there 

were more quadrats potentially selectable in the 30-60% range (14% of test area) 

than the 60-90% range (4% of test area).  A more robust approach would, therefore, 

be to select an additional 15 quadrats in the 60-90% range.  Certainty of correctly 

calculating cover from image processing in the 60-90% range can only be assumed to 

be similar to the quadrats sampled in the 30-60% range.  Only shrubs >3 m2 could be 

reliably detected with the 1.4 m spatial resolution of the imagery used.  Rates and 

patterns of invasion were compared to mesquite invasions where it is native.  It was 

determined that: (i) the shift from grass to mesquite domination has been rapid, with 

rates of increase in canopy cover comparable to invasive populations in its native 

range; (ii) rate of patch recruitment was high in all land types, including stony flats, 

but patch expansion and coalescence primarily occurred in the riparian zone and red 

loamy soils; (iii) sheep and macropods have been the main vectors of spread; and (iv) 

early successional patterns, such as high patch initiation followed by coalescence of 

existing stands, are similar to those where mesquite is native, but patch mortality was 

not observed. 
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5 MODELLING THE SUITABILITY OF THE PILBARA REGION TO 
MESQUITE INVASION  

5. 1 Introduction 

Numerous modelling approaches have been applied to identify suitable habitats for a 

variety of purposes, including conservation (e.g. Loiselle et al., 2003) and invasive 

species management (e.g. Robertson et al., 2004).  An important criterion governing 

the adoption of any one particular model is the amount of conservatism planners or 

land managers are willing to accept and how the model’s predictions are going to be 

applied.  For example, Loiselle et al. (2003) compared several models for 

conservation planning and concluded that some consistently produce more 

conservative estimates than others.  They argued that in conservation planning, a 

conservative prediction (e.g. few false positives) will ensure that the site selected to 

protect the species is highly likely to be suitable for that species and therefore, the 

models that produced the more conservative estimates were most applicable.  In 

contrast, when models are used to identify regions at risk from invasive plants, false 

positives may be viewed as less costly than false negatives (Fielding and Bell, 1997).  

This is because a more conservative estimate may omit areas that are actually 

suitable and therefore only be detected when the invasive species is well established 

(Robertson et al., 2004).  At this stage it is often too late and too expensive to 

implement effective eradication programmes (Rejmanek and Pitcairn, 2002).    

 

BIOCLIM (Busby, 1991) is a common profile model that may be viewed as 

conservative because it integrates evidence using a conservative Boolean AND 

operator.  For example, if most conditions thought to promote invasion are ideal, yet 

one condition is standardised to ‘0’, it is removed from consideration.  Group 

discrimination techniques, such as logistic regression, may also render conservative 

estimates because they assume that existing sites represent the entire range that can 

be occupied by the target species.  If the range of the species is still actively 

expanding, this is unlikely to be a valid assumption (Goslee et al., 2006).  By 

assigning those areas as absent (or pseudo-absent), logistic regression models may 

exclude potentially suitable sites in its prediction.  Some models have used a tally 

system to avoid excluding areas failing only one or a small proportion of conditions.  

For example, the Weed Invasion Susceptibility Prediction (WISP) model (Gillham et 
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al., 2004) sums binary predictor variables together to form a rating of suitability.  If 

for example, only 8 out of 9 conditions are present, the result is 8, not 0.   

 

Boolean standardisation has commonly been used to standardise predictor variables.  

For example, the BIOCLIM model identifies the minimum and maximum value of 

each predictor variable from distribution records and assigns to this range the value 

of 1.  Values outside this range are coded 0.  At least three major problems can be 

identified with such an approach:  

 

(i) the assumption that this standardisation reflects the limits (climatic or 

otherwise) of the target species may be invalid for invasive species that 

have not yet occupied all suitable sites; 

(ii) Boolean standardisation does not incorporate the notion that within the 

range identified, there is likely to be a scale of favourability; and  

(iii) the crisp nature of Boolean standardisation means that pixels outside of 

the suitability range are excluded.  For example, if a species can survive 

temperatures ranging from 10oC to 40oC, is it appropriate to exclude areas 

exhibiting temperatures of 9.9oC or 40.1oC? 

 

A further deficiency of many models used throughout the literature is that they do 

not assign greater importance to predictor variables that are likely to have more 

impact in defining the areas suitable for invasion.  For example, climatic models (e.g. 

BIOCLIM) assume that all climatic variables are equally important.  Likewise, the 

WISP model assumes that all predefined variables have the same impact on 

predicting the suitability ranges of the target species.   

 

In this chapter, ordered weighted averaging (OWA) is introduced to the field of 

ecological modelling for identifying the suitability ranges of mesquite.  OWA 

represents an alternative to simply implementing models that generally return 

cautious results (as might be appropriate for conservation planning) or those that 

return broader potential areas of suitability (as might be appropriate for modelling 

the suitability of a region to biological invasion).  This is achieved by altering the 

decision strategy space through a set of ordered weights and can produce models that 
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characterise locations by their worst quality (strongly conservative), their middle-

most quality (intermediately conservative), or by their best quality.  In fact, ordered 

weighted averaging can also produce any possibility in-between these three reference 

points.  The disadvantages of crisp sets (e.g. Boolean standardisation), particularly in 

the standardisation of continuous variables, are avoided in this study through the use 

of fuzzy membership functions, which have been shown to produce better results 

when applied to model the suitability of areas to invasion from plants and insects 

(e.g. Robertson et al., 2004).  A weighting method is used (pairwise comparison) to 

assign more importance to variables likely to have greater influence in dictating the 

suitability ranges of mesquite.  These techniques directly incorporate the knowledge 

derived from Chapter 4, which identified that:  

 

(i) mesquite prefers to establish in certain land types than others;  

(ii) mesquite prefers the more mesic parts of the landscape; and  

(iii) rapid invasion (including thicket formation) is the result of dispersion 

through the dung of vertebrate herbivores, particularly cattle; however, to 

a lesser extent, seedlings have also been observed to grow out of the 

excrement of sheep, emus and wallaroos (Osmond et al., 2003).   

 

Recent literature has generally advocated the use of relative operating characteristic 

(ROC) plots for model evaluation, over more traditional measures such as the 

maximum Kappa (e.g. Fielding and Bell, 1997; Pontius and Schneider, 2001; Liu et 

al., 2005).  However, the maximum Kappa method is still commonly used for 

evaluation (e.g. Robertson et al., 2003; 2004).  Therefore, an additional aim of this 

study was to investigate whether the choice of one technique over the other would 

affect the final prediction of areas identified to be suitable for mesquite invasion.   

5. 2 Description of Techniques 

The following section describes the theory behind the modelling techniques used in 

this study.  

5.2.1 Weighted linear combination (WLC) 

WLC is a common technique that involves the integration of multiple criteria (layers) 

to arrive at a solution.  Each layer is first standardised to a common numeric range 
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(e.g. via fuzzy sets; see Section 2.5.2.2) and multiplied by a weight based on its 

relative importance to the solution.  Weights must be chosen so that their sum is 

equal to ‘1’, and can be derived using pairwise comparison (Saaty, 1990; see Section 

5.2.3).  All weighted layers are then summed over all coincident pixels.  In the 

context of predicting the suitability of a region for invasion, the pixels receiving the 

highest overall score (maximum = 1; minimum = 0) represent the highest suitability.  

Values less than 1 and greater than 0 represent a continuum of suitability that 

requires interpretation based on its magnitude.     

5.2.2 Standardisation of categorical maps 

The main raison d'être for standardising categorical maps is to assign importance to 

each of the categories on a scale of 0 to 1.  Essentially, this is identical to weighting 

each of the categories, except that most weighting schemes (e.g. pairwise 

comparison) assign weights so that their sum equals 1.  Normalisation of the derived 

weights can transform these weights to values within the range of 0 to 1, where 1 

represents the most favourable conditions and 0 the least.  One weighting method 

that can be transformed in this manner is known as the ranking, whereby each 

category is ranked in order of perceived importance.  Once the ranking is established, 

the rank exponent method can be utilised according to the following formula 

(Malczewski, 1999):  

 

 wj=(n-rj+1)p
 (5.1) 

  

where: wj= the weight for the jth criterion; 

n= the number of criteria (layers) under consideration; 

 rj= the rank position of the criterion (layer); and 

p = the exponent value.  As p increases, the less weight is given to lower 

ranked factors.  

 

The weights derived from equation 5.1 can then be divided by the highest wj to 

derive a standardised score (normalisation).  

 

Continuous layers can be standardised using fuzzy membership functions and the 

reader is directed to Section 2.5.2.2 for a discussion on their use.      
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5.2.3 Pairwise comparison for weight estimation 

Pairwise comparison can be used to assign values of importance (weights) to each of 

the layers in the model.  This method was developed by Saaty (1977) in the context 

of the decision making process known as the Analytic Hierarchy Process (AHP) 

(Malczewski, 1999).   Each layer is compared to each other in turn using a nine point 

scale (Table 5.1) based on their suitability for the stated objective.  For example, 

where the objective is identifying areas most susceptible for weed invasion, soil 

moisture may be compared to land types.  If soil moisture is considered to be very 

strongly more important than land types, then one would enter 7 in the pairwise 

matrix.   

Table 5.1  The fundamental scale on which pairwise comparisons are based. 
 
Intensity of importance on 
absolute scale1

Definition Explanation 

1 Equal Importance Two layers contribute equally to the objective

3 Moderate importance of one over another Experience and judgement modertately favour one 
over another

5 Strong importance Experience and judgement strongly favour one over 
another

7 Very strong importance Experience and judgement very strongly favour one 
over another

9 Extreme importance Experience and judgement extremely favour one 
over another - highest affirmation

2,4,6,8 Intermediate values between two adjacent 
judgements

When compromise is needed

Ricprocals If layer i  has one of the above numbers 
assigned to it when compared to j , then j 
has the reciprocal assigned to it when 
compared with i

1If the layers being compared are closer together than integer numbers given, then decimals can be given. 
Table adapted from Saaty (1987).   

Once all candidate layers have been compared and relevant values have been entered 

into the matrix, weights can be calculated using the following operations: (a) sum the 

values in each column of the pairwise comparison matrix; (b) create a normalised 

pairwise comparison matrix by dividing each element in the matrix by its column 

total; and (c) sum the elements in each row of the normalised matrix and divide by 

the number of layers (Malczewski, 1999).   

 

A measure can also be devised to determine if the comparisons have been made 

consistently throughout the matrix.  This is necessary, because the matrix is 

constructed from expert opinion and therefore it is possible for a decision maker’s 

judgement to change throughout (Saaty, 1977).  It involves the following operations: 
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(a) determine the weighted sum vectors using matrix multiplication of the weights 

(presented in one column) by original pairwise comparison matrix; (b) divide each 

weighted sum vector by its respective layer weight determined previously to obtain 

α; and (c) sum all α values together and divide by the number of layers (n) to derive 

λ.  The consistency index, which is a measure of departure from consistency, can 

then be calculated using:  

 CI  = (λ – n)/(n – 1) (5.2) 

Finally, the consistency ratio can be calculated using:  

 CR = CI/RI (5.3) 

where: RI is the random index, the consistency index of a randomly generated 

pairwise comparison matrix (see Table 5.2).  A CR<0.1 indicates a reasonable level 

of consistency, whereas a CR>0.1 indicates the original matrix should be revised.   

Table 5.2  Random Inconsistency Index (RI) for n= 1,2,…,15 (adapted from 
Saaty, 1990).  

 
n RI n RI n RI 

1 0.00 6 1.24 11 1.51 

2 0.00 7 1.32 12 1.48 

3 0.58 8 1.41 13 1.56 

4 0.90 9 1.45 14 1.57 

5 1.12 19 1.49 15 1.59 

5.2.4 Trade-off and risk 

Models that use the Boolean AND operator (e.g. profile techniques such as 

BIOCLIM (Busby, 1991)) do not allow poor qualities in one layer to be compensated 

for (“traded-off”) by excellent qualities in another layer.  The output of the Boolean 

AND operator is governed by its worst quality at each coincident pixel.  Therefore, it 

is regarded as a low risk operator, with no potential for trade-off (see Figure 5.1).  

For the final prediction to be suitable, all criteria must also be considered suitable.  

For example, if all criteria at an arbitrarily defined pixel are considered highly 

suitable for invasion, yet one is deemed to be unsuitable, that pixel will be 

considered to be unsuitable.  In terms of risk, this is considered to be a conservative 

solution.  As mentioned in the introduction, in conservation planning this would be 

an acceptable approach as only areas found to be highly suitable over all criteria 
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would be considered for species protection, and therefore represents areas with a 

high likelihood of survival.  However, in invasive species management, such an 

approach may underestimate potentially suitable sites, where one poor quality may 

not be sufficient to exclude the potential for invasion.  Hence, in this context, a 

conservative approach that does not allow poor qualities to be traded-off may 

jeopardise invasive species management and early detection.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the opposite end of the risk scale, the Boolean OR operator treats each layer as 

sufficient evidence to solve the objective under consideration, because only one pixel 

need be suitable over all coincident pixels for that pixel to represent high suitability; 

however, like the Boolean AND does not permit layers to trade-off (see Figure 5.1).  

This operator is therefore considered risky because the poorer qualities are ignored in 

the prediction.  This is likely to be inappropriate for conservation planning, but, 

depending on the criterion that is considered highly suitable, may highlight the worst 

possible distribution of an invasive species.  For example, a high level of suitability 

for just one criterion may be sufficient to enable invasion.   

 

Under WLC, the assignment of weights to each standardised layer allows them to 

fully trade-off against each other and therefore neither considers layers as necessary 
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Risk (ORness)
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Figure 5.1  Conceptual depiction of the relationship between risk and trade-off. 
Order weights can be used to produce a solution at any point on the
decision strategy space triangle.   
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or sufficient (Figure 5.1).  Poorer qualities are not ignored but rather can be 

compensated for by layers with greater perceived importance for increasing the 

suitability of an area to invasion.  Thus, WLC provides a solution that falls exactly in 

the middle of the Boolean AND operation and the Boolean OR operation (Eastman, 

2006; Figure 5.1).   

5.2.5 Manipulating trade-off and risk using ordered weighted averaging (OWA) 

The theory of OWA was first established by Yager (1988).  This technique can be 

used to augment WLC to allow solutions to fall anywhere along the risk/trade-off 

scale (Figure 5.1) and therefore the amount of risk can be directly tailored to the 

application of the model (e.g. conservation planning or invasive species 

management).  Order weights do not apply to a specific layer, but rather are applied 

on a cell-by-cell basis as determined by their rank ordering across all layers.  Order 

weight ‘1’ is assigned to the lowest ranked layer for a particular pixel, order weight 

‘2’ to the next lowest ranked layer at the same location and so on until all pixels have 

been assigned an order weight for all layers (Eastman, 2006).  The number of 

ordered weights used must be equal to the number of layers used in the model and 

must also sum to ‘1’.   

 

Since each cell is ordered from lowest to highest, selecting values for the ordered 

weights that when graphed would present a right-skewed histogram produces a more 

risk adverse solution than WLC and vice versa.  For example, for three layers, 

ordered weights of [0.5, 0.3, 0.2] would produce a more risk adverse solution than 

ordered weights of [0.2, 0.3, 0.5] (Figure 5.1).  Ordered weights can also be chosen 

to create an image identical to WLC, the fuzzy AND or the fuzzy OR.  They take 

w=[1/n, 1/n, …, 1/n], w=[w1, w2, …, wn]=[1, 0, …, 0] and w=[ w1, w2, …, wn]=[0, 0, 

…, 1], respectively, where w is the weight vector comprising n weights, where n 

corresponds to the number of layers under consideration.   The fuzzy AND is 

equivalent to the Boolean AND, except that it returns the minimum value of 

coincident pixels for all layers that have been standardised to a grade of 

favourability.  Likewise, the fuzzy OR is the equivalent of the Boolean OR for layers 

standardised to a continuous scale of favourability whereby the maximum value of 

coincident pixels amongst all layers considered is returned. 
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The set of chosen ordered weights can be classified with respect to their position 

between AND and OR (Figure 5.1) by using measures known as ANDness, ORness 

and trade-off, as follows (Yager, 1988; Malczewski, 1999):  
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where: n is the number of layers; 

r is the order of the layers; and  

wr is the order weight for the layer of the rth order.   

5. 3 Model Design 

A six step process was used to model the suitability of the Pilbara region to mesquite 

invasion.  These steps are described in more detail hereafter.  

5.3.1 Step 1: Define layers  

Temporal analyses of aerial photographs (Chapter 4) quantified habitat associations 

of mesquite at a local scale.  In particular, mesquite showed a strong preference to 

alluvial soils than to stony/crusted soils.  The regional aerial survey provided further 

evidence of these habitat associations, revealing a strong correlation with land 

systems that had high pastoral potential (van Klinken et al., 2007).  Pastoral potential 

is based on the number of hectares required to sustain the nutritional requirements of 

a unit of cattle (carrying capacity) based on the pasture type(s) found within each 

land system (Payne and Mitchell, 2002).  Therefore, a layer of pastoral potential was 

sourced from the Department of Agriculture and Food, Western Australia (DAFWA) 

for this study (see Section 3.4.2 for a description and summary of this layer). 

 

Chapter 4 also provided evidence that mesquite is dispersed through the dung of 

vertebrate herbivores, including livestock such as sheep and cattle.  Native 

herbivores (e.g. emus and wallaroos) are also likely dispersers.  The combination of 
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cattle browsing in high pastoral potential areas is likely to be a factor underlying the 

association between pastoral potential and high mesquite cover.  Thus, there appears 

to be a synergistic effect between these two factors (van Klinken et al., 2007).  

Therefore, a layer depicting land use throughout the Pilbara Region was used in this 

study (see Section 3.4.2). 

 

While high pastoral potential and the presence of a highly effective dispersal 

mechanism may enhance suitability, they are not necessarily sufficient.  For instance, 

areas with high pastoral potential and the presence of cattle showed a very strong 

association with some habitats (especially flood plains and river deltas) but not 

others (e.g. gilgaied clay plains).  This was identified in chapter 4, which 

demonstrated that soil moisture is a further requirement governing the suitability of 

an area for mesquite invasion.  Therefore, a compound topographic index (CTI), 

which is a steady state wetness index, was derived from the digital elevation model 

(described in Section 3.4.4) for this study using the following formula (Gessler et al., 

1995): 

  

 CTI=ln(α/tan(β)) (5.7)  

 

where: α = upstream area calculated as (flow accumulation +1)*(pixel area in m2) 

 β = slope expressed in radians.  

 

Flow accumulation is calculated from a flow direction grid, which determines the 

water flow as the direction of steepest descent.  Flow accumulation then records the 

number of cells that drain into an individual cell in the grid and is thus measured in 

units of grid cells (Olivera et al., 2002).  Slope, in radians (β), was derived from the 

digital elevation model using the tools in ArcGIS (ESRI, 2004).  The CTI derived for 

the Pilbara area studied is shown in Figure 5.2. 
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Figure 5.2  Compound Topographic Index (CTI) derived for the Pilbara Region. 
 

5.3.2 Step 2: Standardise layers 

The rank exponent method using an exponent of 2 was trialled as a standardisation 

tool in this study.  The weights derived from this method were normalised, as 

described in Section 5.2.2.  This technique was used to standardise both land systems 

(according to pastoral potential) and land uses.  Pastoral potentials were ranked from 

1 to 6, with 1 representing very high pastoral potential and 6 very low (Payne and 

Mitchell, 2002).  The standardised values assigned to each of the pastoral potential 

ratings are shown in Figure 5.3.   

 

Land uses were ranked according to their likelihood for promoting mesquite 

invasion, with the presence of cattle receiving the highest rank, based on the 

hypothesis that cattle are necessary, yet not sufficient, to generate extensive mesquite 

populations.  It was deemed inappropriate to assign the other land uses to ‘0’, since it 

would not account for other dispersal vectors (e.g. wallaroos and emus), which can 

also result in mesquite invasion and thicket formation, and would not allow the 

presence of other favourable criteria to compensate for the absence of cattle.  
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Therefore, all other land uses were ranked second.  Consequently, land uses were 

standardised to ‘1’ (representing the presence of cattle) and ‘0.25’ (representing all 

other land uses) based on the rank exponent method (exponent=2) (Figure 5.4).  The 

stock route (see Figure 3.11) was essentially ignored by assigning it to a contiguous 

class.   
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Figure 5.3  Fuzzy membership values assigned to each of the pastoral potential 

ratings. 
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Figure 5.4 Fuzzy membership values assigned to each of the land uses. 
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A frequency histogram was constructed using 500 presence data (not used for 

validation) to assist in the identification of the required parameters to construct a 

fuzzy membership function to standardise the CTI.  A right skewed distribution was 

found, with a minimum of 5.5, and a median of 9.4.  A monotonically increasing 

sigmoidal function is considered appropriate for right-skewed data, where the 

minimum marks the point at which the membership function begins to rise above 

zero, and the median represents the point at which all values greater are assigned a 

value of one (Robertson et al., 2004).  Therefore, the CTI layer was standardised 

using a monotonically increasing sigmoidal function (see Figure 5.5) using the 

following formula and parameters (Eastman, 2006): 

 

 αμ 2cos=  (5.8) 

 2/*)intint/()int( πα apobpoapox −−=           (5.9) 

if x>point b, μ=1 (5.10) 

 

where: x=CTI of a pixel; 

 point a=5.5; and 

 point b=9.4; 
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Figure 5.5  Fuzzy membership values assigned to the CTI layer.   



106 

5.3.3 Step 3: Derive and apply weights 

Weights were derived using the pairwise comparison method as described in Section 

5.2.3.  The pairwise comparison matrix, derived weights and consistency ratio are 

shown in Table 5.3.  Soil moisture (CTI) was considered slightly more important 

than pastoral potential (derived from land systems) based on the findings from 

Chapter 4 that showed that mesquite colonised and increased significantly more 

rapidly in the riparian zone than over the red loamy soils, even though both had the 

same soil type.  Soil moisture was deemed to be moderately more important than 

land use because, although mesquite is successfully dispersed via livestock, with 

poor soil moisture it is less likely to survive.   Pastoral potential was deemed to be 

slightly more important than land use for a similar reason: while seeds may be 

widely dispersed by livestock, they are unlikely to survive in harsh and poorly fertile 

soil.   

Table 5.3   Pairwise comparison matrix used to weight each individual layer prior 
to assigning order weights.   

 
 CTI Pastoral potential Land use Weight 

CTI 1 2 3 0.54 

Pastoral potential 1/2 1 2 0.30 

Land use 1/3 1/2 1 0.16 

Consistency ratio = 0.01 (consistent) 

5.3.4 Step 4: Apply ordered weights 

OWA was used to create three outputs representing the suitability of the Pilbara area 

to mesquite invasion.  Each model successively incorporated more risk, thereby also 

altering the level of trade-off in the final solution.  Table 5.4 lists the model names 

assigned to each of the three model outputs along with the order weights applied.  

The degree of ANDness, ORess (risk) and trade-off inherent in the models is 

computed using Equations 5.4, 5.5 and 5.6 respectively.  Figure 5.1 also illustrates 

these parameters graphically.   
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Table 5.4  Order weights used to control the risk-trade-off continuum for the 
three knowledge driven models computed. 

 
Model Name Order Weights ANDness ORness Trade-off 

Fuzzy Conservative [0.5, 0.3, 0.2] 0.65 0.35 0.73 

Fuzzy WLC [1/3, 1/3, 1/3] 0.5 0.5 1 

Fuzzy Risky [0.2, 0.3, 0.5] 0.35 0.65 0.73 

5.3.5 Step 5: Validate model 

In order to reduce the impact of spatial dependency and bias in the observations, an 

arbitrary 500 samples were randomly selected from the aerial survey for both 

presence and absence of mesquite (1000 samples in total; see Figure 5.6) (Huberty, 

1994; Fielding and Bell, 1997).  It is a necessary assumption that these samples 

represent true presences and absences; however, evidence suggests that mesquite is 

still rapidly expanding, so has unlikely reached its full distribution (van Klinken et 

al., 2007; Robinson et al., 2008).  These validation data were then used to construct a 

relative operating characteristic (ROC) plot, which plots the false positive fraction 

(FPF; 1-(true negatives/(true negatives + false positives))) against the true positive 

fraction (TPF; ((true positives/true positives) + false negatives)) for a set number of 

thresholds (see Section 2.5.4.2).  The area under the curve (AUC) was calculated 

using the trapezoidal rule, as follows (Pontius and Schneider, 2001): 

 ]2/][[ 11
1
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i yyyxxAUC −+−= ++

=
∑  (5.11) 

 

where: xi is the false positive fraction at threshold i; 

 xi+1 is the false positive fraction at threshold i+1; 

 yi is the true positive fraction at threshold i; and 

 yi+1 is the true positive fraction at threshold i+1; 

 

An AUC of 0.5 indicates that the suitability values are assigned at random locations 

throughout the region and an AUC of 1 indicates a perfect model (Ayalew and 

Yamagishi, 2005).  AUC values can be interpreted as indicating the probability that, 

when a presence site and an absence site are drawn at random from the population, 
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the first will have a higher predicted value than the second (Elith et al., 2006).  In this 

study, each model was ‘sliced’ 100 times by ranking the highest 1% of suitability at 

slice ‘1’ and assigning these cells to ‘1’ and the other 99% to ‘0’, the highest 2% at 

slice ‘2’ until slice ‘100’ had all pixels assigned ‘1’.  The TPF and FPF were 

determined at each slice, allowing the AUC to be calculated based on 100 data for 

each model.  The ROC plot and AUC was then used to compare the models to 

determine which was the most accurate.  For example, a model with a higher AUC 

and a ROC plot that consistently outperforms other models is deemed the most 

accurate, because it minimises both false negatives (mesquite present, but model fails 

to predict it) and false positives (mesquite absent, but model predicts it as present) 

(Zweig and Campbell, 1993; Fielding and Bell, 1997). 

5.3.6 Step 6:  Examine optimal cut-points 

Cut-points are often used to transform the results of suitability models derived on a 

continuous scale to one representing predicted presences/absences (Liu et al., 2005).  

Two approaches were examined in this study.  The first approach was based on 

selecting the point on the ROC curve that is closest to the upper left corner (0,100%) 

since that point represents a perfect classification (Cantor et al., 1999; Liu et al., 

2005).  The second approach was based on the Kappa statistic.  The equation for its 

calculation is shown in Section 2.5.4.1.  This statistic is dependent on a single 

threshold to distinguish predicted presence from predicted absence (Fielding and 

Bell, 1997).  Therefore, to identify the most reliable cut-point it needs to be 

calculated for all possible thresholds and the maximum value of Kappa chosen as the 

model most representative of the validation data (e.g. Robertson et al., 2003; 2004).       

5. 4 Results  

All three models produced on a continuous scale generally agree that the highest 

suitability of the Pilbara region to mesquite invasion predominantly occurs in 

relatively contiguous areas on the northern coastline (Figure 5.6).  A narrow inland 

band of suitability is also prominent south-east of Pannawonica to just north of 

Newman.    

 

In general, there is a good visual agreement between the presence data and the 

suitability values produced for the three models (Figure 5.6).  However, while 
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average suitability is higher for presence data, suitability values for absent data are 

significantly greater than zero for all three models (Table 5.5). 

Table 5.5   Average (and standard deviation) suitability values for presence and 
absence records for the three models implemented.  

 
  Fuzzy Conservative Fuzzy WLC Fuzzy Risky 

Presence 0.71 ± 0.19 0.72 ± 0.14 0.79 ± 0.09 Average 

Suitability Absence 0.43 ± 0.22 0.47 ± 0.19 0.57 ± 0.14 

 

 

Figure 5.6  Model outputs illustrating the suitability of the study area to mesquite 
invasion: (a) Fuzzy Conservative; (b) Fuzzy WLC; and (c) Fuzzy 
Risky.  Note the wider levels of suitability predicted between models. 
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Figure 5.7 shows the ROC curves for each of the three models.  As can be seen from 

these curves, the ‘fuzzy risky’ model is deemed the most representative of the three, 

producing a higher true positive fraction, which corresponded with a lower false 

positive fraction for the majority of thresholds on which it was calculated.  The AUC 

for this model was calculated to be 0.87, which was higher than the ‘fuzzy 

conservative’ model (AUC=0.80) and the ‘fuzzy WLC’ model (AUC=0.83).  Figure 

5.7 also illustrates the point at which the ROC curves are closest to the top left corner 

(0,100%), considered as the optimal cut-point as suggested by Cantor et al. (1999) 

and Liu et al. (2005).  This was found to be the top 10% of ranked pixels for the 

‘fuzzy risky’ model and corresponds to a TPF of 92% and a FPF of 23.4%.  The top 

15% of pixels were found to be the optimal cut-points for both ‘fuzzy WLC’ model 

(TPF=93.4%; FPF=36.2%) and the ‘fuzzy conservative’ model (TPF=88.6%; 

FPF=38.8%).   
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Figure 5.7  Relative Operating Receiver (ROC) plots for the three models 
implemented.  Squares represent the closest point to the top left corner 
(optimal cut-points).  Adjacent captions represent the percentage of 
ranked pixels (in descending order) that make up the optimal cut-
point.   
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The maximum value of Kappa for all three models provided further confirmatory 

evidence that the ‘fuzzy risky’ model was the most representative of the 

presence/absence data.  A maximum Kappa of 0.686 was found for the ‘fuzzy risky’ 

model, which can be described as a good to very good agreement with the 

presence/absence data using the ranges proposed by Monserud and Leemans (1992).  

As with the optimal cut-point method used on the ROC curves, the maximum Kappa 

was also found to be the top 10% of ranked pixels.  The error matrix from which this 

value was calculated can be seen in Table 5.6 and shows that 92% of observed 

present data are predicted as being present and 77% of observed absence data are 

predicted as absent.  The maximum value of Kappa for the ‘fuzzy conservative’ 

model was found to be 0.516, which can be described as a fair representation of the 

presence/absence data.  The maximum Kappa method highlighted the top 18% of 

ranked pixels as the most representative of the presence/absence data, whereas the 

ROC plot highlighted the top 15%.  The maximum value of Kappa for the ‘fuzzy 

WLC’ model was found to be 0.572 and can be described as having good agreement 

with the validation data.  Maximum Kappa for this model was associated with the top 

15% of ranked pixels and, therefore, coincided perfectly with that found from the 

ROC plot.   

Table 5.6  Error matrix representing the number of pixels observed versus the 
number predicted from the ‘fuzzy risky’ model for the top 10% of 
pixels (Kappa = 0.686).  

 
 Observed 

 Presence Absence 

Presence 460 117 

Pr
ed

ic
te

d 

Absence 40 383 

 Totals 500 500 

 Agreement 92% 77% 

 

The optimal threshold obtained from both the ROC method (and corresponding 

Kappa maximum method) was used to create a Boolean image of suitability (Figure 

5.8).  The top 10% of pixels (blue pixels) represent tracts of land that have similar 

environmental attributes to those found where mesquite is currently present.  Pixels 

ranked lower than the top 10% were assigned to ‘0’ and represent areas less suitable 

to mesquite invasion (light brown/orange pixels). 
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Figure 5.8 shows that large pockets of the northern coastline, often associated with 

drainage features, are highly suitable for invasion by mesquite.  In total, 

approximately 12,000 km2 of the coastal areas (or 10% of the area modelled) are 

considered highly suitable.  This also represents the concerns reported by Kendrick 

and Stanley (2001) who have identified permanent pools within 40 km of the coast 

on the Turner, Yule, Sherlock, Fortescue and Maitland Rivers as highly suitable for 

mesquite (and parkinsonia) invasion.  Furthermore, they have also recognised that 

riparian zone vegetation along the Fortescue, Maitland, Turner, De Grey, George and 

Sherlock Rivers are prime habitats for mesquite invasion to occur, which have also 

been highlighted in this study (Figure 5.8).  The relatively contiguous inland band of 

suitability is comprised of an area of roughly 6400 km2 (5% of the area modelled).  

Thus, in total approximately 15% of the Pilbara region studied is considered to be 

highly suitable for invasion.   

 

 

Figure 5.8  Map showing the suitability of the Pilbara to mesquite invasion split 
into two classes.  Note the high suitability along the drainage systems 
and river mouths along the northern coastline.   
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5. 5 Discussion 

In contrast to correlative models, the modelling techniques presented here do not rely 

on (direct or indirect) statistical correlations between the invasive species and 

environmental variables but rather incorporate existing knowledge of a particular 

species response to various environmental attributes.  In this study such knowledge 

was incorporated using fuzzy membership functions (FMFs), which offer a flexible 

procedure for expressing the response of the target species to a particular 

environmental variable.  In particular, FMFs are able to incorporate the notion that 

some conditions are more favourable than others and the differences are continuous.  

In addition, unlike correlative models, fuzzy membership functions can be developed 

without the need for presence/absence records and hence can be used for very 

isolated or recent introductions where the parameters for invasion are relatively well 

understood or where such records are difficult to obtain (e.g. remote rangelands) 

and/or too expensive to collect.  While this is considered an advantage of such 

models, the somewhat subjective manner in which the FMFs are constructed can also 

be viewed as a weakness when compared to correlative models (e.g. logistic 

regression) where the shape of the response curves to environmental attributes are 

defined by the data in a more direct fashion (Robertson et al., 2004).  However, to 

define such curves a sufficient sample size needs to be collected over all areas, which 

may rely on the generation of pseudo-absence records (random points throughout the 

study area assuming no presence or no likely presence of the target species) over 

areas where the species may not have had a chance to colonise.  Such a process also 

has inherent risks.  

 

The continuous representation of the suitability of a region to invasion from the 

models produced indicates to the map user a level of uncertainty in the prediction 

(Heuvelink and Burrough, 1993).  These models show that while invasion may be 

unlikely in certain areas, the map user can identify as to what extent it is unlikely on 

a scale from ‘0’ to ‘1’, and thus can be interpreted as a continuum of suitability.  For 

example, an area with a value of 0.5 may be somewhat unlikely for invasion, yet 

more likely than an area with a value of 0.1.  Therefore, by incorporating and 

displaying the uncertainty of the input data used to create the model, these outputs 

attempt to optimise generality.  By defining the optimal cut-points as the last stage of 

the analysis, the model is effectively transformed to optimise accuracy.  While 
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valuable information is lost during this phase, the potential for favourable 

information to compensate for less favourable information has still been achieved.  

This is not true of crisply standardised models (e.g. basic profile techniques), where 

valuable information is discarded in the Boolean standardisation process at the first 

step of model building.   

 

OWA enabled the production of three outputs, which represent different risk/trade-

off scenarios.  The best model was produced by assigning more importance to pixels 

ranked higher out of the three layers used.  This is considered more risky than 

assigning equal ordered weights, or more importance to poorer ranked layers, 

because it considers favourable evidence as being more sufficient for enabling 

invasion, than just necessary.  The fact that the conservative and WLC models 

performed poorer than the risky model suggests that assigning more importance to 

pixels with higher suitability increases the true positive fraction at a rate faster than 

the false negative fraction and, therefore, favourable evidence does not occur in 

tandem over many of the areas where absence data has been recorded.   

 

This study demonstrated that the amount of risk inherent in each model can be 

directly altered through the manipulation of ordered weights.  Suitability predictions 

can therefore be developed at any point on the risk/trade-off scale, so that predictions 

can be based on the poorest ranked ecological variable, the best ranked ecological 

variable or any ranking in between these two extremes.  This is likely to be a 

desirable quality for a range of users of suitability maps, and therefore, may have 

wide application.  For example, conservation planners may choose a conservative set 

of ordered weights, while managers of invasion species may adopt a more liberal set.   

 

The level of detail at which the layers were mapped for this study is reasonably 

coarse and as such may result in overestimation, through generalisation, of the 

potential areas for invasion (Hulme, 2003; Collingham et al., 2000).  This is because 

coarse resolution datasets tend to homogenise the landscape, while higher resolution 

datasets will define the subtleties of the landscape (Ball, 1994).  As a result, 

management responses must remain equally generalised.  For example, within a 

mapped land system there is known to be greater heterogeneity that was not captured 

at this regional level of mapping (Beard, 1975; Mitchell and Wilcox, 1994).  This is 
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confirmed by examination of aerial photographs (1.4 m resolution) of the area and by 

field work (unpublished data).  Additionally, while the areas where cattle are present 

are known, there is also likely to be substantial variation in their numbers at a 

paddock scale.  Therefore, finer resolution datasets, including fine scale elevation 

records, which could be used to further refine the CTI, could be collected over areas 

of greatest interest and the techniques described in this chapter could be reapplied.  

This would be an advantageous way to highlight the applicability of each of the 

models employed in this study.  Additionally, this would enable the derivation of 

relationships between density recordings (from the aerial survey) and the continuous 

outputs of the local model so that a series of cut-points could be constructed.  Such 

an approach was used to reclassify continuous maps of potential distribution 

predictions for a number of biocontrol agents (insects) for the control of Lantana 

camara based on the level of damage caused to the invader and the abundance of 

these agents (Baars, 2002).   

 

Model evaluation relies on the assumption that absence records represent an 

underlying reason for the invasive species to have avoided such areas, which may not 

be true for many alien species whose distributions are still relatively young and/or 

still expanding.  Both conditions are true in the case of the mesquite population 

studied here, which is approximately 70 years old and still rapidly expanding (van 

Klinken et al., 2007; Robinson et al., 2008).  Repeat sampling and model refinement 

through iteration is thus required (Hulme, 2003).  These additional samples would be 

most advantageous over a range of different environmental conditions, to ensure that 

data currently used to describe mesquite as being absent actually represents 

conditions precluding mesquite invasion, not simply that mesquite has not had 

sufficient time to invade there.  This is particularly relevant to this study because, 

while the models were able to predict a very high number of presence data, it could 

not exclude all absence data suggesting that either these areas are somewhat suitable 

(and that mesquite has not had sufficient time to invade there) or, as mentioned 

above, the scale of the data is too aggregated.   For example, the previous chapter 

showed, at a more local scale, that although mesquite prefers the more mesic parts of 

the landscape, over time and given the opportunity (e.g. the presence an effective 

dispersal) even more resilient land types may be suitable sites for invasion (Robinson 
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et al., 2008).  Therefore, standardised values (and, potentially, layer weights) may 

need to be revised if the modeller becomes aware that invasion is still highly 

probable in these areas.   

 

Utilising error measures that take into account the spatial configuration of the data 

may also be justified for model assessment.  For example, false positives in close 

proximity to true positives may be less serious than false positives distant from real 

positives (Fielding and Bell, 1997; Collingham et al., 2000).  This is simply because 

false positives near true positives are likely to require inspection and management 

intervention by virtue of their proximity (spatial autocorrelation).  False positives at 

some distance from true positives pose less of a threat.  Additionally, if resources are 

available, the cut-points can be inflated to maximise the true positive fraction, at the 

cost of including a higher proportion of false positives (Fielding and Bell, 1997).  In 

other words, the cost of controlling invasive species once they become colonised 

may be mitigated by spending more on ensuring they do not invade by monitoring a 

wider than expected potential range.  These areas may be included as a third class in 

the final model that represents the uncertainty given by the continuous outputs, 

similar in fashion to the marginal range given by the BIOCLIM model.  

 

Many recent studies have advocated the use of ROC plots over the maximum Kappa 

method for model evaluation because it uses a range of thresholds, which are less 

likely to introduce distortions (e.g. Fielding and Bell, 1997; Pontius and Shneider, 

2001; Liu et al., 2005).  However, in this research, the two methods suggested 

identical or nearly identical cut-points for all models.  This may be explained by 

using evaluation data with a prevalence of 50% – that is, an identical number of 

presence and absence data were used (500 each).  Liu et al. (2005) suggests in such a 

case that most methods converge on the same solution.  However, the ROC method 

has one deficiency – the AUC is difficult to interpret.  For example, the difference 

between the three models was only 0.07 (0.87-0.8), yet the ranges proposed by 

Monerud and Leemans (1992) for Kappa statistics suggest that the poorest model 

(‘fuzzy conservative’) returned only a fair representation of the dataset, while the 

best model (‘fuzzy risky’) provided a good to very good representation of the dataset.  

Elith et al. (2006) suggest that this is because the ROC method is a rank-based 

statistic and therefore the prediction at the presence site can be higher than the 
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prediction at the absent site by a small or large amount, and the value of the statistic 

will be the same.  Therefore, it would seem appropriate to use more than one 

evaluation statistic, particularly if the researcher is able to use data with a prevalence 

of 50%, when examining the effectiveness of model outputs.   

5. 6 Summary 

This chapter implemented a knowledge driven model for predicting the suitability of 

mesquite invasion in the Pilbara region.  Layers were standardised on a scale of 

suitability from 0 to 1 and thus represents an improvement on crisply defined models 

(e.g. profile techniques).  This was achieved through the use of fuzzy membership 

functions (continuous layers) or a modification of the rank exponent method 

(categorical layers).  Layers were weighted based on their perceived importance for 

enhancing suitability using pairwise comparison and combined using weighted linear 

combination (WLC).  Ordered weighted averaging (OWA) was used to augment 

WLC to provide three outputs that differ in the amount of risk and trade-off assumed.  

Models were evaluated using both the area under the curves produced from ROC 

analyses and by the maximum Kappa procedure.  Both techniques agreed that the 

model most representative of the validation data was the one assuming the greatest 

risk (‘fuzzy risky’).  Optimal cut-points were derived using the point closest to the 

top left hand corner of the ROC plots and by the maximum Kappa method.  Both 

methods suggested similar or identical cut-points.  The highest AUC was found to be 

0.87 and, based on the maximum Kappa method, can be described as a good to very 

good agreement with the validation records used.   
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6 ASSESSMENT OF HIGH SPATIAL RESOLUTION MULTISPECTRAL 
AND HYPERSPECTRAL IMAGERY FOR DISCRIMINATING 
BETWEEN MESQUITE AND OTHER WOODY SPECIES  

6. 1 Introduction 

Encroachment of invasive plants into grasslands poses a significant threat to 

biodiversity (Gibbens et al., 1992) and ecosystem functioning (Schlesinger et al., 

1990) and is an issue of concern worldwide (Mack et al., 2000).  Knowledge of both 

the location and areal extent of such species are perhaps the most crucial information 

required to assist both land managers and policy makers in the crafting of 

management strategies.  A robust and repeatable tool is thus required to enable 

monitoring at regular time intervals in order to track changes, quantify the 

effectiveness of control interventions and reassess management strategies.  These 

kinds of assessments from ground surveys are costly and extremely difficult for 

broad-scale invasions, particularly in inaccessible rangelands.  However, remotely 

sensed imagery is a potential data source for this information that is less labour 

intensive than ground surveys and can provide timely information over large and 

inaccessible areas (Underwood et al., 2003).   

 

Remote mapping of invasive plants with high spatial resolution (e.g. <5 m) 

multispectral (e.g. three to four band) airborne imagery has typically been limited to 

species that exhibit a highly discernible biological trait such as a unique flower, fruit 

or bract colour (e.g. Everitt and Villarreal, 1987), erectophile canopy architecture 

(e.g. Everitt et al., 1992b), seasonal changes in colour (e.g. Everitt and DeLoach, 

1990 and Everitt et al., 1996), defoliation (e.g. Everitt et al., 1999) and/or unique 

growth habits such as thicket formation (e.g. Frazier, 1998; Everitt et al., 2004).  The 

presence of one or more of these traits may provide sufficient spectral separation to 

enable their detection using high spatial resolution yet low spectral resolution 

imagery and relatively unsophisticated image processing techniques such as the 

unsupervised ISODATA algorithm (e.g. Ramsey et al., 2002; Everitt et al., 2001; 

2002; 2003) or the maximum likelihood algorithm (e.g. Carson et al., 1995).   

 

In many other cases, the biological traits of invasive plants may not be sufficiently 

unique to provide an adequate spectral dissimilarity from coexisting species to enable 

discrimination with the use of multispectral imagery.  Therefore, there has been a 
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tendency to advocate the use of hyperspectral imagery for these more challenging 

species in order to isolate spectral differences that may be masked by the broad band 

widths of multispectral imagery (Schmidt and Skidmore, 2003).  While studies have 

shown that hyperspectral imagery is capable of mapping invasive plants (e.g. Parker-

Williams and Hunt, 2002; Lass et al., 2002; Underwood et al., 2003; Lass and 

Prather, 2004; Mundt et al., 2005; Glenn et al., 2005; Lass et al., 2005; Lawerence et 

al., 2006; Miao et al., 2006; Deehan et al., 2007; and Hamada et al., 2007) few have 

made a quantitative comparison of the two media for particular species.  Moreover, 

in many cases, multispectral imagery has already been shown to be sufficient for 

mapping the target species.  Such species include blackberry (e.g. Ullah et al., 1989; 

Frazier, 1998; and Dehaan et al., 2007), tamarix species (e.g. Everitt and DeLoach, 

1990; Everitt et al., 1996; and Hamada et al., 2007), yellow starthistle (e.g. Lass et 

al., 1996; and Miao et al., 2006) and leafy spurge (e.g. Everitt et al., 1995; and Glenn 

et al., 2005).  Hence, it is difficult to gauge whether these species represent a real test 

for hyperspectral imagery or how much better hyperspectral imagery has been at 

mapping these species.  Selecting one medium over another depends on several 

factors, including accuracy requirements and parsimony in terms of cost, processing 

time and ease of image processing and its potential for automation.   

 

Studies have shown that, when mapping woody species, the high spatial resolution of 

airborne multispectral imagery can assist in the exploitation of the spectral 

information available through the use of various statistics (herein referred to as patch 

statistics) assigned to their crowns or woody assemblages (e.g. thickets; herein 

collectively referred to as patches) of the various species present within the same 

scene (e.g. Brandtberg, 2002; Haara and Haarala, 2002; Erikson, 2004; Foody et al., 

2005; Hamada et al., 2007).  However, this has rarely been done in studies designed 

to map invasive plants and needs further exploration in this field.  For example, the 

maximum response from all pixels representing a highly vigorous shrub is likely to 

be higher in the near infrared portion of the spectrum, than a shrub with erect leaves 

or undergoing defoliation. However, this can be masked by variable illumination 

conditions caused by shrubs of different heights (e.g. shadow effects) and structure 

(e.g. Gong et al., 1997) if the spectral response per pixel is used as the only 

information on which to classify.  In such a case, the variation may be so great that 

pixels representing the same plant may be incorrectly classed as multiple species. 
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An additional method that can be used to focus on a single class of interest, which 

has rarely been considered in weed mapping studies, is the selection of variables (e.g. 

bands, patch statistics or other ancillary data) that best separate the target species 

from each of the coexisting species in turn.  Instead, most studies have chosen 

variables that exploit differences between all species in their classification routine.  

The ultimate aim of these methods is to optimise overall accuracy.  However, when 

the map user is only interested in the accuracy of one class (e.g. plant species), Lark 

(1995) demonstrates that, through judicious selection of appropriate variables, it 

might be possible to optimise the accuracy for only that class.  Foody et al. (2005) 

provide an application of this concept and demonstrate the improvement in accuracy 

when selecting variables that focus on the class of interest (the invasive sycamore 

tree (Acer pseudoplatanus)) versus each coexisting species in turn, over attempting 

to optimise overall accuracy.  They then combine these outputs using Boolean logic 

operators (e.g. Boolean OR and the Boolean AND).  

 

A robust monitoring tool should also disclose the reliability of mapping patches of 

various sizes.  For example, small and isolated patches can challenge detection and 

often go unnoticed.  These satellite populations can result in the colonisation of new 

areas or range expansion of the existing population (Moody and Mack, 1988).  

Additionally, such knowledge can assist in how the outputs are used for 

management.  For example, it is unlikely to be appropriate to monitor an invasion 

front if the imagery and associated classification techniques can only reliably detect 

large patches (e.g. thickets).   

 

Currently, efforts to directly map and monitor the distribution of mesquite are rare 

using either multispectral or hyperspectral imagery and, therefore, little guidance is 

available for choosing between the two mediums.  In this study, several well known 

(e.g. mean, maximum, minimum, standard deviation) and novel patch statistics (e.g. 

majority, variety) are derived from 1 m resolution, 4 band, digital multispectral 

imagery (DMSI) in an attempt to derive greater information to assist in the 

discrimination of mesquite from coexisting species.  Results are compared to just the 

mean patch statistic (average spectral response of a patch) extracted from the crowns 

of 3 m resolution, 126 band, hyperspectral imagery.  Two approaches are taken in the 
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selection of the most suitable patch statistics to use for training the classifier: those 

that best separate all species (referred to as overall separation) and those that could 

best discriminate between mesquite and each of the other species in a pairwise 

fashion (e.g. mesquite versus snakewood; mesquite versus eucalyptus).  This 

approach is referred to as pairwise separation herein.  To identify the reliability of 

classifying mesquite shrubs of various sizes, they are grouped into size-classes and 

their accuracy defined for both datasets.  Artificial neural networks (ANNs) were 

chosen to classify both datasets because recent studies consider them to be a superior 

classification tool than many of the techniques used to classify multispectral airborne 

imagery in past invasive plant mapping studies, such as ISODATA or the maximum 

likelihood algorithm (c.f. Lee et al., 1990; Benediktsson et al., 1990; Atkinson and 

Tatnall, 1997).   

6. 2 Artificial Neural Networks (ANNs) 

ANNs have become a popular tool for the classification of remotely sensed data, 

largely because they are non-parametric and thus are free from the restrictive 

assumptions of statistical classifiers (e.g. maximum likelihood) such as requiring 

multivariate normal distributions.  The following gives a brief explanation of the 

architecture, required parameters and the manner in which ANNs learn how to 

recognise and classify the pixels of digitally acquired imagery.  

6.2.1 Network architecture and forward propagation 

An ANN consists of a set of nodes (or neurons) arranged in a layered architecture 

that, combined, may be used to transform pixels from remotely sensed imagery into a 

class allocation (Foody et al., 2005).  The ANN used in this research is the multilayer 

perceptron (MLP), which consists of an input layer, an output layer and one or more 

hidden layers (Figure 6.1).  The number of input and output nodes is determined by 

the characteristics of the remotely sensed data to be classified and the desired 

classification scheme, respectively (Foody, 2001).  Generally, the number of input 

nodes is equal to the number of variables (e.g. bands) used in the classification 

process and the number of output nodes is equal to the number of output classes (e.g. 

plant species) upon which the dataset is being trained on.   
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Figure 6.1 Neural network architecture of a multilayer perceptron used for the 
classification of remotely sensed data (adapted from Paola and 
Schowengerdt, 1995).  

 

Each layer is interconnected to the following layer, but there are no interconnections 

within a layer (Figure 6.1).  The input layer serves as a distribution structure for the 

data being presented to the network.  No processing is done at this layer.  The 

interconnections between each node have an associated weight.  When a value 

(pixel) is passed down that interconnection it is multiplied by that weight.  These 

weight values contain the distributed knowledge of the network (Paola and 

Schowengerdt, 1995).  The role of the hidden layer nodes is to formulate the 

weighted sum of all of its inputs (Foody, 2001), which is achieved using Equation 

6.1 (Atkinson and Tatnall, 1997; refer to Figure 6.1 for notation):   
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The output from a given node, j, is then computed, typically using a non-linear 

sigmoid function that is applied to the weighted sum of inputs (netj) such as (Foody, 

2001): 

             )exp1/(1 netjjo λ−+=  (6.2) 

where  λ is a constant that modifies the shape of the sigmoid.   

 

Output unit, ok, is computed in the same way (Murai and Omatu, 1997).  This 

process is known as forward propagation.   

6.2.2 Adjusting interconnecting weight values: Backpropagation 

Once the forward propagation is completed, the activities of the output nodes are 

compared with their expected activities.  Each node in the output layer is associated 

with a class.  When a pattern is presented to the network it will generate a value that 

indicates the similarity between the input pattern and the corresponding class.  A 

measure of error is then calculated between the actual output and the expected output 

using the root-mean-square error equation (Eastman, 2006): 

             PN
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where P is the number of nodes in the input layer;  

N is the number of output nodes (classes); 

tpk is the target output of the pth training pattern of the kth node in the output 

layer; and  

opk is the actual output of the pth training pattern of the kth node in the output 

layer.   

 

Backpropagation, using a gradient descent function known as the generalised delta 

rule, is then used to continually adjust the interconnecting weight values to minimise 

the RMSE (Equation 6.3).  Two functions are used to manipulate the different 

weights between the input nodes and the hidden layer nodes (Equation 6.4) and the 
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hidden layer nodes and the output layer nodes (Equation 6.5).  Refer to Rumelhart et 

al. (1986) for further information and their derivation.  

 )()()1( nwonw jiijji Δ+=+Δ αδη  (6.4) 

                )()()1( nwonw kjjkkj Δ+=+Δ αδη  (6.5) 

where Δwji(n+1) is the change of a weight connecting nodes j (hidden layer nodes) 

and i (input layer nodes) at the (n+1)th iteration; 

 Δwkj(n+1) is the change of a weight connecting nodes j (hidden layer nodes) 

and k (output layer nodes) at the (n+1)th iteration; 

 n is the iteration number;  

δjoi is an index of the rate of change of the error with respect to the output 

from node i;  

δkoj is an index of the rate of change of the error with respect to the output 

from node j;  

  η is the learning rate parameter; and  

  α is the momentum parameter.   

 

The learning rate (η) is the percentage of the step taken towards the minimum error at 

iteration (Paola and Schowengerdt, 1995).  Low values can cause the network to 

converge on a solution at an unacceptably slow rate, whilst values too high may 

result in the best solution being stepped over and thus unrealised (Figure 6.2a).  

During the training phase, if the network encounters a local minimum it can get stuck 

and the global minimum error may not be found (Figure 6.2b).  It is also possible for 

the system to oscillate between two points (Paola and Schowengerdt, 1995).  The 

purpose of the momentum parameter (α) is to avoid such local minimum errors and 

oscillatory changes and reinforce general trends so that the network continues to 

descend towards the global minimum error.  The process of backpropagation is 

repeated for a set number of iterations or until the error of the neural network is 

minimised or reaches a user defined acceptable magnitude, at which point it is 

considered to have learnt to recognise the possible patterns (Bishop, 1995).   
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6. 3 Methodology 

6.3.1 Collection of training and testing data 

Training and testing data were acquired in September 2005.  An existing track (see 

Figures 3.6 and 3.7) running predominately northeast was used as a transect line to 

assist a convenience style sampling method (de Grujter, 1999).  This sampling 

technique was used as it enabled sampling over the full length of the DMSI image 

and was relatively quick, thus allowing the gathering of an adequate number of 

samples.  Woody vegetation present on the imagery (e.g. mesquite, eucalyptus and 

snakewood) that could be unambiguously identified in both the field (with the aid of 

a GPS) and on enlarged maps of the DMSI were labelled as to species type and later 

digitised and stored in a GIS.  As all coexisting woody vegetation is long-lived, the 

delay between image acquisition and field work did not affect sample collection.  

Two-thirds of the sample set was used to assist in the selection of patch statistics for 

both the overall separation and pairwise separation approaches (see Section 6.3.6.1) 

and to classify both the DMSI and hyperspectral imagery using an ANN.  One-third 

was kept aside to assess the accuracy in terms of both class allocation and size of 

mesquite patch that can be reliably detected from both image types. As the flight line 

used to collect the hyperspectral imagery was designed to overlap the DMSI imagery 

collected, the same plants were used as training and testing data, with some 

exceptions: (i) because the hyperspectral imagery has a spatial resolution of 3 m, 

small isolated plants could not be resolved and, therefore, had to be removed; and (ii) 

as different methods were used to geo-reference the different images, the training 

data had to be redrawn.   

 

Global min error 

Figure 6.2 Potential errors caused by (a) poor choice of the learning rate parameter 
(set too high); and (b) neglecting to set the momentum parameter (see 
text).  
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A total of nine sequential steps were used to classify the DMSI and hyperspectral 

imagery and assess their potential as a monitoring tool.  These steps are described in 

more detail hereafter.  

6.3.2 Step 1: Patch extraction 

To extract the patches of all woody vegetation (mesquite, eucalyptus species and 

snakewood) found within the DMSI and overlapping hyperspectral strip, the raw 

image bands were first processed using an unsupervised classification routine 

(ISODATA), with required parameters found heuristically (20 iterations, 5 clusters).  

Woody vegetation was easily discerned from grasses and soils using this method.  

Only those pixels representing woody vegetation were used in subsequent analyses.  

All contiguous pixels were then grouped to form patches, which were then assigned 

patch statistics (see Section 6.3.2).     

6.3.3 Step 2: Assignment of patch statistics 

The assignment of patch statistics differed between the DMSI and the hyperspectral 

imagery.  Seven patch statistics were assigned to each of the four bands of the DMSI, 

resulting in a total of 28 discriminatory variables (Table 6.1) for each patch.  

However, as the power of hyperspectral imagery is its spectral resolution, only the 

mean was extracted from the patches found within the hyperspectral imagery.  

Moreover, the assignment of 7 statistics for 126 bands would result in 882 new files, 

which is impractical and prohibitively too large to store and process.   

Table 6.1 Description of the statistics calculated for each patch. 
 
Statistic Description 

Maximum The highest digital number of a patch.   

Mean The mean of all digital numbers of a patch. 

Median The median of all digital numbers of a patch. 

Minimum The minimum value of all digital numbers of a patch. 

Standard Deviation The standard deviation of all digital numbers of a patch.  

Majority The spectral response (digital number) that occurs most often for a patch.  
Shrubs with homogenous cover would be expected to have a stable majority 
throughout its population. 

Variety The number of different digital numbers of a patch.  Shrubs with homogenous 
cover would be expected to have a low variety coefficient, as opposed to shrubs 
showing a high level of variation.  
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6.3.4 Step 3: Normalisation 

The newly created patch statistics were each rescaled to be within the range of 0 and 

1, by dividing each by its respective maximum value.  This procedure has been 

shown to improve the ANNs performance (Mather, 2004) and avoid it stalling at an 

error level that is too high (early saturation) (Kanellopoulos and Wilkinson, 1997).   

6.3.5 Step 4: Exploratory analysis 

Spectral plots were analysed visually to identify the reflectances of each species at 

each wavelength to initially determine the likelihood of successfully differentiating 

mesquite from associated species.  

 

Differences between species for each of the patch statistics were tested using analysis 

of variance.  Tukey’s HSD test was used to separate means at the 0.05 probability 

level.  If mesquite was not significantly different from at least one species, that patch 

statistic was immediately excluded from further consideration.   

6.3.6 Step 5: Discriminant analysis 

The use of extra variables (e.g. patch statistics) usually increases the accuracy of the 

neural network, so long as they provide additional useful information (Kanellpoulous 

and Wilkinson, 1997).  However, inclusion of patch statistics offering little to no 

discrimination between the classes can reduce the accuracy of the classification and 

markedly increase the time required for training (Foody and Arora, 1997).  Because 

hyperspectral imagery is collected in many narrow contiguous bands there is usually 

significant spectral redundancy.  While the above exploratory analysis is able to 

exclude some patch statistics, further exclusion of relatively uninformative patch 

statistics is possible by using linear discriminant analysis (LDA) (e.g. Gong et al., 

1997; Foody et al., 2005).  For example, patch statistics that may be individually 

good discriminators may share the same discriminating information with others and 

can be eliminated on the basis that they will likely weaken the classification or, at the 

very least, increase classification time with no gain in classification accuracy (i.e., 

variable redundancy).  Therefore, backward stepwise elimination based on the F-to-

remove statistic was used to eliminate redundant and relatively uninformative patch 

statistics (Klecka, 1980).  See also Section 2.3.5.5.5 for more information on 

discriminant analysis and the F-to-remove statistic.   
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6.3.6.1 Identifying patch statistics for overall and pairwise separation 

Two approaches were taken for both imagery types to identify the most suitable 

patch statistics for introduction to the ANN.  In the first case, discriminant analysis 

was used to identify a set of patch statistics that best separated all three species 

simultaneously.  This approach is referred to as overall separation.  This was done 

because conventional methods of classification usually attempt to derive an optimum 

overall error (Lark, 1995).  Therefore, comparisons can be made between this 

approach and a pairwise separation approach, which sought to identify the set of 

patch statistics that could best discriminate between each species in a pairwise 

fashion (e.g. mesquite versus snakewood and mesquite versus eucalyptus).  Thus, 

under the pairwise separation approach, two binary classifications were derived, 

which involved mesquite and each of the two other classes in turn.  These were then 

combined using a simple rule: if snakewood or eucalyptus then not mesquite.  In 

such a case, high accuracy for the mesquite class is of primary interest; hence it is 

unimportant whether the non-mesquite classes are confused with each other or if the 

overall error is reduced as a result (Lark, 1995).   

6.3.7 Step 6: Classification using an ANN 

The ANN architecture comprised of one hidden layer and three output nodes for the 

classes of mesquite, snakewood and eucalyptus.  The number of input nodes was 

determined from Step 5.  The number of hidden nodes was determined by taking the 

square root of the product between the number of input nodes and the number of 

output nodes.  This method for deriving the number of hidden nodes is said to 

provide a reasonable balance between over training and over generalising (Eastman, 

2006).  The learning rate parameter was derived using an automated adaptive 

algorithm, which avoids an otherwise trial and error approach.  The adaptive 

algorithm adjusts the learning rate downward after some training interval if the 

overall training error has increased and upward if it has decreased.  In this way, the 

initial value chosen for the learning rate is not crucial to the success of network 

training, and training speed is increased since the learning rate is adjusted to the 

highest value that does not cause instability (Paola and Schowengerdt, 1995).  The 

momentum parameter (α, see Equations 6.4 and 6.5) was fixed at 0.5 so that 50% of 

the weight change is added at iteration.  The sigmoid constant (λ, see Equation 6.2) 

was effectively ignored and set to 1, since alternative values are said to have little 
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effect on the solution (Caudill, 1988).  To avoid overtraining, the process of 

backpropagation was terminated manually by visual examination of solution 

convergence shown on a continuously updated root mean square error plot.       

6.3.8 Step 7: Class accuracy assessment  

A patch-based accuracy assessment was performed and a confusion matrix derived 

using the testing data described in Section 6.3.1.  Patches were used in this accuracy 

assessment because conventional pixel-based approaches for assessing the image 

classification accuracy may overestimate the accuracy.  This is the case because 

conventional approaches assess the absolute percentage of pixels correctly classified 

and do not consider the spatial association (autocorrelation) of pixels (Hamada et al., 

2007).  For example, a large mesquite patch may be made up of 20 pixels, whereas a 

snakewood patch may be made up of only 4 pixels.  Even if both are correctly 

classified the accuracy of mesquite will be deemed to be 5 times better when, in fact, 

it should be equal. Statistics computed from the confusion matrix included the 

overall accuracy, errors of commission, and errors of omission and per-class Kappa.  

See Section 2.3.4 for more information on these statistics. 

6.3.9 Step 8: Size-class accuracy assessment 

It generally follows that the higher the spatial resolution the greater the ability to 

resolve smaller patches.  Therefore, imagery collected at different spatial resolutions 

may differ in their ability to map individual plants of different sizes.  This study 

assumes that the greatest success in classification accuracy will occur as mesquite 

patches increase in size, as has been demonstrated by Dehaan et al. (2007) for 

mapping blackberry.  To test this assumption, the surface area of each patch used for 

accuracy validation (the testing data) of the classification was calculated in the GIS.  

An analysis, similar to the Incremental Cover Evaluation (ICE) method discussed by 

Mundt et al. (2005), proceeded whereby producer’s accuracy was graphed against 

various size classes in order to determine the minimum patch size of the mesquite 

class that could be reliably detected for both DMSI (1 m spatial resolution) and the 

hyperspectral imagery (3 m spatial resolution).  The significance of the difference in 

accuracy between size-classes for the two approaches and image types were assessed 

using a two-sample difference of proportions test with at the 0.05 level of probability 

(Walpole and Myers, 1993).   
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6.3.10 Step 9: Accuracy comparisons  

The preceding step was used to offer insight into the size of mesquite patch that 

could be reliably detected based on the imagery and approaches implemented.  For 

comparison between the two approaches and imagery types, patches that were 

deemed to be unreliably detected were ignored so that the efficacy of the image types 

could be tested on patches that could be reliably, and therefore repeatedly, detected.  

Omission and commission errors were computed based on this size-class threshold 

and a two-sample difference of proportions test was again computed to assess the 

significance of the difference in accuracy between the two approaches and image 

types.  Differences were tested at the 0.05 level of significance.   

6. 4 Results 

6.4.1 Exploratory analysis of DMSI 

Spectral reflectance curves for mesquite and associated plant species are presented in 

Figure 6.3 (DMSI).  These curves were derived by taking the average of the spectral 

response at each wavelength for each species using the training data collected.  

Dashed polygons identify areas of the spectrum where spectral reflectance is unique 

for all species, as identified by Tukey’s HSD test.  Figure 6.3 and Table 6.2 (see 

mean patch statistic) shows that all species were inseparable in the blue and green 

portions of the spectrum.  No significant difference was found between mesquite and 

eucalyptus in the red portion of the spectrum although snakewood is separable from 

mesquite and eucalyptus in this region (Figure 6.3; Table 6.2).   

 

The relatively high near infrared reflectance of eucalyptus species suggests that they 

are undergoing the greatest amount of photosynthesis of the three species (Figures 

6.3).  Snakewood absorbed the greatest amount of near infrared radiation, which is 

likely due to its erectophile canopy structure (Figures 6.3 and 6.4).  This was 

followed by mesquite, and is likely due to a high level of leaf wilting and associated 

stress caused by the leaf-tying moth.  All species were found to be separable in this 

portion of the spectrum (Figure 6.3; Table 6.2).   

 

Table 6.2 highlights the need to explore many alternative patch statistics when using 

high spatial resolution multispectral imagery.  For example, spectral similarity 

between species in the blue band (see Figure 6.3) would conventionally preclude that 
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band from being used as an input in any classification process, yet the mean 

differences of four of the seven object statistics are significantly different on all 

species.  Half of the patch statistics explored separated all species and thus are 

considered candidates for introduction to the ANN under the overall separation 

approach.  However, only the near-infrared band would be considered under 

conventional techniques (e.g. pixel-based classification of the raw band data).  The 

near-infrared band contains the greatest amount of information, showing 

dissimilarity from all species (five out of seven were significant) and highlights its 

importance for mapping species on the premise of defoliation.  No further variables 

were found to separate mesquite from eucalyptus species (pairwise separation); 

however, a further 13 were found that may assist separation of mesquite from 

snakewood (Table 6.2) and are, therefore, candidates for introduction to the ANN 

under the pairwise separation approach for those two species.  
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Figure 6.3 Spectral reflectance curves of mesquite and associated species derived 

from the DMSI.  Curves represent the average spectral response at 
each of the four wavelengths imaged for each species as derived from 
the training data.  The dashed polygon enclosing the spectral 
reflectance curves show zones of potential separation between all 
species.  Error bars represent +/- 1 standard error.   
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Table 6.2 Patch statistics of mesquite and associated species derived from the 
DMSI after normalisation.  Statistics in bold show significant 
differences between all species and are therefore candidates for 
introduction to the ANN under the overall separation approach.  
Species with a different letter to mesquite are candidates for 
introduction to the ANN under the pairwise separation approach. 

 
Band Patch Statistic Mesquite Snakewood Eucalyptus  

Maximum 0.427a 0.372b 0.421a 
Mean 0.454a 0.467b 0.441a 
Median 0.432a 0.448b 0.419a 
Minimum 0.432a 0.504b 0.409c 
Std. Dev.  0.149a 0.034b 0.182c 
Majority 0.433a 0.464b 0.405c 

Blue 
(450 nm) 
  

Variety 0.124a 0.008b 0.069c 
Maximum 0.353a 0.230b 0.337c 
Mean 0.362a 0.29b 0.356a 
Median 0.356a 0.286b 0.352a 
Minimum 0.336a 0.337a 0.329a 
Std. Dev.  0.247a 0.058b 0.255a 
Majority 0.378a 0.338b 0.364c 

Green  
(550 nm) 
  

Variety 0.135a 0.007b 0.066c 
Maximum 0.457a 0.472b 0.446c 
Mean 0.354a 0.458b 0.354a 
Median 0.347a 0.454b 0.348a 
Minimum 0.293a 0.462b 0.294a 
Std. Dev.  0.214a 0.050b 0.214a 
Majority 0.328a 0.462b 0.319a 

Red  
(675 nm) 
  

Variety 0.138a 0.007b 0.065c 
Maximum 0.428a 0.206b 0.476c 
Mean 0.439a 0.291b 0.484c 
Median 0.412a 0.257b 0.462c 
Minimum 0.425a 0.386b 0.431a 
Std. Dev.  0.239a 0.053b 0.333c 
Majority 0.484a 0.387b 0.483a 

NIR 
(780 nm) 

Variety 0.136a 0.007b 0.07c 
 

6.4.2 Exploratory analysis of hyperspectral imagery 

Due to the high content of chlorophyll in its leaves, eucalyptus species had the 

highest green peak (Figure 6.4).  Mesquite exhibited the lowest green-peak (Figure 

6.4), which is likely to be caused by activity of the leaf tier causing the leaves to 

yellow (see Section 3.2.1); thus pigments other than chlorophyll are beginning to 

dominate the spectral response.   

 

The smaller band widths and greater number of bands of the hyperspectral imagery 

detected separation between all species in two areas of the visible region that was not 

identified with the broad bandwidths of the DMSI as illustrated by the dashed polyon 

in the visible portion of the spectrum (Figure 6.4).  Separation between mesquite and 
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snakewood is unlikely to occur in the short wave near infrared portion of the 

spectrum because their spectral signatures (and standard errors) overlap in this region 

(Figure 6.4).  In contrast to the DMSI, eucalyptus species are more unique over most 

of the spectrum than both snakewood and mesquite (Figure 6.4; Appendix A). 
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Figure 6.4 Spectral reflectance curves of mesquite and associated species derived 

from the hyperspectral imagery.  Curves represent the average spectral response at 

each of the 126 wavelengths imaged for each species as derived from the training 

data.  Dashed polygons enclosing the spectral reflectance curves show zones of 

potential separation between all species.  Error bars represent +/- 1 standard error. 

 

Similar to the DMSI, none of the spectral signatures and associated standard errors 

for all species overlapped throughout most of the near infrared portion of the 

spectrum (Figure 6.4).  However, unlike DMSI, which only provided one band in the 

NIR for image processing, a total of 26 (out of 32) bands showed significant 

differences between all species in this region.  This is confirmed by the significant 

differences in means of the mean patch statistics (Appendix A).    

 

In total, 36 patch statistics (out of 126) were found to be able to separate all species 

(Appendix A), and are thus candidates for introduction to the ANN using the overall 

separation method.  An additional two patch statistics are available to assist 
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separation of mesquite from snakewood (pairwise separation) and all of the 126 

patch statistics are available to separate mesquite from eucalyptus species, including 

64 from the short-wave infrared (SWIR) portion of the spectrum, which was not 

sampled with the DMSI.   

6.4.3 Discriminant analysis 

Discriminant analysis was performed on the patch statistics found to separate all 

species (overall separation) and those found to separate each species on a pairwise 

basis from the exploratory analysis performed above.  Results are shown in Table 6.3 

and Table 6.4, respectively.    Comparisons between Table 6.3 and Table 6.4 show 

that many of the patch statistics used in pairwise separation of mesquite from 

associated species are quite different to those found from overall separation. This 

illustrates the need to assess such an approach.  

Table 6.3 Summary of the patch statistics found from discriminant analysis that best 
separate all species (overall separation method). 

 
Imagery Band Patch Statistic 

Red (675 nm) Maximum 
Green (550 nm) Maximum 
NIR (780 nm) Maximum 

DMSI (all bands) 

NIR (780 nm) Standard Deviation 
NIR:53 (1208 nm) Mean 
NIR:43 (1065 nm) Mean 
VIS:15 (663 nm) Mean 

Hyperspectral  

VIS:11 (605 nm) Mean 

Table 6.4 Summary of the patch statistics found from discriminant analysis that best 
separate mesquite from each species in turn (pairwise separation method). 

  
Imagery Band Patch Statistic 

NIR (780 nm) Standard Deviation* 
NIR (780 nm) Mean* 
Green (550 nm) Maximum 

DMSI (all bands) 
Mesquite v Eucalyptus 

NIR (780 nm) Maximum 
Red (675 nm) Maximum 
Green (550 nm) Mean* 
NIR (780 nm) Maximum 

DMSI (all bands) 
Mesquite v Snakewood 

Blue (450 nm) Minimum* 
NIR:33 (912 nm) Mean* 
VIS:19 (721 nm) Mean* 
SWIR2:103 (2122 nm) Mean* 

Hyperspectral 
Mesquite v Eucalyptus 
 

SWIR2:113 (2299 nm) Mean* 
VIS:15 (663 nm) Mean 
NIR:53 (1208 nm) Mean 
NIR:43 (1065 nm)  Mean 

Hyperspectral 
Mesquite v Snakewood 

NIR: 55 (1236 nm) Mean* 
*Patch statistics that were found to be different to those found from assessing the overall separation. 
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6.4.4 Class accuracy assessment 

6.4.4.1 Overall separation approach: DMSI 

The confusion matrix based on the best overall separation method of the patch 

statistics derived from the DMSI (Table 6.5) shows a very high overall agreement 

(81.5%), which indicates that all species are being reasonably well separated with the 

variables used.  The overall Kappa value also suggests a good agreement with the 

testing data, based on the ranges proposed by Monserud and Leemans (1992).  

However, inspection of the per-class Kappa statistics shows that these values are 

being inflated by an excellent classification of the snakewood class, particularly from 

the producer’s perspective.  In particular, the class of most interest, mesquite, was 

only classified as “fair” from both perspectives.   

Table 6.5 Confusion matrix and associated statistics based on the patch statistics 
derived from the DMSI that gave the best overall separation. 

 
 Mesquite Snakewood Eucalyptus Totals Errors of 

Commission 
Kappa per 

class (User’s) 
Mesquite 107 8 85 200 0.47 0.45 
Snakewood 51 770 39 860 0.10 0.74 
Eucalytpus 47 19 222 288 0.23 0.69 
Totals 205 797 346 1348   
Errors of 
Omission 

0.48 0.03 0.36    

Kappa per class 
(Producer’s) 

0.44 0.91 0.54    

Overall 
agreement (%) 

   81.53   

Overall Kappa    0.41   
 

6.4.4.2 Pairwise separation approach: DMSI 

Attempting to improve the separation from mesquite and associated species using the 

pairwise separation approach (Table 6.6) did not result in increasing the per-class 

Kappa’s from either perspective. 
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Table 6.6 Confusion matrix and associated statistics based on the patch statistics 
derived from the DMSI that gave the best pairwise separation. 

 
 Mesquite Other Totals Errors of 

Commission 
Kappa per class 

(User’s) 
Mesquite 101 100 200 0.50 0.41 
Snakewood 205 1044 1148 0.09 0.40 
Totals 205 1144 1348   
Errors of Omission 0.51 0.09    
Kappa per class 
(Producer’s) 

0.40 0.41    

Overall agreement (%)   84.94   
Overall Kappa   0.41   
 

6.4.4.3 Overall separation approach: Hyperspectral imagery 

Classification of the hyperspectral imagery based on overall separation (Table 6.7) 

showed a similar pattern to the DMSI: while the overall agreement is high, it is 

inflated by low omissions of the snakewood class and as expected from exploratory 

analysis of the spectral plot, low commission into the eucalyptus class.  The 

hyperspectral imagery performed better than the DMSI on the mesquite class from a 

user’s perspective, but omissions were similar to the DMSI.   

Table 6.7 Confusion matrix and associated statistics based on the patch statistics 
derived from the hyperspectral imagery that gave the best overall 
separation. 

 
 Mesquite Snakewood Eucalyptus Totals Errors of 

Commission 
Kappa per 

class (User’s) 
Mesquite 70 7 22 99 0.29 0.62 
Snakewood 30 162 35 227 0.29 0.57 
Eucalytpus 19 5 168 192 0.13 0.78 
Totals 119 174 225 518   
Errors of 
Omission 

0.41 0.07 0.25    

Kappa per class 
(Producer’s) 

0.49 0.88 0.60    

Overall 
agreement (%) 

   77.22   

Overall Kappa    0.65   
 

6.4.4.4 Pairwise separation approach: Hyperspectral imagery 

Unlike DMSI, patch statistics chosen from pairwise separation (Table 6.8) assisted in 

reducing the number of omissions in the mesquite class and also further reducing the 

commission rate.   
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Table 6.8 Confusion matrix and associated statistics based on the patch statistics 
derived from the hyperspectral imagery that gave the best pairwise 
separation. 

 
 Mesquite Other Totals Errors of 

Commission 
Kappa per class 

(User’s) 
Mesquite 76 23 99 0.23 0.70 
Snakewood 43 376 419 0.10 0.55 
Totals 119 399 518   
Errors of Omission 0.36 0.06    
Kappa per class 
(Producer’s) 

0.55 0.70    

Overall agreement (%)   87.26   
Overall Kappa   0.62   
 

6.4.5 Size-class accuracy assessment 

Identification of mesquite patches smaller than 36 m2 was relatively low (43-51%) 

for both image types regardless of whether overall or pairwise separation was used to 

choose patch statistics (Figures 6.5a,b).  Accuracy improved for patches >36 m2 (66-

94%) with both approaches and image types.  Both approaches used on the 

hyperspectral imagery were more reliable at capturing patches >36 m2 than the 

DMSI using either the overall or pairwise separation approaches.  However, the best 

approach was found using pairwise separation on the hyperspectral imagery, which 

was significantly more accurate than DMSI using an overall separation approach 

(Z=2.78, P<0.05) (Figure 6.5a).   

6.4.6 Accuracy comparisons 

The size-class accuracy assessment revealed that, in general, regardless of image 

type or approach, errors of omission were only likely to be of an acceptable 

magnitude for mesquite patches >36 m2.  Therefore, to identify the best approach 

(image and method of selecting patch statistics), patches <36 m2 were masked out 

and assessment of omission and commission errors was assessed only for patches 

>36 m2 (Table 6.9).  Although not directly comparable, it can be seen that both errors 

of commission and omission were much reduced when only patch sizes above 36 m2 

were included (Table 6.9 vs. Tables 6.5-6.8).   
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Figure 6.5 Percentage of mesquite patches correctly detected (producer’s 
perspective) for two size-classes for a) the DMSI and b) the 
hyperspectral imagery.  Open bars represent classification using patch 
statistics found from the best overall separation method; grey bars 
represent classification using patch statistics found from pairwise 
separation.  *Indicates accuracy values that were significantly poorer 
than the best accuracy for that size-class using either overall or 
pairwise separation on either image type.      
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The hyperspectral imagery, using patch statistics found from pairwise separation 

produced the lowest omission and commission rates.  However, omission rates were 

only significantly better than DMSI processed using patch statistics found from 

overall separation (Z=2.78, P<0.05).  Consequently, all methods and imagery types 

except for DMSI processed using overall separation are capable of accurately 

mapping mesquite patches >36 m2.  However, hyperspectral imagery processed using 

pairwise separation appears to be superior, even though not statistically better than 

hyperspectral imagery processed using overall separation or DMSI processed using 

pairwise separation at the 95% confidence level (Table 6.9).      

Table 6.9 Errors of omission and commission for both image types and both 
approaches for patches >36 m2.   

 
Approach Statistic Hyperspectral DMSI 

Omission 1-(27/33) = 18% 1-(22/33) = 33%* Overall separation 
Commission 10/98 = 10% 8/98 = 8% 
Omission 1-(31/33) = 6% 1-(27/33) = 18% Pairwise separation 
Commission 6/98 = 6% 6/98 = 6% 

*Indicates accuracy significantly poorer than the highest accuracy found for that statistic.   

 

A sample map output showing a portion of the integrated trial, classified using the 

hyperspectral imagery with patch statistics identified from pairwise separation is 

shown in Figure 6.6.  Black polygons show areas that were only controlled via the 

leaf tier.  That is, no other form of mechanical removal was performed in these areas.  

As can be seen, the areas that were not controlled were correctly labelled as 

mesquite.  Areas that have been controlled by mechanical removal are free of 

mesquite and correctly labelled as other species.   
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Figure 6.6 Sample map of the hyperspectral imagery classified using patch statistics identified by pairwise separation for a portion of the 
integrated trial.  The black polygons represent areas not controlled by mechanical removal.   
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6. 5 Discussion 

Assessment of class accuracy using confusion matrices has been the subject of much 

debate (e.g. Foody et al., 2002).  At least two issues can be identified as to their 

inadequacy to reliably identify the best imagery and approach for the classification of 

invasive species from high spatial resolution data source.  Firstly, assessment of the 

accuracy at distinguishing between different woody plant species that form easily 

delineable patches should not use a per-pixel approach.  Such an approach does not 

take into account the fact that a patch may occupy many pixels and thus ignores local 

spatial autocorrelation.  This will optimistically bias the accuracy of plants that are 

large and grow in thickets and pessimistically bias plants that have relatively small 

canopies.  The per-class Kappa statistic only partially compensates for this fact.  

Therefore, in this study patches were used to construct the confusion matrix to 

mitigate this bias.  However, per-pixel approaches have been used extensively to 

indicate classification accuracy throughout the weed mapping literature and thus 

need to be interpreted critically if they are mapping woody plants of vastly different 

sizes. 

 

Secondly, confusion matrices do nothing to explain why there are errors or where 

they are occurring.  For instance, growth habit, such as thicket formation, assists 

discrimination from coexisting species and, as has been shown in previous studies, 

classification accuracy generally increases as patches increase in size (e.g. Frazier, 

1998; Dehaan et al., 2007; Hamada et al., 2007).  Therefore, a higher proportion of 

large patches in the testing data, as opposed to small juveniles, is likely to 

optimistically bias the class accuracy.  Subsequently, the confusion matrices and 

accuracy comparisons of DMSI versus the hyperspectral imagery must be considered 

critically.  For example, the poorer accuracy of the DMSI in Section 6.4.3 is mainly 

an artefact of having been computed with more smaller patches (e.g. more were 

resolvable due to its higher spatial resolution).  This is confirmed by non-significant 

differences between, for example, the hyperspectral imagery processed using patch 

statistics found from overall separation and the DMSI processed using patch statistics 

found from pairwise separation.  Per-class Kappa only partially compensates for this 

difference in sample size, yet such comparisons between imagery are common 

(Congalton and Green, 1999).  Significant differences are therefore predominantly 
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due to the approach for choosing patch statistics and the power of the imagery to 

differentiate mesquite from other species.  Therefore, it is argued that an accuracy 

assessment of different size classes offers greater insight and confusion matrices 

should be derived from patches that can be reliably detected from each image type.  

In this study, reliable detection for both image types was found to be patches >36 m2. 

 

If the user is prepared to only craft management strategies based on patches that can 

be reliably detected then confusion matrices based on this threshold may be useful at 

indicating expected commission and omission error rates.  Mapping invasive species 

in areas with poor access limits the tolerance of commission errors because of the 

cost and time taken for transport of removal crews and equipment (Lass and Prather, 

2004).  In this study, the best commission rate found was 6% (based on a pairwise 

separation of the patch statistics extracted from the hyperspectral imagery for patches 

>36 m2), which effectively means that 6% of patches classed as mesquite will not be 

mesquite in the field.  Comparisons between studies are difficult given a lack of 

information on the patch sizes used in other studies.  However, the commission rate 

found in this study is similar to that found from previous studies using ANNs (e.g. 

Foody et al., 2005) but significantly better than other studies using unsupervised 

classification and thresholding routines (e.g. Frazier et al., 1998).  The similar 

accuracy to the study by Foody et al. (2005) is likely to be a result of assessing 

accuracy with similarly large patch sizes (e.g. average = 77.7 m2).   

 

High omission errors can also be costly to management.  For example, the more 

mesquite that is not detected and therefore not controlled, the higher the likelihood 

for reinvasion.  In this study the lowest percentage of omission was 6%, for patches 

>36 m2.  This figure is lower than that found for mapping blackberry thickets using 

classification routines such as spectral angle mapper (SAM), matched filtering (MF) 

(Dehaan et al., 2007) and supervised and unsupervised classification (e.g Frazier et 

al., 1998); however, again, this is inconclusive given a lack of information on 

shrub/thicket sizes used for accuracy testing in those studies.  For example, the 

inclusion of smaller shrubs inflated the errors of omission to levels as high as 51%.  

Mixture-tuned matched filtering (MTMF) is one method that may assist in the 

reduction of omission errors (Boardmand, 1998), which has been demonstrated by 
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Dehaan et al. (2007) for mapping blackberry thickets (e.g. 9% commission error) 

and, therefore, may be useful to trial in future studies for those patch sizes. 

 

Neither DMSI nor hyperspectral imagery appears capable of reliably mapping 

mesquite patches less than 36 m2 and this appears consistent with other studies on 

invasive woody plants that grow in thickets using similar spatial resolution imagery 

(e.g. Ullah et al., 1989; Frazier, 1998).  However, accuracy increased to a very high 

level for patches >36 m2, particularly using the pairwise separation approach on the 

hyperspectral dataset.  As most individual mesquite plants (i.e., those that have not 

formed coalesced stands) in the study area are under 25 m2 (van Klinken et al., 

2006), this may be inadequate for mapping individual shrubs, for monitoring frontal 

population expansion or recent outbreaks from within the main population.  Instead, 

this is still likely to rely on ground traverses and/or visual airborne surveys flown at 

low speed and altitude.  A previous airborne survey of the region (van Klinken et al., 

2007; Section 3.3.1) was capable of mapping shrubs down to 1.5 m2.  Alternatively, 

improvements in spatial resolution in such equipment as Unmanned Aerial Vehicles 

(UAVs; e.g. <5 cm) may be explored, with current research showing them to be an 

extremely attractive option for this task (e.g. Rango et al., 2006).  Furthermore, there 

is potential to tune multispectral imagery such as DMSI, which can achieve a spatial 

resolution of 25 cm, to the wavelengths deemed to best separate species from 

hyperspectral imagery (Hamada et al., 2007); however, this may not suffice as the 

appearance of mesquite and associated species may change between image 

acquisitions. The option with the most potential therefore appears to be UAVs 

coupled with the same spectral resolution of hyperspectral instruments. 

 

The results of this study demonstrate that the various patch statistics used enhance 

the ability to map large mesquite patches to quite a high accuracy even with coarse 

spectral resolution imagery.  Exploratory analysis of the patch statistics introduced 

(e.g. majority and variety) in this study show the ability to separate mesquite from 

one or more species using this imagery.  However, they were not used as input into 

the ANN classification procedure as they were excluded by the linear discriminant 

analysis step.  Nonetheless, they may prove to be useful variables in future studies of 

this and other species of interest.   
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Choosing variables based on pairwise separation appears to be marginally better than 

choosing variables based on overall separation for both image types, particularly 

when assessed for patches >36 m2.   However, this needs further assessment and may 

be further explored in several ways.  Firstly, if the map user is willing to accept a 

degree of commission error, omissions can be removed by increasing the prior 

probability that a patch is classified as mesquite (e.g. movement of the 

discriminatory plane (c.f. Lark, 1995)).  The commissioned cases may then be 

removed by other means, such as direct field evaluation (Foody et al., 2005).  

Secondly, more complex operations (other than the Boolean OR) may be used to 

derive the “other” class.  This may involve the use of fuzzy operators assigned to the 

activation layers of the ANN or the addition of complex weights (Foody et al., 2005).  

Thirdly, exploration of additional patch statistics such as size and shape may add 

further discriminatory power to enhance classification accuracy.  Finally, rather than 

using mesquite as the target species for identifying patch statistics that separate it 

from each coexisting species in turn, patch statistics that separate eucalyptus from 

mesquite and eucalyptus from snakewood can be trialled to identify if its accuracy 

improves over the overall separation approach.  Likewise, this can be done by using 

snakewood as the target class.   

6. 6 Summary 

Exotic plants pose a significant threat to biodiversity, ecosystem functioning and 

productivity on both local and global scales.  A key requirement for effective 

management of invasive species is the ability to reliably identify their location and 

distribution across landscapes.  Remote sensing is a potential data source for 

extracting this information.  This study tested the use of four-band (red, green, blue 

and near infrared) digital multispectral imagery (DMSI) acquired at a resolution of 

1 m and 126 band hyperspectral imagery acquired with a spatial resolution of 3 m for 

mapping mesquite.  Various patch statistics were computed on patches extracted 

from the imagery.  Two approaches were taken for identifying the patch statistics 

offering the greatest information for classification using a multilayer perceptron 

(MLP) artificial neural network.  These were termed overall separation and pairwise 

separation.  Overall separation sought to identify the patch statistics offering greatest 

overall separation from all three species (mesquite, eucalyptus and snakewood).  

Under pairwise separation, patch statistics were selected based on the separation 
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between mesquite and all species in turn.  Two binary classifications were carried out 

comparing mesquite to each of the non-mesquite classes, which were then combined 

using a rule based approach (if snakewood or eucalyptus then not mesquite).  Patches 

that were not identified as mesquite for either of the binary classifications were 

designated into the “other” class.  Comparisons between the two image types 

suggested that hyperspectral imagery, particularly using the pairwise separation 

approach, was the most accurate.  Analysis of the accuracy rates for different size 

classes showed that most of the error occurred for patches <36 m2 and, therefore, 

neither imagery is likely to be able to resolve new outbreaks until they exceed that 

threshold. However, the use of either image type is likely to enable accurate 

classification of patches >36 m2, particularly if a pairwise separation approach is 

adopted.  Notwithstanding, hyperspectral imagery is likely to offer better results and 

greater flexibility under different defoliation regimes.  Higher spatial resolution, 

most likely coupled to the same spectral resolution of hyperspectral instruments 

should be explored for its ability to map patches smaller than 36 m2.   
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7 SUMMARY AND RECOMMENDATIONS 

7. 1 Introduction 

When dealing with plant invasions, land managers and policy makers require 

detailed information on which to base management action.  However, labour 

intensive surveys are becoming less practical and prohibitively expensive.  Spatial 

sciences offer a contemporary way in which to derive much of the necessary 

information in a timely and nonintrusive fashion.  The research presented in this 

thesis demonstrates three kinds of information that can be developed or derived:  

 

(i) historical aerial photographs can be analysed to reconstruct the spatial 

rates and patterns of invasion over time;  

(ii) models can be produced to predict the suitability of a region to invasion; 

and  

(iii) high spatial and spectral resolution remotely sensed imagery may assist in 

mapping and monitoring the distribution and spread of woody invasive 

plants, although issues with respect to the size of patch that can be 

detected and that which is required to be detected need further 

consideration.  Only airborne imagery was used in this study – no satellite 

based remote sensed imagery was considered.   

 

A summary of these three modules of research are presented hereafter, followed by 

recommendations for further research in these areas.  

 

7. 2 Spatial and Temporal Invasion Rates and Patterns 

Chapter 4 studied invasion rates and patterns through space and time over a 450 ha 

test area using a temporal series of aerial photography.  This type of information is 

important for determining current and future levels of invasion over different land 

types, methods of expansion, and causes of spread, which can all assist in developing 

strategies and practices to reduce the likelihood of invasion in suitable, but currently 

unoccupied areas (e.g. through extrapolation over regional areas (see Section 7. 3)).   

 

Woody plant patches were extracted from the temporal datasets of aerial 

photography using an unsupervised classification routine.  Native vegetation was 
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masked out using an image acquired prior to invasion in this area.  The spatial and 

temporal rates and patterns of mesquite invasion since introduction were then studied 

and revealed that:  

 

(i) mesquite domination over grasses had been as rapid as areas occupied in 

its native range;  

(ii) net mesquite cover increased from 2.4 % in 1970 to 24.4 % in 2001 over 

the 450 ha test area examined; 

(iii) rates of mesquite invasion varied for each land type.  Mesquite cover 

increased from 3 % in 1970 to 36 % in 2001 over the riparian zone; 2.6 % 

to 24.2 % over red loamy soils; and 0.4% to 11.1 % over stony soils;  

(iv) recruitment will occur over all land types, however, canopies will 

coalesce more rapidly over the riparian zone and red-loamy soils than 

stony flats; and  

(v) early successional patterns, such as high patch initiation followed by 

coalescence is similar to where mesquite is native, but patch mortality did 

not occur. 

7.2.1 Recommendations 

The availability of aerial photography prior to mesquite invasion in this study 

enabled post-processing of the unsupervised classification outputs to mask out native 

vegetation.  This technique may be transferrable to other studies where aerial 

photography exists prior to the introduction of an invasive and long lived plant.  

However, because of the unique shape of mesquite relative to other species in the 

studied environment, object-oriented software (e.g. e-Cognition), which can include 

such variables as shape (and size, scale and colour) is recommended for trial, 

particularly in areas where aerial photography is not available prior to mesquite 

invasion.  Additional samples in the 60-90 % cover range may be sought to better 

quantify the accuracy of the technique employed for this class.   

 

7. 3 Modelling the Suitability of the Pilbara to Mesquite Invasion 

Chapter 5 implemented a novel approach for predicting the suitability of the Pilbara 

Region to mesquite invasion.  Such an output is useful for identifying priority areas 

to control and to monitor for outbreaks to enable early intervention strategies.   
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The model implemented in this study attempted to overcome many of the short-

comings observed of commonly used techniques, particularly in ecological 

applications.  For example, the modelling approaches that are typically used for 

conservation planning are also often used for predicting the suitability ranges of 

invasive plants.  However, these applications have polarised objectives:  

 

(i) conservative models need to limit (or, preferably, exclude) the number of 

false positives detected (i.e., underestimate the suitable habitat); and 

(ii)  invasive species prediction models need to limit false negatives (i.e., 

overestimate the suitable habitat).   

 

While some models are often more conservative in their estimation than others, this 

level of conservatism cannot be directly controlled.  Therefore, ordered weighted 

averaging was introduced to demonstrate its ability to directly alter the amount of 

risk assumed in each model.  

 

A second limitation of commonly used models has been the assumption that there is 

no range of suitability within those defined to represent the variables used to model 

suitability.  This study incorporated the use of fuzzy membership functions to better 

illustrate that within a suitability range there are different levels of favourability and 

these levels are continuous.   

 

Thirdly, some of the methods used for modelling invasion suitability do not assign 

greater importance to variables likely to have more influence in defining areas 

suitable for invasion (e.g. BIOCLIM, WISP).  Therefore, pairwise comparison, 

incorporating expert knowledge, was used to derive weights with respect to the 

importance of each variable.   

 

Three models were derived, which varied the amount of conservatism from 

conservative to risk taking.  Models were validated using 1000 random points (500 

presence/500 absence) from an airborne helicopter survey of the core infestation.  

The area under the curve of relative operating characteristic (ROC) plots and the 

maximum Kappa method were used to quantify the accuracy of the models.  Both 
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methods agreed that the model assuming the most risk gave the most 

representative result.   

7.3.1 Recommendations 

The approach to regional predictive modelling used in this study was robust and 

informative.   It could capitalise on the relatively limited spatial data that were 

available for the Pilbara Region.  Spatial data are typically limited for rangelands 

throughout the world and, therefore, the model developed in this thesis has a 

potentially wide application.   

 

Data collected at a finer scale over areas of most interest are recommended to 

explore local variation.  This would enable the derivation of a relationship between 

the density recordings of the aerial survey and the continuous outputs of the model so 

that a series of cut-points could be constructed showing various levels of suitability, 

rather than a simple Boolean output.  

 

As the mesquite population is still expanding, repeat sampling and model refinement 

through iteration may be required.  For example, it is possible that observed absences 

were only the result of not having sufficient time to invade there and not due to lack 

of necessary conditions.  If this is identified to be the case, then variables can be 

directly updated by modifying the fuzzy membership functions.   

 

The ROC plots and maximum Kappa method gave identical or nearly identical 

results.  It is suggested, however, that the maximum Kappa method is more easily 

interpreted, while the ROC plot gives more information over the range of possible 

values.  Therefore, it is recommended that both statistics should be presented in all 

model validations, particularly if the prevalence of data is equal (e.g. split equally 

between presence and absence records).   

7. 4 Development of a Mapping and Monitoring Tool 

Chapter 6 examined the effectiveness of DMSI and hyperspectral imagery for 

discriminating between mesquite and coexisting species.  Accuracy in terms of the 

patch size reliably indentified was also investigated.  Various summary statistics 

were applied to the patches of woody vegetation within the DMSI in order to garner 
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more discriminatory information.  Only the mean spectral response was extracted 

from the hyperspectral imagery.   

 

Both image types were useful at discriminating mesquite from coexisting species, 

particularly where patch statistics were chosen using pairwise separation of mesquite 

and associated species.  However, neither DMSI nor hyperspectral imagery appears 

capable of reliably mapping mesquite patches less than 36 m2 (ca 50 % accuracy) 

and this appears consistent with other studies on invasive woody plants that grow in 

thickets using similar spatial resolution imagery (e.g. Ullah et al., 1989; Frazier, 

1998).  Accuracy increased to a very high level for patches >36 m2 (6 % omission) 

particularly using the pairwise separation approach on the hyperspectral dataset.  As 

most individual mesquite plants (i.e., those that have not formed coalesced stands) in 

the study area are under 25 m2 (van Klinken et al., 2006), this may be inadequate for 

mapping individual shrubs, for monitoring frontal population expansion or recent 

outbreaks from within the main population, although it is sufficient for mapping 

thickets and above average adults.  Instead, this is still likely to rely on ground 

traverses and/or visual airborne surveys flown at low speed and altitude (e.g. van 

Klinken et al., 2007).  Overall, the best approach identified in this research appears to 

be hyperspectral imagery processed using patch statistics found from pairwise 

separation of mesquite and each of the coexisting species in turn.  

7.4.1 Recommendations  

As mentioned above, the imagery and techniques used in this study could only 

reliably detect patches >36 m2, with patches smaller than this only discernible for 

50% of cases.  This is unlikely to be acceptable for reliably mapping sparse, isolated 

shrubs or for monitoring new outbreaks.  A previous airborne survey of the region 

(van Klinken et al., 2007) was capable of mapping shrubs down to 1.5 m2, and may 

be an alternative method for recording individuals; however, this technique suffers 

from having to aggregate shrub counts into an 18.5 ha quadrat.  A preferred solution 

would be to identify presence within smaller grid cells (e.g. <1 m2).  To this end, it is 

recommended that a pilot study using unmanned aerial vehicles (UAVs), which are 

capable of spatial resolutions <5 cm, be used, coupled with a hyperspectral 

instrument.  The techniques described in Chapter 6 would be directly transferrable to 

such imagery, including the use of ANNs for classification.   
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Further exploration of the spectral signatures of mesquite plants/patches of different 

sizes (potentially grouped into size-classes) could be investigated as a source of error 

in detecting smaller patches.  For example, it is possible that even when highly 

defoliated, thickets appear more vigorous (e.g. less sun flecks) than an isolated shrub 

even with the same percentage of defoliation.  Consequently, different patch statistics 

may be appropriate for different size classes, which may aid in their discrimination 

from species of similar size and appearance (e.g. a heavily defoliated mesquite shrub 

versus the erectophile canopy structure of snakewood).     

 

Further research on the use of choosing patch statistics using pairwise separation 

(e.g. mesquite versus each of the coexisting classes in turn) should be conducted.  A 

useful test may involve changing the target species from mesquite to each of the 

other two species present in the study area.  Patch statistics can then be selected that 

best separate these species from the each of the other two species.  Studies using this 

technique on other species in different environments would also assist in confirming 

or denying it as a better approach than choosing patch statistics that best separate all 

species at once (overall separation).     

 

The DMSI and hyperspectral imagery were collected at different spatial resolutions 

(1 m and 3 m, respectively).  A more robust comparison of the two image types 

might best be undertaken by resampling the DMSI to a resolution of 3 m to match 

that of the hyperspectral imagery.   
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APPENDIX A  

Patch statistics of mesquite and associated species derived from the hyperspectral 

imagery after normalisation.  Statistics in bold show significant differences between 

all species.  
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Band 
Patch 
Statistic Mesquite 

Standard 
Deviation Snakewood 

Standard 
Deviation Eucalyptus 

Standard 
Deviation 

VIS:1 (456 
nm) Mean 0.679a 0.033 0.737b 0.049 0.755b 0.053 
VIS:2 (471 
nm) Mean 0.672a 0.033 0.728b 0.049 0.754b 0.054 
VIS:3 (486 
nm) Mean 0.666a 0.033 0.72b 0.050 0.753c 0.055 
VIS:4 (501 
nm) Mean 0.670a 0.036 0.716b 0.054 0.758c 0.056 
VIS:5 (515 
nm) Mean 0.673a 0.037 0.711b 0.058 0.762c 0.060 
VIS:6 (531 
nm) Mean 0.690a 0.041 0.717a 0.061 0.767b 0.061 
VIS:7 (545 
nm) Mean 0.707a 0.045 0.723a 0.071 0.772b 0.066 
VIS:8 (560 
nm) Mean 0.716a 0.054 0.736a 0.073 0.778b 0.072 
VIS:9 (575 
nm) Mean 0.726a 0.060 0.749a 0.074 0.785b 0.074 
VIS:10 
(590 nm) Mean 0.729a 0.077 0.755a 0.075 0.784b 0.082 
VIS:11 
(605 nm) Mean 0.732a 0.083 0.761b 0.076 0.783c 0.088 
VIS:12 
(619 nm) Mean 0.727a 0.083 0.759b 0.076 0.780c 0.088 
VIS:13 
(634 nm) Mean 0.722a 0.083 0.758b 0.076 0.777c 0.088 
VIS:14 
(648 nm) Mean 0.713a 0.108 0.751b 0.082 0.771c 0.118 
VIS:15 
(663 nm) Mean 0.704a 0.126 0.744b 0.091 0.765c 0.132 
VIS:16 
(677 nm) Mean 0.713a 0.129 0.752b 0.095 0.774c 0.138 
VIS:17 
(692 nm) Mean 0.722a 0.135 0.759b 0.099 0.784c 0.141 
VIS:18 
(706 nm) Mean 0.758a 0.135 0.778a 0.113 0.808b 0.123 
VIS:19 
(721 nm) Mean 0.794a 0.135 0.796a 0.121 0.831b 0.116 
VIS:20 
(735 nm) Mean 0.801a 0.157 0.805a 0.131 0.843b 0.122 
VIS:21 
(749 nm) Mean 0.808a 0.157 0.814a 0.131 0.855b 0.122 
VIS:22 
(763 nm) Mean 0.806a 0.159 0.806a 0.133 0.855b 0.128 
VIS:23 
(778 nm) Mean 0.805a 0.163 0.797a 0.135 0.855b 0.131 
VIS:24 
(792 nm) Mean 0.800a 0.164 0.796a 0.136 0.857b 0.134 
VIS:25 
(806 nm) Mean 0.794a 0.165 0.796a 0.137 0.859b 0.137 
VIS:26 
(821 nm) Mean 0.790a 0.165 0.791a 0.137 0.859b 0.137 
VIS:27 
(835 nm) Mean 0.787a 0.165 0.786a 0.137 0.859b 0.143 
VIS:28 
(849 nm) Mean 0.784a 0.165 0.783a 0.137 0.859b 0.143 
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VIS:29 
(863 nm) Mean 0.782a 0.166 0.780a 0.138 0.859b 0.148 
VIS:30 
(876 nm) Mean 0.781a 0.166 0.778a 0.138 0.858b 0.148 
NIR:31 
(882 nm) Mean 0.780a 0.165 0.776a 0.138 0.858b 0.151 
NIR:32 
(898 nm) Mean 0.780a 0.165 0.772a 0.138 0.857b 0.151 
NIR:33 
(912 nm) Mean 0.779a 0.164 0.767a 0.135 0.856b 0.151 
NIR:34 
(928 nm) Mean 0.782a 0.164 0.768a 0.135 0.856b 0.151 
NIR:35 
(944 nm) Mean 0.786a 0.161 0.768a 0.127 0.857b 0.153 
NIR:36 
(959 nm) Mean 0.785a 0.161 0.762a 0.127 0.854b 0.153 
NIR:37 
(974 nm) Mean 0.784a 0.161 0.756b 0.126 0.852c 0.156 
NIR:38 
(989 nm) Mean 0.788a 0.161 0.758b 0.126 0.855c 0.156 
NIR:39 
(1005 nm) Mean 0.791a 0.164 0.761b 0.128 0.858c 0.158 
NIR:40 
(1020 nm) Mean 0.792a 0.164 0.764b 0.128 0.860c 0.158 
NIR:41 
(1035 nm) Mean 0.794a 0.168 0.768b 0.130 0.863c 0.161 
NIR:42 
(1050 nm) Mean 0.795a 0.168 0.768b 0.130 0.864c 0.161 
NIR:43 
(1065 nm) Mean 0.796a 0.169 0.769b 0.130 0.866c 0.163 
NIR:44 
(1079 nm) Mean 0.800a 0.169 0.769b 0.130 0.868c 0.163 
NIR:45 
(1094 nm) Mean 0.803a 0.170 0.769b 0.129 0.871c 0.166 
NIR:46 
(1108 nm) Mean 0.811a 0.170 0.770b 0.129 0.874c 0.166 
NIR:47 
(1123 nm) Mean 0.819a 0.170 0.772b 0.128 0.876c 0.166 
NIR:48 
(1137 nm) Mean 0.813a 0.170 0.756b 0.128 0.866c 0.174 
NIR:49 
(1152 nm) Mean 0.807a 0.168 0.739b 0.116 0.855c 0.184 
NIR:50 
(1166 nm) Mean 0.810a 0.168 0.741b 0.116 0.857c 0.184 
NIR:51 
(1180 nm) Mean 0.814a 0.167 0.743b 0.119 0.859c 0.188 
NIR:52 
(1194 nm) Mean 0.816a 0.167 0.742b 0.119 0.860c 0.188 
NIR:53 
(1208 nm) Mean 0.817a 0.165 0.742b 0.116 0.862c 0.189 
NIR:54 
(1222 nm) Mean 0.820a 0.165 0.746b 0.116 0.866c 0.189 
NIR:55 
(1236 nm) Mean 0.822a 0.163 0.750b 0.117 0.870c 0.190 
NIR:56 
(1250 nm) Mean 0.822a 0.163 0.750b 0.117 0.871c 0.190 
NIR:57 
(1264 nm) Mean 0.821a 0.159 0.749b 0.119 0.872c 0.191 
NIR:58 
(1278 nm) Mean 0.818a 0.158 0.745b 0.122 0.869c 0.197 
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NIR:59 
(1291 nm) Mean 0.815a 0.158 0.741b 0.121 0.866c 0.198 
NIR:60 
(1305 nm) Mean 0.812a 0.158 0.732b 0.121 0.859c 0.198 
NIR:61 
(1319 nm) Mean 0.810a 0.161 0.724b 0.123 0.852c 0.211 
NIR:62 
(1389 nm) Mean 0.628a 0.161 0.578b 0.123 0.605c 0.211 
SWIR1:63 
(1404 nm) Mean 0.447a 0.963 0.432a 0.655 0.358b 1.000 
SWIR1:64 
(1419 nm) Mean 0.590a 0.376 0.575a 0.209 0.500b 0.372 
SWIR1:65 
(1433 nm) Mean 0.734a 0.376 0.718a 0.209 0.643b 0.372 
SWIR1:66 
(1447 nm) Mean 0.730a 0.369 0.715a 0.205 0.640b 0.369 
SWIR1:67 
(1462 nm) Mean 0.727a 0.363 0.712a 0.196 0.638b 0.367 
SWIR1:68 
(1476 nm) Mean 0.740a 0.363 0.726a 0.196 0.645b 0.365 
SWIR1:69 
(1490 nm) Mean 0.753a 0.366 0.739a 0.189 0.652b 0.364 
SWIR1:70 
(1504 nm) Mean 0.758a 0.366 0.746a 0.189 0.657b 0.359 
SWIR1:71 
(1518 nm) Mean 0.764a 0.343 0.753a 0.182 0.662b 0.353 
SWIR1:72 
(1531 nm) Mean 0.770a 0.343 0.760a 0.182 0.667b 0.353 
SWIR1:73 
(1545 nm) Mean 0.777a 0.330 0.766a 0.178 0.672b 0.346 
SWIR1:74 
(1558 nm) Mean 0.781a 0.330 0.770a 0.178 0.674b 0.346 
SWIR1:75 
(1572 nm) Mean 0.785a 0.322 0.774a 0.177 0.676b 0.341 
SWIR1:76 
(1585 nm) Mean 0.791a 0.320 0.781a 0.177 0.681b 0.341 
SWIR1:77 
(1598 nm) Mean 0.797a 0.318 0.788a 0.177 0.686b 0.340 
SWIR1:78 
(1611 nm) Mean 0.800a 0.313 0.791a 0.177 0.687b 0.340 
SWIR1:79 
(1624 nm) Mean 0.804a 0.309 0.794a 0.176 0.688b 0.336 
SWIR1:80 
(1637 nm) Mean 0.806a 0.307 0.796a 0.176 0.690b 0.336 
SWIR1:81 
(1650 nm) Mean 0.807a 0.305 0.798a 0.177 0.692b 0.335 
SWIR1:82 
(1663 nm) Mean 0.804a 0.307 0.795a 0.182 0.690b 0.335 
SWIR1:83 
(1675 nm) Mean 0.801a 0.309 0.792a 0.176 0.689b 0.335 
SWIR1:84 
(1688 nm) Mean 0.796a 0.313 0.787a 0.177 0.686b 0.338 
SWIR1:85 
(1700 nm) Mean 0.791a 0.316 0.782a 0.177 0.682b 0.340 
SWIR1:86 
(1713 nm) Mean 0.788a 0.318 0.778a 0.177 0.680b 0.341 
SWIR1:87 
(1725 nm) Mean 0.784a 0.322 0.773a 0.179 0.677b 0.342 
SWIR1:88 
(1737 nm) Mean 0.781a 0.322 0.771a 0.179 0.674b 0.342 
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SWIR1:89 
(1750 nm) Mean 0.778a 0.320 0.769a 0.180 0.672b 0.343 
SWIR1:90 
(1762 nm) Mean 0.774a 0.319 0.764a 0.180 0.668b 0.344 
SWIR1:91 
(1774 nm) Mean 0.769a 0.319 0.759a 0.180 0.664b 0.344 
SWIR1:92 
(1786 nm) Mean 0.760a 0.319 0.752a 0.186 0.658b 0.344 
SWIR1:93 
(1798 nm) Mean 0.752a 0.318 0.745a 0.195 0.652b 0.349 
SWIR1:94 
(1952 nm) Mean 0.724a 0.359 0.713a 0.199 0.628b 0.369 
SWIR2:95 
(1971 nm) Mean 0.695a 0.386 0.681a 0.195 0.603b 0.374 
SWIR2:96 
(1990 nm) Mean 0.701a 0.369 0.687a 0.189 0.609b 0.366 
SWIR2:97 
(2009 nm) Mean 0.707a 0.367 0.693a 0.189 0.615b 0.361 
SWIR2:98 
(2028 nm) Mean 0.697a 0.367 0.683a 0.195 0.611b 0.361 
SWIR2:99 
(2047 nm) Mean 0.687a 0.365 0.673a 0.200 0.607b 0.362 
SWIR2:100 
(2067 nm) Mean 0.679a 0.369 0.664a 0.206 0.602b 0.364 
SWIR2:101 
(2085 nm) Mean 0.671a 0.379 0.654a 0.206 0.597b 0.367 
SWIR2:102 
(2104 nm) Mean 0.670a 0.379 0.653a 0.209 0.596b 0.367 
SWIR2:103 
(2122 nm) Mean 0.670a 0.384 0.652a 0.209 0.596b 0.377 
SWIR2:104 
(2140 nm) Mean 0.678a 0.384 0.662a 0.201 0.602b 0.372 
SWIR2:105 
(2158 nm) Mean 0.687a 0.372 0.671a 0.195 0.608b 0.368 
SWIR2:106 
(2176 nm) Mean 0.696a 0.359 0.682a 0.190 0.614b 0.358 
SWIR2:107 
(2193 nm) Mean 0.705a 0.353 0.693a 0.190 0.620b 0.358 
SWIR2:108 
(2212 nm) Mean 0.702a 0.348 0.689a 0.189 0.620b 0.353 
SWIR2:109 
(2229 nm) Mean 0.699a 0.347 0.685a 0.195 0.620b 0.349 
SWIR2:110 
(2246 nm) Mean 0.678a 0.347 0.663a 0.196 0.607b 0.341 
SWIR2:111 
(2264 nm) Mean 0.658a 0.351 0.641a 0.196 0.594b 0.341 
SWIR2:112 
(2281 nm) Mean 0.653a 0.343 0.636a 0.191 0.592b 0.327 
SWIR2:113 
(2299 nm) Mean 0.648a 0.338 0.630a 0.185 0.590b 0.326 
SWIR2:114 
(2316 nm) Mean 0.644a 0.328 0.627a 0.182 0.585b 0.313 
SWIR2:115 
(2332 nm) Mean 0.640a 0.321 0.624a 0.174 0.580b 0.309 
SWIR2:116 
(2349 nm) Mean 0.640a 0.318 0.624a 0.173 0.581b 0.302 
SWIR2:117 
(2365 nm) Mean 0.641a 0.306 0.625a 0.167 0.582b 0.295 
SWIR2:118 
(2382 nm) Mean 0.641a 0.293 0.626a 0.167 0.582b 0.283 
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SWIR2:119 
(2399 nm) Mean 0.641a 0.293 0.626a 0.167 0.581b 0.283 
SWIR2:120 
(2415 nm) Mean 0.633a 0.282 0.619a 0.159 0.578b 0.266 
SWIR2:121 
(2431 nm) Mean 0.625a 0.273 0.612a 0.158 0.575b 0.261 
SWIR2:122 
(2447 nm) Mean 0.606a 0.231 0.594a 0.128 0.562b 0.204 
SWIR2:123 
(2462 nm) Mean 0.586a 0.206 0.575a 0.126 0.548b 0.196 
SWIR2:124 
(2478 nm) Mean 0.472a 0.154 0.470a 0.077 0.423b 0.122 
SWIR2:125 
(2494 nm) Mean 0.359a 0.117 0.366a 0.068 0.298b 0.114 
SWIR2:126 
(2500 nm) Mean 0.180a 0.033 0.183a 0.049 0.149b 0.053 
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