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Abstract—A two-hop amplify-and-forward (AF) multiple-input
multiple-output (MIMO) relay system with direct link is consid-
ered in this paper. The relay node has no self-power supply
and relies on harvesting the radio frequency energy transferred
from the source node to forward information from source to
destination. In particular, we consider the time switching (TS)
protocol between wireless information and energy transfer. We
study the joint optimization of the source and relay precoding
matrices and the TS factor to maximize the achievable source-
destination rate when a single data stream is transmitted from
the source node. The optimal structure of the source and relay
precoding matrices is derived, which reduces the original problem
to a simpler optimization problem. The simplified problem is then
solved efficiently by a two-step method. Numerical simulations
show that the proposed algorithm yields a higher rate and better
rate-energy tradeoff than suboptimal approaches.

Index Terms—Amplify-and-forward, direct link, energy har-
vesting, MIMO relay, time switching receiver, wireless powered
communication.

I. INTRODUCTION

A. Background

Recently, wireless energy transfer [1], [2] received in-
creasing interests from both academia and industry due to
the current proliferation of low power devices. Traditionally,
wireless devices are powered by batteries with a limited life
time. A high cost is usually associated with replacing batteries
to extend the life time of wireless devices. Furthermore,
due to physical and economic constraints, replacing batteries
cannot be easily carried out in many scenarios in practice. For
example, sometimes sensors may be embedded in building
structures or even inside human bodies [3]. To avoid replac-
ing batteries, some energy harvesting (EH) techniques were
developed to power wireless networks with natural energy
resources [4]-[6] such as solar and wind. However, due to the
intermittent nature of these resources, they are hard to control
and hence unreliable in real world applications. Compared
with conventional EH techniques which rely on unstable
natural resources, wireless energy transfer is a more promising
and reliable technique, as radio frequency (RF) signals are
used for EH which can be easily controlled. In addition, it
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provides great convenience to mobile users [7] by transferring
information and energy with RF signals.

B. Literature Review

The receiver considered in [1] is capable of performing
information decoding (ID) and EH simultaneously, and the
trade-off between the achievable information rate and the har-
vested energy was characterized by a capacity-energy function.
However, there are two challenges from practical consider-
ations for the receiver proposed in [1]. Firstly, the circuits
for harvesting energy cannot decode the carried information
in practice [7]. To address this issue, a time switching (TS)
protocol and a power splitting (PS) protocol were proposed
in [8] to coordinate wireless information transfer (WIT) and
wireless energy transfer (WET) at the receiver. Secondly, since
WIT and WET operate with different sensitivity (-10dBm
for energy receivers and -60dBm for information receivers),
the architecture of the receiver in [1] may not be optimal
for simultaneous wireless information and power transfer. To
solve this problem, a separated architecture receiver and an
integrated architecture receiver were developed in [7] for a
more general protocol called dynamic power splitting which
includes the TS protocol and the PS protocol as special cases.

Multiple-input multiple-output (MIMO) technique can im-
prove the system energy and spectral efficiencies [9], [10]. By
equipping multiple antennas at the access point, RF energy
can be focused on wireless nodes so that they can be charged
more efficiently compared with using a single antenna. Thus,
the life time of energy constrained wireless networks can be
extended. In [8], a MIMO broadcast channel with a separated
architecture ID and EH receiver was investigated, where the
energy-rate regions were derived for the TS protocol and the
PS protocol. In [11], a multiple-input single-output (MISO)
downlink system was considered, where the total transmission
power was minimized by jointly optimizing the transmit
beamforming vector and the PS ratio under a given signal-
to-interference-plus-noise ratio (SINR).

Relay technology has been widely used to increase the
coverage of wireless systems [12]-[16]. In a wireless powered
communication (WPC) network, a relay node is able to harvest
RF energy and receive information from the source node
and then forwards the received information to the destination
node using the harvested energy. The application of relays
in WPC was addressed by some recent works [17]-[21]. In
[17], TS and PS based relay protocols were proposed for a
non-regenerative relay network. A full-duplex protocol was
proposed in [18] for wireless-powered relay with self-energy
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recycling. A wireless cooperative network was considered
in [19] where multiple source-destination pairs communicate
with each other via an EH relay node. The distribution of the
harvested energy among multiple users and its impact on the
system performance were studied in [19]. WPC with randomly
located decode-and-forward (DF) relays was studied in [20],
and it was shown that the use of EH relays can achieve the
same diversity gain as conventional self-powered relays. In
[21], a distributed PS framework based on game theory was
developed for interference relay channels. It was shown in [22]
that by using rateless codes, wireless-powered relay systems
can achieve a higher rate than direct transmission without
relaying.

The application of WPC in MIMO relay systems was
studied in [2], [3], [23]-[26]. In [2], performance trade-offs
of several receiver architectures were discussed by applying
WPC in MIMO relay systems. Future research challenges
in this area were also outlined in [2]. A TS protocol and
a PS protocol were developed in [3] for a non-regenerative
MIMO relay system, where the achievable rate was maximized
for each protocol by jointly optimizing the source and relay
precoding matrices. Precoder design for DF MIMO relay-
based WPC networks was studied in [23] and [24]. In [25]
and [26], an amplify-and-forward (AF) orthogonal space-time
block code (OSTBC) based MIMO relay system with a multi-
antenna EH receiver was investigated, where the source and
relay precoding matrices were jointly optimized to achieve
various tradeoffs between the energy transfer capability and
the information rate.

C. Contributions

There are some recent works on transceiver optimization
for self-powered MIMO relay systems, e.g. [12]-[16], [27],
[28]. In [27], the optimal beamforming for DF relay channel
was investigated. In [28], the optimal relay beamforming for
two-way relay systems was been developed. However, the
WPC technology was not applied in [27] and [28]. In [2] and
[8], the concept of WPC was discussed and the structure of
the optimal source precoding matrix for energy transfer was
derived. However, the direct link was not considered in [2],
and the relay technique was not applied in [8]. The direct link
was considered in [23] and [24], but on DF-based MIMO relay
networks. To the best of our knowledge, there is no work in
the literature that studies the WPC in AF MIMO relay systems
considering the direct source-destination link.

In this paper, we consider a two-hop AF MIMO relay
system, where an EH receiver is equipped at the relay node
to facilitate WPC. Different to existing works, we consider
the direct link. One of the motivations of introducing a relay
node when the direct link exists is to provide valuable spatial
diversity to the channel between the source and destination
nodes, which contributes to reduce the system bit-error-rate
(BER). Moreover, through harvesting the radio frequency
energy transferred from the source node, the relay node does
not need to spend its own energy to forward information from
source to destination. This helps to provide motivation for a
selfish node to participate in the relay scheme.

The TS protocol is adopted during the source phase, where
the source node transfers energy and information signals to
the relay node during the first and second time intervals,
respectively. During the second time interval, the source node
also sends signal to the destination node through the direct
link. Then, during the relay phase, the relay node uses the
harvested energy to forward the received information to the
destination node. To extend the life time of the network, an
energy constraint is used in this paper so that the energy
consumed for relaying signals from the relay node to the
destination is only obtained from the source node via EH.

The joint optimization of the source and relay precoding
matrices and the TS factor is investigated to maximize the
achievable source-destination rate when a single data stream
is transmitted from the source node, subjecting to the harvested
energy constraint at the relay node and the energy constraint
at the source node. The optimal structure of the source and
relay precoding matrices is derived, which reduces the original
problem to a simpler optimization problem. Interestingly,
we show that the optimal source precoding vector for the
information transfer has a generalized beamforming structure.
Based on the observation that the achievable system rate is
a unimodal function of the TS factor, a two-step method is
developed to efficiently solve the simplified problem. In the
first step, the TS factor is optimized by the golden section
search method. The subproblem with a fixed TS factor is
then solved through solving two nonlinear equations in the
second step. To limit the power of energy transfer at the
source node, a practical peak power constraint is considered.
A two-step approach is proposed by checking the activeness of
this constraint. Numerical simulations show that the proposed
algorithm yields a higher rate and better rate-energy tradeoff
than suboptimal approaches. Interestingly, the rate achieved
by systems with peak power constraint approaches that of
the system with energy constraint when the value of the peak
power is high.

The contributions of this paper are summarized as follows:
(1) The direct link between the source and destination nodes
is considered in WPC based MIMO relay systems; (2) An
energy constraint at the source node is proposed, which is
more general than existing constant power constraints based
formulation; (3) The optimal structure of the source and relay
precoding matrices under the energy constraint is derived; (4)
A two-step approach is developed for solving the transceiver
optimization problem; (5) A peak power constraint is consid-
ered and the corresponding solution scheme is developed. The
relationships between the power constraint based design and
the energy constraint based design are discussed.

D. Structure
The rest of the paper is organized as follows. The model of

a two-hop AF MIMO relay system with direct link utilizing
WPC is presented in Section II. In this section, the transceiver
optimization problem is also formulated. The proposed algo-
rithms are developed in Section III. Numerical examples are
presented in Section IV to demonstrate the performance of
the proposed algorithms. Finally, we conclude our paper in
Section V.
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Fig. 1. A two-hop MIMO relay communication system with direct link and
an energy-harvesting relay node.

II. SYSTEM MODEL

We consider a three-node two-hop MIMO communication
system where the source node S transmits information to the
destination node D with the aid of one relay node R as shown
in Fig. 1. The source, relay, and destination nodes are equipped
with Ns, Nr, and Nd antennas, respectively. We assume that
the source node has its own power supply, while the relay
node is powered by harvesting the RF energy sent from the
source node.

In this paper, the WPC technology is applied for energy
harvesting and information transmission. In particular, a time
switching protocol [8] is considered. With this protocol, there
are three intervals in one communication cycle T . In the first
time interval, energy is transferred from the source node to
the relay node with a duration of αT , where 0 < α < 1
denotes the time switching factor. In the second time interval,
information signals are transmitted from the source node to
the relay node with a duration of (1 − α)T/2. Meanwhile,
these signals are also transmitted to the destination node via
the direct link. The last time interval of (1−α)T/2 is used for
relaying the information signals received by the relay node to
the destination node. For the simplicity of presentation, we set
T = 1 hereafter. In all three time intervals, signals are linearly
precoded before transmission.

More specifically, in the first time interval, an N1×1 energy-
carrying signal vector s1 is precoded by an Ns × N1 matrix
B1 at the source node and transmitted to the relay node. The
optimal value of N1 will be determined later. We assume
that E{s1sH1 } = IN1 , where E{·} stands for the statistical
expectation, In is an n× n identity matrix, and (·)H denotes
the Hermitian transpose. The received signal vector at the relay
node is given by

yr,1 = HB1s1 + vr,1 (1)

where H is an Nr × Ns MIMO channel matrix between the
source and relay nodes, yr,1 and vr,1 are the received signal
and the noise vectors at the relay node during the first interval,

respectively. Based on the linear energy harvesting model [3],
[8], [17]-[26], the RF energy harvested at the relay node is
proportional to the baseband received signal in (1) without
the noise component, which is given by

Ēr = ξ1αtr(HB1B
H
1 HH)

where tr(·) denotes the matrix trace and 0 < ξ1 ≤ 1 is
the energy conversion efficiency1. Moreover, considering the
energy loss in practical communication systems due to the
signal processing operations, the energy available at the relay
node to forward the received signals is given by

Er = ξ2Ēr = ξαtr(HB1B
H
1 HH) (2)

where 0 < ξ2 ≤ 1, ξ = ξ1ξ2, and (1 − ξ2)Ēr models the
energy loss in practical systems.

During the second time interval, an information-bearing
signal s2 with E{|s2|2} = 1 is precoded by an Ns × 1 vector
b2 at the source node and transmitted to the relay node. The
received signal vector at the relay node can be written as

yr,2 = Hb2s2 + vr,2 (3)

where vr,2 is the noise vector at the relay node during
the second interval. While the received signal vector at the
destination node in this time interval can be written as

yd,2 = Kb2s2 + vd,2 (4)

where K is an Nd × Ns channel matrix between the source
and destination nodes, yd,2 and vd,2 are the received signal
and noise vectors at the destination node in the second time
interval, respectively.

Finally, during the third time interval, the relay node linearly
precodes yr,2 with an Nr × Nr matrix F and transmits the
precoded signal vector

xr = Fyr,2 (5)

to the destination node. From (3) and (5), the received signal
vector at the destination node in the third time interval can be
written as

yd,3 =Gxr + vd,3

=GFHb2s2 +GFvr,2 + vd,3 (6)

where G is an Nd ×Nr MIMO channel matrix between the
relay and destination nodes, yd,3 and vd,3 are the received
signal and noise vectors at the destination node in the third
time interval, respectively.

Combining (4) and (6), the received signal vector at the
destination node over the second and the third time intervals
is given by

y ,
[
yd,3

yd,2

]
=

[
GFH
K

]
b2s2 +

[
GFvr,2 + vd,3

vd,2

]
. (7)

We assume that H, G, and K are quasi-static and known at the
relay node. All noises are assumed to be additive white Gaus-
sian noise (AWGN) with zero-mean, E{vr,2v

H
r,2} = σ2

rINr ,

1Extending the results in this paper to systems with nonlinear energy
harvesting models [29]-[32] is an interesting and challenging future topic.
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and E{vd,2v
H
d,2} = E{vd,3v

H
d,3} = σ2

dINd
. We also assume

that s2 has Gaussian distribution.
From (7), the achievable rate from the source node to the

destination node can be written as [13]

R(α,b2,F)

=
1− α

2
log2(1+σ−2

d bH
2 KHKb2+bH

2 HHFHGH

×(σ2
rGFFHGH + σ2

dINd
)−1GFHb2) (8)

where (·)−1 denotes the matrix inversion. Note that the energy
used to transmit s1 and s2 from the source node is αtr(B1B

H
1 )

and 1−α
2 bH

2 b2, respectively. Therefore, the constraint on the
energy consumed by the source node can be written as

αtr(B1B
H
1 ) +

1− α

2
bH
2 b2 ≤ 1 + α

2
Ps (9)

where Ps is the nominal (average) power available at the
source node. Note that the energy constraint (9) is more
relaxed than the constant power constraints

tr(B1B
H
1 ) ≤ Ps, bH

2 b2 ≤ Ps (10)

in existing works (e.g. [3]), since if (10) is satisfied, then (9)
also holds. In this sense, (9) is more general and includes (10)
as a special case.

From (3) and (5), the energy consumed by the relay node
to transmit xr to the destination node is given by

1−α

2
tr(E{xrx

H
r })= 1−α

2
tr(F(Hb2b

H
2 HH+σ2

rINr )F
H).

(11)
Based on (2) and (11), we obtain the following energy con-
straint at the relay node

1− α

2
tr(F(Hb2b

H
2 HH+σ2

rINr )F
H) ≤ αξtr(HB1B

H
1 HH).

(12)
With only the energy constraint (9), the transmission power

at the source node at the first time interval might increase to a
large value when α approaches 0. This is more likely to occur
at large Ps. To impose constraint on the peak transmission
power, we introduce

tr(B1B
H
1 ) ≤ Pm. (13)

From (8), (9), (12), and (13), the transceiver optimization
problem for linear AF wireless information and energy transfer
MIMO relay systems can be written as2

max
0<α<1,B1,b2,F

R(α,b2,F) (14)

s.t. αtr(B1B
H
1 ) +

1− α

2
bH
2 b2 ≤ 1 + α

2
Ps (15)

tr(F(Hb2b
H
2 HH+σ2

rINr )F
H)≤ 2αξ

1−α
tr(HB1B

H
1 HH)(16)

tr(B1B
H
1 ) ≤ Pm. (17)

2It is not easy to generalize the approaches in this paper to the multiple data
streams case. One of the challenges is that as shown in [13] and [14], even
for self-powered relay node, it is not easy to optimize the relay precoding
matrix F with multiple data streams (no closed-form optimal solution) when
the direct link is considered.

III. THE PROPOSED ALGORITHM

The problem (14)-(17) is nonconvex with matrix variables
and is challenging to solve. In this section, we develop a novel
algorithm to solve the problem (14)-(17). We first study the
case that (17) is inactive at the optimal solution, then the
problem (14)-(17) is reduced to the following problem

max
0<α<1,B1,b2,F

R(α,b2,F) (18)

s.t. αtr(B1B
H
1 ) +

1− α

2
bH
2 b2 ≤ 1 + α

2
Ps (19)

tr(F(Hb2b
H
2 HH+σ2

rINr )F
H)≤ 2αξ

1−α
tr(HB1B

H
1 HH).(20)

The impact of the constraint (17) will be studied later.

A. The Optimal Structure of B1 and F

First, we derive the optimal structure of B1 and F, under
which the problem (18)-(20) can be simplified. Let us intro-
duce

H = UhΛ
1
2

hV
H
h , G = UgΛ

1
2
g V

H
g (21)

as the singular value decompositions (SVDs) of H and G,
respectively, with the diagonal elements of Λh and Λg sorted
in decreasing order.

THEOREM 1: The optimal B1 and F as the solution to the
problem (18)-(20) has the following structure

B∗
1 = λ

1
2

b vh,1, F∗ = c
1
2vg,1b

H
2 HH (22)

where (·)∗ stands for the optimal value, λb and c are positive
scalars that remain to be optimized, vh,1 and vg,1 are the first
columns of Vh and Vg, respectively.

PROOF: See Appendix A. �
It is interesting to see from (22) that the optimal B1 is a

vector (i.e., N1 = 1) matching vh,1. This indicates that in
order to maximize the energy harvested by the relay node,
all transmission power at the source node should be allocated
to the channel corresponding to the largest singular value of
H during the first time interval. As a result, we only need
to optimize λb in B1. It can also be seen from (22) that the
optimal structure of F is similar to that in two-hop MIMO
relay systems where the relay node has self-power supply [13].

Based on Theorem 1, the matrix optimization problem (18)-
(20) can be reduced to a simpler problem. This can be done
by substituting (22) back into (18)-(20), and we have

max
α,b2,c,λb

1−α

2
log2

(
1+

∥Kb2∥2

σ2
d

+
cλg,1∥Hb2∥4

σ2
d+σ2

rcλg,1∥Hb2∥2

)
(23)

s.t. αλb +
1− α

2
∥b2∥2 ≤ 1 + α

2
Ps (24)

c(∥Hb2∥4 + σ2
r∥Hb2∥2) ≤

2αξ

1− α
λh,1λb (25)

where ∥ · ∥ stands for the vector Euclidian norm and λh,1 de-
notes the first diagonal element of Λh. As (23) monotonically
increases with ∥Hb2∥2, for any λb, the optimal b2 maximizing
(23) must satisfy equality in the constraint (25), i.e.,

αλb =
(1− α)c

2ξλh,1
(∥Hb2∥4 + σ2

r∥Hb2∥2). (26)
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By substituting (26) back into (24), the problem (23)-(25) can
be equivalently rewritten as

max
α,b2,c

1−α

2
log2

(
1+

∥Kb2∥2

σ2
d

+
cλg,1∥Hb2∥4

σ2
d+σ2

rcλg,1∥Hb2∥2

)
(27)

s.t.
c

ξλh,1
(∥Hb2∥4+σ2

r∥Hb2∥2)+∥b2∥2 ≤ Ps
1 + α

1− α
.(28)

To proceed further, we define M(α) as the optimal value
of the following problem for a given α

max
b2,c

log2

(
1+

∥Kb2∥2

σ2
d

+
cλg,1∥Hb2∥4

σ2
d+σ2

rcλg,1∥Hb2∥2

)
(29)

s.t.
c

ξλh,1
(∥Hb2∥4 + σ2

r∥Hb2∥2) + ∥b2∥2 ≤ Pα (30)

where Pα = Ps
1+α
1−α . Then, the optimal value of the problem

(27)-(28) can be written as

F (α) =
1− α

2
M(α). (31)

The unimodality of F (α) is difficult to prove rigorously3, and
it will be illustrated graphically later in this section. Based
on this observation, the problem (27)-(28) can be efficiently
solved by a two-step algorithm, where for a given α we
optimize b2 and c by solving the problem (29)-(30). And
then a simple one dimensional search (such as the golden
section search method [33]) can be applied to obtain the
optimal α. The procedure of the proposed two-step algorithm
is summarized in Algorithm 1, where ε is a positive constant
close to 0, and δ > 0 is the reduction factor. It is shown in
[33] that the optimal δ = 1.618, also known as the golden
ratio. Finally, the optimal precoding matrices are obtained as
Step 12 in Algorithm 1.

B. Solving the Problem (29)-(30)

As (29) monotonically increases with c, for any ∥b2∥2 ≤
Pα, the optimal c maximizing (29) must satisfy equality in
(30), i.e.,

c∥Hb2∥2 =
ξλh,1(Pα − ∥b2∥2)

∥Hb2∥2 + σ2
r

. (32)

Substituting (32) back into (29), we have

log2

(
1+

∥Kb2∥2

σ2
d

+
cλg,1∥Hb2∥4

σ2
d+σ2

rcλg,1∥Hb2∥2

)
= log2

(
1+

∥Kb2∥2

σ2
d

+
λ̄(Pα − ∥b2∥2) ∥Hb2∥2

σ2
d(∥Hb2∥2+σ2

r)+σ2
r λ̄(Pα−∥b2∥2)

)

= log2

(
1 +

1

σ2
d

(
∥Kb2∥2

+
σ2
dλ(Pα − ∥b2∥2) ∥Hb2∥2

(∥Hb2∥2+ σ2
r)+σ2

rλ(Pα−∥b2∥2)

))
(33)

3The difficulty is that α changes the value of M(α) through varying
the feasible region of the optimization problem (29)-(30), and the objective
function (29) is a complicated function. As a result, the closed-form expression
of M(α) is difficult to obtain.

Algorithm 1 Procedure of Applying the Golden Section
Search to Find the Optimal α and the Precoding Matrices.
Input: Ps, λg,1, σ2

r , σ2
d, H, and K.

Output: α∗, B∗
1, and F∗.

Initialization: αl = 0 and αu = 1.
1: while |αu − αl| > ε do
2: Define d1 = (δ−1)αl+(2−δ)αu and d2 = (2−δ)αl+

(δ − 1)αu.
3: Solve the problem (29)-(30) for α = d1; Compute

F (d1) for α = d1.
4: Repeat Step 3 for α = d2.
5: if F (d1) < F (d2) then
6: Assign αl = d1.
7: else
8: Assign αu = d2.
9: end if

10: end while
11: α∗ = (αu + αl)/2.
12: Calculate the optimal B∗

1 and F∗ based on (22) where

λ∗
b =

(1− α∗)c∗

2α∗ξλh,1

(
∥Hb∗

2∥4 + σ2
r∥Hb∗

2∥2
)
.

where λ̄ = ξλh,1λg,1 and λ = ξλh,1λg,1/σ
2
d. Using (33), the

problem (29)-(30) can be equivalently written as

max
∥b2∥2≤Pα

∥Kb2∥2+
σ2
dλ(Pα − ∥b2∥2) ∥Hb2∥2

(∥Hb2∥2+ σ2
r)+σ2

rλ(Pα−∥b2∥2)
.

(34)
By introducing new variables x and y with λ(Pα−∥b2∥2) ≥ x
and ∥Hb2∥2 ≥ y, the problem (34) can be converted to

max
x,y,b2

∥Kb2∥2 +
σ2
dxy

σ2
rx+ y + σ2

r

(35)

s.t. ∥Hb2∥2 ≥ y (36)
∥b2∥2 ≤ Pα − x/λ. (37)

PROPOSITION 1: The problem (35)-(37) admits strong du-
ality.

PROOF: See Appendix B. �
The problem (35)-(37) can be solved by the Lagrange

multiplier method. The corresponding Lagrangian function is
given by

L=−∥Kb2∥2 −
σ2
dxy

σ2
rx+ y + σ2

r

+ β(y − ∥Hb2∥2)

+γ(∥b2∥2 − Pα + x/λ) (38)

where β ≥ 0 and γ ≥ 0 are the Lagrange multipliers. Based
on the Karush-Kuhn-Tucker (KKT) optimality conditions, we
obtain from (38) that

∂L

∂b2
=−bH

2 KHK− βbH
2 HHH+ γbH

2 = 0 (39)

∂L

∂x
=− σ2

dy(y + σ2
r)

(σ2
rx+ y + σ2

r)
2
+

γ

λ
= 0 (40)

∂L

∂y
=− σ2

rσ
2
dx(x+ 1)

(σ2
rx+ y + σ2

r)
2
+ β = 0. (41)
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From (39), we have

(βHHH+KHK)b2 = γb2. (42)

From (42), we can obtain the following proposition on the
optimal structure of b2.

PROPOSITION 2: The optimal b2 has the following structure

b∗
2 =

√
η∗v(β∗HHH+KHK) (43)

where η∗ is a positive scalar, v(A) stands for the principal
eigenvector of matrix A with ∥v(A)∥ = 1.

REMARK 1: It is interesting to see from (43) that the
optimal b2 has a generalized beamforming structure, which
has a strong connection to its physical meaning in practice.
Note that b2 is the precoding vector used for transmitting
information from the source node to the relay node through
H and from the source node to the destination node through
K. In (43), the optimal b2 is determined by the principal
eigenvector of β∗HHH+KHK, which is a linear combination
of HHH and KHK. Here, β∗ can be regarded as the optimal
weight factor. To find b2, its magnitude

√
η∗ and β∗ need

to be properly chosen. This can be achieved by solving two
nonlinear equations as shown later in this section.

For the simplicity of notations, we denote b∗
2 =

√
η∗v(β∗).

From (42), the optimal γ is γ∗ = e(β∗HHH + KHK),
where e(A) stands for the principal eigenvalue of matrix A.
Similarly, we denote γ∗ = e(β∗) for the simplicity of notation.

As (35) monotonically increases with x > 0 and y > 0, to
maximize (35), equalities in (36) and (37) must hold at the
optimal solution. Therefore, we have

y∗ = η∗∥Hv(β∗)∥2, x∗ = λ(Pα − η∗). (44)

The rest of the problem is to find β∗ and η∗. This can be done
by substituting (44) back into (40) and (41) and solving the
following system of two nonlinear equations

β∗ =
σ2
rσ

2
dλ(Pα − η∗)(λ(Pα − η∗) + 1)

(σ2
rλ(Pα − η∗) + η∗∥Hv(β∗)∥2 + σ2

r)
2

(45)

e(β∗)

λ
=

σ2
dη

∗∥Hv(β∗)∥2(η∗∥Hv(β∗)∥2 + σ2
r)

(σ2
rλ(Pα − η∗) + η∗∥Hv(β∗)∥2 + σ2

r)
2
. (46)

As (45)-(46) are two-dimensional nonlinear equations of β∗

and η∗, they can be efficiently solved by using standard
software packages via, for example, the Newton’s method, the
Broyden’s method (quasi-Newton method), and the gradient
method [33].

Let us denote

f1(β, η) = β∆(β, η)− σ2
rσ

2
dλ(Pα − η)(λ(Pα − η) + 1)

f2(β, η) = e(β)∆(β, η)− σ2
dλη∥Hv(β)∥2(η∥Hv(β)∥2+σ2

r)

where

∆(β, η) = (σ2
rλ(Pα − η) + η∥Hv(β)∥2 + σ2

r)
2.

Then nonlinear equations (45)-(46) can be rewritten as[
f1(β, η)
f2(β, η)

]
=

[
0
0

]
. (47)

To solve (47), we derive the Jacobian matrix of (47) in
Appendix C.

0 0.2 0.4 0.6 0.8 1
α

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 F
(α

)

N=3
N=5

Fig. 2. Unimodality of F (α), Ps = 5dBm.

Based on the discussions above, we develop an efficient
algorithm to solve the problem (29)-(30) as summarized in
Algorithm 2. Firstly, for a given α, we solve (45) and (46) to
obtain β∗ and η∗. Then, we compute b∗

2 through (43). Finally,
c∗ is obtained from (32).

Algorithm 2 Procedure of Solving the Problem (29)-(30).
Input: α, Ps, λ, σ2

r , σ2
d, H, and K.

Output: b∗
2 and c∗.

1: Solve (45) and (46) for the optimal β∗ and η∗.
2: Compute b∗

2 according to (43).
3: Calculate c∗ based on (32).

To verify the unimodality of F (α) in (31), we solve the
problem (27)-(28) using the method proposed in Algorithm 1
and Algorithm 2 to calculate F (α) numerically. We set Ps =
5dBm, σ2

r = σ2
d = −50dBm, and Ns = Nr = Nd = N . Fig. 2

shows F (α) versus α with N = 3 and N = 5, respectively,
calculated by using the proposed algorithm described above.
It can be seen that F (α) indeed is a unimodal function of α.

C. Peak Power Constraint

In this section, we consider the peak power constraint (17).
Based on Theorem 1, (17) can be rewritten as

λb ≤ Pm. (48)

By including (48) in the problem (23)-(25), we obtain the
following problem for a given α

max
b2,c,λb

log2

(
1 +

∥Kb2∥2

σ2
d

+
cλg,1∥Hb2∥4

σ2
d+σ2

rcλg,1∥Hb2∥2

)
(49)

s.t. αλb +
1− α

2
∥b2∥2 ≤ 1 + α

2
Ps (50)

c(∥Hb2∥4 + σ2
r∥Hb2∥2) ≤

2αξ

1− α
λh,1λb (51)

λb ≤ Pm. (52)

If (52) is active, there is λb = Pm. In this case, we can further
simplify the problem (49)-(52) as shown below.
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Based on the discussions in Sections III-A and III-B,
constraints (50) and (51) must be active at the optimal solution.
Thus, by substituting λb = Pm into (50) and (51), we have

∥b2∥2 = Pα − Pm,α (53)

c∥Hb2∥2 =
λh,1ξPm,α

∥Hb2∥2 + σ2
r

(54)

where Pm,α = 2α
1−αPm. Note that since both (50) and (52) are

active, there is Pm ≤ 1+α
2α Ps. By substituting (54) back into

(49), we obtain the objective function as

log2

(
1 +

1

σ2
d

(
∥Kb2∥2 +

σ2
d∥Hb2∥2

(1 + ρ)σ2
r + ρ∥Hb2∥2

))
where ρ = 1

λPm,α
. Similar to (34), we introduce ∥Hb2∥2 ≥

y. In this way, the problem (49)-(52) is converted into the
following problem

max
y,b2

∥Kb2∥2+
σ2
dy

(1 + ρ)σ2
r + ρy

(55)

s.t. ∥Hb2∥2 ≥ y (56)
∥b2∥2 = ζ (57)

where ζ = Pα − Pm,α.
The Lagrangian function associated with the problem (55)-

(57) is given by

L=−∥Kb2∥2 −
σ2
dy

(1 + ρ)σ2
r + ρy

+ β(y − ∥Hb2∥2)

+γ(∥b2∥2 − ζ) (58)

where β ≥ 0 and γ are the Lagrange multipliers. From (58),
the first-order optimality conditions can be written as

∂L

∂b2
=−bH

2 KHK− βbH
2 HHH+ γbH

2 = 0 (59)

∂L

∂y
=− (1 + ρ)σ2

rσ
2
d

((1 + ρ)σ2
r + ρy)2

+ β = 0. (60)

From (57) and (59), it follows that

b∗
2 =

√
ζv(β∗HHH+KHK). (61)

Based on the discussion in Section III-B, the constraint (56)
is active at the optimal solution. Thus, we obtain

y∗ = ζ∥Hv(β∗)∥2. (62)

Therefore, the problem (55)-(57) is reduced to finding β∗, and
this is equivalent to solving the following nonlinear equation,
which is obtained by substituting (62) back into (60)

β − (1 + ρ)σ2
rσ

2
d

((1 + ρ)σ2
r + ρζ∥Hv(β)∥2)2

= 0. (63)

As the left-hand side of (63) monotonically increases with β,
(63) can be efficiently solved by the bisection method.

Based on the discussions above, we propose a two-step
approach to solve the problem (49)-(52). In the first step, we
apply Algorithm 2 to solve the problem (49)-(51) by omitting
(52). Then, we check whether (52) is satisfied or not. If it
is satisfied, then we adopt the obtained solution. If not, we
solve the problem (49)-(52) via solving (63) in the second

Algorithm 3 Procedure of Solving the Problem (49)-(52).
Input: α, Ps, Pm, λ, σ2

r , σ2
d, H, and K.

Output: b∗
2 and c∗.

1: Solve the problem (49)-(51) for b∗
2 and c∗ by applying

Algorithm 2.
2: if λ∗

b = (1−α∗)c∗

2α∗ξλh,1

(
∥Hb∗

2∥4 + σ2
r∥Hb∗

2∥2
)
≤ Pm then

3: Stop and return b∗
2 and c∗.

4: else
5: Solve (63) for β∗. Calculate b∗

2 and c∗ according to
(61) and (54), respectively.

6: end if.

step. We refer this approach as Algorithm 3 and summarize it
as follows.

REMARK 2: It can be seen from Algorithm 3 that only
one nonlinear equation needs to be solved in the second
step. Interestingly, for the problem (49)-(52), the generalized
beamforming structure still holds for b2 in (61). Note that
Algorithm 2 can be reused in solving the problem (49)-(52).

REMARK 3: When α approaches 1, ∥b2∥ in (50) and
∥Hb2∥ in (51) might increase to large value. To impose peak
power constraints in this case, we have ∥b2∥2 ≤ Pm,2 and
c(∥Hb2∥4+σ2

r∥Hb2∥2) ≤ Pm,3. If these two constraints are
active, there must be

∥b2∥2 = Pm,2 (64)

c∥Hb2∥2 =
Pm,3

∥Hb2∥2 + σ2
r

. (65)

Since (64) and (65) are similar to (53) and (54), the analysis
in (55)-(63) can be applied in the transceiver design with peak
power constraints when α approaches 1.

IV. SIMULATIONS

In this section, we study the performance of the proposed
algorithm via numerical simulations. In the simulations, the
three nodes are located in a line, where the distance between
the source node and the destination node is 20 meters, and
the distance between the source node and the relay node is
10d meters, where the value of 0 < d < 2 is normalized
over a distance of 10 meters. Therefore, the relay-destination
distance is 10(2− d). The path loss exponent is set to 3. We
set the power harvesting efficiency ξ = 0.8. The noise power
at the relay and the destination nodes is fixed as σ2

r = σ2
d =

−50dBm. For all simulation examples, we choose Ns = Nr =
Nd = N , and the results are averaged over 1000 independent
channel realizations.

A. Example 1: Rate versus the Nominal Source Node Power

In the first example, we set d = 1 and compare the
performance of the proposed algorithm (Algorithm 1, where
Algorithm 2 is applied to solve the problem (29)-(30)) with
the fixed α algorithm (Algorithm 2 only with α = 0.3,
α = 0.5, and α = 0.8, respectively). The achievable rates
of the proposed algorithm and the fixed α approach versus
the nominal power Ps for N = 3 and N = 5 are shown
in Fig. 3 and Fig. 4, respectively. From Figs. 3 and 4, we
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Fig. 3. Example 1: Rate versus Ps, d = 1, N = 3.
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Fig. 4. Example 1: Rate versus Ps, d = 1, N = 5.

observe that the proposed algorithm performs better than the
fixed α scheme. This is because α is optimized in our proposed
algorithm so that a higher rate is obtained. Moreover, it can
be seen that the achievable rate with N = 5 in Fig. 4 is
higher than that of N = 3 in Fig. 3. This is because the
harvested power is increased with a larger number of antennas
at the relay node. As a benchmark, we solve the problem
(18)-(20) using the Matlab fmincon nonlinear programming
toolbox. In particular, for each channel realization, 10 random
initializations are attempted and the one yields the largest
system rate is chosen. It can be seen from Fig. 3 that the
proposed algorithm achieves a higher rate than that using the
fmincon toolbox.

The performance comparison between the proposed algo-
rithm and a sub-optimal scheme is also shown in Fig. 4. The
sub-optimal approach is obtained by neglecting the direct link
K, i.e., we choose b∗

2 =
√
η∗v(HHH) in (42). Thus, we only

need to solve η in (46). As expected, we can see from Fig. 4
that the performance of the proposed algorithm is better than
the sub-optimal approach due to the consideration of the direct
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Fig. 5. Example 2: BER versus Ps, d = 0.5, N = 3.

link channel K.

B. Example 2: BER Performance

In this example, we study the BER performance of the
proposed system with d = 0.5 and N = 3. Fig. 5 shows the
raw (uncoded) BER comparison of the proposed system with
the direct transmission system without using any relay node.
The transmitted signals are modulated by QPSK constellations.
It can be seen from Fig. 5 that the proposed system has
a smaller BER than the direct transmission system. This
is mainly achieved by the spatial diversity provided by the
source-relay-destination link.

C. Example 3: Time Switching Factor versus the Nominal
Source Node Power

To further interpret the performance gain of the proposed
algorithm in the first example, we plot the optimal time
switching factor α calculated by the proposed algorithm in
the third example. In this example, we set d = 1. Fig. 6
shows the optimal α versus the nominal power Ps with
N = 3 and N = 5. It can be seen from Fig. 6 that for the
proposed algorithm, the optimal α monotonically decreases as
the nominal power Ps increases. In particular, the optimal α
becomes very small when Ps is above 12dBm. The reason is
that when Ps is large enough, λb (the power level at the source
node at the first interval) obtained by the proposed algorithm
increases. Thus, even though α is small, the energy αλh,1λb

harvested by the relay node is sufficient to forward the signal
to the destination node. Therefore, more time can be allocated
for information transmission so that a higher data rate can be
achieved at large Ps. We also observe from Fig. 6 that the
optimal α is slightly smaller for N = 5 than that for N = 3.
This is because with a larger number of antennas, more power
can be harvested at the relay node per unit time, and thus, a
smaller α is sufficient for the relay node to harvest the energy
required for forwarding the information signals.
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Fig. 6. Example 3: Optimal α versus Ps with d = 1.
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Fig. 7. Example 4: Energy consumption versus Ps, d = 1.
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Fig. 8. Example 4: Rate versus energy, d = 1.
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Fig. 9. Example 5: Rate versus Ps at various d.

D. Example 4: Rate and Energy Consumption Trade-off Com-
parison

In this example, we fix d = 1 and study the energy
consumption Ps(1 + α)/2 and rate-energy trade-off of the
proposed algorithm. We first plot the energy consumption
versus Ps in Fig. 7. Then, we plot the achievable rate versus
energy in Fig. 8. As shown in Fig. 7, the energy cost for the
proposed algorithm is lower than fixed α schemes. The better
rate-energy trade-off achieved by the proposed algorithm is
demonstrated in Fig. 8. This indicates that the proposed algo-
rithm achieves a higher rate with a less energy consumption
through optimizing α.

Interestingly, it can be seen from Fig. 7 that the energy
consumption for N = 3 and N = 5 is almost the same. This
can be explained based on Fig. 6. As the optimal α for N = 3
and N = 5 is similar at high Ps, the energy consumption of
two systems is also similar. However, the rate achieved by
N = 5 is higher than that by N = 3 as shown in Fig. 8.
This implies that the system energy efficiency can be further
improved by increasing the number of antennas.

E. Example 5: Achievable Rate at Various d

In this example, we study the achievable rate at various d.
First, we plot the rate versus Ps for the proposed algorithm
with different d in Fig. 9. Then we compare the proposed
algorithm with the fixed α schemes by plotting the rate versus
d in Fig. 10. From Figs. 9 and 10, we observe that the
achievable rate decreases as d increases, and the proposed
method performs better than any fixed α algorithms. As
expected, the rate increases when N is larger.

F. Example 6: Practical Peak Power Constraint

In the last example, we set d = 1, N = 5, and test the
proposed algorithm with a practical peak power constraint. We
plot the rate versus Ps for the system with only the energy-
constraint (Algorithms 1 and 2) and the system considering the
peak power constraint (52) (Algorithms 1 and 3) in Fig. 11.
We set Pm = κPs and choose κ = 1, κ = 2, and κ = 10.
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Fig. 10. Example 5: Rate versus d, Ps = 10dBm.
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Fig. 11. Example 6: Rate versus Ps at various peak power constraints,
d = 1, N = 5.

We observe from Fig. 11 that as expected, the rate decreases
slightly with κ. Interestingly, the performance of the algorithm
with the peak power constraint converges to the one with only
the energy constraint as κ increases.

Next, we plot the optimal α versus Ps for the two systems
with various κ in Fig. 12. It can be seen from Fig. 12 that
for the system with peak power constraint, the optimal time
switching factor α decreases as Pm increases, and it converges
to the one with only the energy constraint. It reveals the same
relationship between the energy constraint and peak power
constraint as that in Fig. 11. The reason is that with the
same amount of energy the time required for energy transfer
decreases as the allowable power increases, and longer time
can be used for transmitting information signals so that the
rate performance can be improved.

V. CONCLUSIONS

A new TS protocol for WPC in two-hop AF MIMO relay
networks with direct link has been developed in this paper. The
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Fig. 12. Example 6: Optimal α versus Ps at various peak power constraints,
d = 1, N = 5.

joint optimization of the source and relay precoding matrices
and the TS factor is studied to maximize the source-destination
rate subjecting to an energy constraint at the source node and
an EH constraint at the relay node. The optimal structure of
the source and relay precoding matrices has been derived,
which reduces the original problem to a simpler problem. In
particular, we show that the optimal source precoding vector
for the information transfer has a generalized beamforming
structure. A two-step method has been developed to solve
this problem. The optimal TS factor has been obtained by
the golden section search method. For a given TS factor, the
remaining variables are optimized via solving two nonlinear
equations by exploring the structure of the problem. To limit
the power of energy transfer at the source node, a practical
peak power constraint is considered. A two-step approach
is proposed by checking the activeness of this constraint.
Numerical studies show that the proposed algorithm performs
better than approaches without optimizing the TS factor. It
is shown that the rate achieved by systems with peak power
constraint approaches that of the system with only energy
constraint when the value of the peak power is high.

APPENDIX A
PROOF OF THEOREM 1

The following results from [14] is needed to prove Theo-
rem 1.

LEMMA 1 [14]: The optimal F as the solution to the
following relay precoding matrix optimization problem

max
F

1 + σ−2
d bH

2 KHKb2 + bH
2 HHFHGH

×(σ2
rGFFHGH + σ2

dINd
)−1GFHb2 (66)

s.t. tr(F(Hb2b
H
2 HH + σ2

rINr )F
H) ≤ Pr (67)

is given by

F∗ =

√
Pr

∥Hb2∥4 + σ2
r∥Hb2∥2

vg,1b
H
2 HH (68)

where vg,1 is given by (21).
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Now we start to prove Theorem 1. First we prove the
optimal structure of B1. It can be seen from (18)-(20) that
B1 does not appear explicitly in the objective function (18),
and it affects (18) through changing the feasible region of the
problem specified by the constraints (19) and (20). Therefore,
in order to maximize the feasible region, for any tr(B1B

H
1 ),

we should maximize tr(HB1B
H
1 HH), which can be written

as the following optimization problem

max
B1

tr(HB1B
H
1 HH) (69)

s.t. tr(B1B
H
1 ) = λb (70)

where λb is a positive scalar. From Proposition 2.1 of [8],
the solution to the problem (69)-(70) satisfies B∗

1B
∗
1
H =

λbvh,1v
H
h,1. Therefore, we prove

B∗
1 = λ

1
2

b vh,1. (71)

By substituting (71) back into the problem (18)-(20), we
have the problem of

max
0<α<1,λb,b2,F

R(α,b2,F)

s.t. tr(b2b
H
2 ) ≤ 2

1− α

(
1 + α

2
Ps − αλb

)
tr(F(Hb2b

H
2 HH+σ2

rINr )F
H)≤ 2αξ

1− α
λbλh,1.

For a given b2, the relay precoding matrix F is optimized by
solving the following problem

max
0<α<1,λb,F

R(α,F) (72)

s.t. tr(F(Hb2b
H
2 HH+σ2

rINr )F
H)≤ 2αξ

1−α
λbλh,1.(73)

It can be seen that for any given α and λb, the problem (72)-
(73) is in the same form as the problem (66)-(67). Therefore,
F∗ in (22) is proven based on (68) in Lemma 2. �

APPENDIX B
PROOF OF PROPOSITION 1

By introducing Φ = b2b
H
2 and neglecting the constraint

of rank(Φ) = 1, where rank(·) denotes the matrix rank, the
problem (35)-(37) can be relaxed to the following problem

max
x,y,Φ≥0

tr(KΦKH) +
σ2
dxy

σ2
rx+ y + σ2

r

(74)

s.t. tr(HΦHH) ≥ y (75)
tr(Φ) ≤ Pα − x/λ. (76)

The problem (74)-(76) is a convex optimization problem, as
it can be verified that σ2

dxy
σ2
rx+y+σ2

r
is a jointly concave function

of (x, y) based on its Hessian matrix. Therefore, this problem
admits strong duality [34]. Interestingly, as the problem (74)-
(76) is a semidefinite programming (SDP) problem with two
linear constraints, the approach in [35] can be used to obtain
a rank-1 optimal solution of this problem. This indicates that
the problem (35)-(37) and the problem (74)-(76) share the
same optimal solution. Moreover, it can be shown that the dual
problem of (35)-(37) and the dual problem of (74)-(76) are
identical. Therefore, the problem (35)-(37) also admits strong
duality. �

APPENDIX C
THE JACOBIAN MATRIX OF (47)

For the simplicity of notations, we denote f1(β, η), f2(β, η),
and ∆(β, η) as f1, f2, and ∆, respectively. We have

J =

[
∂f1
∂β

∂f1
∂η

∂f2
∂β

∂f2
∂η

]
where

∂f1
∂β

=∆+ β
∂∆

∂β
∂f1
∂η

= β
∂∆

∂η
+ 2σ2

rσ
2
dλ

2(Pα − η) + λσ2
rσ

2
d

∂f2
∂β

=
de(β)

dβ
∆+ e(β)

∂∆

∂β

−σ2
dλη

d∥Hv(β)∥2

dβ
(2η∥Hv(β)∥2 + σ2

r)

∂f2
∂η

= e(β)
∂∆

∂η
− σ2

dλ∥Hv(β)∥2(2η∥Hv(β)∥2 + σ2
r)

and

∂∆

∂β
= 2

√
∆η

d∥Hv(β)∥2

dβ
∂∆

∂η
= 2

√
∆(∥Hv(β)∥2 − σ2

rλ)

de(β)

dβ
= vH(β)HHHv(β)

d∥Hv(β)∥2

dβ
= vH(β)HHH

(
e(β)INs − βHHH

−KHK
)−1

HHHv(β).

Here, we have used the results on the derivatives of matrix
eigenvalues and eigenvectors in [36].
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