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ABSTRACT

This rescarch presents models for the analysis of textural and contextual information
content of multiscale remote sensing to select an appropriate scale for the correct
interpretation and mapping of heterogeneous urban land cover types. Spatial
complexity measures such as the fractal model and the Moran’s / index of spatial
autocorrelation were applied for addressing the issue of scale, while fuzzy set theory
was applied for mapping heterogeneous urban land cover types. Three local
government areas (e.g. the City of Perth, the City of Melville and the City of
Armadale) of the Perth metropolitan area were selected, as the dominant land covers
of these areas are representative to the whole metropolitan area, for the analysis of

spatial complexity and the mapping of complex land covers.

Characterisation of spatial complexity of the study areas computed from SPOT,
Landsat-7 ETM+, and Landsat MSS was used for assessing the appropriateness of a
scale for urban analysis. Associated with this outcome, the effect of spectral
resolution and land cover heterogeneity on spatial complexity, the performance of
fractal measurement algorithms and the relationship between the fractal dimension
and Moran’s T were identified. A fuzzy supervised approach of the fuzzy ¢-means
algorithm was used to generate fuzzy memberships of the selected bands of a
Landsat-7 ETM+ scene based on the highest spectral separability among different
urban land covers (e.g. forest, grassland, urban and dense urban) as determined by a
transformed divergence analysis. Fuzzy land cover maps resulting from the
application of fuzzy operators (e.g. maximum, minimum, algebraic sum, algebraic
product and gamma operators) were evaluated against fuzzy memberships derived
from the virtual field reference database (VFRDB). The performance of fuzzy
operators in generating fuzzy categorical maps along with the effect of land cover
heterogeneity on fuzzy accuracy measures and sources of classification error were

assessed.

The analysis of spatial complexity computed from remote sensing images using a
fractal model indicated that the various urban land cover types of the Perth
metropolitan area are best represented at a resolution of 20 m (SPOT) as the fractal

dimension (D) was found higher, as compared to the 25 m and 50 m resolutions of
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the Landsat-7 ETM+ and Landsat MSS, respectively. Likewise, the results
demonstrated the ability of the fractal model in distinguishing variations in the
composition of built-up areas in the green and red bands of the satellite data, while
forested areas typical of the urban fringe appear betier characterised in the NIR band.
Moran’s [ of spatial autocorrelation was found useful in describing the spatial pattern
of urban land cover types. A comparison between the D and Moran’s / of the study
areas revealed a negative correlation, indicating that the higher the Moran’s 7, the

lesser the fractal dimension indicating a lower spatial complexity.

The accuracy of the fuzzy categorical maps associated with multiple spectral bands
of a Landsat-7 ETM+ scene using various fuzzy operators reveals that the fuzzy
gamma operator (y = 0.90) outperformed the categorical accuracy measures obtained
by applying the fuzzy algebraic sum and other fuzzy operators for the City of Perth,
while the accuracy measures of v value of 0.95 were found highest for the City of
Melville and the City of Armadale. A comparison of the accuracy measures of the
fuzzy land cover maps of the study areas indicated that the overall accuracy of the
City of Perth was up to 13% higher than the overall accuracy of the City of Melville
and the City of Armadale which was found 69% and 71%, respectively. The lower
accuracy measures of the City of Melville and the City of Armadale was attributed to
highly mixed land cover classes resulting in mixed pixels in Landsat-7 ETM+ scene.
In addition, the spectral similarity among the class forest and grassland, urban and

dense urban were identified as sources of classification errors.

The analysis of spatial complexity using multiscale and multisource remote sensing
data and the application of fuzzy set theory provided a viable methodology for
assessing the appropriateness of scale selection for an urban analysis and generating
fuzzy urban land cover maps from a multispectral image. It also illustrated the
longstanding issue of carrying out the accuracy of the fuzzy land cover map
considering the fuzzy memberships of the classified data and the reference data using

a fuzzy error matrix.
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Chapter 1

INTRODUCTION

This chapter outlines the research problem and background information for selecting
an appropriate scale of remote sensing data for the correct interpretation and
mapping of spatially complex urban land covers. Subsequently, the research
objectives are defined, as are the expected outcomes and the benefits of the research.

Lastly, the research methods are formulated and the thesis structure is outlined.

1.1 Problem Formulation

Urban landscapes tend to be spatially complex as a result of heterogeneous land
covers. They are characterised by the complex mixture and erratic spatial
arrangement of artificial and natural land cover types. At landscape level, the
complexity results from natural and human-induced activities, which modify
processes and regulate the landscape structure (Quattrochi et al., 1997), indicating a

relationship between complexity and natural and human-induced activities.

With rapid transformations that are taking place in urban areas due to natural and
human-induced processes, the change in urban landscapes is pronounced. Take for
instance, the case of the Perth metropolitan area (PMA), which registered a sharp
increase of population growth during the 1970s and 1980s, and experienced a
substantial increase of urban population during the last four decades when urban
population increased more than four times and reached around 1.40 million in 2001
(ABS, 2001). Existing estimates suggest that the annual population growth rate of
the PMA has risen by far more than any other Australian capital city for at least 25
years with the exception of Brisbane between 1981 and 1986 (Birrell and Tonkin,
1992). Based on 'medium’ projections, PMA is expected to have a population of two
million by the year 2021 which translates into a requirement of over 0.4 million
additional dwellings for the anticipated growth in household numbers (Department of
Planning and Urban Development, 1991). In addition, the increase in demographic
phenomenon has manifested increasing economic activities and services,

transportation development and traffic flows.
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The expansion of urbanisation decreases areas of remnant native vegetation, open
space/grassland and water bodies. According to the Western Australian Planning
Commission (1998), only 28 percent of the native vegetation remains on the major
landforms of the PMA. Clearly, the problems related to the rapid transformations
that are taking place within the PMA in terms of land cover and land use changes are
pronounced. As a result, the availability of detailed, timely information on urban
areas is of considerable importance both to the management of current activities and
to forward planning. To this end, it is believed that satellite remote sensing bas the
potential to provide information regarding the spatial complexity and heterogeneity

of land covers and their changes over time.

It is widely recognised that satellite remote sensing has the potential to provide up-
to-date information related to the land covers and land uses of the earth surfaces.
Accordingly, the application of remote sensing has grown rapidly in the last decades
due to the increasing availability of commercial satellite remote sensing data which
are acquired in a wide range of wavelengths varying from visible to microwave, with
spatial resolutions varying from sub-metre to a kilometre. With such variety of data,
the question of an appropriate scale and resolution for the interpretation of
heterogeneous urban land covers often arises. In remote sensing, scale is related to
spatial resolution (Woodcock and Strahler, 1987) which refers to the smallest
distinguishable part of an object (Tobler, 1988), and it often determines the

capability of a sensor for mapping and monitoring tasks.

A number of difficulties associated with the complexity of the urban landscapes arise
due to the extreme heterogeneity of surface materials (land cover) at both the inter-
pixel and intra-pixel scales. Using finer resolution satellite data (e.g. IKONOS), the
inter-pixel variability of the digital numbers is high, as compared to the low intra-
pixel variability. On the other hand, the inter-pixel variability of a coarser resolution
satellite data (e.g. Landsat MSS) is low compared to a high intra-pixel variability
(Jupp et al., 1988). Depending upon the scale of observation, processes that appear
homogeneous at a small scale may become heterogeneous at a larger scale (Lam and
Quattrochi, 1992). Turner ef al. (1989) showed that landscape pattern has a
significant influence on the response of measurements related to changes in spatial

scale. The underlying axiom of the spatial scale is the spatial complexity, which
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changes with variations in scale (Meentemeyer and Box, 1987). This indicates that
spatial processes are scale dependent and their interpretation varies from one scale to
another (Stone, 1972). Accordingly, results are scale specific and the conclusions
drawn from studies performed at one scale and applied to another may be incorrect
(Foody and Curran, 1994). Thus, for a meaningful interpretation of heterogeneous
land covers of an urban area, analysis of spatial complexity using multisource and
multiscale remote sensing data with various spatial and spectral resolution needs to

be investigated for selecting an appropriate sensor for such data analysis.

This requires the analysis of textural and contextual information content of
multiscale remote sensing to select an appropriate scale for the correct interpretation

and mapping of heterogeneous urban land covers.

1.2 Background

1.2.1 Characterisation of Urban Spatial Complexity using Remote Sensing Data

Fractal analysis has been found effective for characterising the spatial pattern of land
cover types identified from satellite- and air-borne imagery (De Cola, 1989; de Jong
and Burrough, 1995). The key parameter in fractals is the fractal dimension, D,
which is used to describe the spatial complexity of point patterns, lines and surfaces.
The higher the fractal dimensions the more complex is the form (Quattrochi er al.,
1997; Read and Lam, 2002). Digital remotely sensed data are considered to be one
form of spatial surfaces and the spatial complexity of these spatial surfaces can be
measured by fractals. In addition to characterising the spatial pattern of land cover
types, fractals and fractal analysis have been suggested for identifying the effects of
scale changes on the properties of satellite and air-borne imagery (Lam and
Quattrochi, 1992; de Jong and Burrough, 1995; Emerson et al., 1999). Emerson et
al. (1999) investigated the changes in fractal dimensions with changing spatial
resolution (pixel size) and suggested selecting a finer resolution satellite data (high
resolution) for analysing heterogencous land uses (e.g. urban). In their study, it was
indicated that the spatial resolution at which the greatest difference in spatial
complexity occurs is optimal for distinguishing the land covers. Thus, fractal

dimension of remote sensing data of an urban landscape acquired at different spatial,
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temporal and spectral resolutions can be compared, and the effect of scale and

spectral resolutions for characterising spatial complexity can be assessed.

Research has indicated that the D can help formulating hypotheses in relation to the
spatial scale of process-pattern interactions. For example, Krummel et al. (1987)
showed that a fractal model could be applied for analysing remotely sensed data, as
the measured D provides an indication of the scale at which processes are occurring
(i.c. operational scale). Changes in D computed from remote sensing data, therefore,
have primary implications for changes in land uses and environmental conditions
over extensive areas of the earth. O’Neill ef al. (1988) demonstrated that the fractal
dimension has a highly significant correlation with the degree of human
manipulation of the landscape. Landscapes dominated by agriculture tend to have
simple polygons and low fractal dimensions (negative correlation between the D and
landscape of agriculture) and landscapes dominated by forest tend to have complex
shapes and high fractal dimensions (positive correlation between the 2 and landscape
of forest). Likewise, Read and Lam (2002) could explain the transition from a high
degree to a lower degree of human disturbance by using D; from a low D for
agriculture to a higher D for forest using Landsat-TM bands and NDVL Thus, the
application of fractals allows not only describing spatial patterns, but also help

generating hypotheses about the cause of the patterns.

Operating on the assumption that the scale at which the highest D is measured may
be the scale at which most of the processes operate (Goodchild and Mark, 1987; Lam
and Quattrochi, 1992), one could apply the fractal model for analysing the spatial
complexity of urban landscapes using multisource and multiscale remote sensing to
determine the appropriateness of the scale (i.e. spatial resolution) for classifying

heterogeneous urban land covers.

1.2.2 Mapping Urban Landscapes using Remote Sensing Data

Thematic mapping of urban landscapes using remote sensing images is challenging
due to the heterogeneity of the land covers types. Often, the individual pixels of
remote sensing image associated with urban land covers are the result of the
interaction of more than one surface material (e.g. soil, grass, shrubs, concrete,

asphalt) present within the area covered by a pixel (Forster, 1985). This results in the
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occurrence of mixed pixels, especially when working with remotely sensed images
of coarse spatial and/or spectral resolution. Conventional remote sensing classifiers
(e.g. parallelepiped, maximum likelihood, minimum distance from the mean) that
rely on the assumption that a training area is composed of unique, internally
homogenous classes work poorly for urban land cover mapping (Zhang and Foody,
1998; Small, 2003). This is a limitation of the traditional parametric methods for
deriving urban land covers (Zhang and Foody, 1998). Therefore the performance of
classifiers that use morphological and contextual information or fuzzy classifiers
based on fuzzy set theory for mapping heterogeneous urban land cover types has

begun to be investigated.

In a fuzzy classification, a pixel is assigned a value representing its grade to each
possible individual (e.g. land cover class) in the universe of discourse (e.g. urban
arcas). This grade corresponds to the degree to which that pixel belongs to its
associated land cover class and it is termed ‘fuzzy membership value’ (FMV)
(Lowell, 1994). To some extent, the FMVs reflect the land cover composition of a
mixed pixel which enables a more accurate and realistic representation of land
covers, overcoming some of the assumptions of the conventional classifications
(Fisher and Pathirana, 1990; Foody and Cox, 1994). For example, Wang (1990a)
demonstrated that FMVs provide more information about land cover compositions,
which can be used for identifying mixed pixels by analysing the combination of
fuzzy membership grades. Likewise, Pathirana (1999) utilised the FMVs, derived
from the Thematic Mapper and SPOT multispectral data for determining the spatial
distribution of mixed pixels, indicating its effect on the amount of errors in the
classified data. Working with IKONOS multispectral bands (4 m resolution) and
panchromatic band (1 m resolution) for urban land cover mapping, Shackelford and
Davis (2003) reported an improvement of the classification accuracy, using a
hierarchical fuzzy classification technique, as compared to the maximum likelihood
classification. The hierarchical fuzzy classification utilised both spectral and spatial
information to classify data which was found effective for discriminating spectrally
similar classes such as buildings and roads, reducing the misclassification produced

by the maximum likelihood classifier.
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From previous work, it is apparent that fuzzy classification is conceptually superior
to crisp classification techniques. Furthermore, fuzzy classification is advantageous
due to its information richness with respect to class continua, which can be usefully
explored to address the uncertainties of the classified data (Zhang and Foody, 1998).
Several authors have suggested that fuzzy boundaries could be derived quantitatively
using different criteria on fuzzy classified data, which provide theoretically sound
and data-driven solutions to assess the uncertainties. For example, Burrough (1996)
employed the concept of the confusion index to generate fuzzy boundaries evaluated
as one minus the difference between the fuzzy membership values of location x
belonging to the first maximum fuzzy membership and the second maximum fuzzy
membership. The assumption underlying such an index is that the greater the
confusion index, the smaller the difference in fuzzy membership values between the
first most likely and the second most likely classes, and thus the more uncertain is
the classification of location x. Similarly, Zhang and Kirby (1999) used the
maximum fuzzy membership values of individual locations while Foody (1995)
employed the concept of entropy to decide the class label to be assigned to a pixel
with multiple FMVs. In this way, fuzzy classification can be implemented not only
to generate FMVs of heterogeneous urban land cover types but also uncertainties of

the classified data.

For multi-spectral satellite images, FMVs associated to predetermined informational
classes can be generated for each band. According to An et al. (1991), the
integration of FMVs of more than one layer of information sometime compensate
each other in the final result. However, the question often arises as to how to select
the most suitable combination of bands, which are to be fuzzified and integrated in
the classification process. Assuming a Landsat-7 ETM+ data set is used for
classifying four land cover types, without undertaking a band selection it would end
up creating a total of 28 information layers (7 bands * 4 land cover types). This
would result in a cumbersome number of layers to be integrated for obtaining fuzzy
urban land cover maps, which in addition may contain redundant information. To
this end, feature selection techniques such as the transformed divergence analysis can
be employed for selecting the most appropriate sensor’s band, or set of bands, to be
fuzzified as part of the procedure for deriving urban land cover maps using fuzzy

supervised classification (Metternicht, 1996; Metternicht and Zinck, 1997 and 1998).



7

Fuzzy operators based on fuzzy set theory (Zadeh, 1965) can be used to integrate the
fuzzy memberships of selected bands, as these operators allow manipulating and
processing incomplete and/or imprecise information to obtain the most reasonable
output. Mohan et al. (2000} applied fuzzy operators to integrate the fuzzy
memberships of different land uses as derived from multitemporal images, reporting
a significant increase in classification accuracy. Though research has been carried
out applying a variety of fuzzy operators for integrating fuzzy membership of
geophysical and geological data sets (An et el., 1991; Moon et el., 1991), not many
applications have focussed on the use of fuzzy operators for integrating fuzzy
memberships of urban land cover, as computed on various bands of multispectral

satellite image.

1.2.3  Accuracy Assessment of Interpreted Data

Accuracy assessment determines the quality of the output classification results
derived from remotely sensed data. In a typical accuracy assessment analysis, the
derivation of accuracy measures such as overall classification accuracy and the
Kappa coefficient of agreement (Janssen and van der Wel, 1994) are associated with
only one class in the classification and its corresponding class in the reference or
ground data. Such accuracy measures are only appropriate for ‘crisp’ classification
(e.g. where a pixel is classified as only one class). In fuzzy classification, the output
can be hardened and pure pixels of the classified data can be compared with the
reference or ground data and accordingly, accuracy measures can be determined
(Foody and Trodd, 1993; Zhang and Foody, 1998). Although this provides a basis
for evalvating the accuracy measures of fuzzy classification, the accuracy may
remain dubious due to the difficulty in establishing a “truth” ground reference data
set (Lunetta ef al., 2001). This may lead to a serious source of confusion in the
derived map (Joria and Jorgenson, 1996). It can be noted that in an accuracy
assessment, a pixel is used as a spatial unit and it is necessary to bring the ground
data to the same spatial unit of the remotely sensed data for a meaningful comparison
(Fisher, 1997). Therefore, knowledge of fuzzy ground data is needed for accuracy

assessment in a fuzzy classification.

A number of ways can be applied to generate fuzzy ground data. For example,

Gopal and Woodcock (1994) derived fuzzy ground data using a linguistic scale based
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on quality of map labels which were converted into a numerical scale ranging from
one to five indicating the degree of belonging to a particular class. Zhang and Foody
(1998) used sub-pixel land cover proportions and indicator kriging, while Foody
(1995) suggested a probabilistic approach uvsing the proportion of different classes
within a polygon or other mapping unit, such as pixel’s equivalent area on the ground
to generate the fuzzy ground data. Measures of closeness and fuzzy similarity can be
employed to ascertain the accuracy between the land cover composition in the fuzzy
classification and the composition measured by fuzzy ground data (Kent and Mardia,
1988; Jager and Benz, 2000). However, this approach may suffer from heuristic

solution and lack of information concerning the sampling design (Foody, 1996a).

Zhang and Foody (1998) applied the ‘maximisation’ process in determining the
accuracy measures using fuzzy classification and fuzzy ground data. This enabled
them to label a pixel of fuzzy classification and fuzzy ground data as belonging to the
individual class having the maximum fuzzy membership value and accordingly,
conventional classification accuracy measures can be employed. The value of
maximum fuzzy membership with reference to a pre-determined threshold can also
be used to harden the output of a fuzzy classification and fuzzy ground data for
enabling the use of conventional accuracy measures as done by Shackelford and
Davis (2003).  Others utilised the correlation between the proportions of
corresponding memberships of reference and classified data by means of a
coefficient of determination (r°) in assessing the accuracy measures of the fuzzy

classified data (e.g. Foody and Arora 1996).

The above discussion suggests that accuracy assessment of fuzzy classification
requires fuzzy ground data. The idea of using hardened fuzzily classified data and
fuzzy ground data in a traditional error matrix suffers loss of information and
accordingly, the derived accuracy measures do not necessarily reflect how correctly
the class memberships of the fuzzy classification match with the fuzzy ground data.
Similarly, the measure of closeness and fuzzy similarity between the fuzzy
membership of classified and reference data suffer from lack of appropriate sampling
design. More importantly, these measures go beyond the traditional error matrix and
do not provide site specific accuracy (Congalton, 1991). In a non-site specific

accuracy assessment, locational accuracy is completely ignored. A fuzzy error
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matrix, which is a generalisation of the traditional error matrix, designed to
accommodate the fuzzy memberships of classified and reference data together with a
fuzzy confusion index can be implemented to assess site specific accuracy of fuzzy

classifications (Binaghi et al., 1999).

1.3 Research Objectives

1.3.1 Research Objectives

Scale is one of the most essential considerations for characterising the spatial
complexity and heterogeneity of urban landscapes as the spectral and spatial
resolution of remote sensing data varies from one sensor to another. Accordingly, a
proper combination of digital image interpretation techniques need to be developed
to: (i) analyse the spatial complexity and heterogeneity of urban landscapes using
multiscale and multisource remote sensing data; and (ii) assess the appropriateness of
these data for the interpretation of heterogeneous urban land covers. To this end, this
research proposes using fractal theory for characterising the spatial complexity of
urban land cover types and fuzzy set theory for characterising and modelling the

heterogeneity of land cover compositions. Fractal theory is applied to:

(a) Determine the fractal dimensions (D) of land covers typical of urban
landscapes, such as dense urban, urban residential and urban fringe using
different types of remotely sensed data;

(b)  Assess the effect of spectral and spatial resolutions of various sensor data on
the fractal dimension of urban landscapes;

(c) Evaluate the correlation between fractal dimension (seen as an index of spatial
complexity) and spatial statistical measures of variability (e.g. spatial
autocorrelation);

(d) Test the performance of different fractal measurement algorithms on the

determination of the fractal dimension of selected urban land cover types.

A fuzzy classification approach is used to map land covers that characterise highly
complex and heterogencous urban landscapes from multispectral satellite images.

This requires:
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(a) Selection of the best set of multispectral bands that provide the highest
separability among the land cover classes;

(b) Derivation of fuzzy memberships of the selected bands;

(c) Testing the performance of different fuzzy operators for integration of fuzzy
memberships from the selected bands;

(d) Fuzzy accuracy assessment of the land cover maps generated by applying various
fuzzy operators;

(&) Selection of an optimal fuzzy operator for generating fuzzy land cover maps.

The fulfilment of these rescarch objectives will enable answering the following

research problems identified for the Perth metropolitan area:

(a) Can a viable methodology be developed for generating urban land cover maps
using fuzzy sets?

(b) How can the accuracy assessment of the fuzzified land cover maps be carried
out?

(c) Is there any relationship between the heterogeneity of urban land covers and the

accuracy of the classified data?

Likewise, the use of fractal theory and measures of spatial autocorrelation will

facilitate answering:

(a) How does the sensor’s spatial and spectral resolution affect the spatial
complexity measured by fractal geometry and spatial autocorrelation measures?
(b) How can spatial statistical measures be used to identify various land covers (e.g.,

dense urban, urban residential and urban fringe).

1.3.2 Expected Outcomes

Based on the research objectives and their proposed application in the study area,

three expected outcomes are foreseen:

(a) The appropriateness of fractal measurement algorithms to analyse the spatial
complexity of urban areas using multiscale and multisource remote sensing
images;

(b) The appropriateness of the sensor data (e.g. spatial and spectral characteristics)

for the analysis of heterogeneous urban land covers;
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(¢) A viable methodology to interpret heterogeneous urban land covers from remote

sensing images using fuzzy modelling.

1.4 Benefits of the Research

Remotely sensed data offer the opportunity to characterise, map and model spatial
complexity and heterogeneity of urban landscapes. Accordingly, the study presents a
method that includes analysis of spatial complexity of urban landscapes using
multisource and multiscale remote sensing images followed by interpretation of
heterogeneous urban land covers. Specifically, this study will contribute the

following:

(a) A comprehensive approach for the analysis of spatial complexity using
multiscale and multisource remote sensing data. This will demonstrate the effect
of spatial and spectral resolution on the spatial complexity of urban landscapes
and the appropriateness of specific sensor’s data for interpretation of urban land
coVers;

(b) A better understanding of the performance of fractal measurement algorithms and
other spatial methods (e.g. spatial autocorrelation measure) in determining the
spatial complexity of urban landscapes;

(c) A viable methodology to interpret urban land covers from multispeciral remotely
sensed data using fuzzy classification, integrating multi-band fuzzy memberships
by means of fuzzy operators and finally, accuracy assessment analysis using a
fuzzy approach:

(d) The results of this case study can be adopted for use in other environments with

similar conditions.

1.5 Research Methods

There are two major aspects of this research. Firstly, the analysis of spatial
complexity of urban landscapes using multiscale and multisource remote sensing
data and secondly, interpretation of major land covers using fuzzy classification of

remotely sensed data.

Available literature suggests that spectral location and bandwidth of remote sensing
images affect the estimation of D. Therefore, when analysing the effect of different

spatial resolutions, it is important to use a multi-sensor data set presenting
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correspondence of spectral band location and width, to avoid the introduction of
“noise”. In doing so, three hypotheses were formulated to characterise the urban
landscapes using multiscale and multisource remote sensing data. These are as

follows:

(a) Any variation of D for the same land cover type and wavelength is due to
changes in spatial resolution:

(b) Variations of D for the same land cover type and spatial resolution will be due to
the effect of spectral band location;

{c) Variations of D for the same spatial and spectral resolution will be due to the

different land cover types.

In order to test these hypotheses, fractal measurement algorithms such as the isarithm
and the Triangular Prism Surface Area (TPSA) methods were applied in three study
arcas representing dense, medium and urban fringe areas to determine D using
multisource Landsat ETM+, SPOT and Landsat MSS data. In addition, spatial
autocorrelation measures were applied to examine whether there is a relationship

between measures of spatial complexity (D) and measures of spatial autocorrelation.

Urban land cover types are characterised by high spectral variability of surface
materials, which include a wide range of roofs, roads, sidewalks and parking lots
along with bare soil, vegetation, and trees. The diversity of urban land cover types
and their spectral response particularly in a moderate resolution imagery (30 m)
results in mixed pixels representing an area on the ground which comprises more
than one discrete land cover type and accordingly, display composite spectral
response (Small, 2003). The allocation of the mixed pixels is problematic for
statistical classification methods as most of the algorithms are based on the
assumption of spectral homogeneity within a particular type of land cover and often
results in relatively high rates of misclassification in an urban environment (Small,
2003). Thus it was hypothesised that the heterogeneity of land cover compositions

can be better characterised and modelled using fuzzy set theory.

In order to test the above hypothesis, the fuzzy supervised approach of fuzzy c-
means algorithm was applied in three study areas to generate FMVs of four major

urban land cover classes in pre-selected Landsat-7 ETM+ bands. Fuzzy operators
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(e.g. maximum, minimum, algebraic sum, algebraic product and gamma operaiors
with 7y values ranging from 0.1 to 0.95) were applied to integrate the FMVs
determined for each urban land cover on the multi-spectral data set. The

performance of the land cover maps generated by various fuzzy operators was

assessed using a fuzzy error matrix.

1. 6 Thesis Structure

This thesis is comprised of eight chapters. Chapter 1 outlines the research problem
and background information for selecting an appropriate scale of remote sensing data
for the correct interpretation and Iﬁapping of spatially complex urban land covers.
Subsequently, the research objectives have been defined, as well as the expected
outcomes and the benefits of the research. Lastly, the research methods have been

formulated.

Chapter 2 reviews the principles of aspatial and spatial methods for measurement of
spatial complexity and fuzzy set theory for the interpretation and accuracy
assessment analysis of urban land covers using multispectral remote sensing data.
Previous research regarding measurement of spatial complexity and the application
of fuzzy set theory for mapping urban land covers is also discussed. The methods

and techniques available and the various criteria to be considered are described.

Chapter 3 describes the research approach applied to measure the spatial complexity
and mapping of heterogeneity of urban land cover types using remotely sensed data.
Spatial autocorrelation measures and fractal techniques were used for the analysis of
spatial complexity and accordingly, the principles of these approaches are described.
The transformed divergence analysis was implemented for selecting the most
appropriate combination of bands of a multispectral satellite image, which were used
to derive the fuzzy memberships of the major land covers. Fuzzification was
undertaken using a supervised approach of the fuzzy c-means algorithm. The
conceptual overview and the general methodology of the fuzzy c-means algorithm
and the principles of fuzzy operators, which were used to integrate the fuzzy
memberships of the selected bands, are described. Then, the methods for generating
fuzzy ground data, used to carry out the accuracy of fuzzily classified data are

discussed.
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The location and the characteristics of the major land cover types of the study areas
are illustrated in Chapter 4. The multiscale remote sensing images such as SPOT,
Landsat-7 ETM+ and Landsat MSS, which were used in the analysis of spatial
complexity and interpretation of urban land covers, are discussed. In addition to
remote sensing images, secondary source data such as aerial photographs, land use
and land zoning maps used in this study are also discussed. An overview of the

major software that were used in the analysis is outlined.

Chapter 5 illustrates the implementation of a spatial autocorrelation measure,
Moran’s I and the fractal measurement algorithms such as the isarithm and the TPSA
to determine the spatial complexity of the three study areas characterising the urban
landscapes of the Perth metropolitan area as described in Chapter 4. Then the
supervised approach of the fuzzy c-means algorithm, which was written in Arc
Macro Language (AML) of Arc/Info is implemented for deriving the fuzzy
memberships of urban land cover types from the selected bands of a Landsat-7
ETM+. The final section of the chapter discusses the implementation of the fuzzy
operators, which were used to integrate the fuzzy memberships of the selected bands,

the defuzzification and fuzzy accuracy assessment.

The analysis of spatial complexity of the study areas computed from SPOT, Landsat-
7 ETM+, and Landsat MSS using fractal measurement algorithms and a spatial
autocorrelation measure (Moran’s ) is presented in Chapter 6.  Based on the
hypotheses, the analyses on (i) how the spectral and spatial resolution affect the
analysis of spatial complexity of urban landscapes; and (ii) how the spatial
complexity varies in changing the land cover compositions of the study areas are
presented. The parameters and the performance of different fractal measurement
algorithms in measuring the spatial complexity are discussed. Finally, the selection
of an appropriate sensor data for the interpretation of land cover classes based on

fractal analysis is discussed.

Chapter 7 presents the accuracy measures determined from the fuzzy error matrix of
the fuzzy categorical maps generated by different fuzzy operators as discussed in
Chapter 5. In addition to accuracy measures, uncertainty maps were used for
assessing the performance of the fuzzy operators for generating fuzzy land cover

maps. Furthermore, this chapter discusses the sources of classification error of
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individual land cover classes of the fuzzy categorical maps derived from the best
fuzzy operator. Finally, the fuzzy categorical maps derived from the best fuzzy
operator of the study areas are used to assess the effect of land cover heterogeneity

on the accuracy measures.

The main conclusions based on the findings of this research and recommendations
for further research are presented in Chapter 8. The first expected outcome was to
sclect the scale (spatial resolution) in which the processes of urban landscapes
occurred based on fractal dimension computed from SPOT, Landsat-7 ETM+ and
Landsat MSS. Associated with this outcome, the effect of spectral resolution and
land cover heterogeneity on spatial complexity and the performance of fractal
measurement algorithms in computing fractal dimension are discussed. The second
outcome is related to the performance of fuzzy classifiers, including the use of fuzzy
operators in generating fuzzy categorical maps along with determining the effect of
land cover heterogeneity on fuzzy accuracy measures and identification of sources of

classification errors. Finally, recommendations for future research are presented.
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Chapter 2

SPATIAL COMPLEXITY AND INTERPRETATION OF URBAN
LANDSCAPES USING REMOTE SENSING DATA

Chapter 2 reviews the principles of spatial methods for the measurement of spatial
complexity and fuzzy set theory for the interpretation and accuracy assessment
analysis of urban land covers using multispectral remote sensing data. Previous
research regarding the measurement of spatial complexity and the application of
fuzzy set theory for mapping urban land covers and accuracy assessment analysis is
also discussed. The methods and techniques available and the various criteria 1o be

considered are described.

2.1 Measurement of Spatial Complexity of Urban Landscapes

Spatial complexity of urban landscapes can be measured using the spatial
arrangement of differences in pixel values (either brightness values or transformed
values) relative to one another, which characterise a scene of a remote sensing image.
Various spatial statistical methods (semivariogram, spatial autocorrelation measures,
and fractal geometry) can be applied to characterise the spatial complexity of urban
landscapes. The principles associated with the measurement of spatial complexity
using these methods with particular focus on the fractal theory and its application for
characterising multiscale and multisource remote sensing data, are described in the

following sections.

The coefficient of variation (CV) is the local variability of remotely sensed data
which measures the total relative variation of pixel values in an area (de Jong and
Burrough, 1995). However, it does not provide any information about spatial
patterns and irregularities.  Similarly, other neighbourhood operations such as
diversity or variation filters can be employed but they also do not provide
information on spatial complexity (Burrough, 1993a; Klinkenberg, 1992; Snow and
Meyer, 1992; Unwin, 1989).
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2.1.1  Semivariogram

The semivariogram is based on the concept that the statistical variation of data is a
function of distance. For a pair of pixels, the semivariance is half of the differences
of the variances of digital numbers embedded with the pixels. Measurement of
dissimilarity between spatially separate pixels is useful, as it provides a concise and
unbiased description of the scale and pattern of spatial variability of remotely sensed

data (Curran, 1988).

In a semivariogram, experimentally derived semivariances are commonly used to fit
with a mathematical model (e.g. linear, spherical, exponential) which interpolates
and optimises the sampling networks. For details, see Curran (1988) and Woodcock
et af. (1988a, 1988b). Typically, a semivariogram, fitted in a model, contains a
range, a nugget, and a sill. These parameters along with mathematical modelling are
used to assess spatial patterns present in remotely sensed data (Curran, 1983;
Woodcock et al., 1988b; de Jong and Burrough, 1995). In general, the nugget
provides information on variability between adjacent pixels, the sill indicates the
total variability and the range presents information on spatial dependence of
reflectance (Webster and Oliver, 1992; Ten Berge er al., 1983; McBratney and
Webster, 1981). However, these parameters along with the shape of the variogram
change with change of the spatial resolution of remote sensing images. Woodcock et
al. (1988a, 1988b) examined the effect of spatial resolution on the shape of the

variograms, making the following observations:

(a) The height of the sill (or the variance of the variable) decreases as the spatial
resolution decreases. This indicates that the variability of data decreases with
decreasing the spatial resolution. Conversely, the variability increases with
increasing the spatial resolution;

(b} The range of influence or the distance to sill increases with decreasing the
spatial resolution. Tt signifies the level of spatially uncorrelated variation in the
data increases with decreasing the spatial resolution; and

(¢) The height of the variogram at the first measured interval of A increases in

relation to the sill.

Available literature suggests that the semivariogram is a robust tool to measure the

spatial variability of remotely sensed data but yet the method suffers from a number
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of disadvantages. Firstly, the estimated variogram for the same landscape units may
differ using different samples i.e. sets of observations (Webster and Oliver, 1992;
Isaaks and Srivastava, 1989). Secondly, the variogram of a transect is a global
estimator and does not give information on local variation. Thus, a local estimator is
needed to analyse the image to distinguish different land cover patterns (de Jong and
- Burrough, 1995). Thirdly, it is difficuit to define a ‘best model criteria’ for
estimating variogram parameters in an automatic procedure (de Jong and Burrough,

1995).

2.1.2 Spatial Autocorrelation Measures

Spatial autocorrelation measures attempt to deal simultaneously with similarities in
the location of spatial objects and their attributes (Longley et al., 2001). It is a scale-
dependent statistic used as an indicator of the degree of clustering, randomness or
fragmentation of a pattern (Read and Lam, 2002). Accordingly, the attributes of a
given variable are said to be spatially correlated if there exists a systematic spatial
variation. This variation can exist in two forms, positive or negative spatial
autocorrelation. In the positive case, the value of a variable at a given location tends
to be similar to the values of that variable in nearby locations. Conversely, negative
spatial autocorrelation is characterized by dissimilar variate values in nearby
locations. For example, a low variate value may be surrounded by high values in
nearby locations when negative spatial autocorrelation exists. Moran’s [ and Geary’s
C (CIff and Ord, 1973) are two most commonly used indices of spatial

autocorrelation measures.

In an analysis using remote sensing images, spatial autocorrelation measurcs
consider the digital number (DN) values of the pixels. In general, adjacent pixels
would be more likely to display similar values than pixels that are spatially separated
(Woodcock er al., 1988a). According to Jupp er al. (1988), spatial autocorrelation in
an image can be affected by object size, spacing and shape. In addition, a sensor’s
spatial resolution will have an effect on the overall spatial autocorrelation present in
a remotely sensed image. Thus, spatial autocorrelation measures can be employed to
measure the spatial complexity of urban landscapes using multiscale remote sensing

images.
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2.1.3 Fractal Geometry: An Overview

Most spatial patterns of nature including curves and surfaces are irregular and
fragmented. These features do not exhibit a deterministic pattern or an Euclidean
shape. For example, the coastline of an island is neither straight nor circular. It is
difficult to describe the forms of such feature in classical geometry (e.g. Euclidean
geometry). Fractal analysis provides a mathematical framework for describing
complicated, irregular features of variation (Burrough, 1993b). In fractal geometry,
the dimension of a coastline can be any value between 1 and 2, depending on the
curve’s degree of complexity. The higher the fractal dimensions the more complex
is the form. Similarly, a plane may have a dimension whose values lie between 2
and 3 (Lam, 1990). The concept of fractal dimension was first formulated by
 mathematicians Hausdorff-Besicovitch; it being Mandelbrot (1977) who labelled
“fractal dimension” and defining fractals as “a set for which the Hausdorff-
Besicoviich dimension strictly exceeds the topological dimension” (cited in Lam,

1990).

The key notion of fractal analysis is the use of ‘self- similarity’ property (Falconer,
1990). Many curves and surfaces are self-similar either strictly or statistically
indicating the fact that each portion of the curve or surface can be portrayed as a
reduced scale of the whole curve or surface. This can be explained by the example
of the Koch curve (Figure 2.1). In Figure 2.1, a straight line is divided into three
equal segments and replaces the middle segment by the two sides of an equilateral
triangle of the same lengths. Then, each of the four segments is divided into three
equal parts and replaces the middle segments by two sides of an equilateral triangle.
Infinite recursion of this process can yield a curve which is non-differentiable and of
infinite length.  Clearly, it demonstrates that each part of the curve is
indistinguishable and a copy of itself and thus self-similar. The fractal dimension, D

of a Koch curve can be derived using the following equation:
D=log N/log (1/G) (2.1)

where G is the step size and N number of steps required to traverse the curve. The
above equation can be simplified as it follows if a linear regression is performed

between the length of the curve and the step size.
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logL=C+BlogG (2.2)
D=1-B (2.3)

where L is the length of the curve, B is the slope of the regression line and Cis a

constant.

(a)

(b)

(c)

Figure 2.1 Self-similarity property of Koch curve

Considering the ‘self-similarity’ property, fractal models assume that the form or
pattern of the spatial phenomenon remains unchanged throughout all scales.
Empirical studies showed that most of the real world phenomena such as coastlines
and surfaces are seldom pure fractals and self similarity rarely exists at all scales
(Goodchild, 1980; Mark and Aronson, 1984; Klinkenberg and Goodchild, 1992). In
such cases, specific fractal dimensions are defined only for specific scale ranges at
which the regression behaves linearly (Quattrochi et al., 2001). Research in spatial
science indicated that the complicatedness of spatial phenomena is a direct
consequence of the operation of many different spatial processes at a wide range of
scales (De Cola, 1989). Accordingly, the spatial phenomenon may have different
forms at different scales of measurement. Thus, D can be used to assess the changes
of a spatial phenomenon in changing the scale or in other words, D can provide an
indication of spatial complexity at different scales (Lam, 1990). Various fractal
measurement algorithms such as the variogram, the isarithm and the triangular prism
surface area (TPSA) can be applied to determine the fractal dimension of multiscale
and multisource using remote sensing images. These methods are described in detail

in Chapter 3 and a brief overview of their performance is described hereafter.
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2.1.4 Fractal Models in Remote Sensing

Fractal analysis is a relatively new technique for characterising remote sensing
images to identify the effects of scale changes on the properties of images (De Cola,
1989, 1993; Lam and Quattrochi, 1992; de Jong and Burrough, 1995; Quattrochi er
al., 1997, Emerson et al., 1999). The idea of using fractals in image analysis is to
determine the textural heterogeneity, which is locally estimated in areas around
pixels and a fractal map is produced as a result. Table 2.1 lists the fractal
measurement algorithms commonly used for estimating the fractal dimension of land

cover types using remolely sensed data.

Digital remotely sensed data can be considered to be one form of spatial surfaces and
the complexity of these spatial surfaces can be measured by fractals (Lam, 1990).
This can be demonstrated by considering a single band image as a virtual
topographic surface where the rows and columns represent the cell coordinates white
the digital numbers of each cell are an imaginary elevation. For an image comprising
the same cell value, the resulting virtual topographic surface would be flat which
corresponds to a fractal dimension of 2.0 whereas, an infinitely complex image
having highly uncorrelated cell value results in a fractal dimension of 3.0 (Turcotte,
1992). Available literature shows the use of fractal models in a variety of remotely
sensed data such as ground-based photography (Carr, 1990), acromagnetic data
(Gregotsky et al., 1991), Landsat TM (De Cola, 1989; Lam, 1990; de Jong and
Burrough, 1995; Quattrochi et al., 1997; Ricotta et al., 1998; Emerson et al., 1999,
Read and Lam, 2002), Landsat-7 ETM and IKONOS data (Read, 2003), thermal
infrared multispectral data (Jaggi er al., 1993), airborne imaging spectromecter data
(de Jong and Burrough, 1995), AVHRR data (Ricotta and Avena, 1998), airborne
laser altimetry data (Pachepsky et al., 1997) and hyperspectral data (Qiu ef al., 1999)

for estimating D in various applications, as shown in Table 2.1.

Several studies have applied the fractal technique for dealing with reflectance
patterns of land cover types (Lam, 1990; De Cola, 1993; de Jong and Burrough,
1995; Ricotta and Avena, 1998); spatial patterns of land cover types (De Cola, 1989),
landscape diversity (Milne, 1991; Lagro, 1991; Olsen, et al., 1993; Ricotta ef al.,
1998); and characterisation of surface shapes derived from images (Pentland, 1984,

Kube and Pentland, 1988; Rees, 1992).
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Table 2.1 Most commonly used algorithms for estimating the fractal dimension
from remotely sensed data
Algorithm Reference Type of Land Cover Type Sensor/ Spatial
Satellite Resolution (m)
Read and Lam (2002) Forest, Scrub, Pasture, Landsat TM 25
Area- Agriculture, Urban and Barren
Perimeter Ricotta er al. (1998) Mediterranean Vegetation Landsat T™ 30
Method Olsen er al. (1993) Six Landscape Patches Landsat T™M | 30
De Cola (1989) Hardwoods, Hayland, Landsat T™M 30
Softwoods, Water, Brush,
Wetland, Grassland, Bare, Corn
and Urban
Triangular Read (2003} Logged Forest, Old-Growth Landsat-7 30,15, 4and 1
Prism Surface Forest, Logged Forest ETM+ and
Area Method excluding Major Roads IKONOS
Read and Lam (2002) Forest, Scrub, Pasture, Landsat TM 25
Agriculture, Urban and Barren
Qiu er al. (1999) Urban and Rural Hyperspectral | 17
De Jong and Burrough Badlands, Rangelands, Open Landsat TM 30 and 10
{1995 and Closed Garrigue, Maquis and Air-borne
and Agriculture Image
Jaggi et al. (1993) Forest, Agriculture and Water Air-borne 30
Isarithm Read and Lam (2002) Forest, Scrub, Pasture, Landsat TM 25
Method Agricultural, Urban and Barren
Quatirochi ef al. (2001} | Urban and Desert Landsat T™M 25
Qiu er al. (1999) Urban and Rural Hyperspectral | 17
Emerson et al. (1999 Agriculture, Forest and Urban Air-borne and | 10 and 30
Landsat TM
Jagpi et al. (1993} Forest, Agriculture and Water Air-borme 30
Lam (1990) Urban, Rural and Coastal Landsat T™ 25
Variogram Ricotta and Avena Grassland, Shrubs, Forest and AVHRR 1000
Method {1998) Livestock Grazing Area
De Jong and Burrough Badlands, Rangelands, Open Landsat TM 30 and 10
{1995} and Closed Garrigue, Maquis and Air-borne
and Agriculture
Jaggi er al. (1993) Forest, Agriculture and Water Air-borne 30
Rees (1992} Ice-Sheet Landsat TM 25

De Cola (1989) demonstrated the application of the fractal model to describe the

spatial complexity of different land cover types (see Table 2.1) which was found to

be useful for improving the classification accuracy. In this approach, the classified

Landsat TM image was segmented into class-induced regions and fractal analysis

was carried out using the perimeter and area of these regions. The results suggested

that urban areas exhibited complicated forms as compared to intensive agriculture,

hardwood forests, and water, spanning the range of extreme D values. Apart from

estimating D, this method generated grid-based GIS data structure based on regions,

which is useful for detailed examination and identification of features including
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statistics for diagnosis of misclassification. Olsen er al. (1993) applied fractals as a
measure of distribution of landscape diversity. In their study, six 10- by 10 cell (300-
by 300 m) sub-landscapes which are subsets of 3- by 5 km classified Landsat TM
were used to examine the landscape diversity. The results indicated that the use of
sub-landscapes was a better measure to evaluate diversity in the context of a large
landscape. It is important to note that the methodologies of these studies focused on
the post-classification of remotely sensed data and considered the area and the

perimeter of various landscape patches for describing the spatial pattern.

On the other hand, Lam (1990) used the reflectance properties of all seven (visible,
near, mid-infrared and thermal) bands of a Landsat TM image to characterise the
spatial complexity of various land covers by measuring their fractal dimension. In
her study, subsets of 201- by 201 cell of Landsat TM image with 25- by 25 m spatial
resolution data were used for three different land cover types (e.g. urban, rural and
coastal area). The results revealed that the land cover types exhibited different
fractal dimension and the urban area was found to be the most spatiaily complex with
high fractal dimension (D) values in bands two and three. For example, in an urban
area, D was found 2.73 in band three while band two resulted a D of 2.72. The
results demonstrated a number of avenues for future study. For example, multi-
sensor data sets for the same study area acquired at about the same time could be
used to examine the effects of various spectral and spatial resolutions from the
resultant fractal dimension. This was further emphasised by Jaggi ef al. (1993) in
their study of implementation of fractal measurement algorithms for analysis of
NASA’s Calibrated Airborne Multispectral Scanner (CAMS) of 30 m resolution
data. Although the results varied according to the type of algorithm used, the
quantification of the spatial complexity and the information content of satellite
images at multiple spatial resolutions (e.g. 10, 20, 30 m) over the same area is

emphasised to understand the effect of scale.

de Jong and Burrough (1995) introduced a fractal model for improving the
classification of satellite imagery when individual, but neighbouring pixels have
different spectral signatures characterising a given land cover type. The results
indicated that fractal modelling can be used as additional information in spectral

classification procedures to improve the classification results. In addition, it also
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demonstrated the effect of spatial resolution on the measurement of D using Landsat
TM with a pixel size of 30- by 30 m and Geophysical Environmental Research
Imaging Spectrometer (GERIS) with a nominal pixel size of 10- by 10 m. In their
study, six different Mediterranean vegetation types were selected and the fractal
dimension was calculated using the variogram and the triangular prism surface area
(TPSA) methods. Reflectance values measured randomly by hand-held radiometer
with a field of view of 1 m’ along various transects were used in the variogram
method whereas the TPSA was applied on the multi-spectral images with different
spatial resolution. The results of the two methods were useful for classifying the
land cover types, although there were instances where the results varied. An in-depth
analysis of the results showed that the ability of D to separate the land-cover types
depends on the spatial resolution of the imagery used, indicating the effect of scale
on the heterogeneity of land cover types. Thus, they concluded that fractal modelling
could be used to analyse multiscale remote sensing data for choosing an appropriate
spatial scale and the type of remote sensing data to be used in specific landscape

analyses.

Emerson et al. (1999) investigated the application of the fractal model to examine the
effect of spatial and temporal resolution on spatial complexity, using the Normalised
Difference Vegetation Index (NDVI) derived from an airborme high-resolution
scanner, and Landsat TM images. In their study, the airborne scanner acquired over
a medium sized city with a spatial resolution of 10 m was re-scaled (o coarser
resolutions of 20, 30 and 40 m while Landsat TM acquired four months apart over a
mountainous areas separated by broad valleys with a spatial resolution of 30 m was
re-scaled to 60, 120, 240, 480 and 960 m. The fractal dimensions computed from the
air-borne scanner of the selected land covers revealed that the spatial complexity of
an agricultural image increases as pixel size increases, while the forested area
showed a general decline of D and areas of the images corresponding to urban land
cover remained roughly self-similar over the range of pixel sizes tested (10 to 80 m).
A similar analysis of multi-temporal Landsat TM imagery indicated a more complex
relation between spatial resolution and fractal dimension. This was attributed to the

absence of snow cover in the summer image.
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Read and Lam (2002) examined the potential of spatial methods such as the fractal
model and Moran’s / of spatial autocorrelation, and selected landscape pattern
metrics such as Shannon’s diversity index (McGarigal and Marks, 1995) and the
contagion index (Li and Reynolds, 1993) for characterising unclassified remotely
sensed data for land-cover discrimination and change detection. The results revealed
that the fractal dimension and Moran’s I were useful for distinguishing differing
degrees of spatial complexity represented by land-cover types. Specifically, the
ability of fractal signatures to distinguish forest and non-forest cover types in the
study area was demonstrated. Similarly, Read (2003} investigated the potential of
spatial methods such as the fractal model and Moran’s [ for characterising recent
(less than one year old) logging activities using Landsat-7 ETM+ and TKONOS data.
The results showed that fractal dimension and Moran’s [ index of spatial
autocorrelation were effective for distinguishing canopy disturbances resulting from

logging activities.

With the inherent ability of the fractal technique for addressing the multiple scale
phenomena as evidenced from previous research, remote-sensing data acquired from
various sensors at different spatial and spectral resolution can be compared and
evaluated. For example, fractal dimension of Landsat TM data can be used to
measure the spatial complexity and can be compared with other types of remotely
sensed data such as Landsat MSS, SPOT, IKONOS, and Quickbird. This can
provide a basis to select appropriate remote sensing data for the interpretation of
heterogeneous urban land covers on the assumption that the scale at which the
highest fractal dimension is measured may be the scale at which most of the

processes of the urban landscape analysed operate.

2.1.5 Performance of Fractal Measurement Algorithms

As discussed in the previous section, fractal modelling is useful for analysing the
spatial complexity of different land cover types using remotely sensed data.
However, conflicting results on the performance of the fractal measurement
algorithms have been reported. For examples, Jaggi et al. (1993) tested the
performance of the isarithm, the triangular prism surface area (TPSA) and the
variogram methods in measuring the D using NASA’s Calibrated Airborne

Multispectral Scanner (CAMS) data acquired at a spatial resolution of 30 m. The
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results showed that the TPSA method slightly underestimated the spatial complexity
of images, as compared to the isarithm method. However, the variogram method
exhibited higher D compared to the values provided by the other methods.
Klinkenberg and Goodchild (1992) found similar inconsistencies on the results from
different methods in their study for characterising the fractal properties of
topography using a digital elevation model. They hypothesised that the variability of
the D is not a reflection of any theoretical inadequacy of the self-similar fractal

model, but rather a function of the methods applied.

Working with satellite and airborne data with a spatial resolution of 30 m and 10 m
respectively, de Jong and Burrough (1995) found discrepancies in the fractal
dimension (D) of different land cover types of the Mediterranean vegetation (see
Table 2.1) from the variogram and the TPSA techniques. The following

observations were made to the variations of the results:

{a) The differences of the techniques (the variogram and the TPSA) and the spatial
resolution (which varied from one meter along transects to 30 m for Landsat
TM image) were attributed as the source of discrepancies on the results.
However, the same resolution data were used for estimating D by both
techniques, yet the results differed. The inconsistencies of the results indicated
that the computation technique influences the measurement of D, as also
reported by Klinkenberg and Goodchild (1992).

(b) The variations of the results for the same technique were attributed to a noise

factor and the varying spatial resolution of the images used in the analysis.

Likewise, Quattrochi et al. (1997) applied the variogram and the isarithm method to
a Landsat TM scene of 201 x 201 pixels to measure the D. The results revealed
variations in the D as a result of changes in the parameters of the methods. For
example, the variogram method was found very sensitive to the breakpoints included
in the regression. They randomly selected 1007 points from TM band 1 with
breakpoints from 1 to 30 and constructed the variogram. From the slope of the
regression, the D was found to be 2.97 with a regression coefficient equal to 0.54.
This value (i.e. 2.97) was likely to change if a different range of points was used to
determine the regression slope. Thus, the regression coefficient is important in

measuring the slope, and a number of researchers concluded that in order to estimate
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the D it is better to select a range of points yielding higher r* (Mark and Aronson,
1984; Jaggi er al., 1993; Lam and De Cola, 1993). For the isarithm method, the
average D was found to be 2.69, considering all the isarithms. The results were
consistent with those yielded from a previous study carried out in the same area by
Lam (1990). However, the D was found to be much higher (2.90) if only isarithms,
which vield a r* 2 0.9 were included in the averaging process. There are other issues
which influence the measurement of the D in the isarithm method (for details see
Section 3.3.2.1). Likewise, Lam ef al. (1997) found that the isarithm method

performed well in returning D values close to those of true surface dimensions.

Kolibal and Monde (1998) examined the accuracy and noise susceptibility of fractal
measurement algorithms using an image of known fractal plane. In terms of
accuracy, the results indicated that the TPSA method produced consistently accurate
results whereas the variogram method showed the poorest performance since it
overestimated the fractal dimension compared to other methods. However, the
variogram results were found least influenced by noise since this technique averages
the pixel values across the entire image, thus tending to minimise its effect in the
image. The TPSA method also appeared resistant to the influence of noise. They
concluded that algorithmically, the TPSA method is the easiest to implement.
Likewise, working with simulated surfaces of known fractal dimension, Lam et al.
(2002) reported that the TPSA method estimates the most accurate fractal dimension

of surfaces having higher spatial complexity.

The TPSA method is easy to implement given that it requires only one user input
parameter (i.e. number of measuring steps) (see details in Section 3.3.2.2), but it
tends to underestimate the fractal dimension computed from the remotely sensed data
(Jaggi et al. 1993; Lam ef al., 1997). A slight modification of the TPSA method
which uses the number of measuring grids (e.g. 1, 2, 4, 8, 16), instead of the square
of the measuring grids (e.g. 1, 4, 16, 64, 256) exhibited more accurate results (Qiu et
al., 1999). Lam ef al. (1997) found the variogram method to be unsuitable for use
with remote sensed imagery, which has a tendency to display higher dimensionality
than topographic surfaces. Accordingly, the isarithm and the TPSA techniques were
selected for characterising the spatial complexity of remotely sensed data acquired

over an urban area.
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2.2 Fuzzy Classification for Urban Land Cover Types using Remote Sensing

In fuzzy classification using satellite- or air-borne remotely sensed data, urban land
covers can be defined as fuzzy sets, and pixels as set elements. Accordingly, each
pixel is attached with a group of membership grades to indicate the extent to which
the pixel belongs to predetermined land covers. The membership grades are termed
fuzzy membership values (FMVs). The notion of fuzzy classification is to generate
FMVs based on the fuzzy set theory introduced by Zadeh (1965). Thus, derivation

of FMVs is the single most important consideration in fuzzy classification.

2.2.1 Derivation of Fuzzy Membership Values (FMVs)

2.2.1.1 Defining Fuzzy Sets

Zadeh (1965) proposed the concept of fuzzy set, which introduces vagueness by
eliminating the sharp boundary dividing members from non-members of a class.
Specifically, it assigns a membership value, as a function of its similarity to the
individual class, and typically varies between 0 and 1. A membership close to 1
denotes strong relations to a particular class, whereas a membership close to 0

represents weaker relationships.

A fuzzy set can be defined mathematically. Let X denote a universal set (e.g. urban

area) with a generic element of X denoted by x, thus X = {x}.
A={r, us(x)xe X (2.4)

A fuzzy set A (land cover class) in X is characterised by a membership function

Ha (x) which associates with each point in X a real number in the interval [0,1]. The

value of 4,y (x) represents the grade of membership of x in A (Zadeh, 1965).

2.2.1.2 Defining Fuzzy Membership Values

The membership function of a fuzzy set, usually expressed as A(x), defines how

the grade of membership of x in A is determined. There are two possible ways of
deriving these membership functions. The first approach is the Semantic Import (SI)
approach. It uses an a priori membership function with which individuals can be

assigned a membership grade. This is useful in situations where users have a very
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good, qualitative idea of how to group data, but for various reasons have difficulties
with the exactness associated with the standard Boolean model (Burrough and
McDonnell, 1998). The SI approach relies on expert knowledge where boundary
values are chosen by custom, law or external taxonomy to generate the fuzzy
memberships (Burrough, 1986). The selection of class boundaries and class intervals
can be an objective or subjective process, depending on the way scientists agree to
define classes (Burrough and McDonnell, 1998). However, it does not mean that
selecting class intervals is an arbitrary process, as often careful consideration is
devoted to the selection of sensible boundaries between classes (Metternicht, 1998).
According to Burrough and McDonnell (1998), the membership function should
ensure that the grade of membership is 1.0 at the centre of the set that it falls off in an
appropriate way through the boundaries to the region outside the set where it takes
the value of 0. The location where the fuzzy membership equals 0.5 is called the
‘crossover point’. These conditions need to be considered in defining fuzzy
membership function. There are several suitable functions, which can be adapted to
define membership grades. For example, Metternicht (1998 and 1999) adopted a
bell-shaped model as described by Dombi (1990) to generate fuzzy membership.

The second approach, named by Robinson (1988) as the similarity Relation Model,
resembles cluster analysis and numerical taxonomy is that the value of the
membership function is a function of the classifier used. A common version of this
model is the fuzzy c-means, also known as fuzzy k-means model based on cluster
analysis. The cluster analysis refers to the identification of distinguished clusters
whose subsets contain points, which have high intracluster resemblance and
simultaneously, low intercluster similarity. Fuzzy clustering was introduced by
Ruspini (1969) and was later developed into fuzzy c-means clustering by Dunn
(1974) and generalised by Bezdek (1975). In fuzzy c-clustering, the idea is to
represent the similarity a point shares with each cluster using a membership function
which varies between 1 and 0 (Zadeh, 1965). This indicates that points do not
belong to only one particular cluster, rather they are assigned membership values for
each individual cluster being constructed. Thus, each sample will have a
membership to every cluster and membership values close to 1 signify a high degree
of similarity between the sample and the cluster, while membership values close to 0

imply little similarity between the sample and that cluster. The net effect of such a
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function for clustering is to produce fuzzy c-clusters for a given data set along with

the membership grades of each location.

The most commonly used algorithm of fuzzy c-clustering is the fuzzy c-means,
which has been applied in numerous remote sensing studies to define memberships
of the c-clusters (McBratney and Moore, 1985; Cannon et al., 1986a; Trivedi and
Bezdek, 1986; Key er al., 1989; Fisher and Pathirana, 1990; Foody, 1992; Foody and
Trodd, 1993; Foody, 1996a; Zhang and Foody, 1998; Pathirana, 1999; Mohan et al.,
2000). It can be used in a supervised or unsupervised classification fashion. In
unsupervised classification, it works by an iterative procedure with an initial random
allocation of the objects to be classified to ¢ or & clusters while in supervised
classification prior knowledge about c-clusters needs to be provided. Apart from the
fuzzy c-means algorithm, a range of classifiers namely, maximum likelihood
classifier (Foody et al., 1992}, fuzzy supervised classification (Wang, 1990a and
1990b), linear mixture modelling (Settle and Drake, 1993), artificial neural networks
(Foody, 1996a) and supervised nonparametric classifier (Skidmore and Turner, 1988)
can be applied to derive partial membership within a pixel. Recently, possibilistic-c
means clustering (Foody 2000) and support vector machines (Brown et al., 2000)

have also been applied to unmix the class proportion within a pixel.

2.2.2 Fuzzy Classification in L.and Cover Mapping

As already mentioned, fuzzy classification allows a gradual transition between land
cover classes as the fuzzy membership of any location (pixel) lies in the interval
[0.1]. The conceptual superiority of fuzzy classification has been demonstrated in
many studies as it avoids problems associated with crisp classification technique (e.g.
maximum likelihood classifier) and has become a popular alternative method for
land cover mapping. For example, Wang (1990a, 1990b) showed that the
proportions of land covers in mixed pixels can be identified using fuzzy
memberships of the major land cover classes. In this study, the membership
functions are defined based on the maximum likelihood classification algorithm with
fuzzy mean and fuzzy covariance matrix instead of the conventional mean and
covariance matrix. Accordingly, fuzzy memberships of predetermined land covers
were generated using Landsat MSS data. In order to compare the accuracy, the fuzzy

training data were hardened and accordingly, the conventional maximum likelihood
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classification was performed on the same data set. The accuracy was assessed on the
hardened classification generated from the fuzzy partition matrix, which showed an
improvement (5.11 percent) in overall classification accuracy as compared to the
output of conventional classification. Likewise, Fisher and Pathirana (1990)
investigated the application of fuzzy classification in determining the land cover
compositions of pixels in a suburban environment using Landsat MSS data. The
results showed that the fuzzy classifier enabled extraction of information about
individual pixels and subpixel phenomena, which were not addressed by other
classifiers (e.g. parallelepiped, maximum likelihood, minimum distance from the
mean). In their study, the fuzzy membership functions were defined using
unsupervised approach of fuzzy c-means algorithm and accordingly, fuzzy
memberships of the predetermined clusters were generated. The results of these
studies showed how the fuzziness of mixed land cover classes occurring within a

pixel was addressed.

Foody and Trodd (1993} examined two alternative approaches to model the
continuous representation of heathland vegetation using measures of the strength of
membership to discrete classes, namely probabilities of class membership from a
maximum likelihood classification and fuzzy membership function from the fuzzy c-
means algorithm. The measures of the strength of class membership generated from
both approaches were found to be significantly correlated to the variations in
heathland composition along a transect, which graded from dry heath to wet heath.
Likewise, Foody (1992) and Foody et al. (1992} showed that the fuzzy membership
can be used to discriminate accurately between the end points of a set of continua

and the strength of class memberships are related to the canopy compositions.

Foody (1996a) investigated the accuracy of the derived fuzzy membership using a
discriminant analysis, an artificial neural network and the fuzzy c-means algorithm.
The results showed that the fuzzy representations were more accurate than the
conventional crisp classification. In addition, the outputs of the derived fuzzy
memberships from the artificial neural network and the fuzzy c-means algorithm in
particular were strongly related to the land cover on the ground and provided the

most accurate land cover representations.
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In an attempt of sub-urban land cover mapping from multispectral satellite image,
Zhang and Foody (1998) investigated the accuracy of crisp and fuzzy classification
using crisp and fuzzy evaluation techniques. In their study, bands 1, 2, and 3 of
SPOT HRYV and bands 3, 4, and 5 of Landsat TM were used to generate the FMVs
using the supervised approach of fuzzy c-means algorithm. Two methods were
employed to generate the fuzzy ground data.  Firstly, sub-pixel land cover
proportions, as relevant to SPOT HRV data (10 m) and Landsat TM (10 m), were
derived from the aerial photographs. Secondly. indicator kriging was used to
spatially interpolate class membership. The results showed that the Kappa
coefficients were more than doubled when applying the fuzzy evaluation technique

as opposed to crisp evaluation technique.

Pathirana (1999) investigated the spatial distribution of misclassified pixels and the
amount of these pixels associated with each cover types using the fuzzy
memberships of the land cover classes. Thematic Mapper (TM) and SPOT
multispectral data sets were used and the fuzzy c-means algorithm was run to
generate the FMVs of the land cover classes. The results showed that the spatial
distribution of erroneously classified pixels was not random and varied depending on
the nature of land cover types. The proportions of such pixels were higher in

spectrally less clearly defined land cover types such as grassland.

Shackelford and Davis (2003) demonstrated the usefulness of fuzzy classification in
discriminating the spectrally similar classes in order to improve classification
accuracy from a high resolution multispectral imagery of an urban area.
Panchromatic and multispectral IKONOS data sets were classified using the
maximum likelihood classifier which produced significant amounts of
misclassification errors between spectrally similar classes such as road and building
and grass and tree. A hierarchical fuzzy classification which incorporates both
spectral and spatial information discriminated the spectrally similar classes and
accordingly, resulted a higher classification accuracy (up to 10 percent) as compared

to maximum likelihood classifier.

Zhang and Kirby (1999) presented the methods of deriving the fuzzy boundaries of
land covers from the output of the fuzzy classified data. In their study, SPOT HRV

data and Landsat TM were used and the fuzzy memberships of selected land cover



33

classes were generated using the supervised approach of the fuzzy c-means
algorithm. Three criteria, namely, maximum fuzzy membership values (Zhang,
1996), confusion index {Burrough, 1986), and a measure of entropy (Foody, 1995)
were applied to generate the fuzzy boundaries using the output of fuzzy classified
data. The results demonstrated a theoretically sound and data-driven solution to
estimate the errors in attributes and identifying the uncertain zones of the classified

data.

It is apparent that fuzzy classification holds advantages over conventional

classification in:

(a) Expressing the vagueness of spatially distributed categories e.g. land covers
derived from remote sensing images,
(b) Offering information on continua of land cover classes; and

(¢) Generating fuzzy boundaries e.g. uncertain zones among the land cover classes.

Thus, fuzzy classification seems to an obvious choice for mapping urban land covers
due to the heterogeneity of land covers, which results in the occurrence of mixed
pixels in remote sensing data. However, the arbitrariness of defining the fuzzy
membership is a major constraint in generating final fuzzy land cover maps and
subsequent accuracy assessment analysis. Zadeh (1968) proposed the idea of
presenting fuzzy memberships above a suitable threshold as unions of defuzzified
areal classes and fuzzy boundaries. The concept of a defuzzification technique based
on the maximum membership values obtained for individual locations can be applied
to generate fuzzy land cover map using the outputs of fuzzy classification (Zhang

and Goodchild, 2002}.

2.3 Accuracy Assessment of Fuzzy Classification

2.3.1 Background Information

In a typical accuracy assessment analysis, pixels of land cover classification are
compared with corresponding locations of the sample data to ascertain whether the
land cover classification assigned to the pixel matches the true classification of the
sample data. The conventional accuracy measures are only appropriate for hard

classifications, which indicates that the derivation of accuracy measures are
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associated with only one class in the classification and its corresponding class in the
reference or ground data (Foody, 1995). It, however, fails to examine closely the
source and magnitude of errors (e.g., mismatches between classification and
reference map) in classifications (Gopal and Woodcock, 1994). Furthermore, it
cannot provide any accuracy measures below the individual class level (Zhang and
Foody, 1998). Clearly, it fails to accommodate the accuracy measures of the mixed
pixels. This is a major limitation for evaluating the accuracy of the fuzzy
classification, and the lack of such methods in the conventional accuracy assessment

is a barrier to adoption of fuzzy classification (Goodchild, 1994).

Gopal and Woodcock (1994) demonstrated the suitability of fuzzy set theory in the
accuracy assessment of thematic maps in order to analyse the nature, frequency,
source, and magnitude of errors using fuzzy ground data. They argued that the
situation of a sample in the field of a particular category being exactly right and all
other categories being equally and exactly wrong often does not exist. This leads to
the possibility of uncertainty in assigning the map label in the traditional map
evaluation process, as the map label can be either correct (agreement) or incorrect
(disagreement). However, the uncertainty of map labelling can be improved
introducing a membership based on the land cover compositions of the ground
sample sites. Gopal and Woodcock (1994) used a linguistic scale based on quality of
map labels and accordingly, each site was assigned the most suitable linguistic value.
The linguistic values were converted into a numerical scale ranging from one to five
indicating the membership functions. Various functions (e.g. max, right, difference
and membership), based on fuzzy set theory were used to assess the magnitude,
source, and nature of errors of the classified data (see Gopal and Woodcock, 1994,
Woodcock and Gopal, 2000, Laba er al., 2002 for details). The results of the
empirical data analysis demonstrated the usefulness of fuzzy sets in accuracy

assessment.

The generation of membership of field data based on a linguistic scale was
implemented in a large project to carry out the accuracy assessment. For example,
Laba et al. (2002) used the methodology proposed by Gopal and Woodcock (1994)
and compared the output map accuracy using conventional and fuzzy accuracy

assessment.  From their results, they concluded that conventional accuracy
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assessment serve as a basis of primary source of information on the quality of land
cover maps. However, in the case of uncertainty on quality and ambiguity associated
with a given classification, the fuzzy accuracy assessment method was
recommended. Muller er al. {1998) slightly modified the methodology and carried
out the accuracy assessment in a land-cover map of the Kuparuk river basin in
Alaska. In their methodology, the arithmetic mean of the difference was calculated
individually for matches and mismatches categories. The study concluded that the
use of fuzzy methods provided a more realistic field observation, which contributed
to a fairly accurate image classification. The combination of fuzzy sets with the error
matrix provided a more precise analysis of the nature and source of classification

€ITOrS,

It is apparent that Gopal and Woodcock (1994) considered the fuzziness of reference
data to measure a range of indicators such as nature, frequency, magnitude and
distribution of errors of classification performance. The additional accuracy
indicators clearly demonstrate the advantages of this method over the traditional
method. However, it shares the disadvantage that the methods are only appropriate
for the situation in which there is ambiguity in the ground data but not the

classification data (i.e. the ground data are fuzzy and the classified data are ‘hard’).

Entropy which is a measure of uncertainty was suggested by a number of researchers
to assess the accuracy of fuzzy classification (e.g. Finn, 1993; Maselli er al., 1994;
Foody, 1995). Foody (1996a) argued that entropy is inappropriate for the evaluation
of fuzzy classification as the fuzziness of the land cover on the ground is overlooked,
and emphasised the need of accommodating the fuzziness of classification output and
ground data for a meaningful accuracy assessment. One such approach is the
measure of closeness between the fuzzy memberships derived from remote sensing
image and the fuzzy memberships of ground data derived from various methods such
as sub-pixel land cover compositions (Zhang and Foody, 1998), indicator kriging
(Zhang and Foody, 1998) and probabilistic approach (Foody, 1995). However, this
approach may suffer from heuristic solution and lack of information concerning the

sampling design (Foody, 1996).

Zhang and Foody (1998) demonstrated the accuracy measures of fuzzy classification

using the maximisation operation which enables to label a pixel of fuzzy
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classification and fuzzy ground data as belonging to a particular class having the
maximum fuzzy value and accordingly, conventional classification accuracy
measures can be derived. The value of the maximum fuzzy membership with
reference to a pre-determined threshold can also be used to harden the output of the
fuzzy classification and fuzzy ground data for enabling the use of conventional
accuracy measures. This process is termed as slicing process (Zhang and Foody,
1998). Many authors utilised the correlation between the proportions of
corresponding memberships of reference and classification data by means of a
coefficient of determination (rz) or correlation coefficient (e.g. Foody and Arora
1996) to assess the accuracy. However, the measures of determination or correlation
lack a spatial component, and therefore they do not necessarily reflect the reality of

specific locations (Binaghi et al., 1999).

Jager and Benz (2000) presented a mathematical framework based on fuzzy
similarity to evaluate fuzzy classification and fuzzy ground truth data. The outputs
are numbers ranging from zero to one indicating increasing similarity between the
fuzzy classified data and the reference data. Using empirical data, Jager and Benz
(2000) compared the accuracy measures obtained from the confusion matrices and
the fuzzy similarity measures. In the confusion matrices, defuzzified classification
and defuzzified ground truth data were used while fuzzy classification and fuzzy
ground truth data were utilised in the fuzzy similarity measures. The accuracy
measures from the confusion matrices varied substantially, as compared to those of
fuzzy similarity measures. The study concluded that accuracy measures based on
fuzzy classification and fuzzy ground truth data are more reliable and the accuracy
values give the correct interpretation. However, obtaining reliable fuzzy ground
truth data is a concern which is decisive in carrying out accuracy assessment

analysis.

Seemingly the methods discussed above generated encouraging results and have
something to offer in assessing the accuracy of fuzzy classification but none of them
are universally applicable. More importantly, a major limitation of most of the
approaches described above is that they go beyond the error matrix and do not
provide ‘location preserving’ accuracy. According to Congalton (1991), in a ‘non-

location preserving’ accuracy assessment, locational accuracy is completely ignored.
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This indicates that total amounts of a category are considered without regard for the
location. In such a situation, ceasing out of errors might lead to a higher accuracy

but misleading.

Binaghi er al. (1999) proposed a new method based on fuzzy set theory to extend the
applicability of the traditional error matrix to the evaluation of fuzzy classification.
Typically, the error matrix associated with the new method is termed as ‘fuzzy error
mairix’. In this approach, the derived descriptive techniques are reformulated in the
context of the theoretical framework of fuzzy set. Accordingly, the grades of
membership representing the classes of classification and/or reference data can be
used and the fuzzy error matrix performs precisely as the corresponding traditional
matrix in producing the accuracy measures. It is important to note that fuzzy error
matrix preserves the property of error ‘localisation’ consisting in ‘the capability of
identifying the contribution of each category relative to the actual category verified

in the reference data’ (Binaghi et al., 1999).

2.3.2 Derivation of Fuzzy Ground Data

The discussions of the previous section indicate that accuracy assessment of a fuzzy
classification requires fuzzy ground-truth data. A number of approaches can be
implemented to generate fuzzy ground-truth data. One such method is the sub-pixel
land cover proportions, which can be derived from a higher resolution satellite- and
air-borne data as compared to the remote sensing data used in deriving the fuzzy
memberships. Zhang and Foody (1998) demonstrated the derivation of sub-pixel
land cover proportions using aerial photographs, as relevant to SPOT HRV data (10
m) and Landsat TM data (30 m). They used the technique of photogrammetric
digitisation of land cover classes from aerial photographs using a reconstituted stereo
model on an analytical plotter. This process resulted in land cover ground data
polygons, which were rasterised to grids with a cell size of 1 m. The finer grid data
were then aggregated in accordance with the SPOT HRV and Landsat TM pixel sizes
independently. Data for the proportions of sub-pixel components of the land covers
were calculated on a pixel-by-pixel basis with respect to the land cover classes

considered.
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Indicator kriging which estimates the conditional probability distribution without
making assumptions about the form of the prior distribution functions can be used to
generate fuzzy ground data. In this approach described by Zhang and Foody (1998),
a set of classified samples was identified from screen-displayed photogrammetric
data so that each point represents full membership (1.0} of the named class with zero
membership values to the other classes. They were transformed to a grid with a cell
size equal to 2.5 m and the semi-variograms were calculated. Then, kriging was
undertaken with the output grid cell sizes equal to the pixel sizes of SPOT HRV and
Landsat TM data respectively. This resulted in probability vectors at individual

locations and accordingly, the sub-pixel land cover proportions could be computed.

Another way of deriving fuzzy ground data as suggested by Foody (1995) was to
generate probabilities from the proportion of different classes present within a
polygon or other mapping unit, such as a pixel’s equivalent area on the ground. Then
interpolation methods may be applied to map the gradual variations along the
boundaries (Zhang and Foody, 1998). In this method, the changing pattern of the
class probabilities depends on a function, which is based on distance between the
points of the candidate class. Lowell (1994) proposed an approach of map
‘skeletonisation’ which attempts to delineate the defined boundaries of different
classes and then convert the boundaries into fuzzier classes using a distance function.
However, the distance based interpolation may not be appropriate for a discrete class
such as lake whose probability will vary abruptly rather continuously. Importantly,
even for a continuous class, the probability of the candidate points may not be a
simple function of the distances from the points of known probabilities (Zhang and
Foody, 1998). Gopal and Woodcock (1994) demonstrated the suitability of using a
linguistic scale to derive fuzzy memberships of the ground-truth data based on the
proportions of the land cover types of the sample sites. The advantage of this
approach is that a statistically sound sampling strategy can be employed in order to

overcome bias.

2.3.3 Derivation of a Fuzzy Error Matrix

An error matrix is a squarc array of numbers set out in rows and columns.
Traditionally, the results of remotely sensed data classifications are tabulated in the

error matrix whose columns represent the sample data (e.g. reference) and rows
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indicate the classified data (Card, 1982) and form the basis for a series of descriptive
and analytical statistical techniques (Congalton, 1991; Rosenfield and Fitzpatrick-
Lins, 1986). A typical error matrix in Table 2.2 shows the accuracy measures of N
number of pixels classified into ¢ categories. The main diagonal of the matrix
indicates correctly allocated pixels whilst the off-diagonal elements represent
incorrect allocation (Story and Congalton, 1986). From an error matrix, using the
correct and incorrect allocation of the pixels, a number of accuracy measures such as
user’s accuracy, producer’s accuracy, error of commission, error of omission and

overall accuracy can be derived (Story and Congalton, 1986).

Table 2.2 A typical error matrix showing commonly used accuracy measures
Reference Data, R,

Classified Data, 1 2 e C User’s Accuracy

C, (UA) (%)

1 Nl] ng arvae N]C N”/ENH
2 NQ_] N22 . N2c NZZIEN’lj
C N Neo N.. Ncc’lch‘i
Producer’s N|TEN, Ny [N N.JEN
Accuracy (PA) (%)

Similar to an error matrix, fuzzy error matrix is a square matrix whose columns
represent the actual categories (reference data) while the rows indicate the classified
data. Tt is a generalisation of the traditional error matrix, which is based on the
concept of fuzzy set theory introduced by Zadeh (1965). The advantage of the fuzzy
error matrix is that it accommodates the fuzzy memberships of the reference and
classification data in deriving the accuracy measures. The derivation of a fuzzy error
matrix from the traditional error matrix can be explained using the classical set
theory and derived set operations. Let X denote a universal set, R, be the set of
ground truth data assigned to class n and G, be the set of classified data assigned to

class m, with 1< n<¢,1 £ m<c¢ and ¢ as the number of classes.

In conventional accuracy assessment, ground truth and classified data are considered
as crisp. Thus, each individual observation of the ground truth and classified data
can be represented into two groups (e.g. members and nonmembers). This indicates

that a sharp, unambiguous distinction exists between members and nonmembers of
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the ground truth and classified data and they are separated by a hard boundary. The
process by which individuals from a given sample data set X are determined to be
either member or nonmembers of the classes n and m is defined by the following

characteristic or discrimination function of the sets R, and C,, (Binaghi ez al., 1999).

ug,: X - {0.1} (2.5)

te, X —>1{0,1} (2.6)

For the above given sets, the membership values (c.g. member or nonmember)

assigned to the functions ug (x) and p (x) respectively, to every xe€ X in the

following manner

l1if xe R,

1y (x) = { 2.7)
0 Otherwise
1if xe C,

e )= @8)
0 Otherwise

The elements of the conventional error matrix M in row and column of Table 2.1

represent the cardinality of their intersection set C,, N R, which can be expressed by

the following equation.

M{m,n)=|C, NR,|= ZX te, O, ) (2.9)

with the following characteristic function:

1if xe C,Axe R,

e, O (x)= { (2.10)

1] Otherwise
In the context of soft classification, the crisp set of R, and C,, are represented in
fuzzy set proposed by Zadeh (1965) and lets denote them as R; and (,:n .

Accordingly, the membership function of the fuzzy sets R; and 6n can be expressed

by the following functions.

u. X - [0,1] (2.11)
Rp
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i, X -1 (2.12)
Cm

where [0,1] denotes the interval of real numbers between 0 to 1.

The fuzzy memberships of the two fuzzy partitions of {R:,, } and {C,, } of the

sample data set X are used in the derivation of fuzzy error matrix M. Similar to

conventional error matrix, the assignment to the element of fuzzy error matrix

M (m,n) involves the computation of the degree of fuzzy memberships in the fuzzy

intersection set Efm ml—en . For the intersection operation, several different classes of
functions have been proposed in the literature (Dubois and Prade, 1985). However,
the standard operation fuzzy AND (minimum) as model of intersection of the fuzzy
set theory still possess particular significance (Klir and Folger, 1988). Another
argument of using Fuzzy AND is its simplicity as compared to the variety of fuzzy

set operators.

Accordingly, fuzzy AND, a logical intersection that combines the fuzzy
memberships of two or more bands using the minimum operator introduced in the
original formulation of the theory of fuzzy sets (Zadeh, 1977) can be used to
determine the generic element of the fuzzy error matrix. This can be expressed

mathematically by the following (Binaghi ez al., 1999):

Mmn)=|C,AR|= T u. . (x):zmm[ﬂ_ &) L. (x)] (2.13)

xeX Cp Rp Cm £n

The above expression clearly demonstrates that the assignment of the generic

element of the error matrix M (m, n) is an extension of the conventional error matrix

(see Equation 2.10). The theoretical aspects and the various accuracy ameasures of a

an error matrix and fuzzy error matrix are further described in Chapter 3.
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2.3.4 Sampling Strategy for Generation of Fuzzy Ground Data

It is cumbersome to consider every image pixel in generating a representative error
matrix and hence, various sampling schemes have been proposed to select pixels to
carry out the accuracy assessment. Therefore, an appropriate sampling strategy 1s
required to select sample data that are logistically feasible, spatially accurate, and
statistically relevant. The factors associated with sampling strategy such as sampling
unit {e.g. pixels or polygons), sample size and sampling technique (e.g. random

sampling) are discussed below.

2.3.4.1 Sampling Unit

A sample data set consists of a number of sampling units. The first step in devising a
sampling strategy in any accuracy assessment is to choose the sampling unit. There
are four possibilities: a single pixel, a cluster of pixels (often a 3x3 pixel square), a
polygon, and a cluster of polygons as a sampling unit for area based accuracy
assessment (Congalton and Green, 1999). In a land cover map derived from satellite
data, area is often used to evaluate the accuracy and the ideal sampling unit is the
individual pixel if a per-pixel classification is required (Janssen and van der Wel,
1994). However, the choice of single pixel may be misleading. This is because, its
representation as an arbitrary square shaped landscape unit may not relate to the
actual delineation of the land cover (Congalton, 1991). Moreover, the accuracy of a
GPS receiver combined with the potential accuracy of the map itself could add a high
level of uncertainty in locating individual pixels on the ground (Muller ef al., 1998).
Thus, a cluster of pixels, typically a 3x3 block, is commonly used as a sample unit to
collect sample data (Muller et al., 1998; Congalton and Green, 1999). The choice of
a cluster of pixels allows to account for GPS receiver imprecision while comparing
ground reference data with map data, and also minimises image registration
problems since it is larger than one pixel and therefore easier to locate on the

reference data (Muller ef al., 1998; Congalton and Green, 1999).

2.3.4.2 Sample Size

One important task of an accuracy assessment analysis is to select the appropriate
sample size. Collection of samples is expensive. Thus, the sample size should be

kept to a minimurn with an adequate representation from each category, so that the
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accuracy assessment analysis is statistically valid. However, selection of the
majority of samples from the most accurate category and few from the confused

categories appears to give better accuracy (Congalton and Green, 1999).

There are a number of ways in which a sample size can be determined. For example
an equation based on the binomial distribution or the normal approximation to the
binomial distribution has been used to compute the sample size (Rosenfield et al,
1982; Curran and Williamson, 1986; Congalton, 1988). The equations are based on
the proportion of correctly classified samples (pixels, clusters or polygons) with
some allowable errors. These techniques are statistically sound for ascertaining the
sample size, but the conceptual issues associated with these techniques limit use in
the error matrix. It is important to note that an error matrix does not simply consider
the amount of correct or incorrect samples but it accounts for confusion amongst
categories (Hay, 1979; Fitzpatrick-Lins, 1981). Therefore, the use of these

techniques for determining the sample size appears inappropriate.

Remote sensing analysis generally deals with large numbers of pixels and the more
traditional sampling scheme (e.g. random) is often practical. Thus, there is a need to
balance between a statistically sound sample and a practical sample. A general
guideline suggested the collection of a minimum of 50 samples for each land cover
category present in the error matrix (Hay, 1979; Congalton, 1991; Muller, et al..
1998; Congalton and Green, 1999). The guidelines further state that if the area is
especially large or the classification has a large number of land cover categories (i.e.,
more than 12 categories), the minimum number of samples should be increased to 75
or 100 per category. Alternatively, the appropriate sample size can be computed
using a multinomial distribution, which demonstrates a good balance between

statistical validity and practicality (Congalton and Green, 1999).

2.3.43 Sampling Technique

Apart from sample unit and sample size, the distribution of samples plays an
important role in accuracy analysis. In order to reach a valid conclusion about a
map’s accuracy, there is a need to ensure that the selection of the sample is made
without bias. This confirms which sampling technique gives the smallest variance

and highest precision for a given cost (Cochran, 1977). Failure to meet the above
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criteria might lead the resulting error matrix to over or underestimate the true
accuracy. Therefore, the selection of a proper sampling technique is critical in

generating an error matrix, which represents the entire map.

There are five common sampling techniques: simple random sampling, stratified
random sampling, systematic sampling, stratified systematic unaligned sampling, and
cluster sampling (Congalton and Green, 1999). In a simple random sampling, a
random number generator is used to choose random x, y coordinates to select
samples. In almost any statistical analysis, the benefit of randomness is that each
member of the sample data has an equal and independent chance of being selected
and thus, ensures that the sample will be selected without bias. Stratified random
sampling is similar to simple random sampling, however, some prior knowledge
about the study area is used to divide the area into groups or strata. In the case of
accuracy assessment of remotely sensed data, the classified image has been stratified
into land cover types. The major advantage of a stratified random sampling is that

all strata (i.e., land cover types), no matter how small, will be included in the sample.

Systematic sampling is a method in which the samples are selected at some interval
over the study area. In most cases, the first sample is randomly selected and each
successive sample is taken at some specified interval. The major advantage of
systematic sampling is in choosing samples uniformly over the entire study area.
Stratified systematic unaligned sampling attempts to combine the advantages of
randomness and stratification with the ease of a systematic sample without falling
into the pitfalls of periodicity common to systematic sampling. In addition to the
sampling techniques already discussed, cluster sampling has been frequently used in
assessing the accuracy of remotely sensed data, especially to collect informatton on

many samples quickly.

In an accuracy assessment analysis, the statistically ideal design is either a simple
random sampling or stratified random sampling (Hord and Brooner, 1976; Hay,
1979). Zonneveld (1974) suggested a stratified random sampling is preferable and
Van Genderen et al. (1978) agreed that a stratified random sampling is the ‘most
appropriate method of sampling in natural resource studies using remotely sensed
data’. This has been further substantiated in the study by Janssen and van der Wel

(1994). According to Janssen and van der Wel (1994), ‘preferably, stratified random
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sampling should be used and should be based on distinguished classes’. Congalton
(1988) compared the sampling techniques vsing different number of samples over
remotely sensed images of forest, rangeland and grassland and concluded that the
performance of random sampling is suitable for selecting samples from less spatially
complex classes, whereas systematic and stratified systematic unaligned sampling
greatly overestimate the parameters. He further stated that stratified random
sampling worked well for the case of small, but important areas, which need to be
included in the sample. Congalton’s concern with the bias of systematic and
stratified systematic unaligned sampling seems contradictory to Fitzpatrick-Lins’s
(1981) and Campbell’s (1987) interpretation. Campbell (1987) stated, “if the analyst
knows enough about the region to make a good choice of grid size, the stratified

systematic nonaligned samples is likely to be among the most effective”.

2.4 Summary

This chapter reviews the principles of analysing spatial complexity of urban
landscapes using multiscale remote sensing data, which provides a basis for selecting
an appropriate sensor for the mapping and accuracy assessment of major urban land
cover types. The investigation of spatial complexity using multiscale remote sensing
data includes spatial statistical methods like the semivariogram, spatial
autocorrelation measures and fractal theory, while the mapping of urban land covers

and accuracy assessment are based on fuzzy set theory.

The semivariogram is a robust method, based on the idea that the statistical variation
of data is a function of distance. The variogram parameters such as the nugget
provide information on variability between adjacent pixels, the sill gives information
on the total variability of the area considered and the range presents information on
spatial dependence. It is apparent that the variogram parameters are useful for
describing the spatial patterns of remotely sensed data and could be used in the
analysis of multiscale remote sensing image. However, one of the major limitations
of this method is in defining ‘best model criteria’ for estimating variogram

parameters in an automatic procedure (de Jong and Burrough, 1995).

Spatial autocorrelation measures are effective for examining the spatial variation of

the attributes (digital numbers of pixels) of a given variable (remote sensing image).
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When there is systematic spatial variation in the values (digital numbers) of the pixel
of an image, spatial autocorrelation exists. This variation can exist inn two forms
called positive or negative spatial autocorrelation. Moran’s [ and Geary's C (Cliff
and Ord, 1973) are two most commonly used indices of spatial autocorrelation
measures which can be employed to measure the spatial complexity of urban
landscapes using multiscale remote sensing images, and therefore they will be tested

in this study.

Fractal theory provides a mathematical framework to describe complicated and
irregular variations of lines and surfaces. Digital remotely sensed data are
considered to be one form of spatial surfaces and the spatial complexity of these
spatial surfaces can be measured by fractals. The key concept of fractal is the self-
similarity property. In other words, the shape of a fractal object or surface is
independent of the scale at which it is measured. Thus, the spatial complexity of
remote sensing data acquired at different spatial, temporal and spectral resolutions
can be measured and the effect of spatial and spectral resolutions can be assessed.
The analysis of spatial complexity of multiscale remote sensing images indicates that
an optimal spatial resolution for distinguishing the various land covers is one at
which the greatest difference in complexity occurs (Emerson ef al., 1999). Thus, the
multiscale analysis of remote sensing images using a fractal model is thought to
provide information for selecting an appropriate sensor for mapping urban land cover
types. Accordingly, fractal model using fractal measurement algorithms such as the
isarithm and the TPSA will be applied to multiscale remote sensing images for
selecting an appropriate sensor for urban land covers using the analysis of spatial

complexity.

Fuzzy set theory provides useful concepts and tools for dealing with the uncertainty
of derived urban land cover maps from remotely sensed data. The key to the
derivation of fuzzy land cover maps relies on defining appropriate fuzzy membership
functions (Klir and Yuan, 1995). Two broad approaches, namely the semantic
import (SI) model and the similarity relation model, which resembles cluster analysis
can be employed to define the fuzzy memberships. For remote sensing images, a
typical method of defining fuzzy memberships is the fuzzy c-means algorithm

(Bezdek et al., 1984). In this algorithm, fuzzy membership values for each pixel
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belonging to all candidate classes are generated either in an iterative way
(unsupervised approach) or supervised mode using the signatures of training data.
The supervised approach of the fuzzy c-means algorithm will be applied to generate
fuzzy memberships of sclected bands of multispectral remote sensing image that

provided the highest spectral separability among predetermined urban land covers.

The accuracy assessment of fuzzy classification requires fuzzy ground truth data. A
number of ways such as assigning membership using linguistic values based on land
cover compositions, sub-pixel land cover compositions, indicator kriging and
probabilistic approaches, can be applied to generate fuzzy ground truth data. Using
the fuzzy memberships of the classified and ground data, various approaches such as
measure of closeness, fuzzy similarity, entropy, and correlation measures can be
applied to assess the accuracy of fuzzy classified data. Another approach consists of
slicing the fuzzy memberships of classified and ground data using a particular
threshold so that conventional accuracy measures can be determined afterwards.
These approaches offer some encouraging results in assessing the accuracy of fuzzy
classifications but none of them are universally applicable. A major limitation of
these approaches is that they suffer from an appropriate sampling strategy and do not

provide ‘location preserving” accuracy which might mislead the mapping accuracy.

A fuzzy error matrix based on fuzzy set theory will be applied to assess the accuracy
of a fuzzy classification. This matrix is a generalisation of the conventional error
matrix which preserves the property of emror “localisation” consisting on “the
capability of identifying the contribution of each category relative to the actual
category as verified in the reference data™ (Congalton, 1991). The fuzzy error matrix
requires fuzzy memberships of the classified and ground truth data. In generating
fuzzy ground data, selection of sample data should be logistically feasible, spatially
accurate, and statistically relevant. Accordingly, factors associated with sampling
strategy such as sampling unit (e.g. pixels or polygons), sample size and sampling

technique (e.g. random sampling) need to be considered.

The method selected for measuring the spatial complexity of urban land cover types
in the Perth metropolitan area, as well as the research approach adopted for
characterising and modelling the heterogeneity of the urban landscape, as mapped

from remotely sensed data are discussed in the following chapter.
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Chapter 3

METHODS AND TECHNIQUES

This chapter describes the research approach applied to measure the spatial
complexity and mapping of the heterogeneity of urban land cover types using
remotely sensed data. Spatial autocorrelation measures and fractal techniques were
used for the analysis of spatial complexity and the principles of these approaches are
described. The transformed divergence analysis was implemented for selecting the
most appropriate combination of bands of a multispectral satellite image, which were
used to derive the fuzzy memberships of the major land covers. Fuzzification was
undertaken using a supervised approach of the fuzzy c-means algorithm. The
conceptual overview and the general methodology of the fuzzy c-means algorithm
and the principles of fuzzy operators, which were used to integrate the fuzzy
memberships of the selected bands, are described. Then, the methods for generating
fuzzy ground data, used to carry out the accuracy of fuzzily classified data are

discussed.

3.1 Methodological Approach

The methodological approach adopted in this research is composed of four major

steps:

(a) Study area selection;

(b) Characterisation of the spatial complexity of urban landscapes using multiscale
and multisource remote sensing data;

{c) Derivation of fuzzy membership values (FMVs) of selected urban land cover
types using multispectral image;

(d) Creation of virtual field reference database (VFRDB) and accuracy assessment

of the fuzzily classified data.

The methods and techniques associated with the above methodological approaches

are described in the following sections.
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3.2 Study Area Selection

The Perth metropolitan area (PMA) consisted of 29 local government areas (LGAs)
which are characterised by commercial, industrial, residential, grassland, parks,
irrigated pasture, grazing areas and forested areas. Among the LGAs, the City of
Perth, the City of Melville and the City of Armadale were selected (Figure 3.1) as the
dominant land cover types of the three LGAs were considered to be representative of
the range of land covers and their spatial variability over the PMA. An examination
of the secondary source data (e.g. land zoning map, metropolitan region schemes)
and random field visits indicated that the land cover types of the City of Perth are
characterised by commercial and industrial areas while the land cover types of the
City of Melville is dominated by residential and grassland. The major land cover
types of the City of Armadale include residential area, irrigated pastures, grazing
area and forested areas, being a typical ‘urban fringe’ area of the PMA. A detailed

description of the study areas is provided in Chapter 4.

Figure 3.1 Location map of the Perth metropolitan area in Western Australia

3.3 Characterisation of the Spatial Complexity of Urban Landscapes

The spatial complexity of urban landscapes described by spatial statistics such as

spatial autocorrelation measures and fractal measurement algorithms, applied on
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multiscale and multisource remote sensing data. These methods are described

hereafter.

3.3.1 Spatial Autocorrelation Measures

Moran’s [ and Geary’s C (Cliff and Ord, 1973) are two indices of spatial
autocorrelation which can be applied to characterise the spatial complexity of urban
landscapes. These measures are computed from the following formulas:

R R
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Where w;; is the weight at distance d so that wy; = 1 if point j is within distance d from
point 7 ; otherwise, w; = 0; Z’s are deviations (1.€. Zj = ¥i — Ymean fOr variable y), and W
is the sum of all the weights where i #j. Moran’s / varies from +1.0 for a perfect
positive correlation (a clumped pattern) to -1.0 for a perfect negative correlation (a
checkerboard pattern) whereas Geary’s C normally ranges from 0.0 to 3.0, with 0.0
indicating positive correlation, 1.0 indicating no correlation, and values greater than
1.0 indicating negative correlation. It is interesting to note that Moran’s I and
Geary’s C do not explicitly consider the shapes and sizes of objects once the weights
W;; in Equations 3.1 and 3.2 are determined. Among these measures, Moran’s [ was
found to be useful for characterising the spatial complexity of various land cover
types (e.g. forest, scrub, pasture, agriculture and urban) which is inversely correlated
with the fractal dimension (Read and Lam, 2002). Accordingly, Moran’s / index of

spatial autocorrelation was used in this research as shown in Chapter 5.

3.3.2 Fractal Measurement Algorithms

The application of fractal models can be categorised into two major types. The first
set of applications uses fractal as a model to simulate the real world for analytical

and display purposes, while the second set of applications utilises the fractal
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dimension as an index for describing the spatial complexity of curves and surfaces.
As mentioned by Lam (1990) and Lam and Quattrochi (1992), a number of
approaches such as the shear displacement method (Goodchild, 1980; Lam, 1990),
the modified Markov method (Dutton, 1981), the inverse Fourier transformation
technique (Fournier et al., 1982), and the recursive subdivision {(Goodchild, 1980;
Mark and Aronson, 1984) can be used for generating fractal curves and surfaces as
mentioned by Lam (1990) and Lam and Quattrochi (1992). Likewise, there are
several techniques to determine the fractal dimension (D) of remotely sensed data,
when aiming to use D as an index for describing the spatial complexity of lines,
curves and surfaces. Among the techniques, the isarithm, the variogram, and the
triangular prism surface area (TPSA) have attracted most attention from researchers

(Clarke, 1986, Jaggi et al., 1993, Lam and De Cola, 1993).

Previous work shows high variability in the computation of D when different
algorithms are used (Klinkenberg and Goodchild, 1992; Jaggi et al., 1993; Lam and
De Cola, 1993; de Jong and Burrough, 1995; Quattrochi ef al., 1997; Kolibal and
Monde, 1998). Available literature suggests that many of the algorithms have not
been tested on a wide range of data sets and comparative studies have been relatively
few. Moreover, the theoretical and practical limitations of these techniques have not

been adequately researched and deserve further investigation.

3.3.2.1 The Isarithm Technique

This technique measures the fractal dimension of the isarithmic lines (e.g. contours,
digital numbers of a satellite imagery). It is an extrapolation of a one-dimensional
technique termed the line-divider method (Shelberg et al., 1982; Shelberg ef al.,
1983). The principle of this approach is to characterise the different ‘step sizes’
representing the segments that are necessary to traverse a curve (See Section 2.1.3).
Thus, a smaller ‘step size’ is required to traverse a highly irregular curve, whereas a
larger ‘step size’ is required to traverse less irregular curves. Using the number of
steps and ‘step size’, the fractal dimension (D) can be computed using Equation 2.3
in Chapter 2. For an irregular curve, at larger step sizes the detail of the line is lost,
and the total line length diminishes. This results in a negative slope of the regression
line. Thus, the fractal dimension of a curve always lies between 1 and 2. For

remotely sensed data, this method considers lines of equal digital values, or contours
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of the image, as the objects for estimation of the fractal dimension and is calculated

by the following equation.
D=2-8B (3.3)

The above algorithm was reported by Shelberg ef al. (1983) and subsequently
modified for determining the fractal dimension of remotely sensed data. The basic
steps associated with the modified algorithm are as follows (Lam and De Cola, 1993;

Jaggi et al., 1993):

(a) Generate contours or the isarithms of the image by dividing the pixel values
into equally spaced intervals;

(b) Divide the pixels into two regions using the threshold value of the current
isarithm value. Typically, pixels with values below the isarithm value are set
to ‘off” while pixels greater or equal to the isarithm value are set ‘on’. This
transforms the image into a simple binary set of 1s and Os forming a matrix of
rows and columns representing the image for that particular isarithm value;

(¢c) Compare each neighbouring cell along the rows or column, or row-column
(both), for boundary cells and calculate the length of the each isarithm line
represented by the number of boundary cells encountered using various step
sizes;

(d) Determine the fractal dimension from the regressed slope of the plot drawn
between the logarithm of the number of edges and the logarithm of the step
sizes; and

(e) Calculate the fractal dimension of the entire image by averaging the fractal

dimension for each 1sarithm.

The number of step sizes can be set up to the maximum number of pixels of the
image being used and accordingly, the algorithm generates the different walk sizes
following a geometric series which are defined in units of grids (i.e. 1, 2, 4, 8, 16, 32,
etc.) (Lam and De Cola, 1993; Jaggi et al., 1993). Similarly, the isarithim interval is

pre-determined by the user, using the following equation.

Number of isarithm lines

= (maximum pixel value — minimum pixel value)/isarithm interval (3.4)
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The above discussion indicates that few parameters such as isarithmic interval, the
number of isarithm lines, step size (or the number of cells) and the direction of
computing fractals control the estimation of fractal dimension. For a remote sensing
image, Clarke (1986) recommended choosing values that represent the ‘step size’, or
number of cells which are increased as a power of two so that the observations on the
independent variable for the regression are spaced equally in the log transformed
plot. Lam (1990) used an isarithmic interval of two and a maximum step size of six
to calculate the fractal dimension of three study areas from all bands of a Landsat
TM, using the row and the column method. The results indicated discrepancies in
the resultant D values computed from the row and column method, particularly for
urban areas. This was attributed to the directional bias, as roads and highways were
found aligned with the rows and columns of the image analysed. Similar
discrepancies were found by Jaggi et al. (1993). Lam and De Cola (1993) described
three fundamental factors that affect the computation of fractal dimension from

remotely sensed data. These are as follows:

(a) The orientation patterns have an effect on the resultant D, when only the row or
column methods are used. Thus, for an image which has distinct directional
pattern, the row-column method is recommended;

(b)  Zero values of the cells near the edges of the boundary for each ‘step size’ need
to be excluded;

(c) The maximum ‘step size’ has more likelihood of encountering zero boundary
cells. Moreover, use of excessively large step sizes tends to create points that

fluctuate at the right end of the regression plot, resulting in low #* values.

3.3.2.2 The Triangular Prism Surface Area (TPSA) Technique

The triangular prism area surface area (TPSA) technique was proposed by Clarke
(1986). This is a three-dimensional geometric equivalent of the “walking dividers”™
approach, by which the fractal dimension of an image is computed from the surface
areas of four imaginary triangular prisms (with base h x h) generated by the pixel
values of four corner pixels (i.c., the center of a pixel). Typically, the average of the
pixel values located at the four corners of the triangular prism defines the average

height of the apex of the prism. This is placed in a node common to all four pixels
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and accordingly, it defines four triangular surfaces comprising the triangular prisms
(Figure 3.2).

For a specific square size (i.e. step size), a series of triangular prisms are created
from the entire image, and using Heron’s formula (Clarke, 1986), their surface areas
are computed. The calculation is repeated for different square sizes and the
relationship between the surface areas of the imaginary triangular prisms and the
square sizes provides the fractal dimension. Similarly, the total area of the triangular
prism decreases with increasing in the size of the squares. This demonstrates a
negative slope of the regression line of the plot between the logarithm of the total
area and the logarithm of the step size. Using the regressed value, the fractal

dimension can be calculated by using Equation 3.3.

DN
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Figure 3.2 Typical example of imaginary triangular prisms generated from
adjacent pixels (adapted from de Jong and Burrough, 1995)

In the TPSA method, the number of steps or square grids depend on the size of the
images. Typically, the largest square is computed from 2", where n is an integer
which would give the value of 2" as close as that of the shortest side of the square.
Thus, the side of the maximum square of an image comprised of 128 x 128 pixels is

64 (less than 128) and the maximum step size equals 6 (26). However, for a certain
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size of image (128 x 128 pixels), one cell larger than the image (129 x 129) can be
employed. The advantage of squares of sides increasing by powers of two, is that it
provides a uniform spread of observations on the independent variable during the

log-log regression (Clarke, 1986).

3.4 Derivation of Fuzzy Urban Land Cover Maps

The conceptual model devised for deriving the fuzzy membership of urban land
covers using multispectral satellite image is composed of three major steps, as shown
in Figure 3.3 (using an example of Landsat-7 ETM+ and four urban land cover

classes):

(a) Selection of the best set of bands of multispectral image using transformed
divergence analysis;

(b) Computation of fuzzy membership values for each land cover type of the
selected bands; and

(c) Integration of fuzzy membership values for land cover types A, B, C, ....n of

the selected bands 1, 2, ...n using different fuzzy operators.

The theoretical basis of the model is presented hereafter.

3.4.1 Optimal Band Selection

Several statistical separability measures such as divergence, transformed divergence,
canonical analysis, can be used to evaluate class separability of pre-determined
feature classes within the spectral bands of multispectral image (Richards and Jia,
1999). The advantage of transformed divergence analysis is that it provides a prior
probability of correct classification based on statistical separability measures which
can be computed on any combination of bands, enabling to exclude the bands, or
combinations thereof, that as a function of spectral class separation may not yield or

correct classification result. Accordingly, transformed divergence (TDI-J,-) analysis

was used in this research to select the best set of bands from the multispectral

images. This measure is a modification of the divergence measure (Dy) which

provides a prior probability of correct classification using the statistical separability
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based on the degree of overlap of the probability distributions between a pair of

spectral classes (Richards and Jia, 1999).

!
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The conceptual model for deriving fuzzy land cover maps

Figure 3.3

Thus, the larger the transformed divergence, the greater the statistical distance
between the training signatures, and the higher the probability of correct
classification. Tt can be computed from the following formula (Swain and Davis,

1978):

D, :%zr[(vf -vj)(vl-“ —Vj_])]+%tr[(Vi_] -Vj_l)(Ml- -M;)(M; —Mj}T]

(3.5

1D = 2000/ 1-exp —~ (3.6)
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where:

i and j = the two signatures (classes) being compared
V; = the covariance matrix of signature /

M; = the mean vector of signature 7

tr = the trace function (matrix algebra)

T = the transposition function
Thus, transformed divergence analysis firstly requires:

(a) Determining the urban land cover types to be mapped; and
(b) Creating a training set of the classes so that statistical parameters needed for

the computation of transformed divergence can be obtained.

Equation 3.6 indicates that transformed divergence increases as the distance between
the classes increases, usually varying between 0 and 2000. According to Jensen
(1996), a transformed divergence value of 2000 suggests an excellent class
separation, 1900 provides a good separation while values below 1700 represent a
poor separability between classes. This technique has been applied in several studies
to evaluate the separability of informational classes and select the best band
combination to be used in the subsequent image classification (Metternicht, 1996,

Metternicht and Zinck, 1997 and 1998).

3.4.2 Derivation of Fuzzy Membership Value (FMV)

Chapter 2, Section 2.2.1 discussed different approaches for deriving FMVs. As the
fuzzy c-means algorithm has been adopted for deriving FMVs of major urban land
cover types of the Perth metropolitan area, a conceptual overview is presented

hereafter.

3.4.2.1 The Fuzzy c-Means Clustering Algorithm

3.4.2.1.1 Conceptual Overview

The fuzzy c-means clustering algorithm is developed based on the fuzzy c-clustering
principle. It assigns a membership function to each data sample for every class on

the basis of its similarity to the class mean. However, membership calculation is an
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iterative process. In each iteration, all pixels begin and end with memberships in
cach of the specified number of clusters and each iteration adjusts these membership
function values to minimise an error function. In the fuzzy c-means clustering

algorithm generalised by Bezdek (1981), the least squared error function is used.

There are two aspects of the fuzzy c-means clustering algorithm that deserve further
discussions. Firstly, an assumption that governs deriving FMVs from the classifiers
is the frequency distribution of the classes. With the exception of the fuzzy c-means
algorithm, the classifiers are based on either non-parametric or gaussian normal
distributions of the classes. It is therefore, essential to consider the frequency
distribution of different classes of the input image for a reliable output. For example,
probabilistic measures of maximum likelihood classification may become unreliable
if a gaussian normal distribution cannot be assumed for each class (Wilkinson,
1991). In a situation where the frequency distribution does not follow gaussian
normal distribution, fuzzy ¢-means clustering can be more appropriate (Foody and
Trodd, 1993). The advantage of fuzzy c-means algorithm is that it does not consider
the frequency distribution of the classes and can be used for either unsupervised
(e.g., Cannon et al., 1986b) or supervised classification (e.g., Key et al., 1989).
Fuzzy c-means algorithm is particularly advantageous as the degree of fuzziness is
controlled by the analyst. Secondly, the iteration and clustering technique is
different from either a ‘lumper’ approach which operates by combining small
clusters into larger clusters, or a ‘splitter’ which begins with all pixels belonging to
the same class and then subdividing them. Instead, in the fuzzy c-means clustering
algorithm, the fuzzy memberships are adjusted in each iteration to the specified
number of clusters and accordingly each iteration adjusts these memberships to
minimise the error function. The method has received growing interest for its
particular value and applied in many studies addressing the imprecision in
interpreting land cover types from remotely sensed data (Fisher and Pathirana, 1990;
Foody and Trodd, 1993; Foody, 1996(b); Zhang and Foody, 1998; Pathirana, 1999;
Mohan ef al., 2000).

From the above discussion, it is evident that the fuzzy c-means clustering algorithm

calculates optimal membership through a generalised squared error function. Thus, it
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is necessary to explain the mathematics of the generalised least squared error

function and its associated parameters that control the membership functions.

According to Bezdek (1981), the generalised least-squared errors function which is
used in the fuzzy c-means clustering algorithm can be determined by the following

equation:
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The above equation contains a number of variables. These are as follows:
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|| || , = induced A-norm on R”

A = positive definite (nxn) weight matrix

The squared distance between y; and v; shown in the above equation is computed in

the A-norm as

-
2

A :(yk -V )TA (}"k “Vi) (3.8)

2 _
dy _|IY1< -V

where,

d;, = squared A-distance from point y; to center of mass v;

Bezdek (1981) showed mathematically that the least squared error, Jm minimises
only optimal values of the fuzzy membership and the mean value, (I/, v), and it
achieves the optimal fuzzy c-clusterings of ¥ . Thus, in order to get the least squared

error, it is necessary to achieve the optimal values of the fuzzy membership and
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A AA
mean values (U, v}. Form > 1, if y, #v; for all j and k, [U, v] may be locally

optimal for J,, only if
N A N N AV
vf,zz(u&] Yo Z[uikJ 1<i<e; [=1,2,0p (3.9)
" Y dik .
= | Y| 2+ 1Sk <N;1<i<c (3.10)
/

Where di can be measured using Equation 3.8. Thus, it is clear that in order to

achieve a least squared error for given clusters, it is necessary to calculate the pairs

{U . VJ through an iteration process. According to Bezdek (1981), the following
AN
steps are needed to produce the pairs | U, v |.

(a) Select the number of clusters, ¢, 2 < ¢ < n-1; m (weighting exponent of fuzzy ¢-

{(nxn)

means), 1 < m < o; A, the positive-definite weight matrix of Rp, where

. 0 . ..
p is the number of features; U™ the initial fuzzy c-partition of Y, where

0
U'eM :
fe, fuzzy c-partition space and €, the value for the stopping criterion (€

= (.01 gives a reasonable convergence).
The next stage includes re-iterating steps b to d until convergence is reached.

(a) Calculate the ¢ fuzzy group centroids, v;, using the Equation 3.9,

(b) Update U"*' using Equation 3.10,

(c) Finally, compare /' to U! in any convenient matrix norm. If the difference
between all corresponding elements is less than or equal to & then stop.

Otherwise set I/ = U™ and return to (b).

It is important to note that the results are largely influenced by parameters, such as,

the weighting exponent, #, the initial fuzzy matrix, Uy and A-norm which are used in
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Equations 3.7-3.10. The effects of these parameters are discussed in the following

section.

3.4.2.1.2 Parameters of the Fuzzy c-Means Clustering Algorithm
(D Weighting Exponent ()

The weighting exponent m controls the relative weights placed on each of the
squared errors di in Equation 3.8 and it is used to determine the membership

function. As m— 1, partitions that minimize Jm approaches to be increasingly crisp
and become completely crisp at m = 1, usually called k-means clustering (McBratney
and Moore, 1985). Consequently, increasing m tends to degrade membership

Fa
towards the fuzziest state and each entry of optimal U for Jm approaches (1/c) as

m — oo, Thus, the weighting exponent m controls the extent of membership sharing

between fuzzy clusters in X.

McBratney and Moore (1985), tested a range of values for m and found that m = 100,
yielded fuzzy membership almost constant at 0.5 for each two classes, indicating that
clustering was so fuzzy that no clusters would be distinguished. They, however,
found that an m of approximately 2 is optimal, though when using a large number of
groups, m should have a smaller value, as compared to the m values of a relatively
small number of groups. In this regard, it is important to note that there is no
theoretical basis for choosing m, but typically 1.1<m<5 is reported as the most
useful range for drawing the values (Cannon et al., 1986a). Key et al. (1989)
reported that the range of useful values of m varies from 1 to 30, while for most data,

1.5 £ m < 3.0 exhibits good results.

(D Initial Matrix

The initial U” matrix which is used in Equations 3.7 and 3.9 can be generated in the
algorithm either from randomly fuzzy values, randomly non-fuzzy values or uniform
fuzzy values. Bezdek er al. {1984) randomly chose the U” matrix where each
member is given a membership value between 0 and 1 while McBratney and Moore
(1985) opted for almost uniform fuzzy values. For uniform values, a membership

function is assigned to a member by 1/c plus or minus a small random component.
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In a non-fuzzy state, the membership is assigned 1 to a randomly selected class and 0

to the remaining set.

(I1D) A- Norm

There are many A-norms available for use in Equation 3.8 but the fuzzy c-means
clustering algorithm allows only three different norms (e.g. Euclidean, Diagonal and
Mahalanobis) each induced by a specific weight matrix (Bezdek, 1981). The norms
can be explained by the following example. Let, ¢, and C, be the sample mean and
sample covariance matrix of data set ¥. Typically, they can be represented by the

following equations.

N

e, =2 [N (3.11)
k=1
N

C =Xy ¢, )y —c,) (3.12)
k=1

Let {a;} denote the eigenvalues of C, ; let D, be the diagonal matrix with diagonal
elements (d,);y = & ; and finally, let I be the identity matrix. With these conditions,

Bezdek (1981) proposes the norms being simplified by the following expressions.

A = I ~ Euclidean Norm {3.13)
A= D)-_l ~ Diagonal Norm (3.14)
A = C.7' ~ Mahalanobis Norm (3.15)

¥

The geometric and statistical implications of the data clusters depends on the choice
of A-norms. For example, the Euclidean norm is the best for statistically
independent, equally variable features, for hyperspherical clusters. Available
literature suggests that the Fuclidean norm has been extensively used for clustering
of geological and remote sensing data. For example, Pal et al. (2000), Cannon et al.
(1986b) and Trivedi and Bezdek (1986) have used the Euclidean norm for
segmenting different remote sensing images (e.g. IRS and SPOT, Landsat Thematic
Mapper and aerial photographs) while Pathirana (1999) used the Fuclidean norm for
clustering the dominant land cover class to develop membership functions for each

pixel. For other norms, particularly Mahalanobis, the clusters are hyperellipsoidal
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and have been used in generating fuzzy memberships of land cover types using

remote sensing data (Foody, 1996(a); Foody and Trodd, 1993).

3.4.2.1.3 Validity Functions of the Fuzzy c-Means Clustering Algorithm

Numerical convergence of the fuzzy c-means clustering algorithm is generally
carried out through iterations. However, sometimes, the convergence through
iterations for given clusters, which produce a least squared error, may be
inappropriate. In order to overcome this problem, two validity functions are used to
evaluate the effect of varying the number of clusters. These are the partition

coefficient, F, and the entropy, H, which are derived using the following equations.

ini(uik )2 /n (3.16)

i=l k=l

H=- (s, dog u, M (3.17)

The logarithm base, ¢, is commonly used as e or 10 (Key, et al., 1989). From the
above equation it is clear that the value of F varies between 1/c and 1, while H varies

between 0 and logge. Thus the clustering is crisp when Fis 1 or His 0.

3.4.2.2 Supervised Approach of the Fuzzy c-Means Clustering Algorithm

According to the earlier discussion, it is evident that the fuzzy c-means algorithm
requires the user specifying a number of clusters, ¢, weighting exponent m,
termination criteria, e. With a given number of clusters and termination criteria, the

algorithm iterates and determines optimum membership grades and cluster centers

(U ,v} of each data sample which in turn minimises the generalised least square

error, J,,. However, for very large data sets such as satellite imagery, the number of
computations are enormous as the data set contains a huge number of data items
(pixels), features and clusters. For example, in Equation 3.10, for each value of { and
I, there are n exponentiations in the denominator and »n exponentiations and products
in the numerator. A simple interpretation of the algorithm is that it requires ¢ X p X n
uses of the exponentiation operators and ¢ X p divisions. Since the algorithm is

iterative, the mean values are calculated repeatedly and subsequently these are used
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to calculate the fuzzy membership using Equation 3.10. In order to speed up the
fuzzification of large data sets, the algorithm can be modified into a supervised
approach and the computations can be carried out 30 to 40 times faster than the
unsupervised approach as it requires only one pass through the entire data sample
(Key et al., 1989). As such, it has been applied in the interpretation of a wide range
of satellite data (e.g. AVHRR and Airborne Thematic Mapper) and has resulted in
unique and accurate class memberships (Key et al., 1989; Fooedy and Trodd, 1993;
Zhang and Foody, 1998).

In the fuzzy c-means supervised approach, the class means are provided in the
algorithm in a manner analogous to the training sites of supervised classitication and
the algorithm assigns strength of membership as a function of the weighted distance
between the class mean and the individual data sample. Thus, it is evident that the
class means play a very important role in generating fuzzy membership, and thus the
selection of class mean values, particularly for classes spectrally similar, deserves
special emphasis. For example, Key et al. (1989) found that classes with similar
brightness values did not generate uniquely defined fuzzy sets, rather they were
clustered together. In such situations, using the adjusted class mean in the algorithm
for a realistic solution is suggested. However, a better solution would be to add a
weighting function, m, to the algorithm so that it influences the calculation of the
membership grade of the features which better define a particular class (Key et al.,

1989).

From the above discussion, it is apparent that unlike the unsupervised approach, the
algorithm does not iterate to calculate the mean value, it rather generales the fuzzy
membership corresponding to the given mean value of a class. However, in this
approach several sets of membership grades can be generated by changing the
weighting exponent, m and the optimum fuzziness can be ascertained from the
measurement of a ‘partition coefficient’ and ‘entropy’. A detailed discussion on

‘partition coefficient’ and ‘entropy’ has been presented in earlier sections.

3.4.3 Fuzzy Operators for Integration of Fuzzy Membership

The use of multispectral imagery in the process of a fuzzy supervised classification

of urban land cover types, as proposed in this research, requires finding an optimal
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fuzzy operator for integrating the FMVs derived from ‘%’ spectral bands for each
land cover considered (Figure 3.3). Among the fuzzy operators, the fuzzy AND,
fuzzy OR, fuzzy algebraic product, fuzzy algebraic sum and the fuzzy gamma
operator are the most frequently applied to integrate the fuzzy memberships of
various data sets or information layers (An et al., 1991, Bonham-Carter, 19943,
Accordingly, the performance of these operators was assessed for integrating fuzzy
memberships derived for each predetermined land cover types from the selected
bands of multispectral image. Accuracy assessment of the outputs of each fuzzy
operator was undertaken using a fuzzy error matrix. The principles of these

operators are described below.

3.4.3.1 Fuzzy AND

Fuzzy AND is a logical intersection which combines the fuzzy memberships of two
or more layers (e.g. Landsat-7 ETM+ bands) using a fuzzy minimum operator. It can

be defined as
Hland cover A = MIN (JuAl, Maz Maz . - - - Hap ) (3.18)

where () fas. Mas .. Han represent the membership values of land cover A in the
Landsat-7 ETM+ bands 1, 2, 3,...n respectively, at a particular location. This
indicates that the operator generates a map displaying minimum membership values
for each location. Thus, the resultant image is a conservative estimation of a set of

memberships, which tends to produce small values (Bonham-Carter, 1994).

3.4.3.2 Fuzzy OR

Fuzzy OR combines the fuzzy memberships of land cover A from two or more layers
(e.g. Landsat-7 ETM+ bands) using a fuzzy maximum operator. The output
membership values are controlled by the maximum membership values of the input

bands for any particular location. This can be defined as

Hland cover A =MAX (JuAl, Har Haz - - - Han ) (3.19)
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3.4.3.3 Fuzzy Algebraic Product

The fuzzy algebraic product is a modified intersection which combines remote
sensing data by multiplying the membership of land cover A on each selected band,

as defined by the following equation,

il

Hiand cover A zil__IﬂAi (3.20)
where fis; is the fuzzy membership in land cover A for the i-th band, and 1 = 1,2,3,
....n bands to be combined. With this operator, the combined fuzzy membership
values tend to be very small due to the effect of multiplying several numbers lower
than one. The output is always smaller than, or equal to, the smallest contributing
membership value, and it is therefore “decreasive”. Although the fuzzy algebraic
product gives an output that is decreasive in nature, it does utilise every membership
value to produce the result, unlike the fuzzy minimum (e.g. AND) or maximum (OR}

operators {Bonham-Carter, 1994).

3.4.3.4 Fuzzy Algebraic Sum

The fuzzy algebraic sum is a modified fuzzy union, which is expressed as a
probabilistic sum (Zimmermann, 1991). For a fuzzy membership, #ai, in land cover
A, where i-th bands are to be combined, the probabilistic sum can be simplified by

the following equation

Hiand cover A =1~ l_lfll(] ~ Hai) (3.21)
The combined fuzzy membership value of land cover A is always larger or equal to
the largest contributing fuzzy membership value. Thus, the effect is increasive. If
two or more pieces of evidence favour a hypothesis (e.g. the possibility of a pixel
being classified as land cover A, as expressed by fuzzy membership values in the
Landsat-7 ETM+ bands 1 to n), it reinforces one another, and the combined evidence

is more supportive than either pieces individually (Bonham-Carter, 1994).
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3.4.3.5 Fuzzy Gamma Operation

The gamma (y) operator is defined in terms of the fuzzy algebraic product and the

fuzzy algebraic sum by the following equation.

Hiand cover A = (Fuzzy algebraic sum)? * (Fuzzy algebraic product)1 e

(3.22)

where 7y is a parameter chosen in the range (0, 1) (Zimmermann, 1985). Equation
3.22 indicates that when ¥ equals 1, the combined fuzzy membership of land cover A
is the same as the fuzzy algebraic sum whereas the combination equals the fuzzy
algebraic product when v equals 0. Clearly, the choice of ¥ compromises between
the “increasive” tendencies of the fuzzy algebraic sum and the “decreasive” effect of

the fuzzy algebraic product.

3.4.4 Accuracy Assessment of a Fuzzy Classification

The accuracy assessment of the fuzzy classification, as adopted in this research, is

composed of five major steps. These are as follows:

(a) Creation of a virtual field reference database (VFRDB) and derivation of fuzzy
memberships of this ground data;

(b) Defuzzification of the fuzzy memberships of the classified data;

(¢c) Derivation of fuzzy error matrix;

(d) Determination of the accuracy measures; and

(e) Generation of uncertainty maps.

3.4.4.1 Creation of a Virtual Field Reference Database and Derivation of Fuzzy

Memberships

A “Virtual Field Reference Database (VFRDB)” was developed to store field
observations and digital imagery acquired with a digital camera from selected sites of
the study areas. The VFRDB was designed to assign the fuzzy memberships of the
visited sites for assessing the fuzzy categorical maps derived from a Landsat-7
ETM+ scene using a fuzzy supervised classification (see Section 3.4 for details).
The conceptual idea for the design and implementation of this database was adopted

from previous work by Lunetta et al. (2001). They state that such a database is
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useful for characterising representative urban land cover types with known
variability of land cover compositions in each sample site throughout the study areas.
In their study a high classification accuracy was achieved due to the application of a
VFRDB, comprised of field-based measurement and digital image (camera) data
which guided accurate class labeling of the reference data. The basic approach for
assigning the fuzzy membership of the field reference data required using the
classification scheme adopted in this study (see Section 5.3.1). This required field
data collection, which included sampling design, field visits and field data

documentation. These are described in the following sections.

3.4.4.1.1 Sampling Design

Selection of samples requires a sampling technique, sample size and sampling unit.
Accordingly, a simple random sampling strategy, which is statistically ideal for
accuracy assessment analysis was employed in selecting sample sites from the study
areas (Hord and Brooner, 1976; Hay, 1979). Following the rule of thumb of
choosing a minimum 50 samples for each land cover class (Hay, 1979; Congalton,
1991; Muller, et al, 1998; Congalton and Green, 1999) considered in the
classification scheme (see Section 5.3.1), a total of 200 sample points were selected

from each of the study areas.

3.4.4.1.2 Field Visits and Field Data Documentation

Field visits were undertaken during April through June of 2002 and 2003. According
to location and distribution of the sample points, daily routes were designed and each
of the sample points was visited and spatial and aspatial attributes recorded using a
hand held Global Positioning System (GPS) receiver (Ensign, Trimble Navigation)
and a digital camera. The GPS receiver was configured using Universal Transverse
Mercator (UTM) coordinates system with WGS 84 datum and three-dimensional
(3D) mode of operation. In 3D operational mode, Ensign GPS triangulates a position
when four or more satellites are connected. Positional accuracy was checked using
the position dilution of precision (PDOP}. It provides the possible errors related to
the geometry of the satellites that are used to triangulate a position on Earth. Good
accuracy is obtained when the PDOP ranges between 1 to 4, implying field error
locations between 5 and 15 m (Kennedy, 2002). An accuracy less than £10 m was

found for the Ensign GPS in an accuracy assessment between the measured easting
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and northing of six positions representing the corners of Mt Eliza Reservoir of the
Kings Park and Botanic Garden of the City of Perth and their corresponding location
in the image. Average PDOP values ranging between 2 and 4 were obtained, which
were considered to be acceptable. A field data collection form was designed which
included site identification number, calendar date, X, Y coordinates, percent of total
area occupied by land cover classes and observation level. A detailed description of
the parameters included in the field data collection form is presented in Appendix 1.
A high resolution (896 by 592 pixels) natural colour imagery was acquired using the
digital camera for each site in addition to documentation of the visual identification

of the land cover composition using the field data collection form.

3.4.4.1.3 Assigning Fuzzy Memberships

A linguistic scale ranging from one to ten was adopted for assigning fuzzy
membership to each field reference data. Such scale is a modification of the one to
five scale proposed by Gopal and Woodcock (1994). As the classification accuracy
of this study considered fuzzy membership of the classified and field reference data,
it is assumed that the modified linguistic scale varying from one to ten would be
more realistic as compared to the one to five, for determining the accuracy measures.
A description of the linguistic values and the corresponding fuzzy membership

values is presented in Table 3.1.

Table 3.1 Modified linguistic scale or ‘fuzzy values’ used in assigning fuzzy
membership at each sample site

Value Fuzzy Value Description

1 0.0 Absolutely Wrong: Totally unacceptable

2 0.2 Bad Match: Not acceptable, way beyond right match

3 0.3 Mostly Wrong: Quite wrong, not close at all

4 04 Moderately Wrong: Unhappy to accept, not close

5 0.5 Understandably Right: Merely acceptable, just close to match
6 0.6 Reasonably Right: Mostly acceptable, quite close to match

7 0.7 Moderately Right: Pretty close to match, acceptable

8 0.8 Almost Right: Mostly right, very close to match

9 0.9 Good Answer: Happy to find this answer on the map

10 1.0 Absolutely Right (Perfect): No doubt about the match

The advantage of this approach is that an appropriate sampling strategy can be

employed to select the sites for generating the fuzzy membership. Importantly, the
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sampling strategy is an integrated part of deriving the accuracy measures from
conventional and fuzzy error matrix. The advantage of an error matrix and fuzzy
matrix is that they preserve the property of error ““localization" which can identify
the contribution of each category relative to the actual category as verified in the
reference data”" (Congalton, 1991). Accordingly, the approach of assigning fuzzy
memberships based on linguistic scale was adopted to generate the fuzzy ground data

using 50 randomly selected samples from each category of land cover classes.

3.4.4.2 Defuzzification of the Fuzzy Classification

Defuzzification provides a basis for carrying out the accuracy assessment of fuzzily
classified data. It is a technique that determines the most appropriate single value
from the fuzzy memberships representing the land cover classes considered in
deriving the fuzzy memberships. Thus, it is an inverse step of fuzzification, which
transforms the fuzzy membership of multi-dimensional representation to a one-

dimensional representation.

Zadeh (1968) indicated that defuzzified maps can be generated by converting fuzzy
maps as unions of defuzzified areal classes and fuzzy boundaries, using subsets
exceeding or falling below a suitably chosen quantitative o-cut level. In a typical
defuzzification, the pixels are assigned to the classes to which they have maximum
belonging, measured by specific class membership functions (Rondeau et al., 1997;
Zhang and Goodchild, 2002). This can be shown mathematically by the following

expression.
ulx, )=U, if 1 {x, )= Mo (3, )= max(i (g Jeeeneens wox,)) (3.23)

where U, is the classified layer for a particular location, x,, k is the range of the land
cover classes which varies between 1 and ¢, and s is the range of the pixels
(locations) of a classified data varying from | to ». In this approach, the maximum
membership value determined by Equation 3.23 for a location x; is always higher
than the pre-determined threshold o. Thus, defuzzification provides a basis to
produce single value map (either crisp or fuzzy) using the outputs of fuzzy

classification and fuzzy ground data. The conceptual model adopted for generating
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fuzzy land cover maps using the defuzzification technique mentioned above is shown

in Figure 3.4.

Fuzzy Memberships of
LandCowr A B, C, D
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Fuzzy Land Cover Map

Figure 3.4 Conceptual model for generating fuzzy land cover maps using
defuzzification

3.4.4.3 Derivation of a Fuzzy Error Matrix

The defuzzified memberships derived from remotely sensed data and ground truth
data are used in the process of evaluating classification accuracy. This can be

explained by the following vectors F and G:

O (21 €3 £.(x)) (3.24)
G(x)= (g1 (x) reerrrnrrrirncnn g.(x)) (3.25)

where fi(x) and gi{x) (i = 1, ... ¢) are pixel x’s fuzzy membership values derived from
remotely sensed data and its corresponding ground data. The concept of
defuzzification using the maximum memberships for each location is used in this
research to generate fuzzy land cover map comprised of a single fuzzy membership
and accordingly, fuzzy error matrix was derived. A conceptual model of the

accuracy assessment is shown in Figure 3.5. In this model, the elements of the fuzzy
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error matrix (11 to 44) as shown in Figure 3.5 were generated using the concept of
intersection between the fuzzy membership of the classified and ficld reference data

as explained in Section 2.3.3.

3.4.4.4 Accuracy Measures of the Fuzzy Error Matrix

Similar to an error matrix, the elements of a fuzzy error matrix are used to determine
the accuracy measures such as overall accuracy, producer’s and user’s accuracy. In
the conventional error matrix, the total number of samples coincides with the total
number of reference data and thus, the accuracy measures are derived. However, in a
fuzzy error matrix, assuming the orthogonal hypotheses, three cases such as
coincidence, underestimation and overestimation of the memberships of reference
data and sample data might arise (Binaghi et al., 1999). For all cases, the overall
accuracy (OQA), which is a measure of total match between reference and

classification data, is computed by dividing the sum of the membership grades of the

Fuzzy Categorical Maps Fuzzy Field Reference Data

Defuzzification

Fuzzy
membership

Fuzzy Fuzzy Field
Land Cover Map Reference Data

Elemen of an
Exror Matrix
and
Fuzzy
FError Matrix
(FEM)

23

i3 34

41 42 43 44

Figure 3.5 The conceptual model of deriving fuzzy error matrix
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major diagonal by the sum of the membership grades found in reference data (see
Table 3.2). The producer’s accuracy (PA) and user’s accuracy (UA) are the same for
the case of coincidence as the fuzzy memberships of sample data exactly matches
with the reference data. As can be seen in Table 3.2, the user’s accuracy is
calculated by dividing the membership grades of correctly classified samples by the
sum of the membership grades of the column, while the producer’s accuracy is
calculated by dividing the membership grades of correctly classified samples by the

column total.

Table 3.2 An example of computing accuracy measures of fuzzy error matrices
for the cases of (a) coincidence, (b) underestimation and (c)
overestimation (after Binaghi, et al., 1999)

Reference data Total Accuracy measures
Classified data ~ ~ ~ Grades Producer’s  User's
Rq R2 R3 Accuracy Accuracy

(a) Coincidence (OA =1}
WA E)04 1 ()=04 b gy (X)=04

Moy (x )= 04, u Cr (x): 04, n Ca (x): 0.4

0.4 0.4 04 0.4 PA; =1 Uy =1

04 04 04 04 PA;=1 UA, =1

04 0.4 0.4 04 PA;=1 UAsz=1
Total Grades 04 0.4 0.4

(by Underestimation (OA = 0.833)
KR (=04 gy (£)=04 wpy(x)=04

Rey (K02 we, (0)=04 1 eg (x)=04

0.2 0.2 0.2 0.2 PA, =050 UA =1

04 04 0.4 0.4 PA;=1 UA, ="

0.4 04 0.4 0.4 PA;=1 UA; =
Total Grades 04 04 0.4

(C) Overestimation (OA =0.9)
By B)=04 hpgy (K)=04 p pg(k)=04

Koy (FFE00 pe, (x)=0.4, Lo (K 04

0.4 0.4 0.4 0.6 PA =1 UA; =1
04 0.4 0.4 04 PA; =1 UA; = .67
04 0.4 0.4 0.4 PA; =1 UA; =1

Total Grades 0.4 0.4 0.4
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The result of estimating the user’s accuracy can be interpreted as the probability of a
sample data or reference location labeled as category C, belonging to category C.
For example, a user’s accuracy of 90 percent of a particular class signifies 90 percent
of the pixels classified to the respective class can be found in reality (e.g. in the
ground). Likewise, the producer’s accuracy indicates the probability of a sample

data or reference location of category C is accurately classified as category C.

The interpretation of these accuracy measures is sometimes deceiving and simplified
accuracy measures are expressed in terms of ‘error of omission’ and ‘error of
commission’ (Janssen and van der Wel, 1994). Errors of omission refer to the
samples of a certain category of the reference data that are incorrectly classified to
another category. The samples are omitted from the correct class. Likewise, errors
of commission refer to the samples of a certain category of the classified data that are
wrongly classified (i.e. committed to an incorrect class). These accuracy measures

can be derived by the following equations using the user’s and producer’s accuracy.

Commision (%) =1-user's accuracy (%) (3.26)

Omission (%) = 1- producer's accuracy (%) (3.27)

Three cases such as coincidence, underestimation and overestimation might arise
between the fuzzy memberships of the reference and classified data as reported by
Binaghi ez al. (1999). In case, the fuzzy memberships of the reference data coincide
with the fuzzy memberships of the classified data, the OA, PA and UA are equal to
one for all classes (Table 3.2). In case of underestimation of the fuzzy memberships
of the classified data as compared to the reference data, the PA is less than the UA as
the PA corresponds to the underestimated class. On the other hand, the UA 1s less
than the PA for the case of overestimation of the fuzzy memberships of the classified

data, as the UA corresponds io overestimated class (Table 3.2).

3.4.4.5 Generation of Uncertainty Maps

A measure for uncertainty or ambiguity can be determined using the confusion index,
which is computed as 1.0 minus the difference between the fuzzy membership values
of the most likely and the next most likely classes (Burrough, 1996). The underlying

assnmption of the confusion index is that the greater the confusion index, the smaller
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the difference in fuzzy membership values between the most likely and the next most
likely classes, and thus the more likely that the location is prone to misclassification.
Therefore, the confusion index could be used to examine the spatial patterns of
misclassification of a fuzzy classification. Accordingly, the confusion index maps of
the study areas were generated by the following expression for each location using

the fuzzy categorical maps produced by various fuzzy operators:
Cl=1 - (Mfmaa1 — Mfrax2) (3.28)

where CI is the confusion index, mfyaa and mfyuce are the first maximum and the

second maximum membership of the classes for a particular location x, respectively.

3.5 Summary

The methodological approach adopted in this research consisted of four major steps:
(i) study area selection; (ii) characterisation of the spatial complexity of urban
landscapes using multiscale and multisource remote sensing data; (iii) derivation of
fuzzy membership values (FMVs) of selected urban land cover types using
multispectral image; and (iv) creation of virtual field reference database (VFRDB)

and accuracy assessment of the fuzzily classified data.

Methods and techniques associated with the research approach included
characterisation of spatial complexity using spatial autocorrelation measures and
fractals, transformed divergence analysis for selecting the best band combinations of
multispectral image, derivation of fuzzy memberships from remotely sensed data and
ground data, defuzzification of the fuzzy memberships of remote sensing image and
ground data, computation of accuracy measures using fuzzy error matrix, and

generation of uncertainty maps.

The analysis of spatial complexity using the multiscale and multisource remote
sensing images is done using fractal models. The isarithm and the TPSA techniques
are tested for their ability in deriving D of major land cover types. The D values
enable determination of the scale at which most of the processes related to the urban
landscape in the Perth metropolitan area occur. Transformed divergence analysis
was applied in selecting the best set of bands of a multispectral image to be used in

the fuzzy supervised classification of the Perth metropolitan area. The derivation of
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fuzzy memberships is the key of fuzzy classification and accordingly, the supervised
approach of the fuzzy c-means algorithm is used to generate the fuzzy memberships
of the land cover classes using the selected bands of multispectral image. Then, the
fuzzy operators (e.g. maximum, minimum, algebraic sum, algebraic product and
gamma operators) are applied to integrate the fuzzy memberships of urban land
cover types. The fuzzy memberships of the ground data are derived using a
modification of the fuzzy linguistic scale proposed by Gopal and Woodcock (1994).
Details about the study area, data sets and software used in this research are

presented in the following chapter.
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Chapter 4

STUDY AREA AND DATA SETS

Chapter 4 describes the location and characteristics of major land cover types of the
study areas. The multiscale and multisource remote sensing images such as SPOT,
Landsat-7 ETM+ and Landsat MSS, which were used in the analysis of the spatial
'complexity and interpretation of urban landscapes, are described. In addition to
remote sensing images, aerial photographs, land use and land zoning maps, which
were used in this analysis, are also discussed. An overview of the major software

that were used in the analysis is provided.

4.1 Geography of the Study Area

The Perth Metropolitan Area (PMA) is situated in the south-west of Western
Australia and covers an area approximately 122,401 km®. Tt is geographically
located between 31° 27 36" south to 32° 27 36" south and 115° 33/ 36" east to 116°
24’ 36" east (Figure 3.1). It comprises 29 local government councils. The major land
cover types of the local government councils are native vegetation, open spaces,

residential, commercial and industrial uses.

4.1.1 Major Landforms

The Perth metropolitan area (PMA) is divided into two distinct geological landforms.
These are the Swan Coastal Plain and the Darling Scarp and Plateau which is also
known as the Darling Range (Figure 4.1). The Swan coastal plain is composed of
sedimentary deposits, being located in the western part of the PMA while the Darling
Range is located in the eastern part of the PMA and consists of granitic rock which is
some 2,500 million years old (Western Australian Planning Commission, 1998).
Within the Swan Coastal Plain, there are six major landforms, running from north to
south of the PMA and between the Darling Range and the coast. From east to west
of the Swan Coastal Plain, the major landforms are the Dandaragan Plateau, the
ancient beach, dune and colluvial deposits of the foothills, the river and stream

deposited clays and sands of the Pinjarra Plain, and three sets of dune sands, the
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Bassendean, Spearwood and Quindalup, the last being the present day coastal plains

(Western Australian Planning Commission, 1998).

Figure 4.1 Major landform units of the Perth metropolitan area (from Western
Australian Planning Commission, 1998)

4.1.2 Climate

The climate of the PMA can be described as Mediterranean type with long dry
summers and mild rainy winters. There are four seasons: summer, autumn, winter
and spring that characterise the climate of the PMA. The average monthly rainfall,
temperature and the relative humidity of summer vary substantially as compared to
winter, whereas similar conditions can be found in autumn and spring (Table 4.1).

The warmest months of the year are January and February, when temperatures can
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reach the mid to high 30°C. The mild winter begins in June and finishes in
September, coinciding with the rainy season and the average day temperature falls
between 16 to 18°C. There are occasional storms, characterised by thunder,
lightning and heavy downpours of rain in winter. Among the climatic data recording
stations, Perth Airport, Mount Lawley, Gosnells City, Jandakot Airport, Pearce
RAAF, Swanbourne and Rottnest Island are the most relevant describing the climatic

conditions of the study areas (Figure 4.2).

Table 4.1 Average rainfall, temperature and relative humidity of the PMA

Season Rainfall (mm)  Temperature (°c)  Relative Humidity (%)
Summer (December to February) 3.49 28.83 54.10
Autumn (March to May) 41.47 25.772 61.48
Winter (June to August) 125.62 18.94 1.4
Spring (September to November) 51.06 22.66 61.38

Source: Compiled from Bureau of Meteorology (2001)
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Figure 4.2 Map showing the location of climatic data recording stations within
the Perth metropolitan area
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4.1.2.1 Rainfall

The average monthly rainfall of the PMA is presented in Figure 4.4 which shows that
the lowest rainfall occurs in the months of January, while July tends to record the
highest rafafall at all recording stations. It is important to note the spatial variability
in the amount of rain falling in the PMA. For instance, Figure 4.3 shows that
Swanbourne, close to the coast as can be seen in Figure 4.2, registered the highest
annual and the average monthly rainfall, which is nearly 30 percent more than the
lowest rainfall registered in Pearce RAFF, located in the eastern part of the PMA.
Furthermore, nearly 90 percent of the rainfall occur during May to September,

indicating the dry period in the remaining months of the year.
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Figure 4.3 Monthly rainfall (mm) of Perth metropolitan area (adapted from
Bureau of Meteorology, 2001)

4.1.2.2 Temperature

The average monthly temperature of the PMA varies between 17.5°C and 32.4°C
(Figure 4.4). Figure 4.4 shows that the highest average monthly temperature occurs
in most of the recording stations in January, while the lowest temperature tends to
occur in August. Clearly, January, February and March are the warmest months as
the average monthly temperatures of all the recording stations are higher as
compared to the other months. On the other hand, the coolest month of the year is

August, reaching an average temperature of around 18°C in all the recording stations.
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The highest average monthly temperature is recorded in Pearce RAAF while the

lowest average temperature is found to be on Rottnest Island (Figure 4.4).

4.1.2.3 Relative Humidity

The relative humidity obtained from all the recording stations is shown in Figure 4.5.

As can be seen in Figure 4.5 that the lowest and the highest monthly average relative

humidity are recorded in March and June respectively, in all recording stations.
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It is important to note that the average monthly relative humidity recorded from May
to September is 41 percent higher compared to the October-April period. This is
consistent with the rainfall data, registering 90 percent of total precipitation in the

same period, indicating the intensity of wetness.

4.2 Characterisation of the Study Areas

As explained in Chapter 3, three local councils namely the City of Perth, the City of
Melville and the City of Armadale, were selected for the analysis due to their
dominant land cover types which are representative of the whole metropolitan area
(Figure 4.6). According to the geological landforms, the City of Perth and the City
of Melville fall in the Spearwood Dunes of the Swan Coastal Plain while the
majority of the City of Armadale falls in the Darling Range (see Figure 4.1). The
land cover types, particularly the native vegetation of the Spearwood Dunes, are
extensively cleared and are replaced by urban land uses. However, pine plantations,
grazing and horticulture, significant conservation reserves also exist in this landform.
The Darling Range retains the bushland, which is dominated by native forest. In
addition to bushland and water catchment reserves, some cleared corridors of private
land associated with the Albany Highway and Brookton Highway exist in this

landform.

In addition to analysing the secondary source data (land zoning maps, metropolitan
region schemes) random field visits were made to the local councils of the PMA to
characterise the dominant land covers. Accordingly, the City of Perth, the City of
Melville and the City of Armadale representing dense urban, medium urban and
urban fringe areas respectively, were selected for the analysis of spatial complexity
and the mapping of the major land cover types using multisource and multiscale
remote sensing images. As shown in Figure 4.6 the dominant land cover types of the
City of Perth are characterised by dense built-up areas, which include large
buildings, major and minor road networks. On the other hand, the land uses of the
City of Melville are characterised as residential which varies from buildings with tile
roofs surrounded by asphalt/concrete road (Figure 4.6, b-1) to houses surrounded
with trees and vegetation (Figure 4.6, b-2). The land uses of the City of Armadale as

shown in Figure 4.6(c) are dominated by natural vegetation and forested areas. A
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summary of the major land cover types of the study areas is presented in Table 4.2,

and discussed in detail in the following sections.

2

(c) City of Armadale

Figure 4.6  Characterisation of the dominant land cover types of the study areas:
a-1) Large buildings with major and minor roads, a-2) Large buildings with minor
roads, b-1) Residential buildings with tile roofs, b-2) Residential buildings
surrounded by trees, c-1) Sparse vegetation, c-2) Forested area

Table 4.2 Major land cover types of the study areas

Study Area  Major Land Description

Cover Types
City of Dense Urban Commercial buildings, shopping complexes
Perth Urban Large open roofs, major and minor roads
Forest Variety of native plants
Grassland Recreational areas characterised by grasses, shrubs and occasional native plants
City of Dense Urban Shopping complexes, administrative centres
Melville Urban Residential area, minor and internal roads
Forest Variety of native plants
Grassland Open space, playgrounds and recreational areas
City of Dense Urban Industrial and shopping areas
Armadale Urban Residential area, minor and internal roads
Forest Native plants dominated by open forest

Grassland Open space, playgrounds, grazing and recreational areas
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4.3 Major Land Covers in the Study Areas

4.3.1 The City of Perth

The study area is within the council boundary of the City of Perth (ABS, 1996),
which is the capital of Western Australia and located in the centre of the PMA
(Figure 3.1). It covers an area of 13 km?, which includes the Perth City area, mainly
commercial and the Kings Park and Botanic Garden. In addition to data from
secondary sources such as land use maps, aerial photographs with a resolution of 2.5
m, ground truth data were collected to build the virtual field reference database as
explained in Section 3.4.4.1. The Kings Park and Botanic Garden comprise forested
areas while heavily built-up areas dominate the western, central and eastern part of
the Perth City area. Other land cover types are recreational areas (grassland), which
exist in several locations within the study area. These land covers were identified in
field visits and correlated with their characteristic spatial patterns in the aerial
photographs and the land use maps to assist with image interpretation and for
reference data compilation. A brief description of the land covers is presented in the

following sections.

4.3.1.1 Forest

Forested areas in the City of Perth are associated with open forest to woodland,
characterised by a wide variety of native plants, either individually or in various
combinations of Eucalyptus gomphocephala, Eucalyptus calophylla, and Eucalyptus
marginata. Most of the forested areas are found in the Kings Park and Botanic
Garden, which cover approximately 400 ha including 267 ha of significant remnant

bushland.

The bushland of the Kings Park and Botanic Garden contains two readily
distinguished plant communities that reflect the soils and landforms on which they
are found. These are mixed closed heath on the shallow calcareous soils with
exposed limestone on the escarpment; and woodland to open forests characterised by
Eucalyptus/Allocasuarina/Banksia on the deep calcareous sands. Plate 4.1, Figures 1
to 3 show examples of the open forest, woodland and mixed closed heath. There are
290 (indigenous) species of native flowering plants growing in the area, which

represents about 19 percent of the native flora of the Perth region. There are also
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quite a variety of large fungi found in the bushland. The mixed closed heaths of the
escarpment contain a diverse and unique assemblage of shrubs, herbs, sedges and
grasses normally associated with limestone heaths of nearer coastal areas. The
mixed closed heaths at Kings Park and Botanic Garden are one of the most inland
occurrences of these estuarine cliff communities and are contiguous with adjacent

bushland areas (Meney, 1999).

4.3,1.2 Urban

The class urban in the City of Perth represents approximately 50 to 80 percent
construction materials with large open roofs as well as large open transportation
facilities, e.g. parking lots, and multi-lane freeway with a certain amount of
vegetation cover (20 percent), internal roads and rail lines. An example of multi-lane

freeways and open roof with vegetation is shown in Plate 4.1, Figures 4 to 5.

4.3.1.3 Dense Urban

The class dense urban is characterised by 80 to 100 percent construction materials.
Typically, large structures, shopping complexes, the commercial and business
centres and residential apartments of the eastern, central and western part of the Perth
City arca represent the class dense urban. Plate 4.1, Figure 6 shows a shopping

complex representing the class dense urban.

4.3.1.4 Grassland

Grassland areas are dominated by high percentage of grasses, shrubs, herbs and
occasional native plants, which characterise recreational areas such as playgrounds,
recreational and amusement parks. Plate 4.2 shows the land cover composition of
the Wellington Square, which is utilised as a playground. It is managed intensively
and comprises a high percentage of grasses. Plate 4.2 also shows the children’s park
in the Kings Park and Botanic Garden, which is characterised by high percentage of
grasses, shrubs and occasional native plants. Similar land cover compositions can be

found in Langley Park, located along the riverside edge of the City.
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Plate 4.1

Photographs of the classes forest, urban and dense urban of the City of
Perth

Playground in Wellington Square

Children’'s Park in the Kings Park and Botanic Garden

Plate 4.2

Photographs of the class grassland of the City of Perth
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4.3.2 The City of Melville

The City of Melville, selected as an expression of “medium urban areas” that is,
areas mostly residential as can be seen in Figure 4.6 is located approximately 8 km
from the Perth Central area (Figure 3.1). It accommodates 18 suburbs covering an
area of nearly 53 km? and is surrounded by the City of East Fremantle, the City of
Fremantle, the City of Canning, the City of Cockburn, the Swan and Canning River.
According to the land cover zoning, the study area is comprised of residential areas
(living area), bushland reserves, open space typically grassland, industrial and

commercial areas. These are described below.

4.3.2.1 Residential

Residential developments of the City of Melville vary from one suburb to another.
For example the houses of Kardinya, Bicton, Winthrop and Bullcreek are typically
comprised of detached building constructed on allotments varying in area from 500
to 800 m” and internal roads. Most structures have a roof area of approximately 150
to 250 m?’, predominantly of clay or concrete tile construction, but less frequently
made of fibre cement or street materials (see Plate 4.3, Figure 1). This differs from
the houses in Applecross and Leeming where the buildings are surrounded by trees,
shrubs and grassland (Plate 4.3, Figure 2). Variations in vegetation type and canopy

cover between the two photographs are particularly worth noting.

4.3.2.2 Dense Urban

Plate 4.3, Figure 3 shows an area typical of the commercial class in the study area,
which is characterised by large roof areas and surrounded by extensive areas of open
space, generally paved with either asphalt or concrete. Roofing materials are mostly
fibre cement or metal, and compared to residential areas, most commercial sites are
almost totally devoid of vegetation. Factory or warehouse sites have very similar
land cover characteristics to retail sites, and are typical of the example in Plate 4.3,

Figure 4.
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4.3.2.3 Native Forest/Bushland

The forested area of the City of Melville is comprised of regionally significant
bushland and other native vegetation. According to the Western Australian Planning
Commission (1998), the forested area comprises woodland, low woodland, open
heath to shrubland. Plate 4.3, Figure 5 shows an area of woodland with Eucalyptus
calophylla trees providing the canopy and a combination of low flowering shrubs
forming the understorey. The density of vegetation varies frém woodland to open
woodland and open heath due to the types of the trees and the percentage of canopy
cover. This can be seen in Plate 4.3, Figure 6 which shows an area of low woodland
comprised with Bankasia attenuata and Bankasia menziesii trees while Plate 4.3,

Figure 7 shows an open heath comprised of shrubs.

4.3.2.2 Grassland

The class grassland in the City of Melville occurs largely as a transitional land cover,
bare ground that follows the clearing of bushland for residential development, and
recreational areas such as golf clubs, amusement parks and playing grounds. Clearly,
the class grassland contains a diverse range of large areas of open grassland. This
differs from the class grassland of the City of Perth, which only represents

intensively managed recreational areas.

4.3.3 The City of Armadale

The City of Armadale typically represents an urban fringe, which stretches from the
plains of the metropolitan area to the large dams, lakes, parks, grazing areas and
forest. It is located approximately 29 km from Perth Central Area (Figure 3.1) and it
accommodates seven suburbs comprising an area of nearly 545 km®. According to
the geological landform, the city includes a portion of the eastern side of the Swan
Coastal Plain and the Darling Range. A large portion of the City’s area is reserved as
native forest and water catchment, occupying nearly 80 percent of the total arca.
According to the land cover zoning, the study area is comprised of forest, residential,
rural, agricultural protection area, public purposes, water ways/lakes, and industrial

areas to a lesser extent. These are described below.
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Plate 4.3 Photographs of the classes urban, dense urban and forest of the City of
Melville

4.3.3.1 Forest

According to Heddle et al. (1980), the majority of the native vegetation in the
Darling Range is reserved as State Forest, occupying most of the City’s area. There
is also remnant vegetation in the study area that occurs in the eastern side of the
Swan Coastal Plain landform. The forested area is associated with open forest to
woodlands characterised by a variety of trees such as Eucalyptus calophylla,
Eucalyptus wandoo, Banksia attennuata over a very diverse understorey. Example
of open forest and woodland in the Darling Range are shown in Plate 4.4, figures 1

to 2.

4.3.3.2 Residential

Armadale comprises a mix of old and new suburbs as well as rural, semi-rural and
urban estates. The type of housing varies from one area to another. For example, the

traditional detached housing can be seen in the suburban areas of Westfield,
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Armadale and Kelmscott (Plate 4.4, Figures 3 to 4) while special housing is found in
the hills of Araluen, Roleystone and Churchmans Brook. Similarly the housing of
rural or lake side lots in Forrestdale and Brookdale or shop top housing in the City

Centre is different.

4.3.3.3 Industrial/Comimercial

The industrial/commercial areas include the city centre which is the home of major
shopping complexes such as Coles, Woolworths, K-Mart, Action, Harvey Norman
and the industrial and regional level health facilities in Kelmscott, comprising large
structures. These arcas are typically characterised by large roof areas and surrounded
by extensive areas of open space, generally paved with either asphalt or concrete.
Roofing materials are mostly fibre cement or metal, and compared to residential
areas, most commercial sites are almost totally devoid of vegetation (Plate 4.4,

Figure 5).

4.3.3.4 Grassland

Similarly to the City of Melville, the class grassland occurs in the bare ground
following clearing for residential development, but prior to the commencement of
housing construction, recreational areas such as golf clubs, amusement parks and
playing grounds. In addition, it also occurs in the grazing area, which is abundant in
the rural areas of the city. It is important to note that the parks and recreation and the

grazing areas are also designated as rural.

4.3.3.5 Water Ways/ Lakes

The water bodies of the City of Armadale are characterised with dams, lakes, and
seasonally inundated/waterlogged basins. Most of the water bodies particularly the
dams such as the Canning, Churchman, and Wungong occur in the west of the
current extent of urban development of the City of Armadale. These dams also serve

as public water supply catchment areas of the Darling Range.
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Plate 4.4 Photographs of the classes forest, urban, dense urban and grassland of
the City of Armadale

4.4 Satellite Data

This research examines the effect of various urban land cover types and scale
(spectral and spatial resolution) on the spatial complexity computed from fractal
measurement algorithms. Furthermore, the interpretation and mapping of the major
land cover types utilising fuzzy classification and fuzzy accuracy assessment is
carried out. Various sensor data such as SPOT, Landsat-7 ETM+, and Landsat MSS
were used in the analysis of the spatial complexity while Landsat-7 ETM+ was used
to interpret and map the major land cover types of the study areas described in the
preceding section. The characteristics of these sensor data including background

information are described in the following sections.

4.4.1 Sensor Characteristics

The spectral locations in the electromagnetic spectrum, the spatial resolution and the

radiometric resolution of the multisource and multiscale data used in this research are
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outlined in Table 4.3 and Figure 4.7. Table 4.3 shows that the spatial resolution
varies from one sensor to another and ranges from 20 m for SPOT to 79 m for
Landsat MSS. Similarly, the spectral bands also vary from one sensor to another. A
brief description highlighting the characteristics of these sensors and their

corresponding spectral bands is presented hercafter.

4.4.1.1 Landsat MSS

The Landsat remote sensing program was initiated by the National Aeronautical and
Space Administration (NASA) and so far seven Landsat satellites have been
launched. The Multispectral Scanner {MSS) was the first Landsat satellite, launched
in 1972 and continued as the main sensor on Landsat 2 and Landsat 3 satellites.
With the launch of Landsat 4 in 1982, the MSS sensor became subsidiary to the
Thematic Mapper (TM) sensor, which was also the case for Landsat 5. There was no
MSS sensor for Landsat 6 and 7 and hence, the availability of this data will cease
since the MSS sensor was turned off on Landsat 5 in December 1997. The

radiometric, spectral and spatial characteristics are summarised in Table 4.3.

4.4.1.2 Landsat-7 ETM+

Landsat 7 was launched on April 15, 1999. In Landsat 7, the TM sensor was
replaced by the Enhanced Thematic Mapper Plus (ETM+) sensor, which replicates
the capabilities of the TM sensor. The ETM+ also includes new features that make it
more versatile and efficient for global change studies, land cover monitoring and
assessment, and large area mapping. Similar to Landsat 5, ETM+ acquires data in
seven spectral bands (Table 4.3). In addition to Landsat 5, the added features of
Landsat-7 ETM+ are as follows:

(a) A panchromatic band (0.52-0.90 pm) with 15m spatial resolution,
(b)  On board, full aperture, 5 percent absolute radiometric calibration,

(¢) A thermal IR channel with 60 m spatial resolution.

4.4.1.3 SPOT

The SPOT (System Pour L’Observation de la Terre) was designed by the CNES
(Centre National d’Etudes Spatiales) in France, and developed with the participation
of Sweden and Belgium. SPOT 1 satellite was launched on 22 February 1986 and so



93

far five satellites have been launched. The SPOT satellite carries two identical High
Resolution Visible (HRV) imaging instruments, which operate in multispectral or
panchromatic mode. It acquires data in three multispectral bands with 20 m spatial
resolution, while a single panchromatic band is acquired with 10 m spatial resolution
(Table 4.3).

Table 4.3 Characteristics of SPOT, Landsat-7 ETM+ and Landsat MSS

Sensor Spatial Spectral Radiometric Swath  Revisits  Altitude  Sun Angle
Resolution  Resolution Resolution (km) Days (km) Inclination
SPOT 20m 3 Bands 8-bit 60 1-4 822 98
Multispectral Blue, Green, Degrees
NIR
SPOT 10 m 1 Band (0.51 8-bit 60 1-4 822 98
Panchromatic -0.73 Degrees
microns)
Landsat-7 30m 7 Bands 8-bit 18 16 705 98.2
ETM+ Blue, Green, Degrees
Multispectral Red, NIR,
MIR
60 m Thermal
Landsat-7 I5m 1 Band (0.52  8-bit 18 16 705 98.2
ETM+ -0.90 Degrees
Panchromatic microns)
Landsat MSS 79 m 4 Bands 6-bit 185 18 917 99
Green, Red, Degrees
NIR, NIR

Landsat-7 ETM+

SPOT 1-3

Landsat MSS

UV, X Rays, Gamma MID IR, Thermal IR
Rays, Cosmic Rays Microwave, Television and

Radio

SHORT WAVE IR

0.5 1.0 1.50 200 250
Electromagnetic Spectrum - Wavelength in Micrometres

Figure 4.7 Location of spectral bands of multiscale remote sensing images

4.4.2 Digital Satellite Data

The characteristics of the sensors used in this research were discussed in the previous
section. One scene from each satellite covering the whole metropolitan area was
used to analyse the spatial complexity using a fractal model. Table 4.4 summarises
the acquisition dates and the spatial and radiometric characteristics of the data
acquired. It also specifies the use of the data within the investigation. The Landsat-7
ETM+ acquired in 2001 was used for the interpretation of major urban land cover

types using fuzzy set theory.
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Table 4.4 Summary of the acquisition date, spectral, spatial and radiometric
resolution of the sensor used in this research

Sensor Acquisition Spatial Spectral Resolution Radiometric  Used For

Date Resolution Resolution
SPOT 4™ December, 20m 3 Bands: Blue, Green, 8-bit Fractal Analvsis
Multispectral 1991 NIR
Landsat-7 16" December, 25 m 7 Bands: Blue, Green, 8-bit Fractal Analysis
ETM+ 2001 Red, NIR, MIR, Thermal, and Fuzzy
Multispectral MIR Classification
Landsat 3 December, 50 m 4 Bands: Green, Red, 8-bit Fractal Analysis
MSS 1980 NIR, NIR

All scenes were geometrically rectified using a first-order polynomial interpolation
with nearest neighbour resampling. The root mean square error for each scene was
found to be less than a pixel. Landsat-7 ETM+ and Landsat MSS were resampled to
a pixel size of 25 m and 50 m respectively to facilitate a comparison of the results
among the study areas. In addition, the radiometric resolution of Landsat MSS was
converted from 6 to 8 bit in order to have same radiometric resolution with those of
Landsat-7 ETM+ and SPOT. A false colour composite (FCC) of the Landsat-7
ETM+ (bands 4, 5 and 7) for the Perth Metropolitan Area is shown in Figure 4.8.

The local council boundary (ABS, 1996) was used to clip the City of Perth, the City
of Melville and the City of Armadale from each of the image scenes. For the
analysis of the spatial complexity of urban land cover types using a fractal model,
SPOT, Landsat-7 ETM+ and Landsat MSS were divided into several square or
rectangular grids (subsets) of 324 ha along transects of the study areas (see details in
Sections 6.1.1, 6.1.2 and 6.1.3). A detail explanation about the relevance of the
square or rectangular grids to determine the spatial complexity using fractals has

been described in Section 3.3.2.

According to the hypotheses enunciated in Section 1.5, the green and red bands of
SPOT, Landsat-7 ETM+ and Landsat MSS were considered in the analysis of spatial
complexity as they fall in the same spectral range of 0.5~0.6 pm and 0.6~0.7 pm
respectively (see Figure 4.8). Likewise, the NIR band of Landsat-7 ETM+ and
SPOT were considered. The NIR bands of Landsat MSS were excluded, as they do
not fall in the same electromagnetic spectrum as compared to the NIR (0.76~0.9 pm)

band of Landsat-7 ETM+ and SPOT (Figure 4.8).



95

4.4.3 Other Data Sources

In addition to remote sensing data, orthophotos, landuse maps and land zoning maps
were used in the analysis to select the training sites from remote sensing image for
generating descriptive statistics and carrying out the transformed divergence
analysis. The orthophoto was acquired in 2002 and the spatial resolution is 2.5 x 2.5
m. The land use and land zoning maps show the major land covers of the respective

local councils.

Legend

City of Perth
m City of Melville
e City of Armadale

9 0 g 18
e e Kilometers

Figure 4.8 A false colour composite of Perth metropolitan area (Landsat-7
ETM+)
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4.5 Software Used

Various Geographical Information Systems (GIS) software such as Arc/Info and
ArcView and image processing software such as ERDAS Imagine, ER Mapper, and
Image Characterisation and Modelling System (ICAMS) were used in the analysis of

spatial complexity and mapping of major urban land cover types.

The analytical capabilities of the grid cell-based model of Arc/Info through the map-
algebra language allow performing various operations such as local, focal, zonal,
global, surface, hydrologic, ground water and multivariate spatial functions (ESRI,
2000). Since GRID is integrated with Arc/Info, the functionality associated with the
Are Macro Language (AML) can be used in conjunction with GRID tools to develop
complex models. Accordingly, several scripts were written using grid algebra and
AML in various stages such as fuzzy classification, integration of fuzzy memberships
and accuracy assessment analysis of the fuzzy categorical maps using fuzzy error

matrix. The scripts are described in detail in Chapter 5.

ER Mapper is a user-friendly image processing software, equipped with built-in
wizards for georeferencing and rectification. It provides seven different geocoding
methods and allows rectifying the multiscale remote sensing images to fit into real
world map coordinates (ER Mapper 6.2, 2000). The algorithm and vector annotation
functionality provide a platform to overlay multiple images and vector data. This is
useful delineating the training sites using vector data and aerial photographs together

with satellite images for deriving descriptive class statistics.

ERDAS Imagine was used to carry out the transformed divergence analysis. The
Signature Editor of ERDAS Imagine allows creating, managing, evaluating, editing,
and classifying signatures. In evaluating signatures, the Signature Separability
dialog enables computing of statistical distance between signatures using various
measures (e.g. transformed divergence) to determine how distinct the signatures are
from one another, which is used to determine the best subset of layers to use in the

classification.

The ICAMS software developed by Louisiana State University in collaboration with
National Aeronautics and Space Administration (NASA) was used to determine the

spatial complexity of urban landscapes using multiscale remote sensing images. The
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Image Characterisation Module contains spatial measures, which include fractal
analysis, spatial autocorrelation statistics, and textural measures. In this sub-system,
the input image is displayed in two-dimensional form and the analytical results and
statistics are viewed as an output (Quattrochi, ef al., 1997). The details are described
in Chapter 5. In addition, Microsoft Excel was used to carry out the statistical

analysis.

4.6 Summary

In this chapter, the land cover composition of the major land cover types of the study
areas, brief characteristics of the various sensor data and the software that were used

in the analysis have been discussed.

The major land cover classes as described in this chapter indicate that the land uses
of each land cover particularly forest, urban and grassland vary from one study area
to another. For example, the class forest is mostly characterised by open woodland,
woodland and mixed closed heath in the City of Perth and City of Melville while the
same class is represented by open forest to woodland in the City of Armadale.
Similarly, the class urban is represented by residential area in the City of Melville
and the City of Armadale whereas the major roads and parking represent the class
urban in the City of Perth. The class grassland varies from one study area to another.
In the City of Armadale, the recreational areas, bare ground and grazing area
represent grassland. The class dense urban are represented by the same land uses.
However, the extent of large structures, shopping complexes and commercial
buildings is intense in the City of Perth compared to the City of Melville and the City
of Armadale.

The spatial resolution of the various multispectral data used in the analysis varies
from 20 m for SPOT to 50 m for Landsat MSS data. According to the hypotheses of
this study, the selected green, red and the NIR bands were used to compute the
fractal dimension for describing the complexity of the study areas. Then, the major

land cover classes were mapped using the fuzzy set theory.

Several software programs which include ICAMS (Image Characterisation and

Modelling System), Arc/Info, ERDAS Imagine, ER Mapper and ArcView were used
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in the analysis of this study. ICAMS software was used to compute the fractal
dimension using the isarithm and the TPSA method and Moran’s [ index of spatial
autocorrelation of multiscale and multisource remote sensing images for
characterising the spatial complexity of urban landscapes. ERDAS Imagine was
used for transformed divergence analysis. The Arc Macro Language (AML) of
Arc/Info was used to implement the fuzzy c-means algorithm for deriving the fuzzy
memberships, various aspects of accuracy measures using the conventional and fuzzy
error matrix and the uncertainty maps. The implementation models for computation
of spatial complexity and mapping of urban land covers are discussed in the next

chapter.
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Chapter 5

IMPLEMENTING MODELS FOR COMPUTATION OF SPATIAL
COMPLEXITY AND MAPPING URBAN LAND COVERS

Chapter 5 illustrates the implementation of the spatial autocorrelation measures and
the fractal measurement algorithms to determine the spatial complexity of the three
study areas characterising the urban landscapes of the PMA as described in Chapter
4. Then the supervised approach of the fuzzy c-means algorithm, which was written
in Arc Macro Language (AML) of Arc/Info, is implemented for deriving the fuzzy
memberships of urban land cover types from the selected bands of a Landsat-7
ETM+. The final section of the chapter discusses the fuzzy operators, which were
used to integrate the fuzzy memberships of the selected bands for generating fuzzy
categorical maps, the defuzzification of the fuzzy categorical maps and fuzzy

accuracy assessment.

5.1 Measurement of Spatial Complexity

Measures of spatial autocorrelation and the fractal dimension of three study areas of
the Perth Metropolitan Area were determined from SPOT, Landsat-7 ETM+ and
Landsat MSS imagery using Moran’s 7, and the isarithm and the TPSA algorithms
described in the previous chapter. These methods are embedded in the Image
Characterisation Module of the ICAMS, which was used in the analysis. A flowchart

describing the implementation is shown in Figure 5.1.

5.1.1 Description and Operation of the Isarithm and the TPSA Algorithms

The isarithm algorithm embedded in ICAMS is analogous to the methods proposed
by Goodchild (1980), Shelberg et al. (1983), and Lam and De Cola (1993). As
discussed in Chapter 3, the algorithm requires square grids of differing sizes to
compute fractal dimension. Based on the highest power of two of the side of the

square grid, the maximum grid (step size) is calculated.

Figure 5.2 shows that the algorithm of the isarithm method determines the total

number of isarithm lines based on the maximum and minimum pixe! values (digital
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numbers) of the image and user defined interval. Then, the isarithm value of each

isarithm line was used to determine the fractal dimensions using the row, columns

4|

Satellite I
Image

Clip the Study Areas

City of

City of || City of
Perth Melville Armadale
ICAMS
Divide into Subsets of Various Sizes

and Convert into LLAN GIS Format

l v
Image Charactersation
Module
|

‘ Fractal Analysis }‘—
[ Moran’s 1 ] ISARH.HM TPS_A
Algorithm Algorithm
4 [ A
Spatial
Autocorrelation

Moran’s [ Moran’s/ Moran’s [
» D-ISARITHM | % D-ISARITHM |=» D - ISARITHM

D-TPSA D - TPSA D -TPSA

Figure 5.1 Flowchart for computing spatial complexity using the ICAMS
software

or row-column method. The algorithm requires determining of the number of steps
or walks, the isarithm interval, and the direction of interval and the method of
operation (row, column or both). The TPSA method implemented in ICAMS is
different from the original algorithm discussed in Clarke (1986) and Jaggi ef al.
(1993). Lam et al. (2002) showed that the regression between the prism surface
areas with the logarithm of the step size instead of the logarithm of the squared step
size provides the correct fractal dimension. Accordingly, the algorithm implemented
by Jaggi et al. (1993) as shown in Figure 5.3 was modified, and embedded in
ICAMS. This algorithm introduces an incremental variable initialised to unity as
step size and accordingly, the square grids resulting from the step size and the
corresponding surface area of the triangular prisms are calculated. Typically, the
upper left corner of the image is selected as the origin for the grids and starting point

for the first grid, and the area of the triangular prisms is cumulatively summed. The
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Figure 5.2 Flowchart of the isarithm algorithm using row-wise processing (after
Jaggi et al., 1993)
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Figure 5.3 Flowchart of the TPSA algorithm (after Jaggi et al., 1993)
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computation is repeated for all step sizes, and the slope of the best-fitted line drawn
from the plot of the logarithm of the total surface area and the logarithm of the step
sizes (instead of squared step sizes) provides the fractal dimension. These algorithms
require remote sensing data to be LAN GIS image format (e.g. ERDAS Imagine), tag
image format (TIFF) or band interleaved by line (BIL) format. Additional to the
maximum step size, the number of intervals and the method of counting the edges
(e.g. row, column, row-column} as described in Section 3.3.2.1 are needed in the
isarithm algorithm, while the processing method (e.g. exponential, arithmetic) is

needed to determine fractal dimension using the TPSA algorithm.

5.1.2 Determination of the Fractal Dimension and Moran’s 1

The subsets comprising an area of 324 ha were selected along the transects of the
study areas for the analysis of spatial complexity (see Sections 6.1.1, 6.1.2 and
6.1.3). Due to the varying spatial resolution of the sensors chosen, the number of
pixels of the subsets of the study areas varied and consequently, the parameters
particularly the step sizes adopted for SPOT, Landsat-7 ETM+ and Landsat MSS
data varied as well. For example, the subsets that cover an area of 324 ha comprise
90 x 90 pixels of SPOT XS, 72 x 72 pixels of the Landsat-7 ETM+, and 35 x 35
pixels of the Landsat MSS data. Accordingly, a step size of six was chosen in the
TPSA algorithm in order to compute the fractal dimension of SPOT XS and Landsat-
7 ETM+ while step size of five was chosen for Landsat MSS data. It is important to
note that the TPSA algorithm requires a minimum size of 2% x 2° pixels for
calculating the fractal dimension based on step size six (Read and Lam, 2002). A
summary of the subsets, corresponding pixels of various sensors and step sizes that

were chosen to determine the fractal dimension is shown in Table 5.1.

Table 5.1 Summary of the subsets, their corresponding sensor’s pixels and step
sizes
Sensor Subset of 324 Ha
Pixels Step Size
SPOT 50 x 90
Landsat-7 ETM+ 72x72

Landsat MSS 35x 35
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Following the hypotheses enunciated in Section 1.5, the spectral bands of SPOT,
Landsat-7 ETM+, and Landsat MSS that fall in the same spectral location and width
(Figure 4.8 in Chapter 4) were used to analyse the effect of spectral, spatial and land
cover heterogeneity on the fractal dimension of the subsets using the isarithm
algorithm (Djsarrran) and the TPSA (Dypsa). A summary of the spectral bands of
SPOT, Landsat-7 ETM+ and Landsat MSS that were used for the analysis of the

spatial complexity of urban landscapes is presented in Table 52.

Table 5.2 Summary of the spectral bands of SPOT, Landsat-7 ETM+ and
Landsat MSS used in the analysis

Sensor Spectral Bands
SPOT Green, red and NIR
Landsat-7 ETM+ Green, red and NIR
Landsat MSS Green and red

Among the input parameters of the algorithm, the step sizes as shown in Table 5.1
were used. Other parameters such as the exponential method of the TPSA and an
interval of two and the row, column and row-column methods were used in the
isarithm algorithm. In addition to the fractal dimension of the subsets, Moran’s / was
also calculated using the spatial autocorrelation sub-module of the ICAMS.
Moreover, the coefficient of variation was determined for each subset using the
parameters of descriptive statistics such as mean and the standard deviation. An
example of the fractal dimension, Moran's 7 and descriptive statistics which include
mean, minimum, maximum, standard deviation (SD) and coefficient of variation
(CV) of subset one of the City of Perth computed from Landsat-7 ETM+ is presented
in Table 5.3.

Table 5.3 Fractal dimension, Moran’s 7 of spatial autocorrelation and descriptive
statistics of subset one of the City of Perth

Sensor Band  Fractal Dimension Moran’s  Descriptive Statistics
I
DISAR]THM DTT‘SA Min Max Mean SD (A%
Landsat-7 ETM+ Green 2.88 2.94 0.7951 66 244 119.83 30.20 (.253
(25 m) RED 2.87 2.97 0.8081 58 255 13281 3675 0277

NIR 2.80 2.84 08344 35 164 7663 1782 0233

The results of all subsets of the study areas are presented in Chapter 6, where they

are analysed based on the objectives enunciated in Section 1.3.1; specially to
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understand how spatial complexity can be useful in determining the appropriateness
of a sensor data for determining the scale at which processes occur in the PMA using

the D.

5.2  Fuzzy Supervised Classification

The fuzzy supervised classification approach applied in this research comprised three
major steps: (i) selection of the best set of bands of multispectral image to be
fuzzified; (ii) derivation of the fuzzy memberships from the selected bands using a
supervised approach of the fuzzy c-means algorithm; and (iii) integration of fuzzy

memberships using fuzzy operators. These steps are summarised below.

5.2.1 Selection of the Best Set of Bands of Multispectral Image

5.2.1.1 Selection of Land Cover Classes of the Study Areas

The Anderson’s level I classification scheme comprised water, forest land, cropland,
bare cropland, barren land and urban or built-up areas which was designed mainly
for land use/cover mapping by manual interpretation of remotely sensed data
(Anderson ef al., 1976). However, for computer-assisted approach, Yang and Lo
{2002) showed that a modified version of the Anderson scheme with hybrid levels I
and IT categories works well for mapping land use/cover from Landsat images with
spatial resolution varying from 30 to 79m. In their study, a total of six land
use/cover (e.g. high-density urban use, low-density urban use, cultivated/exposed
land, grassland or cropland, forest and water) classes were considered for change
detection using Landsat TM and MSS data. Likewise, Weng (2002) used a modified
version of the Anderson scheme in the land use change analysis of the Zhujiang
Delta of China. The land use categories were (i) urban or build-up land, (ii) barren
land, (iii) cropland (rice), (iv) horticulture farms (primarily fruit trees), (v) dike-pond
land, (vi) forest, and (vii) water. His study indicates that a modified version of the
Anderson scheme with hybrid levels T and II categories works well. Accordingly, the
major urban land cover classes of the study areas as presented in Table 4.2 were

considered in classifying the Landsat-7 ETM+ data.



105

5.2.1.2 Transformed Divergence Analysis

This stage of the research comprised the selection of training areas representative of
each of the land cover types, signature evaluation, and selection of the best band
combination to be used in the fuzzy classification. During the training phase,
representative samples of the predetermined classes (Table 4.2) of the study areas
were selected from a Landsat-7 ETM+ scene based on reference (e.g. orthophoto,
landuse database and land zoning) and field data. In creating the training sites for
each class, adequate pixels were considered to conform with the general rule of
extracting more than 10n pixels where n is the number band for each land cover class
(Jensen, 1996; Richards and Jia, 1999). Accordingly, descriptive class statistics
including mean, standard deviation, and covariance matrix were generated from the
training samples of the three study areas as presented in Table 4.2 and summarised in
Appendix 2. An example of the summary statistics of the class urban of the City of

Perth is presented in Table 5.4.

Table 5.4 Summary statistics of the class urban generated from Landsat-7
ETM+ bands of the City of Perth

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7
Minimum 95 81 90 70 1035 72
Maximum 127 117 138 93 174 160
Mean 113 99.83 109.67 81.58 127.08 97.42
Median 115 99 108 78 118 95
Std. Dev. 10.58 11.53 14.57 8.91 22.57 241

In addition, transformed divergence analysis was carried out to statistically evaluate
the class signature separability and to select the best band combination for each of
the study areas. Typically, the Signature Editor of the ERDAS IMAGINE (ERDAS,
2000) was used to create and evaluate signatures which enabled performing the
transformed divergence analysis using the statistical separability between the training
signatures. The best average spectral separability resulting from various band

combinations of the study areas are presented in Table 5.5.

The transformed divergence analysis in Table 5.5 shows that bands 1, 3, 4 and 7 of
Landsat-7 ETM+ of the City of Perth provided the highest separability among the
predetermined land cover classes. Similarly, bands 1, 2, 3 and 7 of the City of
Melville and bands 1, 3, 4, 5 and 7 of the City of Armadale exhibited the highest
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spectral separability. Accordingly. these bands were selected to derive the fuzzy
memberships of the urban land cover classes presented in Table 4.2 using the

supervised approach of the fuzzy c-means algorithm.

Table 5.5 Transformed divergence analysis for selecting the best band
combination of Landsat-7 ETM+ over the study areas

(a) City of Perth

No of Bands Best Average Separability Band Combination
6 1925 123457
3 1967 13457
4 1983 1347
3 1980 245
2 1973 25
1 1864 3

(b) City of Melville
No of bands Best average separability Band combination
6 1929 123457
5 1920 12357
4 1937 1237
3 1894 157
2 1851 45
1 1675 1

(c) City of Armadale
No of bands Best average separability  Band combination
6 1781 123457
5 1908 13457
4 1877 3457
3 1886 257
2 1700 57
1 18321 2

5.2.2 Derivation of the Fuzzy Memberships from the Selected Bands

This research implements a supervised approach of the fuzzy c-means algorithm as
discussed in Section 3.4.2.1 using the Arc Macro Language (AML) of Arc/Info
(ESRI, 2000). To this end, spectral values which contain several pixels of the study
areas are considered as data vectors and, using the derived class means, a fuzzy
membership matrix (c X n, where ¢ and » represent number of land cover classes and
data vectors respectively) is generated. Thus, each data vector can be represented as

a function of the fuzzy membership of land cover classes, and ideally the sum of the
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membership grades of a data vector for a particular class is 1. It is important to
reiterate that the fuzzy membership values vary between O and 1, and that a
membership close to 1 represents a high degree of similarity between the class and

the sample, where 0 signifies little similarity.

5.2.2.1 Description of the Algorithm

Let X describe the vector position of spectral values in N-dimensional feature space

(X,.X,, e X ), where X, is the spectral value representing a land cover

class in spectral band p. Thus, X can be represented as a n X p array where n
represents the number of spectral values of selected land cover classes and p is the
number of spectral layers in a multi-spectral satellite image. Let us consider ¢ as the
number of land cover classes, M as the fuzzy c-partition space and U as a fuzzy c-
partition of sample of n where each element of U, uy, represents the membership of a
particular land cover class, x;. According to Bezdek e al. (1984), the above

partitioning can be given by the following expression.

C
My ={U: uy €10,1]; kg luik >0.i=1l.c; Tuyg= 1--k=]---"}

i=1

(5.1)

The optimal fuzzy c-partition can be identified through the minimisation of the
generalised least-squared error function as shown in Chapter 3 (Equation 3.12). The
fuzzy memberships of the supervised approach of the fuzzy c-means algorithm are
still a function of the weighted distance to the class means, but the algorithm no
longer determines the class means through an iterative process. Thus, the supervised
approach is a modification of the fuzzy c-means algorithm and the fuzzy

memberships are generated using the following equation (Key ef al., 1989).

v =,y [lf >l )””"”} 52)

=1

where d,-kz , is the measure of dissimilarity, i.e. the squared distance between x; and v,
which can be calculated by Equation 3.13. From Equation 5.2, it can be seen that

there are two distinct operations which need to be performed (o derive the fuzzy
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memberships. Firstly, the squared distance of x; and v; needs to be determined. For
a single band case, Equation 3.13 takes the following simplified form using the

Euclidean norm and a weighting exponent s equal to 2:
(dye ) = (e —v.)’ (5.3)

Finally, the fuzzy membership matrix can be generated using the Equation 5.2.
Accordingly, the algorithm was written in ARC Macre Language (AML}) in Arc/Info.
The Euclidean norm and a weighting exponent (m) equal to 2 were used in the
algorithm. A typical AML for deriving fuzzy memberships from a single band

remote sensing data is shown in Appendix 3.

5.2.2.2 Implementation

The methodology for deriving the fuzzy memberships using the selected bands of
Landsat-7 ETM+ of the City of Perth is shown in Figure 5.4. As shown in Figure
5.4, the selected bands of Landsat-7 ETM+ (see Table 5.2) were considered as data

vectors, and the dissimilarity index, (d, ), was calculated using Equation 5.3. In

calculating the dissimilarity index for a particular class, all data vectors were

considered, and the known mean value of the classes were used. This dissimilarity

It

. 2 Wim-1 .
index was then used to calculate the vector, (1/ dy )l , which became the

numerator of Equation 5.1 in determining the strength of membership. Similarly, all
data vectors were again considered for the second, third, and following classes and

the dissimilarity indexes were calculated in the same manner. Now, for a particular

. fm=1} .
data vector, the expression, (1/dﬁ\_2)‘ for all classes considered was summed up

c Hm=1)
and the newly created vector, Z(l/d jkz)l , (where ¢ represents the number of
=

classes) was stored as a separate record.

The process was repeated for all the remaining data vectors. For a particular class,

the membership grade of a data vector was calculated by dividing the vector,

generated by the expression (1/ d,.kz)‘f(mml), by the vector generated from the

[

. . fm=) Han-1 .
summation of the expression (1/ d,’ " e (1/ d jkz)‘ . A three decimal

=
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place approximation of uy was chosen and accordingly, the membership grades were
multiplied by 1000. The process was repeated for all the classes. Thus, each data
vector (pixels of Landsat-7 ETM bands) was represented as a function of the fuzzy
membership of land cover classes, and the sum of the fuzzy membership of each data

vector for a location x was 1.
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Figure 5.4 Flowchart for deriving fuzzy memberships using the selected bands of
Landsat-7 ETM+ of the City of Perth

As a result, a total of 16 outputs were produced (e.g. a fuzzy layer for each of the
four land cover classes in each of the four Landsat-7 ETM+ bands selected from the
transformed divergence analysis) for all study areas. The fuzzy memberships of the
class urban, dense urban, grassland and forest resulted from the selected bands
(Table 5.3) of the City Perth, the City of Melville and the City of Armadale are
shown in Appendix 4, Appendix 5 and Appendix 6, respectively. An example of the
fuzzy memberships of the class urban generated using Landsat-7 ETM+ band three

for each study area is shown in Figure 5.5.
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5.2.3 Integration of the Fuzzy Memberships

The fuzzy memberships of the land cover classes on the selected bands of the three
study areas were integrated using the fuzzy minimum, maximum, fuzzy algebraic
product, fuzzy algebraic sum and fuzzy gamma operators as described in Section

3.4.3.

(a) City of Parth (b) City of Melville

Figure 5.5 Fuzzy memberships of class urban, resulting from applying fuzzy c-
means algorithm on Landsat-7 ETM+ band 3 over the study areas

Several v values (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95) were tested on the
fuzzy gamma operator for all land cover classes considered. Various map algebra
functions (e.g. MAX, MIN, ADD, SUBSTRACT, MULTIPLY DIVIDE, POW)
available in GRID module of Arc/Info (ESRI, 2000) were used to implement
Equations 3.23 to 3.27 (Chapter 3) for integrating the fuzzy memberships from the
selected bands. To this end, the fuzzy memberships derived from the Landsat-7
ETM+ bands 1, 3, 4 and 7 for the City of Perth, bands 1, 2, 3, and 7 for the City of
Melville, and bands 1, 3, 4, 5, and 7 for the City of Armadale were integrated.
Accordingly, four fuzzy membership maps representing the four land cover classes
were obtained for each fuzzy operator for all study areas. The integrated fuzzy

memberships obtained for each land cover class using the fuzzy operators mentioned
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above are shown in Appendix 7 for the City of Perth, Appendix 8 for the City of
Melville and Appendix 9 for the City of Armadale. An example of the integrated
fuzzy memberships produced using the fuzzy algebraic sum of the class urban over

the study areas is shown in Figure 5.6.

{a) City of Perth (b) City of Melville

1 0 1 2 Kilometers
—=_..—

8 Kilometers
™ —— ——]

Figure 5.6 Integrated fuzzy memberships (e.g. fuzzy categorical map) for the
class urban using fuzzy algebraic sum over the study areas

5.3 Accuracy Assessment of Fuzzy Classification

The methodology of accuracy assessment of fuzzy classification comprised four
major steps: (i) derivation of the fuzzy membership of the reference data; (i1)
defuzzification of the fuzzy memberships of the classified data; (iii) construction and

accuracy measures of the fuzzy error matrix; and (iv) generation of uncertainty maps.

5.3.1 Derivation of the Fuzzy Memberships of the Reference Data

In assigning membership of the reference data, a virtual field reference database
(VFRDB) was developed as described in Section 3.4.4.1. The field data collection
includes selection of samples followed by field visits and the assignment of
membership values using the linguistic values presented in Table 3.1. In order to

implement the sampling technique, the remote sensing data (e.g. Landsat-7 ETM+)
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of the three study areas was converted into grids using the IMAGEGRID command of
ARC module of Arc/Info (ESRI, 2000). Typically, IMAGEGRID converted Landsat-
7 ETM+ bands into an equal number of grids. Then, using the grid, the easting and
northing of each cell centre was generated. This was implemented using the
SAMPLE command of GRID module of Arc/Info, which creates an ASCII file listing

the northing and easting of all cell centres of the grid representing the study areas.

Using the ASCII file containing the northing and easting of all cell centres, a simple
random sampling was carried out. Subsequently, the northing and easting of
randomly selected points, Arc/Info point coverage was generated. The purpose of
creating Arc/Info point coverage was twofold: firstly, to see the location and
distribution of the sample points over the study area, secondly, to prepare optimal
daily routes for maximising the number of sites to be visited in a day. The
GENERATE command of the ARC module of Arc/Info was used to create Arc/Info
coverages of easting and northing of the selected sample points. The location and
distribution of the selected sample points over the three study areas, which were
intended to visit, is shown in Figures 5.7. Locational based accuracy assessment was

chosen and individual pixels were considered as the sampling unit (Janssen and van

der Wel, 1994).

(&) City of Perth (b) City of Melvlle

& Randomly Selected Sample

Figure 5.7 The distribution of the randomly selected samples over the study areas
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The land cover compositions of each field sample of the virtual field reference
database were evaluated using the 10 points linguistic scale ranging from ‘absolutely
right’ (10) to ‘totally unacceptable’ (1) as described in Section 3.4.4.1.3. The field
observations of each sample point were further analysed using the compositions of
the land covers surrounding the pixel indicated in the digital photograph. Based on
the linguistic scale and the land cover compositions indicated in the photograph, a
fuzzy membership was assigned to each sample point. The fuzzy memberships of all

sample points are presented in a matrix form (Appendix 10).

5.3.2 Defuzzification of the Fuzzy Categorical Maps

Defuzzification was applied to obtain a single value (fuzzy) by assigning a particular
location to only one of the predefined classes. A typical defuzzification assigns
pixels to the classes at which they have the maximum memberships (Zhang and
Goodchild, 2002). As described in Section 3.4.4.2, the fuzzy categorical maps of
each fuzzy operator for the three study areas were defuzzified to generate fuzzy land
cover maps. This was done using the map-algebra functions (e.g. MAX, ADD,
SUBSTRACT) of GRID module of Arc/Info (ESRI, 2000). Figure 5.8 shows the

steps that were involved in defuzzification of the fuzzy categorical maps.

Following the methodology, fuzzy land cover maps were generated for each fuzzy
operator over the three study areas, which are presented in Appendix 11 for the City
of Perth, Appendix 12 for the City of Melville and Appendix 13 for the City of
Armadale.

5.3.2.1 Converting Fuzzy Memberships of the Field Reference Data to Grids

The fuzzy memberships of the field reference data were categorised into their
respective land cover classes. The easting and northing of the sample sites of each
land cover class were used to generate Arc/Info point coverage. Then, the coverage
of each land cover representing the field data was converted into a grid with a cell
size of 25 x 25 m. This was done using the POINTGRID command of ARC module
of Arc/Info. POINTGRID converts data associated with point features to a GRID
cell format and each cell in the grid is assigned to a value according to the point(s) it

overlays. Following the methodology, a grid coverage was generated for each land
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cover type and these were used to determine the accuracy measures using the fuzzy
error matrix. The main steps that are involved in generating the grid coverage using

the field data are shown in Figure 3.9,
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Figure 5.8 Defuzzification of the fuzzy memberships of a fuzzy categorical map
for generating fuzzy land cover map

5.3.3 Accuracy Measures using the Fuzzy Error Matrix

The fuzzy land cover maps and the fuzzy field reference data were used to compute
the elements of fuzzy error matrix. For each fuzzy operator, the fuzzy membership
output represents the most likely land cover classes, which were cross tabulated with
the fuzzy membership grids of the reference data. The MINIMUM operator (Zadeh,
1977) was used in cross tabulating the fuzzy land cover maps and the fuzzy reference
data as described in Section 3.4.4.3. An AML (Arc Macro Language) was
implemented for generating the elements of the fuzzy error matrix. Using the
elements of error matrix, the fuzzy overall classification accuracy, fuzzy producer’s
accuracy and fuzzy user’'s accuracy were determined using the methodology
described in Section 3.4.4.4. The accuracy measures for each fuzzy operator are
presented in Appendix 14, Appendix 15, and Appendix 16 for the City of Perth, the
City of Melville and the City of Armadale, respectively.
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Figure 5.9 Generation of grids using the fuzzy membership of the field reference
data

coverage.

5.3.4 Uncertainty Maps

In order to visualise the spatial distribution of uncertainty, a fuzzy confusion index
(see Section 3.4.4.5) was computed, and uncertainty maps were generated for each
fuzzy operator using the fuzzy categorical maps. The MAX command available in
GRID module of Arc/Info (ESRI, 2000) was used to generate the fuzzy land cover
maps of the most likely class using the fuzzy categorical maps, as shown in Figure
5.10. Subsequently, the first maximum memberships were excluded from the fuzzy
categorical maps. Thus, these outputs contain all the fuzzy memberships, except the
maximum fuzzy memberships of the fuzzy categorical maps (Figure 5.10).
Likewise, the MAX command was used to generate fuzzy land cover maps of the
second most likely class for each location. The first and second fuzzy land cover
maps containing the first maximum and the second maximum memberships
respectively were used for generating the uncertainty map (confusion index map) for
each fuzzy operator using Equation 3.33 (Chapter 3). The grid algebra function of
Arc/Info was used to implement Equation 3.33. The uncertainty maps for each fuzzy
operator of the study areas are shown in Appendix 17 for the City of Perth, Appendix
18 for the City of Melville and Appendix 19 for the City of Armadale. An example
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of uncertainty maps generated using the fuzzy categorical maps produced by the

fuzzy gamma operator (Y= 0.95) of the study areas is shown in Figure 5.11.
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Uncertainty maps generated using the fuzzy categorical maps of the
fuzzy gamma operator (y = 0.95) over the study areas
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5.4 Summary

This chapter described the implementation of the method for determining the spatial
complexity of three study areas representing dense urban, medium urban and urban
fringe of the PMA using SPOT, Landsat-7 ETM+ and Landsat MSS data. The
methods based on fuzzy set theory for deriving fuzzy categorical maps using

Landsat-7 ETM+ and their accuracy assessment were then described.

The Image Characterisation Module of ICAMS was used to compute Moran’s /, a
measure of spatial autocorrelation. Various step sizes (e.g. five and six) were applied
in the subsets of the study areas for determining the fractal dimension using the
isarithm and the TPSA algorithms. In the isarithm algorithm, the row, column and
row-column methods were used for computing the fractal dimension. Accordingly,
Moran’s I and the fractal dimension of the study areas using the selected bands of
SPOT, Landsat-7 ETM+ and Landsat MSS were generated. The results were
categorised to address: (i) how the spatial complexity varies with changes in the land
cover compositions of the study areas; (ii) how the spectral and spatial resolution
affect the spatial complexity of urban landscapes and (iii) the relationship between
the D, an index of spatial complexity and Moran’s /, a measure of autocorrelation.
Furthermore, the performance of the fractal measurement algorithms such as the
isarithm and the TPSA on the determination of the D of urban land cover types was
addressed. The analyses of these enquiries including how spatial complexity can be
useful in determining the appropriateness of a sensor data for determining the scale at

which processes occur in the PMA using the D are discussed in Chapter 6.

The supervised approach of the fuzzy c-means algorithm was implemented to map
the major land cover classes of the study areas using Landsat-7 ETM+. In
implementing the fuzzy c-means algorithm, first, representative training sites of four
representative land cover classes were analysed selecting the best band combinations
of the Landsat-7 ETM+ based on spectral separability among the land cover classes.
In addition, descriptive statistics of the land cover classes were generated which were
used in the implementation of fuzzy c-means algorithm for deriving the fuzzy
memberships from the selected Landsat-7 ETM+ bands. Various fuzzy operators
(e.g. minimum, maximum, algebraic product, algebraic sum and fuzzy gamma) were

used for integrating the fuzzy memberships of the four land cover classes computed
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on each of the selected bands. Accordingly, each fuzzy operator produced an
integrated fuzzy membership for each of the predetermined land cover classes. The
performances of each of the fuzzy operators were assessed carrying out a fuzzy

accuracy assessment analysis.

Randomly selected field samples were collected and stored in a VFRDB. The land
cover composition of each field sample was assessed using a ten-point linguistic
scale, and the fuzzy memberships of the reference data were derived as a result. The
technique of defuzzification was applied to the fuzzy memberships of the fuzzy
categorical maps and accordingly, the fuzzy land cover maps for each fuzzy operator
were generated. These outputs were used in a fuzzy error matrix and the accuracy
assessment was carried out. In addition, the uncertainty maps using the fuzzy
memberships of the fuzzy categorical maps were generated to examine the

distribution of misclassification over the study areas.

The accuracy analysis of the fuzzy categorical maps using the fuzzy error matrix
resulted in (i) the accuracy of the fuzzy land cover maps generated from each of the
fuzzy operators; (ii) the accuracy measures of the individual classes indicating the
source of misclassification; and (iii) distribution of the misclassification associated
with the fuzzy land cover maps over the study areas. These results provided the best
fuzzy operator for generating the fuzzy categorical maps for each of the study areas.
In addition, the effect of heterogeneity of land cover compositions of the major land
cover classes was assessed using the accuracy measures of the fuzzy land cover

maps. The analyses and the discussions are presented in Chapter 7.
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Chapter 6

SPATIAL COMPLEXITY OF URBAN LANDSCAPES DERIVED FROM
MULTISCALE AND MULTISOURCE REMOTE SENSING DATA

This chapter presents the analysis of spatial complexity of the study areas computed
from SPOT, Landsat-7 ETM+, and Landsat MSS using fractal measurement
algorithms and a spatial autocorrelation measure (Moran’s ). Based on the
hypotheses, the analyses of (i) how the spectral and spatial resolution affect the
analysis of spatial complexity of urban landscapes; and (ii)) how the spatial
complexity varies in changing the land cover compositions of the study areas are
presented. The parameters and the performance of different fractal measurement
algorithms in measuring the spatial complexity are discussed. Finally, the selection
of an appropriate sensor data for the interpretation of land cover classes based on

fractal analysis is discussed.

6.1 Characterisation of the Spatial Complexity

As mentioned in earlier chapters, the spatial complexity measured from multiscale
remote sensing data can be used in selecting an appropriate scale at which the
processes of urban landscapes are operating. Accordingly, fractal measurement
algorithms such as the TPSA and the isarithm described in Section 3.3.2 were
applied to SPOT, Landsat-7 ETM+, and Landsat MSS data to various subsets of
three study areas comprised of different land cover compositions (see Chapter 4 for
details). In the isarithm algorithm, three methods namely row, column and row-
column methods were applied to determine the fractal dimension. As reported in the
literature, the fractal dimension computed from the row and column methods suffer
from directional bias (Lam, 1990; Lam and De Cola, 1993; Quattrochi et al., 2001)
and thus, only the results of the row-column method were used in the analysis. The

analysis of spatial complexity for each study area comprised the following steps:

(a) Assess the effect of the spectral and spatial resolutions of various sensor data

on the spatial complexity of urban landscapes. This includes analysing the
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effect of spectral, spatial resolutions and land cover types on different fractal
measurement algorithms;

(b) Assess the performance of the fractal measurement algorithms on the
measurement of the spatial complexity;

(c) Evaluate the correlation between fractal dimension (seen as an index of spatial
complexity) and spatial statistical measures of data variability (e.g. spatial

autocorrelation) on the different urban land covers.

The land cover pattern of the City of Perth is spatially more compiex than the land
cover patterns of the City of Melville and the City of Armadale, which vary from
spatially heterogeneous to a more homogeneous pattern. A synopsis of the analysis
s shown in Figure 6.1, and the following sections provide a description of the

analyses results obtained for three study areas.

The City The City The City
of Perth of Melville of Armadale

324 Hectare 324 Hectare 324 Hectare
Subsets Subsets Subsets

*Mean *Mean

{CV
sMoran's
*Diga

*Mean
CV
*Moran’s [
*Drpsy
*Digarmmrin

{V
«Moran’s /
*Dresa

oD
SARITHIM *Dhs ks

h 4

*Effect of Spectral Resolution on D
«Effect of Spatial Resolution on D
«Correlation between Moran’s T and D
*Effect of Land Caver Compositions on D

Figure 6.1 Summary of analyses performed in the subsets of the study areas

6.1.1 The City of Perth

As described in Chapter 4, subsets comprised of 324 hectares of SPOT, Landsat-7
ETM+ and Landsat MSS along the transects of the study areas were used in the

analysis. The City of Perth contains the central business district and adjacent
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commercial/residential areas. A field survey and an analysis of aerial photographs of

the subsets of the City of Perth revealed the following land cover compositions.

(a) Subset one represents most of the commercial and business area of Perth central
city. The land uses of this area are characterised by large commercial buildings,
office buildings, shopping complexes, freeways, major roads and open parks
(Figure 6.2b).

(b) A portion of the business area of the central city mostly occupied with office
buildings along with freeways, major roads, grassland and residential area is
included in subset two (Figure 6.2c).

(c) The land uses of subset three are dominated by residential areas parkland. In
addition, the north-west portion of this subset comprises commercial and

business area occupied by office buildings, shopping area and a railway station
(Figure 6.2d).

(d) Subset Three

Figure 6.2 Land cover compositions of the subsets of the City of Perth
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The fractal dimension of SPOT, Landsat-7 ETM+, and Landsat MSS bands using the
TPSA (Drpss) and the isarithm (Dysapira) algorithms were computed on the three
subsets of the City of Perth. According to the hypotheses described in Chapter 1, the
fractal dimension of the selected bands (green, red and NIR) of SPOT, Landsat-7
ETM+ and Landsat MSS were selected for the analysis. In addition to fractal
dimension, the Moran’s / index of spatial autocorrelation, descriptive statistics of the
subsets, which include minimum, maximum, mean, standard deviation and

coefficient of variation of each subset were generated.

The results in Table 6.1 indicate that the Dypss and Dyssgiruy are the highest in the
ETM+ green, red and NIR bands of subset one, as compared to subsets two and
three. As the D variation over the three subsets is consistent regardless of the
spectral range, it is assumed that the changes in D are a result of the change in land
cover compositions. According to the concept of the fractal theory, the higher the
fractal dimension, the higher the spatial complexity. This implies that subset one of

the City of Perth is spatially more complex than subsets two and three.

Table 6.1 Fractal dimension computed from the isarithm and the TPSA
algorithm of the City of Perth

Subset 1 Subset 2 Subset 3

Sensor Band  Dysaprmv Dresa Disarmave DPresa Disarmrav Dresa
SPOT Green 2.98 2.89 291 293 296 2.92
(20 m) Red  2.94 288 2.89 288  2.93 2.88

NIR  2.87 289 298 2.88  2.90 2.91
Landsat-7 ETM+ Green 2.88 2.94 2.85 2.81 2.79 2.84
(25 m) Red  2.87 297 2.87 281 282 2.86

NIR  2.80 284 275 275 285 2.70
Landsat MSS Green 2.78 282 2.80 281 270 276
(50 m) Red  2.88 278 2.79 278 272 271

Statistical comparisons between the Dypgs and the Digagrrus of the subsets were
carried out to determine whether these subsets are differentiable using the fractal
dimension, an index of spatial complexity. Accordingly, a f-test with a 0.05
significance level and p-values were used to test the null (Hy: 1; =1;) and alternative
(Ha: 11 #14) hypotheses for examining whether the spatial complexity of the subsets

is statistically different from each other.
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Table 6.2 summarises the ¢ and corresponding p-values resulting from the #-tests
undertaken using the Drpgq and the Disaprray of all Landsat-7 ETM+ bands between
subsets one and two, subsets one and three and subsets two and three. The results of
the paired #-test of subsets one and two and subsets one and three reveal a statistically
significant difference between the Dypss values of these two subsets, whereas the
spatial complexity of subset two and three was not found significantly different, as
expressed by D (Table 6.2). These resulis are explained by the differences in the
degree of homogeneity of land cover of the individual subsets, which in turn is a
result of differences in the degree of fragmentation of the land cover composition
types present in each subset. An examination of the land uses indicates that subset
one is spatially more complex as the land uses are characterised by large commercial
buildings, shopping complexes along with freeways, major roads, grassland and open
parks compared to similar but relatively less heterogeneous land uses in subsets two
and three. This can be seen in a graphic representation of the land uses extracted
from aerial photos in Figure 6.2. The results of the paired #-test between the
Dysarrram values of the subsets one and three contradict with the results of the Dypgs
(Table 6.2) which could be attributed to the methodological approach as explained in
Section 3.3.2. A further explanation of the effect of the D computed from the TPSA

and the isarithm method is discussed in the following section.

Table 6.2 t-significance test among the subsets of the City of Perth using the
Drpsa and Dysaprran of Landsat-7 ETM+ bands

Subsets 1 2 3
Drpsa 1 t=12.60, p=0.00006%*  =7.23, p=0.0008*

2 r=1.51, p=0.19
Disarmum 1 t=4.2968, p=0.00774* = 0.52992, p=0.18659

2 t = -0.557, p=0.60101
* Statistically significant

Variations measured as standard deviations were used to describe the differences in
degree of spectral homogeneity of the land covers of the individual subsets. The
results showed that subset one has the highest absolute variation of pixel values
centred on its mean in the green, red and NIR bands, whereas subsets two and three
showed less variation (Table 6.3). The mean coefficient of variation (CV) which is a
non-spatial index summarising the variations of the pixel values regardless of their

locations showed relatively high in subsets one and there as compared to subset two.
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The higher coefficient of variation indicates that the land covers of all subsets are

spectrally heterogeneous.

Table 6.3 Summary statistics of Landsat-7 ETM+ of the subsets of the City of

Perth
Band Minimum Maximum Mean Standard Coefficient of
Deviation Variation

Subset Green 66 244 11983  30.29 0.253
One Red 58 255 132.81 36.75 0.277

NIR 35 164 76.63  17.82 0.233
Subset Green 60 255 11.8 26.93 0.241
Two Red 48 255 123.47 31.82 0.258

NIR 32 186 7591  16.01 0211
Subset Green 59 255 103.83 27.01 0.260
Three Red 51 255 113.16 33.89 0.299

NIR 45 179 80.18 14 0.175

The Drpss and the Dgagmmy computed from the SPOT image revealed a small
variation of the D among the subsets (Table 6.1), indicating an insignificant variation
of the spatial complexity. Using a significance level of 0.05, paired r-tests of the
Drpsa and the Dysaprran among subsets one and two, subsets one and three and
subsets two and three revealed that the spatial complexity among the subsets is not
significantly different (Table 6.4). This can be attributed to variations in the land
cover heterogeneity of subset one of the SPOT image. The land uses of subset one
changed substantially over the years as the SPOT data was acquired in December
1991 when the proportion of vegetation was higher than built-up areas in subset one
(Figure 6.3), compared to the acquisition of the Landsat-7 ETM+ scene in 2001,
characterised by a higher percentage of built up areas (residential and commercial).
Subset one became more heterogencous over time, which contributed to a higher
Dypsa in the ETM+ bands, and thus an increased differentiation amongst the D values
of subset one and subsets two and three (Table 6.2). The higher Djsaprram of the
subset one despite spatially less heterogeneous land covers could be attributed to the

methodological approach of the isarithm method.

The standard deviations of the subsets of SPOT image in Table 6.5 shows that subset

one has the least absolute variation of pixel values as compared to subsets two and
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three. Likewise, the coefficient of variation of subset one appears to be low as
compared to subsets two and three (Table 6.5). This indicates that the land cover of
subset one is portrayed as spectrally less heterogeneous in the SPOT imagery. The
lower coefficient of variation and the relatively lower fractal dimension of subset one
compared to subsets two and three appears to indicate that the land covers are

spatially less heterogeneous.

Table 6.4 t-significance test among the subsets of the City of Perth using the
Drpsa and Dysagiruy of SPOT bands

Subsets 1 2 &
Drpsa 1 t=-0.778, p=0.5178 t=-2.413, p=0.137
2 t=-0.4629, p=0.6888
Disariram 1 t =0.01694, p=0.988 t=0.07478, p=0.94719
2 t=0.00233, p=0.99875

False Color Composite of SPOT (NIR, Red, Green) False Color Composite of Landsat- 7 ETM+ (NIR, Red, Gireen)

Figure 6.3 Changes in land cover compositions from 1991 to 2001 in subset one
of the City of Perth

Likewise, the results of the green and red bands of Landsat MSS indicate that the
Drpsa and Dysapirum are relatively higher in subsets one and two, as compared to
subset three (Table 6.1). This is to be expected as the land covers of subset three in
MSS, which was acquired in December 1980, showed more homogeneous as
compared to subsets one and two. The results of the paired t-test of the Drpsa and
Disariram using a significance level of 0.05 showed that the spatial complexity of
subsets one and two, subsets one and three and subsets two and three are not

statistically significant, as expressed by D (Table 6.6).
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The standard deviation measured as the variation from the mean of all pixels was

found to be low, as compared to Landsat-7 ETM+ and SPOT (Table 6.7). This could

be due to a lower degree of spectrally heterogeneous land covers in the subsets of

Landsat MSS. A similar CV among the subsets indicates that the MSS sensor

records the land covers of the subsets as similar in terms of spectral heterogeneity.

Table 6.5 Summary statistics of SPOT of the subsets of the City of Perth
Band Minimum Maximum Mean Standard Coefficient of
Deviation Variation
Subset Green 57 211 9302 21.72 0.233
One Red 44 213 8926 2222 0.249
NIR 53 162 90,73 19.93 0.220
Subset Green 57 231 94.11 26.79 0.285
Fwo Red 45 228 90.37 26.98 0.299
NIR 43 177 9311 21.57 0.232
Subset Green 51 205 8347 23.1 0.277
Three Red 41 192 7874 2375 0.302
NIR 60 176 9446 1691 0.179
Table 6.6 t-significance test among the subsets of the City of Perth using the
Drpga and Disagran of Landsat MSS bands
Subsets 2 3
Drpga 1 f= 17354,p=0181073 t=1.832, p=0]643
2 1 =0.0798, p=0.94136
DISARITHM 1 = 207193,p=013002 t= 0.8918. p2015482
2 r = 0.91260, p=0.4287
Table 6.7 Summary statistics of Landsat MSS of the subsets of the City of Perth
Band Minimum Maximum Mean Standard Coefficient of
Deviation Variation
Subset Green 28 75 59.3 12.11 0.204
One Red 60 142 86.63 18.02 0.208
Subset Green 44 100 6l1.7 10.41 0.169
Two Red 50 199 83.65 21.11 0.252
Subset Green 34 92 56.09 11.31 0.202
Three Red 37 159 7633 18.20 0.238
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6.1.2 The City of Melville

The City of Melville represents ‘medium urban’ and it is mostly comprised of
residential areas (see Figure 4.6b-1 and 4.6b-2). Four subsets were selected along
the transects of the study area (Figure 6.4) which are characterised by the following

land uses:

(a) Subset one is largely comprised of residential areas, surrounded by sparse
vegetation and grassland (Figure 6.4b);

(b) The land covers of subset two are characterised by shopping complexes along
with major roads, open parks and residential areas (Figure 6.4c);

{c) The land covers of subset three are mostly comprised of residential areas,
characterised by houses with different types of roof tiles. In addition, there are
major and minor roads, some native vegetation and grassland (Figure 6.4d); and

(d) Subset four is mostly comprised of residential area, surrounded by sparse

vegetation, native forest, a golf club and bare ground (Figure 6.4¢).

The fractal dimensions of the green, red and NIR bands of SPOT, Landsat-7 ETM+
and Landsat MSS of the subsets of the City of Melville using the TPSA and the
isarithm algorithms are presented in Table 6.8. The variations of the Dzpss and
Disarrrun over the subsets regardless of the spectral range of the sensor substantiate
the hypothesis that the changes in D are a result of changes in land cover complexity.
An examination of the D values shows that the variations of the Dypg4 among the
subsets is more pronounced than the variations of the Dyssrrrusm. Table 6.8 shows
that subsets two and three registered higher Dypgs particularly in the green and red
bands as compared to subsets one and four, indicating spatially a more complex land
cover pattern. In contrast to the Dypsa, Disarrraa indicates that the land cover pattern
of subsets one and two are spatially more complex than subsets three and four (Table

6.8).

Table 6.9 summarises the ¢ values and corresponding p-values from a series of pair-
wise r-test undertaken between the subsets of the City of Melville using the Drpsa
and Dygaprrum of Landsat-7 ETM+ bands with a 0.05 significance level. The results
show that the differences in spatial complexity measured from the TPSA method

between subsets one and two, subsets one and three and subsets one and four are
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statistically significant. In contrast, the differences in spatial complexity measured

from the isarithm method between subsets one and three are statistically significant.

(a) Locations of the Subsets
Of the City of Melville

e T

Ko

(d) Subset Three (e) Subset Four

Figure 6.4 Land cover compositions of the subsets of the City of Melville

The variation of the D could be attributed to the degree of fragmentation of land
covers of the individual subsets. An example of variation of land cover compositions
of subsets one and two is shown in Figure 6.4. The land uses of subset one are
characterised by residential buildings, internal roads, parks, grassland as compared to
shopping complexes, major roads, residential areas and grassland of subset two. This

shows that subset two is spatially more complex than subset one.
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Table 6.8 Fractal dimension computed from the isarithm and the TPSA
algorithm of the City of Melville

Subset 1 Subset 2 Subset 3 Subset 4

Sensor Band  Dpagiram  Dresa  Disarmay Dresa Disarrav Diesa Disarrnv Drpsa
SPOT Green  3.00 285  3.04 2.83 287 2.83 282 277
(20 m) Red  2.94 2.84  3.00 283 285 285 281 2.73

NIR 2.9 289 280 285 290 291 290 2.85
Landsat-7 Green 2.89 268 2.8 277 2.80 281  2.85 275
?2?1413 Red 2.9 274 290 2.83 281 281 281 276

NIR  2.79 2.59  2.79 268  2.69 270 2.89 2.84
Landsat Green 2.77 2.68 2.68 2.74 2.54 262 271 274
MSS Red  2.77 268 274 280 259 259 2.60 2.68
(50 m)

Table 6.9 t-significance test among the subsets of the City of Melville using the
Dypsa and Dysaperan of Landsat-7 ETM+ bands

Subsets 1 2 3 4

1 {=-5.54, p=0.0026* 1= -4.06, p=0.0097* ¢ =-2.66, p=0.0445*
Drpsa 2 t=0.478, p=0.6527 t=0.0079, p=0.993

3 t = -.0.313, p=0.7668

1 1 = 0.3857, p=0.71556 ¢ = 11.31, p=0.0001* ¢ =0.8982, p=0.4802
Dicaprran 2 t=15.0977, p=0.0038* t = 0.898, p=0.4802

3 t=-2.693, p=0.043*

* Statistically significant

The variation measured by the standard deviation revealed that subset one has the
least absolute variation of pixel values centred to its mean, whereas subset two has
the highest variation, followed by subset four and subset three (Table 6.10). This
result could be attributed to the changing degree of spectral heterogeneity of the land
covers of individual subsets. The mean coefficient of variation particularly in the
green and red bands was found highest in subset two. The higher fractal dimension
and the higher coefficient of variation of subset two is the result of a more
fragmented and spatially complex surface, as compared to a more spectral and spatial
homogenous pattern of subset one, with a relatively low coefficient of variation and a

low D.

The variations of the Drpsy computed from the SPOT bands of subsets one, two and
three are small indicating a spatially similar pattern of land covers (Table 6.7). In

contrast, the Dypss Of subset four were found to be lower indicating spatially less
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complex than subsets one, two and three. On the other hand, the Disarmras of subset

one and two were found higher as compared to subsets three and four.

Table 6.10  Summary statistics of Landsat-7 ETM+ of the subsets of the City of
Melville
Band Minimum Maximum Mean Standard Coefficient of
Deviation Variation
Subset Green 50 255 100.04 1549 Q.155
One Red 43 255 11292 21.67 0.192
NIR 29 170 94.59 14.88 0.157
Subset Green 39 255 108.25 25.45 0.235
Two Red 25 255 121.45 29.88 0.246
NIR 10 185 86.38 14.92 0.173
Subset Green 36 187 99.98 16.8 0.168
Three Red 22 214 115.12 2498 0.217
NIR 10 163 88.79 16.33 0.184
Subset Green 51 195 90.69 15.81 0.174
Four Red 39 228 99.67  26.34 0.264
NIR 49 171 87.88 20.39 0.232

The ¢ significance test (Table 6.11) shows that the differences in spatial complexity

measured using the TPSA algorithm among subsets are not statistically significant.

In contrast, the ¢ and corresponding p-values as summarised in Table 6.11 indicate

that differences in spatial complexity measured using the isarithm method among

subsets one and three and subsets one and four are statistically significant. The

variations of the results between the Dypss and Disapruy were attributed to the

methodological approach as explained in Section 3.3.2.

Table 6.11  t-significance test among the subsets of the City of Melville using the
DTPSA and DISARITHM of SPOT bands
Subsets 1 2 3 4
1 r=12.645, p=0.118 r=-0.2773, p=0.807 =3.7811, p=0.063
Dirpsa 2 t=-1.511, p=0.269 7= 1.835, p=0.207
3 {=4.0, p=0.0571
1 £ =0.3565, p=0.7555 1=8.877, p=0.0124% 1=5.177, p=0.0353*
Disarirum 2 t=0.8464, p=0.4864 ¢=10.0145, p=0.4171
3 t=0.8814, p=0.201
*

Statistically significant



131

Likewise, the D (Drpsa and Disarpmran) values of Landsat MSS of subset three were
found lower as compared to the D values of subsets one, two and four (Table 6.8).
This indicates that the land covers of subset three are spatially less complex. Table
6.12 summarises the results of ¢ significance tests, which shows that the differences
in spatial complexity measured using the TPSA algorithm, between subsets two and

three and subsets three and four are statistically significant.

Table 6.12  t-significance test among the subsets of the City of Melville using the
Dypes and Disarmrane of Landsat MSS bands

Subsets 1 2 3 4

1 t=-2.10, p=0.1268  1=0.367, p=02651 1=-1529, p=0.2236
Drpsa 2 7 = 8.058, p=0.0039* = -0.2779, p=0.799

3 1= -3.458, p=0.0406*

1 r=0.5111, p=0.6445 t=1.267, p=0.2942 +=2.8989, p=0.0625
Dhsarirane 2 t =2.83, p=0.0659 t=1.894, p=0.1544

3 1= 0.0639, p=0.9530

* Statistically significant

6.1.3 The City of Armadale

The City of Armadale represents a typical ‘urban fringe’, mostly comprised of
residential and forested areas (Figure 4.6¢c-1 and 4.6¢-2). The major land uses of the

subsets which are selected along the transects (Figure 6.5) are as follows:

(a) Subset one largely comprises built-up arcas which include commercial and
administrative centres, shopping areas, residential areas surrounded with sparse
to dense trees and major road networks.

(b) The land uses of subset two are comprised of bare ground, grassland, a few
residential blocks surrounded by sparse to dense trees and forested areas.

{c) Subset three represents forested area which is fairly uniform and includes some

bare ground.

The D values (Drpsa and Dysarrray) of the green, red and NIR bands of Landsat-7
ETM-+, SPOT and Landsat MSS of the subsets of the City of Armadale are presented
in Table 6.13. An examination of the results indicates that subset one recorded the
highest D values followed by subsets two and three. This indicates that the land

cover pattern of subset one is spatially more complex than the land cover patterns of
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subsets two and three. The variations of the D values among the subsets are a result

of changes in land cover compositions and spatial pattern.

(b) Subset 1

(c) Subset 2 (d) S 3
Figure 6.5 Land cover compositions of the subsets of the City of Armadale
Table 6.13  Fractal dimension computed from the isarithm and the TPSA
algorithm of the City of Armadale
Subset 1 Subset 2 Subset 3

Sensor Band Disarirum Dresa Disarerase Dresa Disagirim - Dresa
SPOT Green 2.94 2.82 2.85 2.67 2.82 277
(20 m)

Red 2.95 281 285 273 276 275

NIR 292 2.83 2:93 2.82 2.64 2.67
Landsat-7 ETM+ Green 2.86 295 2.76 2.70 272 2.56
(25 m)

Red 2.85 2.80 2.74 271 2.74 2.56

NIR 2.86 280 286 278 273 2.66
Landsat MSS Green 2.84 2.69 ¥ ¥ 2.74 2.65
50
0 m) Red 2.77 2.68 * # 2.75 2.58

* D values were not computed due to unavailable data

The t-test with a 0.05 significance level using the Drpsa and Djsagirum of Landsat-7

ETM+ bands among the subsets of the City of Armadale were carried out to examine
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whether the spatial complexity of the subsets, as expressed by the D values are
significantly different. Table 6.14 summarises the ¢ values and corresponding p
values, which reveal that the spatial complexity measured using the TPSA algorithm
of subsets one and two, subsets one and three and subsets two and three is
significantly different (Table 6.14). Likewise, the differences in spatial complexity
measured using the isarithm algorithm of subsets one and two and subsets one and
three were found statistically significant (Table 6.14). This is because the land cover
compositions of the City of Armadale vary from urban to forested areas. An
examination of the land cover compositions of subset one indicates that it is
characterised by typical urban features (e.g. major road network, shopping areas,
residential areas), as compared to subsets two and three which are characterised by
bare ground and forested areas. The land cover compositions of the subsets of the

City of Armadale contribute to a significant variation of the city’s spatial complexity.

Table 6.14  t-significance test among the subsets of the City of Armadale using
the Drpsa and Dysarrraas of the Landsat-7 ETM+ bands

Subsets 1 2 3
Dypsa 1 t =514, p=0.0036* t =7.33, p=0.00074%
2 t =7.19, p=0.0008*
Dysaprem 1 t=4.0522, p=0.0098* 1 =15.4479, p=0.00283*
2 t=2.54, p=0.0518

¥ Statistically significant

The variation measured as standard deviation of Landsat-7 ETM bands reveals that
subset three has the least absolute varation whereas subsets one and two showed
larger variation (Table 6.15). This indicates that subset three is spectrally more
homogeneous due to forested areas as compared to subsets one and two which are
more dominated by urban features and bare ground (Figure 6.5). The higher standard
deviation of subset two in the red band could be influenced by the high spectral
response of the bare ground. The low coefficient of variation of subset three
indicates that the land covers are spectrally less heterogeneous. With a low
coefficient of variation and a low fractal dimension of subset three, the surface is
likely to be spatially and spectrally less compléx, as compared to spaﬁially complex

land covers of subset one which exhibited to a relatively high D and a moderate CV.
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The fractal dimension of SPOT bands of the subsets of the City of Armadale showed
higher D values as compared to the D values of subsets two and three. This indicates
that the spatial pattern of land covers of subset one is more complex as compared to
subsets two and three. The ¢ values and corresponding p values of the pairwise f-
significance tests reveal that the differences in spatial complexity measured using the
TPSA and the isarithm algorithms, between the subsets are not statistically

significant (Table 6.16).

Table 6.15  Summary statistics of Landsat-7 ETM+ of the subsets of the City of

Armadale
Band Minimum Maximom Mean  Standard Coefficient of
Deviation Variation

Subset Green 57 204 94,85 16.58 0.17
One Red 54 230 106.06 21.01 0.20

NIR 47 168 85.72 16.54 0.19
Subset Green 52 138 75.22 16.01 0.21
Two Red 42 186 8553  28.53 0.33

NIR 63 161 85.12 14.92 0.18
Subset Green 48 78 55.31 4.13 0.07
Three Red 40 94 5197  7.10 0.14

NIR 50 77 63.96 2.51 0.04

Table 6.16  t-significance test among the subsets of the City of Armadale using
the DTPSA and DISARITHM of the SPOT bands

Subsets 1 2 3
Drpsa 1 t=0.9794, p=0.1863 t=2.563, p=0.124

2 t=0.1357, p=0.9045
Digarrreng 1 i=1.708, p=0.229 t=4.25, p=0.052

2 r=1.739, p=0.224

Likewise, the variation measured as standard deviation of SPOT bands presented in
Table 6.17 shows the least absolute variation in subset three whereas subset one has
the highest absolute variation. This indicates that subset three is spectrally more
homogeneous due to forested areas as compared to subset which is dominated by
urban features (Figure 6.5). With a low coefficient of variation and a low fractal

dimension of subset three, the surface is likely to be spatially and spectrally less
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complex, as compared to spatially more complex land covers of subset one which

exhibited a relatively high I and a moderate CV.

The D values of the green and red bands of Landsat MSS vary among the subsets of

the City of Armadale indicating the effect of land cover pattern on spatial

complexity. An examination of the D values presented in Table 6.13 indicates a

similar trend of variation among the subsets as discussed for Landsat-7 ETM+ and

SPOT. The ¢ values and corresponding p values of the pairwise #-significance tests

reveal that the differences in spatial complexity measured using the TPSA and the

isarithm algorithms, between the subsets are not statistically significant (Table 6.18).

Table 6.17  Summary statistics of SPOT of the subsets of the City of the Armadale
Band Minimum Maximum Mean Standard Coefficient of
Deviation Variation
Subset Green 49 243 75.58 18.32 0.24
One Red 41 237 73.40  19.01 0.26
NIR 63 235 105.16 19.22 0.18
Subset Green 44 72 54 82 6.55 0.12
Two Red 34 81 51.50  10.83 021
NIR 68 135 90.12 11.59 0.13
Subset Green 40 64 46.87 3.07 0.07
Three Red 30 65 4130 381 0.09
NIR 24 £9 64.02 9.69 0.15
Table 6.18 t-significance test among the subsets of the City of Armadale using
the DTPSA and DISARITHM of Landsat MSS bands
Subsets 1 3
DTPSA 1 = 0.7336, P:D.5163
Disarrram 3 t=0.4057, p=0.712

6.2 Effect of Spatial Resolution on Fractal Dimension

6.2.1 The City of Perth

The results of the Dypsy of SPOT, Landsat-7 ETM+ and Landsat MSS indicate that

on average, the fractal dimension increases with increasing spatial resolution of the



136

sensor, except for subset one in bands green and red of the SPOT and Landsat-7
ETM+ (Figure 6.6). This suggests an obvious effect of scale on the spatial
complexity of urban landscapes. A comparison of average Drpsy between various
sensors in the green, red and NIR bands in Figure 6.6 shows that the average Drpsy 18
the highest in SPOT followed by Landsat-7 ETM+ and Landsat MSS. The higher D
values of Landsat-7 ETM+ of subset one could be attributed to the variations in the
land cover composition and therefore, heterogeneity over time (e.g. more complexity
is expected for Landsat-7 ETM+ as a result of a more complex pattern of built-up
areas occurring between ten years of SPOT and Landsat-7 ETM+ acquisition), which

was explained in Section 6.1.1.

Similar increase in fractal dimension with increasing spatial resolution was found by
Lam (1990). In that study, all bands of Landsat TM including the thermal band with
a spatial resolution of 120 m, were resampled to a fixed pixel size of 25 m, and the
fractal dimension computed afterwards. The fractal dimension of an urban area was
found to vary from 2.21 to 2.73 for the thermal and red bands, respectively. In
addition to a lower spectral variability of emitted temperature, as compared to
spectral reflectance of earth surfaces, the variation was attributed to the original

spatial resolution of the bands.

Likewise, the Dysarsra computed from all subsets from Landsat-7 ETM+, SPOT and
MSS showed a similar trend i.e. the higher the spatial resolution the higher the
Disarrruy (Figure 6.6). The increasing trend of Dypsa and Disagram with increasing
spatial resolution could be the result of the loss of mixed pixels composed of varying
combinations of digital numbers that correspond to commercial buildings, major and
minor roads, residential area and forested area, to more “pure” pixels reflecting a
heterogeneous land cover pattern. Figure 6.6 shows that the variation of spatial
complexity between Landsat MSS and SPOT is highest in subset three. This is
expected as the spatial heterogeneity of the land covers, particularly residential and
forested areas of subset three, decrease in a larger pixel (e.g. 50 m) as individual
residential blocks and trees are averaged into larger blocks. This signifies that the
higher the spatial resolution, the higher the textural information content indicating
higher variation, and thus the resolution level at which most processes operate as

found by Cao and Lam (1997).
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The results in the green, red and NIR bands of SPOT in all subsets revealed higher in

the Dysarirns as compared to Drpss (Table 6.1). A possible explanation could be that

the approach of the isarithm method excludes few random pixels that have

abnormally high values and thus, measures the major variation dominating the

subsets, thereby vielding a higher D (Qiu et ai., 1999).

(a] Subzet 1

{b) Subset 2

(c) Subset3
=
&

The Dypsa and Dysarirum of the green, red and NIR bands of SPOT,

Landsat-7 ETM+ and Landsat MSS of the City of Perth

Figure 6.6

This is in conformity with the findings of the previous studies by Read and Lam
(2002) and Qiu et al. (1999), which showed higher Dysagran for different land cover

types, as compared to Drpss values. Statistical comparisons between the Drpss and
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the Dysagrrum of SPOT, Landsat-7 ETM and Landsat MSS bands were carried out
using the s-test with a 0.05 significance level to determine whether the difference is
significant. The ¢ values and corresponding p values presented in Table 6.19 indicate
that the differences between the Dypgs and the Dysaprrasy in subset two of the City of

Perth are statistically significant.

Table 6.19  #-significance test between the Dysagprun and Drpss computed from
SPOT, Landsat-7 ETM+ and Landsat MSS bands of the subsets of the

City of Perth
Subsets 1 2 3
SPOT t=1.319, p=00L3176 =0.832, p=0.4929 r=1.438, p=0.2873
Landsat-7  r=-1.903, p=0.1297 =6.779, p=0.0010% 1=1217, p=0.2778
ETM+
Landsat r=-1.158, p=0.330 =-03017, p=0.782  r=-0.218, p=0.117

MSS

Furthermore, there is disagreement in the results of the Dyarmam of SPOT in the
green and red bands of subset one compared to the results obtained from the TPSA
method. Figure 6.6 shows that the Dysapira of the green and red bands of SPOT in
subset one is higher despite the temporal effect on the land cover compositions as
explained in Section 6.1.1. The directional pattern of various features present in the
subsets {e.g. row or column) could contribute to the disagreement of the results, as
the Dysarmum resulting from the row-column method was considered in the analysis
assuming that the row-column method will minimise the directional bias. Another
source of discrepancy of the results of the isarithm method could be the selection of
the isarithm interval in computing Djagpmy as the results vary using different

isarithm intervals (Lam, 1990).

6.2.2 The City of Melville

The Drpsa and Dygagrmram of the subsets of the City of Melville computed from the
green, red and NIR bands of SPOT, Landsat-7 ETM+ and Landsat MSS are
presented in Figure 6.7. It shows a similar trend of the Dypss and Dysaprrum in all
spectral band locations like the results of the subsets of the City of Perth ie. the
higher the spatial resolution, the higher the fractal dimension indicating the higher

the spatial complexity.
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land covers) which

(a) Subset 1

Figure 6.7 shows that the variation of spatial complexity between Landsat MSS and

Landsat-7 ETM+ and Landsat MSS and SPOT is higher in the green and red bands
of subset three. This could be partially explained to the effect of spatial resolution

three comprised of sparse trees and native vegetation as found in Landsat MSS

and the changes of land cover compositions over time. The land covers of subset
was reflected in the SPOT and Landsat—7 ETM+ scenes acquired in 1991 and 2001

acquired in 1980 have changed to urban area (spatially complex

respectively, and accordingly, contributed to a higher D.
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The Drpsa and Dysagrans of the green, red and NIR bands of SPOT,

Landsat-7 ETM+ and Landsat MSS of the City of Melville

Figure 6.7
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The results of SPOT and Landsat-7 ETM+ in all the subsets of the City of Melville
indicated consistently higher Dysarrrmas than the Drpss (Figure 6.7). A series of r-tests
with a 0.05 significance level were carried out between the Dysarrram and Dypsa of
SPOT, Landsat-7 ETM+ and Landsat MSS bands in all subsets to examine whether
the differences in spatial complexity computed from the isarithm and the TPSA
methods are statistically significant. The results presented in Table 6.20 indicate that
the difference between the Dyssrrruns and Dypsq of subsets one, two and four in

Lansat-7 ETM+ and subsets one and four in SPOT are statistically significant.

Table 6.20 t-significance test between the Dysarirunm and Drpsa of SPOT, Landsat-
7 ETM+, and Landsat MSS of the subsets of the City of Melville

Sensor 1 2 3 4
SPOT t=7.522, p=0.017* =131, p=0.318 1=0468, p=0.685 1="7.158, p=0.018%

Landsat-7  r=22.83, p=0.000003* = 1148, p=0.000008* ¢=-0.317,p=0.763 t=7.18, p=0.0008*
ETM+

Landsat = 1841,p=0.1628 =0177.p=0870  r=1151,p=0.332 1=-2.886, p=0.0632
MSS

* Statistically significant

6.2.3 The City of Armadale

The Dypss and Digagrran of the subsets of the City of Armadale computed from the
green, red and NIR bands of SPOT, Landsat-7 ETM+ and Landsat MSS are
presented in Figure 6.8. The results in Figure 6.8 show that the Drpss and Dysagrram
of the green, red and NIR bands is highest in the SPOT data, followed by Landsat-7
ETM+ and Landsat MSS (i.e. the higher the spatial resolution the higher the spatial
complexity) in subset one and subset three. In subset two, the green band of
Landsat-7 ETM+ recorded a higher Drpgs, as compared to the Dypss of SPOT (Figure
6.8). This could be the result of the changes in land cover compositions of subset
two, which was transformed from a forested area, as recorded in the SPOT image
acquired in 1991, to a more spatially heterogeneous land cover dominated by bare
ground, residential area and forested area at the time of the Landsat-7 ETM

acquisition.

Similar to the results obtained for the City of Perth and the City of Melville, the
isarithm method revealed higher fractal dimension (Djsarrras) than the TPSA method
in the SPOT and Landsat-7 ETM+ data sets, in all subsets of the City of Armadale.
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The ¢ significance test between the Disagruym and Dypsa of SPOT, Landsat-7 ETM+
and Landsat MSS bands in Table 6.21 shows that the difference between the
Disarmruy and the Dypgq methods is significant only in subsets one and two of the

SPOT data set.
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Figure 6.8 The Drpsa and Dysagrrass of the green, red and NIR bands of SPOT,
Landsat-7 ETM+ and Landsat MSS of the City of Armadale

Table 6.21 t-significance test between the Dypsy and Disapmray of Landsat-7
ETM+, SPOT and Landsat MSS of the subsets of the City of

Armadale
Sensor 1 2 3
SPOT r=8.029, p=0.01515*% r=6.252, p=0.0246* =0.433, p=0.7072
Landsat-7 ETM+ ¢ =3.95, p=0.0584 t = 3.900, p=0.0598 t=4.039, p=0.0561
Landsat MSS r=4.0, p=0.1559 - r=13.25, p=0.190

* Statistically significant
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The increasing fractal dimension with increasing spatial resolution indicates that the
spatial complexity of urban landscapes can be better characterised in the higher
spatial resolution satellite data. This also means that at higher spatial resolution, the
textural information content is higher. It appeared that the lower fractal dimension
resulting from a coarser spatial resolution data (e.g. Landsat MSS) underestimates
the spatial complexity of urban land uses. This implies a loss of detailed
information, which asserts the inability to extract small and linear landscape features
from a coarser resolution data (e.g. Landsat MSS). Thus, data of a higher spatial
resolution (e.g. SPOT) where the spatial complexity of urban land covers is the

highest could be the most appropriate for analysing heterogeneous land uses.

6.3 Effect of Spectral Band Location on Fractal Dimension

6.3.1 The City of Perth

The Drpsa and Dygapiram of the green, red and NIR bands of Landsat-7 ETM+ in
Figure 6.6 shows a variation in the D values with changing of the spectral range. In
general, the D values of the green and red bands were found higher than the NIR
band in all subsets of the City of Perth. The highest D was found in the red band
followed by the green and the NIR bands (Table 6.1). Figure 6.2 shows that there are
a few areas of grassland along the freeways, major roads, parking lots, commercial
buildings, and some residential areas in all subsets. These land uses are mixed.
Within these land uses, grassland reflects electromagnetic radiation in green band
and absorbs electromagnetic radiation in red band, which results in relatively low
digital numbers as compared to the medium to very high reflectance of the built-up
areas in that part of the spectrum. This results in spatially more complex pattern of
the spectral response in the ETM+ green and red bands than the NIR band and
therefore, exhibited larger D values than the NIR band.

On the contrary, the D values of SPOT image computed from the TPSA algorithm
reveals a small variation between the visible and the NIR bands. In some instances,
the D value of the NIR band was found higher than the visible bands (Figure 6.6a).
This could be attributed to the presence of larger amounts of vegetated areas
particularly in subset one, along major roads and built-up areas (see Figure 6.3). In

the NIR, the high reflectance of grassland and vegetation along with low to medium
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electromagnetic radiation of the built-up features in all subsets contributed to
spatially more complex spectral characteristics as compared to the visible bands.
Likewise, Figure 6.6 shows similar variation of the D among the visible bands of
MSS image. In all subsets, the highest Dypg4 was found in the green band followed
by the red band.

6.3.2 The City of Melville

The variation of the D in the green, red and NIR bands of SPOT, Landsat-7 ETM+
and Landsat MSS of the subsets of the City of Melville is shown in Figure 6.7. An
examination of the D computed from the Landsat-7 ETM+ indicates that the red band
exhibited the highest D followed by the green and NIR bands in subsets one, two and
three (Figure 6.7a to 6.7¢). The higher D in the red and green bands could be
attributed to the spectral characteristics of land cover compositions of these subsets
(see Section 6.1.2), which are spectrally more variable in the visible bands and
accordingly, exhibit higher D values than the NIR band. On the other hand, in subset
four, the NIR band exhibited higher D values as compared to the visible bands
(Figure 6.7d). This could be explained by compositions of subset four, which is
characterised by grassland, native vegetation, sparse trees and, to a lesser extent

residential area.

Figure 6.7 shows the variation of D among the green, red and NIR bands of SPOT in
the subsets of the City of Melville. The results in Figure 6.7 indicate a higher D
value in the NIR band as compared to the green and red bands in all subsets except
the D of subset two computed from the isarithm algorithm. An examination of the
results of the visible bands shows a small variation between the green and red bands.
The higher D values in the NIR band of SPOT as compared to the higher D values of
the visible bands of Landsat-7 ETM+ in subsets one, two and three could be
attributed to the variation of land cover compositions which changed over the years
as the SPOT data was acquired in 1991 when the proportion of vegetation was higher
than the built-up areas, compared to the acquisition of the Landsat-7 ETM+ scene in

2001, characterised by a higher percentage of built-up areas.
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6.3.3 The City of Armadale

The results of Landsat-7 ETM+ of the City of Armadale as shown in Figure 6.8
indicate a higher D value in the NIR band as compared to the visible bands of subsets
two and three, while subset one recorded a higher D value in the visible bands than
the NIR band. This can be attributed to the different land cover compositions of the
subsets of the City of Armadale. The land cover compositions of subset one are
characterised by urban features as described in Section 6.1.3 and accordingly, the
spectral characteristics of the land cover compositions are more spatially variable in
the visible bands which contributes to a higher D. In contrast, the predominant land
covers (e.g. forest) of subsets two and three contributed to higher D in the ETM+
NIR band. Similar variation of the D among the green, red and NIR bands of SPOT
and Landsat MSS is shown in Figure 6.8. A comparison of the fractal dimension
between the TPSA and the isarithm method revealed higher Dysaprre than Drpsa.
This difference in the fractal dimension could be attributed to methodological

approach of the isarithm methods as discussed in Section 6.1.2.

The higher fractal dimension in the green and red bands of the subsets that represent
urban areas provides an indication of higher textural information present in these
bands. This indicates that the measurement of spatial complexity from the visible
spectrum is more appropriate for urban areas than other land cover types. In
addition, this information could be a useful gunideline for selection of bands for

display, classification, and analysis as reported by Lam (1990).

6.4 Spatial Autocorrelation Measure and Fractal Dimension

Moran’s [ index of spatial autocorrelation is a scale dependent statistic useful for
indicating the degree of clustering, randomness or dispersion of a distribution. It
(Moran’s I) varies from +1 for a perfect positive autocorrelation (e.g. lumped
pattern) to —1 for perfect negative correlation (e.g. checkerboard pattern) (Lam er af.,
2002). In order to examine whether the degree of clustering, randomness or
dispersion of a remotely semsed image could be used to describe the spatial
complexity, Moran’s / computed from SPOT, Landsat-7 ETM+ and Landsat MSS
were compared with the Dypga and Dysagrruy computed and analysed in the previous

section.
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The results of Moran’s / of the subsets of the City of Perth computed from the SPOT,
Landsat-7 ETM+ and Landsat MSS are presented in Table 6.22. An examination of
the spatial autocorrelation computed from Landsat-7 ETM+ reveals that subset three
recorded the highest Moran’s 7 followed by subsets one and two (Table 6.22). The
relatively high positive Moran’s I values of subset three indicate a more clumped
pattern. The increase in spatial resolution of the SPOT data set evidences a more
clustered pattern of subset one as compared to subsets two and three. In Landsat
MSS, the variations of Moran’s I of subsets one and two with subset three are

pronounced as compared to the results of SPOT and Landsat-7 ETM+.

Table 6.22 shows that Moran’s [ of the subsets one and two varied between 0.64 to
0.69 among the green and red bands as compared to 0.84 to 0.85 of subset three.
This indicates that the land cover patterns of subsets one and three as revealed from a
Landsat MSS scene, are less clustered compared to a more clustered distribution of
subset three. The variation of Moran’s / among the subsets could be attributed to
land cover compositions and the spatial resolution of the sensor. As described in
Section 6.1.1 the land cover compositions of subset three are dominated by
residential areas and parkland and accordingly, the representation of similar features
among the Landsat MSS pixels are spatially autocorrelated as the features within
each pixel remain more or less uniform. On the other hand, the presence of more
than one land cover (e.g. buildings, major roads, parking lots, parkland) within
Landsat MSS pixels is not correlated, as the features within each pixel are not

uniform.

Table 6.22  Moran’s [ of spatial antocorrelation of the City of Perth

Subset 1 Subset 2 Subset 3

SPOT Green 07862  0.7696 0.7479
(20 m) Red 0.8078  0.7879 0.793
NIR 08246 07772 0.7102
Landsat-7 ETM+  Green 0.7951 (.7893 0.8574
(25 m) Red 08081  0.789 0.8702
NIR 08344 08258 0.8278
Landsat MSS Green 0.6929 0.6503 0.8486
(50 m) Red 06534 0.6425 0.8419

Correlation analyses between Moran’s [ and the Dypsy and Moran’s 7 and the

Disarrram computed from all bands of Landsat-7 ETM+, SPOT and Landsat MSS are
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presented in Table 6.23 and Table 6.24. The results show a negative correlation
between Moran’s [ and the D, showing an inverse relationship. This indicates that
the higher the spatial autocorrelation (e.g. Moran’s [) indicating a more clustered
distribution, the lower the spatial complexity (e.g. D} which supports the findings as
reported by Read and Lam (2002), Lam et /. (2002) and Read (2003). However, the
correlation coefficients of Moran’s I and the D of subsets one (Table 6.23) and three
(Table 6.24) computed from Landsat MSS and SPOT respectively were found to
have positive values. This indicates an increase of the D values with increasing the

spatial autocorrelation.

Table 6.23 Correlation analysis between Moran’s / and the Drpgy of the Landsat-7
ETM+, SPOT and Landsat MSS of the subsets of the City of Perth

Sensor 1 2 3

SPOT -0.17 -0.84 -0.74
Landsat-7 ETM+ -0.75 -0.66 -0.39
Landsat MSS 0.06 -0.21 -0.89

Table 6.24 Correlation analysis between Moran’s [ and the Disagrram of the
Landsat-7 ETM+, SPOT and Landsat MSS of the subsets of the City

of Perth
Sensor 1 2 3
SPOT -0.96 -0.31 0.35
Landsat-7 ETM+  -0.51 -0.79 -0.99
Landsat MSS -0.72 -0.22 -0.95

Table 6.25 presents Moran’s 7 of the green, red and NIR bands of SPOT, Landsat-7
ETM+ and Landsat MSS of the City of Melville. The higher positive Moran’s 1
values particularly in the green and red bands of subset three as shown in Table 6.25
indicate a clustered pattern when analysed using Landsat-7 ETM+. Likewise, the
results of SPOT revealed a more clumped distribution in subset three as it recorded
the highest Moran’s I as compared to subsets two, four and one. In Landsat MSS,
subset four presents a more clustered distribution followed by subset three, two and

one (Table 6.25).

The results of correlation analyses between Moran’s I and the D computed from all
bands of SPOT, Landsat-7 ETM+ and Landsat MSS in Tables 6.26 and 6.27 show a

moderate to strong negative correlation. An examination of the correlation
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coefficients indicates stronger inverse relationships between Moran’s [ and the D of
Landsat-7 ETM+ as compared to the results of SPOT and Landsat MSS. The results
substantiate the idea that Moran’s [ and the D are inversely correlated, which is in
conformity with the findings of Read and Lam (2002) and Lam ef al. (2002).
However, the correlation coefficients of subset one and subsets two and three as
determined from SPOT and Landsat MSS, respectively using the TPSA method
reveal positive (Table 6.26 and Table 6.27) which contradicts earlier findings. An
examination of the Dypss of subset three computed from Landsat MSS bands
indicaties lower D values (variations between 2.50 to 2.61), which could be attributed

to the positive correlation coefficients.

Table 6.25  Moran’s f of spatial autocorrelation of the City of Melville

Sensor Band Subset 1 Subset 2 Subset 3 Subset 4
SPOT Green  0.6481 08086 08527  0.7497
(20 m) Red 07294 08281  0.888 0816

NIR 0.7716 0.7858 0.7693 0.7691
Landsat-7 ETM+ Green  0.7125 0.8257 0.8396 0.8271

(25 m) Red 0.736 08156  0.8887  0.8523
NIR 08516 08641 08533  0.8757

Landsat MSS Green  0.6565 07903  0.8095  0.893

(50 m) Red 0611 07907 08402  0.8775

Table 6.26 Correlation analysis between Moran’s { and the Drps4 of the Landsat-7
ETM+, SPOT and Landsat MSS of the subsets of the City of Melville

Sensor | 2 3 4

SPOT 0.69 -0.86 -0.01 -0.99
Landsat-7 ETM+  -0.34 -0.89 -0.66 -0.52
Landsat MSS -0.76 0.41 0.59 -0.88

Table 6.27 Correlation analysis between Moran’s / and the Dygirmasm of the
Landsat-7 ETM+, SPOT and Landsat MSS of the subsets of the City

of Melville
Sensor 1 2 3 4
SPOT -0.32 0.81 -0.59 -0.95
Landsat-7 ETM+  -0.96 -0,02 -0.80 -0.79

Landsat MSS -0.78 -0.95 -0.89 -0.35
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Moran’s I index of subsets of the City of Armadale computed from the Landsat-7
ETM+, SPOT and Landsat MSS is presented in Table 6.28. An examination of the
results reveals relatively lower positive Moran’s / values in subsets one when
analysed using SPOT and Landsat-7 ETM+ indicating a less clustered pattern as
compared to subsets two and three (Table 6.28). The lower Moran’s 7/ in subset one
is attributed to the land cover composition which was found spatially complex as
compared to more homogeneous land covers of subsets two and three (Section 6.1.3).
In Landsat MSS, Moran’s I of subset three particularly in the green band was found
lower indicating a less clustered pattern which could be attributed to the spatial

resolution and the land cover compositions of the subset.

Table 6.28  Moran’s I of Spatial Autocorrelation of the City of Armadale

Sensor Band Subset 1 Subset 2 Subset 3
SPOT Green 0.7499 0.8468 0.8072
(20 m) Red 07714 0.9084 0.8252
NIR 07028  0.8530 0.9286
Landsat-7 ETM+  Green 0.7766 0.8515 0.8476
(25 m) Red 07594  0.8664 0.8618
NIR 0.8547  0.8274 0.8820
Landsat MSS Green 0.6311 0.5830
(50 m) Red 0.6466 0.6386

The correlation analyses between Moran’s [ and the D computed from all bands of
Landsat-7 ETM+, SPOT and Landsat MSS are presented in Table 6.29 and Table
6.30. Table 6.29 and Table 6.30 indicate a low to moderate negative correlation
between Moran’s I and the D computed from Landsat-7 ETM+ and SPOT. In
Landsat MSS, a positive correlation was obtained between Moran’s I and the Dypss

in subset one which could be attributed to the lower D values.

Table 6.29 Correlation analysis between Moran’s 7 and the Dypg4 of the Landsat-7
ETM+, SPOT and Landsat MSS of the subsets of the City of

Armadale
Sensor 1 2 3
SPOT -1.0 -0.05 -1.0
Landsat-7 ETM+  -0.49 -0.25 0.03

Landsat MSS 0.99 0.01
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Table 6.30  Correlation analysis between Moran’s ! and the Disapmuy of the
Landsat-7 ETM+, SPOT and Landsat MSS of the subsets of the City

of Armadale
Sensor 1 2 3
SPOT 1.0 -0.35 -0.95
Landsat-7 ETM+  -0.24 -0.67 -0.78
Landsat MSS 0.11 0.21

6.4.1 Spatial Complexity (D) and Non-Spatial Statistics for Characterising the
Study Areas

The previous sections discussed the characterisation of the spatial complexity of the
study areas computed from the green, red and NIR bands of Landsat-7 ETM+, SPOT
and Landsat MSS using the spatial (D and Moran’s 7) and non-spatial statistical
measures (CV and standard deviation). In all study areas, the D computed from the
TPSA and the isarithm methods varied among the subsets indicating the effect of
changes in land cover compositions on the spatial complexity of the study areas. A
comparison of the D) among the sensors in each spectral location indicated that the
higher the spatial resolution the higher the spatial complexity. The results also

showed that D varies as function of the spectral band locations of the sensor.

In order to characterise the spatial pattern of diverse land covers (e.g. buildings,
major roads, trees, grassland and open space) of the study areas, the CV and the D of
the green, red and NIR bands of Landsat-7 ETM+ are plotted in Figure 6.9. Figure
6.9 shows a high CV and a moderate to very high D in the City of Perth indicating
spectrally heterogeneous and spatially complex land covers. This is likely to be due
to the complex spatial pattern (e.g. higher level of fragmentation) of the land covers
of the City of Perth as explained in Section 6.1.1. On the other hand, the land covers
of the City of Melville exhibited a moderate CV with a large variation in D values
computed particularly from the isarithm method (Figure 6.9). Likewise, the City of
Armadale has the largest range of CV with low to moderate D values indicating that
the spectral heterogeneity of the land covers varies from low to very high as
compared to low to moderate spatially complex land covers (Figure 6.9). The large
variations in CV of the City of Armadale was attributed to the speciral heterogeneity
of the land cover compositions which vary from a homogeneous land covers (e.g.

forested area) to an area dominated by bare ground and built-up areas.



150

04—

=

08—

= ETM_P
= ETM_M

1

|

0.2 1 e LW » S
- 1

. ® ETM_A \

Coefficient of Variation (CV)
[
am
Coefficient of Varation (CV)
-
"
-
-
-
o
L}

ol e

= 5 =
25 2.6 2.7 28 2.9 3

Fractal Dimension (Drsa)

5 2.6 2 18 29 3

Fractal Dimension (D jeygrypm )

Figure 6.9 Scatter plot of the D and the coefficient of variation of Landsat-7
ETM-+ on the study areas (ETM_P: Perth; ETM_M: Melville; ETM_A: Armadale)

An examination of the D computed from Landsat-7 ETM+ indicates no definite
spatial pattern (e.g. cluster of D) for characterising the land covers of the study areas
(Figure 6.9). Likewise, Figure 6.9 shows no correlation between the CV and the D
which supports the idea that the CV does not provide any information about spatial
patterns of land covers, as reported in previous studies by Lam (1990) and Read and
Lam (2002).

The variations of the CV and the D computed from the SPOT image of the study
areas are plotted in Figure 6.10. It shows a compact cluster of high Drpss for the
City of Perth, an area dominated by spatially complex land covers which decreases
as the spatial pattern of land covers change to medium urban and urban fringe.
However, the results of the Djsarrram do not provide a similar pattern to that obtained
from the Drpsa, which could be attributed to the methodological approach of the

isarithm method as discussed in Section 6.2.1.

The CV and the D computed from Landsat MSS areas plotted in Figure 6.11 show no
definite spatial pattern as the variations in the D are high in all study areas. It
appears that the D values computed from the TPSA algorithm of SPOT increases as
the land cover compositions changes from an urban fringe (e.g. City of Armadale) to
medium urban (e.g. City of Melville) to dense urban (e.g. City of Perth). This
indicates that the urban land covers could be better characterised in SPOT image as
compared to Landsat-7 ETM and Landsat MSS. On the other hand, there was no
significant trend found between the CV, an index of spectral variability and D, an
index of spatial complexity. This demonstrates that although CV and other measures

of non-spatial variation (e.g. standard deviation) are good descriptors of an area’s
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characteristics, they cannot be used as indicators of an areas’ spatial complexity as

they do not bear a consistent relationship to the measures of spatial complexity (D

values).
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Figure 6.11  Scatter plot of the D and the coefficient of variation of Landsat MSS
on the study areas (MSS_P: Perth; MSS_M: Melville; MSS_A: Armadale)

6.5 Summary

This chapter described the analysis of spatial complexity of the study areas computed
from the SPOT, Landsat-7 ETM+, and Landsat MSS using fractal measurement
algorithms (e.g the TPSA and the isarithm) and Moran’s [ index of spatial
autocorrelation measure. The discussions were focussed on the effect of land cover
heterogeneity, spatial resolution and spectral location on spatial complexity,
computed using the TPSA and isarithm algorithms. The performance of fractal
measurement algorithms in measuring the spatial complexity was discussed. Finally,
the relevance of statistical measures such as Moran’s [ index of spatial
autocorrelation in characterising the spatial complexity of an urban landscape and its

relationship with D was described.
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The fractal dimension computed from the Landsat-7 ETM+, SPOT and Landsat MSS
indicated that the City of Perth is spatially more complex than the City of Melville
and the City of Armadale. A comparison of the fractal dimension among the study
areas showed a cluster of high D values in the City of Perth indicating spatially very
complex land covers over the study areas. On the contrary, variation of the I values
(low to high) increases as the land cover compositions change to the City of Melville
(e.g. medium urban) and the City of Armadale (e.g. urban fringe) indicating spatially
heterogeneous to a more homogeneous pattern of land covers. The non-spatial
statistical parameters such as the standard deviation and the coefficient of variation
were found useful in describing the spectral variability of the subsets. This in turn
could be used as part of the metadata for the images. It is important to note that these
indices provided the variation of the pixel values regardless of their locations and

thus, they did not bear any relationship to the spatial complexity.

The results of the green, red and NIR infrared bands of the subsets of the study areas
showed that the Dypsq and Dysapmry were highest in SPOT (20m) followed by
Landsat-7 ETM+ (25m) and Landsat MSS (50m). According to Cao and Lam
(1997), for a non-fractal surface, D is expected to be lower as resolution gets coarser
and spectral variability is reduced, which supports the findings of this study.
Likewise, Emerson et al. (1999) found an increase in spatial complexity of urban
areas with an increase in spatial resolution from an aggregated imagery (20- by 20 m,
40- by 40 m and 80- by 80 m) generated from a 10- by 10 m imagery. Operating on
the assumption that the scale at which the highest fractal dimension is measured may
be the scale at which most of the processes operate (Goodchild and Mark, 1987; Lam
and Quattrochi, 1992), it could be concluded that the urban areas of the Perth
metropolitan area are best represented by SPOT image, with a spatial resolution of
20m. This supports the findings reported by Small (2003), that the urban features are
better characterised in a spatial scale (e.g. spatial resolution) which lies between 10

and 20 m.

The Drpss and Dysariray varied in the green, red and NIR bands of Landsat-7 ETM+,
SPOT and Landsat MSS in all subsets of the study areas indicating the effect of
spectral location on measuring spatial complexity. An examination of the Drpgq and

the Djsarrran of the subsets indicated that the green and the red bands could be better
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utilised in characterising the spatial complexity of urban areas, as higher D values
were found in the green and the red bands of those subsets that represented urban
areas (e.g. buildings and infrastructures). This is in conformity with the findings of
many studies, where the fractal dimension of urban areas was found highest in the
visible bands of Landsat TM (Quattrochi et al., 2001; Qiu et al., 1999; Quattrochi et
al., 1997; Lam, 1990). Likewise, working with hyperspectral images, Qiu et al.
(1999) found that the largest contrast of fractal dimension between the urban and
rural scenes was in the visible wavelength region. The results also demonstrated that
the NIR band is better for characterising the spatial complexity of the vegetated

dareas.

An examination of the D computed from the TPSA and the isarithm method showed
higher Digagiram values compared to the Dypss. This was attributed to the approach
of the isarithm method which excludes few random pixels that have abnormally high
values and thus, measures the major variation dominating the subsets, thereby
yielding a higher D (Qiu et al., 1999). The computational method of the isarithm
method such as the row, the column and the row-column methods could be another
source that contributes to a higher Dysagrrun. In this anatysis, the Djsariram computed
from the row-column methods were used for minimising directional bias. This
approach could underestimate the results of subsets that are actually aligned cither
row or column, which is common in an urban environment. In addition, selection of
isarithm interval is an important factor as it determines the isarithm values, which
affect the resultant Djsaprrae as reported by Clarke (1986) and Lam (1990).
Following the suggestions of Lam er al. (2002) that the isarithm method is more
accurate for D values ranging from 2.3 to 2.5, while for roughen surfaces (D of 2.7-
2.9) the TPSA method is the best estimator, it could be concluded that the results of
the Dzps4 of this study are more relevant as the D values were found higher than 2.5

for all subsets analysed.

Moran’s I index of spatial autocorrelation was found positive (> 0.58) in all study
areas indicating a clustered distribution. An examination of the results of the study
areas showed that the higher the Moran’s /, the lesser the fractal dimension, or in
other words, the lower the spatial complexity. Thus, an urban landscape with a low

Moran’s [ value, indicative of a random distribution will result in a high D value
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indicating high spatial complexity. The correlation analysis between the Moran’s /
and the D revealed a strong negative correlation for spatially more complex land
cover pattern as compared to a low to moderate correlation coefficient of an area
which is spatially less complex. Thus, Moran’s { could be used to characterise the
spatial complexity of an area, which exhibits a higher D indicating a spatially more

complex land cover pattern.



155

Chapter 7

LAND COVER HETEROGENEITY AND ITS EFFECT ON THE
ACCURACY OF FUZZY CATEGORICAL MAPS

This chapter discusses the accuracy measures determined from the fuzzy error matrix
of the fuzzy categorical maps generated by different fuzzy operators as discussed in
Chapter 5. In addition to accuracy measures, uncertainty maps were used for
assessing the performance of the fuzzy operators for generating fuzzy land cover
maps. Furthermore, this chapter discusses the sources of classification error of
individual land cover classes of the fuzzy categorical maps derived from the best
fuzzy operator. Finally, the fuzzy categorical maps derived from the best fuzzy
operator of the study areas are used to assess the effect of land cover heterogeneity

on the accuracy measures.

7.1 Accuracy Measures of Fuzzy Land Cover Maps of the City of Perth

7.1.1 Performance of Fuzzy Operators in Generating Fuzzy Land Cover Maps

The summary of accuracy measures derived from the fuzzy error matrices described
in Section 5.3.3 of fuzzy AND, fuzzy OR, fuzzy algebraic product, fuzzy algebraic
sum, and fuzzy gamma operators with vy values ranging from 0.1 to (.95 of the City
of Perth is presented in Table 7.1. A comparison of the accuracy measures reveals
that the defuzzified memberships generated by the fuzzy gamma operator with a y
value of 0.95 exhibited the highest overall accuracy. The overall accuracy of the
fuzzy gamma operator (y = 0.95) was up to 52 percent higher than that of fuzzy
AND, fuzzy OR, fuzzy algebraic product and fuzzy gamma operators with ¥ values
ranging from 0.1 to 0.8, while 3 percent more accurate than the fuzzy algebraic sum
and fuzzy gamma operator of 0.90. It is interesting to note that the producer’s
accuracy, which represents errors of omission of the detuzzified memberships of
fuzzy AND and fuzzy algebraic product for all land cover classes was found low
compared to high user’s accuracy which is an expression of the errors of commission

(Table 7.1).
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Table 7.1 Summary of accuracy measures of the fuzzy land cover maps of the
City of Perth
Accuracy Measures Forest Grassland Urban  Dense
Urban

Fuzzy Producer’s Accuracy (%) 58 40 i6 31
Fuzzy AND Fuzzy User’s Accuracy (%) 86 91 81 68

Fuzzy Overall Accuracy (%) 40

Fuzzy Producer’s Accoracy (%) 87 81 44 79
Fuzzy OR Fuzzy User’s Accuracy (%) 56 48 51 51

Fuzzy Overall Accuracy (%) 74

Fuzzy Producer’s Accuracy (%) 54 26 10 20
Fuzzy Algebraic Fuzzy User’s Accuracy (%) 89 92 81 73
Product Fuzzy Overall Accuracy (%) 32

Fuzzy Producer’s Accuracy (%) 90 78 63 84
Fuzzy Algebraic Fuzzy User’s Accuracy (%) 38 46 73 52
Sum Fuzzy Overall Accuracy (%) 81

Fuzzy Producer’s Accuracy (%) 56 28 i1 22
Fuzzy Gamma Fuzzy User’s Accuracy (%) 88 91 81 72
Operation (y=0.1) Fuzzy Overall Accuracy (%) 34
Fuzzy Gamma Fuzzy Producer’s Accuracy (%) 66 42 22 40
Operation (Y=0.5)  Fuzzy User’s Accuracy (%) 85 88 86 73

Fuzzy Overall Accuracy (%) 47

Fuzzy Producer’s Accuracy (%} 74 56 39 57
Fuzzy Gamma Fuzzy User’s Accuracy (%) 83 84 81 73
Operation (Y=0.7) " g5y Overall Accuracy (%) 60

Fuzzy Producer’s Accuracy (%) 81 67 53 70
Fuzzy Gamma Fuzzy User’s Accuracy (%) 82 79 78 72
Operation (Y= 0.8)  Fuzzy Overall Accuracy (%) 70

Fuzzy Producer’s Accuracy (%) 88 79 70 34
Fuzzy Gamma Fuzzy User’s Accuracy (%) 79 70 70 67
Operation (Y= 0.9)  Fuzzy Overall Accuracy (%) 81
Fuzzy Gamma Fuzzy Producer’s Accuracy (%) 91 82 73 86
OO]Sgr)ation (y= Fuzzy User’s Accuracy (%) 73 61 61 62

Fuzzy Overall Accuracy (%) 84

On the other hand, the defuzzified memberships of fuzzy OR and fuzzy algebraic
sum exhibited to a high producer’s accuracy for all land cover classes, as compared
to a low user’s accuracy. For the fuzzy gamma operator, as the ¥ value increases,
there is an increase in producer’s accuracy with decreasing user’s accuracy. The
results in Table 7.1 show that the defuzzified memberships generated by the fuzzy

gamma operator (Y = 0.90) offer the most appropriate balance between producer’s
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and user’s accuracy, as compared to the categorical accuracy measures of the gamma

values of 0.1 to 0.8 and (.95,

An examination of the accuracy measures of the defuzzified land cover maps derived
from fuzzy AND reveals that the omission errors related to producer’s accuracy are
very high. In addition to sources of disagreement discussed later, this can be
justified by the fact that fuzzy AND underestimates the memberships as it selects the
minimum fuzzy membership value among the fuzzified Landsat-7 ETM+ bands in
each location of the fuzzy categorical maps. Tables 7.2 shows that the mean fuzzy
membership values of the land cover classes of fuzzy AND are smallest compared to
the mean values of the fuzzy memberships of fuzzy OR, fuzzy algebraic product,
fuzzy algebraic sum and gamma operators with y values ranging from 0.1 to 0.95. A
comparison between the mean fuzzy membership values generated by the fuzzy
AND and the fuzzy reference data showed that the mean fuzzy membership of class
forest was 68 percent lower than the fuzzy memberships collected in the field, as
described in Section 5.3.1, while the classes grassland, urban and dense urban were
found up to 95 percent lower than the ground recorded fuzzy values. The

conservative estimation of fuzzy memberships produced high omission errors.

Table 7.2 Mean fuzzy membership values of the fuzzy categorical maps
generated by fuzzy operators

Forest Grassland Urban Dense Urban
Mean Mean Mean Mean
Fuzzy AND 0.25 0.03 0.07 0.09
Fuzzy OR 0.97 0.95 0.94 0.94
Fuzzy Algebraic 0.51 0.08 0.07 0.14
Product
Fuzzy Algebraic 0.99 0.96 0.94 0.94
Sum
Fuzzy Gamma 0.76 0.38 0.45 0.57
Operation (Y= 0.8)
Fuzzy Gamma 0.85 0.59 0.66 0.74
Operation (y= 0.9}
Fuzzy Gamma 0.91 0.75 0.80 0.85

Operation (¥ = 0.95)

The uncertainty map generated for each fuzzy operator using the confusion index

described in Section 5.3.4 show the existence of a large number of uncertain regions,
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indicative of the distribution of misclassification, which could also be attributed to

high omission and commission errors (Appendix 17).

On the other hand, fuzzy OR considers the highest membership among the layers
being integrated. Table 7.2 shows that the mean fuzzy memberships of all land cover
classes considered are larger than the mean fuzzy memberships derived for fuzzy
AND. This contributed to a high overall accuracy (74 percent), which was 34
percent higher than the overall aécuracy achieved by using fuzzy AND. Among the
categorical accuracy measures, the user’s accuracy of all land cover classes was
found to be low, indicating high commission errors. Likewise, the producer’s
accuracy of the class urban was found to be low compared to forest, grassland and
dense. This could be attributed to the lack of compensation of information among
the selected bands since fuzzy OR utilised a single fuzzy value of the selected
Landsat-7 ETM+ bands (e.g. the output membership is controlled by the maximum

value of the input bands) and accordingly, misclassification occurred.

Likewise, the fuzzy algebraic product tends to produce small values resulting in a
conservative estimate of fuzzy memberships (Bonham-Carter, 1994). Accordingly,
high omission errors occurred which contributed to a low overall accuracy (32
percent). The uncertainty map generated using the confusion index indicates a
substantial uncertain region showing the distribution of misclassification (Appendix
17). The accuracy measures of the fuzzy algebraic sum are encouraging as it
exhibited an overall accuracy of 81 percent (Table 7.1). Two reasons can be
attributed to this high overall accuracy. Firstly, the compensation of information, as
the fuzzy algebraic sum considers all fuzzy memberships of the selected bands and
secondly, the tendency of generating ‘increasive’ membership (Bonham-Carter,
1994). This can be seen in Table 7.2 which reveals that the mean fuzzy memberships
of all land cover classes produced from the fuzzy algebraic sum are up to 92 percent
larger than the mean fuzzy memberships computed from fuzzy AND and the fuzzy
algebraic product. However, the user’s accuracy of the land cover classes
particularly for forest, grassland and dense urban was found to be low, indicating

high commission errors.

The overall accuracy of the defuzzified memberships generated by the fuzzy gamma

operator with Yy values ranging from 0.1 to 0.95 increases from 34 percent to 84
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percent (Table 7.1). This can be seen from the uncertainty maps, produced using
gamma operators with y values of 0.1, 0.5 and 0.8 (Appendix [7e, 17i and 71), which
indicate that the confusion index decreases as the v value increases. The decreasing
trend of the confusion index is assumed to be related to an improvement in
classification accuracy. An examination of the uncertainty maps indicates that
uncertain regions generated by a fuzzy gamma operator of 0.1 present a confusion
index above 0.8, and occupy about 48 percent of the total study area. These
uncertain areas decrease to 34 percent for a gamma operator of 0.5, and 25 percent

for a gamma operator of 0.8.

In addition to the overall accuracy measures, the results of fuzzy gamma operator
with vy values ranging from 0.9 to 0.95 are encouraging as their categorical accuracy
measures were found more accurate compared to the results of fuzzy algebraic sum
(Table 7.1). Despite a fuzzy gamma value of 0.95 achieving a higher overall
accuracy than that of y value equal to 0.9, the user’s accuracy obtained using a 7y
value of 0.90 was found to be much higher than that produced by a v value of 0.95,
indicating a lowering of the commission errors. This improvement in the categorical
accuracy measures can be attributed to an appropriate estimation of fuzzy
memberships in all classes by the fuzzy gamma operator (Y = 0.90). On the contrary,
the fuzzy gamma operator (y = 0.95) overestimated the fuzzy memberships in all
classes, which in turn contributed to increased total membership grades in the
classified data and the diagonal of the fuzzy error matrix respectively (Appendix
14k). As the total membership grades of the reference data remain the same for all
fuzzy operators, the increased membership grades of the diagonal of the fuzzy error
matrix contributed to a higher producer’s and overall accuracy as compared to a
lower user’s accuracy (see Section 3.4.4.4 for details). The lower user’s accuracy
resulted in high commission errors in all classes as compared to a y value of 0.90.
Therefore, the integrated fuzzy memberships generated by a y value of 0.90 from the
selected Landsat-7 ETM+ bands was considered to be the most appropriate. The
fuzzy memberships of the land cover classes of the City of Perth generated from y

value of 0.90 are shown in Figure 7.1.
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7.1.2 Sources of Classification Errors

The uncertainty map generated using the confusion index derived from the fuzzy
memberships of the classes forest, grassland, urban and dense urban of the fuzzy
gamma operator (Y = 0.90) is presented in Figure 7.2. This figure shows a higher
uncertainty in the central business district as compared to a low uncertainty in the
Kings Park and Botanic Garden area, comprised of forested area. The spatial pattern
of the uncertain region determined by the confusion index indicates that the higher
uncertainty occurs near boundaries, where transition zones and geographical
complexities are encountered (e.g. roads in the forested area, edges between forest
and urban area, edges between grassland and urban area) mainly due to the mixture
of more than one land cover class within a pixel. Moran’s 7 index was computed on

the confusion index, resulting in a value of 0.39.

Contusion Index Perth Central Business District

-0.20
-0.40
= 0.60
-0.80
-1.00

/
/

Heirisson Island

\\Kings Park and Botanic Garden 65 a4 05 1 1.5 Kilometers
e

Figure 7.2 Uncertainty map showing the confusion index derived from fuzzy
categorical maps of the City of Perth

This value indicates a moderate spatial autocorrelation of the confusion index
computed over the entire study area. It indicates that nearby (or connected) pixels

tend to present similar values.
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An examination of the producer’s accuracy of the defuzzified map generated by
fuzzy gamma operator with ¥ value of 0.90 reveals accuracies above 79 percent for
forest, grassland and dense urban classes. Among the land cover classes, a relatively
high omission error (30 percent) occurred in the class urban which was mostly
confused with dense urban and grassland (Appendix 14j). A significant
disagreement was found in the user’s accuracy between the defuzzified land cover
maps and field data for grassland, urban and dense urban classes. The user’s
accuracy of these classes tended to be between 67 percent and 70 percent indicating a
notably high commission error. The commission error of the class grassland (30
percent) could be attributed to wrong allocation of pixels corresponding to the
classes forest and urban as grassland. Similar variations of commission error were
found for urban and dense urban. The maximum commission error found for the
class dense urban (33 percent), mostly corresponded to a wrong inclusion within the

class urban.

Several sources of disagreement between the defuzzified map and the reference data
were identified. Firstly, a possible source of disagreement between the class
grassland and forest may be due to a similar spectral response of native vegetation
that composes the forest and grassland classes. As mentioned in Chapter 4, the class
grassland of the City of Perth is characterised by a mixture of grass, shrubs and
occasional native plants. This is reflected in the fuzzy error matrix corresponding to
a v value of 0.90 in Appendix 14(j), which shows that the omission error of class
forest is mostly contributed by a misclassification as grassland, which in turn results
in a high commission error for the class grassland. Likewise, the omission errors of
class grassland were mostly due to its labelling as forest, which resulted in high

commission errors in the class forest.

Secondly, the seasonal effect on the spectral behaviour of the class grassland, as the
satellite imagery was acquired during summer, when grassland and some shrubs tend
to dry up due to lack of rainfall in the area. This can be seen in Table 4.1 and Figure
4.4, which show that most rainfall occurs in winter, with an average monthly rainfall
of 125.62 mm, as compared to 3.49 mm in summer. Accordingly, the spectral
responses of the class grassland and sparse forest tend to be similar to soils (e.g.

reduction of the characteristic absorption feature of vegetation in the red region of
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the spectrum and high reflectance in the NIR) and other man-made features, which
may lead to a labelling as urban. For example, the north-east corner of the
recreational island (Heirisson island), separated from the City by the Swan River in
Figure 7.3 (a) shows higher fuzzy memberships for class urban, as compared to class
grassland and forest. However, a randomly selected sample of this area indicates that
the land covers are comprised of grass, shrubs and native plants as shown in Figure
7.3 (d). Accordingly, the field-collected fuzzy membership of this randomly selected
sample was highest for the class grassland, resulting in a classified image with a high
omission error for the class grassland and commission error for class urban. The
confusion index of the same sample in the uncertainty map in Figure 7.3 (b) was
found to be 0.99, indicating high uncertainty. An examination of the fuzzy
categorical maps in Figure 7.1 indicated that the fuzzy membership of class urban is
equal to 0.54, as compared to a fuzzy membership of 0.53 of class grassland, which

resulted in a confusion index of 0.99 (e.g. high uncertainty).

Similarly, a randomly selected sample of an open space comprised of grassland and
shrubs in the north-western part of the study area (Figure 7.4a) was classified in the
field as grassland because of this being the dominant land cover (Figure 7.4¢). An
examination of the fuzzy categorical maps indicated that the highest fuzzy
membership for same location corresponded to the class urban followed by dense
urban, grassland and forest. It is assumed that the spectral response of dry grass and
shrubs was similar to built-up areas, leading to a misclassification as urban.
Appendix 14(j) shows that the omission errors of forest and grassland were mostly

due to an inclusion of these areas in the class urban.

On the contrary, grasslands that are well managed (e.g. watering system) remain
green during summer and their spectral response resembles that of healthy vegetation
and accordingly, showed the highest membership degree to that class. For example,
the fuzzy memberships of grasslands covering Wellington Square and Langley Park
(Chapter 4) were high compared to other land cover classes, which can be seen in
Figure 7.5. Furthermore, these two areas show a low confusion index as shown in
Figure 7.5(b). Another significant source of disagreement may result from the

spectral similarity between urban and dense urban, which led to misclassification.
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This can be seen in Appendix 14(j), which shows that the omission errors of the
classes urban and dense urban were mostly due to a misclassification between these

classes.

(@)  Fuzzy Memberships

[ Wellington Square |

) 1.5 Kilometers
™ e ™" warowareres|

Figure 7.5 Fuzzy memberships map (a) and uncertainty map (b) of the class
grassland
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7.2 Accuracy Measures of Fuzzy Land Cover Maps of the City of Melville

7.2.1 Performance of Fuzzy Operators in Generating Fuzzy Land Cover Maps of

the City of Melville

The summary of accuracy measures derived from the fuzzy error matrices of
different fuzzy operators of the City of Melville is presented in Table 7.3. An
examination of the results indicates that a fuzzy gamma operator (y = 0.95) exhibited
the highest overall accuracy. The overall accuracy of the fuzzy gamma operator (Y =
0.95) was up to 44 percent higher than the fuzzy algebraic product, fuzzy AND and
fuzzy gamma operators with y values ranging from 0.1 to 0.8, while 2 percent more
accurate than the fuzzy algebraic sum and fuzzy gamma operator (¥ = 0.90) and 1
percent more accurate than fuzzy OR (Table 7.3). Similar to the results obtained for
the City of Perth, the user’s accuracy of fuzzy OR and fuzzy algebraic sum for all
land cover classes was found to be low, as compared to a relatively higher producer’s
accuracy (Table 7.3). On the other hand, the defuzzified memberships resulting from
the use of fuzzy AND and fuzzy algebraic product exhibited a high user’s accuracy
for all land cover classes, as compared to a low producer’s accuracy. For the fuzzy
gamma operator, as the 7y value increased, there was an increase in producer’s
accuracy with decreasing user’s accuracy. Clearly, the results of gamma operators
with y values ranging from 0.1 to 0.95 balance the categorical accuracy measures and

accordingly, offers the best fuzzy gamma operator with optimum accuracy measures.

An examination of the results derived from fuzzy AND and fuzzy algebraic product
reveals a trend similar to the overall and categorical accuracy measures obtained for
the City of Perth. The low producer’s accuracy of fuzzy AND and fuzzy algebraic
product (see Table 7.3) indicates high omission errors in all categories, along with a
low overall accuracy. Although fuzzy algebraic product compensates for the
information among the selected bands to be integrated, the underestimation of the
fuzzy memberships by this operator results in a low overall and producer’s accuracy.
On the contrary, the overall accuracy of fuzzy OR and fuzzy algebraic sum was
found to be 68 percent and 67 percent respectively. However, the user’s accuracies
of fuzzy OR for all categories were relatively low indicating high commission errors

along with low producer’s accuracy for the class dense urban. This could be
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attributed to the lack of compensation of information among the selected bands, as

this operator is controlled by a single value (i.e. the maximum fuzzy membership) of

the selected bands of Landsat-7 ETM+.

Table 7.3 Summary of accuracy measures of the fuzzy land cover maps of the
City of Melville
Fuzzy Accuracy Measures Forest  Grassland Urban  Dense
Urban

Fuzzy Producer’s Accuracy (%) 40 36 34 39
Fuzzy AND Fuzzy User’s Accuracy (%) 85 76 60 75

Fuzzy Overall Accuracy (%) 36

Fuzzy Producer’s Accuracy (%) 61 74 70 53
Fuzzy OR Fuzzy User’s Accuracy (%) 70 52 53 49

Fuzzy Overall Accuracy (%) 68

Fuzzy Producer’s Accuracy (%} 31 21 23 31
Fuzzy Algebraic Fuzzy User’s Accuracy (%) 90 82 58 74
Product Fuzzy Overall Accuracy (%) 25

Fuzzy Producer’s Accuracy (%) 57 72 68 66
Fuzzy Algebraic Fuzzy User's Accuracy (%) 55 52 47 51
Sum Fuzzy Overall Accuracy (%) 67

Fuzzy Producer’s Accuracy (%) 32 24 25 32
Fuzzy Gamma Fuzzy Uset’s Accuracy (%) 89 82 59 74
Operation (y=0.1) Fuzzy Overall Accuracy (%) 27
Fuzzy Gamma Fuzzy Producer’s Accuracy (%) 42 41 37 40
Operation (Y=0.5)  pyzzy User’s Accuracy (%) 84 77 59 73

Fuzzy Overall Accuracy (%) 40

Fuzzy Producer’s Accuracy (%) 52 53 48 48
Fuzzy Gamma Fuzzy User’s Accuracy (%) 82 72 58 73
Operation (y=0.7)  gy;,4 Overall Accuracy (%) 51

Fuzzy Producer’s Accuracy (%) 58 60 57 55
Fuzzy Gamma Fuzzy User’s Accuracy (%) 80 67 58 73
Operation (Y=0.8)  Fuzzy Overall Accuracy (%) 58

Fuzzy Producer’s Accuracy (%) 65 68 67 62
Fuzzy Gamma Fuzzy User’s Accuracy (%) 76 62 56 70
Operation (Y=0.9)  Fuzzy Overall Accuracy (%) 67

Fuzzy Producer’s Accuracy (%) 66 71 70 65
Fuzzy Gamma Fuzzy User’s Accuracy (%) 70 58 53 67
OOggr)ation (= Fuzzy Overall Accuracy (%) 69

Likewise, the user’s accuracy for all categories of the defuzzified map of the fuzzy

algebraic sum were found low indicating high commission error which could be

attributed to overestimation of the fuzzy memberships by the operator.
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Tables 7.3 shows that the overall accuracy of the defuzzifted maps generated by the
fuzzy gamma operator with 7y values ranging from 0.1 to 0.95, increases from 27
percent to 69 percent. The increased accuracy was attributed to the compensation of
information of the selected bands of the Landsat-7 ETM+ bands along with increased
memberships for a distinctive fuzzy set of the classified data. This can be seen on
the uncertainty maps of the gamma operators with y values of 0.1, 0.5 and 0.8
{Appendix 18), which indicate that the uncertain regions deérease as the y value
increases and accordingly, the accuracy increases. The results produced by the fuzzy
gamma operator (y = 0.95) show the overall and categorical accuracy measures to be
higher, as compared to the results of fuzzy algebraic sum and fuzzy OR. Therefore,
the integrated fuzzy memberships generated by the fuzzy gamma operator (y = 0.95)
were considered to be most appropriate for the City of Melville. The fuzzy
memberships of fuzzy categorical maps generated by the fuzzy gamma operator (Y =

0.95) are shown in Figure 7.6.

7.2.2 Sources of Classification Errors

The confusion index derived from the fuzzy categorical maps of the fuzzy gamma
operator (Y = 0.95) of the City of Melville is presented in Figure 7.7. This figure
shows that the uncertainty is evenly distributed over the study area indicating a large
number of mixed pixels and spectrally similar land cover classes. Moran’s [ index
computed on the confusion index was found to be 0.28, indicating a greater
dissimilarity between uncertainty values of connected areas (e.g. adjacent pixels), as

compared to the result for the City of Perth.

An examination of the categorical accuracy measures of the defuzzified map
generated by the fuzzy gamma operator (y = 0.95) reveals accuracies above 65
percent for classes forest and dense urban. The omission errors of the class dense
urban correspond mostly to an inclusion of these areas within the class urban, while
the class forest was mostly confused with grassland and urban areas. Likewise,
omission errors occurred in class grassland due to inclusion of these areas within the
class urban, while the commission errors of class urban were due to the inclusion of

these areas within the class grassland.
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A significant disagreement was found in the user’s accuracy between the defuzzified
land cover maps and field data for the classes grassland and urban. The user’s
accuracies of these classes were found to be 58 percent and 53 percent respectively,

indicating high commission errors (Table 7.3).

Z

Confusion Index
[ ]001-020

I C.81-099

08 0 08 1.6 Kilometers
e

Figure 7.7 Uncertainty map showing the confusion index derived from fuzzy
categorical maps of the City of Melville

The fuzzy error matrix (Appendix 15k) shows the commission errors of the class
grassland were mainly due to misclassification of urban areas as grassland, while the
commission error of the class urban is determined by an inclusion of areas of

grassland, forest and dense urban into urban.

Mixed pixels were another source of disagreement between classified and reference
data. It is important to note that some major roads (such as freeways and highways)

and residential areas are surrounded by sparse trees and grassland, resulting in a



172

spectral dominance of these land features over urban areas, and consequently an
erroneous labelling as grassland or forest. This can be seen in Figure 7.8 (a), which
shows a residential block comprised of sparse trees and grassland. According to the
dominant land cover, during the field work the highest fuzzy membership was
assigned to the class urban. The fuzzy membership of the defuzzified output
classification indicates that the same location belongs to the class grassland, thus
originating an error of omission. An examination of the fuzzy categorical maps
showed a fuzzy membership value of 0.80 for the class grassland (Figure 7.8b), as
compared to a fuzzy membership of 0.63 for the class urban. Though the fuzzy
classifier correctly identified the two dominant land cover types occurring within the
pixel, this resulted in a confusion index of 0.82 indicating high uncertainty between

the classes urban and grassland (Figure 7.8c).

Figure 7.9 shows another example of misclassification between urban and grassland
given their mixed occurrence within a pixel. An examination of the fuzzy
categorical maps showed that the fuzzy memberships of class urban and class
grassland were 0.59 and 0.80 respectively, indicating high uncertainty (Figure 7.9b).
Based on the dominant land cover, the highest fuzzy membership assigned to the
field-collected sample was to class urban, producing an omission error in the class
urban and commission error in the class grassland as can be seen in Appendix 15(k).
The high level of mixing of the land covers within a pixel and the spectral dominance
of one of these land covers causes wrong labelling and accordingly, the occurrence
of commission and omission errors. This indicates that the residential areas of the
City of Melville are more heterogeneous (e.g. higher mixed components within a
pixel) as compared to less heterogeneous areas of the City of Perth, with less mixture
of land cover components within a pixel. Thus, the presence of mixed pixels in the
City of Melville contributed to a significant misclassification (Appendix 15j), which

could be the reason for a lower overall accuracy, as compared to the City of Perth.

Another source of disagreement could be the similar spectral response of native
vegetation characterising forest and grassland areas. As mentioned in Chapter 4, the
class grassland of the City of Melville is characterised by a mixture of grass, shrubs

and occasional native plants.
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This could be a source of misclassification of the class grassland as forest. Appendix
15(k) shows that the commission error of the class grassland was mainly due to the

misclassification of class forest as grassland.

The seasonal effect on the spectral behaviour of the class grassland could be another
source of misclassification. As the satellite imagery was acquired during summer,
the spectral response of grassland and some shrubs tend to be similar to soils and
other man-made features, which in some areas may lead to their labelling as urban.
For example, Figure 7.10 shows an open space comprised of grassland and few trees,
which was found during the field visit and accordingly, the highest field derived
fuzzy membership was assigned to the class grassland. An examination of the fuzzy
categorical maps of the same sample in Figure 7.10 shows this area being labelled as
urban because it exhibits the highest fuzzy membership degree to the urban class,
followed by the class grassland. The uncertainty map shows a confusion index of

(.66 for this area.

Likewise, Figure 7.10 shows an open space comprised of grassland from a randomly
selected sample. The fuzzy classifier assigned the urban label to this sample as 1t
exhibited the highest fuzzy membership to this fuzzy set. Appendix 15(k) shows that
the omission errors are mostly due to an inclusion of grassland areas into the class
urban. The misclassification of class grassland as urban caused commission errors in
class urban (Appendix 15k). Another source of disagreement could be attributed to
changes that took place between the acquisition of satellite data, which were acquired
in December 2001 and field visits that were undertaken in May 2003. For example,
Figure 7.11 shows bare ground as a result of the removal of grassland and trees prior
to a residential development and accordingly, the highest fuzzy membership was
assigned to class urban. An examination of the fuzzy categorical maps as shown in
Figure 7.11 indicates that same location was assigned the highest fuzzy membership
to the class grassland, resulting in an error of omission. Lastly, as with the City of
Perth, another source of disagreement may result from the spectral similarity

between the classes urban and dense urban.
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7.3 Accuracy Measures of Fuzzy Land Cover Maps of the City of Armadale

7.3.1 Performance of Fuzzy Operators in Generating Fuzzy Land Cover Maps

A summary of accuracy measures derived from the fuzzy error matrices of different
fuzzy operators applied over the City of Armadale is presented in Table 7.4. The
overall and categorical accuracy measures of all fuzzy operators indicate that a
gamma operator (Y = 0.95) exhibited the highest overall accuracy. The overall
accuracy of the fuzzy gamma operator (y = 0.95) was up to 54 percent higher than
that of the fuzzy algebraic product, fuzzy AND and fuzzy gamma operators with y
values ranging from 0.1 to 0.8, while 10 percent more accurate than the fuzzy gamma
operator of 0.90, and 7 percent more accurate than the fuzzy OR operator (Table
7.4). Although, the overall accuracy of the fuzzy algebraic sum and y value of 0.95
was found similar, the fuzzy algebraic sum registered comparatively lower

producer’s and user’s accuracies for class grassland.

Similar to results of the City of Perth and the City of Melville, the categorical
accuracy measures of fuzzy AND and fuzzy algebraic product exhibited a high user’s
accuracy for all land cover classes, as compared to a very low producer’s accuracy.
On the other hand, the user’s accuracy of the fuzzy OR and fuzzy algebraic sum for
the class urban and dense urban was found to be low, as compared to a relatively
higher producer’s accuracy (Table 7.4). For the fuzzy gamma operator, it was found
that as the ¥ value increases, there is an increase in the producer’s accuracy with
decreasing user’s accuracy. Table 7.4 shows that the producer’s accuracy of fuzzy
AND and fuzzy algebraic product is significantly low, indicating high omission
errors in all categories along with a low overall accuracy. This could be attributed to
an underestimation of the fuzzy memberships by these operators as fuzzy AND
selects the minimum fuzzy membership value recorded for a particular land cover
class while the fuzzy memberships of the fuzzy algebraic product tend to be very
small due to the effect of multiplying several fuzzy membership values which are

less than one.

Tables 7.4 shows that the overall accuracy of the fuzzy gamma operator with vy

values ranging from 0.1 to 0.95 increases from 17 percent to 71 percent. The
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increased accuracy was attributed to the compensation of information of the selected
bands of the Landsat-7 ETM+ bands along with increased memberships of the

classified data.

Table 7.4 Summary of accuracy measures of the fuzzy land cover maps of the
City of Armadale
Fuzzy Accuracy Measures Forest  Grassland Urban  Dense
- Urban

Fuzzy Producer’s Accuracy (%) 39 3 11 2
Fuzzy AND Fuzzy User’s Accuracy (%) 97 79 66 13

Fuzzy Overall Accuracy (%) 29

Fuzzy Producer’s Accuracy (%} 79 36 49 59
Fuzzy OR Fuzzy User’s Accuracy (%) 81 47 45 18

Fuzzy Overall Accuracy (%) 64

Fuzzy Producer’s Accuracy (%) 44 1 5 2
Fuzzy Algebraic Fuzzy User’s Accuracy (%) 99 65 89 33
Product Fuzzy Overall Accuracy (%) 20

Fuzzy Producer’s Accuracy (%) 80 56 70 78
Fuzzy Algebraic Fuzzy User’s Accuracy (%) 82 63 51 26
Sum Fuzzy Overall Accuracy (%) 71

Fuzzy Producer’s Accuracy (%) 35 1 6 |
Fuzzy Gamma Fuzzy User’s Accuracy (%) 100 66 87 27
Operation (Y=0.1}  gy;74 Overall Accuracy (%) 17

Fuzzy Producer’s Accuracy (%) 68 14 24 14
Fuzzy Gamma Fuzzy User’s Accuracy (%) 96 76 67 30
Operation (Y=0.7) " gy;,y Overall Accuracy (%) 40 ‘

Fuzzy Producer’s Accuracy (%) 74 24 36 21
Fuzzy Gamma Fuzzy User's Accuracy (%) 04 75 65 29
Operation (¥=0.8)  Fyzzy Overall Accuracy (%) 48

Fuzzy Producer’s Accuracy (%) 78 45 54 43
Fuzzy Gamma Fuzzy User’s Accuracy (%) 91 72 63 32
Operation (y=0.9)  Fyzzy Overall Accuracy (%) 61

Fuzzy Producer’s Accuracy (%) 80 60 68 67
Fuzzy Gamma Fuzzy User’s Accuracy (%) 88 68 63 36
Operation (Y= Fuzzy Overall Accuracy (%) 71

0.95)

Table 7.4 shows that the results of fuzzy gamma operator with ¥ value of 0.95
produced higher overall and categorical accuracy measures as compared to the
results of using fuzzy algebraic sum and fuzzy OR. Therefore, the integrated fuzzy
memberships generated by a fuzzy gamma operator (Y = 0.95) from the selected

Landsat-7 ETM+ bands was considered to be most appropriate. The fuzzy
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membership maps of class forest, grassland, urban and dense urban generated using

the fuzzy gamma operator (Y= 0.95) are shown in Figure 7.12.

On the contrary, the overall accuracy of fuzzy OR was found to be 64 percent, which
was comparatively higher than the overall values computed for fuzzy AND and
fuzzy algebraic product. However, the user’s accuracy and producer’s accuracy of
the class grassland, urban and dense urban were found to be relatively low, indicating
high omission and commission errors. This could be partly attributed to the lack of
compensation of information by the operator (fuzzy OR) as it considers single fuzzy
membership value from the selected bands of Landsat-7 ETM+. The overall and
categorical accuracy measures obtained by using the fuzzy algebraic sum in the
process of integrating information from the selected Landsat-7 ETM+ bands were

encouraging, as the accuracy measures were found higher as compared to fuzzy OR.

7.3.2 Sources of Classification Errors

The uncertainty map of the City of Armadale using the confusion index derived from
the fuzzy categorical maps of the fuzzy gamma operator (y = 0.95) in Figure 7.13
shows a lower uncertainty in the forested area that occupies most of the City’s area
as compared to higher a uncertainty in the urban area. This was likely as the land
cover compositions of the urban area are mixed and fragmented, compared to
forested arca comprised of open forest and woodlands characterised with a variety of
trees such as Eucalyptus calophylia, Eucalyptus wandoo, Banksia attennuata. An
examination of the uncertain region of the City of Armadale indicated that the higher
uncertainty occurred near a dry lake, residential areas, edges between grassiand and
residential area, roads and lakes within the forested area. High levels of uncertainty
are mostly due to a mixture of land cover classes within a pixel and spectral
similarity among the land cover classes considered in the classification scheme.
Moran’s I index computed on the confusion index was found to be 0.52, indicating
that the City of Armadale has the strongest positive spatial autocorrelation of
uncertainty values, as compared to the cities of Melville (0.28) and Perth (0.39).
This index value also indicates that the City of Armadale presents a more “clustered”

spatial distribution of uncertainty.



181

a[epeLIIY JO A1) A1) JO
(g6 = A) 101e30do vrwed Azzny ay) Aq parerousg sosselo 50403 puel oy Jo sdewr diysiaquiaw Azzng

¢I'L 231y

UBQI[) BSUNT

PlUE[SSER)

sIpuDL  Qf

¢

or-1go N
08'0- 190
090~ 1#0
o0~ 170 &
0z0o-100 [__]
sdmsiaquapy Azzng

uEQ)

35210y




182

An examination of the categorical accuracy measures of the defuzzified map
generated using fuzzy gamma operator with y value of 0.95, reveals accuracies above
80 percent for the class forest. A significant disagreement was found in the
categorical accuracy measures between the defuzzified land cover maps and the field
data for the classes grassland and urban. The user’s accuracies of these classes were
found to be equal to 68 percent and 63 percent respectively, indicating high
commission errors (Table 7.3). Appendix 16(j) shows that the errors of commission
of the class urban are mostly due to the inclusion of grassland areas within this class,
while the class grassland is mostly confused with the classes forest and urban.
Likewise, the producer’s accuracy of classes grassland and urban were found to be
equal to 60 percent and 68 percent, respectively. The omission errors of the class
grassland were mostly due to a misclassification of this class as urban, while the
omission errors of the class urban corresponded to a misclassification of this class as

class dense urban or grassland (Appendix 16k).

Among the sources of disagreement between classified and reference data, spectral
similarity between forest and grassland, urban and dense urban were identified. As
mentioned in Chapter 4, the class forest is characterised by native forests, as
compared to the class grassland characterised mainly by a mixture of grass, shrubs
and occasional native plants, which could in some instances produce a
misclassification of the class forest as class grassland. This can be seen in Figure
7.14 (d), which shows a forested area comprised of native plants and shrubs.
According to the dominant land cover, the highest fuzzy membership assigned
during the field visits corresponded to forest. The fuzzy membership of the
defuzzified output indicated that the same location was classified as grassland and
accordingly, an error of omission occurred. An examination of the fuzzy categorical
maps showed a fuzzy membership value of 0.73 for class grassland (Figure 7.14b)
compared to a fuzzy membership of 0.60 for class forest. This resulted in a
confusion index of 0.87 indicating a high uncertainty between class grassland and

forest (Figure 7.14¢).
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Figure 7.13  Uncertainty map showing the confusion index derived from fuzzy
categorical maps of the City of Armadale

The seasonal effect on the spectral behaviour of some land covers (e.g. grassland) as
discussed in earlier Sections (e.g. 7.1.2; 7.2.2) could also be a source of
misclassification of the class grassland as urban. This is reflected in Appendix 16()),
which shows that the omission error of the class grassland largely results from the
labelling of grassland as urban areas. Another major source of disagreement in the
City of Armadale could be attributed to the spectral similarity between the classes
urban and dense urban. For example, Figure 7.15 (a) shows a residential building
and accordingly, the highest fuzzy membership for the field collected data was

assigned to the class urban.

The fuzzy classification assigned the label dense urban to this location. An
examination of fuzzy categorical maps showed a fuzzy membership value of 0.66 for
class dense urban (Figure 7.15b) compared to a fuzzy membership of 0.57 for class
urban. This resulted in a confusion index of 0.91 indicating high uncertainty
between the classes urban and dense urban (Figure 7.15¢). Appendix 16(j) shows
that the omission error of class urban was mostly contributed by misclassification to
class dense urban. This also resulted in a high commission error for the class dense

urban as can be seen in Appendix 16(j).
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7.4 Factors Affecting the Accuracy of the Fuzzy Land Cover Maps

7.4.1 Land Cover Heterogeneity

The accuracy measures of the study areas derived from the fuzzy error matrix have
been discussed in Sections 7.1, 7.2 and 7.3. These analyses considered the overall
accuracy, producer’s accuracy and user’s accuracy along with a confusion index
{uncertainty map) measured from the first and second maximum fuzzy memberships
of fuzzy categorical maps in each location. Such maps provide a spatial appreciation

of the distribution of uncertainty over the classified areas.

The results such as the overall, average producer's and user’s accuracy of the study
areas presented in Figure 7.16 provide a comparison of the accuracy of interpreting
urban land cover classes using the defuzzified maps. Figure 7.16 shows that the
overall accuracy of the City of Perth was found up to 13 percent higher than the
overall accuracy of the City of Melville and the City of Armadale which was found
to be 69 percent and 71 percent, respectively. The main contributing factor to the
observed difference of the overall and categorical accuracy measures among the
study areas could be attributed to the variation of land cover heterogeneity. It is
important to note that the same classification scheme, which is a modification of
Anderson’s (1976) Level I and Level II was considered in all study areas for

generating fuzzy categorical maps.

The results indicated that the classification scheme worked well in generating fuzzy
categorical maps of the City of Perth as the overall accuracy of the defuzzified map
was found equal to 81 percent (Figure 7.16). The higher overall and categorical
accuracy measures of the City of Perth were attributed to (i) the classification scheme
properly characterising the land cover types of the area; (ii) the classes tending to be
more homogeneous (e.g. less mixing within a pixel) and (iii) pixels being dominated
by one land cover type only. An examination of the land cover classes indicated that
the class forest was clustered in the western part of the study area, while the classes

dense urban and urban were clustered in the remaining of the study area.
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Figure 7.16  The overall (OA), average users (Avg UA) and producers (Avg PA)
accuracies for the three study areas

There were distinct parks and playing grounds of a size larger than the spatial
resolution of Landsat-7 ETM+ imagery within the study area. The spatial
composition of a pixel, i.e. less mixture of land covers within a pixel, and relatively
homogeneous land cover classes contributed to high classification accuracy.
However, the categorical accuracy measures indicated the occurrence of omission
and commission errors, which were attributed to the spectral similarity between class
urban and dense urban. Likewise, a seasonal effect was attributed to the spectral

similarity between class grassland and urban which contributed to misclassification.

On the other hand, the land covers of the City of Melville were found fragmented
and mixed. For example, the class urban largely comprised of residential area,
varied from clay on concrete roof tiles surrounding sparse vegetation, steel roof tiles
surrounding dense vegetation with tiles, residential areas with concrete roads along
with concrete roads, parking lots and major and minor roads. Likewise, the class
grassland comprised parks, open space (playing grounds), bare ground with
grassland following clearing and prior to construction, and golf clubs comprised of
sparse trees and grassland. The class forest was also fragmented and mixed with
shrubs and grassland. The heterogeneity of land cover classes (e.g. more mixture of
land covers within a pixel) that were considered in the classification scheme

contributed to significant misclassification and accordingly, high commission and
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omission errors were registered, contributing to a lower overall accuracy, as
compared with the City of Perth. This can be seen in the categorical accuracy
measures computed from the fuzzy error matrix using the defuzzified maps generated
by the fuzzy gamma operator (y = 0.95) (Appendix 16k), which showed a significant
misclassification of the class urban as class grassland due to their mixed occurrence
within a pixel. It is important to note that the class urban in the City of Perth was
mostly characterised by construction materials and major roads and accordingly,
there was not mixture with the class grassland. This is reflected in a fuzzy error
matrix of the City of Perth, which shows that the commission error was mostly due

to misclassification of the class urban as dense urban (Appendix 14j).

The categorical accuracy measures of the fuzzy gamma operator (Y = 0.95) showed a
significant misclassification of the class grassland as urban. As the data (Landsat-7
ETM+) were acquired in a dry season (i.e. summer), the similar spectral response of
the dried grassland, as compared with class urban contributed to misclassification. It
is important to note that parks and reserves of the City of Perth are managed using a
watering systems in order to keep the green space intact during summer, which is not
so far the dry parks and reserves of the City of Melville. Likewise, misclassification
of the class forest as class grassland occurred due to spectral similarity between these

classes components and their high level of fragmentation.

In the City of Armadale, the class forest was more clustered, as compared to the
fragmented and mixed land covers of the class grassland, urban and dense urban.
For this study area, the class grassland was also comprised of irrigated pastures and
grazing areas particularly in the eastern part of the study area. The heterogeneity in
the composition of this class contributed a significant misclassification to class urban
and accordingly, high omission and commission errors occurred for class grassland
and urban respectively. Appendix 16(j) shows that 36 percent of the omission errors

were mostly due to the misclassification of class grassland as urban.

The spatial composition of the class urban varied largely within the City of
Armadale. For example, some areas comprised dense residential building while
others varied from single to multiple residential blocks surrounded by sparse or
dense vegetation. Likewise, some major roads are surrounded by forested areas

while others are surrounded by built-up areas. The heterogeneous land cover
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compositions of the class urban (i.e. mixture of land covers within a pixel)
contributed to its misclassification as dense urban or grassland. This can be seen in
Appendix 16(j), which shows that the omission error (29 percent) was mostly due to
a misclassification as either grassland or dense urban. The misclassification of the
class urban, particularly roads in the forested area (western part of the study area), as
class grassland can be seen in the fuzzy categorical map in Figure 7.17, which shows
higher fuzzy memberships in the class grassland. The confusion index of these areas
was also found to be high (Figure 7.17¢). Likewise, the sand dunes around dams and
lakes were classified as dense urban, given their spectral similarity with features

comprising urban areas.

The above discussions suggest that the heterogeneity of urban land covers influences
significantly the accuracy of information generated from satellite imagery. The
accuracy confirms that the classification scheme and technique are suitable to
characterise relatively homogeneous areas like the City of Perth. For more spatially
mixed areas like the residential areas of the City of Melville, the classification
accuracies were relatively low. This could be the attributed to (i) the spatial
resolution of the image used in the analysis which is generally not sufficient to
discriminate individual features (e.g. buildings, streets, trees) within residential areas
which results in mixed pixels; (ii) the classification scheme which fails to
characterise the different land cover compositions of the area. Accordingly, more
research is needed to evaluate the impact of the remote sensors” spatial resolution on
the heterogeneity of highly mixed urban land covers using fuzzy classification

techniques.

7.4.2 Classifier's Performance

The levels of heterogeneity of the urban land covers in three study areas were
different. It is evident that interpretation of these land covers from remote sensing
images, represented in terms of their spectral signature on a pixel by pixel basis, but
more importantly in terms of spatial variation, is complex. Fuzzy categorical data
offer information on mixed pixel as compared to maximum likelihood classification,

which allocates to a single class.
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A mixed pixel occupies more than one land cover class and displays a composite
spectral response. The classification of a mixed pixel by maximum likelihood
classifier is to some extent erroneous as the classified output may not be one of its
component classes (Zhang and Foody, 1998). Thus, classifying thematic classes of
an area using maximum likelihood classifier is problematic particularly from a
moderate resolution (30 m) imagery, which is impeded by the abundance of
spectrally mixed pixels (Small, 2003). Accordingly, fuzzy classification was applied
to compute fuzzy memberships from the selected bands of a Landsat-7 ETM+ scene.

The fuzzy memberships were then integrated using different fuzzy operators.

The classifier worked well in generating fuzzy categorical maps particularly for the
City of Perth as the overall classification accuracy was found to be 81 percent as
compared to the overall classification accuracy of 69 percent and 71 percent for the
City of Melville and the City of Armadale, respectively (Figure 7.15). It appeared
that accuracy of the defuzzified land cover map of the study areas decreases as land
cover heterogeneity increases. One possible reason for decreasing accuracy could be
the use of the same classification scheme in all study areas, which has not been able
to characterise the more heterogeneous occurrence of the grassland and urban areas
that occur in the fringe of the Perth metropolitan areca as well as the largely
residential arcas of the City of Melville. Moreover, it appeared that as the spatial
heterogeneity increases, the likelihood of the influence of mixed pixels increases.
This can be seen in the residential area of the City of Melville and the City Armadale
where the land blocks of residential areas (e.g. 700 — 900 sqm) are composed by
green areas (e.g. lawns, backyards, trees) and houses, resulting in misclassifications
of what in the ground collected data is labelled urban, as grassland. This is
substantiated by the uncertainty maps derived quantitatively by using a confusion
index on the fuzzy categorical maps. Likewise, the class grassland was sometimes
misclassified as urban due to a seasonal effect on the spectral signatures, which

caused similarity between the classes.

A comparison of the results of the present study with available literature indicated
that accuracy measures of the City of Perth are encouraging. For example, Melgani
et al. (2000) applied fuzzy supervised classification in classifying a Landsat-TM

scene using four land cover classes (e.g. sandy areas, agriculturat land, rangeland and
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barren land), reporting an overall and average producer’s accuracy of 75.54 percent
and 74.71 percent, respectively. These results {(e.g. overall and average producer’s
accuracy) were found up 1o 6 percent lower than the results of the City of Perth while
up to 6 percent higher than the results of the City of Melville and the City of
Armadale. The lower accuracy measures of the City of Melville and the City of
Armadale were due to the classification scheme, which failed to characterise the
different land cover compositions of these areas. In an investigation of fuzzy
classification of a suburban land cover, Zhang and Foody (1998) reported an overall
classification accuracy of 49.9 percent and 50.2 percent for SPOT HRV and Landsat
TM data, respectively using hardened fuzzy classified data and hardened fuzzy
ground data derived from indicator kriging. The overall accuracy increased to 74.7
percent and 72.8 percent for SPOT HRV and Landsat TM respectively, when
selective hard comparisons were carried out between pure pixels of classified data
and pure pixels of the ground data. These accuracy measures were improved further
to 92.8 percent and 93.2 percent respectively by taking account of both, the most
likely and the second most likely class memberships of the fuzzy classified data and
fuzzy ground data derived from indicator kriging. Likewise, Shackelford and Davis
(2003) investigated the application of fuzzy logic to improve the classification
accuracy of urban and suburban areas using panchromatic and multispectral
IKONOS datasets with a spatial resolution of 1 m and 4 m, respectively. Maximum
likelihood and fuzzy classification were used to classify urban land cover classes
such as road, building, grass, tree, bare soil and water. The results of the fuzzy
classification revealed an overall classification accuracy of 92.7 percent and 83.5
percent for panchromatic and multispectral data respectively, which was up to 11
percent higher, as compared to the classification accuracies of a traditional maximum
likelihood classifier tested in the same study. The lower overall classification
accuracy of the present study could be attributed to the spatial resolution of the
sensor used in this research where the presence of mixed pixels is abundant, as
shown in the uncertainty maps of the study areas. Furthermore, a large number of
‘classes’ may have played a role allowing better characterisation of the spatial

components of urban landscape.

In addition to the accuracy measures derived from the fuzzy error matrix, the whole

process provided a data-driven solution to estimate the source of errors in the
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categorical mapping. The fuzzy uncertain maps generated using the confusion index
on fuzzy categorical maps indicated the spatial distribution of areas that are more
prone to misclassification. This can be seen in the uncertainty maps of the study
areas in Figures 7.2, 7.7 and 7.13 which show that the uncertainty of the City of
Melville is spread over the study area, indicating the mixture of more than one land
cover classe within a pixel or the spectral similarity between the classes which

contributed to misclassification and thus, resulted in a low overall accuracy.

7.4.3 Reference Data Issues and Errors of GPS

In generating the elements of the fuzzy error matrix for computing the overall and
categorical accuracy measures of defuzzified maps, assigning fuzzy memberships to
the field data is an important task. This needs accurate samples along with land
cover compositions swrrounding the samples. Accordingly, some 200 randomly
selected samples from each study area were visited using their known coordinates by
means of a GPS. The land cover compositions of the surrounding area were captured
using a digital camera (see Section 5.3.1), were analysed and accordingly fuzzy
memberships were assigned. There are two issues that are related to field data
collection, which warrant further discussion. The area of the land cover classes that
were considered in the classification scheme varied among the study areas.
Accordingly, the numbers of the randomly field-collected samples of each land cover
classes of the study areas also varied. Secondly, the accuracy of GPS was found *
10 m from a known point coordinate (See Chapter 5). Thus, a 25- by 25 m grid for
each sample was considered for generating the elements of the fuzzy error matrix

which was assumed to be free from misregistration errors with the defuzzified maps.

7.5 Summary

This chapter described the overall and categorical accuracy measures of the
defuzzified memberships derived from a fuzzy error matrix. As described in Chapter
3, the fuzzy error matrix required defuzzification of the fuzzy layers using maximum
membership and accordingly, each location was assigned to a class that represents
the highest fuzzy membership. This enabled generating of defuzzified memberships
from the fuzzy categorical maps for each fuzzy operator. Similarly, the field data

were defuzzified and a fuzzy reference map was generated. Finally, the accuracy of
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the fuzzy maps generated by different fuzzy operators was assessed against the field-
based fuzzy map using a fuzzy error matrix and the accuracy measures such as, fuzzy
overall accuracy, producer’s accuracy and user’s accuracy were computed, following

the procedures described in Section 5.3.3.

The fuzzy accuracy measures of the integrated fuzzy memberships associated with
selected Landsat-7 ETM+ bands indicated that the fuzzy minimum operator (e.g.
fuzzy AND) was not suitable for generating fuzzy categorical maps. This was
attributed to underestimation of class memberships and absence of compensation of
information that characterise this operator. Likewise, fuzzy maximum operator (e.g.
fuzzy OR) was also not suitable as the class memberships were overestimated and
accordingly, high commission errors occurred. On the contrary, fuzzy algebraic
product considered the fuzzy memberships of all selected Landsat-7 ETM+ bands but
it underestimated the fuzzy memberships, which contrtbuted to a low overall
accuracy. However, the results of the fuzzy algebraic sum registered a relatively
higher overall accuracy in all study areas. Furthermore, analysis of the fuzzy
accuracy measures of the fuzzy gamma operator (Y = 0.95) showed that the accuracy
measures particularly, the categorical accuracy measures outperformed the results
obtained by applying fuzzy algebraic sum. Accordingly, fuzzy gamma operator (y =
0.95) produced highest overall classification accuracies in all study areas and for all
the land cover types considered, being therefore recommended as the optimal fuzzy
operators for integrating fuzzy membership values associated with multiple spectral

bands in urban landscapes.

Several sources of disagreement between the defuzzified maps and the reference data
were identified which varied from one study area to another. In the City of Perth.
spectral similarity between forest and grassland, grassland and urban, vrban and
dense urban contributed to misclassification, which resulted in errors of omission and
commission. The uncertainty map generated using the first maximum and second
maximum fuzzy memberships of the fuzzy categorical maps substantiated that
misclassification was due to equal dominance of some of these classes within a pixel.
Likewise, spectral similarity between forest and grassland and grassland and urban,
were identified in the City of Melville while spectral similarity between forest and

grassland, grassland and urban, urban and dense urban were identified in the City of
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Armadale. The uncertainty maps of these study areas substantiated that omission and
commission errors resulted from both, the presence of mixed pixels and spectral

similarity amongst some classes.

The overall classification accuracy of fuzzy land cover maps derived from a Landsat-
7 ETM+ scene of the City of Perth generated by the best fuzzy operator was found to
be 81 percent as compared to the overall accuracy of 69 percent and 71 percent for
the City of Melville and the City of Armadale, respectively. The results of the City
of Perth were found higher than the results of a fuzzy classification of Landsat TM
scene reported by Melgani (2000) and Zhang and Foody (1998) in contrast to lower
accuracy measure for the City of Melville and the City of Armadale. The lower
overall classification accuracy of the City of Melville and the City of Armadale were
due to more spatially mixed areas, which resulted in mixed pixels and accordingly,
misclassification occurred. Another reason was the classification scheme, which
failed to accommodate the different land cover classes of these study areas. The
accuracy measures of the study areas were found much lower than the results of a
fuzzy classification using IKONOS data sets with a spatial resolution of 1 m and 4 m
respectively as reported by Shackelfold and Davis (2003). The higher accuracy of
Shackelfold and Davis (2003) was due to the spatial resolution of the image and the
utilisation of spectral and spatial methods in the fuzzy classification, which were able

to discriminate spectrally similar urban land cover classes.

The accuracy measures of the fuzzy land cover maps indicate that the methodology
for deriving fuzzy categorical maps depends on two factors.  Firstly, the
heterogeneity of the land cover compositions and secondly, the correct representation
of the land cover classes in the classification scheme. It appears that the
methodology for generating fuzzy categorical maps using fuzzy operators and
accuracy assessment from a fuzzy error matrix worked well for a relatively
homogenous study area. For mixed land cover classes e.g. residential area of the
City of Melville and the City of Armadale, the accuracy could be improved if an
additional land cover class (e.g. bare ground for City of Melville and grazing area for
City of Armadale) was included in the classification scheme. It is important to note
that the classification accuracies were derived from the fuzzy land cover maps based

on maximum fuzzy membership in each location and accordingly, the second



196

maximum membership in each location was not considered. The uncertainty maps
derived from the confusion index indicate that the occurrence of mixed pixels was
mostly due to confusion between the land cover classes of first and second maximum
membership in a pixel location. As demonstrated by Zhang and Foody (1998), the
classification accuracies of all study areas could be improved significantly if the
second maximum fuzzy membership was considered in the accuracy assessment

analysis.
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Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

The objectives of this study were twofold. Firstly, to analyse the spatial complexity
of a urban landscape as computed from SPOT, Landsat-7 ETM+ and Landsat MSS
remotely sensed data for assessing the appropriateness of a scale for urban analysis.
Secondly, interpretation of land cover types that characterise highly complex and
heterogeneous urban land covers of the Perth metropolitan area using fuzzy set
theory for the digital classification of a Landsat-7 ETM+ scene acquired over the
area. The research methodology adopted to achieve the objectives is described in
Chapter 3 and the implementation of the methods is presented in Chapter 4 and

Chapter 5, respectively.

The first expected outcome was related to selecting an appropriate scale (e.g. spatial
resolution) for characterising the spatial pattern of urban landscapes based on the
fractal dimension computed from SPOT, Landsat-7 ETM+ and Landsat MSS.
Associated with this outcome, the effect of spectral resolution and land cover
heterogeneity on spatial complexity and the performance of fractal measurement
algorithms in computing fractal dimension were identified and discussed in Chapter
6. The second outcome related to the performance of fuzzy operators in generating
fuzzy categorical maps along with determining the effect of land cover heterogeneity
on fuzzy accuracy measures and identification of sources of classification errors.
These outcomes are presented in Chapter 7. The main conclusions based on the
findings of this research, and recommendations for turther research are presented

hereafter.

8.1 Characterisation of Urban Spatial Complexity using Multiscale and

Multisource Remote Sensing Data

The research approach adopted in this study appeared promising in addressing the
effect of spatial, spectral and land cover composition on the spatial complexity of
urban landscapes using multiscale and multisource remote sensing data. With the

increasing availability of commercial satellite remote sensing data, acquired in a
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wide range of wavelength varying from visible to microwave, with spatial
resolutions varving from sub-meter to a kilometre, the methodology provided an
essential means for determining a proper technique for the selection of an appropriate
scale for urban analysis. In order to implement the methodology, spatial methods
such as the fractal model and Moran’s / index of spatial autocorrelation were applied
to address the issue of scale on the spatial complexity of urban land cover types.
Accordingly, fractal measurement algorithms such as the isarithm and the TPSA
were applied to SPOT, Landsat-7 ETM+ and Landsat MSS for examining the effect
of scale on the spatial complexity. The analysis of the D was based on the
hypotheses enunciated in Chapter 1 and accordingly, the following results were

found.

(a) The fractal dimension computed from the green, red and NIR bands of SPOT,
Landsat-7 ETM+ and Landsat MSS using the isarithm and the TPSA
algorithms provided insights into the effect of spatial resolution on spatial
complexity of the study areas. Fractal dimension was found highest in SPOT
followed by Landsat-7 ETM+ and Landsat MSS in all study areas. In addition,
the variation of D within sample plots selected to characterise the study areas
was found highest in SPOT indicating the ability of distinguishing amongst
land covers using spatial complexity as an indicator. Decrease in spatial
complexity with increasing spatial resolution (e.g. larger pixel size) was
attributed to loss of spectrally heterogeneous pixels toward more homogeneous
mixed pixels resulting from a mixture of reflectance feature such as buildings,
major and minor roads, residential and forested area (e.g. individual features’
reflectance averaged over the area covered by a pixel). Theoretically, for a
non-fractal surface, fractal dimension is highest at a scale where most of the
processes operate (Goodchild and Mark, 1987; Lam and Quattrochi, 1992).
With this assumption, the difference of fractal dimensions computed from
SPOT, Landsat-7 ETM+ and Landsat MSS in the study areas could be
attributed to the differences of the spatial resolution of these sensors.
Accordingly, with highest D in SPOT image for all study areas, one can
conclude that the spatial complexity of the Perth metropolitan is best

represented at a resolution of 20 m. The results are in accordance with the



(b)

(c)

199

findings of Small (2003) who showed that the spectral response of urban
features are better characterised in a scale which varies between 10 and 20 m;
The fractal dimensions of the green, red and NIR bands of each sensor varied
indicating the effect of spectral location on spatial complexity of the study
arecas. Analyses of the spatial complexity indicated that for areas that are
predominantly comprised of urban features (e.g. built-up areas), the green and
red bands revealed a higher D, as compared to the NIR band. For example, the
average D of the green and red bands of the City of Perth (largely composed of
built-up areas) computed from Landsat-7 ETM+ using the TPSA algorithm,
varied between 2.86 and 2.88 respectively, compared to 2.77 for the NIR band
(see Table 6.1). On the contrary, for areas largely comprised of forest and
native vegetation, the D of the NIR band was found higher, compared to the
green and red bands. For example, the average D of the green and red bands of
the City of Armadale, representing a typical urban fringe area computed from
Landsat-7 ETM+ using the TPSA algorithm, varied between 2.67 to 2.69, as
compared to 2.75 for the NIR band (see Table 6.13). The results demonstrated
the ability of the fractal model in distinguishing variations in the composition
of built-up areas on satellite data in the green and red bands, while forested
areas typical of the urban fringes appear better characterised in the NIR band.
This is in line with the findings of previous studies, where fractal dimension of
urban arcas was found highest in the green and red bands of Landsat TM
(Quattrochi ef al., 2001; Qiu et al., 1999; Quattrochi et al., 1997; Lam, 1990).
A higher fractal dimension in the green and red bands could also be an
indication of higher textural information content related to built-up areas as
compared to the NIR band. This indicates that the green and red spectral
ranges can better detect spatial complexity of urban land covers, and therefore
would be preferred in urban analysis studies where texture is important, while
forested areas appear more spatially complex in the NIR range of the spectrum.
Therefore, it can be concluded that the green and red ranges of the spectrum
could be used in characterising the spatial complexity of built-up urban areas,
while the NIR range could be used to characterise urban fringe areas that
appear dominated by natural features like forested areas,

The variation of the D among the study areas irrespective of the spectral

location of the sensor was attributed to the effect of land cover heterogeneity.
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An examination of the land cover types of the study areas indicated that the
more complex the spatial pattern, the higher the D indicating higher spatial
complexity. For example, the spatial pattern of land cover types of the City of
Perth is very complex and accordingly, the City of Perth registered higher D
values, compared to the City of Melville and the City of Armadale. Tt is
interesting to note that the land cover patterns of the City of Melville and the
City of Armadale varied from spatially complex land cover types to spatiaily
more homogeneous land cover types and accordingly, significant variation of
the D was found. An analysis of the spatial complexity, measured as D,
particularly for SPOT showed that the complexity of the spatial pattern
decreases as the land cover types change from dense urban (e.g. City of Perth)
to medium urban (e.g. City of Melville) to urban fringe (e.g. City of
Armadale). The results contradict the findings of O’Neill (1988) and Read and
Lam (2002) because these studies considered human intervention on natural
landscapes, whereas the present study worked mainty on built-up areas. The
results of the present study are in conformity with the findings of many studies
which revealed higher D for higher degree of human intervention (e.g. urban
areas) as compared to lower degree of human intervention (e.g. rural areas)
(Lam, 1990; Quattrochi et at., 1997; Quattrochi ef at., 2001);

The spatial complexity of the subsets along the transects of the study areas
computed using the isarithm and the TPSA indicated a higher Djsagsray than
Drpsa. This was attributed to the approach which uses the isarithms of the
image by dividing the range of pixel values into a number of equally spaced
intervals for computing the Djsiprum. As a result, it excludes few random
pixels that have high values and thus, measures the major variation dominating
the subsets, thereby yielding higher dimension (Qiu ef al., 1999). Moreover,
the orientation of the features of the study areas affect the Djsaprrma as they
exhibit different characteristics when measured in different directions i.e. along
rows, column and row-column methods. Another source of discrepancy of the
results of the isarithm method could be the isarithm values and the isarithm
interval as there is no theoretical basis for selecting these parameters. On the
contrary, the TPSA calculates the surface area of the prisms formed by the
image at varying spatial resolutions and accordingly, computes the Drpss. The

results of the TPSA method were found consistent over the study areas and
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considered to be the more robust in measuring the spatial complexity of urban
landscapes, which supports the findings of Read and Lam (2002) and Qiu ef al.
(1999},

(e) Moran’s I of spatial autocorrelation was found useful for characterising the
spatial pattern of land covers, while the non-statistical parameters (e.g. the
coefficient of vartation and standard deviation) were found useful in describing
the spectral variability of urban land cover types. The results of the study areas
revealed that the higher the Moran’s 7, the less the fractal dimension indicating
a lower spatial complexity. A correlation analysis between Moran’s [ and the
D of the subsets of the study areas computed from SPOT, Landsat-7 ETM+
and Landsat MSS revealed a strong negative correlation. Thus, an urban
landscape with a low Moran’s [ value, indicative of a random distribution will
result a high D value indicating high spatial complexity and vice versa. This
implies that Moran’s 7 of spatial autocorrelation can be used for characterising
land cover patterns of urban area. The results support the findings of Read and
Lam (2002) and Lam et al. (2002), which showed that these indices (Moran’s f
and D) are inversely related. On the other hand, the analysis between the
coefficient of variation (CV) and the D of the study areas revealed no

correlation, supporting the findings of Lam (1990).

8.2 Fuzzy Land Cover Maps and Fuzzy Accuracy Measures

Urban areas by nature are very complex. Although a human operator can extract
information from images of urban areas relatively easily, computer-based automated
interpretation using the conventional remote sensing classifiers (e.g. parallelepiped,
maximum likelihood, minimum distance from the mean) from a moderate resolution
imagery (e.g. 30 m) is impeded by the abundance of mixed pixels (Small, 2003).
Accordingly, the conceptual approach developed in this study attempts to incorporate
the selection of the best bands of multispectral image, computation of fuzzy
memberships of the predefined land cover types from the selected bands, generation
of the fuzzy categorical maps by integrating fuzzy memberships of the selected
bands using fuzzy operators, creation of a virtual field reference database and
derivation of fuzzy memberships of ground data and finally, examining the
performance of categorical maps by various fuzzy operators by means of fuzzy

accuracy measures, seems effective. To this end, the study has presented a case
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study, in which image -classification was performed using fuzzy supervised
classification of selected bands of Landsat-7 ETM+ acquired over heterogeneous
urban land covers of three study areas characterising metropolitan Perth, in Western
Australia, A variety of fuzzy operators (e.g. fuzzy minimum, maximum, algebraic
product, algebraic sum and fuzzy gamma with v values ranging from 0.1 to 0.95)
were tested for integrating fuzzy membership values of the selected bands for
generating fuzzy categorical maps. The accuracy of the fuzzy categorical maps of
three study areas was then carried out in a fuzzy error matrix using fuzzy land cover
and fuzzy ground-truth data. The uncertainty maps generated using the confusion
index determined as 1.0 minus the difference between the first maximum fuzzy
membership and the second maximum fuzzy membership were used to substantiate
the source of classification errors and possible locations of mixed pixels. Finally, the

effect of land cover heterogeneity on the fuzzy accuracy measures was discussed.
The major findings of this study can be summarised as follows:

(a) The transformed divergence analysis, used in traditional crisp classification for
establishing a priori the upper bound achievable on classification accuracy for an
existing set of spectral classes, as explained in Richards and Jia (1999), provided
a sound basis for selecting the most appropriate spectral bands of the Landsat-7
ETM+ that were subsequently fuzzified for the production of fuzzy categorical
maps. The highest average separability amongst the land cover classes
considered in the classification scheme adopted in this research (e.g. forest,
grassland, urban and dense urban) was provided by a combination of Landsat-7
ETM+ bands 1, 3, 4 and 7 for the City of Perth while a combinations of Landsat-
7 ETM+ bands of 1, 2, 3, and 7 and 1, 3, 4, 5 and 7 were provided highest
separability for the City of Melville and the City of Armadale, respectively;

(b) The approach of assigning a single fuzzy membership in each location (e.g.
pixel) using the maximum fuzzy membership value of the class(es) present
within a pixel, facilitated the process of defuzzification for accuracy assessment
analysis. This approach of defuzzification is based on the approaches discussed
by Zadeh (1968) and Zhang and Goodchild (2002);

(¢c) The accuracy of the fuzzy categorical maps generated by integrating fuzzy

membership values associated with multiple spectral bands using various fuzzy
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operators reveals that the fuzzy minimum operator (e.g. fuzzy AND) and the
fuzzy algebraic product were not suitable for integrating fuzzy class
memberships computed from selected Landsat-7 ETM+ bands, as these operators
underestimated the class memberships. Accordingly, the lowest overall accuracy
measures correspond to the implementation of these fuzzy operators. Likewise,
the fuzzy maximum operator (e.g. fuzzy OR)} was also not suitable as the class
memberships were overestimated and accordingly, high commission errors
occurred. It is important to note that fuzzy maximum operator does not offer any
compensation of information amongst the bands used in the analysis (e.g. a single
value), which contributed to misclassification and accordingly, high omission and
commission error occurred. When applying fuzzy operators such as the fuzzy
algebraic sum and the fuzzy gamma operators (with varying ¥ values) all
contributing membership values computed in the selected Landsat-7 ETM+
spectral bands have an effect on the result, increasing the accuracy in
identification of the fuzzy land cover types. Furthermore, analysis of the
accuracy assessment results shows that the fuzzy gamma operator with ¥ value of
0.90 outperformed the categorical accuracy measures obtained by applying the
fuzzy algebraic sum and other fuzzy operators for the City of Perth, while the
accuracy measures of y value of 0.95 were found highest for the City of Melville
and the City of Armadale, being therefore recommended as the optimal fuzzy
operators for integrating fuzzy membership values associated with multiple
spectral bands;

(d) A comparison of the accuracy measures of the fuzzy land cover maps of the
study areas indicated that the overall accuracy of the City of Perth was up to 13
percent higher than the overall accuracy of the City of Melville and the City of
Armadale which was found 69 percent and 71 percent, respectively (see Figure
7.16). The main factor contributing to the observed difference of the overall and
categorical accuracy measures among the study areas could be attributed to the
variation of land cover heterogeneity. For example, the land cover classes that
were considered in the classification scheme show that the class forest of the City
of Perth was clustered in the western part of the study area, while the classes
dense urban and urban were clustered in the remaining study areas (See Figure

7.1). An examination of the land cover compositions of the classes forest and
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dense urban revealed less mixed and accordingly, misclassification due to the
occurrence of more than one land cover type in a pixel was lower. This partly
contributed to a higher overall and categorical accuracy as shown in Table 7.1 of
Chapter 7. On the contrary, the compositions of the land cover classes
considered in the classification scheme of the City of Melville were found highly
fragmented and mixed. As discussed in Section 7.2 of Chapter 7 the land cover
compositions of class urban, class forest and class grassland were highly mixed
and fragmented. This resulted in occurrence of a large number of mixed pixels
due to the presence of more than one land cover type (e.g. urban and grassland,
urban and trees) as shown in the uncertainty maps (see Figure 7.8 and Figure
7.9). The presence of mixed pixels contributed to a significant misclassification
among the classes which partly contributed to low overall and categorical
accuracy measures (Table 7.3). Likewise, in the City of Armadale, class forest
was found clustered compared to mixed land covers of class grassland, urban and
dense urban. For this study area, the class grassland was comprised of irrigated
pastures and grazing arcas. As the data were acquired in summer, the spectral
responses of dried grassland tend to be similar to the class urban. This
contributed a significant misclassification to class urban and accordingly, high
omission and commission errors occurred for class grassland and urban
respectively (Appendix 16k). In addition to the mixed pixels and seasonal
variation, spectral similarity between class grassland and forest, urban and dense
urban was identified as a source of classification errors. Apart from the sources
of classification errors, the lower accuracy of the City of Melville and the City of
Armadale compared to the City of Perth may reside in the adoption of the same
classification scheme in all study areas. For example, an additional class such as
bare ground in the City of Melville and grazing land in the City of Armadale
could have improved the accuracy measures. The results suggest that the
heterogeneity of urban land covers influences significantly the accuracy of
information generated from satellite imagery. The overall and categorical
accuracy confirms that the classification scheme and technique are suitable to
characterise areas of more homogeneous pixel composition as was the case with
the City of Perth. For highly spatially mixed areas like the residential areas of
the City of Melville, the classification accuracies were found to be relatively low.

This could be attributed to the spatial resolution of the image used in the analysis,
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which is generally not sufficient to discriminate individual features (e.g.
buildings, streets, trees) within residential areas, resulting in mixed pixels. The
spectral similarity among the class forest and grassland, urban and dense urban is
a concern, which needs to be addressed in future research.

(e) The overall accuracy of the City of Perth was found up to 6 percent higher than
the results reported by Melgant et al. (2000) while up to 31 percent higher than
the results reported by Zhang and Food (1998). However, accuracy was found to
be lower than the results obtained by Shackelford and Davis (2003) from a high
resolution multispectral IKONOS (4 m) and panchromatic data (1 m). The
higher accuracy was attributed to the spatial resolution of the data, which can
discriminate individual features {e.g. building, street, trees) resulting in the
occurrence of low mixed pixels. For mixed land cover classes, e.g. residential
area of the City of Melville and the City of Armadale which were impeded by
abundance of mixed pixels, the accuracy measures were found slightly lower that
the results reported in the literature, An examination of the uncertainty maps of
the misclassified samples shows that confusion arises between the most likely
and second most likely land cover classes dominating within a pixel
Accordingly, classification accuracies of these study areas could be improved
significantly if the second maximum fuzzy membership was considered in the

accuracy assessment, as demonstrated by Zhang and Foody (1998).

In addition to sources of classification errors, the uncertainty maps generated from
the fuzzy categorical maps allow for locational and quantitative examinations of the
misclassification of the classified data. This also provided a basis for identifying the
location of mixed pixels. Therefore, the uncertainty information measured as a
confusion index could be used as a quality indicator for evaluating fuzzy categorical
maps. As reported by Kraak and Ormeling (1996), the uncertainty information could
be attached to the fuzzy categorical maps which would facilitate better decision
making by the end-user in classifying urban land covers. The findings of this study
reinforced the importance of the information richness offered by a fuzzy
classification, which enables an improved and integrated handling of remotely sensed

data for mapping urban land covers.
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8.3 Recommendations for Future Research

The resulis generated through this research can be used to analyse multiscale and
multisource remote sensing data for assessing the appropriateness of scale selection
of any analysis using remotely sensed data. In addition, it demonstrates the
usefulness of the fuzzy set theory for deriving fuzzy memberships from the selected
bands of multispectral image using fuzzy c-means algorithm and integrating fuzzy
memberships of the selected bands by the fuzzy operators. The longstanding issue of
carrying out the accuracy of fuzzy categorical maps using a fuzzy error matrix
considering the fuzzy memberships of the fuzzy categorical maps and the reference
data was illustrated. However, some limitations still have to be overcomed. The

following recommendations are proposed for future works:

8.3.1 Selecting an Operational Scale for Urban Processes

This research has emphasised the importance of scale when attempting to interpret
the spatial complexity using multiscale and multisource remote sensing data for
inferring processes occurring on the study areas. With the increasing availability of
remotely sensed data at various spatial and spectral resolutions, the findings of this
research have generated an understanding of the effects of spatial resolution, spectral
resolution and land cover heterogeneity on the characterisation of spatial complexity
of urban landscapes using fractal theory. It is important to note that the research has
utilised the Landsat-7 ETM+ acquired on 2001 while SPOT and Landsat MSS were
acquired in 1991 and 1980 respectively. Accordingly, the results particularly the
analysis of spatial resolution using Landsat-7 ETM+, SPOT and Landsat MSS have
encountered the temporal effect on the spatial complexity. Thus, it is envisaged that
the effect of scale on the spatial complexity would have been more realistic if the
data were acquired in the same year eliminating the effect of temporal change.
Accordingly, it is recommended to use the same year data for the analysis of the
effect of scale on the spatial complexity for selecting an optimal scale at which urban
processes are operating. Another avenue could be to acquire a high resolution data
set from sensors like QuickBird and IKONOS and “resample” it to different
resolutions for assessing the effect of scale on the spatial complexity. In addition,
research could be carried out to examine how the spatial complexity of urban

landscapes, having a known spatial operational scale are depicted in multiscale
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remote sensing images. This would allow testing of the fractal dimension’s response

to change in resolution.

8.3.2 Fractal Measurement Algorithms

The fractal dimension computed from the isarithm method was found slightly higher
than the TPSA method. Although the results of previous studies support the findings
of this research, it is recommended to test the performances with the simulated
surfaces with known fractal dimension in order to assess the robustness of these

algorithms in computing the spatial complexity of urban landscapes.

8.3.3 Classifier’s Performance in Generating Fuzzy Land Cover Maps

Although the methodology for generating fuzzy categorical maps, locational and
quantitative examination of misclassification using confusion index seems sound, the
overall and categorical accuracy measures of the City of Melville and the City of
Armadale were not encouraging as compared to the accuracy measures of the City of
Perth. The main contributing factors of relatively low accuracy measures of the City
of Melville and the City of Armadale were due to (i) spatially mixed areas like the
residential areas, resulting in mixed pixels in a Landsat-7 ETM+ scene; and (ii) the
spectral similarity between the class grassland and forest, and class urban and dense
urban. Accordingly, these issues need to be addressed in future research to improve
the classification accuracy. One possible avenue could be the application of the
methodology to a high resolution multispectral imagery (e.g. QuickBird, IKONOS)
which may enable discrimination of individual features of residential areas that result
in mixed pixels. Likewise, spatial measures such as texture could be incorporated
with the fuzzy classification to increase the discrimination between spectrally similar
classes for the improvement of classification accuracy as attempted by Shackelford

and Davis (2003).
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Appendix 1  Field data collection form'
Site /
Type Membership grade Coordinates Suburb LGA
Date / / Sample ID Observer
Image Photographs /
Yes No
Observation Level 1 2 3 4
% of total area occupied by % of total area occupied by parks/
forest area vegetation/open space
C# Species % C# Species/grass/shrub/canopies T
% of total area occupied by % of total area occupied by residential
commercial area/densely built-up area area/built-up area
C# Commercial area/ densely % C# | Residential/built-up area %
built-up area
Cover Type
Current feature delineation Very Poor Poor Good Very Good
Describe delineation
Comments

1.1 C#

! Details of each item are attached
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For each site, the following information will be recorded:

1

o SN th B

10

11

Site

Date
Sample ID

Observer
Image
Photographs

Observation level

% of area occupied

Cover type

Current feature

delineation

Accuracy assessment of four types of grid/polygon label composed of the

following codes:

a. Type = A (Fuzzy land cover using Fuzzy C-Means Clustering

b. Membership grade = FMV of the sample (e.g., 0.1, 0.2, 0.3, 0.4 10
1.0

c. Coordinates = XY coordinates of the sample

d. Suburb = Name of the suburb (e.g.; Leeming)

e. LGA = Name of the Local Government Authority (e.g., Swan)

Date of field visits

Item number of info/ASCII (created using Sample command in GRID
Module) file

Initial of the field staff

Name of the classified image used for verification

Picture of the site

1 - Walk through the target position

2 - Viewing from road adjacent to target position

3 - Viewing from afar t.e., road or ridge opposite to target position

4 - Photo interpreted/secondary sources data in the office

Approximate % area occupied by the features in the target position

Cover type based on % total area

F - Forest

P - Parks/vegetation/Open spaces

R - Residential/low built-up area

C - Commercial/high built-up area

Visual analysis of general accuracy level of existing hard copy map generated
from satellite imager as viewed with the site.

Very poor — Classified features and features boundary do not follow the target
area in the field

Poor — Classified features and features boundary shifted away from the actual
feature and density

Good — Classified feature and features boundary generally follows the target
positions in the field.

Very good — Classified feature and features boundary exactly maiches with
that of the field.
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Appendix 2 Descriptive class statistics of the training samples of the study

areas
(a) City of Perth
Band1 Band?2 Band3 Band4 Band5 Band7
Minimum 95 81 90 70 105 72
Maximum 127 17 138 93 174 160
Urban Mean 113 99.83  109.67 8158  127.08 9742
Median 115 99 108 78 118 95
Std. Dev. 10.58 11.53 14.57 8.91 22.57 24.11
Minimum 149 134 146 70 128 108
Maximum 191 172 191 84 172 1537
Dense Urban  pqony 164.43 14793 16221 7743 14686 13357
Median 156 140 160 77 141 134
Std. Dev. 14.11 13.39 14.71 4.53 1420 15.78
Minimum 89 83 72 107 120 66
Maximum 115 117 145 147 199 116
Grassland Mean 97.3 926 93.6 1232 1536 825
Median 94 87 79 121 146 76
Std. Dev. 9.26 12.30 29.53 12.9 24.68 17.55
Minimum 79 39 53 62 80 46
Maximum 85 08 70 T3 103 60
Forest Mean R1.83 62 59.58 66.92 89.08 52
Median 81 60 56 65 87 51
Std. Dev. 2.28 3.18 5.89 331 7.37 476
(b) City of Melville
Band 1 Band 2 Band 3 Band 4 Band 5 Band 7
Minimum 82 64 66 68 74 48
Maximum 119 157 186 116 219 203
Urban Mean 11434 10421 12319 90.38 151,52 123.33
Median 113 103 123 91 153 122
Sed. Dev. 13.37 14.59 21.37 8.58 25.64 28.28
Minimum 65 61 65 49 90 50
Maximum 255 255 255 142 255 255
Dense Urban  praag 17177 15709 17422 8845 17771 15867
Median 166.0 152 170 87. 176 153
Std. Dev. 38.11 3760  39.14 1456 3811 448
Minimum 79 66 53 95 99 44
Maximum 119 131 160 195 197 133
Grassland Mean 0440 9783 8743 15375 14259 6881
Median 94 97 85 155 140 68
Sid. Dev. 5.22 8.13 15.20 17.61 16.53 12.08
Minimum 72 42 36 17 9 9
Maximum 98 84 93 96 1t5 75
Forest Mean 81.73 63.31 58.53 67.89 79.06 47,72
Median 80 62 56 70 82 48
Std. Dev. 5.86 7.34 12.31 11.92 24.27 16.55
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(c) City of Armadale
Band 1 Band 2 Band 3 Band 4 Band 5 Band 7
Minimum 89 77 81 75 75 47
Maximum 130 122 143 98 162 124
Urban Mean 10929 9879 11336 8614 12614 9479
Median 108 100 119 84 130 98
Sud. Dev. 1210 1439 2065  7.80 2514 2278
Minimum 116 106 122 72 118 85
Maximam 186 169 202 99 196 184
Dense Urban  npapy 14025  129.81 15138 7981 152 128.88
Median 129 125 142 78 143 126
Std. Dev. 21.81 1981 2324 7.00 2246 2787
Minimum 68 51 36 44 71 32
Maximum 145 145 159 182 220 135
Grassland Mean 91.19 8297 8494 10344 13636 7847
Median 86 74 71 105 127 76
$td. Dev. 1575 2317 3433 3752 3738 2562
Minimum 71 52 46 61 64 29
Maximum 81 61 57 89 90 54
Forest Mean 74.73 55.96 51.73 71.32 76.23 40.86
Median 74 55.0 s1 70 74 41
Std. Dev. 2.58 2.64 3.25 7.24 7.21 6.27
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Appendix 3 A typical AML for generating fuzzy memberships of the classes
forest, grassland, urban and dense urban

/***************t***************************************************

/*

/* Name of the Program : fuzzy bl.aml

/*

/* This aml generates membership functions of each pixel of major
land cover

/* Landsat TM image (Band 1) of Central City using a supervised
/* approach {known mean value)

/* Mean Values : Forest 81.833, Grassland 97.30, Urban 113.51 and
/* Dense Urban 164.429

/*
/*******************************************************************
*

/*

A March, 2002

/*

/* Zahurul Islam 2002

/*

&terminal 9999

&sv .dir = e:/cop/01_etm/bl

&sv .t _grid = [getgrid %.dir% ' Select the Image ']
grid

docell

&do i = 73 &to 105 &by 1

if(%.t_grid% == %i%)tm%i% = %i%

&end

end

docell

&do 1 = 106 &to 145 &by 1

if(%.t grid% == %i%)tm%i% = %i%

&end

end

docell

&do 1 = 146 &to 190 &by 1

if(%.t _grid% == %i%)tm¥i% = %i%

&end

end

docell

&do 1 = 191 &to 230 &by 1
if{%.t_grid% == %1%)tm%i% =
&end

end

docell

&do i = 231 &to 251 &by 1
if(%.t _grid% == %i%)tm%i% =
&end

end

/*

/* Creating a membership functicns using a known mean value of the
clusters

/*

o
-
o@

oF
'_I -
o

&do 1 = 1 &to 1 &by 1
&dc j = 73 &to 251 &by 1
&do
&if %i% = 1 &then
&sv a = 81.833
&else
&if %1% = 2 &then



&end
&do 1

&end
&do 1
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&sv oa = 97.30

&kelse
&if %1% = 3 &then
&8v a = 113.51
&else
&if %1% = 4 &then
&sv a = 164.42°
&= b = 0.0
a%i%%j% = %b% + =gr(abs (tm%j% - %a%))
b%i%%j% = 100000000 / a%i%%3%
&z suml = b%i%%j%
&end
&g sum?2 = 0.0
& t = 0.0
&do k = 1 &to 4 &by 1
&do
&1if %k% = 1 &then
&sv c = 81.833
&else
&if %k% = 2 &then
&sv ¢ = 97.30
&else
&if %k% = 3 &then
&sv ¢ = 113.51
&else
&if %k% = 4 &then
&sv c = 164.429
sum%i%%k% = f%sum2% + sgriabs
5c%) )
z%i%%k% = 100000 / sum%i%sk%
x%i%%k% = %t% + z%1%%k%
&3 ¢ = x%1i%%k%
&end
&end
u%i%%j% = %sumi® / %t%
kill sum%i%l all
kill sum%i%z2 all
kill sum%i%3 all
kill sum%i%4 all
kill z%i%1 all
kill =z%i%2 all
kill =z%i%3 all
kill z%i%4 all
kill x%i%1 all
kill x%i%2 all
kill x%i%3 all
kill x%i%4 all
kill a%i%%j% all
kill b%i%%j% all
&end
=1 &0 1 &by 1
&do 3 = 73 &to 251 &by 1
f%i%%j% = con(isnull (u%i%%j%), 0, u%i%%j%)
kill u%i%%3% all
&end
=1 &o 1 &by 1
&s m = 0.0
&do 4 = 73 &to 251 &by 1
x%1i%%j% = %m% + f%i%%i%
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&8 m o= x%i%%3%
kill £%i%%j% all
&end
&end
&do 1 =1 &to 1 &by 1
&do j = 73 &to 250 &by L
kill x%i%%j% all
&end
&end
&do i = 2 &to 2 &by 1
&do j = 73 &to 251 &by 1
&do
&if %1% = 1 &then
&sv a = 81.833
&else
&if %i% = 2 &then
&sv a = 97.30
&else
&if %1% = 3 &then
&SV a = 113.51
&else
&if %i% = 4 &then
&sv a = 164.429
& b = 0.0
a%¥i%%3i% $b% + sgriabs (tm%j% - %a%})
b%i%%i% 100000000 / a%i%%j%
&s suml = b%i%%j%

H

&end
&s sum2 = 0.0
& t = 0.0
&do k = 1 &to 4 &by 1
&do
&if %k% = 1 &then
&sv C =
&elage
&1f %k% = 2 &then
&sSv ¢ = 97.30
&else

&if %k% = 4 &then

&sv © = 164.429

sum%i%%ks = %sum2% + sgriaks
(tm%j% - %c%))

z%i%%k% 100000 / sum%i%sk%

x%1%%k% = %t% + =z%i%%k%

&s t = x%1i%%k$%

H

&end
&end
u%i%%9% = %sumls / %t}
kill sum%i%1 all
kill sum%i%2 all
kill sum%i%3 all
kill sum%i%4 all
kill =z%i%1 all
kill =z%i%2 all
kill =z%i%3 all
kill =z%i%4 all
kill x%1i%1 all
kill x%i%2 all
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kill x%i%3 all
kill x%i%4 all
kill a%i%%j% all
kill b%i%%j% all
&end
&end
&do 1 = 2 &to 2 &by 1
&do 3 = 73 &to 251 &by 1
£%1%%J% = coniisnull {(u%i%%j%), 0, u%i%%j%)
kill u%i%%j% all

&end
&end
&do i = 2 &to 2 &by 1
& m = 0.0
&do 7 = 73 &toc 251 &by 1
x%1%%3% = ¥m% + £%1i%%j%
&s m = X%¥i%%]%
kill £%i%%3% all
&end
&end

&do 1 = 2 &to 2 &by 1
&do j = 73 &to 250 &by 1
kill x%i%%3% all
&end
&end
&do 1 = 3 &to 3 &by 1
&do j = 73 &to 251 &by 1

&do
&if %1% = 1 &then
&sv a = 81.833
selse
&if %i% = 2 &then
&sv a = 97.30
&else
&if %i% = 3 &then
&sv a = 113.51
&else
&1f %1% = 4 &then
&8V a = 164.429
&s b = 0.0
a%i%%j% = %b% + sgr(abs {(tm%j% - %a%))
b%i%%j% = 100000000 / a%i%%j%
&S suml = b%i%%j%

&end
&s sumz2 = 0.0
& t = 0.0

&do k = 1 &to 4 &by 1
&do

&if %k% = 1 &then
&sv ¢ = 81.833
&elge

&if %k% = 2 &then
&SV ¢ = 87.30

&else

&if %k% = 3 &then
&sv ¢ = 113.51
&else

&1f %k% = 4 &then

&8V ¢ = 164.429

sum%i%%k% = %sum2% + sgr(abs
(tm%j% - %c%))



&end

&end

2%1%%k%

i

x%1%%k% = %t% + z%i%%kd

&8

t

x%1%%k%

u%i%%3% = %sumly / %t%
sum%i%1 all
aum%i%2 all
sum%i%3 all
sum%i%4 all

kill
kill
kill
kill
kill z%i%1l
kill =z%i%2
kill z%1i%3
kill =z%i%4
kill x%i%1
kill =%i%2
kill x%1i%3
kill x%i%4
kill
kill
&end
&end
&lo i = 3 &to 3 &by 1
&do j = 73 &to 251 &by 1
£%i%%j% = con(isnull
kill u%i%%3% all
&end
&end
&do 1 = 3 &to 3 &by 1
& m = 0.0
&do j = 73 &to 251 &by 1
x%5i%%j% = 3m% + £%1%%]%
&s m = x%i%%3%
kill £%i%%j% all
&end
send
&do i = 3 &to 3 &by 1
&do j = 73 &to 250 &by 1

kill x%i%%3% all
&end
&end
&do 1 = 4 &to 4 &by 1

&do j = 73 &to 251 &by 1

&dao

&end

all
all
all
all
all
all
all
all

a%i%%j% all
b%i%%]% all

&if %i%

&SV a
&else

&1f %i%

&SV a
&else

&1f %1%

&SV a
&else

&if %i%

&3V a

&s b

= 0

a%i%%j%
b%i%%]%
&g suml

&S sumz2

1

(u%i%sjs), 0, u%i%%i%)

&then

81.833

2

&then

97.30

11

16
.0

3
3.

4
4.

&then
51

&then
429

$b% + sgr(abs
100000060 / a%is%%
b%i%%j%

0.

&)

(tm

g
J

J
%

[
T

100000 / sum%i%%k%

Q.

Ta
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$))



&end
&de 1

&end
&do 1

&end
&do i

send
&do 1

&end
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& L = 0.0
&do k = 1 &to 4 &by 1

&do
&if %k% = 1 &then
&sv ¢ = 81.833
&else
&if %k% = 2 &then
&sv ¢ = 9%7.30
&else
&if %k% = 3 &then
&sv ¢ = 113.51
&else
&if %k% = 4 &then
&asv ¢ = 164.429
sum%issks = %sum2% + sgr(abs

z%1%%k% 100000 / sum%i%%k%
xX%1i%%k% = %t% + zZ%1i%%k%
&s t = x%¥i%%k%

&end
&end
u%i%%j% = %sumly / %t%
kill sum%i%l all
kill sum%i%2 all
kill sum%i%3 all
kill sum%i%4 all
kill =z%i%1 all
kill z%i%2 all
kill =z%i%3 all
kill z%i%4 all
kill x%i%1 all
kill x%i%2 all
kill x%i%3 all
kill x%i%4 all
kill a%i%%3% all
kill b%i%%j% all
&end

= 4 &to 4 &by 1

&do § = 73 &to 251 &by 1
£%1%%j% = con(isnull (u%i%%j%), 0, u%i%%j%)
kill u%i%%j% all

&end

= 4 &to 4 &by 1

& m = 0.0

&do j = 73 &to 251 &by 1
x%¥1i%%J% = %m% + £%1%%3%
&3 m = x%i%%j%
kill £%i%%j% all

&end

= 4 &tc 4 &by 1

&do j = 73 &to 250 &by 1
kill x%i%%3j% all

&end

= 73 &to 251 &by 1
kill tm%i% all
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Appendix 4  Fuzzy memberships of the land cover classes of forest, grassland, urban and dense urban from the selected bands of
Landsat-7 ETM+ of the City of Perth
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(b) ETM+ Band 3
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Appendix 5  Fuzzy memberships of the land cover classes of forest, grassland, urban and dense urban from the selected bands of
Landsat-7 ETM+ of the City of Melville
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Urban . 1 0 1 2 3 Kilometers

Dense Urban




(b) ETM+ Band 2

Forest

2

3 Kilometers

= 53
- ¥ r.
Fi #
WL :
5 .
- o] 1
- . !
7 Fis
et
"‘h. =

Dense Urban

236



237

(c) ETM+ Band 3
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Appendix 6

(a) ETM+ Band 1

239

Fuzzy memberships of the land cover classes of forest, grassland, urban and dense urban from the selected bands of

Landsat-7 ETM+ of the City of Armadale
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(b) ETM+ Band 3
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(c) ETM+ Band 4
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(d) ETM+ Band 5
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(e) ETM+ Band 7
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Appendix 7  Integrated fuzzy memberships of the land cover classes of forest, grassland, urban and dense urban generated by different
fuzzy operators of the City of Perth
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Appendix 8

(2) AND
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Integrated fuzzy memberships of the land cover classes of forest, grassland, urban and dense urban generated by different

fuzzy operators of the City of Melville
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(2) AND
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Integrated fuzzy memberships of the land cover classes of forest, grassland, urban and dense urban generated by different

fuzzy operators of the City of Armadale
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Appendix 10 Fuzzy memberships of the field visited sample points

City of Perth City of Melville City of Armadale
Coordinates Coordinates Coordinates
Dominant Dominant Dominant
X Y Land Fuzzy X Y Land Fuzzy X Y Land Fuzzy
Cover Class  Membership Cover Class  Membership Cover Class Membership

300041 6463121 Forest 0.9 389984 6453544 Forest 0.7 405225 6444544 Forest 0.7
390001 6463171 Forest 09 390260 6453422 Forest 0.7 408114 6442658  Forest 0.9
390266 6463271 Forest 0.7 390384 6453444 Forest 0.9 408567 6442617  Forest 0.8
390316 6463396 Forest 09 390161 6453421 Forest 0.9 408809 6442542  Forest 0.7
390591 6463246 Forest 0.7 390268 6453197 Forest 0.8 409003 6442370 Forest 0.8
390816 6463221 Forest 0.8 385633 6457245 Forest 0.8 408620 6442647  Forest 0.7
390341 6463346 Forest 0.6 385368 6457292 Forest .7 416959 6447405  Forest 0.9
390466 6463971 Forest 0.9 389034 6455720 Forest 0.6 417067 6447284  Forest 0.8
390491 6463721 Forest 0.7 388908 6455304 Forest 0.6 416970 6447136 Forest 0.8
390816 6463846 Forest 0.8 389065 6455311 Forest 0.6 419004 6446937  Forest 0.7
390591 6463771 Forest 0.5 389209 6453795 Ferest 0.5 418959 6446864 Forest 0.8
390816 6463596 Forest 0.7 389248 5453013 Torest 0.7 419231 6446784  Forest c.8
390966 6463846 Forest 0.7 393236 450815 Forest 0.9 419286 6446675 Forest 0.8
390766 6463921 Forest 0.5 393721 6450785 Forest 0.8 419232 6446566  Forest 0.9
390816 6463996 Forest 0,7 393719 p4506584 Forest 0.8 419364 6446479 Forest 0.8
390366 6462946 Forest 0.8 393580 6450412 Forest 08 419371 6446263 Forest 0.8
389316 6462071 Farest 0.8 393300 6450394 Forest 0.6 419303 6446343 Forest 0.9
389266 6461996 Farest 0.6 394158 6449966 Forest 0.6 419464 6446742 Forest 0.9
385491 6462121 Forest (3] 394284 6450194 Forest 0.6 420313 6446081  Forest 0.8
389266 6462621 Forest 0.7 393259 6452767 Forest 0.8 420439 6446082  Forest 0.9
388466 6461921 Forest 8 393365 6453030 Forest 0.8 420736 6446317  Farest 0.8
388391 6462396 Forest 8 393274 6453393 Forest 07 420915 6446436  Forest 0.7
388466 6462096 Forest .8 393316 6453543 Forest 07 421027 6446600  Forest 0.8
388791 6463046 Forest 0.9 392680 6453526 Forest 08 416181 6448080  Forest 0.8
388891 662996 Forest 0.9 302669 6453331 Forest 0.7 416063 p443145 Forest 0.9
388966 6463046 Forest 09 391987 6453014 Forest 0.7 408367 6446201 Forest 0.8
388516 6463090 Forest 0.9 389631 6454492 Forest 0.7 398503 6442046 Forest 0.9
390041 6464221 Forest 0.9 390832 6454048 Forest 0.9 399145 6442772 Forest 0.8
390016 6463571 Forest 07 394832 6450417 Forest 0.9 399206 6442899  Forest 0.8
390016 6463046 Forest 07 394733 6450051 Forest 09 309637 6442390  Farest 0.8
390766 6463671 Forest 0.8 390864 6434087 Forest 0.9 3099828 6442348 Forest 0.9
390591 6463721 Forest 0.8 386246 64356983 Forest 0.7 399344 6442357  Forest 09
390266 6463171 Forest 0.8 389708 6457269 Forest 0.6 399126 6442185  Forest 0.8
301101 6463271 Forest 09 39305% 6450119 Forest 0.7 308914 6441283  Forest 0.8
390091 6463571 Forest 0.7 394487 6450175 Forest 0.7 401782 6441733 Forest 0.8
391041 6463671 Forest 0.8 389159 6452519 Dense Urban 07 401549 6441394 Forest 0.7
392141 6463571 Forest 08 385837 6455251 Dense Urban 0.7 400865 6443085  Forest 0.8
394841 6462996 Forest 0.8 385792 6454990 Dense Urban 0.8 408126 6442669  Forest 0.8
391816 6464546 Forest 0.4 389433 6457914 Dense Urban 0.8 416963 6447426 Forest 0.8
390091 6463771 Forest 0.8 389720 6454819 Dense Urban 0.9 417061 6447286 Forest 0.9
390166 6463346 Forest 0.7 389735 6454907 Dense Urban 0.8 419263 644678¢  Forest [£X:]
390416 6463696 Forest 0.8 389935 6454997 Dense Urban 0.8 420279 6446073 Forest 0.8

390060 6464071 Farest [ U 390085 6454994 Dense Urban 0.9 416167 6448088 Forest 0.9
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390116
390116
389741
389691
359066
385091
389221
380966
380166
380891
380816
3807491
388716
388849
388951
388791
390491.19
390616.19
390441.19
390866.1%
39081619
390866.19
390741.19

390241,19

390801

392016

352241

392366

392591
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392916

392191
392166
392341
392641
392351
392366
394416
391391
391641
391641
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6463571
6462296
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6462596
8462540
6462896
6462721
£462546
6462621
6462571
6462406
6462396
6464146
6463276
6463271
6462221
6462171
6464796
6464721
6464640
6464646
6464596
6464571
6464546

6464371

6463796

6464271

6464296

6464646

54643556

6464496

6463721

6463996
6463996
6464071
6464096
6464121
6464196
6443596
6464621
6464496
6464996
6464346

Farest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Forest
Dense Urban
Dense Urban
Dense Urban
Dense Urban
Dense Urban
Dense Urban

Dense Urban

Dense Urban

Dense Urhan

Dense Urban

Dense Urban

Dense Urban

Dense Urban

Dense Urban

Pense Urban

Dense Urban
Dense Urban
Dense Urban
Dense Urban
Dense Urban
Dense Urban
Dense Urban
Dense Urban
Dense Urban
Dense Urban

Dense Urban
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0.8
0.8
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0.8
0.8
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0.6
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0.4
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.5

0.5

0.5
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0.8
0.6
0.8
0.7
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0.3
0.8
0.7

390070
388602
IR8652
388893
388316
389110
389110
390334
350334
350684
388577
3BRE84
38R859
388859
389109
389354
389284
388534
388884
389684
390134
390307
386534
386834
386859

386683

386359

386292

387213

R7209

385184

385554

385484

385858
386865
386084
386509
386400
386459
386156
385943
385334
385809
385569

6455172
6453593
6454035
6453992
6453968
6454635
6454194
6432594
6432344
6451769
6432790
6452094
6452419
6452619
6452669
6452894
6432994
6453569
6453294
6453294
6452969
6452921
6436819
6456744
5456444

6456544

6456344

6456820

6455877

6455776

6455794

6455645

6455644

6455592
6454626
6454744
6454319
6453044
6453944
6455020
6454777
6453919
6453769
6453580

Dense Urban
Dense Urban
Dense Urban
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Dense Urban
Dense Urban
Dense Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Utban
Urban
Urban
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Urban

Urban

Urban

Urbian

Urban

Urban

Urban
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TUrban
Urban
Lrban
Urban
Urban
Urban
Urban
Urban
Urban

Urban

0.9
0.6
0.7
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0.7
0.9
0.8
0.8
0.8
0.7
0.5
0.8
0.7
[t}
0.6
0.7
(U]
0.8
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0.5
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06
0.6
.6
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0.6

0.5

0.6

0.7

0.8

0.8

0.8
0.7
0.6
0.8
0.8
0.7
0.7
0.8
0.8
0.7
.8

419788 6446479
422713 6444629
422703 6443929
418438 6447604
425588 6441879
426638 6440804
427213 6440239
427613 6441254
427663 6440920
414788 6437704
415088 6438004
415688 6438004
441788 6437879
416138 6437804
418513 6434529
418663 6434354
418513 6434529
418663 6434354
419213 6433479
432263 6437129
433913 6436329
434188 6435420
434213 6436629
434388 6426404
420912 6446436

407137 6446399

407036 64466235

407497 6442512

407575 6442435

407440 6442476

407281 6442503

407305 6442336

407136 6442243

407115 6442198
405608 6444754
405044 6444244
404966 6443956
405380 6443314
406538 6444477
46518 6444798
406489 6445218
406773 6445166
406408 6446298
406201 6442632

Forest
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Forest
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Forest
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Forest
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391341
391891
390791
303766
393216
393166
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390816.1%
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300516.19
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5463671
$464396
6464646
6464521
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6464871
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6465171
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Urban
Urban
Lrban
Urban
Urban
Urban
Urban
Urban
Urban
Utban
Urban
Urban
Urban
Urban
Urban
Erban
Urban
Urban
Urban
Urban
Urhan
Urban
Urban
Urban
Urban
Urban
Urban
Urban
trban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Lirban
Urban
Urban
Urban
Urban
Urban

0.8
0.7
0.8
0.7
0.6
0.6
0.3
0.6
0.8
0.7
0.5
0.5
0.5
0.3
0.5
0.7
(O]
0.8
0.6
a7
0.8
0.6
0.4
0.5
.4
(2]
0.4
Q.5
¢4
0.5
0.5
0.5
0.6
0.6
07
0.5
04
035
0.4
0.4
0.5
0.7
0.6
0.4
0.6
0.6
0.7
0.5
0.7
0.6
0.7

385584
385482
385859
3855359
390885
390721
390504
390449
390184
389909
389231
389909
389409
389436
388886
392862
393371
392765
393034
352700
392584
392805
393008
392099
1755
351912
389736
350833
350208
388934
387133
389584
303484
390542
300509
380148
385004
388384
390344
386377
387151
387302
386501
387034
385408
385534
385442
335987
386214
386221
383309

6454644
6454371
6454419
6454169
6458353
6458381
6458369
6457935
6457784
6457619
6458158
6457227
6457010
6457270
6455846
6450603
6452827
6453345
6453194
6452034
6452594
6452324
6452102
6453523
6453462
6452804
6454107
6455630
64354192
6456019
6456347
6456890
6452369
6452572
6431944
6453078
6453145
6453394
6453098
6456822
6456691
6455993
6455925
6456241
6457657
6436719
6456797
6454892
6453814
6454453
6454469

Erban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urhan
Urban
Urban
Urban
Urhan
Urhan
Urban
Urban
Urban
Urban
Urban
Urban
Utban
Urban
Lrban
Urban
Urban
Urban
Urban
Urban
Urban
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland

{rassland

0.8
0.8
0.8
0.8
6
0.5
0.3
Q.5
0.7
0.7
0.8
08
0.7
0.7
0.7
0.7
0.8
0.9
08
09
08
08
0.7
08
09
0.7
0.8
0.8
0.7
0.6
0.6
0.6
0.7
0.8
0.8
0.3
0.8
0.8
0.3
07
0.7
0.6
0.8
0.7
0.8
Q0.7
0.8
0.9
0.8
0.8
0.8

405710 6442510
405654 6441472
405972 6441745
406626 6442490
404710 6442252
408319 6444751
408696 6444584
408708 6444725
408807 6445838
407536 6446662
407655 6446827
407790 6446791
407838 6446961
407693 6447023
407770 6447247
407730 6447408
408009 6447664
408179 6447662
408060 6447452
408192 6447250
408115 6447038
407996 6446798
408280 6446870
408317 6446559
47842 6446271
407768 6446399
404809 5442946
404796 6443145
405006 6443236
404969 6443961
405708 6442509
408696 6444580
407775 6447245
408184 6447657
408270 6446856
407844 64462067
405612 6444514
4053356 6444678
405088 6444081
404793 6443853
405182 6443654
405037 6443535
404863 6443130
45603 6443625
405714 6443970
415543 6444330
406734 0445058
406129 6446125
406521 6447430
406458 6447289
408321 6442581

Urban
Urban
Urban
Urban
Lrban
Urkan
Lirban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Grassland
Grasstand
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grassland
Grasstand
Grassland

Grassland

0.9
0.7
0.9
0.9
.8
0.8
0.7
0.8
0.6
0.8
0.8
0.8
0.7
0.8
0.8
0.8
0.8
0.7
0.6
0.8
0.8
0.9
0.7
0.8
0.7
07
086
0.8
0.8
0.8
0.9
0.7
08
07
038
Q.7
Q.7
0.7
0.8
0.6
0.5
0.6
0.6
0.6
0.7
0.7
0.7
0.5
0.7
0.7
0.8




280

394841
391091
393291
320016
390216
390166
390391
390416
390341
390141
391166
391141
391191
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392266
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400732 6442577
401640 6441775
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Appendix 14 The accuracy measures of fuzzy land cover maps generated by

different fuzzy operators of the City of Perth

(a) Fuzzy AND

Classified
Data

Reference Data

(b) Fuzzy OR

Classified
Data

Classified
data

Forest |Grasstand |Urban |Dense Total Grades |User's

Urban Accuracy (%)
Forest 26.84  |1.06 052 0.0 3115 86
Grassland  |0.08  |7.24 017 |0 7.96 91
Urban 0.33 0.22 4,27 0.46 5.24 81
Dense urban |0 0 0.43 6.88 10.13 68
Total Grades {45.9 18 26.2 22 112.1
Producer's 158 40 16 31
Accuracy (%) :
Overall 40
Accuracy (%)

Reference Data

Forest |Grassland (Urban |Dense Total Grades {User's

Urban Accuracy (%)
Forest 3996 |29 6.7 1.26 71.43 56
Grassland 36 14.6 2.25 0.4 30.59 48
Urban 0.8 0.5 114 19 22.37 51
Dense urban 1.5 0 585 1732 3389 51
Total Grades 459 |18 62 (22 112.10
Producer's 87 81 44 179 :
Accuracy (%) : ‘
Overall 74
Accuracy (%)
(c) Fuzzy Algebraic Product
Reference Data
Forest |Grassland (Urban |Dense jTota] Grades |User's
Urban | Accuracy (%)

Forest 24.81 098 0.29 0 27.91 89
Grassland 0.02 4.6 .01 0 5.02 2
Urban 0.01 0 2.5 0 3.08 81
Dense urban |0 0 1.26 4,35 599 73
Total Grades [45.9 18 26.2 22 112.16
Producer's 54 26 10 20 ‘r
Accuracy (%)
Overall 32
Accuracy (%)




(d) Fuzzy Algebraic Sum

Reference Data

Forest |Grassland |Urban |Dense Total Grades |User's
Erban Accuracy (%)
Forest 41.5 23 0.9 0.5 71.43 58
(Grassland 36 14.1 295 0.4 30.38 46
Classified 17 0.8 1.6 164 |27 2237 73
data
Dense urban |0 0 433 18.4 35.69 52
Total Grades [45.9 18 26.2 22 112.1
Producer's 90 78 63 84
Accuracy (%)
Overall 81
Accuracy (%)
(e) Fuzzy y Value of 0.1
Reference Data
Forest |Grassland |Urban [Dense Total Grades |User's :
Urban Accuracy (%) |
Forest 25.61 1.01 033 0 28.99 28
Grassland 0.33 4.99 0.13 D 548 91
Classified fr7p 014 |0.04 284|006 3.50 8l
Data
Dense urban |0 0 1.38 4.87 6.75 72
Total Grades [45.9 18 26.2 22 112.1
Producer's 56 28 11 22
Accuracy (%)
Owverall 34
Accuracy (%)
(f) Fuzzy y Value of 0.5
Reference Data
ﬁForest Grassland |Urban |Dense Total Grades |User's
; Urban Accuracy (%)
Forest 130.08 0.12 0.43 0 35.20 85
Grassland 1022 7.6 0.38 0 8.64 88
Classified o 034 02 589 037 6.86 86
Data :
Dense urban i€ ] 2.14 8.69 11.95 73
Total Grades 459 18 26.2 22 1121
Producer's 66 142 22 40
Accuracy (%) i
Overall 47
Accuracy (%)
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{g) Fuzzy ¥ Value of 0.6

Classified
Data

Classified
Data

Classified
Data

Reference Data

Forest |Grassland |Urban |Dense  Total Grades User's
Urban : (Accuracy (%)
Forest 3187 13 0.46 0 | 37.76 184
Grassland 0.38 8.74 0.51 0 10.09 187
Urban 042 03 7.61 059 9.37 181
Dense urban |0 0 2.44 16.33 1278 181
Total Grades [459 |18 262 (22 112.10
Praducet's 69 49 29 47
Accuracy (%)
Overall 52
Accuracy (%)
(h) Fuzzy y Value of 0.7
Reference Data
Forest |Grassland (Urban |Dense Total Grades |User's
Urban Accuracy (%)
Forest 34.15 1.44 0.54 0 140.92 83
Grassland 0.68 10.15 071 0 1215 84
Urban 0.52 046 10.19 0.97 12.65 81
Dense urban |0 0 278 12.53 17.17 73
Total Grades |45.9 18 26.2 22 112,10
Producer's 74 56 39 57 1
Accuracy (%) 1
Overall 60
Accuracy (%)
(i) Fuzzyy Value of 0.8
Reference Data
Forest |Grassland [Urban |Dense |Total Grades |User's
Urban Accuracy (%)
Forest 37.06 1.66 0.74 0 45.17 82
Grassland 1.26 12.05 1.05 0 15.29 79
Urban 0.64 0.73 13.81 1.55 17.65 78
Dense urban |0 0 il1e6 15.33 21.17 72
Total Grades [45.9 18 26.2 22 112.10
?Producer’s 81 67 53 70
: Accuracy (%)
[Overall 70

}Accuracy (%)
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(}) Fuzzy ¥ Value of 0.9

Reference Data

Forest |Grassland |Urban |Dense “Total User's
Urban iGrades Accuracy (%)
Forest 40.26 2.07 1.15 0 51,25 79
Grassland 237 14.23 1.58 0 20.44 70
Classified 17 08 0.9 1821|242 25.85 70
Data
Dense urban |0 0 4.05 18.406 2731 67
Total Grades |45.9 18 26.2 22 112.10
Producer's 88 79 70 84
Accuracy (%)
Overall 8l
Accuracy (%)
(k) Fuzzy vy Value of 0.95
Reference Data
!Forest iGrassland Urban |Dense Total Grades |User's
i Urban Accuracy (%)
Forest LS8 (23 21 o 56,65 73
Grassland 295 14.8 1.8 0] 2433 61
Classified |, 08 09 1904 292 3141 61
Data ;
Dense urban [0 10 3.65 189 30.41 62
Total Grades [45.9 (18 262 22 112.10
Producer's 91 82 73 86
Accuracy (%)
Overall 84
Accuracy (%)
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Appendix 15 The accuracy measures of fuzzy land cover maps generated by
different fuzzy operators of the City of Melville

(a) Fuzzy AND

Reference Data

Forest |Grassland |Urban  |Dense Total Grades [User's
Urban Accuracy (%)
Forest 10.26 0.56 0.35 0.35 12.1 85
) Grassland 1.62 17.77 3.58 0 2348 76
gﬁf‘ﬁe‘i Urban 178 [6.44 1666 (123 [27.92 60
Dense Urban 0.7 0.02 0 4.52 6.06 75
Total Grades 239 493 497 11.6 136.5
Producer's 40 36 34 39
Accuracy (%}
Overall 36
Accuracy (%}

(b) Fuzzy OR

Reference Data

Forest |Grassland |Urban |Dense Total Grades |User's
Urban Accuracy (%)
Forest 15.80 |06 0.8 0.8 22.70 70
Grassland 4.95 36.27 13.3 0.7 69.96 52
gﬁ:“ﬁe‘j Urban 3 11.2 3477 |32 65.75 53
Dense Urban |2 1.2 0 6.1 12.45 49
Total Grades |25.9 493 497 116 136.50
Producer's 61 74 70 53
Accuracy (%)
Overall 68
{Accuracy (%)
(c) Fuzzy Algebraic Product
Reference Data
Forest  |Grassland |Urban Dense Total Grades |User's
Urban Accuracy (%)
Forest 7.98 0.06 0.26 0.26 8.83 90
Grassland 0.86 10.53 1.39 0 12.78 82
Classified [77 0 1.52 5.14 11.48 07 19.73 58
Data
EDense Urban (0.7 4] 0 36 4.88 74
iTotal Grades [25.9 493 49.7 11.6 | 136.50 :
iProducer’s 31 21 i23 31 i
Accuracy (%) i
Overall 23 |
Accuracy (%) !
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(d) Fuzzy Algebraic Sum

Reference Data

Forest |Grassland |Urban Dense Total Grades |User's
: Urban Accuracy (%)
‘Forest 14.7 0.6 ; 1.6 0.8 26.84 55
Crassland 31 1355 134 o 68.44 52
Classified 0 37 12 239 24 777 47
Data ;
iDense Urban 2 1.2 7.6 14.94 51
{Total Grades {259 49.3 497 11.6 136.50
Producer's 57 !72 68 66
Accuracy (%) | 1
Overall 67
Accuracy (%)
(e) Fuzzy y Value of 0.1
Reference Data
iForest Grassland |Urban Dense Total Grades {User's
Urban ‘Accuracy (%)
Forest 18.37 0.07 03 03 5.39 189
Grassland :0.98 11,89 1.69 0 14.57 ‘82
glftzs'ﬁ‘“’d Urban 158|547 i2.41 0.77 21.18 59
Dense Urban  |0.7 0.03 0 3.74 5.08 74
Total Grades [25.9 49.3 49.7 116 136.5
Producer's 32 24 25 32
Accuracy (%)
Overall 27
Accuracy (%)
(f) Fuzzy y Value of 0.5
Reference Data
Forest iGrassland |Urban  |Dense Total Grades |User's
Urban Accuracy {%)
Forest 10.91 0.23 0.61 10.51 12.96 84
Grassland 1.74 20.11 4.06 0 2595 77
Classified 5000 206 733 1832 121 31.24 59
Data
Dense Urban |07 0.13 4.08 .38 73
Total Grades [25.9 493 497 11.6 136.5
Producer's 42 41 37 40
Accuracy (%)
Overall 40
Accuracy (%)




(g) Fuzzy v Value of 0.6

Classified
Data

Classified
Data

Classified
Data

Forest |Grassland Urban  |Dense Total Grades |User's
: Urban Accuracy (%)
Forest 12.00 0.31 0.75 0.59 14.46 83 .
Grassland 203 23.06 5.23 0 30.56 75
Urban 231 8.12 20.84 137 35.55 39
Dense Urban 0.7 02 0 5.09 692 74
Total Grades |25.9 49.3 49.7 1.6 136.50
Producer's 46 47 42 a4
Accuracy (%)
Overall 45
Accuracy (%)
KHAT (%} 41
(h) Fazzy vy Value of 0.7
Reference Data
Forest |Grassland |Urban |Dense Total Grades |User's
Urban Accuracy (%)
Forest 1344 .41 0.93 0.67 16.37 82
Grassland 238 26.32 6.8 0 36.39 72
Urban 2.68 9.18 24,10 1.58 41.25 58
Dense Urban |0.71 G.3 0 5.62 7.65 73
Total Grades |25.9 493 497 11.6 136.50
Producer's 52 53 48 43
Accuracy (%)
Overall 51
Accuracy (%)
(i) Fuzzyy Value of 0.8
Reference Data
Forest |Grassland |Urban |Dense Total Grades |User's
Urban Accuracy (%)

Forest 15.05 0.55 1.18 0.76 18.89 80
Grassland 279 29.63 902 |0 43.93 67
Urban 324 10.62 28.43 [1.88 48.99 38
Dense Urban |D.75 0.45 ] ;6.34 8.66 73
Total Grades |25.9 493 497 116 136.50
Producer's 58 60 57 55
Accuracy (%)
Overall 58

Reference Data

Accuracy (%)
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(j) Fuzzyy Value of 0.9

Classified
Data

Classified
Data

Reference Data
Forest |Grassland {Urban 1Dense Urban Total User's
Grades Accuracy (%)
Forest 16.84 0.6 145 |08 22.26 76
Grassland 3.0 33.57 11.61 [0 5391 62
Urban 4.09 12.45 3326 1221 39.86 56
Dense Urban |0.93 0.6 0 i7.18 10.21 70
Total Grades |[25.9 49.3 487 1.6 136.50
Producer's 65 68 67 62
Accuracy (%)
Overall 67
Accuracy (%)
(k) Fuzzy y Value of 0.95
Reference Data
Forest |Grassland |Urban |Dense Urban |[Total Grades |User's
Accuracy (%)

Forest 17.1 0.6 1.6 0.8 2437 70
Grassland 3.1 35.17 12.54 [0 60.84 58
Urban 36 12.68 3458 (2.4 65.54 53
Dense Urban |1.18 0.6 0 7.56 11.36 a7
Total Grades |25.9 493 49.7 11.6 136.50
Producer's 66 71 70 63
Accuracy (%)
Overall 69

Accuracy (%)
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Appendix 16 The accuracy measures of fuzzy land cover maps generated by
different fuzzy operators of the City of Armadale

(a) Fuzzy AND

Reference Data

Forest |Grassiand |Urban |Dense Total Grades |User's
Urban Accuracy (%)
Forest 3312 |0.26 0.01 33.99 97
) Grassland 0.03 1.19 0.29 1.51 79
classified | pan 019 |1.49 38 023 5.79 66
Dense Urban 0.19 0.77 0.14 1.1 13
Total Grades 156.3 34.8 351 6.3 132.50
Producer's
Accuracy (%) |59 3 11 2
Overall
Accuracy (%) |29

(b) Fuzzy OR

Reference Data

Forest Grassland |Urban |Dense Total Grades |User's
Urban Accuracy (%)

Forest 4427 0.6 1.6 0.6 54.43 81

Grasstand ~ [4.09  :19.6 6.4 1.2 4215 47
gﬁ?‘ﬁed Urban 316 9.1 171 |08 13836 45

Dense Urban 3.4 8.6 3.7 2064 18

Total Grades |56.3 348 35.1 6.3 132.50

Producer’s

Accuracy (%) |79 156 49 59

Overall

Accuracy (%) |64

(¢) Fuzzy algebraic product

Reference Data

Forest Crassland |Urban |Dense Total Grades |User's
| Urban Accuracy (%)
{Forest 24.84 25.06 99
Grassland 0.001  [0.28 ‘015 0.43 65
Classified i
n .
Data Urban 0.23 1.85 2.09 89
Dense Urban 0.02 i0.22 0.1 0.3 a3
Total Grades {563 34.8 35,1 16.3 132.50
Producer's ‘
Accuracy (%) 144 | 5 12
Overall
Accuracy (%) |20
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(d) Fuzzy algebraic sum

Reference Data

Forest éGrassland {Urban {Dense Total Grades |User's
i 'Urban Accuracy (%)
Forest 452 07 ‘ 54.79 82
Grassland 4.1 19.5 43 1.4 30.94 63
Classified |53000 1.4 9.8 247 48.80 51
Data
Dense Urban (0.9 27 4.7 4.9 18.84 26
Total Grades [56.3 34.8 a51 63 132.50
Producer's
:Accuracy (%) 180 56 70 78
‘Overall
-Accuracy (%) |71
(e) Fuzzy 7y value of 0.1
Reference Data
Forest |Grassland |Urban |Dense Total Grades |User's
Urban Accuracy (%)
Forest 19.91 0.001 19.98 100
Grassland (.005 0.35 18 0.53 66
Classified
T
Data Urban 0.32 2.10 242 87
Dense Urban | 0.03 032 0.1 0.37 27
Total Grades 156.3 34.7 34.8 7.1 132.90
Producer's '
Accuracy (%) |35 1 6 1
Overall
Accuracy (%) |17
(fy Fuzzy yvalue of 0.6
Reference Data
Forest |Grassland |Urban |Dense Total Grades User's
Urban Accuracy (%)
Forest 3585 006 37.03 97
Grassland 0.19 281 0.59 0.06 3.67 77
g’a“lﬁea Urban 0.1 235 613 [0.09 8.77 70
ata
Dense Urban 04 1.04 0.63 207 30
Total Grades |56.3 34.7 34.8 7.1 132.90
Producer's
Accuracy (%) |64 8 13 9
Overall
Accuracy (%) |34
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(g) Fuzzy vy value of 0.7

Reference Data

iForest Grassland  (Urban  |Dense Total Grades User's
i Urban Accuracy (%)
Forest 38.54 |0.11 40.25 96
Grassland 0.39 4,69 0.93 0.13 6.16 76
Chassified |Geban 023 [3.57 548 |02 12.64 67
Dense Urban 0.66 1.46 0.96 3.19 3¢
Total Grades [56.3 347 34.8 7.1 132.90
Producer's
Accuracy (%) |68 14 24 14
Overall
Accuracy (%) |40

(h) Fuzzy ¥ value of 0.8

Reference Data

Forest |Grassland |Urban [Dense ?Total Grades |User's
Urban | Accuracy (%)
Forest 4160 0.22 4417 94
Grassland 0.81 8.24 1.48 0.31 10,92 75
Classified Urban 0.53 5452 12.39 0.48 19.13 65
Data
Dense Urban 1.09 2.23 148 5.02 29
Total Grades |356.3 347 348 7.1 13290
Producer's :
Accuracy (%) |74 [24 36 21
Overall
Accuracy (%) |48
(1) Fuzzy 7y value of 0.9
Reference Data
‘ Forest |Grassland |Urban |Dense Total User's
! Urban Grades Accuracy (%)
Forest 44.04 : 48.18 91
Grassland 225 |1555 269 o7 121.62 72
Classified ‘ :
Darta Urban 1.24 8.36 19 10.81 :30.20 63
Dense Urban 1.8 368 272 8.54 32
Total Grades |56.3 34.8 35.1 6.3 132.50
Producer's
Accuracy (%) |78 45 54 43
Overall
Accuracy (%) |61




(j) Fuzzy 7 value of 0.95

Classified
Data

Reference Data

Forest |Grassland |Urban |Dense Total Grades |User's
Urban Accuracy (%)

Forest 44.81 0 0 0 30.85 88
Grassland 332 20.81 379 1.16 3048 68
Urban 1.91 9,17 2393 0.57 38.20 63
Dense Urban |0 2.1 447 422 11.88 36
Total Grades |56.3 34.8 351 6.3 132.50
Producer's |
Accuracy (%) §80 60 68 67
Overall

Accuracy (%) 71
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(b)
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(c)

3 Kilometers
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