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Fast computation of spatially adaptive kernel estimates

Tilman M. Davies1 · Adrian Baddeley2,3

Received: date / Accepted: date

Abstract Kernel smoothing of spatial point data can often
be improved using an adaptive, spatially-varying bandwidth
instead of a fixed bandwidth. However, computation with
a varying bandwidth is much more demanding, especially
when edge correction and bandwidth selection are involved.
This paper proposes several new computational methods for
adaptive kernel estimation from spatial point pattern data.
A key idea is that a variable-bandwidth kernel estimator for
d-dimensional spatial data can be represented as a slice of
a fixed-bandwidth kernel estimator in (d + 1)-dimensional
scale space, enabling fast computation using Fourier trans-
forms. Edge correction factors have a similar representation.
Different values of global bandwidth correspond to differ-
ent slices of the scale space, so that bandwidth selection
is greatly accelerated. Potential applications include estima-
tion of multivariate probability density and spatial or spa-
tiotemporal point process intensity, relative risk, and regres-
sion functions. The new methods perform well in simula-
tions and in two real applications concerning the spatial epi-
demiology of primary biliary cirrhosis and the alarm calls of
capuchin monkeys.
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1 Introduction

Kernel smoothing is a versatile tool for analysing spatial
data: it is used to estimate probability density, point pro-
cess intensity, relative risk, spatial regression functions and
other quantities. Efficient algorithms for kernel smoothing
are vital, and must continually be improved in order to han-
dle larger and more complex datasets.

The classical fixed-bandwidth kernel estimator can be
computed very rapidly, because it can be expressed as the
convolution of the kernel function with the data points, and
computed using the discrete Fourier transform.

However, employing a fixed bandwidth can have adverse
consequences when the observation locations are highly het-
erogeneous. An elegant solution is to allow the bandwidth
attached to each observation to adapt to local smoothing
requirements, leading to an “adaptive” estimator, certain
forms of which have been shown to have important theo-
retical and practical advantages over fixed-bandwidth esti-
mation.

Unfortunately, adaptive smoothers are much more costly
to compute, and their uptake in the applied literature for con-
tinuous spatial data remains quite limited. The goal of this
paper is to develop efficient computational algorithms for
such adaptive kernel estimators in an irregularly shaped re-
gion of space, including the non-trivial tasks of edge cor-
rection and bandwidth selection. Our attention is focussed
on data observed in the two-dimensional plane R2, the most
common setting for spatial analysis; the results can be ex-
tended to higher dimensions.

1.1 A Motivating Example

To demonstrate the need for adaptive smoothing, consider
the data in Figure 1, which shows the geographic locations
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Fig. 1 Primary Biliary Cirrhosis (PBC) data. Left: full set of PBC
cases (open circles) showing boundary of reporting region (solid lines).
Right: enlarged view of the most densely populated sub-region.

of 761 cases of primary biliary cirrhosis (PBC) in a region
of north-east England, from a study by Prince et al (2001).
In the original analysis, these data were used in conjunction
with a sample from the at-risk population, to obtain a fixed-
bandwidth kernel-smoothed estimate of the spatially varying
relative risk (cf. Kelsall and Diggle, 1995). For our purposes
we consider only the PBC cases and estimate their intensity,
the spatially-varying expected number of cases per unit area.

Figure 2 contrasts two intensity estimates for the PBC
cases: one produced with a fixed bandwidth, the other with
an adaptive smoothing technique described below. Several
features can be seen immediately. The fixed bandwidth es-
timates have a far wider numerical range than the adaptive
estimates, and show the hallmarks of simultaneous under-
and over-smoothing. In the densely populated sub-region,
the fixed-bandwidth smoothing is too generous, with rela-
tively little fine-scale detail detectable. Conversely, toward
the western border where observations are very scarce, there
is not enough smoothing: the fixed-bandwidth estimate drops
sharply, reaching values numerically close to zero (owing
to the logarithmic scale, these are shown as missing pixels,
coloured white). In the moderately-populated areas in the
north, the fixed-bandwidth estimate has a ‘lumpy’ appear-
ance caused by small clusters of cases. The use of a com-
mon, fixed bandwidth leads to an unhappy compromise be-
tween under- and over-smoothing in different parts of the
study region.

In contrast, the adaptive estimate of intensity does not
show any of these features. Areas of sparse data are smoothed
over to avoid numerical problems and spurious bumps, while
spatial detail is retained in the densely populated sub-region.
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Fig. 2 Fixed bandwidth (top) and adaptive bandwidth (bottom) kernel
estimates of intensity for the PBC data. Logarithmic colour scale; in-
tensity expressed as number of cases per km2.

1.2 A Brief Background on Adaptive Smoothing

Adaptive smoothing is typically discussed from two distinct
perspectives. Adaptation may be performed either at each
evaluation location, or alternatively, by rescaling the band-
width of the individual kernels attached to the observations.
The former techniques comprise methods referred to as “lo-
cally adaptive” or “balloon” estimators, the most well-known
of which is the nearest-neighbour smoothing regimen of Lofts-
gaarden and Quesenberry (1965). The latter techniques are
referred to as “point-adaptive”, “sample smoothing”, or “sample-
point” methods, which began with the work of Breiman et al
(1977). For a good general treatment of adaptive (or variable
bandwidth) kernel estimators, see Terrell and Scott (1992)
and references therein.
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In this paper we focus on point-adaptive estimators, with
particular attention paid to the ‘square-root’ methodology
proposed by Abramson (1982). We do this for several rea-
sons. First, unlike locally adaptive estimators, point-adaptive
estimators result in densities that conserve mass and inte-
grate appropriately to 1 over the study domain. This is an in-
trinsically desirable feature that leads to good performance
in estimation of spatial intensity. Secondly, the Abramson
smoother in particular has been shown to have theoretical
benefits over fixed-bandwidth estimation, particularly so in
the bivariate setting (see Hall and Marron, 1988; Davies and
Hazelton, 2010, and our discussion in Section 2.2). Finally,
the square-root rule of Abramson (1982) leads to an intu-
itively sensible smoothing regimen that we have found in
practice to be particularly well-suited to spatial data, which
often exhibit marked heterogeneity.

Hereinafter, we shall simply refer to point-adaptive esti-
mators such as Abramson’s approach without qualification
as adaptive estimators.

1.3 Article Structure

In Section 2 we define the fixed bandwidth and adaptive
bandwidth kernel estimators of intensity. We discuss “bound-
ary bias” arising from observations in a bounded region of
R2, and define edge-correction factors for reducing this bias.
Section 3 reviews the standard algorithm for fixed-bandwidth
kernel estimation using spatial discretisation and the fast
Fourier transform. Sections 4 and 5 give two different al-
gorithms for adaptive kernel estimation. The algorithm in
Section 4 involves discretising the desired bandwidths into
bins, and applying the fixed-bandwidth algorithm to each
bin. In Section 5 we express the adaptive-bandwidth esti-
mator as a slice of a fixed-bandwidth estimator in a higher-
dimensional space, making it possible to calculate an edge-
corrected adaptive kernel intensity estimate at multiple global
bandwidth scales simultaneously using the fast Fourier trans-
form. Performance of each algorithm is evaluated using two
simulation studies. Section 6 describes an application to real
data concerning the alarm calls of capuchin monkeys. Con-
cluding remarks are in Section 7.

2 Kernel Intensity Estimation on R2

Let Y = {yyy1, . . . ,yyyn} be an observed set of points in a region
of the plane R2, assumed to originate from a spatial point
process with intensity function λ (xxx), xxx ∈ R2. Estimation of
the intensity λ (·) is closely related to probability density es-
timation, since if the point process is assumed to be Poisson,
then conditional on the number of points n, the locations
yyy1, . . . ,yyyn are independent with common probability density
f (xxx) proportional to λ .

2.1 Fixed Bandwidth

For estimation at a point xxx= [x1,x2]
> in R2, the fixed-bandwidth

kernel estimate of λ (xxx) is given by

λ̃h(xxx) = ∑
yyy∈Y

KKKh(xxx− yyy), (1)

where h > 0 is the scalar bandwidth or smoothing parame-
ter, and KKKh(uuu) = h−2KKK(h−1uuu) is the bandwidth-scaled ker-
nel function (Silverman, 1986; Wand and Jones, 1995). Here
KKK is a probability density on R2 with mean vector [0,0]> and
variance-covariance matrix equal to the identity matrix. The
density is usually assumed to be symmetric in the sense that
KKK(−uuu) = KKK(uuu) for all uuu ∈ R2.

It is generally accepted in the literature that the spe-
cific functional form of the kernel KKK is of secondary impor-
tance to the amount of smoothing (see e.g. Wand and Jones,
1995). A popular practical choice is the Gaussian kernel—
in particular, for spatial estimation, the infinite tails help en-
sure the final density/intensity is bounded away from zero.
Other common choices include the biweight (quartic) and
Epanechnikov kernels, both of which have compact support.
In the theoretical exposition that follows, the results (includ-
ing the necessary edge-correction techniques; see Section
2.3) are valid for all of these options and others that sat-
isfy the assumption of being zero-centered symmetric den-
sities. For the reason noted above, and given our objective of
smoothing highly heterogeneous point patterns, we use the
Gaussian kernel in our implementations.

In a more general form of (1), the scalar h is replaced
by a 2× 2 symmetric, positive-definite bandwidth matrix,
which allows differing degrees of smoothing along each co-
ordinate direction, and allows rotation of the kernel relative
to the axes (see e.g. Wand and Jones, 1993). In what follows,
we assume isotropic smoothing for simplicity.

2.2 Adaptive/Variable Bandwidth

As noted above, a major concern with the use of a constant
bandwidth over all observations of Y is that it leads to poor
estimator performance for heterogeneous point patterns. We
often observe situations like the motivating example, with
both undersmoothing and oversmoothing occurring simul-
taneously for sparsely and densely populated areas, respec-
tively, even when h is chosen “optimally” in some sense.

An interesting solution to this problem was suggested by
Abramson (1982) and developed further by Hall and Marron
(1988). This is a particular case of the variable bandwidth or
adaptive kernel estimator, which allows h to vary from ob-
servation to observation in a specific way. Denote an adap-
tive kernel intensity estimate by λ̂h0(xxx). We have

λ̂h0(xxx) = ∑
yyy∈Y

h(yyy)−2KKK
(
h(yyy)−1{xxx− yyy}

)
= ∑

yyy∈Y
KKKh(yyy)(xxx− yyy),
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(2)

where

h(yyy) = h0n1/2
λ (yyy)−1/2. (3)

The above shows the variable bandwidths are inversely pro-
portional to the square root of the underlying intensity func-
tion; scaled by a quantity h0 > 0 hereinafter referred to as
the global bandwidth. This means that by relative compar-
ison, the variable bandwidth attached to each point will be
larger in sparsely populated regions and smaller in densely
populated areas.

Intuitively, (3) makes sense: essentially we wish to cap-
ture more detail where there are more observations, while
smoothing more in regions where a lack of data heightens
uncertainty. Furthermore, Abramson (1982) and Hall and
Marron (1988) demonstrate that under reasonable practical
conditions, the order of the asymptotic bias of the adaptive
estimator λ̂ is improved notably over that of the fixed esti-
mator λ̃ , namely o(h4

0) as opposed to o(h2). Beneficial prop-
erties also flow through to certain functionals of adaptive in-
tensity estimates, such as the density-ratio or relative risk
function (Davies and Hazelton, 2010; Davies et al, 2016).

Of course, λ is unknown in practice, so in implementa-
tion of (3) we replace λ with a pilot estimate; it is convenient
to use a fixed-bandwidth kernel estimate, yielding estimated
variable bandwidths ĥ(yyy) = h0n1/2λ̃h(yyy)−1/2.

2.3 Edge Correction

In real-world applications, it is usually never the case that we
observe spatially unbounded data. Rather, we record Y on
W ⊂R2, referring to the (often irregular) subset of the plane,
W , as the study window. This means probability weight from
kernels assigned to observations near the window bound-
ary is lost over the edge, and by the same token, points that
could potentially be observed just outside the boundary (but
of course are not) are not given the opportunity to contribute
to the final density estimate on W .

One must therefore take care when performing kernel
estimation of planar intensities using either (1) and (2) at
the boundaries of the study region. Boundary bias can be
severe—even leading to asymptotic inconsistency near W
and hence dangerously unreliable density estimates, a prob-
lem exacerbated by a ‘small’ n and a ‘large’ bandwidth (Jones,
1993; Wand and Jones, 1995). Fortunately, it can be shown
that an approximative correction exists by way of a relatively
simple post-hoc rescaling of the raw kernel estimate.

One way to achieve this for the fixed-bandwidth estima-
tor is to calculate λ̃h(xxx)/qh(xxx), where

qh(xxx) =
∫

W
KKKh(zzz− xxx)dzzz. (4)

The corrective term in (4) can be recognised as the volume
of the kernel (that has bandwidth h and is centered at the
evaluation coordinate xxx) that falls within W (Diggle, 1985;
Jones, 1993; Diggle, 2010).

The analogous correction for the adaptive estimator was
developed by Marshall and Hazelton (2010). In much the
same way, we calculate λ̂h0(xxx)/qh(xxx)(xxx), where

qh(xxx)(xxx) =
∫

W
KKKh(xxx)(zzz− xxx)dzzz. (5)

Here, h(xxx) can be interpreted as the bandwidth assigned to a
hypothetical observation were it to fall at location xxx, calcu-
lated using the pilot density of Y as per (3).

The key difference between (4) and (5) is of course the
varying bandwidth in the latter. Indeed, where (4) can be
computed by translation, direct implementation of (5) is im-
plicitly related to the fineness of the evaluation coordinates
xxx ∈W with, technically, a new bandwidth required for each
different evaluation location.

2.4 Spatial Discretisation

In practice, space is discretised so a kernel estimate and
edge-correction factors can be computed at a finite set of
2D coordinate locations. Assume R ⊇W is a rectangle that
encloses W , with horizontal and vertical side lengths r1 and
r2 respectively. We subsequently partition R into M×N rect-
angular pixels, each of area A = a1a2, where a1 = r1/M and
a2 = r2/N.

Let ccc(i, j) = [ci1,c j2]
> denote the centroid of the pixel at

the ith and jth horizontal- and vertical-axis position; define
the grid C = {ccc(i, j) : i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}}. Direct
implementation of either (1) or (2) therefore means that the
equation is evaluated at all xxx ∈C.

3 Algorithms for Fixed Bandwidth

If estimates of λ (xxx) are required only at a small set of pre-
diction points xxx, equation (1) can be evaluated directly for
each xxx giving results with high precision. However, for es-
timation of the intensity at all pixels in the grid C, direct
evaluation of (1) is prohibitive, as it would require a total
of nMN kernel evaluations. While the evaluation grid res-
olution can be coarsened (reducing M and N), we cannot
reduce the number of observations n, which is problematic
in large samples.
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3.1 Kernel Convolution

Consider the counting measure ψψψ which puts a mass of 1
unit on each of the observation points yyyi = [yi1,yi2]

>. Then,

(KKKh ∗ψψψ)(x1,x2) =
∫
R2

KKKh([x1− t1,x2− t2]>)dψψψ(t1, t2) (6)

=
n

∑
i=1

KKKh([x1− yi1,x2− yi2]
>)

= λ̃h(xxx).

That is, (1) can be represented as a convolution of the
kernel KKKh with ψψψ . This is important because in practice con-
volutions can be computed rapidly using Fourier transforms;
practical details follow in Section 3.2.

Relatively little attention has been given to the issue of
calculating the edge correction surface (4) for point pattern
data in the literature. It is useful to note that the corrective
surface has an analogous representation in terms of a convo-
lution. Explicitly considering the indicator function IW (xxx)
which returns 1 if xxx ∈W and 0 elsewhere, and taking into
account the symmetry of KKKh, we have

(IW ∗KKKh)(xxx) =
∫
R2

IW (zzz)KKKh(xxx− zzz)dzzz (7)

=
∫

W
KKKh(zzz− xxx)dzzz

= qh(xxx)

See Koch et al (2003).

3.2 Implementation by Binning

The so called binned kernel estimator (Silverman, 1982; Wand,
1994) arises due to the need to discretise space for compu-
tation of (6) and (7).

The counting measure ψψψ will be discretised as a collec-
tion of weights w(i, j) attached to the centroids ccc(i, j) of pix-
els in C. These weights may be chosen in several ways: the
simplest is binning, in which w(i, j) is the number of obser-
vations from Y that fall in pixel (i, j). Fractional weighting
is also possible, such as linear binning (Wand, 1994). While
estimation accuracy at a given location can be improved by
using fractional weights, the overall computational burden is
not greatly affected. For simplicity, we use simple binning in
the current work.

After obtaining the weights, we may approximate the di-
rect estimate λ̃h(xxx) with its binned version, λ̃ ∗h (xxx), where

λ̃
∗
h (ccc(i, j)) =

M

∑
t=1

N

∑
u=1

KKKh

(
[ci1− ct1,c j2− cu2]

>
)

w(t,u),

=
M−1

∑
`1=1−M

N−1

∑
`2=1−N

KKKh

(
[a1`1,a2`2]

>
)

w(i−`1, j−`2).

(8)
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Fig. 3 Example evaluation grid and corresponding pixel weights based
on a 32×32 resolution for the PBC data. Zero-count pixels are white.

Examination of (8) reveals it to be precisely the discretised
version of the convolution in (6).

For the PBC data, Figure 3 illustrates the discretised
pixel weights w(i, j) on a coarse 32× 32 grid. The pixels
themselves are delineated by grey dashed lines; W is visible
as the irregular grey polygon, and the enclosing rectangle R
is also shown.

Finally, the discretised version of the edge correction
factor (7) is

q∗h(ccc(i, j)) = a1a2

M−1

∑
`1=1−M

N−1

∑
`2=1−N

KKKh

(
[a1`1,a2`2]

>
)

× IW
(
ccc(i−`1, j−`2)

)
. (9)

3.3 Fast-Fourier Evaluation

The key property (Pinsky, 2002, p. 13, 92) is that the con-
volution f ∗ g of two integrable functions f and g satisfies
F ( f ∗g) =F ( f )F (g) where F denotes the Fourier trans-
form and the right-hand side is the pointwise product of
the two functions. Consequently f ∗g = F−1(F ( f )F (g))
where F−1 denotes the inverse Fourier transform. For com-
putational purposes the functions will be discretised and we
use the discrete Fourier transform (DFT). Fast algorithms
for calculating the DFT and its inverse include the classi-
cal Cooley-Tukey method (Cooley and Tukey, 1965), which
reduces the computational burden from O(S2) to O(S logS).

To apply the DFT we must ensure that the arrays of
discretised kernel values KKKh

(
[a1`1,a2`2]

>) and discretised
weights w(i, j) can be treated as periodic functions. This is
achieved by embedding them into larger arrays of size PM×
PN as sketched in Figure 4. For simplicity we take PM = 2M
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www0 =

[
www 0
0 0

]
KKK0 =



KKK([0,0]>) . . . KKK([0,a2(N−1)]>) KKK([0,−a2N]>) . . . KKK([0,−a2]
>)

...
. . .

...
...

. . .
...

KKK([a1(M−1),0]>) . . . KKK([a1(M−1),a2(N−1)]>) KKK([a1(M−1),−a2N]>) . . . KKK([a1(M−1),−a2]
>)

KKK([−a1M,0]>) . . . KKK([−a1M,a2(N−1)]>) KKK([−a1M,−a2N]>) . . . KKK([−a1M,−a2]
>)

...
. . .

...
...

. . .
...

KKK([−a1,0]>) . . . KKK([−a1,a2(N−1)]>) KKK([−a1,−a2N]>) . . . KKK([−a1,−a2]
>)


Fig. 4 Schematics of the extended PM ×PN forms of the zero-padded pixel weight matrix (www0, within which 0 denotes a M×N matrix of zeros)
and the reflected kernel evaluation matrix (KKK0) in preparation for Fourier transformation.

and PN = 2N. The weights array is simply padded with addi-
tional rows and columns of zero values. Let www= [w(i, j)]i=1,...,M; j=1,...,N
denote the M×N matrix of weights that approximates Y . We
embed www in the upper leftmost corner of a larger PM ×PN
matrix of zeros, forming www0. Then we construct a PM ×PN
matrix KKK0 of kernel values in a permuted order, shown in
Figure 4.

We may then compute the intensity estimate using (8) on
the extended grid:

λ̃
∗
h (ccc(i, j)) = ℜ

[
F−1(F (www0)F (KKK0)

)]
(i, j);

i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N};

setting the result to zero for ccc(i, j) /∈W . Computational com-
plexity is thus reduced from O(M2N2) to O(PMPN log(PMPN))=

O(MN log(MN)). Here ℜ[ · ] denotes the real part of a com-
plex number; in theory this operation is redundant because
the inverse Fourier transform is real-valued, but it is nec-
essary in practice, because the imaginary component will
contain small nonzero values because of numerical error.

The edge correction surface qh can also be evaluated us-
ing the FFT after a similar modification to ensure periodic-
ity. Let IIIW be the M×N matrix with entries IW (ccc(i, j)), and
IIIW,0 a zero-filled PM×PN matrix with IIIW taking position in
the upper-left quadrant analogously to www0. Then,

q∗h(ccc(i, j)) = ℜ
[
F−1(F (IIIW,0)F (KKK0)

)]
(i, j);

i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}.

Our final, edge-corrected binned kernel estimate is therefore
obtained on the grid C with λ̃ ∗h (ccc(i, j))/q∗h(ccc(i, j)).

The binned fixed bandwidth intensity estimator repre-
sents the most common standard for implementation in sta-
tistical software. Examples in the R language include the
packages spatstat (Baddeley and Turner, 2005; Baddeley
et al, 2015) and ks (Duong, 2007), with the former also in-
voking the FFT-based edge correction given by (9).

Alternatives to the traditional methods of kernel smooth-
ing and bandwidth selection include the frequency-domain
approach of Bernacchia and Pigolotti (2011) and O’Brien
et al (2016).

4 Adaptive Bandwidth: Partitioning Algorithm

Whereas the fixed-bandwidth estimator (1) and edge correc-
tion (4) can be expressed as convolutions in R2, the variable-
bandwidth counterparts (2) and (5) cannot, so that it is un-
clear how to compute them efficiently.

One strategy is to discretise the bandwidth so that a rel-
atively small number of bandwidth values is involved, and to
approximate the adaptive estimate by a sum of fixed-bandwidth
estimates. This is similar in spirit to the work by Sain and
Scott (1996) and Sain (2002), though we approach the prob-
lem differently by examining the empirical quantiles of the
distribution of sample-point bandwidths.

4.1 Procedure

Denote our pre-computed set of variable bandwidths as ĥhh =

{ĥ1, . . . , ĥn}, where ĥi is the bandwidth attached to the ith
observation yyyi. Using the Abramson (1982) smoother, ĥhh is
obtained via (3), using a (possibly edge-corrected) fixed band-
width FFT-based binned pilot kernel intensity estimate. Con-
sider now the empirical ζ th quantiles, ĥ(ζ ), of these n values—
let 0 < δ ≤ 1 be a ‘quantile step’ value such that D = δ−1

is an integer (naturally, we set δ � 0.5). Define bandwidth
bins using the sequence of values ĥ(0), ĥ(δ ), ĥ(2δ ), . . ., ĥ(1)

and, based on the estimated variable bandwidths ĥi; i∈{1, . . . ,n},
allocate each corresponding observation yyyi to one of the D
bandwidth bins[
ĥ(0), ĥ(δ )

]
,
(

ĥ(δ ), ĥ(2δ )
]
, . . . ,

(
ĥ({D−1}δ ), ĥ(1)

]
.

(10)

Finally, let Yd be the subset of the pattern Y that falls in the
dth bin, for d ∈{1, . . . ,D}, where Yd contains nd points. This
partitions the pattern Y into D disjoint subsets, Y =Y1∪Y2∪
. . .∪YD.

The adaptive smoother will be approximated by replac-
ing each desired bandwidth ĥi by the midpoint of the bin
in which it falls. The approximation is the sum of D fixed-
bandwidth estimates operation on the corresponding subsets
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of Y :

λ̂h0(xxx)≈ λ̃
∗
h̄1
(xxx|Y1)+ λ̃

∗
h̄2
(xxx|Y2)+ . . .+ λ̃

∗
h̄D
(xxx|YD), (11)

where h̄1, . . . , h̄D are the midpoints of the D bins in (10), and
recall h0 is the pre-set global smoothing parameter (3). Here
λ̃ ∗h (xxx|Y ) denotes the fixed bandwidth estimate (1) based on
the dataset Y . Each of these D estimates is calculated with
the fixed bandwidth FFT-based methods described above; xxx
in (11) is taken at ccc(i, j); i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}.

Figure 5 demonstrates this procedure with D= 20 on the
illustrative 32×32 grid for the PBC data. Initial bandwidths
ĥhh were calculated from (3); bandwidths were divided into 20
bins; the three panels of Figure 5 show the calculations for
bins 1, 10 and 20. On the left is the subset of points Yj; on the
right is the FFT-based fixed-bandwidth kernel intensity esti-
mate λ̃ ∗h̄ j

(xxx|Yj), for j = 1,10,20. Note the zero-valued miss-
ing pixels in the intensities for the two smaller bandwidths,
indicating effectively no contribution from those intensities
at those coordinates to what will eventually become the final
estimate via (11).

The question now arises as to how one might correct for
edge effects in the result of (11) using qh(xxx)(xxx) as given by
(5). Note that we generally expect the edge correction sur-
face to be far less heterogeneous than the intensity itself (i.e.
the edge correction surface will generally be close to 1 and
vary quite slowly in the interior of W in comparison to λ̂h0 ).
This means that it is not unreasonable to consider evaluating
qh(xxx) on a coarser LM × LN < M×N grid, thereafter em-
ploying an efficient interpolation procedure such as bilinear
methods to scale the resolution back up to the target M×N,
without a massive loss of accuracy. In addition, we could
also apply much the same bandwidth-partitioning approach
to the variable bandwidths at the LM×LN knots, further re-
ducing the computational burden.

Assume LM and LN are divisors of M and N respectively.
The grid G = {ggg(k,l) : k ∈ {1, . . . ,LM}, l ∈ {1, . . . ,LN}} of
pixel centroids ggg(k,l) = [gk,gl ]

> is a subset of the full grid
C. Each centroid ggg(k,l) is assigned a bandwidth value, calcu-
lated in the same way as the observation-specific bandwidths
ĥhh using the pilot-estimated version of (3). Write ŝss = {ĥ(ggg) :
ggg ∈ G}. Then, we choose a value β such that β−1 = B is an
integer, and partition the ggg∈G into the B bins of β -quantiles
of ŝss defined by[
ŝ(0), ŝ(β )

]
,
(

ŝ(β ), ĥ(2β )
]
, . . . ,

(
ŝ({B−1}β ), ŝ(1)

]
. (12)

Given the mid-points of these bandwidth intervals, labelled
s̄1, . . . , s̄B, the next step is to perform the kernel-window con-
volution as per (9) for each bandwidth value using the FFT
and repopulate the LM×LN pixels with the appropriate edge
correction value given the association of each ggg ∈ G with
the B bins. If necessary, we then interpolate the results from
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Fig. 5 Bandwidth-partitioned kernel estimation for the PBC data. Top,
middle and bottom panels show the results for bandwidth bins j = 1,
j = 10 and j = 20 respectively. Left panels show the full set Y of data
points (grey) and the relevant subset Yj (black). Right panels show the
corresponding fixed-bandwidth kernel intensity estimate. Logarithmic
colour map.
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Fig. 6 Computing the bandwidth-partitioned, interpolated adaptive
edge correction surface for the PBC data, using a coarsened 16× 16
centroid grid, with the target being the original 32× 32 grid. Top left
and right respectively: Fixed bandwidth FFT-based surfaces using s̄2
and s̄5. Bottom left and right respectively: Repopulated adaptive cor-
rective surface on the coarse grid, and following bilinear interpolation
to the higher resolution.

the coarse LM ×LN grid back to the full M×N grid using
bilinear interpolation.

These strategies are illustrated for the PBC data in Fig-
ure 6. The top two images show the fixed bandwidth FFT-
based corrective surfaces for the second and the fifth band-
width bins, that is, q∗s̄2

and q∗s̄5
, using a coarse 16×16 evalu-

ation grid. The effect of a larger bandwidth resulting in cor-
rective edge factors encroaching further into the interior of
W is clear to see. The bottom two images show the appro-
priated adaptive corrective surface based on remapping the
centroids ggg ∈ G to their corresponding values given the in-
dividual bandwidth bin to which they belong. This is done
initially on the coarse grid; also shown is the bilinearly in-
terpolated result to the target resolution of 32×32.

Noteworthy from these latter two plots is the fact that the
corrective factors remain close to 1, even close up against
the region boundary, in the vicinity of the densely popu-
lated subregion; this being owed to the relatively small band-
widths attached to observations in this area. This highlights
another benefit of this kind of adaptive smoothing—if there
is important detail in a populated area near the boundary it
will be better preserved than in a fixed bandwidth estimate,
due to lesser interference by correction factors.

Approximating an adaptive kernel intensity estimate by
partitioning the variable bandwidths and turning the prob-
lem into one of multiple fixed bandwidth estimates is a rela-
tively ad-hoc solution, though one that is not entirely unlike
the strategies behind the pixel-binning of the spatially con-
tinuous observations necessary for implementation of the
FFT-based estimator itself. It can be shown that the approx-
imation is uniformly convergent to the correct value as the
discretisation becomes finer. Clearly the size of D, governed
directly by the fineness of the bandwidth quantiles via δ ,
is of key interest with respect to computational load and
numerical accuracy—since calculating λ̂h0 will now rise to
order O(DMN log(MN)). Edge-correction introduces much
the same decision in terms of setting β , as well as the option
of reducing the target grid resolution, meaning a decision on
setting LM and LN .

4.2 Simulation Study: Partition Accuracy

To investigate the consequences of these decisions, we now
perform a series of simulations to compare—and time—
explicit calculation of adaptive kernel intensities against var-
iously dialled partitioned versions thereof.

We generate synthetic datasets according to a planar log-
Gaussian Cox point process (LGCP) clipped to an irregu-
lar polygon W enclosed in the unit square. The LGCP class
(Møller et al, 1998) is a flexible but analytically tractable
model for a point process with spatially-varying random in-
tensity. Let Z(uuu), uuu ∈ R2 be a stationary Gaussian random
field (GRF). Define the “driving intensity” Λ(uuu)= exp(Z(uuu)).
Conditional on the realisation of the driving intensity Λ(uuu)=
λ (uuu), uuu∈R2, let YYY be a Poisson point process with intensity
function λ (uuu). Then the unconditional distribution of YYY is
a log-Gaussian Cox process. The distribution is completely
determined by the first and second moments of the Gaussian
field Z, which can be chosen at will to produce random in-
tensity surfaces that exhibit different styles of heterogeneity.

In this study we use an exponential covariance func-
tion r for all examples: r(xxx) = σ2 exp(−‖xxx‖/φ); σ2,φ > 0.
Four problem cases are defined by fixing the parameters σ2

and φ at different values: Case 1 has σ2 = 0.9,φ = 0.03;
Case 2 has σ2 = 0.9,φ = 0.09; Case 3 has σ2 = 2,φ =

0.03; and Case 4 has σ2 = 2,φ = 0.03. Example realisa-
tions of zero-mean GRFs on W from each of these cases are
shown in the top row of Figure 7. Where Case 3 is charac-
terised by the tightest, spikiest peaks in observation inten-
sity, point clusters in Case 4 are spatially larger though less
extreme. The spatial functions generated in Cases 1 and 2
vary more slowly over W , with Case 2 exhibiting the least
abrupt changes over space.

The simulations proceed as follows, repeated over 100
iterations. For each problem case, at each iteration we gen-
erate a zero-mean GRF with the defined values of σ2 and



Spatially adaptive kernel estimates 9

  Case 1

−
4

−
2

0
2

  Case 2

−
4

−
2

0
1

2
3

  Case 3

−
6

−
4

−
2

0
2

4

  Case 4

−
4

−
2

0
2

4

Fig. 7 Example log-intensity and corresponding point pattern realisations of the four LGCP problem cases for the partition accuracy simulation
study. The irregular polygon is enclosed in the unit square.

φ and rescale its exponential to integrate to unity, giving a
density function. This is followed by generation of a cor-
responding point pattern Y of size n ∼ POI(µ), where µ ∈
{100,1000}. A randomly generated point pattern for each
of the four problem cases (each of size 500 for visual com-
parison) is given in the bottom row of Figure 7.

For a given data set, its intensity is estimated first via
direct adaptive kernel estimation, followed by a battery of
partitioned estimates using all combinations of the values
δ ,β ∈ {0.01,0.025,0.05,0.1} and LM = LN ∈ {16,32,64}.
The entire exercise is completed three times for differing
target resolutions of M = N ∈ {64,128,256}. All computa-
tions were performed in R (R Core Team, 2017) on a modern
desktop machine.

Accuracy of the approximation will be measured by the
integrated squared error (ISE)

ISE[ f̂ ] =
∫ (

f̂ − f
)2

(13)

where in this case f is the exact, directly computed estimate
and f̂ is the approximation using partitioned bandwidths.

Figure 8 shows boxplots of the ISE for each collection
of partitioned estimates (on the density scale) for each gen-
erated data set in Case 3, based on µ = 1000 with a target
resolution of M = N = 128. Results for the other cases, tar-
get resolutions and mean sample size are provided as online
supplementary material. All results tell the same story rel-
atively speaking, simply with, as we would expect, larger
overall error magnitudes and only slightly smaller computa-
tion times for the µ = 100 case.

Immediately striking are the adverse consequences of
excessive coarsening of the edge-correction surface via LM
and LN . In the Figure 8 results, the attempts to interpolate
the LM = LN = 16 surface back up to the desired M = N =

128 resolution introduce noticeable additional numeric er-
ror. That said, as soon as we consider either of the finer
LM×LN resolutions, the overall discrepancy with respect to
the direct estimates is reduced dramatically, with there being
little discernable difference when we consider using either
LM = LN = 32 or LM = LN = 64. Given an edge-correction
resolution, a choice of bandwidth discretisation at either the
intensity (δ ) or edge-correction (β ) stages has a minimal yet
fairly consistent impact on the median ISEs. The drawback
of the coarsest partitioning i.e. using δ = 0.1 or β = 0.1 (for
10 bandwidth bins) seems to be a greater chance of outlying
large error, though this tendency settles down as we decrease
these to 0.05 (20 bins); 0.025 (40 bins); or 0.01 (100 bins).

In terms of total elapsed execution times relative to di-
rect estimation, we note a marked improvement when the
estimate is obtained by partitioning. We can see in Figure 8
that the most influential factor is the fineness of the band-
width partitioning applied to the intensity itself. However,
cross-referencing these boxplots against the ISE results, we
can conclude that the additional computing time required
for use of the finest δ = 0.01 partitioning does not appear
to yield a meaningful improvement with respect to proxim-
ity to the direct estimate. For example in this instance, pro-
vided we ensured an edge-correction resolution of at least
LM = LN = 32, choosing δ = 0.05 for 20 bandwidth bins
would yield results little worse than direct estimation, with
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Fig. 8 ISEs relative to direct estimation (top) and wall clock timings relative to direct (bottom) for partitioned adaptive kernel intensity estimates
using all combinations of δ , β , and LM = LN , for Case 3; set are µ = 1000 and M = N = 128. For visual clarity we truncate the most extreme
outliers in the ISE plots; and the relative timings are placed on a log scale.

only around 2% of the typical direct computation time. To
place this into context, in our current implementation on a
modern desktop machine, direct evaluation in this case av-
erages roughly 20 seconds per estimate.

Choosing an ‘appropriate’ degree of partitioning in prac-
tice is largely application-dependent. That said, our collec-
tion of simulation results for all scenarios allow us to pro-
vide some general guidelines. First, it seems preferable to
retain a sufficiently fine (i.e. 642 or greater) edge-correction
surface; a decision that does not appear to have heavy conse-
quences in computational terms. A similar comment applies
to the edge-correction bandwidth partitioning parameter β ,
and we suggest using a value no coarser than β = 0.05.
Most importantly, for the intensity/density partitioning pa-
rameter, a value of around δ = 0.025 appears to provide
universally satisfactory ISEs tempered with an acceptable
computational burden—the additional time required to com-
pute the finer partitions offering progressively smaller rela-
tive improvements to ISE.

5 Adaptive Bandwidth: Multi-Scale Estimation via 3D
FFT

In the experiments reported above, the partitioning technique
yielded good approximations to the adaptive intensity esti-
mates with a substantial saving in computation. However, it
is still costly to apply this technique at multiple values of
the global bandwidth. The requirement to re-evaluate a ker-
nel estimate using different bandwidths occurs both in inter-
active data analysis and in automatic data-driven bandwidth
selection.

In this section, we propose a certain reformulation of the
adaptive smoothing problem for a point pattern in R2 into
one of a convolution in R3 so that it can be calculated using
Fourier techniques. It turns out that after evaluating a par-
ticular trivariate convolution once, we are essentially able to
obtain the adaptive intensity estimate, with edge-correction,
for any chosen global bandwidth scaling without any addi-
tional kernel evaluations.

5.1 Key Idea

The key idea is to extend the spatial domain into an extra
dimension, by introducing a third axis representing the log-
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arithm of the bandwidth. The result is “scale space” (Chaud-
huri and Marron, 2000). The family of kernel functions KKKh(·)
in two-dimensional space is replaced by a single kernel func-
tion in scale space

K (v1,v2,v3) = KKKexp(−v3)(v1,v2). (14)

Given a set of data points yyy1, . . . ,yyyn and corresponding band-
widths h1, . . . ,hn, consider the points ttt i = [yyyi, loghi]

> =

[yi1,yi2, loghi]
> in scale space. The convolution of the kernel

K with the counting measure ΨΨΨ on ttt1, . . . , tttn is

(K ∗ΨΨΨ)(v1,v2,v3)

=
∫
R3

K ([v1− t1,v2− t2,v3− t3]>)dΨΨΨ(t1, t2, t3)

=
n

∑
i=1

K ([v1− yi1,v2− yi2,v3− loghi]
>)

=
n

∑
i=1

KKKhi exp(−v3)([v1− yi1,v2− yi2]
>).

Evaluating this convolution on the plane where v3 = 0 yields

(K ∗ΨΨΨ)(v1,v2,0) =
n

∑
i=1

KKKhi([v1− yi1,v2− yi2]
>)

= λ̂1(v1,v2),

the adaptive kernel estimate of intensity (without edge cor-
rection) using individual bandwidths hi. Moreover, evaluat-
ing on the plane v3 =− logs gives

(K ∗ΨΨΨ)(v1,v2,− logs) = λ̂s(v1,v2),

the adaptive estimate using individual bandwidths shi. Thus,
a single convolution operation yields the adaptive kernel es-
timates using bandwidths shi for multiple values of s.

5.2 Technical Definition

The idea sketched above needs a careful restatement to en-
sure that the required quantities are well-defined and acces-
sible. First, suppose H = [hmin,hmax] represents the entire
range of permissible bandwidths, taking into account all de-
sired global scales via h0. Nominate any single value h# ∈H
to take the role of a ‘reference bandwidth’. Then, for any
bandwidth h ∈ H, let

z(h) = log(h/h#) = logh− logh#.

This is a 1–1 map from H onto Z = [zmin,zmax] where zmin =

z(hmin) and zmax = z(hmax). Note that the role of h# is simply
to ensure 0 ∈ Z, for practical reasons. The inverse map is

z−1(z) = exp(z)h# = exp(logh# + z).

Using our bandwidth-scaled planar kernel from the pre-
ceding sections, KKKh(·)(·), define a 3D kernel as

K (v1,v2,v3)=KKKz−1(−v3)
([v1,v2]

>)=KKKexp(−v3)h#([v1,v2]
>).

(15)

Now, assume we have our pre-computed set of observation-
specific Abramson bandwidths ĥhh= {ĥ1, . . . , ĥn} in hand. One
could calculate these initially via (3) simply setting h0 = 1
for any data set, though for numerical reasons it can be pru-
dent to use some scale-specific value, allowing our desired
rescaling (once all computations are complete) to operate
with respect to this initial choice of h0.

The n observations of our data set are now considered as
trivariate—the ith observation is represented by [yyyi,z(ĥi)]

>≡
uuui = [ui1,ui2,ui3]

>. Then we may express the convolution of
K with the counting measure ΨΨΨ on the points (ui1,ui2,ui3)

as

K ∗ΨΨΨ(v1,v2,v3)

=
∫
R3

K (v1− t1,v2− t2,v3− t3)dΨΨΨ(t1, t2, t3)

=
n

∑
i=1

K (v1−ui1,v2−ui2,v3−ui3)

=
n

∑
i=1

KKKexp{−(v3−z(ĥi))}h#([v1,v2]
>− yyyi)

=
n

∑
i=1

KKKexp(−v3)h#([v1,v2]
>− yyyi). (16)

Then, slicing (16) at v3 =− logs yields

K ∗ΨΨΨ(v1,v2,− logs)

=
n

∑
i=1

KKKz−1(logs+z(ĥi))
([v1−ui1,v2−ui2]

>)

= ∑
yyy∈Y

KKKexp(logs+log ĥi−logh#)h#([v1,v2]
>− yyy)

= ∑
yyy∈Y

KKKsh(yyy)([v1,v2]
>− yyy)

= λ̂sh0([v1,v2]
>); [v1,v2]

> ∈ R2, (17)

i.e. recovery of the adaptive kernel intensity estimate of the
original planar observations yyyi with corresponding bandwidths
sĥi; i = 1, . . . ,n. This shows that theoretically, any value of
s > 0, acting as the global bandwidth (or scaling of the ini-
tial choice thereof in pre-calculation of ĥhh) can be requested
following a single execution of the convolution.

In practice we would start with the Abramson bandwidths
h(vvv),vvv ∈W calculated from the pilot estimate as in (3) for
all discretised locations vvv. The range [amin,amax] of these
bandwidth values is calculated. Then we specify a priori the
range of global bandwidths of interest, say s ∈ [smin,smax]

where 0 < smin < 1 < smax. This determines the range of all
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permissible bandwidths H = [hmin,hmax] used in intensity es-
timation and edge correction, by hmin = sminamin and hmax =

smaxamax. Then we let Z = [zmin,zmax] where zmin = z(hmin),
zmax = z(hmax). Finally let

Z⊕ Ž = {z1− z2 : z1,z2 ∈ Z}= [zmin− zmax,zmax− zmin].

Calculations in the scale space are required to extend over
the interval Z⊕ Ž on the third axis. (It does not suffice to
compute results over Z, because the intensity estimate at any
rescaling value s ∈ [smin,smax] requires a slice to be taken at
− logs = z(h)− z(sh) where h ∈ H and sh ∈ H, implying
− logs ∈ Z⊕ Ž.)

5.3 Edge Correction

The edge-correction surface can also be expressed as a con-
volution, analogous to (7). Identify the two-dimensional plane
R2 with the z= 0 plane in three dimensions, E = {[t1, t2, t3]> :
t3 = 0}. Identify the window W with the corresponding sub-
set WE = {[t1, t2,0]> : [t1, t2] ∈W} of R3. Let LW be the
measure on R3 corresponding to Lebesgue measure on W ,
that is, LW (B) =

∫
W IB(t1, t2,0)dt1 dt2 for subsets B ⊆ R3.

Then, noting K is symmetric in the first two coordinates,
we have

(LW ∗K )(v1,v2,v3)

=
∫
R

∫
W

K (v1− t1,v2− t2,v3− t3)dt1 dt2 dt3

=
∫
R

∫
W

KKKz−1(−v3+t3)([v1− t1,v2− t2]>)dt1 dt2 dt3

=
∫
R3

IW (t1, t2, t3)

×KKKz−1(t3−v3)
([t1− v1, t2− v2]

>)dt1 dt2 dt3 (18)

=
∫
R2

IW (t1, t2,0)KKKz−1(0−v3)
([t1− v1, t2− v2]

>)dt1 dt2

(19)

with (19) resulting naturally from the trivariate convolution
in (18) when we consider the fact that the original trivariate
integral is non-zero only when t3 = 0. Thus, for a planar co-
ordinate [v1,v2]

>, slicing (19) at the corresponding z-scaled
adaptive bandwidth as v3 =−z{h([v1,v2]

>)} gives

LW ∗K (v1,v2,−z{h([v1,v2]
>)})

=
∫
R2

IW (t1, t2,0)

×KKKz−1(z{h([v1,v2]>)})([t1− v1, t2− v2]
>)dt1 dt2

=
∫

W
KKKh([v1,v2]>)

([t1− v1, t2− v2]
>)dt1 dt2, (20)

which is precisely the edge-correction factor for the adap-
tive estimator at a location [v1,v2]

> ∈W as per (5). Edge-
correction requires us to take a slice at −z(h); h ∈ H, which
again demands access to values on the interval Z⊕ Ž.

5.4 Implementing the 3D Convolution

For estimation in practice we must again discretise the ob-
servation space, which now entails construction of a 3D M×
N×Q-cell evaluation lattice within an appropriate 3D rect-
angular box R ⊂ R3. This enclosing box is defined by the
original planar rectangle R in the first two coordinates, and
by the interval Z⊕ Ž along the third axis.

Let γγγ(i, j,k) = [γi1,γ j2,γk3]
> denote the centroid of the

voxel at the ith, jth planar- and kth z-scaled bandwidth po-
sition, defining their set as C = {γγγ(i, j,k) : i ∈ {1, . . . ,M}, j ∈
{1, . . . ,N},k ∈ {1, . . . ,Q}}. Then, let ω(i, j,k) be the discre-
tised counting measure of ΨΨΨ , on C , defined as the number of
observations falling into voxel (i, j,k); ω(i, j,·)= 0∀ [γi1,γ j2]

> /∈
W . For binned estimation of the adaptive intensity expressed
in (16), we therefore have a 3D discrete convolution on C
as follows:

K ∗ω(γγγ(i, j,k))

=
M−1

∑
`1=1−M

N−1

∑
`2=1−N

Q−1

∑
`3=1−Q

K (a1`1,a2`2,a3`3)ω(i−`1, j−`2,k−`3).

(21)

In (21), recall that a1 and a2 are defined as the side lengths
of the voxels in the first and second coordinates respectively.
Accordingly, allow a3 to denote the cell length in the third
dimension.

Performing the trivariate discretisation for the PBC data
using an 32×32×32 illustrative lattice, Figure 9 shows the
dimensionally augmented observations using the observation-
specific Abramson bandwidths rescaled and placed on the
appropriate interval Z⊕ Ž. Also shown is the enclosing box
R. The topmost image draws those voxels of the illustrative
lattice within R that have ω(i, j,k) > 0. The 2D study region
is superimposed at the z value closest to zero, as defined for
our edge-correction lookups in (20). Note, as dictated by the
Abramson smoother, that densely clustered points are asso-
ciated with smaller bandwidths. The bottom image displays
isosurfaces of the 3D kernels K for four selected observa-
tions in the scale space. Note the intersection of the shaded
2D window W with the kernels, yielding the adaptive inten-
sity estimate at a specified level of global smoothing. Tak-
ing parallel slices of the scale space by moving W up and
down the z-axis corresponds to decreasing and increasing
the global smoothing parameter respectively as per (17).

Prior to implementation of (21) using the FFT, in the
same way the functionals of the 2D convolution (8) must
allow for the periodic behaviour of the transform, the struc-
tures of the 3D convolution must also be modified appro-
priately. Apart from the increase in dimension, these objects
are formed in much the same way: Retaining PM = 2M and
PN = 2N from Section 3.3, let PQ = 2Q and define ωωω0 as
a PM × PN × PQ array with the M ×N ×Q sub-box start-
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Fig. 9 Augmenting the dimension of our planar data to include the z-
scaled bandwidth z(ĥi) attached to the ith observation. Top: Voxels of
the assumed 32× 32× 32 evaluation lattice that contain at least one
point in the 3D space. Bottom: Isosurfaces of the 3D kernels K for
four selected observations; a given slice of the z-axis indicated by in-
tersection of the shaded 2D study window with the 3D kernels in the
scale space.

ing from the lowest vertex being occupied with the 3D ar-
ray of counts ωωω =

[
ω(i, j,k)

]
i=1,...,M; j=1,...,N;k=1,...,Q; the re-

maining entries set to zero. Then, construct the 3D PM ×
PN ×PQ reflected kernel evaluation array K0 with 2D lay-
ers in the first two (planar, spatial) coordinates exactly as
KKK0 previously, with additional specification of the sequence
ξ = 0, . . . ,a3(Q− 1),−a3Q, . . . ,−a3 along the third axis.
Figure 10 provides schematics of ωωω0 along with one of the
2D layers of K0 given a generic single value of ξ .

The trivariate convolution may then be computed on the
extended array, and restricted to the original M×N×Q ar-
ray. Then for any global bandwidth sh0 with s ∈ [smin,smax]

we may evaluate the adaptive kernel estimate by slicing at
z = − logs. The corresponding slice of the M×N ×Q ar-
ray is at k = Ω(− logs) where Ω(z) = dQ(z− zmin)/(zmax−
zmin)e. This provides the binned adaptive kernel intensity es-
timate on R:

λ̂
∗
sh0

(γγγ(i, j,k)) = ℜ
[
F−1(F (ωωω0)F (K0)

)]
(i, j,k);

i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N},k = Ω(− logs).

Restriction to the study region W forms the final result for
the adaptive intensity estimate with global bandwidth sh0.

Lastly, the discretised version of the edge-correction con-
volution (18) we use in practice on the extended voxel lattice
is defined as

LW ∗K (γi1,γ j2,γk3)

= a1a2

M−1

∑
`1=1−M

N−1

∑
`2=1−N

Q−1

∑
`3=1−Q

K (a1`1,a2`2,a3`3)

×IW (γγγ(i−`1, j−`2,k−`3)
); (22)

i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N},k ∈ {1, . . . ,Q}.

Consider once more the extended and reflected kernel evalu-
ation array K0 defined earlier, and the extended, zero-padded
array IW,0 defined in the same way as ωωω0 with the M×N×
Q lower sub-box now occupied by the appropriate entries of
IW at those coordinates. FFT operations subsequently pro-
vide, in the usual fashion, the PM×PN×PQ convoluted struc-
ture which may then be subsetted as appropriate to obtain
the corresponding edge-correction factor for a given spatial
location and associated bandwidth value:

q∗h([γi1,γ j2]>)
([γi1,γ j2]

>) = ℜ
[
F−1(F (IW,0)F (K0)

)]
(i, j,k);

i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N},k = Ω(−z{h([γi1,γ j2]
>)})

Our edge-corrected, binned adaptive kernel intensity esti-
mate computed via Fourier transformations is thus available
as λ̂ ∗sh0

(γγγ(i, j,− logs))/q∗sh([γi1,γ j2]>)
([γi1,γ j2]

>) ∀ [γi1,γ j2]
> ∈W .

One final technical issue warrants attention. In practice,
we modify K slightly throughout and use

Kτ(v1,v2,v3) = τ(v3)K (v1,v2,v3),

where τ(·) : R→ [0,1] is a tapering function on the relevant
domain of the third axis, in place to ensure K is smooth
and bounded. We stipulate that τ(z) will return 1 for any
value z ∈ Z⊕ Ž, tapering smoothly off to zero beyond these
extremes. Our implementation uses the cosine taper (Harris,
1978), defined in the current context by

τ(z) =



0 z≤ d1{
1− cos

(
π

z−d1
d2−d1

)}
/2 d1 < z < d2

1 d2 ≤ z≤ d3{
1− cos

(
π

z−d4
d3−d4

)}
/2 d3 < z < d4

0 z≥ d4

where the change points d1 through d4 are calculated based
on the span of Z ⊕ Ž and the extension in this coordinate
used in the construction of the discretised, reflected kernel
evaluation array. We dictate that

d1 = (zmax− zmin−a3Q)/2;

d2 = zmax− zmin;

d3 = zmin− zmax; and

d4 = (a3(Q−1)+ zmin− zmax)/2.
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Fig. 10 Schematics of the extended PM×PN×PQ forms of the zero-padded pixel weight matrix (ωωω0, within which 0 denotes a M×N×Q array of
zeros) and one layer of the PM ×PN ×PQ reflected kernel evaluation array K0 at a third coordinate value of ξ = 0, . . . ,a3(Q−1),−a3Q, . . . ,−a3
in preparation for 3D Fourier transformation.

If we rewrite equations (16)–(22) in terms of Kτ instead
of K per se, note that no results are affected when we are
considering only those values z ∈ Z⊕ Ž that are relevant to
our desired multi-scale intensities and corresponding edge-
correction surfaces.

5.5 Simulation Study: Naı̈ve Bootstrap

Choosing an appropriate level of smoothing in practice given
an observed data set is an important and non-trivial exercise.
Concerted research efforts over time have led to the develop-
ment and appraisal of various data-driven bandwidth selec-
tors for the fixed bandwidth kernel density estimator, and we
benefit from the equivalence of bandwidth selection for den-
sities/intensities (Diggle and Marron, 1988). Staple methods
that now form the core of a researcher’s univariate smooth-
ing toolbox can be found in Wand and Jones (1995), Jones
et al (1996), and references therein.

Several methods originally designed for univariate smooth-
ing can be extended to multivariate kernel estimation, and
Sain et al (1994) demonstrate this for various classical selec-
tors. Sophisticated bandwidth selectors for non-scalar mul-
tivariate bandwidth parameterisations exist (see e.g. Wand
and Jones, 1993; Duong and Hazelton, 2003, 2005), and
Bayesian methods have also been discussed (Zhang et al,
2006).

To the best of our knowledge, however, no research has
yet specifically targeted development of selectors for global
bandwidth selection for the adaptive intensity estimator. In-
deed, even an investigation of the performance of existing
selectors designed for fixed-bandwidth smoothing has re-
mained elusive, in part due to the heavy computational costs

involved with repeated, direct evaluation of the target den-
sity. In this section, we demonstrate how the 3D FFT strate-
gies can be used to facilitate these new pursuits, using a
computationally demanding bootstrap approach.

In general, the idea of a bootstrapping procedure is to
use resampling to assess properties of some random vari-
able that depends upon the originally observed data (and any
relevant additional parameters or functionals). In the con-
text of a kernel estimate f̂ of some density f , a common
performance criterion is the integrated squared error (13).
It has been suggested (Silverman, 1986; Taylor, 1989; Far-
away and Jhun, 1990) that we may choose an approximately
optimal bandwidth by using bootstrapping to minimise the
mean ISE (MISE) with respect to the amount of smoothing.

Letting the ISE be our property of interest, a bootstrap
version for our adaptive estimates can be defined as

MISE[λ̂h0 ] = E∗
[∫

W

{
λ̂h0(xxx|Y

∗)− λ̆η(xxx|Y )
}2

dxxx
]

where, given some (fixed or adaptive) reference kernel in-
tensity estimate constructed of the original data Y , λ̆η(xxx|Y ),
we have that Y ∗(i) ∼ λ̆η(xxx|Y ); E∗ denoting expectation with
respect to the distribution of the bootstrapped data.

In practice, we generate N∗ bootstrap samples Y ∗(i)∼ λ̆η(xxx|Y )
possessing corresponding sizes n∗(i) ∼ POI(n); i = 1, . . . ,N∗.
Taking the evaluation grid notation from Section 2.4, we
minimise with respect to h0 the quantity

M̂ISE[λ̂h0 ] =
a1a2

N∗
N

∑
i=1

∑
ccc∈C∩W

{
λ̂h0(ccc|Y

∗
(i))− λ̆η(ccc|Y )

}2
.

(23)
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Thus, in order to find

h(opt)
0 = argminh0

{
M̂ISE[λ̂h0 ]

}
,

an inspection of (23) indicates the need to calculate N∗ ker-
nel intensity estimates, each one over a range of candidate
global bandwidths. The 3D slicing technique allows the lat-
ter task to be completed quickly.

To time and test this bootstrap search for h(opt)
0 , we gen-

erated another 100 LGCP intensities and corresponding point
patterns using the Case 1, µ = 1000 specification from the
simulation designs detailed in Section 4.2. In execution, for
each of the 100 iterations, we used N∗ = 50 bootstrapped
data sets to trial each candidate h0 via both the direct and
3D FFT approaches; and used an evaluation grid resolu-
tion of M = N = 64 (additionally specifying Q = 64 for
the 3D FFT). For the fastest results in each case, when em-
ploying direct estimation, numerical optimisation routines
were used to find h(opt)

0 ; in using the 3D FFT, the individ-
ual MISEs were simply calculated for a fine increasing se-
quence of global bandwidth values; the value correspond-
ing to the minimal estimated MISE being returned. In both
cases, the fixed bandwidth pilot density used in calculation
of the Abramson bandwidths utilises the classical leave-one-
out least-squares cross-validation method to set the pilot band-
width (see e.g. Silverman, 1986), and the reference intensity
of the ‘original’ data λ̆η(·|Y ) is also a fixed-bandwidth ker-
nel estimate, with η set via Terrell (1990)’s oversmoothing
factor (it is suggested in the univariate fixed bandwidth set-
ting that a generous level of smoothing be used for the ref-
erence bandwidth; see Hall et al, 1992).

Figure 11 summarises the results, which take the form of
a scatterplot of the chosen optimal global bandwidths at each
iteration and a pair of boxplots comparing the ISEs between
each ‘true’ intensity and the two respective estimates. Also
displayed are the relative wall-clock timings.

Examining the selected bandwidths, we note overall agree-
ment in the results. Some discrepancy in the individually
chosen global bandwidths when comparing the directly ob-
tained values to their 3D FFT counterparts is to be expected
due to the discretisation of the z-axis in evaluting the trivari-
ate convolution; however, any discrepancies appear mini-
mal. Importantly, the chosen bandwidths are sufficiently sim-
ilar such that the difference in ISE performance is also min-
imal. The third plot highlights the natural improvement in
computational expense, with the 3D FFT method taking roughly
10% of the direct bootstrap time. (In our current environ-
ment, the direct bootstrap took nearly half an hour to com-
plete per data set, with the 3D FFT implementation taking
less than three minutes.)
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Fig. 11 Results of the naı̈ve bootstrap simulation study. Top: Scatter-
plot of optimal global smoothing parameters selected using the 3D FFT
approach against the direct approach, with a solid line denoting perfect
equality; dashed lines denoting ±2 standard deviations of the direct
approach. Middle: Boxplots of the log(ISE)s computed with respect to
the true intensities generated at each iteration. Bottom: Relative wall-
clock timings.

6 Application: Capuchin Predation Risk

For a real-world example, we turn to a novel analysis of the
spatial variation in alarm calls attributed to capuchin mon-
keys spotting potential predatory threats in a region of Costa
Rica. These data recently appeared in original work by Cam-
pos and Fedigan (2014), with one of the key objectives being
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the identification of possible areas where certain alarm calls
occurred more than others.

6.1 Kernel Density Ratios

Campos and Fedigan (2014) used adaptive kernel density
estimation to construct relative risk surfaces as per Davies
and Hazelton (2010). For this example, we re-estimate one
of these surfaces using an improved version of the adaptive
relative risk function detailed in Davies et al (2016). In do-
ing so, we employ the 3D FFT technique to choose a global
smoothing bandwidth via bootstrapping as outlined in the
previous section, followed by use of the bandwidth parti-
tioning approach to estimate the required intensities.

The kernel log relative risk or density ratio function is
an exploratory tool used to compare two estimated densities
on W ⊂ R2. Let X = {xxx1, . . . ,xxxnX } and Y = {yyy1, . . . ,yyynY

} be
two point patterns observed on W . In the adaptive setting,
we have

r(xxx) = log
λ̂h0(xxx|X)/qh(xxx|X)(xxx)

λ̂h0(xxx|Y )/qh(xxx|Y )(xxx)
+ log

nY

nX
, (24)

where, in the same way as the intensity estimates them-
selves, the dependence of the edge-correction factors on the
respective data sets is emphasised with the extended nota-
tion of the bandwidth function as h(xxx|·) in the subscript.

We adopt the terminology of Bithell (1990, 1991); Kel-
sall and Diggle (1995) developed for applications in geo-
graphical epidemiology, and refer to X as the case data set,
and Y as the control data set. A peak in resulting case/control
log-ratio surface of kernel estimated densities thus repre-
sents a localised extreme over- or under-representation of
cases relative to the density of the controls. Use of Abram-
son’s adaptive smoothing regimen for the requisite densi-
ties was explored in Davies and Hazelton (2010); there are
theoretical reasons for choosing the same global smoothing
parameter for both numerator and denominator densities. In
addition, some numerical instability can be avoided by also
forcing the variable bandwidth factors for both density es-
timates to be identical (Davies et al, 2016). This so-called
symmetric adaptive density ratio amounts to choosing the
same pilot density estimate for both λ̂h0(·|X) and λ̂h0(·|Y ); a
situation where the need for edge correction is conveniently
obviated due to cancellation of the subsequently identical
corrective surfaces in the ratio.

For our purposes, we restrict attention to the subset of
the alarm-calling data attributed to snakes—these will form
the ‘cases’ X—shown in the leftmost panel of Figure 12. To
adjust for the overall capuchin activity in the study region,
habitat location data are also collected—the ‘controls’ Y —
and can be seen in the middle panel of Figure 12. Noticeable
is the shape formed by the at-risk habitats in comparison to

the study window, which in our case we simply define as
the rectangular region encapsulating the data. The region is
merely clipped in a certain way in the south at approximate
coordinates reflecting certain geographical impediments to
habitation (Dr. F. A. Campos, personal communication). See
the original work by Campos and Fedigan (2014) for a de-
tailed account of the data.

6.2 Estimation via 3D FFT and Partitioning

The first step in implementation of the symmetric adaptive
relative risk estimator is a decision regarding the common
case/control pilot density which will be used to calculate
the variable bandwidths. For the capuchin data, we pool the
alarm and habitat observations X ∪Y , and use fixed band-
width estimation with the smoothing parameter chosen via
leave-one-out least-squares cross-validation. The chosen band-
width is set at h = 0.1516 km (4 d.p.); the estimate is shown
in the rightmost panel of Figure 12.

Next, we require specification of a global smoothing band-
width h0, common to both case and control densities. We
execute the 3D FFT bootstrap approach detailed in the pre-
vious section using the pooled data, in which the reference
density was a fixed bandwidth estimate with reference band-
width η = 0.2798 km chosen according to Terrell (1990)’s
oversmoothing factor. The bootstrap took approximately 170
seconds to complete, and an optimal bandwidth of h(opt)

0 =

0.1613 km was selected.
The case and control kernel-smoothed intensities were

estimated with h(opt)
0 and the aforementioned common pilot

density, yielding a symmetric bandwidth function h(·|X∪Y )
for both. As noted, it was not necessary to employ edge-
correction in the calculation of either of the two intensity
functions due to cancellation of the equivalent qh(xxx|X∪Y )(xxx)
factors in the ratio (24). Bandwidth quantile-partitioning was
used for a target resolution of M =N = 128, setting δ = 0.01
for 100 bandwidth bins. The wall-clock time taken to com-
plete these two estimates totalled approximately 4 seconds.

Finally, to embellish sub-regions of potentially anoma-
lous activity relative to the background habitat usage, asymp-
totically derived tolerance contours were computed at statis-
tically significant 5% thresholds of both heightened and re-
duced risk. Theoretical details may be found in Davies and
Hazelton (2010). Noteworthy is that calculation of the re-
lated p-value surfaces requires functionals that involve the
edge-correction factors, regardless of symmetry of the band-
widths. Fortunately, we can make use of the partitioning ap-
proach exactly as described in Section 4.1 and demonstrated
in Figure 6 to facilitate these calculations. In so doing, set-
ting β = 0.01 for 100 bandwidth bins and without reducing
the resolution of the edge-correction surfaces (i.e. keeping
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Fig. 12 Capuchin data; locations of alarm calls attributed to predatory snakes (left) and overall habitat usage (middle). On the right is a fixed-
bandwidth kernel estimate of the pooled habitat/alarm data with smoothing parameter set via unbiased leave-one-out cross-validation, defining the
function that serves as a common pilot density for calculation of the respective sets of adaptive bandwidths. Coordinates expressed in km.

LM and LN set at the target resolution M = N = 128), the
tolerance contours took roughly 1.2 seconds to produce.

Thus, from start to finish, using the computational meth-
ods defined in the preceding sections we achieve all three of
the bandwidth selection, intensity estimation and risk sur-
face testing steps in around 175 seconds for this analysis.
The topmost panel of Figure 13 shows the resulting log-risk
function, with tolerance contours superimposed at the afore-
mentioned 5% levels.

The observed risk function fluctuates over the study re-
gion, with pockets of low risk interspersed with peaks in
the surface. According to the tolerance contours, there are
several statistically significant low-risk areas where snake-
related alarm calls appear minimal relative to the background
habitat usage; with one larger area on the western border. Al-
though there are several peaks in the surface, few appear to
be flagged as significant by the contours, barring one small
sub-area in the southeast, and a very small indication of an-
other further west. Examining the top right image in Figure 3
of Campos and Fedigan (2014), we see general agreement in
the appearance of the estimated risk function. One key dif-
ference with the original analysis, however, is that use of the
symmetric adaptive risk estimator here has ‘dampened’ the
enthusiasm of the tolerance contours when it comes to cor-
doning off significant fluctuations in risk, leading to a more
conservative spatial test (a feature noted in Davies et al,
2016).

6.3 Direct Estimation

We repeated the analysis with direct estimation of all re-
quired functions. Bootstrap bandwidth selection was achieved
in 4377 seconds and a slightly larger optimal global band-
width of 0.1682 km was returned. The intensity estimation
step took around 19 seconds, and tolerance contour calcu-
lation extended to approximately 48 seconds. Thus, in stark
contrast to the grand total wall clock time of less than three

minutes in Section 6.2, performing the entire analysis in
a direct fashion requires a total time of almost one-and-a-
quarter hours.

The result of direct estimation is shown in the middle
panel of Figure 13. Visually, there is little difference be-
tween the direct estimate and previous one, with magni-
tude and spatial appearance consistent over the study region.
The tolerance contours flag the same regions of significantly
lower and higher risk, with some minor differences observ-
able for the smallest subregions.

The bottom panel of Figure 13 shows the difference be-
tween the approximative and direct estimates of the log rel-
ative risk function. By and large, the differences are minor
across the whole region. Although there are some small ar-
eas with larger discrepancies, these occur in areas far from
any observations and against the boundary—understandably
where we would expect the partition approximation to per-
form worse—and also where interpretation under any cir-
cumstances should be cautious at best.

7 Discussion

There are many disciplines in which observed planar data
are complex in appearance. Reliable estimation of spatial
structure for both exploration and modelling is typically a
key goal of statistical analyses, and the flexibility of kernel
smoothing has made it a popular and standard tool in any an-
alyst’s toolbox for continuous spatial density/intensity func-
tion estimation.

The classical fixed bandwidth estimator can often be ill-
equipped to handle this task, particularly when the data are
highly heterogeneous (indeed, as we have seen, even moder-
ate heterogeneity can be problematic). The data-driven adap-
tive estimator of Abramson (1982) can improve both theo-
retically and practically upon its fixed bandwidth counter-
part. However, to date, the high computational demands of
implementing the adaptive estimator have hampered both
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Fig. 13 Log relative risk functions for the capuchin predation data, in-
cluding asymptotic tolerance contours, produced via symmetric adap-
tive kernel intensity estimation. Top: Result based on employing the
novel 3D FFT and partitioning method. Middle: Result of direct esti-
mation for all components. Bottom: Difference between the approxi-
mative and direct result.

development of additional methods of inference and the abil-
ity of applied researchers to access the existing techniques
for their own analyses.

We have proposed and appraised the performance of com-
putational alternatives to direct estimation of Abramson’s
adaptive kernel intensity estimator. Using the variable band-
widths assigned to each data point, we can form partitions
of the data based on the bandwidth quantiles, leading to fast
approximations as a sum of fixed bandwidth estimates. Our
simulations reveal very satisfactory approximations to direct
estimates, even using rather coarse bandwidth bins.

An alternative option involves augmenting the dimen-
sion of our planar data to include the variable bandwidths
themselves along a third axis. This enables expression of a
trivariate convolution for both intensity estimation and the
associated adaptive edge-correction factors, in turn allow-
ing 3D fast-Fourier evaluation of the required calculations.
In fact, if we choose a particular scaling of the bandwidths,
the convolution effectively yields the intensity at all global
bandwidths in a prespecified interval simultaneously; indi-
vidual 2D intensities subsequently available as virtually in-
stantaneous array slices at the desired bandwidth level. The
real benefit of the trivariate convolution approach therefore
lies with problems where kernel estimates must be repeat-
edly calculated at different bandwidths, such as in the devel-
opment of bandwidth selection algorithms. We implemented
a computationally demanding bootstrap to explore this capa-
bility, and simulations showed excellent performance of the
3D FFT version at a dramatic reduction to computational
expense when compared to direct estimation.

Finally, we brought together the 3D FFT-based bootstrap
selector and partition estimation for producing an adaptive
kernel spatial relative risk surface of capuchin alarm calls
in a region of Costa Rica. We achieved this in around three
minutes using the new computational methods, with direct
estimation taking well over an hour. As the pair of simula-
tion studies suggested, the faster estimate showed excellent
agreement to the direct version. Importantly, the messages
gained from an assessment of tolerance contours for statisti-
cally significant peaks and troughs in the surfaces were the
same.

To motivate further research, testing, and applications
utilising the adaptive estimator (some ideas follow below),
we have implemented the 3D FFT technique (with edge cor-
rection) in the R language. The code is freely available in
the latest versions of the spatstat and sparr packages on
the Comprehensive R Archive Network (CRAN). The band-
width partitioning method can be achieved in sparr.

The benefits of the computational methods discussed here
are not limited to the specific techniques and applications we
have described. As noted, the most immediate area of fu-
ture research lies in the development of bandwidth selectors
for which, thanks to the fast slice-lookup ability afforded by
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the 3D convolution, we are no longer required to reevalu-
ate the planar estimate for each new global bandwidth. This
opens up a range of new possibilities for data-driven band-
width selectors; a scrutiny of a collection of classical selec-
tors for the fixed bandwidth estimator (e.g. bootstrap, least-
squares/likelihood cross-validation) is the next logical step.
Further investigation from a Bayesian perspective is another
option, see for example Zhang et al (2006) and Hu et al
(2012).

Our methods can also be applied to a spatially anisotropic
kernel, provided the global scaling parameter s is still a scalar.
However, new challenges are presented when it comes to
bandwidth selection for unconstrained bandwidth matrices.
Recent work by Gramacki and Gramacki (2017a,b) focusses
on these issues.

Finally, we can in theory easily extend the ideas to data
sets of higher dimension. One particular area of interest is
the estimation of spatiotemporal intensities and relative risk
functions; see e.g. the recent work by Fernando and Hazel-
ton (2014) and references therein. This estimator is currently
defined only for a fixed bandwidth, and a natural area of fu-
ture research is adaptive smoothing for the same types of
problems. It is therefore imperative that computational ex-
pense is reined in, and the work here provides viable avenues
for this pursuit.
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