Citation

Davies, T. and Baddeley, A. 2017. Fast computation of spatially adaptive kernel estimates. Statistics and Computing: pp. 1-20. http://doi.org/10.1007/s11222-017-9772-4

Supplementary Material for "Fast computation of spatially adaptive kernel estimates" - Partition Accuracy Simulation Results

Tilman M. Davies and Adrian Baddeley
May 15, 2017

Supplementary figures (Supp. Fig.) 1-6 are Case 1; 7-12 are Case 2; 13-18 are Case 3; 19-24 are Case 4.

CASE 1

Supp. Fig. 1: $\mu=\mathbf{1 0 0}, M N=6 \mathbf{4}^{\mathbf{2}}$

Supp. Fig. 2: $\mu=100, M N=128^{2}$

Supp. Fig. 3: $\mu=100, M N=\mathbf{2 5 6}^{\mathbf{2}}$

Supp. Fig. 4: $\mu=\mathbf{1 0 0 0}, M N=64^{2}$

Supp. Fig. 5: $\mu=1000, M N=128^{2}$

Supp. Fig. 6: $\mu=\mathbf{1 0 0 0}, M N=\mathbf{2 5 6}^{\mathbf{2}}$

CASE 2

Supp. Fig. 7: $\mu=\mathbf{1 0 0}, M N=64^{\mathbf{2}}$

Supp. Fig. 8: $\mu=100, M N=128^{2}$

Supp. Fig. 9: $\mu=\mathbf{1 0 0}, M N=\mathbf{2 5 6}{ }^{\mathbf{2}}$

Supp. Fig. 10: $\mu=\mathbf{1 0 0 0}, M N=64^{\mathbf{2}}$

Supp. Fig. 11: $\mu=1000, M N=128^{2}$

Supp. Fig. 12: $\mu=\mathbf{1 0 0 0}, M N=\mathbf{2 5 6}^{\mathbf{2}}$

CASE 3

Supp. Fig. 13: $\mu=100, M N=64^{2}$

Supp. Fig. 14: $\mu=100, M N=128^{2}$

Supp. Fig. 15: $\mu=\mathbf{1 0 0}, M N=\mathbf{2 5 6}^{\mathbf{2}}$

Supp. Fig. 16: $\mu=\mathbf{1 0 0 0}, M N=64^{\mathbf{2}}$

Supp. Fig. 17: $\mu=1000, M N=128^{2}$

Supp. Fig. 18: $\mu=\mathbf{1 0 0 0}, M N=\mathbf{2 5 6}^{\mathbf{2}}$

CASE 4

Supp. Fig. 19: $\mu=100, M N=64^{2}$

Supp. Fig. 20: $\mu=100, M N=128^{2}$

Supp. Fig. 21: $\mu=\mathbf{1 0 0}, M N=\mathbf{2 5 6} \mathbf{2}^{2}$

Supp. Fig. 22: $\mu=\mathbf{1 0 0 0}, M N=\mathbf{6 4}^{\mathbf{2}}$

Supp. Fig. 23: $\mu=1000, M N=128^{2}$

Supp. Fig. 24: $\mu=\mathbf{1 0 0 0}, M N=\mathbf{2 5 6}^{\mathbf{2}}$

