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Abstract

This papers addresses the stock option pricing problem in a continuous time market

model where there are two stochastic tradable assets, and one of them is selected as a

numéraire. An equivalent martingale measure is not unique for this market, and there

are non-replicable claims. Some rational choices of the equivalent martingale measures

are suggested and discussed, including implied measures calculated from bond prices

constructed as a risk-free investment with deterministic payoff at the terminal time. This

leads to possibility to infer a implied market price of risk process from observed historical

bond prices.
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1 Introduction

This paper addresses the stock option pricing problem in a continuous time market model.

We consider the case where there are two stochastic tradable assets, and one of them is

selected as a numéraire. This setting corresponds to a generalized Black-Scholes model where

stochastic deviations in the bond prices are allowed. The classical Black and Scholes model

includes a bond or money market account with the price B(t) and a single risky asset with

the price S(t); the process B(t) is assumed to be non-random or risk-free and is used as a
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numéraire, and S(t) is assumed to be a stochastic Itô process with constant volatility. This

is a so-called complete market where any claim can be replicated and where there is a unique

equivalent martingale (risk-neutral) measure equivalent to the historical measure; the price of

a derivative is defined via the expectation of the discounted payoff by this unique equivalent

martingale measure.

The pricing of derivatives is usually more difficult for so-called incomplete market models

where an equivalent martingale measure is not unique; see, e.g., El Karoui and Quenez (1995).

Some important examples of market incompleteness arise when the money market account

is assumed to have a martingale part. Cheng (1991), Kim and Kunitomo (1999), Benninga

et al. (2002), and Back (2010), considered an incomplete modification of the Black-Scholes

model where B(t) was an Itô process. The cited papers considered martingale pricing method

where the option price is calculated as the expectation of the discounted claim under some

equivalent risk-neutral measure (martingale measure) such that the discounted stock price

S(t)/B(t) is a martingale on a given time interval [0, T ] under this measure. Cheng (1991)

analyzed only one equivalent martingale measure among all equivalent martingale measures;

see Example 1 (iv). Benninga et al. (2002) considered a multi-stock market under require-

ments that make the choice of an equivalent martingale measure unique in the case of a single

stock and stochastic bond; see Example 1(iii). Geman et al. (1995) considered pricing of

replicable claims only. Kim and Kunitomo (1999) studied asymptotic properties of this price

with respect to a particular equivalent martingale measure. Vecer and Xu (2004) applied

random numéraire to reduce computational dimension for Asian options and general semi-

martingales. Issaka and SenGupta (2017) applied random numéraire to reduce computational

dimension for variance swap options and models based on both Brownian motion and jump

processes. In the cited works, the pricing was studied for certain selected measures, and the

impact of non-uniqueness of an equivalent martingale measure was not discussed, as well as

the presence of non-replicable claims. Some related results and more references can be found

in Vecer (2011), Jeanblanc et al (2009), Ch.2, and Schroder (1999).

For portfolio selection problems, related questions arise in the setting with without a ran-

dom numéraire; see, e.g., Karatzas and Kardaras (2007), Kardaras (2010), Becherer (2010).

In addition, a similar setting covers portfolio selection models without riskless assets, includ-

ing discrete time market models and even single period market models; see, e.g. Won et al

(2008).

In this paper, we revisited the pricing problem for options for a market with two tradable

stochastic assets. We consider a model with a continuum of different equivalent martingale

measures and with claims that cannot be replicated, even when the appreciation rate and
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volatility coefficients are constant (Proposition 2). We investigate the impact of the presence

of different equivalent martingale measures and non-replicable claims. Our model is close to

the model from Cheng (1991) with a modification that ensures the existence of many equiv-

alent martingale measures. Cheng (1991) studied an impact of the absence of an equivalent

martingale measure in the setting with a stochastic bond price B(t) such that B(T ) = 1. In

this case, the appreciation rate of the discounted stock price is imploding when terminal time

is approached, and the Novikov’s condition of existence of an equivalent martingale measure

is not satisfied. Our setting removes this feature; we consider a stochastic numéraire without

restrictions on the terminal price. This could be close to the model from Cheng (1991) if one

considers a stochastic bond with the price B(t) maturing at T+ε, i.e., such that B(T+ε) = 1,

for an arbitrarily small ε > 0. We suggest some criterions of replicability (Theorems 1 and

2).

We suggest a parametrisation of the set of equivalent martingale measures that helps to

select reasonable equivalent martingale measures, including a measure implied form observed

prices of zero coupon bonds (Theorems 7). We discuss some particular choices of these

measures, including a measure implied form observed prices of zero coupon bonds and a

measure that ensures local risk minimizing hedging strategy (Examples 2-5 and Theorem 8).

Further, we investigate pricing of zero coupon bonds for this market, and derive an equa-

tion for the associated risk-free rate or the yield to maturity (Section 5). In this section, we

suggest one more approach to selection of equivalent martingale measures. These bonds are

auxiliary risk-free assets builded upon one of a risky assets. Using these results, we obtained

that, for a market model with stochastic numéraire, it is possible to estimate the market price

of risk and therefore the appreciation rate of the stock price process as an implied parameter

inferred from a single observed market price of a zero coupon bond, following the classical

approach to the so-called implied volatility where the Black-Scholes formula is reversed. This

is a novel result, since, as far as we know, this is the first attempt to derive the implied market

price of risk based on the bond prices. It appears that estimation of the appreciation rate

of stock prices and the market price of risk process from the historical stock prices data is a

quite challenging problem that is important for financial applications, especially for optimal

portfolio selection. For financial models, estimation of these processes is more difficult than

estimation of the volatility since the trend for financial time series is usually relatively small

and unstable. Some results and references for the estimation of the appreciation rate and

application to portfolio selection can be found in Brennan (1998), Dokuchaev (2005), and

Dokuchaev (2002), Ch.9, p.128. Currently, there are few other implied processes considered

in the literature, besides the classical implied volatility. Turvey and Komar (2006) consid-
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ered inference of the implied value a − θ1σ from the market option price, in a model that

corresponds to a special case of our model with σ̂ = ρ = ρ̂ = 0, presuming that this value

is used as the appreciation rate under the pricing measure; for the Black and Scholes model,

this value should be the risk-free rate. The implied cumulate risk-free rate was considered

in the framework of Black and Scholes model in Dokuchaev (2006) and Hin and Dokuchaev

(2014, 2016a,b), as an inferred parameters from stock option prices. Weron (2008) estimated

the implied market price of risk for energy prices as the difference between the observable

historical Ornstein-Uhlenbeck long term mean and the implied long-term mean infrared from

the market options prices. Finally, the implied martingale measure for a bond market was

introduced in Bielecki et al. (2009); this construction was based on observation of bond prices

for a continuum of maturities. None of these papers considered estimation of the appreciation

rate of the stock as an implied parameter inferred from the stock option prices. The present

model allows to construct a zero coupon bond as a risk-free investment with deterministic

payoff at the terminal time. This leads to the implied market price of risk inferred from the

bond prices (equations (30) and (34) below). This gives a possibility to use the observed

market bond prices for estimation of the implied market price of risk. This can be a useful

addition to the existing methods.

The rest of the paper is organized as follows. In Section 2, we describe the model setting.

In Section 3, we discuss replicability of claims and the hedging errors, and we show that the

prices can take extreme values for some choices of martingale measures. In Section 4, we dis-

cuss possible economically justified choices of the equivalent martingale measures. In Section

5, we suggest a different choice of the martingale measure implied from the observations of

bond prices, and a method of calculation the implied market price of risk for the case of a

complete market. In Section 6, parabolic equations are derived for the price, for the hedging

strategy, and for the hedging error, in a Markovian setting. The proofs are in the Appendix.

2 Model setting

It is known that various models financial market lead to different properties with respect

to pricing methods, replicability of claims, and arbitrage opportunities. In this section, we

describe a market model model consisting of two tradable assets with random continuous in

time prices representing a modification of the classical Black-Scholes model where one of the

assets is non-random.

We consider a continuous time model of a securities market consisting of two tradable
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assets with the prices S(t) and B(t), t ≥ 0. The prices evolve as

dS(t) = S(t)
(
a(t)dt+ σ(t)dw(t) + σ̂(t)dŵ(t)

)
, t > 0,

and

dB(t) = B(t)
(
α(t)dt+ ρ(t)dw(t) + ρ̂(t)dŵ(t)

)
. (1)

We assume that W (t) = (w(t), ŵ(t)) is a standard Wiener process with independent compo-

nents on a given standard probability space (Ω,F ,P), where Ω is a set of elementary events,

P is a probability measure, and F is a P-complete σ-algebra of events. The initial prices

S(0) > 0 and B(0) > 0 are given constants.

We consider this model as an extension of the classical bond and stock market model,

where a bond with the price B(t) evolving as

dB

dt
(t) = α(t)B(t). (2)

is used as a numéraire. Equation (1) for stochastic numéraire is a generalization of (2); one

may say that equation (1) represents a modification of equation for a risk-free asset that

takes into account possibility of stochastic disturbances in the return rate. In this setting,

B(t) is not exactly a risk-free asset. However, if the processes ρ(t) and ρ̂(t) are small in

some norm, then (1) can be considered as the equation for the money market account with

small deviations (see an example in Section 3 below). In particular, the conditions on the

coefficients imposed below allow the case where ρ(t) ≡ ρ̂(t) = ε for an arbitrarily small ε > 0.

If ess supt,ω(|σ̂(t, ω)|+ |ρ̂(t, ω)|) > 0, we denote by {Ft}t≥0 the filtration generated by the

process W = (w, ŵ). If ess supt,ω(|σ̂(t, ω)|+ |ρ̂(t, ω)|) = 0, we denote by {Ft}t≥0 the filtration

generated by the process w only. In both cases, F0 is trivial, i.e., it is the P-augmentation

of the set {∅,Ω}.
We assume that the process µ(t) = (a(t), σ(t), σ̂(t), α(t), ρ(t), ρ̂(t)) is F-adapted and

bounded.

Let σ̃
∆
= σ − ρ and ρ̃

∆
= σ̂ − ρ̂. We assume that there exists c > 0 such that either

|σ̃(t, ω)| ≥ c a.e. or |ρ̃(t, ω)| ≥ c a.e..

Discounted stock price and equivalent martingale measures

Let S̃(t)
∆
= S(t)/B(t). By the Itô formula, it follows that this process evolves as

dS̃(t) = S̃(t)
(
ã(t)dt+ σ̃(t)dw(t) + ρ̃(t)dŵ(t)

)
, (3)

S̃(0) = S(0)/B(0), (4)
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where

ã
∆
= a− α+ ρ2 + ρ̂2 − σρ− σ̂ρ̂.

Let V (t) = (V1(t), V2(t))
> = (σ̃(t), ρ̃(t))> and V̂ (t) = (V̂1(t), V̂2(t))

> = (ρ(t), ρ̂(t))>.

These processes take values in R2. By the assumptions, ess inft,ω |V (t, ω)| > 0.

Definition 1 Let T be the set of Ft-adapted processes θ(t) = (θ1(t), θ2(t))
> with values in

R2 such that θ1(t)σ̃(t) + θ2(t)ρ̃(t) = ã(t), i.e., V (t)>θ(t) = ã(t), and such that

ess sup
ω

∫ T

0
|θ(t)|2dt < +∞.

Here and below | · | is the Euclidean norm of vectors.

Up to the end of this paper, we use notation θ for elements of the set T only.

For θ ∈ T , set

Zθ = exp

(
−
∫ T

0
θ(s)>dW (s)− 1

2

∫ T

0
|θ(s)|2ds

)
. (5)

Our standing assumptions imply that EZθ = 1. Define the probability measure Pθ by

dPθ/dP = Zθ; this measure is equivalent to the measure P. Let Eθ be the corresponding

expectation.

Let

Wθ(t) =

(
Wθ1(t)

Wθ2(t)

)
=

∫ t

0
θ(s)ds+W (t). (6)

By Girsanov’s Theorem, Wθ is a standard Wiener process in R2 under Pθ.

For θ ∈ T , equation (4) can be rewritten as

dS̃(t) = S̃(t)V (t)>dWθ(t).

Remark 1 Clearly, the set T has more than one element; it is a linear manifold. Therefore,

the selection of the process θ(t) and the measure Pθ, is not unique.

Example 1 (i) If ρ̃ ≡ 0, then the process θ1(t) is uniquely defined as θ1(t) = σ̃(t)−1ã(t)

and is called the marked price of risk process. If, in addition, the process σ̃(t) is non-

random, then the process S̃(t) has the same distribution under Pθ for all θ ∈ T .

(ii) If σ̃ ≡ 0, then the process θ2(t) is uniquely defined as θ2(t) = ρ̃(t)−1ã(t).
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(iii) Benninga et al. (2002) considered a multi-stock market with special requirements for the

equivalent martingale measure. For our special case of a single stock and a stochastic

numéraire, these requirements leads to a unique equivalent martingale measure such

that the process
(
S̃(t), exp

(∫ t
0 k(s)ds

)
B(t)−1

)
is a martingale, for a given process

k(t) ≥ 0.

(iv) Let z(t) =
∫ t
0 |V (s)|−1V (s)>dW (s); by Lévy’s characterization theorem, it is an one-

dimensional Wiener process. Let q(t) = |V (s)|−1ã(t). By the assumptions, it is a

bounded process. Let ẑ(t) =
∫ t
0 q(s)ds+ z(t). We have that V (t)>dW (t) = |V (t)|dz(t)

and

dS̃(t) = S̃(t)
(
ã(t)dt+ |V (t)|dz(t)

)
= S̃(t)|V (t)|dẑ(t).

By Girsanov’s Theorem, there is an equivalent martingale measure P̂ such that ẑ(t) is

a Wiener process under P̂; in this case, S̃(t) is a martingale under P̂. This martingale

measure was studied in Cheng (1991).

Let Yθ be the set of all Ft-adapted measurable processes with values in R2 that are square

integrable on [0, T ]× Ω with respect to `1 ×Pθ, where `1 is the Lebesgue measure.

Let Hθ be the Hilbert space formed as the completion of the set of Ft-adapted measurable

processes y(t) such that ‖y‖Hθ =
(
Eθ

∫ T
0 |S̃(t)y(t)|2dt

)1/2
< +∞.

Wealth and discounted wealth

Let X(0) > 0 be the initial wealth at time t = 0 and let X(t) be the wealth at time t > 0.

We assume that the wealth X(t) at time t ≥ 0 is

X(t) = β(t)B(t) + γ(t)S(t). (7)

Here β(t) is the quantity of the numéraire portfolio, γ(t) is the quantity of the stock portfolio,

t ≥ 0. The pair (β(·), γ(·)) describes the state of the securities portfolio at time t. Each of

these pairs is called a strategy.

Definition 2 Let θ ∈ T . A pair (β(·), γ(·)) is said to be an admissible strategy under Pθ if

the processes β(t) and γ(t) are progressively measurable with respect to the filtration {Ft}t≥0
and such that

Eθ

∫ T

0
S̃(t)2γ(t)2dt < +∞. (8)
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Definition 3 Let θ ∈ T be given. A pair (β(·), γ(·)) that is an admissible strategy under Pθ

is said to be a self-financing strategy, if there exists a sequence of Markov times {Tk}∞k=1 with

respect to {Ft}t≥0t such that 0 ≤ Tk ≤ Tk+1 ≤ T for all k, Tk → T as k → +∞ a.s. and that

the following holds:

(i) For k = 1, 2, ..,

Eθ

∫ Tk

0

(
β(t)2B(t)2 + S(t)2γ(t)2

)
dt < +∞.

(ii) The corresponding wealth X(t) = γ(t)S(t) + β(t)B(t) is such that

dX(t) = γ(t)dS(t) + β(t)dB(t).

It be noted that condition (i) in Definition 3 ensures that the stochastic differentials in

condition (ii) here are well defined.

The process X̃(t)
∆
= X(t)/B(t) is said to be the discounted wealth.

The following lemma is known; see, e.g., Geman et al. (1995), Jamshidian (2008), Bielecki

et al. (2009).

Lemma 1 If a strategy (β(t), γ(t)) is self-financing and admissible under Pθ for some θ ∈ T ,

then, for the corresponding discounted wealth,

dX̃(t) = γ(t)dS̃(t). (9)

Remark 2 Since we assume that the coefficients for the equations for S(t) and B(t) are

bounded, it follows from Lemma 1 that if (8) holds for some θ then EθX̃(T )2 < +∞ for this

θ.

Lemma 2 For every θ ∈ T , the processes X̃(t) and S̃(t) are martingales under Pθ with

respect to {Ft}t≥0t, i.e., Eθ{S̃(T ) |Ft} = S̃(t) and Eθ{X̃(T ) |Ft} = X̃(t).

Remark 3 Consider an European option with the payoff B(T )ξ, where ξ is an FT -measurable

random variable. For any θ ∈ T such that Eθξ
2 < +∞, the option price Eθξ is an arbitrage-

free price.

3 Replication of claims: strategies and hedging errors

In financial mathematics, the most common approach to option pricing is representing the

prices as the minimal initial wealth that can be raised, via self-financing strategies, into the
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wealth allowing to fulfil option obligations. This reduces the pricing problem to analysis of

replicability of random contingent claims. This section describes certain features of the claim

replication for the model described above.

For θ ∈ T , let Xθ be the subspace of L2(Ω,FT ,Pθ) consisting of all ζ ∈ L2(Ω,FT ,Pθ)

such that there exists an admissible self-financing strategy (β(·), γ(·)) under Pθ and the

corresponding wealth process X(t) such that X(0) = 0 and X(T ) = B(T )ζ.

Let

X⊥θ
∆
= {η ∈ L2(Ω,FT ,Pθ) : Eθη = 0, Eθ[ζη] = 0 for all ζ ∈ Xθ}.

Let ξ ∈ L2(Ω,FT ,Pθ). By the Martingale Representation Theorem, we have that, for

some uniquely defined Uθ ∈ Yθ and cθ ∈ R,

ξ = cθ +

∫ T

0
Uθ(t)

>dWθ(t). (10)

In addition, it follows from the properties of closed subspaces in Hilbert spaces that ξ can be

represented via Föllmer-Schweizer decomposition

ξ = cθ + Iθ +Rθ. (11)

Here cθ = Eθξ, Rθ ∈ X⊥θ , and

Iθ =

∫ T

0
γθ(t)dS̃(t) ∈ Xθ (12)

for some γθ ∈ Hθ, i.e., it is the terminal discounted wealth X̃(T ) for some admissible self-

financing strategy (βθ(·), γθ(·)) under Pθ and for the initial wealth X(0) = 0. Therefore, a

contingent claim B(T )ξ can be decomposed as B(T )(ξ̃θ + Rθ), where B(T )ξ̃θ is a replicable

part such that ξ̃θ = cθ +
∫ T
0 γθ(t)dS̃(t).

We regard the process γθ(t) here as the hedging strategy, we regard B(T )Rθ as the hedging

error, and we regard Rθ as the discounted hedging error. We could regard the value cθ = Eθξ

as a price of an option with the payoff B(T )ξ given that either this price does not depend

on the choice of θ or it is calculated under some reasonable choice of θ; some choices of θ are

discussed in Example 1 and in Section 4 below.

Let us express γθ via Uθ.

Proposition 1 Let ξ ∈ L2(Ω,FT ,Pθ), and let Uθ be defined by (10). Let

νθ(t) =
Uθ(t)

>V (t)

|V (t)|2
, ηθ(t) = Uθ(t)− νθ(t)V (t). (13)
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Then (11) holds with

Iθ =

∫ T

0
νθ(t)V (t)>dWθ(t), Rθ =

∫ T

0
ηθ(t)

>dWθ(t). (14)

In addition,

|Uθ(t)|2 ≡ |νθ(t)V (t)|2 + |ηθ(t)|2, ηθ(t)
>V (t) ≡ 0, EθIθRθ = 0,

and (12) holds with

γθ(t) = νθ(t)S̃(t)−1. (15)

Proof. It suffices to observe that ηθ ∈ Yθ, and that νθV is the projection of Uθ on V . In

particular, it follows that Rθ ∈ X⊥θ . The uniqueness follows from the properties of orthogonal

subspaces of a Hilbert space. �

Some cases of non-replicability and replicability

The following statement follows from the non-uniqueness of the equivalent martingale mea-

sures and The 2nd Fundamental Theorem of Asset Pricing.

Proposition 2 Assume that ρ̃(·) 6= 0, i.e., it is not an identically zero process. Then the set

X⊥θ contains non-zero elements, i.e., supη∈X⊥θ
Eθ|η| > 0.

By this proposition, the discounted hedging error Rθ is non-zero in the general case. In

other word, a contingent claim of a general type is not replicable. For the sake of completeness,

we will give in the Appendix the proof adjusted to our model.

Let us describe some cases of replicability.

Let {Fwt }t≥0 be the filtration generated by the process w(t), and let {F S̃t }t≥0 be the

filtration generated by the process S̃(t).

Theorem 1 Assume that the processes σ̃(t) and ρ̃(t) are non-random. Then the claims

B(T )ξ are replicable for ξ ∈ L2(Ω,F S̃T ,Pθ) for any θ ∈ T . More precisely, there exists an

Ft-adapted process γ(t) such that Eθ

∫ T
0 γ(t)2S̃(t)2dt < +∞ and ξ = Eθξ +

∫ T
0 γ(t)dS̃(t).

The case of complete market

Note that the market described in Theorem 1 is incomplete since there are claims that cannot

be replicated. The following theorem describes an important special case when the market

is complete.
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Theorem 2 Assume that the processes ã(t) and σ̃(t) are adapted to the filtration {Fwt }t≥0
generated by the process w(t), and that ρ̃(t) ≡ 0, i.e., it is an identically zero process. Then

θ1(t) = ã(t)σ̃(t)−1 for any θ ∈ T , and the claims B(T )ξ are replicable for ξ ∈ L2(Ω,FwT ,Pθ).

Corollary 1 Assume that either conditions of Theorem 1 or conditions of Theorem 2 hold.

Then the choice of the hedging (replicating) strategy γ is unique, i.e., it is the same for all

θ ∈ T such that Eθξ
2 < +∞; the expectation Eθξ is also the same for all these θ.

On relativity of the price and the hedging error

The following theorems demonstrate that this price cθ = Eθξ can be selected quite arbitrarily

even for the case of an arbitrarily small stochastic deviations in (1), i.e., for arbitrarily small

processes ρ(t) and ρ̂(t). For instance, we can select ρ(t) ≡ ρ̂(t) = ε for an arbitrarily small

ε > 0. This means that the presence of small deviations in (1) changes dramatically the

properties of the market model.

We denote x+ = max(0, x) for x ∈ R.

Theorem 3 Assume that

ess inf
t,ω
|σ̃(t, ω)ρ̂(t, ω)− ρ(t, ω)ρ̃(t, ω)| > 0. (16)

Let κ ∈ (0,+∞) be given, and let ξ = B(T )−1(κ− S(T ))+. Then the following holds.

(i) For any ε > 0, there exists θ ∈ T such that cθ = Eθξ ∈ [0, ε].

(ii) For any M > 0, there exists θ ∈ T such that cθ = Eθξ ≥M .

Theorem 4 Assume that (16) holds. Let κ ∈ (0,+∞) be given, and let ξ = B(T )−1(S(T )−
κ)+. Then the following holds.

(i) For any ε > 0, there exists θ ∈ T such that cθ = Eθξ ∈ [0, ε].

(ii) For any ε > 0, there exists θ ∈ T such that cθ = Eθξ ∈ [S(0)− ε, S(0)].

Consider a strategy that replicates the claim B(T )(cθ + Iθ), where cθ ∈ R and Iθ ∈ Xθ
are such that (11) holds with the discounted hedging errorRθ ∈ X⊥θ .

The following theorems show that, for any given θ, the value of the second moment of Rθ

is varying widely if it is calculated with respect to other equivalent martingale measures and

can take extreme values.
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Theorem 5 Let ξ be a random claim such that (11) holds for some θ ∈ T , cθ ∈ R, Iθ ∈ Xθ,
and Rθ ∈ X⊥θ such that EθR

2
θ > 0. Assume that (10) holds for Uθ ∈ Yθ such that

ess sup
ω

∫ T

0
|Uθ(t, ω)|2dt < +∞, ess inf

ω

∫ T

0
|ηθ(t, ω)|dt > 0,

where ηθ is defined by (13). Then, for any M > 0, there exists ϑ ∈ T such that EϑR
2
θ ≥M .

Theorem 6 Let ξ be a random claim such that (11) holds for some θ ∈ T , cθ ∈ R, Iθ ∈ Xθ,
and Rθ ∈ X⊥θ such that EθR

2
θ > 0. Assume that (10) holds for Uθ ∈ Yθ such that

ess sup
t,ω

|Uθ(t, ω)| < +∞, ess inf
t,ω
|ηθ(t, ω)| > 0,

where ηθ is defined by (13). Then, for any ε > 0, there exists ϑ ∈ T such that EϑR
2
θ ≤ ε.

It can be noted that it is not uncommon to observe pricing abnormalities in meaningful

market models; see e.g. Ruf (2013) and the references therein.

To overcome relativity of pricing outlined in Theorems 3-5, we need to investigate rea-

sonable choices for the martingale measures.

4 On selection of θ and the equivalent martingale measure

We have found that, for any θ ∈ T , the discounted prices process S̃ is a martingale under the

measure Pθ. Therefore, in a general case, there are many equivalent martingale measures.

A question arises which particular θ should be used for pricing of options. In the literature,

there are many methods developed for this problem, mainly for the incomplete market models

with random volatility and appreciation rate.

One may look for ”optimal” θ and cθ in the spirit of mean-variance pricing, such that ER2
θ

is minimal; see, e.g., Schweizer (2001). A generalization of this approach leads to minimization

of E|Rθ|q for q ≥ 1. An alternative approach is to define the price as supθ∈T0 cθ for some

reasonably selected set T0 ⊂ T . In particular, this pricing rule leads to a corrected volatility

smile in the case of an incomplete market with random volatility (Dokuchaev (2011)).

The following theorem provides an unifying approach for selection of θ. In particular, this

approach allows to include models listed in Example 1.

Theorem 7 Let θ = (θ1, θ2)
> ∈ T be given, and let %(t) = V̂ (t)>θ(t), i.e.,

σ̃θ1 + ρ̃θ2 = ã,

ρθ1 + ρ̂θ2 = %. (17)
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Then

dS(t) = S(t)
(
[a(t)− ã(t)− %(t)]dt+ σ(t)dW1θ(t) + σ̂(t)dW2θ(t)

)
,

dB(t) = B(t)([α(t)− %(t)]dt+ ρ(t)dW1θ(t)) + ρ̂(t)dW2θ(t)). (18)

Theorem 7 gives a parametrization of the set T via %.

Examples 2-5 below demonstrate how this parametrization helps to identify some reason-

able choices of θ. For these examples, we assume that

ess inf
t,ω
|σ̃(t, ω)ρ̂(t, ω)− ρ(t, ω)ρ̃(t, ω)| > 0. (19)

This condition ensures that system (17) defines a unique θ ∈ T for any Ft-adapted process %

such that ess supω
∫ T
0 %(t)2dt < +∞.

Example 2 For θ from Theorem 7 with % ≡ 0, the process (S(t), B(t)) evolves as

dS(t) = S(t)
(
[a(t)− ã(t)]dt+ σ(t)dW1θ(t) + σ̂(t)dW2θ(t)

)
,

dB(t) = B(t)
(
α(t)dt+ ρ(t)dW1θ(t)) + ρ̂(t)dW2θ(t)

)
.

In this case, the equation for B has the same coefficients as the equation for B(t) under

P, with replacement of W (t) by Wθ(t). Respectively, the distribution of B(t) under Pθ

and under the historical measure P is the same if the coefficients α(t), ρ(t), and ρ̂(t), are

non-random. In addition, if σ̂ ≡ 0 then the choice % ≡ 0 ensures that θ1 = â/σ.

Example 3 For θ from Theorem 7 with % = −ã, the evolution of S under Pθ is described by

an Itô equation with the same coefficients as the equation for S(t) under P, with replacement

of W (t) by Wθ(t). In this case, the distribution of S(t) under Pθ and under the historical

measure P is the same if the coefficients a(t), σ(t), and σ̂(t), are non-random.

Example 4 Let k ∈ (0, 1) and rB ∈ R be given. Let us calculate θ from (17) with % =

k(α− rB) i.e.,

σ̃θ1 + ρ̃θ2 = ã,

ρθ1 + ρ̂θ2 = k(α− rB). (20)

By (18), this leads to the equation

dB(t) = B(t)
(
[krB + (1− k)α]dt+ ρdW1θ(t)) + ρ̂dW2θ(t)

)
,

i.e., the appreciation rate coefficient for B under Pθ is krB +(1−k)α. Therefore, there exists

a choice of θ that ensures that the appreciation rate for B under Pθ can be arbitrarily close

to rB. This can be achieved with selection of k close to 1 in (20).
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In is also possible to consider a modification of this approach with rB depending on θ.

For example, an important example considered below is where rB = α− rθ, where

rθ = α− ρ2 − ρ̂2 − ρθ1 − ρ̂θ2.

(see (32) below). This gives equations

σ̃θ1 + ρ̃θ2 = ã,

ρθ1 + ρ̂θ2 =
k

1− k
(ρ2 + ρ̂2). (21)

In particular, this rB can be selected as the expected average risk-free rate associated with

the zero-coupon bond under the measure Pθ, as is described in the next section.

Example 5 An important example of the selection of θ is

θ(t) = ã(t)V (t)/|V (t)|2. (22)

The following theorem shows that this corresponds to the choice of θ with the minimal norm.

Theorem 8 Let θ(t) be defined by (22). Then, for every t, ω, the value of |θ(t, ω)| is min-

imal among all θ ∈ T . In addition, if ξ = cθ +
∫ T
0 γθ(t)dS̃(t) + Rθ for some Rθ ∈ X>θ

and γθ is an adapted process such that γθσ ∈ Hθ, then E(RθM(T )) = 0, where M(T ) =∫ T
0 γθ(t)S̃(t)V (t)>dW (t) represents the ”martingale” part of the integral∫ T

0
γθ(t)dS̃(t) =

∫ T

0
γθ(t)S̃(t)â(t)dt+M(T ).

The selection of θ described in Theorem 8 ensures that the corresponding self-financing

strategy with the quantity of shares γ(t) is a so-called locally risk minimizing strategy; see,

e.g., Föllmer and Sondermann (1986), Biagini and Pratelli (1999).

Let us reconsider Example 1 (iv). We will be using the measure P̂ and the processes q(t),

z(t), and ẑ(t) defined in this example.

Set V(t) = V̂ (t)− k(t)V , where

k(t) = V̂ (t)>V (t)/|V (t)|2.

Clearly, we have that V(t)>V (t) = 0.

Further, there exists a one-dimensional Wiener process z1(t) such that
∫ t
0 V(s)>dW (s) =∫ t

0 |V(s)|dz1(s) and

dB(t) = B(t)
(
α(t)dt+ k(t)V (t)>dW (t) + V(t)>dW (t)

)
= B(t)

(
α(t)dt+ k(t)|V (t)|dz(t) + |V(t)|dz1(t)

)
.

14



For q(t) = ã(t)/|V (t)|, we have

dB(t) = B(t)
(
α(t)dt+ k(t)|V (t)|(dẑ(t)− q(t)dt) + |V(t)|dz1(t)

)
.

On the other hand,

dB(t) = B(t)
(
α(t)dt+ V̂ (t)>dW (t)

)
= B(t)

(
α(t)dt+ V̂ (t)>(dWθ(t)− θ(t)dt

)
.

This means that, in our notation, P̂ = Pθ, where θ ∈ T is such that

k(t)q(t)|V (t)| = k(t)ã(t) = V̂ (t)>θ(t).

The only θ ∈ T satisfying this is θ(t) = ã(t)V (t)/|V (t)|2 from Theorem 8.

5 Risk-free bonds and choice of θ implied from the bond prices

In this section, we suggest one more approach to selection of equivalent martingale measures.

First, it can be noted that the market described above does not include a risk free asset

since both processes S(t) and B(t) are random. However, one can augment this market

with auxiliary tradable risk-free assets representing zero-coupon bonds constructed as some

options with the payoff $1 at time T . We represent the price of these bonds as a function of θ.

On the next step, we inverse this pricing formula and represent θ via observed market bond

prices. This gives a way of selection of implied parameter θimplied consistent with the observed

bond prices. It follows the classical approach to the so-called implied volatility where the

Black-Scholes formula is reversed.

5.1 The implied market price of risk for complete market

Let us assume first that

σ̂(t) ≡ ρ̂(t) ≡ 0. (23)

In this case, by the definition of Ft, we have that Ft = Fwt , and the assumptions of Theorem

2 are satisfied. In this case, ρ̃ ≡ 0, and (17) implies that % ≡ ρθ1 and that θ1(t) is uniquely

defined as θ1(t) = σ̃(t)−1ã(t). The process θ1 is called the marked price of risk process in this

case.

Under these assumptions, the equation for B in (18) can rewritten as

dB(t) = B(t)([α(t)− ρ(t)θ1(t)]dt+ ρ(t)dW1θ(t))). (24)
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Lemma 3 if (23) holds, then the claim ξ ≡ $1 is replicable in the following sense: for any

t ∈ [0, T ), there exists an Ft-adapted process γ(t) such that Eθ

∫ T
0 γ(t)2S̃(t)2dt < +∞ and

B(T )−1 = EθB(T )−1 +

∫ T

0
γ(t)dS̃(t).

Remind that, by the definition of Ft, the processes a(t), σ(t), α(t), and ρ(t), are Fwt -

adapted if (23) holds.

Under the assumptions of Lemma 3, the value EθB(T )−1 represents the price at time

t = 0 of a zero-coupon bond with the payoff $1 at the maturity time T . The value X̃(t) =

Eθ

{
B(T )−1|Ft

}
represents the discounted wealth for the hedging (replicating) strategy, as

well as the value

P (t, T ) = B(t)X̃(t) = B(t)Eθ

{
B(T )−1|Ft

}
(25)

represents the total wealth for the replicating strategy and the price at time t of a zero-coupon

bond with the payoff $1 at the maturity time T .

Let us discuss some consequences of these statements.

Lemma 3 implies that the value

r(t)
∆
= −(T − t)−1 logP (t, T ) = −(T − t)−1 log

(
B(t)Eθ

{
B(T )−1|Ft

})
(26)

represents the so-called yield to maturity, or the expected average risk-free rate associated

with the zero-coupon bond, meaning that the price at time t of a zero-coupon bond with the

payoff $1 at the maturity time T is

P (t, T ) = exp(−r(t)(T − t)). (27)

If the processes a(t), σ(t), α(t), ρ(t), ρ̂(t), θ(t) are constant and the assumptions of Lemma

3 are satisfied, then

B(T )−1 = B(t)−1 exp

((
−α+

ρ2

2
+ ρθ1

)
[T − t]− ρ

(
W1θ(T )−W1θ(t)

))
. (28)

In this case, a direct calculation of (25) gives

P (t, T ) = B(t)Eθ

{
B(T )−1|Ft

}
= exp[−(T − t)(α− ρ2 − ρθ1)]

and

−(T − t)−1 logP (t, T ) = α− ρ2 − ρθ1.
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Since θ1 = ã/σ̃, it gives that −(T − t)−1 logP (t, T ) = α− ρ2 − ρã/σ̃. Hence

r
∆
= α− ρ2 − ρã/σ̃ (29)

can be interpreted as the ”true” risk-free rate for this market. It can be seen that r is close

to α if ρ is small. If ρ = 0 then r = α.

Let us investigate the situation where θ1 is unknown. Let us consider a scenario where the

real market price Pmarket(0, T ) of the zero-coupon bond with the payoff $1 at the maturity

time T is observable at time t = 0. In this case, the corresponding value (26) rmarket =

−T−1 logPmarket(0, T ) can be calculated. By the assumptions on the coefficients, (23) implies

that ρ 6= 0. In this case, we can reverse pricing formula (25) (or reverse (29)) and calculate

implied θ1,implied from (29) as

θ1,implied = (α− ρ2 − rmarket)/ρ. (30)

In this case, equation (1) can be rewritten as

dB(t) = B(t)
(
[rmarket + ρ2]dt+ ρdW1θ(t)

)
,

where W1θ(t) = w(t) +
∫ t
0 θ1,implied(s)ds.

It particular, it follows that a choice of ρ for a market model with given α is consistent

with the observed bond prices if (α − rmarket)/ρ is bounded as ρ → 0. This leads to the

following heuristic rule: if the observed bond market price is such that α − rmarket is large,

then one should assume a sufficiently large ρ, to avoid overestimation of the market price of

risk.

Representation (30) follows the classical approach to the so-called implied volatility where

the Black-Scholes formula is reversed. Representation of the market price of risk process θ1

implied form observed bond prices as described above could be a useful addition to the

existing methods. Further development of this approach is presented in Section 5.1 below.

Remark 4 For the bond pricing model with constant coefficients described above, the choice

of (θ1, r) is independent on T . It follows that a single market price Pmarket(0, T ) of a zero

coupon bond for one given maturity time T defines uniquely the prices of similar bonds for

all other maturity times T̄ 6= T given that these prices are defined by (25). This is caused by

the fact that this formula has to be applied with the same θ1 leading to the same r in (27).

Implied θ from observed bond prices for the incomplete market

We suggested above a method of calculation of the implied market price of risk θ1,implied from

observed bond prices for a case of complete market with non-zero ρ and ρ̂. For this, we
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established that the value (25) represents the price at time t of a zero-coupon bond with the

payoff $1 at the maturity time T for a case where the claim $1 is replicable. This indicates

that it could be reasonable to accept (25) as the price of this bond for a more general case

for an incomplete market with a non-replicable claim $1 as well (i.e., with non-zero ρ and ρ̂).

Up to the end of this section, we assume a market model with non-zero ρ and ρ̂, where

the price a zero-coupon bond with the payoff $1 at the maturity time T is defined by (25)

similarly to the case of the complete market, regardless of replicability of the corresponding

contingent claim.

This leads to an one more important example of selection of % and of the corresponding

θ defined by (17) that supplements choices described in Section 4.

Assume that the processes a(t), σ(t), α(t), ρ(t), ρ̂(t), θ(t) are constant, and that r(t) is

defined by (26). This means that r(t) represents again the expected average risk-free rate

associated with the zero-coupon bond.

It follows from the Itô formula that

B(T )−1 = B(t)−1 exp

((
−α+

ρ2

2
+
ρ̂2

2
+ ρθ1 + ρ̂θ2

)
(T − t)

−ρ
(
W1θ(T )−W1θ(t)

)
− ρ̂
(
W2θ(T )−W2θ(t)

))
. (31)

In this case, a direct calculation of (25) gives

P (t, T ) = B(t)Eθ

{
B(T )−1|Ft

}
= e−(T−t)(α−ρ

2−ρ̂2−ρθ1−ρ̂θ2)

and

−(T − t)−1 logP (t, T ) = α− ρ2 − ρ̂2 − ρθ1 − ρ̂θ2.

Then (26) imply that r(t) can be found explicitly; it does not depend on t and T and depend

on θ such that r(t) ≡ rθ, where

rθ = α− ρ2 − ρ̂2 − ρθ1 − ρ̂θ2. (32)

Using (17), equation (32) can be rewritten as

% = ρθ1 + ρ̂θ2 = α− rθ − ρ2 − ρ̂2. (33)

Following the approach from Section 5, consider now a scenario where the real mar-

ket price Pmarket(0, T ) of a zero-coupon bond with the payoff $1 at the maturity time T

is observed from the market statistics at time t = 0, and the corresponding value (25)
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rmarket = −T−1 logPmarket(0, T ) is calculated. We can reverse pricing formula (25) and cal-

culate implied % as

%implied = α− rmarket − ρ2 − ρ̂2

and find implied θ = θimplied = (θimplied,1, θimplied,2)
> as solution of corresponding system (17),

i.e.

σ̃θimplied,1 + ρ̃θimplied,2 = ã,

ρθimplied,1 + ρ̂θimplied,2 = %implied. (34)

This would follow again the classical approach to the so-called implied volatility where

the Black-Scholes formula is reversed.

In particular, equation (18) for this % = %implied gives that

dB(t) = B(t)
(
[rmarket + ρ2 + ρ̂2]dt+ ρdW1θ(t)) + ρ̂dW2θ(t)

)
,

where θ = θimplied.

This model has the same feature as described in Remark 4 for a special model. In

particular, the choice of θ is independent on T , and a single market price Pmarket(0, T ) of a

zero coupon bond for one given maturity time T defines uniquely the prices defined by (25)

for similar bonds for all other maturity times T̄ 6= T , since this formula has to be applied

with the same θ. For models with time variable coefficients of equations for B and S, the

same approach gives a time dependent solution θ(t) of (17), and the value r defined by (29)

for a maturity time T̄ depends on T̄ .

6 Markov case

The values for the prices, errors, and hedging strategies obtained above were expressed via

integrands which existence is ensured by the Martingale Representation Theorem. In this

section, we suggests some representations via solutions of deterministic PDEs which could be

more convenient.

Assume that θ ∈ T is given.

We will be using the processes s(t) = log S̃(t) and b(t) = logB(t). By Itô formula, it

follows that

ds(t) = (ã− σ̃2/2− ρ̃2/2)dt+ σ̃dw(t) + ρ̃dŵ(t)

= (−σ̃2/2− ρ̃2/2)dt+ V (t)>dWθ(t), (35)
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where V > = (σ̃, ρ̃)>, and

db(t) = (α− ρ2/2− ρ̂2/2)dt+ ρdw(t) + ρ̂dŵ(t)

= (α− ρ2/2− ρ̂2/2)dt+ V̂ (t)>dWθ(t), (36)

where V̂ > = (ρ, ρ̂)>.

Up to the end of this section, we assume that there exists a measurable function Θ :

R2 × [0, T ]→ R8 such that

(ã(t), σ̃(t), ρ̃(t), α(t), ρ(t), ρ̂(t), θ1(t), θ2(t))
> = Θ(s(t), b(t), t).

To simplify notation, we will describe it as the following: we assume that the processes ã(t),

σ̃(t), ρ̃(t), α(t), ρ(t), ρ̂(t), θ(t), V (t), V̂ (t) (defined on [0, T ]×Ω) are replaced by the processes

ã(s(t), b(t), t), σ̃(s(t),b(t), t), ρ̃(s(t), b(t), t), α(s(t),b(t), t), ρ(s(t), b(t), t), ρ̂(s(t),b(t), t), θ(s(t), b(t), t),

V (s(t),b(t), t), and V̂ (s(t),b(t), t), respectively, for some measurable functions ã(s, b, t), σ̃(s, b, t),

ρ̃(s, b, t), α(s, b, t), ρ(s, b, t), ρ̂(s, b, t), θ(s, b, t), V (s, b, t), V̂ (s, b, t), defined on R2 × [0, T ].

Let H = Hθ = Hθ(s, b, t) be the solution of the following Cauchy problem for a linear

parabolic equation in R2 × [0, T ]

H ′t +H ′s(−σ̃2/2− ρ̃ 2/2) +H ′b(α− ρ2/2− ρ̂
2/2) + LH = 0,

H(s, b, T ) = F (es, eb), (s, b) ∈ R2. (37)

Here

LH =
1

2

(
σ̃

ρ

)>
H ′′

(
σ̃

ρ

)
+

1

2

(
ρ̃

ρ̂

)>
H ′′

(
ρ̃

ρ̂

)
, H ′′ =

(
H ′′ss H ′′sb

H ′′bs H ′′bb

)
.

In this section, we assume that there exists a generalized solution H(s, b, t) of Cauchy

problem (37) such that its gradient with respect to (s, b) is bounded.

Under these assumptions, consider the pricing problem for the claim B(T )ξ, where ξ =

F (S̃(T ), B(T )) for some measurable function F : (0,+∞)2 → R such that Eθξ
2 < +∞ for

some θ ∈ T .

Proposition 3 The price in (11) can be represented as

cθ = Eθξ = H(s(0),b(0), 0) = H(log S̃(0), logB(0), 0).

Furthermore, the hedging strategy in (14) can be represented as

γ(t) = fθ(s(t),b(t), t)e−st = fθ(log S̃(t), logB(t), t)S̃(t)−1,

20



where

fθ(s, b, t) = H ′s(s(t),b(t), t) +H ′b(s(t), b(t), t)
σ̃(s, b, t)ρ(s, b, t) + ρ̃(s, b, t)ρ̂(s, b, t)

σ̃(s, b, t)2 + ρ̃(s, b, t)2
.

Further, let us consider the problem of estimation of ER2
θ for the discounted hedging error

Rθ. This error is represented in (11)-(14) as

Rθ = E

∫ T

0
ηθ(t)

>dWθ(t), ηθ(t) = Uθ(t)− νθ(t)V (t).

Consider a function gθ = gθ(s, b, t) : R2 × [0, T ]→ R defined as

gθ(s, b, t) = H ′s(s, b, t)

(
σ̃(s, b, t)

ρ̃(s, b, t)

)
+H ′b(s, b, t)

(
ρ(s, b, t)

ρ̂(s, b, t)

)
− fθ(s, b, t)

(
σ̃(s, b, t)

ρ̃(s, b, t)

)
.

Let J = J(y, s, b, t) be the solution of the following Cauchy problem for a linear parabolic

equation in R3 × [0, T ]

J ′t + J ′y g
>
θ θ + J ′s(ã− σ̃2/2− ρ̃2/2) + J ′b(r − ρ2/2− ρ̂2/2) +DJ,

J(y, s, b, T ) = y2, (y, s, b) ∈ R3. (38)

Here gθ = (gθ,1, gθ,2)
>,

DJ =
1

2


gθ,1

σ̃

ρ


>

J ′′


gθ,1

σ̃

ρ

+
1

2


gθ,2

ρ̃

ρ̂


>

J ′′


gθ,2

ρ̃

ρ̂

 , J ′′ =


J ′′xx J ′′xy J ′′xz

J ′′yx J ′′yy J ′′yz

J ′′zx J ′′zy J ′′zz

 .

We assume that there exists a generalized solution J(y, s, b, t) of Cauchy problem (38)

such that its gradient with respect to (y, s, b) is bounded.

Proposition 4 We have that

ER2
θ = J(0, log s(0), b(0), 0) = J(0, log S̃(0), logB(0), 0).

7 Conclusions

We revisited the problem of pricing of stock options for the case of the market model with

a stochastic numéraire, with emphasize on the impact of the non-uniqueness of equivalent

martingale measures and the presence of non-replicable claims. Some possible economically

justified choices of equivalent martingale measures are suggested, including a measure that

correspond to a consensus about the future numéraire process, a measure that ensures local
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risk minimizing hedging strategy, and an implied measure that takes into account observed

zero coupon bond prices. This last measure is especially interesting, since it leads to a formula

for the implied market price of risk.

It could be interesting to consider optimal selection of the equivalent martingale measure

in the spirit of the mean-variance hedging. It also could be interesting to develop a com-

prehensive bond pricing model that is based on stochastic numéraire with time dependent

coefficients, and investigate dependence of the price on the maturity time. We leave it for

future research.

Appendix: Proofs

Proof of Lemma 1 is straightforward and based on the application of Itô’s formula. In fact,

Lemma 1 represents a special case of Proposition 1 from Geman et al. (1995). �

Proof of Lemma 2 follows immediately from equation (9) and from the fact that dS̃(t) =

S̃(t)V (t)>dWθ(t). �

Proof of Proposition 2. By Lemma 1 and 2, the set Xθ contains random variables∫ T

0
γ(t)dS̃(t) =

∫ T

0
γ(t)S̃(t)V (t)>dWθ(t),

where γ ∈ Hθ and where Wθ is defined by (6).

For any ζ ∈ X⊥θ , there exists U(t) = (U1(t), U2(t))
> ∈ Yθ such that

ζ =

∫ T

0
U(t)>dWθ(t).

Let us show that if ζ ∈ X⊥θ then U(t)>V (t) = 0. For this ζ, we have that

Eθζ

∫ T

0
γ(t)dS̃(t) = Eθ

∫ T

0
γ(t)S̃(t)V (t)>U(t)dt = 0 ∀γ ∈ Hθ.

Hence S̃(t)V (t)>U(t) = 0 a.e. Hence V (t)>U(t) = 0 a.e.

To show that the set X⊥θ contains non-zero elements, it suffices to take U1(t) = ψ(t)ρ̂(t)

and U2(t) = ψ(t)σ̃(t), with an arbitrary ψ ∈ Yθ, i.e.,

ζ =

∫ T

0
ψ(t)[ρ̂(t)dWθ1(t) + σ̃(t)dWθ2(t)]. (A.1)

This completes the proof. �

Proof of Theorem 1. Under the assumptions, dS̃(t) = S̃(t)|V (t)|dzθ(t), where zθ(t) is

a one-dimensional Wiener process such that
∫ t
0 V (s)>dWθ(s) =

∫ t
0 |V (s)|dzθ(s). Hence the
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filtration {Fzθt }t≥o generated by zθ(t) is such that FzθT = F S̃T . Hence any ξ ∈ L2(Ω,F S̃T ,Pθ)

belongs to L2(Ω,FzθT ,Pθ). By the Martingale Representation Theorem, it follows that

there exists an Fzθt -adapted process uθ(t) such that Eθ

∫ T
0 uθ(t)

2dt < +∞ and ξ = Eθξ +∫ T
0 uθ(t)dzθ(t). It suffices to select γ(t) = uθ(t)S̃(t)−1. This completes the proof of Theorem

1. �

Proof of Theorem 2 follows immediately from the Martingale Representation Theorem

applied on the probability space (Ω,FwT ,Pθ). �

Proof of Corollary 1. Let the initial wealth cθi = X(i)(0) and the strategy (β(i)(·), γ(i)(·))
be such that X̃(i)(T ) = ξ a.s. for the corresponding discounted wealth X(i)(t), i = 1, 2.

Set

g(t)
∆
= γ(1)(t)− γ(2)(t), Y (t)

∆
= X̃(1)(t)− X̃(2)(t).

We have that Y (T ) = 0 a.s.. Hence

Y (T ) = Y (0) +

∫ T

0
g(t)dS̃(t) = 0.

For K > 0, consider first exit times TK = T ∧ inf{t :
∫ t
0 (|γ(1)(s)| + |γ(2)(s)|2ds ≥ K}; they

are Markov times with respect to {Ft}t≥0t. We have that

Y (TK) = Y (0) +

∫ TK

0
g(t)dS̃(t) = Eθi{Y (T ) | FTK} = 0, i = 1, 2.

Hence

0 = Y (0)2 + Eθi

∫ TK

0
g(s)2S̃(s)2|V (s)|2dt = 0.

It follows that Y (0) = 0, and g(t)|[0,TK ] = 0 for any K > 0. In addition, TK → T a.s. as

TK → +∞. Hence g = 0. This completes the proof of Corollary 1. �

Proof of Theorem 3. By (16), for any K ∈ R, there exists θ = θK ∈ T such that

θ1σ̃ + θ2ρ̃ = ã,

θ1ρ+ θ2ρ̂ = V̂ (t)>θ(t) = K − α+ ρ2 + ρ̂2.

By Girsanov’s Theorem, Wθ(t) = W (t) +
∫ t
0 θ(s)ds is a standard Wiener process in R2 under

Pθ. We have that dS̃(t) = S̃(t)V (t)>dWθ(t) and

dB(t)−1 = B(t)−1
(
[−α+ ρ2 + ρ̂2]dt− ρdw(t)− ρ̂dŵ(t)

)
= B(t)−1

(
[−α+ ρ2 + ρ̂2]dt− V̂ (t)>dW (t)

)
= B(t)−1

(
[−α+ ρ2 + ρ̂2]dt− V̂ (t)>θ(t)dt+ V̂ (t)>dWθ(t)

)
= B(t)−1

(
[−α+ ρ2 + ρ̂2]dt− (K − α+ ρ2 + ρ̂2)dt+ V̂ (t)>dWθ(t)

)
= B(t)−1

(
−Kdt+ V̂ (t)>dWθ(t)

)
.
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Let B̂(t)−1 = eKtB(t)−1. We have that

dB̂(t)−1 = B̂(t)−1V̂ (t)>dWθ(t).

It follows that B̂(t)−1 is a martingale under Pθ.

Let us prove statement (i) of Theorem 3. Let K > 0. We have that

Eθξ = EθB(T )−1(κ− S(T ))+ ≤ EθB(T )−1κ = e−KTκEθB̂(T )−1

= e−KTκB̂(0)−1 → 0 as K → +∞.

Let us prove statement (ii) of Theorem 3. Let K < 0. We have

Eθξ = EθB(T )−1(κ− S(T ))+ = Eθ(B(T )−1κ− S̃(T ))+ ≥ EθB(T )−1κ−EθS̃(T )

= κe−KTEθB̂(T )−1 − S̃(0) = κe−KT B̂(0)−1 − S̃(0)→ +∞ as K → −∞.

This completes the proof of Theorem 3. �

Proof of Theorem 4. Let θ = θK and B̂(t) be such as defined in the proof of Theorem 3.

Let us prove statement (i) of Theorem 4. We have that

Eθξ = EθB(T )−1(S(T )− κ)+ = EθI{S(T )>κ}B(T )−1(S(T )− κ) ≤ EθI{S(T )>κ}B(T )−1S(T ).

Let Ŝ(t) = eKtS(t). By the definitions, we have that

dS(t) = S(t)
(
adt+ V >dW (t) + V̂ >dW (t)

)
= S(t)

(
adt− V >θdt− V̂ >θdt+ V >dWθ(t) + V̂ >dWθ(t)

)
= S(t)

(
(a− ã)dt− (K − α+ ρ+ ρ̂2)dt+ V >dWθ(t) + V̂ >dWθ(t)

)
and

dŜ(t) = Ŝ(t)
(
(a− ã)dt+ (α− ρ− ρ̂2)dt+ V >dWθ(t) + V̂ >dWθ(t)

)
.

It follows from the standard estimates for stochastic differential equations that

sup
K

EθK |Ŝ(T )| < +∞,

for θ = θK ; see, e.g., Chapter 2 in [24]. Hence I{S(T )>κ} = I{Ŝ(T )>κeKT } → 0 a.s. as K → +∞.

By the Lebesgue Dominated Convergence Theorem, it follows that Eθξ → 0 as K → +∞.

Hence statement (i) of Theorem 4 follows.

Let us prove statement (ii) of Theorem 4. For K > 0, we have that

Eθξ = EθB(T )−1(S(T )− κ)+ = Eθ(S̃(T )−B(T )−1κ)+

≥ EθS̃(T )− e−KTEθB̂(T )−1κ = S̃(0)− e−KT B̂(0)−1κ→ S(0) as K → +∞.
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In addition, we have that

Eθξ = EθB(T )−1(S(T )− κ)+ = Eθ(S̃(T )−B(T )−1κ)+ ≤ EθS̃(T ) = S(0).

This completes the proof of Theorem 4. �

Proof of Theorem 5. Let K > 0, and ϑ = ϑK = −Kηθ + θ. By the Girsanov’s Theorem,

Wϑ(t) = Wθ(t)−K
∫ t

0
ηθ(s)ds

is a Wiener process under Pϑ. By the definitions,

Rθ =

∫ T

0
ηθ(t)

>dWθ(t) = K

∫ T

0
|ηθ(t)|2dt+

∫ T

0
ηθ(t)

>dWϑ(t).

Let

N1(K)
∆
= Eϑ

(∫ T

0
|ηθ(t)|2dt

)2

,

N2(K)
∆
= Eϑ

(∫ T

0
ηθ(t)

>dWϑ(t)

)2

.

We have that

inf
K>0

N1(K) = inf
K>0

Eϑ

(∫ T

0
(|ηθ(t)|2dt

)2

≥ ess inf
ω

(∫ T

0
|ηθ(t, ω)|2dt

)2

> 0.

By Proposition 2 and by assumptions on Uθ, it follows that ess supt,ω
∫ T
0 |ηθ(t, ω)|2dt < +∞.

Hence

sup
K>0

N2(K) = sup
K>0

Eϑ

∫ T

0
|ηθ(t)|2dt ≤ ess sup

ω

∫ T

0
|ηθ(t, ω)|2dt < +∞.

Hence EϑR
2
θ ≥ K2N1(K)−2K

√
N1(K)N2(K)+N2(K)→ +∞ as K → +∞. This completes

the proof of Theorem 5. �

Proof of Theorem 6. Let K > 1, and let y(t) evolves as

dy(t) = ηθ(t)
>dWθ(t), y(0) = 0.

Let TK = T ∧ inf{t > 0 :
∫ t
0 y(s)2ds ≥ K}. Let

q(t) = qK(t)
∆
= −Ky(t)

ηθ(t)

|ηθ(t)|
I{t≤TK}.

This is a Ft-adapted process such that q(t)>V (t) = 0, q(t)>ηθ(t) = −Ky(t) for t ≤ TK ,

q(t) = 0 for t > TK , |q(t)| ≤ K|y(t)|, and∫ T

0
|q(s)|2ds =

∫ TK

0
|q(s)|2ds ≤ K2

∫ TK

0
y(s)2ds ≤ K3.
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In particular, it follows that θ − q ∈ T .

Let ϑ = ϑK
∆
= θ − q. Then

Wϑ(t) = Wθ−q(t) = Wθ(t)−
∫ t

0
q(s)ds

is a Wiener process under Pϑ. By the definitions, it follows that

dy(t) = −Ky(t)dt+ ηθ(t)
>dWϑ(t), y(0) = 0.

By Girsanov’s Theorem, the measure Pϑ is equivalent to Pθ. We have that

Rθ =

∫ T

0
ηθ(t)

>dWθ(t) =

∫ T

0
[ηθ(t)

>q(t)dt+ ηθ(t)
>dWϑ(t)]

= −
∫ TK

0
Ky(t)dt+

∫ T

0
ηθ(t)

>dWϑ(t) = y(TK) +

∫ T

TK

ηθ(t)
>dWϑ(t).

By the assumptions on Uθ and by (13), it follows that

Cη
∆
= ess sup

t,ω
|ηθ(t, ω)| < +∞. (A.2)

Clearly,

Eϑy(TK)2 = Eϑ

∫ TK

0
e−2K(TK−s)|ηθ(s)|2ds ≤ C2

ηEϑ

∫ TK

0
e−2K(TK−s)ds

= C2
ηEϑ

1− e−2KTK
2K

≤ 1− e−2KT

2K
→ 0 as K → +∞. (A.3)

Consider events AK = {
∫ T
0 y(t)2dt > K} = {TK < T}. We have

Eϑ

(∫ T

TK

ηθ(t)
>dWϑ(t)

)2

≤ Eϑ

∫ T

TK

|ηθ(t)|2dt ≤ EϑIAK
∫ T

0
|ηθ(t)|2dt ≤ TC2

ηPϑ(AK).

We have that

Eϑy(t)2dt ≤ C2
η

∫ t

0
e−2K(t−s)ds ≤ C2

ηT.

By the Markov Inequality and by (A.2), it follows that

Pϑ(AK) ≤ 1

K
Eϑ

∫ T

0
y(t)2dt ≤ 1

K
C2
ηT

2 → 0 as K → +∞. (A.4)

By (A.3)-(A.4), EϑR
2
θ → 0 as K → +∞. This completes the proof of Theorem 6. �

Proof of Theorem 7. It can be verified directly that the equations for S and B have the

desired form. �

26



Proof of Theorem 8. First, the standard Lagrange optimization techniques gives imme-

diately that the selected θ is such that |θ(t, ω)| is minimal over all θ ∈ T and it is a unique

solution of the problem

Minimize |θ| subject to V (t, ω)>θ = ã(t, ω).

Further, by Martingale Representation Theorem, we have that, for some Uθ ∈ Yθ, presenta-

tion (10) holds. It was shown in Section 3 that (12)–(13) holds. By Proposition 1, we have

that V (t)>ηθ(t) ≡ 0. For our choice of θ, this gives that θ(t)>ηθ(t) ≡ 0. It follows that

Rθ =

∫ T

0
ηθ(t)

>dWθ(t) =

∫ T

0
ηθ(t)

>dW (t).

Hence

ERθ

∫ T

0
γ(t)S̃(t)V (t)>dW (t) = E

∫ T

0
ηθ(t)

>dW (t)

∫ T

0
γ(t)S̃(t)V (t)>dW (t)

= E

∫ T

0
γ(t)S̃(t)ηθ(t)

>V (t)dt = 0.

This completes the proof of Theorem 8. �

Proof of Lemma 3 follows from the assumptions of Theorem 2 and from the equation

B(T )−1 = B(t)−1 exp
(
[−α+ ρ2/2 + θ1](T − t)− ρ[W1θ(T )−W1θ(t)]

)
.

�

Proof of Proposition 3. By the Itô formula, it follows that

ξ −H(s(0),b(0), 0) = H(s(T ), b(T ), T )−H(s(0),b(0), 0)

=

∫ T

0
(H ′t +H ′s(−σ̃2/2− ρ̃ 2/2) +H ′b(α− ρ2/2− ρ̂

2/2) + LH)dt+

∫ T

0
Uθ(t)

>Wθ(t),

where

Uθ(t) = H ′s(s(t),b(t), t)V (t) +H ′b(s(t), b(t), t)V̂ (t),

and where V (t) = V (s(t),b(t), t), V̂ (t) = V̂ (s(t), b(t), t). By the choice of H, it follows that

ξ −H(s(0),b(0), 0) =

∫ T

0
Uθ(t)

>Wθ(t).

Hence Eθξ = H(s(0),b(0), 0) and (10) holds with this Uθ(t). We have established in Section

3 that

γ(t) = νθ(t)S̃(t)−1, νθ(t) =
Uθ(t)

>V (t)

|V (t)|2
.
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In addition, we have that

Uθ(t)
>V (t)

|V (t)|2
= H ′s(s(t), b(t), t) +H ′b(s(t),b(t), t)

V̂ (t)>V (t)

|V (t)|2

This gives (38), since, by the assumptions of this section, we have that

V̂ (t)>V (t)

|V (t)|2
=

(σ̃(s, b, t)ρ(s, b, t) + ρ̃(s, b, t)ρ̂(s, b, t))

σ̃(s, b, t)2 + ρ̃(s, b, t)2
.

This completes the proof of Proposition 3. �

Proof of Proposition 4. We have that

ER2
θ = E

∫ T

0
|ηθ(t)|2dt, ηθ(t) = Uθ(t)− νθ(t)V (t).

Under the assumptions of this section, ηθ(t) = gθ(s(t),b(t), t). Further, under the assumption

of Proposition 1, Rθ = y(T ), where the process x(t) evolves as

dy(t) = ηθ(t)
>dWθ(t) = ηθ(t)

>θ(t)dt+ ηθ(t)
>dW (t), y(0) = 0.

This can be rewritten as

dy(t) = gθ(s(t),b(t), t)>θ(s(t),b(t), t)dt+ gθ(s(t), b(t), t)>dW (t).

This equation coupled with equations (35)-(36) describes evolution of a diffusion Markov

process (y(t), s(t),b(t)) such that J(y, s, b, t) is the solution in R3×[0, T ] of the corresponding

backward Kolmogorov-Fokker-Planck parabolic equation for the Markov diffusion process

(y(t), s(t), b(t)),

By the Itô formula, it follows that

E[y(T )2 − J(y(0), s(0),b(0), 0)] = E[J(y(T ), s(T ),b(T ), T )− J(0, s(0), b(0), 0)]

= E

∫ T

0
(J ′t + J ′y g

>
θ θ + J ′s(ã− σ̃2/2− ρ̃2/2) + J ′b(r − ρ2/2− ρ̂2/2) +DJ)dt.

By the choice of J , it follows that the right hand part of this equality is zero, i.e.

E[y(T )2 − J(0, s(0), b(0), 0)] = 0.

This completes the proof of Proposition 4. �
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