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Abstract

This paper addresses the problem of distributed leader-following consensus for a multi-agent system with

an affine nonlinear term. The communication topology we adopt is an undirected connected graph and the

leader sends its information to one or more followers. To make each follower asymptotically synchronize with

the leader, a nonlinear distributed control protocol is proposed. Using a Lyapunov function and a matrix

theory, we establish sufficient conditions which ensure the consensus of these nonlinear multi-agent systems.

Finally, a numerical simulation is provided to verify the effectiveness and usefulness of the developed method.

Keywords: Multi-agent systems, Leader-following consensus, Distributed control, Nonlinear systems.

1 Introduction

Inspired by natural biological consensus behaviors, considerable attention has been extensively paid to the

consensus of agents by virtue of its widespread range of applications in many areas, such as robots, sensor

networks, biological systems, formation and cooperative control, just to name a few [1-6]. As the most essential

and important problems, consensus problems for multi-agent systems have drawn attention greatly in recent

years [7-10]. From first-order systems [7], linear systems [8] to high-order systems [9], and then, nonlinear

systems [10], the researches on consensus control are getting deeper. The consensus is considered to be achieved

if each agent in the network converges to a certain common value. A principal problem for the consensus control

is to construct effective control algorithms and laws based on the neighbor information to make some agents

reach consensus under the corresponding topology.

In general, the existing results about consensus control concentrate on two types of control problems, namely

leaderless consensus and leader-following consensus. The former requests that each agent converges to a certain

agreement state [11-13], which is related to the initial conditions. For example, the consensus problems for a

network of first-order agents are addressed in [11]. Each agent eventually converges to the average of the initial



states under balanced digraphs. Recently, consensus of multi-agent systems with a leader has been extensively

studied [14-17], whose goal is to guarantee that a group of agents can track the state trajectory of a leader. In

[14], the authors concern the consensus for first-order networks with a time-varying leader. The study in [15] is

an extension of [14] from first-order to high-order systems. In [16], the semi-global leader-following consensus

is investigated for linear systems, whose actuators are imperfect. In [17], global leader-following consensus is

discussed under bounded controls. It is true that with the help of a leader, the application range is enlarged

for multi-agent systems.

Till now, many results on simple linear multi-agent systems can be found in the open literature, including

most references mentioned above. However, in practice, most of engineering problems involve complex nonlinear

systems so that results for linear systems do not apply. Hence, the nonlinearities in dynamics have been taken

into consideration for many researchers recently. In [18], the authors concern the consensus of third-order

multi-agent systems with nonlinear dynamics under a fixed topology. In [19], tracking consensus is studied

for nonlinear multi-agent systems. As an extension, the switching networks and unreliable communication are

further discussed in [20].

Compared with results in [19, 20], the affine nonlinear term is further introduced for the nonlinear systems

in this paper. There is no doubt that affine nonlinear systems can simulate many actual systems in many fields,

including mechanics, physics, ecology, and engineering [21-23]. The stability analysis of affine nonlinear systems

is given in [24]. To the best of our knowledge, very few results on consensus problem of affine nonlinear systems

can be found in the open literature. For example, the consensus problem is addressed for nonlinear multi-agent

systems in [25], which are affine in control. However, there is no research on the tracking consensus for affine

nonlinear systems. Based on the discussion above, a type of nonlinear systems with the affine nonlinear term

are proposed and the leader-following consensus is introduced to them in this work. Motivated by our previous

works on nonlinear controllers design for nonlinear systems [26-27], we develop a numerical method for leader-

following problem involving a type of affine nonlinear systems. More specifically, we construct a novel nonlinear

control algorithm for each follower agent, under which sufficient conditions are obtained for reaching consensus.

We assume that the followers communicate with the undirected and connected graph, and the leader sends

its message to one or more followers. The key contributions of the paper are threefold. (1) Compared with

the existing conclusions, this work can handle a class of more general nonlinear systems with affine nonlinear

term. (2) The tracking consensus is investigated for the nonlinear systems. (3) The relationship between design

parameters and consensus performance has been built and revealed to guarantee the consensus.

The overall structure of the rest of the paper is as follows. A problem statement and preliminaries, which

include some definitions, assumptions and some other basic graph knowledge, are illustrated in Section 2. In

Section 3, we design a nonlinear control protocol for each follower, and sufficient conditions are provided to

ensure the consensus of the system proposed. In Section 4, we present some simulation results to demonstrate

the effectiveness and usefulness of our method by using a non-trivial test example. Section 5 makes a brief

summary finally.

Notation. The following notations are applied throughout the paper. For given positive integers m and

n, Rn stands for the Euclidean space of n dimensional, and Rm×n represents a set of m× n matrices. We use

1N to denote the a column vector in RN whose entries are all equal to one. IN means the N × N identity

matrix. ‖·‖ is the Euclidean norm of a certain vector. If not specifically pointed out, the dimensions of each

matrix is supposed to be appropriate. Furthermore, we use diag {·} to denote a matrix, whose diagonal are the

corresponding parameter values, and other entries are all zero. The transpose of a matrix A is symbolled by

AT and ⊗ is the Kronecker product, which has many properties, such as (A⊗B) (C ⊗D) = AC ⊗ BD and

(A⊗B)
T

= AT ⊗ BT . For a square matrix P , P > 0 or P < 0 represents it is a positive or negative definite
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matrix respectively.

2 Problem Statement and Preliminaries

In the section, we give a brief account of some graph theory basis and present the leader-following consensus

problem.

2.1 Graph Theory

Graphs are often applied to model the communication rules among the agents. Take a graph G = {v, ε, A}
with N nodes as example, N nodes (follower agents) are represented by v = {v1, v2, ..., vN}, and the leader

is labeled as v0. All edges or arcs are denoted as ε ⊆ v × v. The pair (vj , vi) ∈ ε means there is an edge

connecting the agents j and i. Agent j is known as a neighbor of agent i if (vj , vi) ∈ ε. The structure of G

can also be described by the adjacency matrix A = [aij ]. If agent i can get information from agent j, aij > 0,

otherwise aij = 0. We suppose that aii = 0 for all i = 1, 2, . . . , N . The in-degree of agent i is denoted as

di =
∑N

j=1 aij , and the in-degree matrix D is a diagonal matrix with D = diag {di} ∈ RN×N . Let Laplacian

matrix be L = D − A. If the leader can send its information to agent i, ai0 > 0 for i = 1, 2, ..., N , otherwise

ai0 = 0. The graph is said to be undirected if aij = aji, i.e., the agent i and j can communicate with each

other. If there is an undirected path between any two vertices, the undirected graph is called connected. We

put M = L+ diag {a10, a20, · · · , aN0}.

2.2 Problem Statement

Consider N communicated agents with the dynamics of them described as,

ẋi = Axi +Bf(xi) + g (xi)ui, (1)

where xi ∈ Rn is the state vector of agent i, i = 1, 2, . . . N , and ui ∈ Rm is the control input. f (xi (t)) ∈ Rr and

g (xi) = [g1 (xi) , g2 (xi) , . . . , gm (xi)] ∈ Rn×m mean the intrinsic nonlinear dynamics. A ∈ Rn×n and B ∈ Rn×r

are both constant system matrices.

The dynamics of the leader is described by the following nonlinear form,

ẋ0 = Ax0 +Bf (x0) , (2)

where x0 ∈ Rn is the state of the leader. Its state trajectory evolves without being effected by the followers,

and the leader provides the information for the followers to track its trajectory.

Definition 1 [28] For any any initial condition xi (0), i = 0, 1, 2, · · · , N , the leader-following consensus of

the system (1)-(2) is achieved if there exists a control input ui that makes the system satisfy the following

relationship:

lim
t→∞

‖xi (t)− x0 (t)‖ = 0, i = 1, 2, · · · , N.

The communication topology connecting the agents is considered to satisfy the assumption as below.
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Assumption 1 The undirected topology G we adopt is connected, and the leader sends its information to one

or more followers.

Remark 1 Some literature have investigated the consensus with directed connected graphs, such as [29, 30] for

continuous-time systems, and [31] for discrete-time systems. In the future work, more general communication

networks will be taken into consideration.

Assumption 2 For a constant ρ > 0, the nonlinear dynamics f (x) satisfies the Lipschitz condition as follows,

‖f(a)− f(b)‖ ≤ ρ ‖a− b‖ ,∀a, b ∈ Rn.

Assumption 3 For constant system matrix A, there exists a positive matrix P > 0, which satisfies the equation

ATP + PA = Q for some Q < 0.

Remark 2 If Assumption 3 is satisfied, an appropriate positive matrix P can be obtained by condition (4).

3 Main Results

In the section, we design the following distributed control protocol for each follower,

ui (t) = −gT (xi (t))P

 N∑
j=1

aij (xi − xj) + ai0 (xi − x0)

 , (3)

in which aij , the elements of matrix A, means the communication weight among the followers, ai0 is the weight

between the leader and each follower agent, and P is a positive matrix.

Theorem 1 Consider the followers and the leader whose dynamics are respectively described by (1) and (2).

Suppose that Assumptions 1, 2 and 3 hold. The consensus of the system (1)-(2) is achieved under the protocol

(3) if there exists a positive matrix P that makes the following condition hold:

PA+ATP + 2ρσm (B)P < 0, (4)

where σm (B) is the maximum singular value of constant matrix B.

Proof. Let

x (t) =
[
xT1 (t) , · · · , xTN (t)

]
∈ RnN ,

F (x (t)) =
[
f(x1(t))

T
, · · · , f(xN (t))

T
]T
∈ RrN ,

u =
[
uT1 , u

T
2 , . . . , u

T
N

]T ∈ RmN ,

G (x) =



g (x1)

g (x2)

. . .

g (xN )


∈ RNn×Nm,
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then the dynamics of the followers are rewritten as

ẋ (t) = (IN ⊗A)x (t) + (IN ⊗B)F (x(t)) +G(x)u (t) , (5)

and the control input (3) gives

u (t) = −GT (x (t)) (M ⊗ P ) d (t) , (6)

where M = L+ diag {a10, a20, · · · , aN0}.
The tracking error is denote as di (t) = xi (t)− x0 (t). then we have

ḋi (t) = Adi (t) +B(f (xi (t))− f (x0 (t))) + g (xi (t))ui (t) . (7)

Let d (t) =
[
d1

T (t) , d2
T (t) , · · · , dNT (t)

]T
∈ RnN . The error dynamic is continue as

ḋ (t) = ẋ (t)− ẋ′0 (t)

= (IN ⊗A) (x (t)− x′0 (t)) + (IN ⊗B) (F (x (t))− f ′ (x0 (t))) +G (x)u (t)

= (IN ⊗A) d (t) + (IN ⊗B) (F (x (t))− f ′ (x0 (t))) +G (x)u (t) , (8)

where x′0 = x01N and f ′ (x0) = f (x0) 1N .

Define F ′ (x (t)) = F (x (t))− f ′ (x0 (t)). Substituting (6) into (8), we have

ḋ (t) = (IN ⊗A) d (t) + (IN ⊗B)F ′ (x (t))

+G (x)
(
−GT (x (t)) (M ⊗ P ) d (t)

)
. (9)

Choose the Lyapunov function as follows,

V (t) = dT (t) (M ⊗ P ) d (t) ,

where M > 0 and P > 0.

Differentiating V (t) yields,

V̇ (t) = ḋT (t) (M ⊗ P ) d (t) + dT (t) (M ⊗ P ) ḋ (t)

= dT (t) (M ⊗ PA) d (t) + dT (t)
(
M ⊗ATP

)
d (t)

+2dT (t) (M ⊗ P ) (IN ⊗B)F ′ (x (t))

+2dT (t) (M ⊗ P )G (x)
(
−GT (x) (M ⊗ P ) d (t)

)
= dT (t)

(
M ⊗

(
PA+ATP

))
d (t)

+2dT (t) (M ⊗ PB)F ′ (x (t))

−2dT (t) (M ⊗ P )G (x)
(
GT (x) (M ⊗ P ) d (t)

)
.
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Let V̇ (t) = V̇1 (t) + V̇2 (t), where

V̇1 (t) = dT (t)
(
M ⊗ PA+ATP

)
d (t)

+2dT (t) (M ⊗ PB)F ′ (x (t)) , (10)

V̇2 (t) = −2dT (t) (M ⊗ P )G (x)
(
GT (x) (M ⊗ P ) d (t)

)
. (11)

Since both matrices P and M are positive definite, V̇2 (t) ≤ 0.

From Assumption 1, we have M > 0. Then, there must be an orthogonal matrix S ∈ RN×N such that

M = ST diag {λ1, λ2, · · · , λN}S.

For brevity, let Λ = diag {λ1, λ2, · · · , λN}.
Using Assumption 2, we can estimate the second term in (10) as follows,

2dT (t) (M ⊗ PB)F ′ (x (t))

= 2dT (t)
(
ST ΛS ⊗ P

)
(IN ⊗B)F ′ (x (t))

= 2dT (t)
(
ST ΛS ⊗ P

)
(IN ⊗B) (F (x (t))− f (x0) 1N )

≤ 2ρσm (B) dT (t) (M ⊗ P ) d (t) . (12)

Substituting (12) into (10), we obtain

V̇1 (t) = dT (t)
(
M ⊗

(
PA+ATP

))
d (t) + 2ρσm (B) dT (t) (M ⊗ P ) d (t)

= dT (t)
(
M ⊗

(
PA+ATP + 2ρσm (B)P

))
d (t) . (13)

Since M = ST ΛS, then (13) is given as

V̇1 (t) = dT (t)
(
ST ΛS ⊗

(
PA+ATP + 2ρσm (B)P

))
d (t) .

Let d̃ (t) =
[
d̃T1 (t) , d̃T2 (t) , · · · , d̃TN (t)

]T
= (S ⊗ In) d (t). V̇1 (t) is rewritten as

V̇1 (t) = d̃T (t)
(
Λ⊗

(
PA+ATP + 2ρσm (B)P

))
d̃

=

N∑
i=1

λid̃
T
i

(
PA+ATP + 2ρσm (B)P

)
d̃i.

From condition (4), we have V̇1 (t) < 0. We can easily find that V̇ (t) < 0. Thus, lim
t→∞

d (t) = 0. This completes

the proof.

Remark 3 Under condition (4) in Theorem 1, the consensus is reached asymptotically with the protocol (3).

In the future work, consensus achieved globally exponentially and the improvement to the convergence rate will

be taken into consideration.
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4 Simulation Results

In our simulation, the multi-agent network composed of a leader and five followers is considered and shown

in Figure 1.

0

2

3

4

51

Figure 1: The undirected graph consisting of five follower nodes and a leader node

The dynamics of the systems, which include a leader and five followers, are respectively given as,

ẋ0 = Ax0 +Bf (x0) ,

ẋi = Axi +Bf(xi) + g (xi)ui,

where xi ∈ R2, ui ∈ R, i = 1, 2, · · · , 5,

A =

 9 −15

18 −20

 , B =

 1

0

 ,

g (xi) =

 xi2

x2i1 + 3x2i2

 .
We choose f (xi (t)) = k2xi1 (t) + 0.5 (k1 − k2) (|xi1 (t) + 1| − |xi1 (t)− 1|), in which k1 = −1.31 and k2 =

0.75. From [32,33] and Assumption 2, we have ρ = 1.31, and Assumption 3 holds as well.

Applying Theorem 1, the corresponding feasible solution of matrix P is found to be

P =

 0.6998 −0.4328

−0.4328 0.3785


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In the simulation part, we set the initial states of these six agents as

[x0 (0) , x1 (0) , x2 (0) , x3 (0) , x4 (0) , x5 (0)]

=

 0.5 1.2 −0.75 −1.85 1.5 0.8

−1 0.8 1.5 −0.5 −1.3 0.1

 ,
and suppose that the graph in Figure 1 has 0− 1 communication weights.

Figure 2: Trajectories of state tracking errors di,1

Figure 3: Trajectories of state tracking errors di,2

The simulation images are demonstrated in Figures 2 and 3, from which we know that the leader is followed

by the five agents asymptotically, i.e., the consensus is observed.
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5 Conclusions

In this work, the distributed leader-following consensus is introduced and investigated for a type of multi-

agent systems with some nonlinear dynamics under undirected topology. Under the nonlinear control algorithm

proposed, a numerical example is provided to show the correctness of the theoretical method. Future work will

include consensus with some more complex situations, such as nonlinear systems with stochastic parameters,

communication delays, or more general communication topologies, etc.
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