
Natural Resources Research manuscript No.
(will be inserted by the editor)

Pilot-point optimization of mining boundaries
for lateritic metal deposits: finding the trade-off
between dilution and ore loss

Yasin Dagasan · Philippe Renard ·
Julien Straubhaar · Oktay Erten ·
Erkan Topal

Received: date / Accepted: date

Abstract Geological contacts in lateritic metal deposits (footwall topogra-
phies) often delineate the orebody boundaries. Spatial variations seen in such
contacts are frequently higher than those for the metal grades of the deposit.
Therefore, borehole spacing chosen based on the grade variations cannot ad-
equately capture the geological contact variability. Consequently, models cre-
ated using such boreholes cause high volumetric uncertainties in the actual
and targeted ore extraction volumes, which, in turn, lead to high unplanned
dilution and ore losses. In this paper, a method to design optimum ore/mining
boundaries for lateritic metal deposits is presented. The proposed approach
minimizes the dilution/ore losses and comprises two main steps. First, the
uncertainty on the orebody boundary is represented using a set of stochastic
realizations generated with a multiple-point statistics algorithm. Then, the
optimal orebody boundary is determined using an optimization technique in-
spired by a model calibration method called Pilot Points. The pilot points
represent synthetic elevation values and they are used to construct smooth
mining boundaries using the multilevel B-Spline technique. The performance
of a generated surface is evaluated using the expected sum of losses in each of
the stochastic realizations. The Simulated Annealing algorithm is used to it-
eratively determine the pilot point values which minimize the expected losses.
The results show a significant reduction in the dilution volume as compared
to those obtained from the actual mining operation.
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1 Introduction

Given a laterite-type bauxite deposit formed from tropically weathered mafic-
ultramafic complexes, the bauxite mineral exists in the soil horizons (Erten
2012). Therefore, the deposit can be mined easily by a front-end loader due
to the free-flow characteristics of the loose soil. Being an underlying geological
unit, ferricrete is very likely to dilute the bauxite ore during mining opera-
tions due to poorly defined geological interface between bauxite and ferricrete
units. Although this dilution can partly be alleviated by the front-end loader
operator, who subjectively discriminates the bauxite ore from the ferricrete
based on the hardness and color differences of the geological units at the time
of mining, it still cannot be avoided entirely.

Ferricrete dilution is the major cause of high silica content in the bauxite
ore, as it is tremendously rich in silica-bearing minerals such as kaolinite and
quartz (Morgan 1995). The contact topography between the bauxite and ferri-
crete units is rather undulating and cannot be modeled satisfactorily by using
an economically viable drilling program, as the drill spacing is usually deter-
mined based on the continuity and variation in the aluminum grade (Singh
2007; Hartman and Mutmansky 2002). In other words, since the peaks and
troughs cannot be sampled adequately, they cannot be inferred from the geo-
statistical estimates either (Philip and Watson 1986). This situation is also
illustrated in Figure 1. Failing to model the contact surface accurately intro-
duces a major uncertainty, which may then lead to the following: (1) inaccurate
calculations of the ore volume/tonnage and the quantity of the caustic soda
being consumed; and (2) subjective ore extraction strategies by the front-end
loader operators.

There are several ways to reduce the uncertainty in the contact surface
and its possible consequences. One of the easiest ones would be to conduct
a dense drilling program to capture the peaks and troughs of the contact
surface. However, this would dramatically increase the associated costs mak-
ing the operation less profitable and even not feasible at all. Another way to
reduce the uncertainty in the contact surface models is the use of geophys-
ical methods to contribute to the orebody delineation (Campbell 1994; Fal-
lon et al. 1997). Among the geophysical methods, ground penetrating radar
(GPR) has been efficiently used to improve the delineation of ore/waste bound-
aries in lateritic ore bodies (Francke 2010, 2012b,a; Francké and Nobes 2000;
Francke and Parkinson 2000; Francke and Utsi 2009; Francké and Yelf 2003;
Barsottelli-Botelho and Luiz 2011; Dagasan et al. 2018). However, GPR sur-
veys alone cannot replace the traditional drilling due to their lack of accuracy.
They are most efficiently used as secondary information to complement the
borehole data through geostatistical data integration techniques (Erten 2012).
Applications of such data integration presented by Erten (2012); Erten et al.
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Fig. 1: The peaks and troughs of the actual ore/waste interface cannot be de-
tected by an economically viable drilling spacing. This results in an inaccurate
estimation of the ore/waste contact (after Erten 2012)

(2013, 2015) demonstrate the benefits of using the secondary information on
the model precision. However, even though a better model representing the
ore/waste contact surface is attained, the large spatial variations inherent to
the ore/waste interface limits the mining equipment to track down a given
contact surface accurately.

Due to large spatial variations and the uncertainties inherent to the ge-
ological contact, any excavation surface inevitably causes dilution and ore
losses. Although this problem shows a similarity with the dig-limit problems
in open-pit mining, which has been covered by several studies such as Norrena
and Deutsch (2001, 2002); Richmond (2004); Richmond and Beasley (2004);
Isaaks et al. (2014); Ruiseco et al. (2016); Ruiseco and Kumral (2017); Sari
and Kumral (2018), the problem with lateritic deposits is rather specific due
to the nature of free-digging mining method. Research on finding the optimum
elevation values for a lateritic nickel mine has been carried out by McLennan
et al. (2006), but the focus was to optimize the dilution and ore losses. The
approach did not put a strong emphasis on the equipment selectivity due to
low dilution/ore loss ratio and good equipment selectivity.

The aim of this research is to design optimum extraction boundaries for
lateritic metal deposits based on the simulated ore/waste interface. The pro-
posed approach can be used to generate mining boundaries minimizing the
unplanned dilution and ore loss as well as increasing the mining equipment
flexibility. It is inspired by a model calibration technique, which is frequently
used in hydrogeology, called pilot points. In this technique, several pilot points
are first placed in the area to be mined out. These pilot points represent syn-
thetic elevation values and act as points controlling the shape of proposed
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extraction boundaries. The elevation values at the pilot points are iteratively
modified in order to find a smooth excavation surface minimizing the possible
dilution and ore losses. Multilevel B-spline method (MBS) (Lee et al. 1997)
was used to create a smooth surface by interpolating the values at the pilot
point locations with a predefined smoothness parameter. The losses associated
with a decision surface are calculated using several hundreds of equiprobable
realizations generated using the direct sampling (DS) (Mariethoz et al. 2010)
multiple-point statistics algorithm. This makes the generated excavation sur-
faces account for the uncertainties in the ore/waste interface. The elevation
values at the pilot point locations were iteratively optimized using the simu-
lated annealing (SA) algorithm (Kirkpatrick et al. 1983), which uses the sum
of the losses in all the realizations as the objective function. The pilot point
values yielding minimum losses were then employed to construct the suggested
extraction surface.

2 Review of underlying methods

The following subsections provide the required background information to
comprehend these methods, which form the foundations of the methodology
described in Section 3.

2.1 The Direct Sampling MPS Algorithm

The direct sampling (DS) is a pixel-based MPS algorithm used to simulate a
random function Z(x) on a simulation grid (SG) (Mariethoz et al. 2010). It
stochastically reproduces the spatial or temporal patterns in the simulation
domain by integrating the datasets from analogue sites through training im-
ages (TI) (Oriani et al. 2014; Pirot et al. 2014). A TI serves as a conceptual
geological model and contains spatial structures that are thought to exist in
the simulation area (Guardiano and Srivastava 1992). The DS uses the spatial
patterns in the TI to stochastically simulate a random function Z(x). The
steps to perform the simulations are as follows:

1. Migrate any available conditioning data to the SG.
2. Visit a non-informed grid node at x following a predefined random or reg-

ular path.
3. Determine n number of closest informed nodes at {x1, x2, ..., xn}.
4. Define the lag vectors L = {h1, h2, ..., hn}, where hi = xi − x, to construct

the data event dn(x, L) = {Z(x+ h1), ..., Z(x+ hn)}.
5. Randomly scan the TI at y locations and calculate the distance between
dn(x, L) and dn(y, L) = {Z(y + h1), ..., Z(y + hn)} until it falls below a
threshold t or a maximum scan fraction f is reached.

6. Take the pattern as the best match and paste the central node Z(y) to the
grid node at x location.

7. Repeat the steps 2-6 until all the grid nodes are informed.
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The DS algorithm also makes it possible for multivariate simulations of m
variables, which are spatially dependent by an unknown function (Mariethoz
et al. 2010). This is basically carried out by computing the distances between
the joint data events dn(x) and dn(y) of m variables in both the SG and the
TI, respectively. In this research, the MPS simulations were carried out by
calling the DS algorithm, which is coded in C, from R software (Team 2017).
The version of the DS used is called DeeSse (Straubhaar 2016). Detailed infor-
mation on the algorithm can be found in Mariethoz et al. (2010); Meerschman
et al. (2013); Straubhaar (2016).

2.2 Pilot Point Method (PPM)

PPM is an inverse modeling technique that is commonly used to calibrate
groundwater models (Jung 2008). It was first suggested by de Marsily et al.
(1984) and later modified by several researchers Certes and de Marsily (1991);
LaVenue et al. (1995); RamaRao et al. (1995); Oliver et al. (1996); Cooley
(2000); Alcolea et al. (2006). The primary motivation of the PPM was to
overcome the non-uniqueness and instability problems of the previous inverse
techniques using a reduced parameter space. In this method, several calibration
points are first chosen from the model domain where there are no conductiv-
ity measurements taken. These points are called pilot points and represent
synthetic conductivity values to be iteratively calibrated by minimizing the
squared errors between the actual and observed head values. At every step,
the pilot point values are used to generate the conductivity field using a geosta-
tistical interpolation technique with a particular prescribed spatial structure
inferred from the measurements.

In this research, the PPM was tailored for a mining application. Rather
than calibrating the conductivity field, the method was used to create opti-
mum mining boundaries. The pilot points located within the modelling domain
control the shape of the mining boundaries and were iterated to seek the pi-
lot point values yielding minimised dilution and ore losses. The details of our
proposed mining application are explained in the following sections.

2.3 Multilevel B-Splines

The MBS method was used to interpolate or approximate a scattered dataset
(Lee et al. 1997). Given a scattered dataset P = {(xc, yc, zc)} on a Ω domain,
the method uses zc values at (xc, yc) locations to carry out the approximations.
A function f (x, y) approximating the values zc at (xc, yc) locations were sought
to interpolate the Z field. To carry out this, the method utilizes a hierarchy
of control lattices Φ0, Φ1, ..., Φh overlain the domain Ω. Each of the control
lattices Φk contains a different number of control points with varying spacing.
The spacing between the control points of a Φk is always halved for the subse-
quent control lattice Φk+1. Therefore, the 0th control lattice Φ0 becomes the
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coarsest and Φh as the finest. Approximation with the coarsest control lattice
Φ0 comprises the first step of the MBS method yielding f0 function. Being an
initial smooth approximation, f0 results in a deviation ∆1zc = zc − f0(xc, yc)
for each point (xc, yc, zc). The algorithm proceeds by using the next control
lattice Φ1 to generate a function f1 which approximates the preceding devia-
tion P1 =

{(
xc, yc, ∆

1zc
)}

. A better approximation with a less departure from
the original data points P would then be obtained by the sum of f0 + f1. This
would result in the deviation ∆2zc = zc−f0(xc, yc)−f1(xc, yc). Therefore, the

deviation for a level k can be calculated as ∆kzc = zc−
∑k−1
i=0 fi(xc, yc). Since

the origin of the approach creates a surface approximating the points P , the
interpolation is achieved through a sufficiently small finest control lattice Φh.
The introduction of the adaptive control lattice hierarchy helps to achieve finer
lattices with a reasonable memory requirement. More information regarding
the theory can be found in Lee et al. (1997). The MBS method in this research
is implemented using the MBA package created for the R statistics software
(Finley and Banerjee 2010).

2.4 Simulated Annealing (SA) Algorithm

Simulated annealing (SA) is one of the stochastic optimization techniques
used to solve global optimization problems (Kirkpatrick et al. 1983; Xiang
et al. 2013). The method finds the global minimum of an objective function by
mimicking the annealing process of a molten metal. The artificial temperatures
used in the algorithm allows to regulate the cooling schedule and to introduce
stochasticity. This stochasticity is basically used to avoid the solution from
trapping inside a local minimum by changing the probability of acceptance
throughout the cooling schedule.

Given an objective function f(x) with the decision variables x = (x1, x2, ..., xn),
the SA algorithm utilizes the following to attain a global minimum (Sun and
Sun 2015):

1. Set a high initial temperature value T0 and an initial solution x0 to evaluate
the objective function E0 = f(x0).

2. Propose a new candidate solution xi+1:
– Propose a candidate solution xi+1 based on the current one (xi) through

a predefined visiting distribution.
– Evaluate the energy difference ∆E = f(xi+1) − f(xi) to observe the

change in the objective function for the candidate solution.
– Accept the iteration if the candidate solution reduces the objective

function, ∆E < 0.
– If the new candidate yields a greater objective function value, accept

or reject the solution based on a probability of acceptance criterion.
3. Repeat step 2 for L number of iterations holding T constant.
4. Reduce the temperature to Tn+1 based on a cooling function.
5. Repeat steps 2-4 until the convergence is achieved.
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In this research, Generalized Simulated Annealing (GSA) method (Tsallis
and Stariolo 1996) was used to optimize the pilot point values. It makes use
of the distorted Cauchy-Lorentz visiting distribution to seek for an optimum
solution (Tsallis and Stariolo 1996). The GSA offers different options for the
stopping criteria such as maximum running time, maximum function calls,
maximum iteration number or a threshold value for the objective function.
The implementation of the GSA was performed using the GenSA package of
the R statistics software (Xiang et al. 2013). The default SA parameters of the
package were set to solve complex optimization problems (Xiang et al. 2017).
Therefore, these values were used to optimize the pilot point values in this
research.

3 Methodology

The methodology of the proposed approach includes several steps to generate
an optimum ore/waste boundary. First one of these is to create an ensemble
of equiprobable realizations representing the uncertainty on the position of
the ore/waste interface. This step is followed by locating some pilot points in
the simulation grid and fitting a smooth surface to them. The elevation values
of the pilot points are then iterated and updated using the SA to seek the
combination of the pilot point values minimizing the total losses in each of the
realizations. These steps are illustrated in Figure 2. More information about
the steps is given in the following subsections.

(a)

Generate an ensemble of k realizations 

using the DeeSse

Surface 

Topography

Realisations for the

footwall contact

Pilot Points

(b)

Locate the pilot points in the simulation 

domain

(c)
Interpolate the pilot points to create a candidate mining 

boundary and iterate the pilot point values

(d)

Find the optimum values for the pilot points yielding 

the mining boundaries which minimize the sum of 

expected losses in each realization
Multilevel B-Spline Surface

Synthetic elevation values

Fig. 2: The main steps of the proposed methodology. See text for detailed
explanations.
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3.1 Simulations of the bauxite/ferricrete contact

The proposed methodology requires an ensemble of k conditional realizations
R = {Rj | j = 1, 2, ..., k} representing the ore/waste interface generated as a
first step. In order to perform the simulations, the borehole elevations of the
geological contact were used as the conditioning data. Available GPR survey of
the area, on the other hand, was used as the secondary information to guide the
simulations. Creating such realizations rather than a single estimation plays
an important role in integrating the uncertainty in the designed excavation
surface.

The required simulations in this research were obtained using the DS MPS
algorithm due to the benefits it provides in modeling the ore/waste boundaries
of lateritic metal deposits. For instance, it utilizes a TI as a structural model,
rather than a variogram. Therefore, knowledge on the spatial structures can
be inferred from the previously mined-out areas through the TI concept. Since
the mined-out topographies represent a complete picture of the geological vari-
ations inherent in the contact, they can provide rich structural information.
In classical geostatistics, such information is derived from the sparse borehole
data, which only offer a partial knowledge of the ground truth. An additional
benefit of using a TI is that the resulting modeling framework is rather non-
expert friendly as variogram modeling is not needed. Furthermore, the DS
allows performing multivariate simulations by utilizing the multiple point de-
pendence between multiple images. If geophysical data are available, as in our
case, this can be incorporated easily in the modeling.

Although the use of MPS offers some benefits, the requirement of a TI to
perform the simulations might sometimes limit its application. For instance,
after the extraction of a bauxite deposit, a mined-out surface is exposed and
this can be used as a TI through a topographic survey. However, such a survey
data may not always be readily available. In such cases, the contact simulations
can be performed using standard geostatistical simulation techniques as well.
The DS MPS algorithm has been used in this research since a mined-out floor
survey (TI) was already available.

3.2 Locating pilot points

Once a set of realizations for the footwall topography are generated, the next
step involves locating several pilot points θ = {θ(xl)| l = 1, 2, ...,m} in the
mining area. These pilot points function as synthetic elevation values, which
are used to create an optimum ore/mining boundary through interpolation.

The process required to set-up the pilot points can be explained in four
steps, as illustrated in Figure 3. The first one of these is to create a grid to store
their values and locations. The resolution of this grid can be chosen to be the
same as the SG. Once this is done, the next step comprises locating the pilot
points based on a predefined spacing. In order to better observe the effects
of the chosen spacing on the results in this study, pilot points were regularly
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spaced. That is, if the spacing is chosen as five grid nodes, the pilot points are
located at every 5th node of the pilot points grid. After this step, the initial
values of the pilot points (synthetic elevation values) need to be assigned.
This can either be performed by drawing numbers from a random number
generator or using the simulations. The random values for the pilot points can
be generated within a defined upper and lower boundary. Such boundaries can
be determined using the maximum elevation value of the surface topography
and the minimum elevation value of the contact realizations. Getting the initial
values from the simulations can simply be achieved by copying the elevation
values from the nodes of a realization which are co-located with the pilot
points. The final pilot point values, on the other hand, are decided by the
SA algorithm iteratively and lead to minimized dilution and ore losses. If the
boundaries of the grid do not have at least one pilot point, additional pilot
points are also placed at the boundaries. These additional points are required
to make the interpolation cover the whole modeling domain. For example,
when locating the pilot points in Figure 3, no points were placed in the right,
left and bottom boundaries initially. Therefore, three random locations in each
boundary were chosen to place an additional three pilot points.

Define the spacings 

between the pilot points 

in terms of grid spacing

Spacing in

X direction

Spacing in

Y direction

Step 2Construct a grid for the 

pilot points. 

Use the simulation grid dimensions

Step 1

Pilot Points Grid

Locate the pilot points based on

the chosen spacings between them

Pilot points

Pilot points at 

the boundaries

Step 3

Simulation Grid

Step 4

A realization 

for the

contact topography

Pilot points grid

Retrieve initial pilot point values 

from one of the realizations

Pilot points placed at 

every 4th grid node

Fig. 3: Steps followed to locate the pilot points and assign their initial values
in the mining area
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It should be noted that the spacing chosen between the pilot points affect
the smoothness of the created mining boundaries as well as the dilution/ore
loss amounts. If the spacing between the pilot points is small, the resulting
surface becomes more detailed. Therefore, it is advised to determine this num-
ber based on the equipment flexibility as well. A surface created using dense
pilot points would yield an uneven surface which would increase the time and
fuel consumption required to perform the excavation task.

3.3 Smooth excavation surface design

Multilevel B-spline is used as an interpolation technique to construct the
smooth excavation surface. The construction of the surface is mainly accom-
plished by interpolating the Z field at each grid node of the mine area using a
number θ of pilot points. The degree of fluctuations that the resulting surface
exhibits is primarily influenced by two factors. The first one is the number of
h levels used in the MBS interpolation. As this number increases, the fluctu-
ations of the constructed surface also increases due to better approximations
made in the finer levels. The second factor is related to the spacing between
the pilot points. Small spacing values between pilot points result in an in-
creased number of pilot points. This would then lead to greater variations in
the interpolated surface. We consider the fluctuations of the resulting surface
as an essential factor for the equipment flexibility. Being able to adjust this
allows one to integrate the equipment flexibility in the designed excavation
surface.

3.4 Loss calculation-Objective Function

The objective of the optimization is to find the θ = {θ(xl)| l = 1, 2, ...,m} pilot
point values, which lead to the decision surface Sd(θ) that minimizes the sum
of expected economical losses in an ensemble of k realizations:

min
θ

k∑
j=1

Lj(θ) (1)

where Lj(θ) is the loss incurred in the realization Rj due to the decision surface
Sd(θ). It can be calculated as follows:

Lj(θ) = pmaxj − pactj (θ) (2)

where pmax
j represents the maximum profit that can potentially be made if all

the ore between the surface topography and the ore/waste contact of the jth

realization were extracted. It can be calculated by multiplying the unit profit
P by the extracted volume:

pmaxj (θ) = P

n∑
i=1

Tmaxi,j (θ) ·A (3)
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where Tmax
i,j represents the maximum bauxite thickness at the ith grid node of

the jth realization (see Figure 4), A represents the area of a grid cell and n

Topography

Simulated ore/waste contact

Excavation surface fitted to the pilot points

Bauxite unit

Ferricrete unit

bauT

dilT

maxT maxT
bauT

Pilot points

Fig. 4: Thicknesses used to calculate the losses due to an excavation surface

represents the number of informed grid nodes in the simulation area. Tmax
i,j can

simply be calculated by subtracting the elevation of the footwall topography
realisations from those of the surface topography Ztopoi :

Tmaxi,j = Ztopoi −Ri,j (4)

pactj (θ), on the other hand, represents the actual profit that can be made out of
Rj if the mining is carried out following the boundaries defined by the decision
surface Sd(θ). Its calculation is performed by subtracting the cost of dilution
from the profit made out of extracting the ore at each grid node:

pactj (θ) = P

n∑
i=1

T baui,j (θ) ·A− C
n∑
i=1

T dili,j (θ) ·A (5)

where T baui,j represents the mined bauxite (ore) thickness using the decision

surface Sd(θ), T dili,j represents the ferricrete (waste) thickness overlying the
decision surface and C represents the unit cost of dilution. These thicknesses
can be calculated as follows:

T baui,j (θ) = Ztopoi −max(Ri,j ,min(Ztopoi , Sdi (θ))) (6)

T dili,j (θ) = Ri,j −min(Ri,j ,min(Ztopoi , Sdi (θ))) (7)

To sum up, the objective function used for the optimization was evalu-
ated based on the expected losses incurred due to a decision surface Sd(θ). Its
calculation was performed in four steps: (1) generation of an ensemble of real-
izations (only for once), (2) generating a set of pilot points, (3) fitting an MBS
surface to the pilot points and (4) evaluating the loss due to the constructed
smooth surface in each of the stochastic realizations.
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3.5 Determination of optimum values at the pilot points

The pilot point values yielding an excavation surface that minimizes the ex-
pected loss were determined by the optimization framework of the SA al-
gorithm. Steps of the optimization framework to design the optimal mining
boundaries can be seen in Figure 5.

Interpolate the 
pilot points using the
Multi-level B-Spline

Candidate 
ore boundaries

RealizationsMPS Simulations

Evaluate the
objective function
(expected losses)

Initial values for the 
pilot points

Start

Calculate 
the energy 
difference

Is the energy 

difference    

lower?

Optimum
Pilot Point 

Values

E

[ ]E L

Is the 

probability of 

acceptance

𝑃𝑎 > random

number

Yes

Accept new 

iteration

No

Yes

Propose new 
pilot point 

values

Is the 

stopping

criterion met?

No

No

Yes

Create the 

optimum mining 

boundaries

Fig. 5: Steps used to determine the pilot points yielding optimum mining
boundaries

Given a set of initial θ pilot points (vector of decision variables), an MBS
surface is first fitted to them, and the sum of losses in all the realizations
is calculated. The SA algorithm then perturbs the pilot point values using
the Cauchy-Lorentz visiting distribution to evaluate the performance of a new
solution (losses caused by the updated pilot point values). A change in the pilot
point values yielding an improvement in the objective function (reduction in
the losses) is always accepted. On the other hand, any change in the pilot point
values resulting in a worse solution (increase in the loss) can be accepted or
rejected based on the probability calculated using the generalized Metropolis
algorithm. The acceptance probability depends on the artificial temperature
parameter of the SA. As the temperature set is high in the initial stages of
the optimization process, the probability of accepting worse solutions is high
as well. Therefore, the solution space is well explored in the beginning. As the
iterations progress, the probability of accepting a worse solution goes down
since the artificial temperature approaches to zero. After several thousands of
iterations, the SA converges and finds the θopt pilot point values minimizing
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the losses. Once the optimum pilot point values are found, they are then used
to design an optimum excavation surface through the MBS method.

4 Results and Discussion

The proposed approach was implemented to generate optimum mining bound-
aries for a laterite-type bauxite deposit. Being an initial step of the proposed
methodology, simulations of the bauxite/ferricrete interface were first per-
formed. In order to achieve this, the elevation variable of the interface was
used as the attribute to be simulated. Due to the existence both of boreholes
and ground penetrating radar data (GPR), the simulations were performed
in the form of bivariate simulations. This was carried out by utilizing the
borehole data as the primary variable to condition the simulations and GPR
data, which is exhaustively sampled throughout the simulation domain, as the
secondary information to guide the simulations.

Both the borehole and the GPR data contain the elevation variable of
the bauxite/ferricrete interface. The borehole elevations were obtained by ob-
serving the elevation values at which the lithology changes from bauxite to
ferricrete. The GPR elevations, on the other hand, were obtained indirectly
from the original raw GPR measurements. In the first place, the raw GPR
data were acquired in two-way travel time. Therefore, it initially allowed the
determination of the depth from the surface to the bauxite/ferricrete inter-
face. After subtracting the depths to the interface from the surface elevations,
the GPR elevations for the bauxite/ferricrete were obtained. These elevations
were used as the secondary variable to guide the simulations. The conditioning
data used in the simulations are shown in Figure 6.

A bivariate TI was then constructed to infer the multiple-point dependence
between the borehole and the GPR data. Its variables comprise an exposed
mined-out surface of a previously extracted mining area and an extensive GPR
survey conducted before mining. The variables of the constructed TI can be
seen in Figure 7.

The grid used to store the TI dataset consists of 180 nodes in easting
(X) and 400 nodes in northing (Y) directions. On the other hand, the SG
is comprised of 97 and 214 nodes in both easting and northing directions,
respectively. The single grid size is defined as 2.38 × 2.38m for both the TI
and the SG grids. Since the original data for the GPR and the mined-out
floor surface were in the form of point data, they were migrated to the TI
grid node locations. This was performed through the conditional sequential
Gaussian simulation (sGs) technique so as to preserve the original statistical
properties as well as avoiding any smoothing effect. Using the constructed TI,
the DS was used to generate an ensemble of 200 realizations. The average of
the resulting simulations can be seen in Figure 8.

The pilot points were placed in the simulation domain based on a defined
grid spacing between them. In order to analyze the effect of the spacing on
the losses and the fluctuations of the decision surface, pilot points spaced 8,
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Fig. 6: Conditioning data used in the simulations. Black dots represent the
borehole data locations (primary variable) and the underlying image represents
the GPR data (secondary variable)

16 and 24 number of grids were tested. The defined spacings yielded 251, 60
and 26 pilot points, respectively. Plan views of the pilot point locations in the
mining area can be seen in Figure 9.

In addition to the spacings between the pilot points, the number of h levels
used in the MBS method also affects the smoothness of the decision surface.
This parameter was chosen as 10 in this study based on visually inspecting the
smoothness of the resulting surface. Although our choice in this research was
mainly due to the visual inspection, we suggest that a suitable value of this
parameter be determined in the future to yield a design surface mimicking the
front-end loader equipment selectivity.

The loss calculations require some unit costs and profits be defined. These
include the profit P of mining a unit volume of bauxite ore and the cost C
incurring in the case of a unit volume of dilution. Since the grade distribution
does not show a significant variability throughout the deposit, we simply as-
sume that the Al2O3% grades overlying the ore/waste interface are the same
everywhere. A similar assumption was also made for the SiO2% grades within
the ferricrete unit. Therefore, given that the dilution is approximately 60 times
costlier than ore loss in the mining of such deposits (Erten 2012), we simply
assumed that a unit loss occurring due to dilution basically costs $60. We also
assumed that the profit made when one unit of ore is mined is $1. It should
be noted that these prices are hypothetical and might not reflect the reality.

Optimization process begins with assigning an initial set of values for the
pilot points to be optimized. These values can either be randomly chosen or



Pilot-point optimization of mining boundaries for lateritic metal deposits 15

−1900 −1700 −1500

10
20

0
10

40
0

10
60

0
10

80
0

11
00

0
(a)

Easting (m)

N
or

th
in

g 
(m

)

8

10

12

14

16

18

Elev (m)

−1900 −1700 −1500

10
20

0
10

40
0

10
60

0
10

80
0

11
00

0

(b)

Easting (m)

N
or

th
in

g 
(m

)

8

10

12

14

16

18

Elev (m)

Fig. 7: The constructed bivariate TI: (a) extraction surface of a previously
mined out area and (b) extensive GPR survey carried out prior to the exca-
vation of the mining area
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Fig. 9: Locations of the pilot points in the mine area. Blue dots represent the
pilot points located at every (a) 8th grid node, (b) 16th grid node and (c) 24th
grid node. The dashed lines represent the coordinates where the cross-sections
were taken as presented in Figures 10 and 11

pre-specified before the optimization. In our case, the values were taken from
the elevation values corresponding to the average of 200 realizations at the
pilot point locations. We also defined a lower and an upper boundary in which
the optimum values of the pilot points are sought. These boundaries function
as the constraints of the optimization. The lower boundary was calculated
based on the minimum elevation value of the bauxite/ferricrete realizations.
Maximum elevation constraint, on the other hand, was the maximum elevation
value of the topography. We defined the maximum iteration number of the SA
as 50,000 and the temperature as 5,000. An objective function call during the
optimization process leads to the loss calculation for 200 images, which were
of size 97 × 214, to calculate the losses in each of the realizations. Having ran
the SA using the defined setup, it converged and yielded the optimum pilot
point values. The resulting cross-sections of the deposit for a different number
of pilot points are shown in Figures 10 and 11. Plan views of the generated
smooth surfaces are shown in Figure 12.

The cross-sections demonstrate that the optimum surfaces constructed lie
above most of the realizations. This is mainly due to the introduction of a
higher dilution cost compared to that of ore loss. The proposed approach
automatically avoids generating a surface that causes dilution, as it leads to
greater losses in the objective function. Note that the position of the decision
surface may seem to be high above the simulations in certain cases, but this
can be since we are only looking at a section while there are fluctuations in the
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Fig. 10: Y-Y cross-sections of the optimum surfaces found by using (a) 251
pilot points, (b) 60 pilot points and (c) 26 pilot points

perpendicular direction that the decision surface needs to consider to remain
optimal.

The use of a different number of pilot points has two main consequences.
The first one is about the fluctuations seen in the decision surface generated.
When the number of pilot points used increases, the decision surface exhibits
more fluctuations. Similarly, the use of sparser pilot points yields decision
surfaces that exhibit less fluctuations, as can be seen in Figure 12. The second
consequence is that the calculated losses decrease when the number of pilot
points increases as shown in Figure 13. This indicates that there is a trade-
off between the fluctuations and the resulting losses. More pilot points allow
defining a design surface that will be rougher and more difficult to excavate
but will produce higher revenue.

Following the collection of the borehole and GPR data, the area was mined
out by the front-end loader operator utilizing the hardness difference between
the ore/waste to track the actual geological interface. The surface exposed
was mapped through a topographic survey, and the collected survey points
were then used to create the complete image of the mined-out surface. Point
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Fig. 11: X-X cross-sections of the optimum surfaces found by using (a) 251
pilot points, (b) 60 pilot points and (c) 26 pilot points

to grid data conversion has been achieved by the conditional sGs, as in the
construction of the TI. The main idea was again to prevent any smoothing
effect.

In order to make a comparison, the expected volumes for the bauxite re-
serve, mined portion of the reserve, dilution and ore losses were calculated
using the three optimized boundaries. The expected reserve volume was cal-
culated by taking the average of the volume between the surface topography
and 200 contact realizations. For the mined reserve calculations, the bauxite
volume overlying the optimized surfaces in 200 realizations were averaged. If
the proposed surfaces were below a realization at a grid node, the elevation
differences were multiplied by the area to calculate the dilution volume. The
sum of all the dilution at each grid node yielded the total dilution amount for
a realization. Similarly, if the optimized surfaces were above a realization, they
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Fig. 12: Plan view of the excavation surface designed using (a) 251 pilot points,
(b) 60 pilot points, (c) 26 pilot points and (d) the actual mined-out surface.
The dashed lines show the sections where the cross-sections in Figures 10 and
11 were constructed.
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were considered to cause an ore loss and the associated volumes were calcu-
lated for each of the realizations. The dilution and ore losses calculated for 200
realizations were then averaged to find the expected dilution and ore losses for
a given decision surface. In addition, the results of these optimized surfaces
were also compared with the mined out surface using the same calculation
logic. The summary of the volume calculations given in Table 1 demonstrates
the benefit of the proposed method. Concerning the volume calculations, the
bauxite mined using 251 pilot points comprises 77% of the expected bauxite
reserve. This is very similar to the amount of bauxite mined by the operator,
which was 76% of the deposit. However, although both of the surfaces result
in obtaining the similar amount of bauxite deposit, the dilution amount re-
sulted using 251 pilot point surface was 0.076% of the total mined volume and
significantly lower than the dilution amount of mined out surface, which was
2.7%. The percentages described are also illustrated in Figure 14 in terms of
barplots.

Table 1: Statistics of the proposed and mined out surfaces

Expected Stats 251 Pilot Points 60 Pilot Points 26 Pilot Points Mined Out

Reserve Volume (m3) 130,448 130,448 130,448 130,448
Mined Reserve (m3) 100,506 86,938 75,324 99,316
Ore Loss (m3) 29,942 43,510 55,124 31,131
Ferricrete Dilution (m3) 76 86 113 2791
Economical Losses $34,502 $48,713 $61,946 $159,104

5 Summary and conclusions

In this paper, we presented a new grade control technique to minimize the
risk of operational dilution and ore losses in lateritic metal deposits. Although
the development was performed on a lateritic metal deposit, the method can
be applied to any stratified deposit to create an ore/waste boundary with a
certain degree of smoothness. The proposed approach benefits from a param-
eter calibration technique called ”pilot points” to create a design surface with
multi-level B-spline method. The optimized pilot point values are iteratively
obtained within the simulated annealing algorithm to create a new ore/waste
boundary minimizing the risk of dilution and ore losses. Possible losses of
a constructed surface are calculated using several scenarios of the ore/waste
boundaries generated by the multiple-point statistical simulations. We have
implemented the proposed approach on a lateritic bauxite deposit and com-
pared the resulting losses with the ones calculated using the actual mining
operation.

The major advantage of the proposed method is the reduction in the eco-
nomical losses. Implementation of the method on bauxite has demonstrated
much less losses compared to the actual mining operation that took place. It
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Fig. 13: Histograms of the losses calculated using the (a) 251 pilot points, (b)
60 pilot points and (c) 26 pilot points and (d) the actual mined out surface

was also observed that the losses resulting from our proposed approach are af-
fected by the spacing between the pilot points. Densely spaced pilot points give
smaller losses but increase the fluctuations in the resulting surface. Another
benefit of the proposed approach comprises the integration of the uncertainties
in the ore/waste contact. The losses of a decision surface are calculated using
the equiprobable realizations representing the ore/waste interface. Therefore,
the uncertainty in the ore/waste boundary is accounted for by the design sur-
face. Although the realizations were generated using multiple-point statistics,
the methodology could also work well with standard geostatistical simulations,
such as Turning Bands. One should, however, be cautious of the quality of the
simulations used as it significantly affects the designed surface. High variability
in the ore/waste contact simulations, for instance, tends to result in a design
surface deviating away from the average of the realizations due to the high
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Fig. 14: Barplots representing (a) the mined bauxite ore percentage of the
expected reserve and (b) dilution percentages of the total mined volumes

penalty associated with the dilution. This can lead to the underestimation of
the mineable reserve volume.

The last benefit is about the adjustable smoothness of the generated sur-
face. The number of h levels of the multilevel B-spline method allows con-
structing surfaces with a varying degree of smoothness. This can help design-
ing surfaces which are capable of reflecting the mining equipment selectivity.
Although h parameter of the multilevel B-spline fundamentally controls the
smoothness of the surface, it needs to be calibrated in conjunction with the
pilot point spacing used, as it also plays a crucial role on the fluctuations seen
in the resulting surface.

The proposed approach reveals several points to be studied in the future as
an improvement. The first one is the subjectivity introduced when placing the
pilot points. The number and the locations of the pilot points are chosen based
on personal preference in this study. Therefore, automatic determination of the
number and the location of the pilot points as in Jiménez et al. (2016) may
eliminate the subjectivity introduced. The second point that can be improved
is related to the degree of smoothness that the decision surface exhibits. Since
there is a trade-off between the losses and the degree of smoothness of the
decision surface, the optimum degree of smoothness yielding minimum losses
needs to be specified. This can be achieved by establishing a relationship be-
tween the surface smoothness and the mining equipment-related losses. Once
such relationship is formulated as a function of the fluctuations of a given
surface, this can then be used in the objective function as an additional term
to calculate the total losses. Lastly, although the computation time required
to perform the optimization was reasonable (6-8 hours) using the R software,
it can significantly be reduced by utilizing parallel computing and coding in
C language.
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Instead of using the multilevel B-Spline, alternative interpolation tech-
niques, such as kriging, can be used to generate the excavation surface. The
benefit of kriging would be the possibility to adjust the smoothness of the sur-
face with the range parameter of the variogram model. In addition, it could be
possible to infer this range from previously excavated surfaces. Therefore, the
equipment flexibility can automatically be integrated into the designed surface
with the prior knowledge from the mined-out areas. The implementation of
multilevel B-splines in this research was due to its high-speed computation
(Saveliev et al. 2005). Future research could investigate the use of kriging for
the interpolation and explore its possible advantages.

Due to the fairly continuous nature of Al2O3% and SiO2% grades through-
out the deposit and also for the sake of simplicity, the grades are considered
constant in this study. Therefore, in order to squeeze more performance out
of the approach and also to better reflect the reality, a block model of these
attributes can also be constructed to calculate the losses. Use of such a model
would then involve the loss calculations based on the partial or complete min-
ing of a specific block.
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