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This paper proposes a design of boundary controls for stabilization of Euler-Bernoulli beams with large mo-
tions and non-neglectable moment of inertia under external loads. Common types of boundary conditions in
practice are considered. The designed boundary controllers guarantee globally practically Ko-exponentially
stability of the closed-loop system. The control design, well-posedness, and stability analysis are based on
two Lyapunov-type theorems developed for a class of evolution systems in Hilbert space.
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1. Introduction

Euler-Bernoulli beams, whose dynamics are described by partial differential equations (PDEs) subject
to certain boundary conditions, are used in various applications. Theoretically, solutions of PDEs
depend on boundary conditions. Thus, a change of the boundary conditions in a proper way would
result in desired solutions of the PDEs. Practically, controls being implemented at boundaries are
much more practical than distributed controls. Motivated by the above facts, boundary control of
Euler-Bernoulli beams has received extensive attention from researchers over the last few decades, see
for example (Chen, Chentouf, & Wang, 2014; Chentouf & Wang, 2015; Do, 2017a, 2017b; Do & Pan,
2008a; Fard & Sagatun, 2001; B. Z. Guo, 2001; B. Z. Guo & Jin, 2013; F. Guo & Huang, 2001; Harland,
Mace, & Jones, 2001; He, Huang, & Li, 2017; He, Nie, Meng, & Liu, 2017; Jin & Guo, 2015; Li, Xu, &
Han, 2016; Liu & Liu, 1998, 2000; Lu, Chen, Yao, & Wang, 2013; Luo, Guo, & Morgul, 1999; Meurer,
Thull, & Kugi, 2008; Miletic, Stiirzer, Arnold, & Kugi, 2016; Nguyen, Do, & Pan, 2013; Ozer, 2017;
Queiroz, Dawson, Nagarkatti, & Zhang, 2000) based on the Lyapunov direct and flatness methods and
(Bohm, Krstic, Kuchler, & Sawodny, 2014; Krstic & Smyshlyaev, 2008; Paranjape, Chung, & Krstic,
2013) based on the backstepping method on single beams, and (Henikl, Kemmetmiiller, Meurer, &
Kugi, 2016; Kater & Meurer, 2016; Lagnese, Leugering, & Schmidt, 1994) on multiple beams. These
works contributed excellent results on reducing vibration of the beams via boundary controls at one
end and the other end is either connected to the base via a fixed or ball/simple joint or connected
to a tip mass. The control design is usually based on Lyapunov’s direct and backstepping methods.
Well-posedness of the closed-loop system is often carried out by using the Galerkin approximation
or abstract method. In the above works and many others not listed here, mathematical models used
for boundary control were often obtained from either linearization or Maclaurin series expansions up
to the second order of the strain and bending angle, see (Eringen, 1952; Love, 1920), and therefore
can only describe small motions (i.e., displacements and velocities of both translations and rotations
with very small amplitudes). These models cannot describe any large motions (i.e., large magnitude
of displacements and velocities of both translations and rotations) because otherwise the linearized
model is invalid.

Euler-Bernoulli beams are slender (say, the ratio of diameter to length is less than 1072) and
extensible. They deform in the transverse and longitudinal directions instead of shearing that can
occur for thick (Timoshenko) beams, see for example (Do, 2017¢; Endo, Matsuno, & Jia, 2017; Queiroz
et al., 2000). Therefore, Euler-Bernoulli beams are suffering from nonlinear and large motions induced
by external loads. Boundary control of Euler-Bernoulli beams with large motions has received less
attention. In (Do, 2011; Do & Pan, 2009a) (see also (Athisakul, Monprapussorn, & Chucheepsakul,
2011; Kokarakis & Bernitsas, 1987) for models of Euler-Bernoulli beams, where only large deflection is
considered), boundary control of Euler-Bernoulli beams (risers) with large deflections was considered.
In these works, the rotational inertia is neglected and one end of the beam is connected to the fixed
base by a ball joint. Moreover, the beams are constrained to inextensibility.

In this paper, the problem of stabilization of Euler-Bernoulli beams subject to extensibility and
non-neglectable rotary moment of inertia with large motions by boundary controls under external
loads is addressed. Three common types of boundary conditions are considered. Of all these types,
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boundary controls forces are available only at the top-end. The lower-end is fixed to the base in Type
I, and is connected to the based via ball/simple joint in Type II, see Figure 1.A. In Type III, the
lower-end is connected to a payload, i.e., this end freely moves. Type I and Type II of boundary
conditions are usually used in tension-legs and marine risers, respectively, while Type III is often
met in sea and air transportatation/installation (such as gantry/overhead cranes). It will be seen in
Section 4 that control design for Type III is much more challenging than that for Type I and Type
II. Theoretically, Sobolev embedding has to be applied in an appropriate way to relate motions of
the lower-end to the top-end. Moreover, the boundary controls need to propagate from the top-end
to the lower-end through the beam body. Practically, it is not reasonable to implement an additional
control at the lower-end due to hash environment.

Thus, this paper derives an appropriate nonlinear mathematical model that captures both large
and vibrating motions of Euler-Bernoulli beams subject to extensibility and non-neglectable rotary
moment of inertia. The beam dynamics are then transformed to a system of evolution equations
described by a set of ordinary differential equations (ODEs) in Hilbert space for convenience of control
design, well-posedness, and stability analysis. Next, two Lyapunov-type theorems are developed for
study of well-posedness and stability analysis for a class of evolution systems. These theorems are
then used to design boundary controllers that globally practically Koo-exponentially stabilize the beam
motions at the origin for all types of boundary conditions at the lower-end. The above approach has
several significant advantages over conventional control design methods. First, various control design
and stability analysis tools such as Lyapunov’s direct method (Khalil, 2002) developed for ODEs
in Euclidean space can be mimicked with appropriate functional spaces, norms and inner products
introduced. Second, searching for a proper Lyapunov function can be constructive based on the
backstepping method (Krstic, Kanellakopoulos, & Kokotovic, 1995). Third, well-posedness can be
carried out for a class of systems governed by nonlinear PDEs, see (Banks, Smith, & Wang, 1996;
Luo et al., 1999) for systems governed by linear PDEs, instead of considering each concrete system as
in the conventional approach (e.g., (Berrimi & Messaoudi, 2004; Cavalcanti, Cavalcanti, & Soriano,
2002; Do, 2011, 2016a; Do & Pan, 2008a, 2009a; Evans, 2000)). In summary, the contributions of the
present paper are listed as follows:

e Original nonlinear PDEs governing motions of Euler-Bernoulli beams are considered.

e Three common types of boundary conditions are addressed.

e Two Lyapunov-type theorems are developed to study well-posedness and (K.-exponential)
stability of nonlinear evolution systems in Hilbert space.

e Boundary controllers are designed to achieve global well-posedness and KCo.-exponential stability
of the closed-loop system under both low and high constant axial force (pretension).

Notations. The symbols A and V denote the infimum and supremum operators, respectively. These
operators are also applied to more than two arguments.
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Figure 1.: A) Beam boundary configuration (¢15 and ¢op are boundary control forces provided by
actuators); B) loading diagram.
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2. Problem formulation

2.1. Mathematical model

Assume that the plane sections of the beam remain plane after deformation; the beam is locally stiff;
the beam material is homogeneous and isotropic; torsional moment is neglected; only in-plane defor-
mations of the beam occur; and the reference beam is straight. The beam’s boundary configuration
is shown in Fig. 1A and the loading diagram on an element is given in Fig. 1B, where the argument
t and nonconservative forces are not shown for clarity; and all symbols are defined in the sequel. Let
(u,w) denote the displacements of the beam along the OX- and OZ-axis from the point Sy of the
initial beam center line at the initial time ¢y to the point S of the deformed beam center line at time
t, and 0 denote the angle between the beam’s center line and OZ-axis at the point S.

Balancing the forces and moments acting on the beam element results in the following equations
of motion (Lacarbonara, 2013):

mowy = [N cos(0) — Qsin(0)], + fi,
moug = [N sin(0) + Q cos(8)]. + fo, (1)
Jobyt = M. + (1 +)Q + f3,

for all (z,¢t) € (0,T") X [tg, 00) with T being the beam length at the reference state and ¢y > 0 being the
initial time. In (1), where mg and Jy are the mass and moment of inertia per unit length, respectively;
the symbols e; and e, denote % and %, respectively; f;(e),i = 1,2,3 denote nonconservative forces
and moment; N(z,t) and Q(z,t) denote axial and shear forces, respectively; and M(z,t) denotes
the bending moment; (z,t) denote the axial strain of the beam’s center line. The axial strain and
unshearable condition (as we are considering Euler-Bernoulli beams) are expressed in terms of u,(z, t),

w,(z,t) and 0(z,t) as follows:

e = (14 w,)cos(f) + u,sin(f) — 1, @)

0=—(1+w,)sin(f) + u cos(),
for all (z,t) € [0,I] x [tp,00). We need to supply constitutive equations for N(z,t) and M(z,t).
Because 1) the curvature and extensibility can be moderately large, 2) the selected base curve is the
centroidal curve, and 3) the section-fixed axes are collinear with the principal axes of inertia and the
origin is the center of mass, then the constitutive equations can be given by (Love, 1920):

N = EAe + Py, M = EIf., (3)

for all (z,t) € [0,I'] x [to,00), where A is the cross section area; E is Young’s modulus; [ is the area
moment of inertia of the beam cross section; and Fp is the positive constant axial force. There is no
constitutive equation for ) since it needs to satisfy the third equation of (1) and 6 satisfies the second
equation of (2), see also Remark 1 below. The forces and moment f;(e),i = 1,2, 3 are given by:

fi = —diw + digwzzt + fro(z,t), fa = —dowy + dagctzze + f20(2,1), f3 = —d30i + fao(z,t), (4)
where the positive constants d;,i = 1,2, 3 denote damping coefficients; the positive constants d;x,i =
1,2 are Kelvin-Voigt type damping coefficients; and f;o(z,t),7 = 1,2, 3 denote the external loads. Note

that the terms dy gw,.; and daogu,,; are referred to as Kelvin-Voigt type damping terms (Meirovitch,
1967). The initial values are:

u(z,to) = u10(2), ue(z, to) = uo(z), w(z,to) = wig(2), w(z, to) = wao(z). (5)
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Finally, referring to Fig. 1A the boundary conditions at the top-end are given as follows:

mipwy (T, t) = —[N(I',t) cos(0(T',t)) — Q(TI',t) cos(0(T', t)) — Po] + ¢p158 — dipw (L', t)
—digw(T',t) + fipo(t),

mopu (L, t) = —[N(T,t)sin(0(T,t)) + Q(T, t) cos(0(T,t))] + ¢op — dapw(T,t) (6)
—dakuz (s t) + fapo(t),

M(,) =0,

where the boundary control forces ¢1p (along the OZ-axis) and ¢9p (along the O X-axis) are provided
by actuators; m;p, ¢ = 1,2 are masses of the actuators; the positive constants d;p,7 = 1,2 are damping
coefficients; and f;po(t),i = 1,2 being external forces and moment acting on the actuators. The
boundary conditions at the lower-end are given by

Type LI:{w(0,t) =0, u(0,t) =0, 6(0,t) = 0.
Type IL{M(0,t) = 0, w(0,t) =0, u(0,t) =0.

mpwy(0,t) = —dip(t)w(0,t) + [N(0,t) cos(0(0,t)) — Q(0,t) cos(0(0,t)) — Po]
+digwz(0,t) + fipo(t), (7)
Type TIT: 4 mpug (0, ¢) = —dap(t)us (0, £) + [N(0, ¢) sin(8(0, £)) + Q(0, £) cos(6(0, 1))]
+darcu¢(0,t) + fapo(t),
M(0,1) = 0,

where mp is the mass of the payload; the positive constants d;p,7 = 1,2 are damping coefficients;
and fipo(t),7 = 1,2 are external forces and moment acting on the pay load. Note that for Type III,
Py = mpg, where g is the gravity acceleration.

Remark 1: The shear force Q is obtained by solving the third equation of (1). Apparently, the force
Q depends on Oy, which in turn depends on w,y and u,y because § = arctan (#—;2), see the second
equation of (2). Due to this dependence, we do not substitute the shear force Q, which is obtained
by solving the third equation of (1), into the first two equations of (1), (6), and (7) because this
substitution will result in a very complicated presentation of the beam dynamics and control design.
Moreover, linearization of the beam dynamics (1)-(7) results in models studied in vibration works in

Section 1, see (S. T. Chow & Sethna, 1965).

Several useful inequalities to be used extensively in the control design and stability analysis later
are given in the following lemma.

Lemma 2.1: For all (z,t) € [0,T] x [tg, 00), the following inequalities and equality hold:
(o) — wa(2,) 2 0, (2, 8) = wl(,8) + w2 (2, 1) — 2(e(, 1) — wal(2, ),

r r r (8)
fow2(z,t)dz < 2Tw?(T, t) + 4F2f0wz(z,t)dz, w?(0,1) < 2w*(T,t) + 4Ff0wg(z,t)dz.

Proof. See Appendix A. The last two inequalities also hold for w(z,t) being substituted by u(z,t).

2.2. Control objectives
Before stating the control objective, we make the following assumption, which is reasonable in practice.

Assumption 2.1:

1) The initial values uip(z), u20(2), w10(2), wao(2), 020(2) are bounded in L?-norm, i.e., there exists
a nonnegative constant ey such that for(u%o(z) + w3y (2) + udg(2) + wiy(2) + 03y(2))dz < eo.

2) The external loads fio(z,t), fipo(t),i = 1,2,3, and fipo,i = 1,2 are bounded in the sense that
there exist nonnegative constants i](\)/[ , %0, and f% such that

r
sup fo fio(z,t)dz < fif, sup flpo(t) < flgo, sup fipo(t) < fifo (9)
te[to,OO) te[to,oo) te[to,OO)

3) There exist constants e, and epr such that the axial strain £(z,t) satisfies €(z,t) € [em,em]
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for all (z,t) € [0,T] x [to,00) with 1+ &, being strictly positive. This condition is practical because
otherwise Hooke’s law will not be applicable (Love, 1920).
4) The beam stiffness is not too small in the sense that

dix V dak

EA > +2T2(dy V dy), (10)

where the symbol > means strictly larger than. This condition makes sense because otherwise the
beam will behave like a string/cable.

Control Objective 2.1: Under Assumption 2.1, design the boundary controls ¢;p,i = 1,2 and the
positive constant axial force Py such that the beam system consisting of (1)-(7) is globally (practically)
Koo-exponentially stable at the origin in the sense that

E(t) < a(E(to))e M) + ¢, (11)

where a 15 a class Koo-function, c is a positive constant depending on the initial conditions, cq is zero
if fio(®) =0, fio(®) =0, fipo(t) =0, and fipo(t) = 0 with i = 1,2,3, and is a positive constant if
fio(®), fipo(t), and fipo(t) satisfy (9); and E(t) := EL(t) for Types I and II, and E(t) := EM(t) with

Types I and IT: { EM1(t) = £°(t) + 55’”(15)7

Type ITT: {EM(1) = £°(t) + £11(2), -

where E(t) depends on the type of boundary conditions at the lower-end as follows

r
E(t) = [ [ud(z,1) + wh(z,) + 02(2, ) + £2(2,1) + 02(2, )] dz + [wn(Ts ) + y(D, )]
+ [ (0, 1) + qu(l, O] + w? (1, 1) + u?(T, 1), (13)
&) =0, &1(t) = [wi(0,1) + yw(0, ) + [ua(0,1) + yu(0, D) +w?(0,1) +u?(0,#),
with v being a positive constant (to be chosen later). The matric E(t) is a positive definite and

radially unbounded functional of velocities, displacements, and curvature of the whole beam body, and
displacements of the both ends of the beam due to the Sobolev embedding (Adams € Fournier, 2003).

3. Well-posedness and Stability of Nonlinear Evolution Systems

3.1. Space notations

Let H be a separable Hilbert space identified with its dual H* by the Riesz isomorphism. Let V' be a
real reflexible Banach space such that V' C H continuously and densely. Then for its dual space V*,
it follows that H* C V*. From the definitions of H and V', we have that the embedding V C H =
H* C V* is continuous and dense. We denote by ||| m, ||.|[v, and |.|[v+ the norms in H,V, and V*,
respectively; by (., .)vv- (i.e., (z,v)yy+ = z(v) for z € V*, v € V) the duality product between V' and
V*; and by (.,.) g the inner product in H. The duality product between V' and V* has the following
property, see (Banks et al., 1996; Gawarecki & Mandrekar, 2011): (u,v)y,y- = (u,v)g,u € Hv € V.

3.2. Nonlinear Evolution systems
On the space H, let us consider the nonlinear evolution system:

dX ()
dt

= F(X(t),t), X(t)) = X, € H, (14)

where X € H and F : H X [tg,00) — V* is a family of nonlinear operators defined almost every (a.e.)
t. We first define a variational solution of (14). This definition is a deterministic version of the one
defined in (P. L. Chow, 2007).
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Definition 1: A H-valued process {X (t),t € [to,00)} is said to be a global variational solution of
(14) if for any ¢ € V:

(X, 9)y = (X0 )y + [ (FX(5),5),9)y,y.ds (15)

for each t € [tg, 00).
The following stability definition is a version of the one in (Khalil, 2002) extended to Hilbert space.

Definition 2: Let a be a class Koo-function. The variational solution of (14) is said to be

1) globally stable if, for each Xo € H, there exists § = (|| Xollrg) such that | X(t)|g <
oI Xollm), ae (X,t) €V X [ty,00);

2) globally practically Koo-exponentially stable if it is globally stable and || X(t)[|lg <
| X (to) |l z)e 1) + ¢y, a.e. (X,t) € V x [tg,00), where c is a positive constant depending on
the initial conditions, and cq is positive constant. If co = 0, it is globally K~ -exponentially stable.

3.3. Well-posedness and stability theorems for nonlinear evolution systems

We assume that F' : H X [tg,00) — V* is measurable and satisfies the following continuity and local
monotonicity conditions.

Assumption 3.1:

1) [Continuity] The mapping V > v — F(v,t) € V* is continuous a.e. t € [ty, 00).

2) [Local monotonicity] For any w,v € V with |[ullg < € and ||v||g < €, where € is a positive
constant, there exists a constant c. such that

2(u—v, F(u,t) = F(0,1)). <cllu—vl3, (16)

a.e. t € [tg,00).

Theorem 3.1: Under Assumption 3.1, suppose that there exist a function U € C1(H;[tg,00)) re-
ferred to as a Lyapunov function, and class Kso-functions aq and ag such that

ar([[Xz) <UX,t) < o[ X|), a-e. (X,1) €V x [to, 00), (17)
and that the generator LU := % given by
‘CU(Xat) = Ut(Xat) + <F(Xa t)’ UX(X7t)>V,V*’ (18)

with Uy(X,t) and Ux(X,t) being the (Fréchet) derivatives of U(X,t) with respect to t and X,
respectively, satisfies

LUX,1) < e(1+UX,1), ae (X,t) €V x [t, 00), (19)

where ¢ is a nonnegative constant. Then (14) has a unique global variational solution for each Xy € H.

Proof. The proof can be carried out by using the method of proving Theorem 4.1 in (Do, 2016b) and
Theorem 4.1 in (Gawarecki & Mandrekar, 2011) (pages 176-181) with a note that only deterministic
part is considered and that the coercivity condition is substituted by the condition (19).

Theorem 3.2: Under Assumption 3.1, suppose that there exist a function U € C(H; [tg,o0)) and a
class Koo-function as such that

al X[E < UX,1) < ao(|X|[H), a.e. (X, 1) €V x [to, 00), (20)
where c1 is a positive constant, and that

LU(X,t) < —c3| X||% + co, a.e. (X,t) €V x [tg,o0), (21)
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where c3 is a positive constant. If co = 0, the equilibrium X = 0 s globally K -exponentially stable.
If ¢y is a positive constant, the equilibrium X = 0 is globally practically I -exponentially stable.

Proof. See Appendix B.

4. Control design

4.1. Abstract formulation

Let L?(D) denote the L%-space with the norm ||.|[z: and inner product (.,.)z: and W™P(D),
with (m,p) being integers, denote the Sobolev space of order m and degree p, see (Adams &
Fournier, 2003). Considering z € [0,I'] as the parameter defined at every t > tp, we can re-
gard u(z,t),w(z,t),0(z,t), us(z,t), we(z,t), and O;(2,t) as ui(t) € W22([0,T]), wi(t) € W22([0,T)),
01(t) € W22([0,T)), ua(t) € L2([0,T]), wo(t) € L%([0,T]), and O(t) € L2([0,T]), respectively. Simi-
larly, u(0,t),w(0,t),0,(0,t), u(T,t), w(T,t), O(T,t), 6,(T,t) are regarded as uP°(t) € R, wP(t) € R,
DOPO(t) € R, uPl(t) € R, wP'(t) € R, 0PY(t) € R, DOPY(t) € R respectively. Moreover,
ug(T, 1), wy (T, t) and 6;(T,t) are considered as ubl'(t) € R,wPl(t) € R, and 65T (¢), respectively.
Let us also denote the operator D¢(z) = %. With the above notations, we can write the beam
dynamics (1) and its boundary conditions (6) and (7) in the evolution system (abstract form):

dwy_du o dn
a2 At 7 dt 7
d 1 1
E2 D[N cos(6)) — Qsin(6))] + — f1 = Fl,
dt mo mo (22)
dUQ 1 1
—= = —D[Nsi —fo = F
pra— [N sin(61) + QCOS(91)]+mO fa = F,
dfs 1
— = — DM+ (1 = F:
@ = 3 DM+ (1)@ + f3] = F
where the argument ¢ is dropped for clarity. The boundary conditions (6) are written as:
deF duBF
R
dwy’ _ . {— [INBY cos(6PT) — QP sin(0PY) — Py) + o185 — dipwBt — digDwll+ f } = FPr
dt - miB 1 1 0 1B 1BWy 1K 2 1BO| -— 41 >
d“zBF _ L uBr.. BT BT BT _ Bl BT ._ BT
FT [N Sln(91 ) +Q COS(91 )] 4+ ¢op — dapu dgK]D)uz + fopo| = 5,
t mopB
MBF =0
(23)

where NBU(t), QBY(t), and MPBY(t) are the values of N(t), Q(t), and M(t) evaluated at z = T,
respectively, and the boundary conditions (7) are written in the abstract form as:

Type I{w" =0, u{® =0, 6{° = 0.
Type I:{M"° =0, wf® =0, v}’ =0.

ClwlBO - wBO dulBO B uBo
dt 2o dt - %2
dszO 1 B0 BO BO B0 BO BO B0
- ot :mip[—chpwz + [N cos(677) — QPP cos(07°) — Pol+d1 k Dws +f1PO} = FBO,
Type III:
du230 1

2 = [ dapuf® o NP0 sin(07) + Q0 cos(07)] + doxeDuf” + fopo] = EP,
P

MPBO =,

(24)
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where NBO(t), QBO(t), and MPBO(t) are the values of N(t), Q(t), and M(t) evaluated at z = 0,
respectively.

4.2. Control design

To design the boundary controls ¢;5,7 = 1,2, we consider the following Lyapunov functional candi-
date:

Types I and II : {U — U +Us+Us + Ui’H,

111 (25)
Type 111 : {U = Uy + Uy + Us + UM,
where
mo J() EA EI
U1 = 2 [l + wali3] + 2210202 + 22113 + ZL 100113 + Po(1,e — D) .
sin (6
Uy = ymo(w1, w) ,, +ymo(u1, ug) ., +’YJ0<92, 1 j(L ;) >L2,

m1B 2 M2p 2
Us = - [wQBF + 'ywlBF} + — [u2BF + vufr] + klgv(wlBF)2 + k:gB'y(ufF)Q,
Ui =,
m m dip —ym dop — Ym
UiH _ 7P(WUIBO + w2BO)2 + 7P(,W{Bo + u§0)2 + (dip 27 P)V(wlBo)z + (d2p 27 P)W(ufo){
(26)
and the positive constant ~y is first chosen such that
diP —ymp Z d;‘Pai - 17 27 (27)

where dp is a strictly positive constant, and k;p,% = 1, 2,3 are chosen later. Note that U; is referred
to the “energy” of the beam while it is nontrivial to choose U;,i = 2,3,4. We now find the lower
bound of U. With the use of Young’s and Holder’s inequalities and the third inequality of (8) and
sin(f1) = 24 see the second equation of (2), we can bound Uy as:

1+e?
Jooo2 v Jol|Duy ||2.
Us| < 22 22 m 22 22 77 0 22 ol Dual[z.
0a] rmog (Jalz: + wallz) + 4001 (el + foalfze) + (14 ¢em)? 162llz + 4002(1 4 em)?
yI'mg AT 2my
Symoor(Jwallfs + uallfz) + 5o F[(wf™)? + ()] & T (1Bl + Do)
Ji Jo||Duq |2,
+ 7079022”92,‘%2 + LlHLZ
(1 + 5m) 4@02(1 + 5m)
<ymooon (lwallz= + [luzllz:) + o [(wP)? + (uf™)?] + OFQmO + e 2) lell7:
200 001 4002(1 + &m)
7Ty 7Jo ~vJo0o2 9
+2< )l,a—Dw 2+70 2
Qo1 4@02(1+€m)2 < 1>L (1 +Em)2H 2”L

(28)

where we have used €2 + 2(¢ — Dwy) = (Dwy)? + (Duy)?, which is obtained by squaring both sides
of (2) then adding together; e, = infycpy, o) €(t), see Assumption 2.1.3; and go;,7 = 1,2 are positive

constants to be determined. Using U; — |Us| + Us + Ui’H < UM < Uy + Uy | +Us + Ui’H and similarly
for U and the second inequality of (8), we can bound U as follows:

LIT o111 I,IT LIT, o111
C]. g S U S a2 (g ))

AT I ¢ p7IIL o IIT gy (29)
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where M and is defined in (12), oé’n and of! are class Koo-functions, and

Types I and 11 : {cI - = cf,

J dip — dop — (30)
Type I : {1 = [¢5] A [@] A [i] A [( 1P ’YmP)’Y} A {( 2P ’Ymp)’q7
2 2 2 2
with ¢ being defined as
1 1 7002 EA  ~I'’myg ~vJp EI
i =lmo(g —reo)] A 05 - i) [ T [ 7]
C1 = [ 0 9 Yoo1 0 2 (1+€m)2 9 001 4@02(1+5m)2 2 (31)
T T
A |:mlB:| A [mQB} A [le’y— Y mo} A []@B'Y— Y mo}’
2 2 2001 2001
and we have chosen pp; and pgs such that
Py > 2(F2m° + Jo ) (32)
0= oo1  4002(1+¢em)?
to ensure that (Po — QFZ;?O - 24Q()2(1+E )2)<1 e — Dw1>L2 > 0. The constants v and gg; are chosen
such that
III > CII II7 CllII > CTIH, (33)

where clI and c"‘HI are strictly positive constants. This is always possible by choosing v sufficiently

small for given Qoz,i = 1,2. The constants gg;,7 = 1,2 and control gains k;p,7 = 1,2 for a given
constant axial force Py are chosen as in the following procedure to ensure that the conditions (27),
(33), and (32) hold:

Procedure 4.1: For a given Py:
Step 1. Choose 0p;,© = 1,2 such that

F2m0 JQ
P> 2( + ) 34
oo1  4002(1 +em)? (34)
Step 2. Choose v such that
dip d,zp 1 1 EA (T2mg Jo -1

YL RENZEN gy N gty M O T i) (35)

Step 3. Choose k;p such that
kip > 0o, kg > Hlo. (36)

The symbols “>7 and “ K7 mean strictly larger than, and strictly less than, respectively.

Thus, the Lyapunov functional candidate U is a proper (positive definite and radially unbounded)

functional of £. We now calculate the generators LU := %;H and LU = %;H. It is obvious from
(25) that

LU = LU, + LU, + LUs + LU,

37
LUM = LU, + LUy + LUs + UM, (37)

where LU;,i =1, ..., 3, £Ui’H, and LU; I are detailed in the following subsections.
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4.2.1.  Calculation of LUy
Differentiating both sides of the first equation of (26) along the solutions of (22) results in

LUy = (D[N cos(b1) — Qsin(1) — Po] + f17w2>L2 + (D[N sin(61) + Q cos(61)] + f27u2>L2

38
+ (DM + (1+€)Q + f3,02),, + EA(e, 1) ., + EI(DO,Db5) ,, + Po(1,e, — Dws),,, (38)

where ¢; := ‘g‘i and we have used the trick D[N cos(0;) — @ sin(61)] = D[N cos(61) — @ sin(61) — Fo)
to deal with the boundary condition. Using integration by parts and boundary conditions (23) and
(24), we can write LU as

LU = {[NBF cos(0PY) — QP sin(6PT) — PylwBY+[NBY sin(6P1) + QPY cos(#P1)] BF}
— {[NP?cos(67°) — QP sin(67°) — PoJw® + [NPOsin(67°) + QPP cos(67°)]us® }
+ EA<€, Et>L2 + EI<ID>01, D92>L2+ P0<1, et — ID>w2>L2+ 0 +<f1, w2>L2—|—<f2, u2>L2—|-<f3, 02>L2’
(39)
where
O =— <[N cos(f1) — Qsin(fy) — Po],]Dw2>L2 - <[N sin(61) + Qcos(ﬁl)],DuQ>L2 — <M, ID)92>L2
= — (N, [Dug sin(6;) + Dws cos(@l)]>L2 — (M, ]D>92>L2 —(Q, [Dcos(01) — Dws sin(&l)]>L2 (40)
+ P0<1,]D>w2>L2.

To further calculate €21, we differentiate both sides of (2) to obtain

g = Dwg cos(61) + Dug sin(6y),

41
0 = —Dwsg sin(01) + Dug cos(01) — (1 + £)ba. (41)

Substituting (41) and the expression of N and M defined in (3) into (40) results in
Q) =—EA(e,e1),, — EI(D01,D03),, — Po(1,e; — Dws) . (42)

Now, substituting (42) into (39) gives

LU = {[NBF cos(0PT) — QP sin(0PY) — PylwBT+[NPY sin(6P1) + QBT cos(0PM)]u }
- {[NBO cos(0P9) — QBYsin(6P%) — Pylwl? + [NBOsin(#P°) 4+ QPO cos(6P%)|u 0} (43)
+ <f1’w2>L2 + <f27u2>L2 + <f3’02>L2'

4.2.2.  Calculation of LUs

Differentiating both sides of the third equation of (26) along the solutions of (22) and using integration
by parts result in

LUy =ymy[||wa]F2 + [|ul|Z2] + Qo1 + (D[N cos(61) — @sin(6:)] + frywi) .

sin 44
+ v(D[N sin(6;) + Q cos(61)] + f27u1>L2 +’Y<DM+ Q(L+e) + fs, (01)> 2 ()

1+4e /L
with
03 cos(01)(1 +¢) — 402 sin(0
Qoy :%]0<17 5 cos(01)( ) ~ 102 sin( 1)> 2
(1+¢) L (15)
011 + 012 1 2 vJo ) ~Jo )
<~Ji [ } 0s]|7: + ——————||D s —12 D .,
=770 (I+em)? 1+enm 102112 4011(1+6m)2” wallr 4912(1+6m)2H walli

10
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where we have used the first equation of (41) and Young’s inequality; and g11 and g2 are positive
constants to be determined. Now, applying integration by parts to (44) and using (45) gives

LUy < {[NP cos(077) — QP sin(07") — Polywf" + [NPUsin(671) + QP cos(0F")|yut" }
- {[NBO COS(QIBO) — QB0 sin(HIBO) — Po]'ywl + [NBO sm(c%%) + QPO cos(GIBO) {30}

011 + 012 1 vJo||Dws[%. vJo||Dus|)7
+ vym w 22+ u 22 + J[ i| 2
ymo [lwal|72 + [luzllz2] +~Jo Q1o 11en [102|7, Ton(ten) | Ton(l+em)?
. sin(6
’Y<stln(01)>L2+Q22+Q23+7<f17w1>[/2+’Y<f27ul>L2 +7<f37 15_;)> 5

(46)
where we have again used D[N cos(0;) — @sin(61)] = D[N cos(01) — Qsin(61) — Py), and

Qop = — fy<N cos(61)Dwy + si1r1(91)}]])u1>L2 — 7<Q, —sin(0;)Dw; + cos(&l)ID)u1>L2 + 7P0<1, ]D)w1>L2,

Qs — <]D)M sm(91)> §

l+e
(47)
Using (2) and the expression of N defined in (3), we can further calculate 222 as follows:
Oy = — ﬂyEAHsH%z — 7<Q, sin(¢91)>L2 — 7EA<€, 1-— (:08((91)>L2 (48)

— ’}/f)o<17 1-— (308(91)>L2 - ’)/P0<1,5 - ]D)w1>L2.

Using the expression of M defined in (3) and integration by parts, we can further calculate Qo3 as
follows:

sin(6
Qgg = 7EI<]D)201, : J(r ;) >L2. (49)

‘We now consider two cases:

e Case 1: If D?6; sin(6;) < 0, we have

yET 9 .
s < (001 sin(01),

zlzLEst[MBF n(07") — M"0si (930)] 11E€€\4<(D01)27005(91)>L2 (50)
L (00 cos0)y

where €)1 = Supycfy, ) €(t), and we have used the boundary conditions (23) and (24).
e Case 2: If D26 sin(61) > 0, we have

923 < 1,YEI <D201,SH’1(91)>
VEI BT ../ nBT BO .+ (B0 YET 2
= Tren (M7 sin(07") — M7V sin(67°)] — 1 +€m<(ID)91) ,cos(01)>L2 (51)
__ VEI 2
- 1+€m<(D91) ’008(91)>L2’

where we have used the boundary conditions (23) and (24).

Thus, the following upper-bound of 293 holds for both cases:

= <(D91)2,COS(91)>L2 < YEI(1 4 (Dwi)m)

Qg < — _
B =" 1¥eu (1+epr)?

D17, (52)

11
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where Assumption 2.1.3 implies that there exists a bounded (Dwy)y, := inf;cpy, o) Dw1 and we have

used cos(f;) = 1‘*1'21216”1, see the second equation of (2). Substituting (48) and (52) into (46) results in

LUy < {[NP cos(07) — QP sin(07") — Polywf™ + [NPUsin(077) + QP cos(07")]yut™'}
—{[NP%cos(67°) — QP sin(67°) — Polywf® + [NPsin(07°) + QP° cos(07°)|yuf®}

011 + 012 1 } 1622 v Jo||Dws |7 v Jo || Dug]|2.
(1+em)? B 4on(1+em)? " 4012(1 + em)?

YEI(1 + (Dwq)m
((1 n E(M)Ql) ) D6, ||2. — 7EA<£, 1-— cos((91)>L2 — 7P0<1, 1— Cos(91)>L2

—Py(1,e = Dwr) ., +y{(fr,w1) . +{(f2 u1) ;. + 7<f3,

+ ymo[lws |} + lluzllf=] + o |

—yEBAlelz: -

sin(01)>
1+¢e /12

4.2.8.  Calculation of LUs
Differentiating both sides of the third equation of (26) along the solutions of (23) results in

LU3 = (wgBF + vwlBF) [ — [NBF COS(HlBF) — QBF sin(GBF) — Py] + ¢18 — dleQBF

— digDw§" + fipo + mipyws' | + 2k pywi wit

+ (Bl 4+ Bl [ - [INBUsin(6P1) + QBT cos(0PM)] + ¢op — dapu®t — doDubt

+ f2BO + mgB’yugBF} + QkQB’yu{BFugr.

(54)

4.2.4. Calculation of ﬁUi’H and ﬁUIH
Differentiating both sides of the fourth and fifth equations of (30) along the solutions of (24) results
in

£k =,

LUM = (ywP+wf0) [~ (dip—mpy)wd+ NP cos(07°) — QP° cos(0F°) — Po] + dixDw+ f1po)

T (ruf? + uf) [ = (dap — mpy)ul® + [NPsin(65°) + QP cos(0)] + +daxc Duf® + fapo]
+ (dip — ymp)ywi*ws’® + (dap — ymp)yui uy”.
(55)
Substituting (43), (53), (54), and (55) into (37) yields
cUM = 0P" + offf + Q° + Q + Qq,
I BT (56)
LU =0 +QHI+Q°+Q+QO,
where
( + ’waF) [¢1B — dlezBF — dlK]D)wa + leO + mlB'ywz } + 2k13’waF Br
+ (" +yuf") [pop — dopuPt — doxDUET + fapo + mopyud' | + 2kapyuttubt,
Q1 II =0, (57)
QB0 = (ywP? + wQBO)[ (dip — mpy)wH® 4 dyxDw° + firo] + (dip — ym p)ywy OwsO

+ (yuf? + ud) [ = (dap — mpy)uf® + dagDuz® + fopo)| + (dop — ymp)yufus?,

12
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and

011 + 012 } 1012 7J0H]D)w2|y%2 vJo||Dus )%
(1+en)? 1+e¢ L 4911(1 +em)?  doi2(1+em)?
YEI(1+ (Dwy)m)

0 = ymo[JlwallFe + fuslF] + o

Q= —vEA|e|?2. — |D6: |7 — yEA(e, 1 — cos(01)) ;» —YPo(1,1 — cos(61))

(1 +€M)
—'7P0<].,5—]D)’UJ1>L2,
Qo = <f1,wQ>L2 + <f2,UQ>L2 + <f3,02>L2 -|-’Y<f1,w1>L2 + ’y<f2,U1>L2 +’y<f3, Sllnj_eé) >L2'

(58)

From the expression of Q5 defined in (57), for simplicity the boundary controls ¢;p,i = 1,2 are
chosen as follows

¢18 = — (kip + e1) (W +ywl") + dipwd" — mipywy",

pop = — (kap + €28)(uFT + yuPY) 4+ dapuPt — mopyubt, (59)
where the control gains k;p and €;5,7 = 1, 2 are positive constants to be determined later. Indeed, there
are many other choices of ¢;5,7 = 1,2 such as output-feedback (only measurement of displacements),
robust and adaptive ones, and disturbance observers. This will not be detailed here since it is widely
available in control of lumped-parameter systems, see (Do & Pan, 2008b, 2009b; Y. P. Guo & Wang,
2016; Krstic et al., 1995). Substituting (59) into the expression of QP! defined in (57) and using
Young’s inequality and the first two inequalities in (8) yields

Q5 < — ki (wg + fwaF)2 = digDwy" (wy + ) + 2k pywitwy

— kop(ub" + yuP")? — dore DuBT (uBh + yuP) + 2k pyu Ul + BT
BT BT'\2 BT'\2 9 (60)
=—kip(wy")® — kipy(wf")? — kap(ug) _kay( r
- D (af +30) oD ) 5§
where
Br __ 1
o = f1Bo+ 1y f230> (61)

with fM Bo»© = 1,2 being defined in (9). We now calculate the upper-bound of Qlff?. From the expression
of Qﬁl defined in (57), applying Young’s inequality and the fourth inequality in (8) results in

O =(yw?® + wd°) fipo — (dip — mpy) (w5 °)? + (yur® + u5°) faro — (dop — mpy)(us®)?
+ dlKID)w (fywl + w2 ) + dgK}D)u ('yul + u2 )

<y (wf)? — (dip — mpy — 018) (wWF°)? + 7B (U?O) — (dap — mpy — 05) (uf®)?
+ dlKID)w (7“’1 + w2 ) + dgKDu (7u1 + u ) + CBO (62)
< = (w0 + 2(vof + ) (wP)? + 4(vell + )T Dwr |72 — cfy (ws?)?

— B (uf?)? + 2(v05 + B) (uf")? + 4yl + BT || Dws||72 — B (ud)?

+d1K]D>w ('ywl +w2 )+d2KDu (7u1 +u2BO)+COBO,

where we have added and subtracted c¢P?(wP)? and FP(uP)? to the second inequality in (62);
ﬁo,i =1,2 and QU 0 (i,§) = 1,2 are positive constants to be chosen, and
ciy =dip —mpy — 01y, ¢y = dap —mpy — 03y,
B _ [ 1 } M [ Y L 7. M (63)
o = + %50 | firo T | 7B T &0 | f2Po;
4Q1310 49%0 4Q2310 4Q2BQO

where fM Pos % = 1,2 are defined in (9).

13
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Next, we calculate the upper-bound of €2 defined in (58). We first consider

A= —e®—¢(1—cos(fy)). (64)

From the second equation of (2), we have cos(f;) = 32w — eDw [ging these equalities, we can

1+4+¢ 14+
calculate the term A as follows:

A=—¢2— 5(1 — 71"{5122”1 = g2 — 75(517?;“1)
= —c% — (¢ — Dwy) + T2 = % — (¢ — Dwy) + (1 — cos(61)) (65)
< —¢? — (e — Dun) 11+f;” + (1 —cos(#1)) = —% — e (1 — cos(6y)).

With (65), we can calculate the upper-bound of €2 as follows:

YEI(1 + (Dwy)m)
(1+4+¢epm)?
— fyPO(l,g — ID)w1>L2

QO < —yEA|le||f2 —

”D91HL2 — ’y(Po + EAsm) <1, 1-— (:os(01)>L2 (66)

Now, we calculate the upper-bound of €y defined in (58). Substituting the expression of f; defined
in (4) into the expression of €y and using integration by parts, Young’s inequality and the third
inequality of (8), the upper-bound of ©y can be calculated as
Qo :—d1||w2||%2 —d2||UQH%2 +d1K<w2,ID)2w2> +d2K<u2,ID)2uQ> d3”92HL2
— ydy {w, wa) , — yda{ur,uz),, + ik (wi, D?wa) ,, + ydak (u1, D?us)

+ (w2, f10) 1. + (U2, f20) 1, + (B2, f30) 1 +v(w1, f10) . +¥{u1, fo0),» + 7<Sm( ),f30>

2

=[dix (" + v )DwS™ + dogc (uy” +yup )Dus' ] — di||lwa[F2 — daf|uz||F2 — da||0a]|7
— [dig (W5 + ywPO)DwP® + dofe (uF + YuP?)DuP’] — dig||Dws|7 — dor || Dus|3. + Ao,
(67)
with
A = — ydig (Dwy, Dwa) ,, — ydar (Duy, Dug) , — ydy(wi, wa) ,, — ydaur, uz),,
Sln
+ (wa, f10) 2 + (U2, f20) 12 + (02, f30) 1. + (w1, f10) 1. + (w1, f20) . + < (61 ),f30>
7d1K ’Yd1K Ydak Ydak vdy
[Dws 122 + [Dws 1?2 + 7”113)%1”%2 + 7IIDU2H%2 + 7leHL2
d d d
- ﬂnwznp + Ll + S a7 + coualwa[F2 + eora us 72 + eors 62

+ veoo |Jwi |72 + 76022||U1||L2 + 76023||DU1||L2 + gt

d1 d2
< [77 + 6011} [wa|7- + [% + 6012} [uz||7- + €orsllf2]172 + [

vdik

+ 29I (dy + 2€021) | || Dws [|7-

d
+ |:")/ 22K + 2’)’1—‘2(612 + 26022) + 76023} HDu1H2L2 +’7F(d1 + 26021)(w1BF)2+’}/F(d2 + 26022)(U?F)2+68F,
(68)

where we have used sin(;) = ?—f& €0ij,t = 1,2,3;5 = 1,2 are positive constants to be determined,
and

Y
46023(1 +Em

30 +

1 1
Qr = by + +
0 deo11 46021 o degra | deo T2

4egr3 )? i (69)

14
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with i = 1,2,3 are defined in (9). Substituting (68) into (67 yields the upper-bound of €

Qo <[dix(wh + Yo DwET + doge (uf + Pt )Dus ] + AT (d1 + 2€021) (wiT)?
— [dix (W + yw ) Dws® + dog (uF + yu®)Dud’] + T (dg + 2€022) (ufh)?,

’}/dl ’}’dQ
— [dn = 5 = con] sl = [da = T2 = cora] Juallfe — (ds — cous) 62l (70)
2 2 vdix 2 2
— dlKH]D)'U)QHLQ — d2KHDU2HL2 + + 2")/F (dl + 26021) HDUJlHLz
d
+ P 2K 29T (dg + 2¢€022) + ’76023} [ Duy |72 + .

Substituting Q° defined in (58), (60), (66), (70), and QI]?IOI = 0 into (56) results in the generator LUV

for Types I and II of boundary conditions of the lower-end with a note that wf® = uf% = 0, see (24),
which implies that w$? = uF% = 0, as follows:
LI BT BT (, BT BT/, BT BT/, BT 2 2
LU < — (wl ) — c1p (w3 ) —c1 (ug ) — e (uy ) — cullellze — c12[|[ D1 ||z

— 013<1, 1-— COS 91 >L2 - 014<1,€ - Dw1>L2 - 621H’LU2H%2 - CQQH’U/QH%z - 623||92||%2 (71)

— ca1||Dw2|Z2 — eaa|Duz|2: + cor + ¢f
where we have used ¢2 = (Dw)? + (Duy)? — 2(¢ — Dwy), and

Pl = v[kis — T(d1 + 2€021)], B =kip, = v[kop — T'(d2 + 2€022)], B = kap,

d d EI(1+ (Dw
c11 = ’y[EA ( LK +2P2(d1 + 26021)) V (LK + 2F2(d2 + 26022)4—76023)} ,Cl2 = il ( ( 21)m)
2 (I4+em)
_ dix 2 dox 2
ci3 =7(Po+ EAep,), cla=~|Po—2 - 2I%(d1 + 2€p21) ) V 5 21 (d2 + 2e022) + €023
c :d—Ldl—e —ymy, ¢ :d—LdQ—e —ymg, Co3 =d3 — € —7J<Q11+Ql2 ! )
21 1= 011 0, €22 27 012 0, C23 3 — €013 0 (tem)? " 14em
C:n:dlK—fy—J0 032:d2K_fY—JO
4011(1 4+ &1,)?’ 4012(1 + &1, )?
(72)
We choose the constants v, Py, kip, k2B, €0ij,t = 1,2,3;j = 1,2, 011, and g12 such that
U'>0,(4,5) = 1,2 e11 > 05 c12 > 0; e13 > 05 c14 > 0 (73)

co; >0,2=1,2,3;¢c31 > 0; c30 > 0.
A careful look at (72) shows that there always exist the constants v, Py, k1B, k2B, €0ij, ¢ = 1,2,3;] =
1,2, 011, and p;2 such that the conditions specified in (73) hold provided that the constant axial force

P, is sufficiently large to ensure that c;3 > 0 and ¢4 > 0. The above constants are chosen as in the
following procedure to ensure that the conditions listed in (73) hold:

Procedure 4.2:
Step 1. Choose €pa21, €022, €023 and 7y such that
d d
EFA > (17[{+2F2(d1 + 26021)) V <2TK + 2F2(d2 + 26022)+’y€023), (74)

which is always possible under the condition (10). This step gives the first range of «y in this procedure.
Step 2. Choose kip and kop such that

ki > F(dl + 26021), kop > F(dz =+ 26022). (75)

15
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Step 3. Choose €11, €012, €013, and v such that

di > 5+ — eo11 — ymo,
do > 252 — €12 — ymo, (76)
ds > €o13 — 7‘]0((%1:;91)2 + e >

This step gives the second range of v in this procedure.
Step 4. Choose 011, 012, and v such that

J, J
dik > mriiiae dex > otiia e (77)

This step gives the third range of v in this procedure.
The desired range of v is the smallest one of all the above steps and the one in Procedure 4.1.

Then, there exists a positive constant cs such that
LUME < — e38M 4 cop + BT (78)

On the other hand, substituting 2° defined in (58), (60), (66), (70), and the upper-bound of Q5?
defined in (62) into (56) results in the generator LU for Type III of boundary conditions of the
lower-end as follows:

LU < el (B2 = e (W2 - B (W2 — B (ufT? -
—cy (u?)? — e (ug®)? — enllelz. — 612HD91HL2 Cl3<1 s (1)) -
—c1a(l,e = Dwn ), — carllwal|F — oallualls — c2sl|02]|7> — ca1l[Dwel|7. — Es2l|Duyl|7
+cor + Cgr + COBO,

PP (wf)? — e (wf)?

(79)

where

e =il —20vely + i), ey =i, & =5y — 2070k +e5t), ey =chy ey = it

ety = cfy, &) = Y, &y = 3y,

C11 = €11 — 4F[(7911 + BV (7P + cflo)], Cl2 = C12, C13 = (13, (80)
C1a = c1a — 8T [(vofl + ) V (v0 + 50)],

C21 = C21, C22 = C22, C23 = C23, C31 = C31, C32 = C32.

We choose the constants v, Py, k1B, k2B, €0ij,t = 1,2,3;5 = 1,2, 011, 012, 050, (1,7) = 1,2, Qﬁo, and
0P such that

U'>0,(i,5) =1,2;¢° > 0, (i, ) = 1,2; &1 > 0; €12 > 0; 13 > 05 €14 > 0; (81)
Co; >0,1=1,2,3;¢c31 > 0; ¢c30 > 0.

A careful look at (72) shows that there always exist the constants vy, Py, k1B, koB, €0ij,1 = 1,2,3;5 =
1,2, o011, 012, 5 ,(1,5) = 1,2, 0P, and oFP such that the conditions specified in (81) hold provided
that the constant axial force B is sufﬁmently large to ensure that ¢13 > 0 and ¢;4 > 0. The above
constants are chosen as in the following procedure to ensure that the conditions listed in (81) hold:

Procedure 4.3: Given vy that is chosen in Procedure 4.2, choose o0, 08°, cP0, and cB° such that

011 > 2(7Q11 +011)
B> 2(708 + & )
c11 > 40 [(yo + ) v (7921 + )],
c1a > 80| (vof + 0110) (o5 + c50)].

(82)

This choice is always possible because Procedure 4.2 ensures that 611 , c2Blr, c11, and ci4 are strictly
positive.
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Then, there exists a positive constant ¢3, which is smaller that c3 for Types I and II of the boundary
conditions at the lower end by examining (72) and (80), such that

EUIH < — 535111 + cor +C()BF + C(?O. (83)

It is important to observe that ¢3 in (83) is smaller than c3 in (78), and there is an additional constant

8% in (83) in comparison with (78). This is elaborating as follows. Type I1I of the boundary conditions

at the lower-end moves freely and the payload is subject to disturbances fipo(t) and fopo(t). More
importantly, the control forces ¢1p and ¢op need to propagate from the top-end to the lower-end to
suppress motion of the payload. It should also be noted that the aforementioned constants chosen
for Type III are indeed valid for Types I and II. However, depending on a particular application,
these constants should be chosen according to the specified type of boundary conditions to reduce
conservation.

Remark 2: In the case where Py is not sufficiently large, i.e., beams with a low tension are considered,
we proceed as follows.

e For Types I and II, let us define
QI,H = —613<1, 1- COS(91)>L2 - Cl4<1, g — ]D)UI1>L2. (84)
Supposing that Py is small, then there exists nonnegative constants cjs and cj, such that

Qrir < 31,1 —cos(01)) . + ciy(1,e — Dwy)
= c’{3<1, 1— cos(91)>L2 + c"{4<1 +e,1— 005(91)>L2
< (ch3+ cia(1 +ear))(1,1 — cos(61)) .,
< T(cl3 + cu(l +em)),

(85)

where we have used 01 € (=%, %) and 1 —cos(f1) =1— IJ{E?, i.e., e—D = (14¢)(1—cos(br)),
and e = SUDPycpy, o0y E(t). With the use (85), we can write (71) as follows:

LUM < — 38 4 cop + BV + T (c5 + (1 + enr)). (86)
Note that there is an additional constant I'(cis + ci4(1+€enr)) in (86) in comparison with (78).

This is not surprising since a larger Py provides a larger axial stiffness.
o For Type III, we carry out analysis in the same way as for Types I and II. Let us define

Q= —513<1, 1-— COS(91)>L2 — 514<1,8 — ]D)w1>L2. (87)

Supposing that Py is small, then there exists nonnegative constants ¢;5 and ¢;, such that (but
using the same arguments to obtain (85)

Q< Ey{3<1, 1-— COS(¢91)>L2 + 5T4<1,€ — le>L2

s (88)
< D(ey3 + (1 +em)).-
With (88), we can write (79) as follows:
LM < — 238+ cor + " + 5 + T(eF3 + Ea(1 +enr))- (89)

The control design has been completed. We summarize the main results in the following theorem.

Theorem 4.1: Under Assumption 2.1, the boundary controls ¢;p,i = 1,2 given in (59) solves Control
Objective 2.1 provided that the constants v, Py, k1, kap, 0o1, 002, €0ij,% = 1,2,3;5 = 1,2, o11, and
012 such that the conditions specified in (73) hold for Types I and II of the boundary conditions
at the lower-end; and the constants v, Py, ki, k2B, 001, 002, €0ij,? = 1,2,3;5 = 1,2, 011, 012,

050, (i,7) = 1,2, 0P, and oB° such that the conditions specified in (81) hold for Type III, and the
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conditions (27), (32), and (33) hold for Types I, II, and III. The closed-loop system consisting of
(22), (6), (7) and (59) is globally well-posed and practically Koo-exponentially stable at the origin.
The proposed controls in (59) work for either large or small constant azial force Py as shown in
Remark 2. The small Py case results in smaller convergence rate and large errors in comparison with

the large Py.

Proof. See Appendix C.

Table 1.: Parameters of the beam system

Parameter Description Value
r Length 200m
d, Outer diameter 0.3m
din Inner diameter 0.1m
mo Mass per unit length 493kg/m
E Young modulus 2 x 10'%g/m?
EM Maximum axial strain 2 x 1073
Em Minimum axial strain —5x 1074
di Axial damping coefficient 120kg/m
d Transverse damping coefficient 120kg/m
ds Rotating damping coefficient 60Ns
dig Axial Kelvin-Voigt damping coefficient 60Nms
dar Transverse Kelvin-Voigt damping coefficient 60Nms
diB Axial actuator damping coefficient 200Ns/m
daB Transverse actuator damping coefficient 400Ns/m
dip Axial payload damping coefficient 250Ns/m
dap Transverse payload damping coefficient 250Ns/m
miB Axial actuator mass 100kg
mop Transverse actuator mass 100kg
mp Payload mass 5000kg

5. Simulation results

This section illustrates the effectiveness of the proposed boundary controller via some numerical
simulations for Type III of the boundary conditions at the lower-end since this type is more challenging
than the other two types for the beam in moving water. The beam is made from steel and has
parameters, which are given in Table 1. The external loads f;9,7 = 1,2, 3 are taken as

Qwﬁdgﬁlt(z, t)

f10 = Cy cos(6) + (Cpcos(f) + Cp sin(9))QwTdo\/§al(z, t)91(z, ),

4
2
fao = Cr cos(@)MdOZ%(z’t) + (Cp cos(8) + Crsin(h)) Qdeo \/gag(z, t)a(z,t), (90)
wﬂ-dgﬂ Z,t wdo
fs0 = Cur2 43t( ) +C'DQ2 \/203(2775)193(2%),

where o, = 1025% is the water density; Cpy = 2 is the fluid inertia coefficient; Cp = 1.2 and Cp =
0.06 are respectively the drag coefficient of flow past a cylinder and the skin-friction drag coefficient,
which are chosen to be appropriate to the typical Reynolds number for the present application; and
0i(z,t) is the root mean square of the water particle velocity, 9;(z,t). The water particle velocities ¥;

are (Niedzwecki & Liagre, 2003):

i cosh(k;;jz) .
Vi(z,t) = Zj'v:l Aijwijw sin(wg;t), (91)
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where the amplitude A;;, wave number £;;, and frequency w;; of the wave 4t are given by

1.25% 2
HiQe ?}(aAij = 1 /ZsijwiMTiw“”, kij tanh(k:ijF) = ‘glé . (92)

n (92), the minimum and maximum wave frequencies are wj, = 0.2rasnd, wip = 2.5%; the two-
parameter Bretschneider spectrum S;; is used with the significant wave height H; = 4m; the modal
frequency is w;, = 2T—” with T; = 7.8; and N; = 10. The loads f;po are equal to the value of f;
evaluated at z = I'; and f;pg are equal to 10? times of f;y evaluated at z = 0.

“»J:-

_ Wim —WiM 25 w
Wij = Wim + <G, Sij = T x

SofS

w(z,t)[m]
w(z,t)[m]

u(z,t)[m]
u(z,t)[m]

o . 50 100 150 200

= z
é =
El 3
15 =0 T00 T50 200 0 50 100 150 200
tfs 1
a) Simulation results without any boundary controls. b) Simulation results with boundary controls.

Figure 2.: Comparison of simulation results without and with the proposed boundary controls.

Since Py = mpg < EAlen,|, we are con-
sidering the small Py case. As per guidelines
in Procedures 4.1, 4.2, 4.3, and values of the
beam parameters, the control gains k;p,7 =
1,2, and ~ are chosen as k1 = kop = %EA, S i : :
and v = ﬁ. Note that there are many other 0 50 100 150 200
values of k;p,i = 1,2, and v that can be
chosen according to Procedures 4.1, 4.2, 4.3.
The above choice is only an example. Indeed,
since k;5,1 = 1,2, and v have been chosen ac-
cording to Procedures 4.1, 4.2, 4.3, they en-
sure that all the conditions specified in Theo-
rem 4.1 hold (particularly note that Remark
2 has to be applied for this case) for some Zm
positive constants €0ij, T = 1 2,3; j = 1,2, <
o1, 012, ¢°, (4,5) = 1,2, o}, and o5

u(z,t)[m]

The initial Condltlons are taken as tg = 0, e
w1 (tp) = 0.2sin (TZ)7 ui(tg) = cos (% ) g
and wa(to) = uz(to) = 0. Figure 3.: Simulation results with boundary controls

The central difference scheme is used to nu-  designed in (Do, 2017a).
merically solve the partial differential equa-
tions (1) together with the boundary conditions (6), (7), where the boundary controls ¢;p,i = 1,2, 3
are given in (59). We choose the time step At = 0.1 and space step As = 0.5 to ensure that the
convergence parameter r = (AA# = 0.4 is positive and less than 0.5 as required for stable solutions
(Smith, 1985). We run two cases: 1) without the proposed boundary controller, and 2) with the pro-
posed boundary controller. For both cases, the length of simulation time is 200 seconds and w(z,t)
and u(z,t) at z = 20im,i = 0, ..., 10 are examined.

Case 1: The results are plotted in Fig. 2a. The displacements (w(z,t), u(z,t) are plotted in Sub-figs.
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2a.A and 2a.B at the aforementioned locations. The red lines denote displacements of (w(z,t),u(z,t)
at z = 0 and z = I'. The displacements and angle oscillate with quite large magnitudes due to the
sea loads but are bounded due to structural stiffness. The controls are plotted in Sub-fig. 2a.C.

Case 2: The results are plotted in Fig.2b. Comparing Sub-figs. 2b.A and 2b.B in this case with
corresponding Sub-figs. 2a.A and 2a.B in the case where no boundary controls are applied clearly
shows that a significant reduction (about 15 times less) in magnitude of all displacements at all the
examined locations. The controls are plotted in Sub-fig. 2a.C, where the blue line denotes ¢1p and
the red line denotes ¢op. Note that all the displacements do not exponentially converge to zero but
to a ball centered at the origin due to the non-zero sea loads as stated in Theorem 4.1. Note also that
transversal displacement u(z,t) is much larger than longitudinal displacement for both cases. This is
a normal observation in flexible beams due to their slenderness.

Next, we run a simulation with the boundary controls designed in (Do, 2017a) for comparison,
see Fig. 3. The reason that the control design in (Do, 2017a) is chosen for comparison is because all
the control designs, which appeared before the one in (Do, 2017a), for a linearized model of (1) are
suffering from stability issue as mentioned in (Do, 2017a), Subsections 1.1 and 1.2, and Remark 4.3
(Item 3). As mentioned in Section 1, the model used in (Do, 2017a) was obtained by linearizing (1) at
the origin. Thus the controls in (Do, 2017a) can only handle small motions. This can be clearly seen
from Sub-figs 3.A and 3.B, the controls, which are plotted in Sub-fig. 3.C, where the small motions
around the large ones reduce. It is also observed that the controls plotted in Sub-fig. 3.C contain only
small signals.

6. Conclusions

A design of boundary controls was proposed to globally practically K..-exponentially stabilize large
motions of Euler-Bernoulli beams with non-neglectable moment of inertia under external loads. Three
types of boundary conditions were considered, where Type III is the most challenging. This is because:
physically the lower-end is freely moving, and theoretically Sobolev embedding has to use to relate
motion of the lower-end to that of the top-end and the controls need to propagate from the top-end
to the lower-end. Future work is extend the current work to the space case for (particularly) Type
III of boundary conditions at the lower-end.

Appendices
Appendix A. Proof of Lemma 2.1
To prove the first equation of (8), we note from (2) that
(1+e)? = (1+w.)? +ul > (1+w,) (A1)

for all (z,t) € [0,1"] x [to,00), which gives the first inequality of (8) after a simple manipulation. To
prove the second equality of (8), we note from the first equation of (A1) that

e = w? +u? —2(e —w,), (A2)

which gives the second inequality of (8). The third inequality follows from Lemma 3 in (Do & Pan,
2008a). To prove the fourth inequality of (8), we use Lemma 4 in (Do & Pan, 2008a) and Young’s
inequality to obtain

w?(0,t) < w(T,t) + 2\/f§w2(z,t)dz\/fgwg(z,t)dz

1\ pT (A3)
< (1 +2Tp)w?(T,t) + (4pF2 + ;)fowg(z,t)dz

where we have used the first third inequality of (8) and p is a positive constant, which gives the fourth
inequality of (8) by picking p = % O
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Appendix B. Proof of Theorem 3.2

Since all the conditions of Theorem 3.1 hold, the system (14) has a unique variational solution. We
now calculate U(X,t) as

U(X(1),t) = U(X(s),5) + [ LU(X (1), r)dr. (B1)

Applying the conditions (20) and (21) to (B1) yields

t
Al X (W) < (X ()15 — [ (esl X — eo) (B2)
Applying the Gronwall inequality shows that there exists § := 6(|| Xo||zr) such that

sup || X (s)[[z < 6([ X (to)lx) (B3)

togsgt

for each X¢ € H and a.e. (t, X (t) € [to,00) x V. This proves global stability of (14). Let us define
e (|| Xol[3,)
[ Xoll%

Koo-function. Now, we calculate e%;(t_to)U(X(t), t) along the solutions of (14) as

co = , which is well-defined and is a non-decreasing function of || Xo||%; because as is a class

e TU(X (1), 1) = U(X (to), o) + [ Zoei%<7—t0> <£U(X(T), )+ %U(X(T),T))dr (B4)

Applying the conditions (20) and (21) to (B4) and using (B3) yield

<1 (4t b (g, C3
e X5 < ar(|Xollf) + [ 65 (= el XN+ o+ Zas(IX () )dr

toea(r_y, c3 a2(]| Xol|7)
gag(HXoH%I)—i-ftoecz( )<—C3HX(T>H%{+00+CQHXOHQHHX(T)HJ%I>dT (BS)
H

t 3
= ax(|Xol3) + [, e Vegdr,

which by applying the Gronwall inequality further yields the proof of Theorem 3.2. [J

Appendix C. Proof of Theorem 4.1

We only provide proof of Theorem 4.1 for Type III of the boundary conditions at
the lower-end. The proof for Types I and II can be carried out similarly. Let us
define X = col(wi,uy,01,ws, ug, 0o, wPl ull wBl uBl B0 B0 B0 B and F(X,t) =
col(wa, ug, O, Fy, Fo, Fy, wP uBL, FPY FY B0 uB0 FB FP0), where F,i = 1,2,3; FPUi = 1,2;
and FP% i = 1,2 are defined in (22), (23), and (24) with ¢;p,i = 1,2 being defined in (59),
respectively. Then, we can write (22), (23), and (24) as (14). Thus, to study well-posedness
and stability of the closed-loop system together with the static boundary conditions in (23) and
(24), we introduce the functional spaces: H = (W2(D))? x (L*(D))? x R®, V = (Wol’z(D))?’ X
(L3(D))? x R®, V* = (W12(D))? x (L*(D))? x R®, where D := (0,T'), W~™P(D) denotes the
dual of W™P(D); W, (D) and L2(D) denotes W'2- and L%spaces satisfying the static bound-
ary conditions in (23) and (24). Then, we have the embedding V. ¢ H = H* C V*. Let
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_ — - p - - a2 _BI' -BI' —BI' —BT' —B0 -B0 ,—~B0 -B0
X = col(wy, uy, 01, we, Uz, B2, w7 , Uy, wy Uy, Wy, Uy, Wy, Uy ). Define

_ Ji - EA EI
(X2 = 0, )+ G ) 2] + 02, + (22 4

Y1mo

P
0 7<U_}17w2>L2

7<17€__ ]D)’J)1>L2 +

P
+ ?<176 - ]D)w1>L2 + 2

2
~ ymg 'yJ0< sin(9_1)> vJo /= Sin(91)>
o o T /g /g
oy () o\ Ty /e 2< "Te /1o

g ) (08 ) S ) )

_ _ mp _ _
+ ki pywftoft + kopyuftalt + 7(’710130 + w0 (yof? + wg")

Ymo

<a1’u2>L2 + (C1)

(dip —ymp)Y po _po , (d2p —YMmP)Y Bo_po
f“}l wy - + ful uy .

(yut®

+ub) (vaf? + ab?) +

where £ is the value of ¢ with Duy, Dwy, and 6; being replaced by Dy, Dwy, and 61, respectively.
The constant v and the constant axial force P satisfy the conditions specified in Theorem 4.1. Let us
denote by <X, X>LH linearization of <X, X>H at the origin. Then, it can be verified that <X, X>LH

is a inner product with the norm (X, X), . = [ X||7 ;. In fact, there exist strictly positive constants
co1 and ¢y such that 60155}1 <||IX H% g < EOQEEII{ locally, where £pp is the linearization of £ with
EM defined in (12), which is defined in (12).

Now, to prove Theorem 4.1 we just need to verify all the conditions of Theorem 3.2. The conti-
nuity condition in Assumption 3.1 holds due to continuity of F(X,t). By using <X - X,F(X,t)—
F(X, t)>VV* =(X-X,F(X,t)- F(X, t)>H with the use of the local inner product in LH defined
as above and integration by parts similarly to the calculation of LU in Section 4, it is readily shown
that the local monotonicity condition (16) holds. From the second inequality of (29) and (83), it is
clear that the conditions (20) and (21) hold. Thus, proof of Theorem 4.1 is completed. ]
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