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This paper proposes a design of boundary controls for stabilization of Euler-Bernoulli beams with large mo-
tions and non-neglectable moment of inertia under external loads. Common types of boundary conditions in
practice are considered. The designed boundary controllers guarantee globally practically K∞-exponentially
stability of the closed-loop system. The control design, well-posedness, and stability analysis are based on
two Lyapunov-type theorems developed for a class of evolution systems in Hilbert space.
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1. Introduction

Euler-Bernoulli beams, whose dynamics are described by partial differential equations (PDEs) subject
to certain boundary conditions, are used in various applications. Theoretically, solutions of PDEs
depend on boundary conditions. Thus, a change of the boundary conditions in a proper way would
result in desired solutions of the PDEs. Practically, controls being implemented at boundaries are
much more practical than distributed controls. Motivated by the above facts, boundary control of
Euler-Bernoulli beams has received extensive attention from researchers over the last few decades, see
for example (Chen, Chentouf, & Wang, 2014; Chentouf & Wang, 2015; Do, 2017a, 2017b; Do & Pan,
2008a; Fard & Sagatun, 2001; B. Z. Guo, 2001; B. Z. Guo & Jin, 2013; F. Guo & Huang, 2001; Harland,
Mace, & Jones, 2001; He, Huang, & Li, 2017; He, Nie, Meng, & Liu, 2017; Jin & Guo, 2015; Li, Xu, &
Han, 2016; Liu & Liu, 1998, 2000; Lu, Chen, Yao, & Wang, 2013; Luo, Guo, & Morgul, 1999; Meurer,
Thull, & Kugi, 2008; Milet́ıc, Stürzer, Arnold, & Kugi, 2016; Nguyen, Do, & Pan, 2013; Özer, 2017;
Queiroz, Dawson, Nagarkatti, & Zhang, 2000) based on the Lyapunov direct and flatness methods and
(Bohm, Krstic, Kuchler, & Sawodny, 2014; Krstic & Smyshlyaev, 2008; Paranjape, Chung, & Krstic,
2013) based on the backstepping method on single beams, and (Henikl, Kemmetmüller, Meurer, &
Kugi, 2016; Kater & Meurer, 2016; Lagnese, Leugering, & Schmidt, 1994) on multiple beams. These
works contributed excellent results on reducing vibration of the beams via boundary controls at one
end and the other end is either connected to the base via a fixed or ball/simple joint or connected
to a tip mass. The control design is usually based on Lyapunov’s direct and backstepping methods.
Well-posedness of the closed-loop system is often carried out by using the Galerkin approximation
or abstract method. In the above works and many others not listed here, mathematical models used
for boundary control were often obtained from either linearization or Maclaurin series expansions up
to the second order of the strain and bending angle, see (Eringen, 1952; Love, 1920), and therefore
can only describe small motions (i.e., displacements and velocities of both translations and rotations
with very small amplitudes). These models cannot describe any large motions (i.e., large magnitude
of displacements and velocities of both translations and rotations) because otherwise the linearized
model is invalid.
Euler-Bernoulli beams are slender (say, the ratio of diameter to length is less than 10−2) and

extensible. They deform in the transverse and longitudinal directions instead of shearing that can
occur for thick (Timoshenko) beams, see for example (Do, 2017c; Endo, Matsuno, & Jia, 2017; Queiroz
et al., 2000). Therefore, Euler-Bernoulli beams are suffering from nonlinear and large motions induced
by external loads. Boundary control of Euler-Bernoulli beams with large motions has received less
attention. In (Do, 2011; Do & Pan, 2009a) (see also (Athisakul, Monprapussorn, & Chucheepsakul,
2011; Kokarakis & Bernitsas, 1987) for models of Euler-Bernoulli beams, where only large deflection is
considered), boundary control of Euler-Bernoulli beams (risers) with large deflections was considered.
In these works, the rotational inertia is neglected and one end of the beam is connected to the fixed
base by a ball joint. Moreover, the beams are constrained to inextensibility.
In this paper, the problem of stabilization of Euler-Bernoulli beams subject to extensibility and

non-neglectable rotary moment of inertia with large motions by boundary controls under external
loads is addressed. Three common types of boundary conditions are considered. Of all these types,
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boundary controls forces are available only at the top-end. The lower-end is fixed to the base in Type
I, and is connected to the based via ball/simple joint in Type II, see Figure 1.A. In Type III, the
lower-end is connected to a payload, i.e., this end freely moves. Type I and Type II of boundary
conditions are usually used in tension-legs and marine risers, respectively, while Type III is often
met in sea and air transportatation/installation (such as gantry/overhead cranes). It will be seen in
Section 4 that control design for Type III is much more challenging than that for Type I and Type
II. Theoretically, Sobolev embedding has to be applied in an appropriate way to relate motions of
the lower-end to the top-end. Moreover, the boundary controls need to propagate from the top-end
to the lower-end through the beam body. Practically, it is not reasonable to implement an additional
control at the lower-end due to hash environment.
Thus, this paper derives an appropriate nonlinear mathematical model that captures both large

and vibrating motions of Euler-Bernoulli beams subject to extensibility and non-neglectable rotary
moment of inertia. The beam dynamics are then transformed to a system of evolution equations
described by a set of ordinary differential equations (ODEs) in Hilbert space for convenience of control
design, well-posedness, and stability analysis. Next, two Lyapunov-type theorems are developed for
study of well-posedness and stability analysis for a class of evolution systems. These theorems are
then used to design boundary controllers that globally practicallyK∞-exponentially stabilize the beam
motions at the origin for all types of boundary conditions at the lower-end. The above approach has
several significant advantages over conventional control design methods. First, various control design
and stability analysis tools such as Lyapunov’s direct method (Khalil, 2002) developed for ODEs
in Euclidean space can be mimicked with appropriate functional spaces, norms and inner products
introduced. Second, searching for a proper Lyapunov function can be constructive based on the
backstepping method (Krstic, Kanellakopoulos, & Kokotovic, 1995). Third, well-posedness can be
carried out for a class of systems governed by nonlinear PDEs, see (Banks, Smith, & Wang, 1996;
Luo et al., 1999) for systems governed by linear PDEs, instead of considering each concrete system as
in the conventional approach (e.g., (Berrimi & Messaoudi, 2004; Cavalcanti, Cavalcanti, & Soriano,
2002; Do, 2011, 2016a; Do & Pan, 2008a, 2009a; Evans, 2000)). In summary, the contributions of the
present paper are listed as follows:

• Original nonlinear PDEs governing motions of Euler-Bernoulli beams are considered.
• Three common types of boundary conditions are addressed.
• Two Lyapunov-type theorems are developed to study well-posedness and (K∞-exponential)

stability of nonlinear evolution systems in Hilbert space.
• Boundary controllers are designed to achieve global well-posedness and K∞-exponential stability

of the closed-loop system under both low and high constant axial force (pretension).

Notations. The symbols ∧ and ∨ denote the infimum and supremum operators, respectively. These
operators are also applied to more than two arguments.
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Figure 1.: A) Beam boundary configuration (ϕ1B and ϕ2B are boundary control forces provided by
actuators); B) loading diagram.
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2. Problem formulation

2.1. Mathematical model

Assume that the plane sections of the beam remain plane after deformation; the beam is locally stiff;
the beam material is homogeneous and isotropic; torsional moment is neglected; only in-plane defor-
mations of the beam occur; and the reference beam is straight. The beam’s boundary configuration
is shown in Fig. 1A and the loading diagram on an element is given in Fig. 1B, where the argument
t and nonconservative forces are not shown for clarity; and all symbols are defined in the sequel. Let
(u,w) denote the displacements of the beam along the OX- and OZ-axis from the point S0 of the
initial beam center line at the initial time t0 to the point S of the deformed beam center line at time
t, and θ denote the angle between the beam’s center line and OZ-axis at the point S.
Balancing the forces and moments acting on the beam element results in the following equations

of motion (Lacarbonara, 2013):

m0wtt = [N cos(θ)−Q sin(θ)]z + f1,
m0utt = [N sin(θ) +Q cos(θ)]z + f2,
J0θtt = Mz + (1 + ε)Q+ f3,

(1)

for all (z, t) ∈ (0,Γ)× [t0,∞) with Γ being the beam length at the reference state and t0 ≥ 0 being the
initial time. In (1), where m0 and J0 are the mass and moment of inertia per unit length, respectively;
the symbols •t and •z denote ∂•

∂t and ∂•
∂z , respectively; fi(•), i = 1, 2, 3 denote nonconservative forces

and moment; N(z, t) and Q(z, t) denote axial and shear forces, respectively; and M(z, t) denotes
the bending moment; ε(z, t) denote the axial strain of the beam’s center line. The axial strain and
unshearable condition (as we are considering Euler-Bernoulli beams) are expressed in terms of uz(z, t),
wz(z, t) and θ(z, t) as follows:

ε = (1 + wz) cos(θ) + uz sin(θ)− 1,

0 = −(1 + wz) sin(θ) + uz cos(θ),
(2)

for all (z, t) ∈ [0,Γ] × [t0,∞). We need to supply constitutive equations for N(z, t) and M(z, t).
Because 1) the curvature and extensibility can be moderately large, 2) the selected base curve is the
centroidal curve, and 3) the section-fixed axes are collinear with the principal axes of inertia and the
origin is the center of mass, then the constitutive equations can be given by (Love, 1920):

N = EAε+ P0, M = EIθz, (3)

for all (z, t) ∈ [0,Γ]× [t0,∞), where A is the cross section area; E is Young’s modulus; I is the area
moment of inertia of the beam cross section; and P0 is the positive constant axial force. There is no
constitutive equation for Q since it needs to satisfy the third equation of (1) and θ satisfies the second
equation of (2), see also Remark 1 below. The forces and moment fi(•), i = 1, 2, 3 are given by:

f1 = −d1wt + d1Kwzzt + f10(z, t), f2 = −d2wt + d2Kuzzt + f20(z, t), f3 = −d3θt + f30(z, t), (4)

where the positive constants di, i = 1, 2, 3 denote damping coefficients; the positive constants diK , i =
1, 2 are Kelvin-Voigt type damping coefficients; and fi0(z, t), i = 1, 2, 3 denote the external loads. Note
that the terms d1Kwzzt and d2Kuzzt are referred to as Kelvin-Voigt type damping terms (Meirovitch,
1967). The initial values are:

u(z, t0) = u10(z), ut(z, t0) = u20(z), w(z, t0) = w10(z), wt(z, t0) = w20(z). (5)

3
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Finally, referring to Fig. 1A the boundary conditions at the top-end are given as follows:

m1Bwtt(Γ, t) = −[N(Γ, t) cos(θ(Γ, t))−Q(Γ, t) cos(θ(Γ, t))− P0] + ϕ1B − d1Bwt(Γ, t)
−d1Kwzt(Γ, t) + f1B0(t),

m2Butt(Γ, t) = −[N(Γ, t) sin(θ(Γ, t)) +Q(Γ, t) cos(θ(Γ, t))] + ϕ2B − d2Bwt(Γ, t)
−d2Kuzt(Γ, t) + f2B0(t),

M(Γ, t) = 0,

(6)

where the boundary control forces ϕ1B (along the OZ-axis) and ϕ2B (along the OX-axis) are provided
by actuators; miB, i = 1, 2 are masses of the actuators; the positive constants diB, i = 1, 2 are damping
coefficients; and fiB0(t), i = 1, 2 being external forces and moment acting on the actuators. The
boundary conditions at the lower-end are given by

Type I:
{
w(0, t) = 0, u(0, t) = 0, θ(0, t) = 0.

Type II:
{
M(0, t) = 0, w(0, t) = 0, u(0, t) = 0.

Type III:


mPwtt(0, t) = −d1P (t)wt(0, t) + [N(0, t) cos(θ(0, t))−Q(0, t) cos(θ(0, t))− P0]

+d1Kwzt(0, t) + f1P0(t),
mPutt(0, t) = −d2P (t)ut(0, t) + [N(0, t) sin(θ(0, t)) +Q(0, t) cos(θ(0, t))]

+d2Kuzt(0, t) + f2P0(t),
M(0, t) = 0,

(7)

where mP is the mass of the payload; the positive constants diP , i = 1, 2 are damping coefficients;
and fiP0(t), i = 1, 2 are external forces and moment acting on the pay load. Note that for Type III,
P0 = mP g, where g is the gravity acceleration.

Remark 1: The shear force Q is obtained by solving the third equation of (1). Apparently, the force
Q depends on θtt, which in turn depends on wztt and uztt because θ = arctan

(
uz

1+wz

)
, see the second

equation of (2). Due to this dependence, we do not substitute the shear force Q, which is obtained
by solving the third equation of (1), into the first two equations of (1), (6), and (7) because this
substitution will result in a very complicated presentation of the beam dynamics and control design.
Moreover, linearization of the beam dynamics (1)-(7) results in models studied in vibration works in
Section 1, see (S. T. Chow & Sethna, 1965).

Several useful inequalities to be used extensively in the control design and stability analysis later
are given in the following lemma.

Lemma 2.1: For all (z, t) ∈ [0,Γ]× [t0,∞), the following inequalities and equality hold:

ε(z, t)− wz(z, t) ≥ 0, ε2(z, t) = w2
z(z, t) + u2z(z, t)− 2(ε(z, t)− wz(z, t)),∫ Γ

0
w2(z, t)dz ≤ 2Γw2(Γ, t) + 4Γ2

∫ Γ

0
w2
z(z, t)dz, w2(0, t) ≤ 2w2(Γ, t) + 4Γ

∫ Γ

0
w2
z(z, t)dz.

(8)

Proof. See Appendix A. The last two inequalities also hold for w(z, t) being substituted by u(z, t).

2.2. Control objectives

Before stating the control objective, we make the following assumption, which is reasonable in practice.

Assumption 2.1:
1) The initial values u10(z), u20(z), w10(z), w20(z), θ20(z) are bounded in L2-norm, i.e., there exists

a nonnegative constant ϵ0 such that
∫ Γ
0 (u210(z) + w2

10(z) + u220(z) + w2
20(z) + θ220(z))dz ≤ ϵ0.

2) The external loads fi0(z, t), fiB0(t), i = 1, 2, 3, and fiP0, i = 1, 2 are bounded in the sense that
there exist nonnegative constants fM

i0 , f
M
iB0, and fM

iP such that

sup
t∈[t0,∞)

∫ Γ

0
f2
i0(z, t)dz ≤ fM

i0 , sup
t∈[t0,∞)

f2
iB0(t) ≤ fM

iB0, sup
t∈[t0,∞)

f2
iP0(t) ≤ fM

iP0. (9)

3) There exist constants εm and εM such that the axial strain ε(z, t) satisfies ε(z, t) ∈ [εm, εM ]

4
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for all (z, t) ∈ [0,Γ] × [t0,∞) with 1 + εm being strictly positive. This condition is practical because
otherwise Hooke’s law will not be applicable (Love, 1920).
4) The beam stiffness is not too small in the sense that

EA ≫ d1K ∨ d2K
2

+ 2Γ2(d1 ∨ d2), (10)

where the symbol ≫ means strictly larger than. This condition makes sense because otherwise the
beam will behave like a string/cable.

Control Objective 2.1: Under Assumption 2.1, design the boundary controls ϕiB, i = 1, 2 and the
positive constant axial force P0 such that the beam system consisting of (1)-(7) is globally (practically)
K∞-exponentially stable at the origin in the sense that

E(t) ≤ α(E(t0))e−c(t−t0) + c0, (11)

where α is a class K∞-function, c is a positive constant depending on the initial conditions, c0 is zero
if fi0(•) = 0, fi0(•) = 0, fiB0(t) = 0, and fiP0(t) = 0 with i = 1, 2, 3, and is a positive constant if
fi0(•), fiB0(t), and fiP0(t) satisfy (9); and E(t) := EI,II(t) for Types I and II, and E(t) := EIII(t) with

Types I and II:
{
EI,II(t) = E⋄(t) + EI,II

0 (t),

Type III:
{
EIII(t) = E⋄(t) + EIII

0 (t),
(12)

where E0(t) depends on the type of boundary conditions at the lower-end as follows

E⋄(t) =
∫ Γ

0

[
u2t (z, t) + w2

t (z, t) + θ2t (z, t) + ε2(z, t) + θ2z(z, t)
]
dz + [wt(Γ, t) + γw(Γ, t)]2

+ [ut(Γ, t) + γu(Γ, t)]2 + w2(Γ, t) + u2(Γ, t),

EI,II
0 (t) = 0, EIII

0 (t) = [wt(0, t) + γw(0, t)]2 + [ut(0, t) + γu(0, t)]2 + w2(0, t) + u2(0, t),

(13)

with γ being a positive constant (to be chosen later). The matric E(t) is a positive definite and
radially unbounded functional of velocities, displacements, and curvature of the whole beam body, and
displacements of the both ends of the beam due to the Sobolev embedding (Adams & Fournier, 2003).

3. Well-posedness and Stability of Nonlinear Evolution Systems

3.1. Space notations

Let H be a separable Hilbert space identified with its dual H∗ by the Riesz isomorphism. Let V be a
real reflexible Banach space such that V ⊂ H continuously and densely. Then for its dual space V ∗,
it follows that H∗ ⊂ V ∗. From the definitions of H and V , we have that the embedding V ⊂ H ≡
H∗ ⊂ V ∗ is continuous and dense. We denote by ∥.∥H , ∥.∥V , and ∥.∥V ∗ the norms in H,V , and V ∗,
respectively; by ⟨., .⟩V,V ∗ (i.e., ⟨z,v⟩V,V ∗ = z(v) for z ∈ V ∗,v ∈ V ) the duality product between V and
V ∗; and by ⟨., .⟩H the inner product in H. The duality product between V and V ∗ has the following
property, see (Banks et al., 1996; Gawarecki & Mandrekar, 2011): ⟨u,v⟩V,V ∗ = ⟨u,v⟩H ,u ∈ H,v ∈ V .

3.2. Nonlinear Evolution systems

On the space H, let us consider the nonlinear evolution system:

dX(t)

dt
= F (X(t), t), X(t0) =X0 ∈ H, (14)

where X ∈ H and F : H× [t0,∞) → V ∗ is a family of nonlinear operators defined almost every (a.e.)
t. We first define a variational solution of (14). This definition is a deterministic version of the one
defined in (P. L. Chow, 2007).

5
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Definition 1: A H-valued process {X(t), t ∈ [t0,∞)} is said to be a global variational solution of
(14) if for any ψ ∈ V :

⟨
X(t),ψ

⟩
H

=
⟨
X0,ψ

⟩
H
+
∫ t

t0

⟨
F (X(s), s),ψ

⟩
V,V ∗ds (15)

for each t ∈ [t0,∞).

The following stability definition is a version of the one in (Khalil, 2002) extended to Hilbert space.

Definition 2: Let α be a class K∞-function. The variational solution of (14) is said to be
1) globally stable if, for each X0 ∈ H, there exists δ = δ(∥X0∥H) such that ∥X(t)∥H ≤

δ(∥X0∥H), a.e. (X, t) ∈ V × [t0,∞);
2) globally practically K∞-exponentially stable if it is globally stable and ∥X(t)∥H ≤

α(∥X(t0)∥H)e−c(t−t0) + c0, a.e. (X, t) ∈ V × [t0,∞), where c is a positive constant depending on
the initial conditions, and c0 is positive constant. If c0 = 0, it is globally K∞-exponentially stable.

3.3. Well-posedness and stability theorems for nonlinear evolution systems

We assume that F : H × [t0,∞) → V ∗ is measurable and satisfies the following continuity and local
monotonicity conditions.

Assumption 3.1:
1) [Continuity] The mapping V ∋ v 7→ F (v, t) ∈ V ∗ is continuous a.e. t ∈ [t0,∞).
2) [Local monotonicity] For any u,v ∈ V with ∥u∥H ≤ ϵ and ∥v∥H ≤ ϵ, where ϵ is a positive

constant, there exists a constant cϵ such that

2
⟨
u− v,F (u, t)− F (v, t)

⟩
V,V ∗ ≤ cϵ∥u− v∥2H , (16)

a.e. t ∈ [t0,∞).

Theorem 3.1: Under Assumption 3.1, suppose that there exist a function U ∈ C1(H; [t0,∞)) re-
ferred to as a Lyapunov function, and class K∞-functions α1 and α2 such that

α1(∥X∥H) ≤ U(X, t) ≤ α2(∥X∥H), a.e. (X, t) ∈ V × [t0,∞), (17)

and that the generator LU := dU
dt given by

LU(X, t) = Ut(X, t) +
⟨
F (X, t), UX(X, t)

⟩
V,V ∗ , (18)

with Ut(X, t) and UX(X, t) being the (Fréchet) derivatives of U(X, t) with respect to t and X,
respectively, satisfies

LU(X, t) ≤ c(1 + U(X, t)), a.e. (X, t) ∈ V × [t0,∞), (19)

where c is a nonnegative constant. Then (14) has a unique global variational solution for eachX0 ∈ H.

Proof. The proof can be carried out by using the method of proving Theorem 4.1 in (Do, 2016b) and
Theorem 4.1 in (Gawarecki & Mandrekar, 2011) (pages 176-181) with a note that only deterministic
part is considered and that the coercivity condition is substituted by the condition (19).

Theorem 3.2: Under Assumption 3.1, suppose that there exist a function U ∈ C1(H; [t0,∞)) and a
class K∞-function α2 such that

c1∥X∥2H ≤ U(X, t) ≤ α2(∥X∥2H), a.e. (X, t) ∈ V × [t0,∞), (20)

where c1 is a positive constant, and that

LU(X, t) ≤ −c3∥X∥2H + c0, a.e. (X, t) ∈ V × [t0,∞), (21)

6
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where c3 is a positive constant. If c0 = 0, the equilibrium X ≡ 0 is globally K∞-exponentially stable.
If c0 is a positive constant, the equilibrium X ≡ 0 is globally practically K∞-exponentially stable.

Proof. See Appendix B.

4. Control design

4.1. Abstract formulation

Let L2(D) denote the L2-space with the norm ∥.∥L2 and inner product ⟨., .⟩L2 and Wm,p(D),
with (m, p) being integers, denote the Sobolev space of order m and degree p, see (Adams &
Fournier, 2003). Considering z ∈ [0,Γ] as the parameter defined at every t ≥ t0, we can re-
gard u(z, t), w(z, t), θ(z, t), ut(z, t), wt(z, t), and θt(z, t) as u1(t) ∈ W 2,2([0,Γ]), w1(t) ∈ W 2,2([0,Γ]),
θ1(t) ∈ W 2,2([0,Γ]), u2(t) ∈ L2([0,Γ]), w2(t) ∈ L2([0,Γ]), and θ2(t) ∈ L2([0,Γ]), respectively. Simi-
larly, u(0, t), w(0, t), θz(0, t), u(Γ, t), w(Γ, t), θ(Γ, t), θz(Γ, t) are regarded as uB0

1 (t) ∈ R, wB0
1 (t) ∈ R,

DθB0
1 (t) ∈ R, uBΓ

1 (t) ∈ R, wBΓ
1 (t) ∈ R, θBΓ

1 (t) ∈ R, DθBΓ
1 (t) ∈ R respectively. Moreover,

ut(Γ, t), wt(Γ, t) and θt(Γ, t) are considered as uBΓ
2 (t) ∈ R, wBΓ

2 (t) ∈ R, and θBΓ
2 (t), respectively.

Let us also denote the operator Dϕ(z) := ∂ϕ
∂z . With the above notations, we can write the beam

dynamics (1) and its boundary conditions (6) and (7) in the evolution system (abstract form):

dw1

dt
= w2,

du1
dt

= u2,
dθ1
dt

= θ2

dw2

dt
=

1

m0
D[N cos(θ1)−Q sin(θ1)] +

1

m0
f1 := F1,

du2
dt

=
1

m0
D[N sin(θ1) +Q cos(θ1)]+

1

m0
f2 := F2,

dθ2
dt

=
1

J0

[
DM + (1 + ε)Q+ f3

]
:= F3,

(22)

where the argument t is dropped for clarity. The boundary conditions (6) are written as:

dwBΓ
1

dt
= wBΓ

2 ,
duBΓ

1

dt
= uBΓ

2 ,

dwBΓ
2

dt
=

1

m1B

[
− [NBΓ cos(θBΓ

1 )−QBΓ sin(θBΓ
1 )− P0] + ϕ1B − d1Bw

BΓ
2 − d1KDwBΓ

2 +f1B0

]
:= FBΓ

1 ,

duBΓ
2

dt
=

1

m2B

[
− [NBΓ sin(θBΓ

1 ) +QBΓ cos(θBΓ
1 )] + ϕ2B − d2Bu

BΓ − d2KDuBΓ
2 + f2B0

]
:= FBΓ

2 ,

MBΓ = 0,

(23)

where NBΓ(t), QBΓ(t), and MBΓ(t) are the values of N(t), Q(t), and M(t) evaluated at z = Γ,
respectively, and the boundary conditions (7) are written in the abstract form as:

Type I:
{
wB0
1 = 0, uB0

1 = 0, θB0
1 = 0.

Type II:
{
MB0 = 0, wB0

1 = 0, uB0
1 = 0.

Type III:



dwB0
1

dt
= wB0

2 ,
duB0

1

dt
= uB0

2 ,

dwB0
2

dt
=

1

mP

[
− d1Pw

B0
2 + [NB0 cos(θB0

1 )−QB0 cos(θB0
1 )−P0]+d1KDwB0

2 +f1P0

]
:= FB0

1 ,

duB0
2

dt
=

1

mP

[
− d2Pu

B0
2 + [NB0 sin(θB0

1 ) +QB0 cos(θB0
1 )] + d2KDuB0

2 + f2P0

]
:= FB0

2 ,

MB0 = 0,

(24)
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where NB0(t), QB0(t), and MB0(t) are the values of N(t), Q(t), and M(t) evaluated at z = 0,
respectively.

4.2. Control design

To design the boundary controls ϕiB, i = 1, 2, we consider the following Lyapunov functional candi-
date:

Types I and II :
{
U = U1 + U2 + U3 + U I,II

4 ,

Type III :
{
U = U1 + U2 + U3 + U III

4 ,
(25)

where

U1 =
m0

2

[
∥u2∥2L2 + ∥w2∥2L2

]
+

J0
2
∥θ2∥2L2 +

EA

2
∥ε∥2L2 +

EI

2
∥Dθ1∥2L2 + P0

⟨
1, ε− Dw1

⟩
L2 ,

U2 = γm0

⟨
w1, w2

⟩
L2 + γm0

⟨
u1, u2

⟩
L2 + γJ0

⟨
θ2,

sin(θ1)

1 + ε

⟩
L2
,

U3 =
m1B

2

[
wBΓ
2 + γwBΓ

1

]2
+

m2B

2

[
uBΓ
2 + γuBΓ

1

]2
+ k1Bγ(w

BΓ
1 )2 + k2Bγ(u

BΓ
1 )2,

U I,II
4 = 0,

U III
4 =

mP

2
(γwB0

1 + wB0
2 )2 +

mP

2
(γuB0

1 + uB0
2 )2 +

(d1P − γmP )γ

2
(wB0

1 )2 +
(d2P − γmP )γ

2
(uB0

1 )2,

(26)

and the positive constant γ is first chosen such that

diP − γmP ≥ d∗iP , i = 1, 2, (27)

where d∗iP is a strictly positive constant, and kiB, i = 1, 2, 3 are chosen later. Note that U1 is referred
to the “energy” of the beam while it is nontrivial to choose Ui, i = 2, 3, 4. We now find the lower
bound of U . With the use of Young’s and Hölder’s inequalities and the third inequality of (8) and
sin(θ1) =

Du1

1+ε , see the second equation of (2), we can bound U2 as:

|U2| ≤γm0ϱ01
(
∥u2∥2L2 + ∥w2∥2L2

)
+

γm0

4ϱ01

(
∥u1∥2L2 + ∥w1∥2L2

)
+

γJ0ϱ02
(1 + εm)2

∥θ2∥2L2 +
γJ0∥Du1∥2L2

4ϱ02(1 + εm)2

≤γm0ϱ01
(
∥w2∥2L2 + ∥u2∥2L2

)
+

γΓm0

2ϱ01

[
(wBΓ

1 )2 + (uBΓ
1 )2

]
+

γΓ2m0

ϱ01

(
∥Dw1∥2L2 + ∥Du1∥2L2

)
+

γJ0ϱ02
(1 + εm)2

∥θ2∥2L2 +
γJ0∥Du1∥2L2

4ϱ02(1 + εm)2

≤γm0ϱ01
(
∥w2∥2L2 + ∥u2∥2L2

)
+

γΓm0

2ϱ01

[
(wBΓ

1 )2 + (uBΓ
1 )2

]
+
(γΓ2m0

ϱ01
+

γJ0
4ϱ02(1 + εm)2

)
∥ε∥2L2

+ 2
(γΓ2m0

ϱ01
+

γJ0
4ϱ02(1 + εm)2

)⟨
1, ε− Dw1

⟩
L2 +

γJ0ϱ02
(1 + εm)2

∥θ2∥2L2

(28)

where we have used ε2 + 2(ε − Dw1) = (Dw1)
2 + (Du1)2, which is obtained by squaring both sides

of (2) then adding together; εm = inft∈[t0,∞) ε(t), see Assumption 2.1.3; and ϱ0i, i = 1, 2 are positive

constants to be determined. Using U1−|U2|+U3+U I,II
4 ≤ U I,II ≤ U1+ |U2|+U3+U I,II

4 and similarly
for U III, and the second inequality of (8), we can bound U as follows:

cI,II1 E I,II ≤ U I,II ≤ αI,II
2 (E I,II),

cIII1 E III ≤ U III ≤ αIII
2 (E III),

(29)
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where E I,II and is defined in (12), αI,II
2 and αIII

2 are class K∞-functions, and

Types I and II :
{
cI,II1 = c⋄1,

Type III :
{
cIII1 = [c⋄1] ∧

[mP

2

]
∧
[JP
2

]
∧
[(d1P − γmP )γ

2

]
∧
[(d2P − γmP )γ

2

]
,

(30)

with c⋄1 being defined as

c⋄1 =
[
m0

(1
2
− γϱ01

)]
∧
[
J0

(1
2
− γϱ02

(1 + εm)2

)]
∧
[EA

2
− γΓ2m0

ϱ01
− γJ0

4ϱ02(1 + εm)2

]
∧
[EI

2

]
∧
[m1B

2

]
∧
[m2B

2

]
∧
[
k1Bγ − γΓm0

2ϱ01

]
∧
[
k2Bγ − γΓm0

2ϱ01

]
,

(31)

and we have chosen ϱ01 and ϱ02 such that

P0 ≥ 2
(Γ2m0

ϱ01
+

J0
4ϱ02(1 + εm)2

)
(32)

to ensure that
(
P0 − 2Γ2m0

ϱ01
− 2 J0

4ϱ02(1+εm)2

)⟨
1, ε − Dw1

⟩
L2 ≥ 0. The constants γ and ϱ01 are chosen

such that

cI,II1 ≥ c∗I,II1 , cIII1 ≥ c∗III1 , (33)

where c∗I,II1 and c∗III1 are strictly positive constants. This is always possible by choosing γ sufficiently
small for given ϱ0i, i = 1, 2. The constants ϱ0i, i = 1, 2 and control gains kiB, i = 1, 2 for a given
constant axial force P0 are chosen as in the following procedure to ensure that the conditions (27),
(33), and (32) hold:

Procedure 4.1: For a given P0:
Step 1. Choose ϱ0i, i = 1, 2 such that

P0 ≫ 2
(Γ2m0

ϱ01
+

J0
4ϱ02(1 + εm)2

)
. (34)

Step 2. Choose γ such that

γ ≪ d1P

mP
∧ d2P

mP
∧ 1

2ϱ01
∧ 1

2ϱ02(1+εm)2 ∧ [EA
2

(
Γ2m0

ϱ01
+ J0

4ϱ02(1+εm)2

)−1
. (35)

Step 3. Choose kiB such that

k1B ≫ Γm0

2ϱ01
, k1B ≫ Γm0

2ϱ01
. (36)

The symbols “ ≫ ” and “ ≪ ” mean strictly larger than, and strictly less than, respectively.

Thus, the Lyapunov functional candidate U is a proper (positive definite and radially unbounded)

functional of E . We now calculate the generators LU I,II := dU I,II

dt and LU III := dU III

dt . It is obvious from
(25) that

LU I,II = LU1 + LU2 + LU3 + LU I,II
4 ,

LU III = LU1 + LU2 + LU3 + LU III
4 ,

(37)

where LUi, i = 1, ..., 3, LU I,II
4 , and LU III

4 are detailed in the following subsections.
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4.2.1. Calculation of LU1

Differentiating both sides of the first equation of (26) along the solutions of (22) results in

LU1 =
⟨
D[N cos(θ1)−Q sin(θ1)− P0] + f1, w2

⟩
L2 +

⟨
D[N sin(θ1) +Q cos(θ1)] + f2, u2

⟩
L2

+
⟨
DM + (1 + ε)Q+ f3, θ2

⟩
L2 + EA

⟨
ε, εt

⟩
L2 + EI

⟨
Dθ1,Dθ2

⟩
L2 + P0

⟨
1, εt − Dw2

⟩
L2 ,

(38)

where εt :=
∂ε
∂t and we have used the trick D[N cos(θ1) − Q sin(θ1)] = D[N cos(θ1) − Q sin(θ1) − P0]

to deal with the boundary condition. Using integration by parts and boundary conditions (23) and
(24), we can write LU1 as

LU1 =
{
[NBΓ cos(θBΓ

1 )−QBΓ sin(θBΓ
1 )− P0]w

BΓ
2 +[NBΓ sin(θBΓ

1 ) +QBΓ cos(θBΓ
1 )]uBΓ

2

}
−

{
[NB0 cos(θB0

1 )−QB0 sin(θB0
1 )− P0]w

B0
2 + [NB0 sin(θB0

1 ) +QB0 cos(θB0
1 )]uB0

2

}
+ EA

⟨
ε, εt

⟩
L2 + EI

⟨
Dθ1,Dθ2

⟩
L2+ P0

⟨
1, εt − Dw2

⟩
L2+Ω1 +

⟨
f1, w2

⟩
L2+

⟨
f2, u2

⟩
L2+

⟨
f3, θ2

⟩
L2 ,

(39)

where

Ω1 =−
⟨
[N cos(θ1)−Q sin(θ1)− P0],Dw2

⟩
L2 −

⟨
[N sin(θ1) +Q cos(θ1)],Du2

⟩
L2 −

⟨
M,Dθ2

⟩
L2

=−
⟨
N, [Du2 sin(θ1) + Dw2 cos(θ1)]

⟩
L2 −

⟨
M,Dθ2

⟩
L2 −

⟨
Q, [D cos(θ1)− Dw2 sin(θ1)]

⟩
L2

+ P0

⟨
1,Dw2

⟩
L2 .

(40)

To further calculate Ω1, we differentiate both sides of (2) to obtain

εt = Dw2 cos(θ1) + Du2 sin(θ1),
0 = −Dw2 sin(θ1) + Du2 cos(θ1)− (1 + ε)θ2.

(41)

Substituting (41) and the expression of N and M defined in (3) into (40) results in

Ω1 =− EA
⟨
ε, εt

⟩
L2 − EI

⟨
Dθ1,Dθ2

⟩
L2 − P0

⟨
1, εt − Dw2

⟩
L2 . (42)

Now, substituting (42) into (39) gives

LU1 =
{
[NBΓ cos(θBΓ

1 )−QBΓ sin(θBΓ
1 )− P0]w

BΓ
2 +[NBΓ sin(θBΓ

1 ) +QBΓ cos(θBΓ
1 )]uBΓ

2

}
−
{
[NB0 cos(θB0

1 )−QB0 sin(θB0
1 )− P0]w

B0
2 + [NB0 sin(θB0

1 ) +QB0 cos(θB0
1 )]uB0

2

}
+
⟨
f1, w2

⟩
L2 +

⟨
f2, u2

⟩
L2 +

⟨
f3, θ2

⟩
L2 .

(43)

4.2.2. Calculation of LU2

Differentiating both sides of the third equation of (26) along the solutions of (22) and using integration
by parts result in

LU2 =γm0

[
∥w2∥2L2 + ∥u2∥2L2

]
+Ω21 + γ

⟨
D[N cos(θ1)−Q sin(θ1)] + f1, w1

⟩
L2

+ γ
⟨
D[N sin(θ1) +Q cos(θ1)] + f2, u1

⟩
L2

+ γ
⟨
DM +Q(1 + ε) + f3,

sin(θ1)

1 + ε

⟩
L2
,

(44)

with

Ω21 =γJ0

⟨
1,

θ22 cos(θ1)(1 + ε)− εtθ2 sin(θ1)

(1 + ε)2

⟩
L2

≤γJ0

[ ϱ11 + ϱ12
(1 + εm)2

+
1

1 + εm

]
∥θ2∥2L2 +

γJ0
4ϱ11(1 + εm)2

∥Dw2∥2L2 +
γJ0

4ϱ12(1 + εm)2
∥Du2∥2L2 ,

(45)
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where we have used the first equation of (41) and Young’s inequality; and ϱ11 and ϱ12 are positive
constants to be determined. Now, applying integration by parts to (44) and using (45) gives

LU2 ≤
{
[NBΓ cos(θBΓ

1 )−QBΓ sin(θBΓ
1 )− P0]γw

BΓ
1 + [NBΓ sin(θBΓ

1 ) +QBΓ cos(θBΓ
1 )]γuBΓ

1

}
−

{
[NB0 cos(θB0

1 )−QB0 sin(θB0
1 )− P0]γw

B0
1 + [NB0 sin(θB0

1 ) +QB0 cos(θB0
1 )]γuB0

1

}
+ γm0

[
∥w2∥2L2 + ∥u2∥2L2

]
+ γJ0

[ ϱ11 + ϱ12
(1 + εm)2

+
1

1 + εm

]
∥θ2∥2L2 +

γJ0∥Dw2∥2L2

4ϱ11(1 + εm)2
+

γJ0∥Du2∥2L2

4ϱ12(1 + εm)2

+ γ
⟨
Q, sin(θ1)

⟩
L2 +Ω22 +Ω23 + γ

⟨
f1, w1

⟩
L2 + γ

⟨
f2, u1

⟩
L2 + γ

⟨
f3,

sin(θ1)

1 + ε

⟩
L2
,

(46)

where we have again used D[N cos(θ1)−Q sin(θ1)] = D[N cos(θ1)−Q sin(θ1)− P0], and

Ω22 =− γ
⟨
N, cos(θ1)Dw1 + sin(θ1)Du1

⟩
L2 − γ

⟨
Q,− sin(θ1)Dw1 + cos(θ1)Du1

⟩
L2 + γP0

⟨
1,Dw1

⟩
L2 ,

Ω23 =γ
⟨
DM,

sin(θ1)

1 + ε

⟩
L2
.

(47)

Using (2) and the expression of N defined in (3), we can further calculate Ω22 as follows:

Ω22 =− γEA∥ε∥2L2 − γ
⟨
Q, sin(θ1)

⟩
L2 − γEA

⟨
ε, 1− cos(θ1)

⟩
L2

− γP0

⟨
1, 1− cos(θ1)

⟩
L2 − γP0

⟨
1, ε− Dw1

⟩
L2 .

(48)

Using the expression of M defined in (3) and integration by parts, we can further calculate Ω23 as
follows:

Ω23 = γEI
⟨
D2θ1,

sin(θ1)

1 + ε

⟩
L2
. (49)

We now consider two cases:

• Case 1: If D2θ1 sin(θ1) ≤ 0, we have

Ω23 ≤
γEI

1 + εM

⟨
D2θ1, sin(θ1)

⟩
L2

=
γEI

1 + εM

[
MBΓ sin(θBΓ

1 )−MB0 sin(θB0
1 )

]
− γEI

1 + εM

⟨
(Dθ1)2, cos(θ1)

⟩
L2

= − γEI

1 + εM

⟨
(Dθ1)2, cos(θ1)

⟩
L2

(50)

where εM = supt∈[t0,∞) ε(t), and we have used the boundary conditions (23) and (24).

• Case 2: If D2θ1 sin(θ1) > 0, we have

Ω23 ≤
γEI

1 + εm

⟨
D2θ1, sin(θ1)

⟩
L2

=
γEI

1 + εm

[
MBΓ sin(θBΓ

1 )−MB0 sin(θB0
1 )

]
− γEI

1 + εm

⟨
(Dθ1)2, cos(θ1)

⟩
L2

= − γEI

1 + εm

⟨
(Dθ1)2, cos(θ1)

⟩
L2 ,

(51)

where we have used the boundary conditions (23) and (24).

Thus, the following upper-bound of Ω23 holds for both cases:

Ω23 ≤ − γEI

1 + εM

⟨
(Dθ1)2, cos(θ1)

⟩
L2 ≤ −γEI(1 + (Dw1)m)

(1 + εM )2
∥Dθ1∥2L2 , (52)
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where Assumption 2.1.3 implies that there exists a bounded (Dw1)m := inft∈[t0,∞)Dw1 and we have

used cos(θ1) =
1+Dw1

1+ε , see the second equation of (2). Substituting (48) and (52) into (46) results in

LU2 ≤
{
[NBΓ cos(θBΓ

1 )−QBΓ sin(θBΓ
1 )− P0]γw

BΓ
1 + [NBΓ sin(θBΓ

1 ) +QBΓ cos(θBΓ
1 )]γuBΓ

1

}
−

{
[NB0 cos(θB0

1 )−QB0 sin(θB0
1 )− P0]γw

B0
1 + [NB0 sin(θB0

1 ) +QB0 cos(θB0
1 )]γuB0

1

}
+ γm0

[
∥w2∥2L2 + ∥u2∥2L2

]
+ γJ0

[ ϱ11 + ϱ12
(1 + εm)2

+
1

1 + εm

]
∥θ2∥2L2 +

γJ0∥Dw2∥2L2

4ϱ11(1 + εm)2
+

γJ0∥Du2∥2L2

4ϱ12(1 + εm)2

− γEA∥ε∥2L2 −
γEI(1 + (Dw1)m)

(1 + εM )2
∥Dθ1∥2L2 − γEA

⟨
ε, 1− cos(θ1)

⟩
L2 − γP0

⟨
1, 1− cos(θ1)

⟩
L2

− γP0

⟨
1, ε− Dw1

⟩
L2 + γ

⟨
f1, w1

⟩
L2 + γ

⟨
f2, u1

⟩
L2 + γ

⟨
f3,

sin(θ1)

1 + ε

⟩
L2
.

(53)

4.2.3. Calculation of LU3

Differentiating both sides of the third equation of (26) along the solutions of (23) results in

LU3 =
(
wBΓ
2 + γwBΓ

1

)[
− [NBΓ cos(θBΓ

1 )−QBΓ sin(θBΓ
1 )− P0] + ϕ1B − d1Bw

BΓ
2

− d1KDwBΓ
2 + f1B0 +m1Bγw

BΓ
2

]
+ 2k1Bγw

BΓ
1 wBΓ

2

+ (uBΓ
2 + γuBΓ

1 )
[
− [NBΓ sin(θBΓ

1 ) +QBΓ cos(θBΓ
1 )] + ϕ2B − d2Bu

BΓ − d2KDuBΓ
2

+ f2B0 +m2Bγu
BΓ
2

]
+ 2k2Bγu

BΓ
1 uBΓ

2 .

(54)

4.2.4. Calculation of LU I,II
4 and LU III

4

Differentiating both sides of the fourth and fifth equations of (30) along the solutions of (24) results
in

LU I,II
4 = 0,

LU III
4 = (γwB0

1 +wB0
2 )

[
−(d1P−mPγ)w

B0
2 +[NB0 cos(θB0

1 )−QB0 cos(θB0
1 )− P0] + d1KDwB0

2 +f1P0

]
+ (γuB0

1 + uB0
2 )

[
− (d2P −mPγ)u

B0
2 + [NB0 sin(θB0

1 ) +QB0 cos(θB0
1 )] + +d2KDuB0

2 + f2P0

]
+ (d1P − γmP )γw

B0
1 wB0

2 + (d2P − γmP )γu
B0
1 uB0

2 .

(55)

Substituting (43), (53), (54), and (55) into (37) yields

LU I,II = ΩBΓ +ΩB0
I,II +Ω⋄ +Ω+Ω0,

LU III = ΩBΓ +ΩB0
III +Ω⋄ +Ω+Ω0,

(56)

where

ΩBΓ =
(
wBΓ
2 + γwBΓ

1

)[
ϕ1B − d1Bw

BΓ
2 − d1KDwBΓ

2 + f1B0 +m1Bγw
BΓ
2

]
+ 2k1Bγw

BΓ
1 wBΓ

2

+ (uBΓ
2 + γuBΓ

1 )
[
ϕ2B − d2Bu

BΓ − d2KDuBΓ
2 + f2B0 +m2Bγu

BΓ
2

]
+ 2k2Bγu

BΓ
1 uBΓ

2 ,

ΩB0
I,II = 0,

ΩB0
III = (γwB0

1 + wB0
2 )

[
− (d1P −mPγ)w

B0
2 + d1KDwB0

2 + f1P0

]
+ (d1P − γmP )γw

B0
1 wB0

2

+ (γuB0
1 + uB0

2 )
[
− (d2P −mPγ)u

B0
2 + d2KDuB0

2 + f2P0

]
+ (d2P − γmP )γu

B0
1 uB0

2 ,

(57)

12
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and

Ω⋄ = γm0

[
∥w2∥2L2 + ∥u2∥2L2

]
+ γJ0

[ ϱ11 + ϱ12
(1 + εm)2

+
1

1 + εm

]
∥θ2∥2L2 +

γJ0∥Dw2∥2L2

4ϱ11(1 + εm)2
+

γJ0∥Du2∥2L2

4ϱ12(1 + εm)2
,

Ω = −γEA∥ε∥2L2 −
γEI(1 + (Dw1)m)

(1 + εM )2
∥Dθ1∥2L2 − γEA

⟨
ε, 1− cos(θ1)

⟩
L2 − γP0

⟨
1, 1− cos(θ1)

⟩
L2

− γP0

⟨
1, ε− Dw1

⟩
L2 ,

Ω0 =
⟨
f1, w2

⟩
L2 +

⟨
f2, u2

⟩
L2 +

⟨
f3, θ2

⟩
L2 + γ

⟨
f1, w1

⟩
L2 + γ

⟨
f2, u1

⟩
L2 + γ

⟨
f3,

sin(θ1)

1 + ε

⟩
L2
.

(58)

From the expression of ΩBΓ defined in (57), for simplicity the boundary controls ϕiB, i = 1, 2 are
chosen as follows

ϕ1B =− (k1B + ϵ1B)
(
wBΓ
2 + γwBΓ

1

)
+ d1Bw

BΓ
2 −m1Bγw

BΓ
2 ,

ϕ2B =− (k2B + ϵ2B)(u
BΓ
2 + γuBΓ

1 ) + d2Bu
BΓ −m2Bγu

BΓ
2 ,

(59)

where the control gains kiB and ϵiB, i = 1, 2 are positive constants to be determined later. Indeed, there
are many other choices of ϕiB, i = 1, 2 such as output-feedback (only measurement of displacements),
robust and adaptive ones, and disturbance observers. This will not be detailed here since it is widely
available in control of lumped-parameter systems, see (Do & Pan, 2008b, 2009b; Y. P. Guo & Wang,
2016; Krstic et al., 1995). Substituting (59) into the expression of ΩBΓ defined in (57) and using
Young’s inequality and the first two inequalities in (8) yields

ΩBΓ ≤− k1B
(
wBΓ
2 + γwBΓ

1

)2 − d1KDwBΓ
2

(
wBΓ
2 + γwBΓ

1

)
+ 2k1Bγw

BΓ
1 wBΓ

2

− k2B(u
BΓ
2 + γuBΓ

1 )2 − d2KDuBΓ
2 (uBΓ

2 + γuBΓ
1 ) + 2k2Bγu

BΓ
1 uBΓ

2 + cBΓ
0

=− k1B(w
BΓ
2 )2 − k1Bγ(w

BΓ
1 )2 − k2B(u

BΓ
2 )2 − k2Bγ(u

BΓ
1 )2

− d1KDwBΓ
2

(
wBΓ
2 + γwBΓ

1

)
− d2KDuBΓ

2 (uBΓ
2 + γuBΓ

1 ) + cBΓ
0 ,

(60)

where

cBΓ
0 =

1

4ϵ1B
fM
1B0 +

1

4ϵ2B
fM
2B0, (61)

with fM
iB0, i = 1, 2 being defined in (9). We now calculate the upper-bound of ΩB0

III . From the expression
of ΩB0

III defined in (57), applying Young’s inequality and the fourth inequality in (8) results in

ΩB0
III =(γwB0

1 + wB0
2 )f1P0 − (d1P −mPγ)(w

B0
2 )2 + (γuB0

1 + uB0
2 )f2P0 − (d2P −mPγ)(u

B0
2 )2

+ d1KDwB0
2 (γwB0

1 + wB0
2 ) + d2KDuB0

2 (γuB0
1 + uB0

2 )

≤γϱB0
11 (w

B0
1 )2 − (d1P −mPγ − ϱB0

12 )(w
B0
2 )2 + γϱB0

21 (u
B0
1 )2 − (d2P −mPγ − ϱB0

22 )(u
B0
2 )2

+ d1KDwB0
2 (γwB0

1 + wB0
2 ) + d2KDuB0

2 (γuB0
1 + uB0

2 ) + cB0
0

≤− cB0
11 (w

B0
1 )2 + 2(γϱB0

11 + cB0
11 )(w

BΓ
1 )2 + 4(γϱB0

11 + cB0
11 )Γ∥Dw1∥2L2 − cB0

12 (w
B0
2 )2

− cB0
21 (u

B0
1 )2 + 2(γϱB0

21 + cB0
21 )(u

BΓ
1 )2 + 4(γϱB0

21 + cB0
21 )Γ∥Du1∥2L2 − cB0

22 (u
B0
2 )2

+ d1KDwB0
2 (γwB0

1 + wB0
2 ) + d2KDuB0

2 (γuB0
1 + uB0

2 ) + cB0
0 ,

(62)

where we have added and subtracted cB0
11 (w

BΓ
1 )2 and cB0

21 (u
BΓ
1 )2 to the second inequality in (62);

cB0
i1 , i = 1, 2 and ϱB0

ij , (i, j) = 1, 2 are positive constants to be chosen, and

cB0
12 = d1P −mPγ − ϱB0

12 , cB0
22 = d2P −mPγ − ϱB0

22 ,

cB0
0 =

[ γ

4ϱB0
11

+
1

4ϱB0
12

]
fM
1P0 +

[ γ

4ϱB0
21

+
1

4ϱB0
22

]
fM
2P0,

(63)

where fM
iP0, i = 1, 2 are defined in (9).
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Next, we calculate the upper-bound of Ω defined in (58). We first consider

A = −ε2 − ε(1− cos(θ1)). (64)

From the second equation of (2), we have cos(θ1) =
1+Dw1

1+ε = ε−Dw1

1+ε . Using these equalities, we can
calculate the term A as follows:

A = −ε2 − ε
(
1− 1+Dw1

1+ε

)
= −ε2 − ε(ε−Dw1)

1+ε

)
= −ε2 − (ε− Dw1) +

ε−Dw1

1+ε = −ε2 − (ε− Dw1) + (1− cos(θ1))

≤ −ε2 − (ε− Dw1)
1+εm
1+ε + (1− cos(θ1)) = −ε2 − εm(1− cos(θ1)).

(65)

With (65), we can calculate the upper-bound of Ω as follows:

Ω ≤− γEA∥ε∥2L2 −
γEI(1 + (Dw1)m)

(1 + εM )2
∥Dθ1∥2L2 − γ

(
P0 + EAεm

)⟨
1, 1− cos(θ1)

⟩
L2

− γP0

⟨
1, ε− Dw1

⟩
L2 .

(66)

Now, we calculate the upper-bound of Ω0 defined in (58). Substituting the expression of fi defined
in (4) into the expression of Ω0 and using integration by parts, Young’s inequality and the third
inequality of (8), the upper-bound of Ω0 can be calculated as

Ω0 =− d1∥w2∥2L2 − d2∥u2∥2L2 + d1K
⟨
w2,D2w2

⟩
L2 + d2K

⟨
u2,D2u2

⟩
L2 − d3∥θ2∥2L2

− γd1
⟨
w1, w2

⟩
L2 − γd2

⟨
u1, u2

⟩
L2 + γd1K

⟨
w1,D2w2

⟩
L2 + γd2K

⟨
u1,D2u2

⟩
L2

+
⟨
w2, f10

⟩
L2 +

⟨
u2, f20

⟩
L2 +

⟨
θ2, f30

⟩
L2 + γ

⟨
w1, f10

⟩
L2 + γ

⟨
u1, f20

⟩
L2 + γ

⟨sin(θ1)
1 + ε

, f30

⟩
L2

=
[
d1K(wBΓ

2 + γwBΓ
1 )DwBΓ

2 + d2K(uBΓ
2 + γuBΓ

1 )DuBΓ
2

]
− d1∥w2∥2L2 − d2∥u2∥2L2 − d3∥θ2∥2L2

−
[
d1K(wB0

2 + γwB0
1 )DwB0

2 + d2K(uB0
2 + γuB0

1 )DuB0
2

]
− d1k∥Dw2∥2L2 − d2K∥Du2∥2L2 +A0,

(67)

with

A0 =− γd1K
⟨
Dw1,Dw2

⟩
L2 − γd2K

⟨
Du1,Du2

⟩
L2 − γd1

⟨
w1, w2

⟩
L2 − γd2

⟨
u1, u2

⟩
L2

+
⟨
w2, f10

⟩
L2 +

⟨
u2, f20

⟩
L2 +

⟨
θ2, f30

⟩
L2 + γ

⟨
w1, f10

⟩
L2 + γ

⟨
u1, f20

⟩
L2 + γ

⟨sin(θ1)
1 + ε

, f30

⟩
L2

≤γd1K
2

∥Dw1∥2L2 +
γd1K
2

∥Dw2∥2L2 +
γd2K
2

∥Du1∥2L2 +
γd2K
2

∥Du2∥2L2 +
γd1
2

∥w1∥2L2

+
γd1
2

∥w2∥2L2 +
γd1
2

∥u1∥2L2 +
γd1
2

∥u2∥2L2 + ϵ011∥w2∥2L2 + ϵ012∥u2∥2L2 + ϵ013∥θ2∥2L2

+ γϵ021∥w1∥2L2 + γϵ022∥u1∥2L2 + γϵ023∥Du1∥2L2 + c0Γ0

≤
[γd1

2
+ ϵ011

]
∥w2∥2L2 +

[γd2
2

+ ϵ012

]
∥u2∥2L2 + ϵ013∥θ2∥2L2 +

[γd1K
2

+ 2γΓ2(d1 + 2ϵ021)
]
∥Dw1∥2L2

+
[γd2K

2
+ 2γΓ2(d2 + 2ϵ022) + γϵ023

]
∥Du1∥2L2+γΓ(d1 + 2ϵ021)(w

BΓ
1 )2+γΓ(d2 + 2ϵ022)(u

BΓ
1 )2+c0Γ0 ,

(68)

where we have used sin(θ1) = Du1

1+ε ϵ0ij , i = 1, 2, 3; j = 1, 2 are positive constants to be determined,
and

c0Γ0 =
[ 1

4ϵ011
+

γ

4ϵ021

]
fM
10 +

[ 1

4ϵ012
+

γ

4ϵ022

]
fM
20 +

1

4ϵ013
fM
30 +

γ

4ϵ023(1 + εm)2
fM
30 , (69)
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with fM
i0 , i = 1, 2, 3 are defined in (9). Substituting (68) into (67 yields the upper-bound of Ω0:

Ω0 ≤
[
d1K(wBΓ

2 + γwBΓ
1 )DwBΓ

2 + d2K(uBΓ
2 + γuBΓ

1 )DuBΓ
2

]
+ γΓ(d1 + 2ϵ021)(w

BΓ
1 )2

−
[
d1K(wB0

2 + γwB0
1 )DwB0

2 + d2K(uB0
2 + γuB0

1 )DuB0
2

]
+ γΓ(d2 + 2ϵ022)(u

BΓ
1 )2,

−
[
d1 −

γd1
2

− ϵ011

]
∥w2∥2L2 −

[
d2 −

γd2
2

− ϵ012

]
∥u2∥2L2 − (d3 − ϵ013)∥θ2∥2L2

− d1K∥Dw2∥2L2 − d2K∥Du2∥2L2 +
[γd1K

2
+ 2γΓ2(d1 + 2ϵ021)

]
∥Dw1∥2L2

+
[γd2K

2
+ 2γΓ2(d2 + 2ϵ022) + γϵ023

]
∥Du1∥2L2 + c0Γ0 .

(70)

Substituting Ω⋄ defined in (58), (60), (66), (70), and ΩB0
I,II = 0 into (56) results in the generator LU I,II

for Types I and II of boundary conditions of the lower-end with a note that wB0
1 = uB0

1 = 0, see (24),
which implies that wB0

2 = uB0
2 = 0, as follows:

LU I,II ≤− cBΓ
11 (wBΓ

1 )2 − cBΓ
12 (wBΓ

2 )2 − cBΓ
21 (uBΓ

1 )2 − cBΓ
22 (uBΓ

2 )2 − c11∥ε∥2L2 − c12∥Dθ1∥2L2

− c13
⟨
1, 1− cos(θ1)

⟩
L2 − c14

⟨
1, ε− Dw1

⟩
L2 − c21∥w2∥2L2 − c22∥u2∥2L2 − c23∥θ2∥2L2

− c31∥Dw2∥2L2 − c32∥Du2∥2L2 + c0Γ + cBΓ
0 ,

(71)

where we have used ε2 = (Dw1)
2 + (Du1)2 − 2(ε− Dw1), and

cBΓ
11 = γ

[
k1B − Γ(d1 + 2ϵ021)

]
, cBΓ

12 = k1B, cBΓ
21 = γ

[
k2B − Γ(d2 + 2ϵ022)

]
, cBΓ

22 = k2B,

c11 = γ
[
EA−

(d1K
2

+2Γ2(d1 + 2ϵ021)
)
∨
(d2K

2
+ 2Γ2(d2 + 2ϵ022)+γϵ023

)]
, c12 =

γEI(1 + (Dw1)m)

(1 + εM )2
,

c13 = γ
(
P0 + EAεm

)
, c14 = γ

[
P0 − 2

(d1K
2

+ 2Γ2(d1 + 2ϵ021)
)
∨
(d2K

2
+ 2Γ2(d2 + 2ϵ022) + γϵ023

)]
,

c21 = d1−
γd1
2

−ϵ011−γm0, c22 = d2−
γd2
2

−ϵ012−γm0, c23 = d3 − ϵ013 − γJ0

( ϱ11 + ϱ12
(1 + εm)2

+
1

1 + εm

)
,

c31 = d1K − γJ0
4ϱ11(1 + εm)2

, c32 = d2K − γJ0
4ϱ12(1 + εm)2

.

(72)

We choose the constants γ, P0, k1B, k2B, ϵ0ij , i = 1, 2, 3; j = 1, 2, ϱ11, and ϱ12 such that

cBΓ
ij > 0, (i, j) = 1, 2; c11 > 0; c12 > 0; c13 ≥ 0; c14 ≥ 0;

c2i > 0, i = 1, 2, 3; c31 > 0; c32 > 0.
(73)

A careful look at (72) shows that there always exist the constants γ, P0, k1B, k2B, ϵ0ij , i = 1, 2, 3; j =
1, 2, ϱ11, and ϱ12 such that the conditions specified in (73) hold provided that the constant axial force
P0 is sufficiently large to ensure that c13 ≥ 0 and c14 ≥ 0. The above constants are chosen as in the
following procedure to ensure that the conditions listed in (73) hold:

Procedure 4.2:

Step 1. Choose ϵ021, ϵ022, ϵ023 and γ such that

EA ≫
(d1K

2
+2Γ2(d1 + 2ϵ021)

)
∨
(d2K

2
+ 2Γ2(d2 + 2ϵ022)+γϵ023

)
, (74)

which is always possible under the condition (10). This step gives the first range of γ in this procedure.
Step 2. Choose k1B and k2B such that

k1B ≫ Γ(d1 + 2ϵ021), k2B ≫ Γ(d2 + 2ϵ022). (75)
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Step 3. Choose ϵ011, ϵ012, ϵ013, and γ such that

d1 ≫ γd1

2 − ϵ011 − γm0,

d2 ≫ γd2

2 − ϵ012 − γm0,

d3 ≫ ϵ013 − γJ0

(
ϱ11+ϱ12

(1+εm)2 + 1
1+εm

)
.

(76)

This step gives the second range of γ in this procedure.
Step 4. Choose ϱ11, ϱ12, and γ such that

d1K ≫ γJ0

4ϱ11(1+εm)2 , d2K ≫ γJ0

4ϱ12(1+εm)2 . (77)

This step gives the third range of γ in this procedure.
The desired range of γ is the smallest one of all the above steps and the one in Procedure 4.1.

Then, there exists a positive constant c3 such that

LU I,II ≤− c3E I,II + c0Γ + cBΓ
0 . (78)

On the other hand, substituting Ω⋄ defined in (58), (60), (66), (70), and the upper-bound of ΩB0
III

defined in (62) into (56) results in the generator LU III for Type III of boundary conditions of the
lower-end as follows:

LU III ≤ −c̄BΓ
11 (wBΓ

1 )2 − c̄BΓ
12 (wBΓ

2 )2 − c̄BΓ
21 (uBΓ

1 )2 − c̄BΓ
22 (uBΓ

2 )2 − c̄B0
11 (w

B0
1 )2 − c̄B0

12 (w
B0
2 )2

−c̄B0
21 (u

B0
1 )2 − c̄B0

22 (u
B0
2 )2 − c̄11∥ε∥2L2 − c̄12∥Dθ1∥2L2 − c̄13

⟨
1, 1− cos(θ1)

⟩
L2

−c̄14
⟨
1, ε− Dw1

⟩
L2 − c̄21∥w2∥2L2 − c̄22∥u2∥2L2 − c̄23∥θ2∥2L2 − c̄31∥Dw2∥2L2 − c̄32∥Du2∥2L2

+c0Γ + cBΓ
0 + cB0

0 ,

(79)

where

c̄BΓ
11 = cBΓ

11 − 2(γϱB0
11 + cB0

11 ), c̄
BΓ
12 = cBΓ

11 , c̄BΓ
21 = cBΓ

21 − 2(γϱB0
21 + cB0

21 ), c̄
BΓ
22 = cBΓ

22 , c̄B0
11 = cB0

11 ,

c̄B0
12 = cB0

12 , c̄
B0
21 = cB0

21 , c̄
B0
22 = cB0

22 ,

c̄11 = c11 − 4Γ
[
(γϱB0

11 + cB0
11 ) ∨ (γϱB0

21 + cB0
21 )

]
, c̄12 = c12, c̄13 = c13,

c̄14 = c14 − 8Γ
[
(γϱB0

11 + cB0
11 ) ∨ (γϱB0

21 + cB0
21 )

]
,

c̄21 = c21, c̄22 = c22, c̄23 = c23, c̄31 = c31, c̄32 = c32.

(80)

We choose the constants γ, P0, k1B, k2B, ϵ0ij , i = 1, 2, 3; j = 1, 2, ϱ11, ϱ12, c
B0
ij , (i, j) = 1, 2, ϱB0

11 , and

ϱB0
21 such that

c̄BΓ
ij > 0, (i, j) = 1, 2; c̄B0

ij > 0, (i, j) = 1, 2; c̄11 > 0; c̄12 > 0; c̄13 ≥ 0; c̄14 ≥ 0;

c̄2i > 0, i = 1, 2, 3; c̄31 > 0; c̄32 > 0.
(81)

A careful look at (72) shows that there always exist the constants γ, P0, k1B, k2B, ϵ0ij , i = 1, 2, 3; j =
1, 2, ϱ11, ϱ12, c

B0
ij , (i, j) = 1, 2, ϱB0

11 , and ϱB0
21 such that the conditions specified in (81) hold provided

that the constant axial force P0 is sufficiently large to ensure that c̄13 ≥ 0 and c̄14 ≥ 0. The above
constants are chosen as in the following procedure to ensure that the conditions listed in (81) hold:

Procedure 4.3: Given γ that is chosen in Procedure 4.2, choose ϱB0
11 , ϱ

B0
21 , c

B0
11 , and cB0

21 such that

cBΓ
11 ≫ 2(γϱB0

11 + cB0
11 ),

cBΓ
21 ≫ 2(γϱB0

21 + cB0
21 ),

c11 ≫ 4Γ
[
(γϱB0

11 + cB0
11 ) ∨ (γϱB0

21 + cB0
21 )

]
,

c14 ≫ 8Γ
[
(γϱB0

11 + cB0
11 ) ∨ (γϱB0

21 + cB0
21 )

]
.

(82)

This choice is always possible because Procedure 4.2 ensures that cBΓ
11 , cBΓ

21 , c11, and c14 are strictly
positive.
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Then, there exists a positive constant c̄3, which is smaller that c3 for Types I and II of the boundary
conditions at the lower end by examining (72) and (80), such that

LU III ≤− c̄3E III + c0Γ + cBΓ
0 + cB0

0 . (83)

It is important to observe that c̄3 in (83) is smaller than c3 in (78), and there is an additional constant
cB0
0 in (83) in comparison with (78). This is elaborating as follows. Type III of the boundary conditions
at the lower-end moves freely and the payload is subject to disturbances f1B0(t) and f2B0(t). More
importantly, the control forces ϕ1B and ϕ2B need to propagate from the top-end to the lower-end to
suppress motion of the payload. It should also be noted that the aforementioned constants chosen
for Type III are indeed valid for Types I and II. However, depending on a particular application,
these constants should be chosen according to the specified type of boundary conditions to reduce
conservation.

Remark 2: In the case where P0 is not sufficiently large, i.e., beams with a low tension are considered,
we proceed as follows.

• For Types I and II, let us define

ΩI,II = −c13
⟨
1, 1− cos(θ1)

⟩
L2 − c14

⟨
1, ε− Dw1

⟩
L2 . (84)

Supposing that P0 is small, then there exists nonnegative constants c∗13 and c∗14 such that

ΩI,II ≤ c∗13
⟨
1, 1− cos(θ1)

⟩
L2 + c∗14

⟨
1, ε− Dw1

⟩
L2

= c∗13
⟨
1, 1− cos(θ1)

⟩
L2 + c∗14

⟨
1 + ε, 1− cos(θ1)

⟩
L2

≤ (c∗13 + c∗14(1 + εM ))
⟨
1, 1− cos(θ1)

⟩
L2

≤ Γ(c∗13 + c∗14(1 + εM )),

(85)

where we have used θ1 ∈ (−π
2 ,

π
2 ) and 1− cos(θ1) = 1− 1+Dw1

1+ε , i.e., ε−D = (1+ ε)(1− cos(θ1)),
and εM = supt∈[t0,∞) ε(t). With the use (85), we can write (71) as follows:

LU I,II ≤− c3EI,II + c0Γ + cBΓ
0 + Γ(c∗13 + c∗14(1 + εM )). (86)

Note that there is an additional constant Γ(c∗13 + c∗14(1 + εM )) in (86) in comparison with (78).
This is not surprising since a larger P0 provides a larger axial stiffness.

• For Type III, we carry out analysis in the same way as for Types I and II. Let us define

ΩIII = −c̄13
⟨
1, 1− cos(θ1)

⟩
L2 − c̄14

⟨
1, ε− Dw1

⟩
L2 . (87)

Supposing that P0 is small, then there exists nonnegative constants c̄∗13 and c̄∗14 such that (but
using the same arguments to obtain (85)

ΩIII ≤ c̄∗13
⟨
1, 1− cos(θ1)

⟩
L2 + c̄∗14

⟨
1, ε− Dw1

⟩
L2

≤ Γ(c̄∗13 + c̄∗14(1 + εM )).
(88)

With (88), we can write (79) as follows:

LU III ≤− c̄3EIII + c0Γ + cBΓ
0 + cB0

0 + Γ(c̄∗13 + c̄∗14(1 + εM )). (89)

The control design has been completed. We summarize the main results in the following theorem.

Theorem 4.1: Under Assumption 2.1, the boundary controls ϕiB, i = 1, 2 given in (59) solves Control
Objective 2.1 provided that the constants γ, P0, k1B, k2B, ϱ01, ϱ02, ϵ0ij , i = 1, 2, 3; j = 1, 2, ϱ11, and
ϱ12 such that the conditions specified in (73) hold for Types I and II of the boundary conditions
at the lower-end; and the constants γ, P0, k1B, k2B, ϱ01, ϱ02, ϵ0ij , i = 1, 2, 3; j = 1, 2, ϱ11, ϱ12,
cB0
ij , (i, j) = 1, 2, ϱB0

11 , and ϱB0
21 such that the conditions specified in (81) hold for Type III, and the
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conditions (27), (32), and (33) hold for Types I, II, and III. The closed-loop system consisting of
(22), (6), (7) and (59) is globally well-posed and practically K∞-exponentially stable at the origin.
The proposed controls in (59) work for either large or small constant axial force P0 as shown in
Remark 2. The small P0 case results in smaller convergence rate and large errors in comparison with
the large P0.

Proof. See Appendix C.

Table 1.: Parameters of the beam system

Parameter Description Value
Γ Length 200m
do Outer diameter 0.3m
din Inner diameter 0.1m
m0 Mass per unit length 493kg/m

E Young modulus 2× 1010kg/m2

εM Maximum axial strain 2× 10−3

εm Minimum axial strain −5× 10−4

d1 Axial damping coefficient 120kg/m
d2 Transverse damping coefficient 120kg/m
d3 Rotating damping coefficient 60Ns
d1K Axial Kelvin-Voigt damping coefficient 60Nms
d2K Transverse Kelvin-Voigt damping coefficient 60Nms
d1B Axial actuator damping coefficient 200Ns/m
d2B Transverse actuator damping coefficient 400Ns/m
d1P Axial payload damping coefficient 250Ns/m
d2P Transverse payload damping coefficient 250Ns/m
m1B Axial actuator mass 100kg
m2B Transverse actuator mass 100kg
mP Payload mass 5000kg

5. Simulation results

This section illustrates the effectiveness of the proposed boundary controller via some numerical
simulations for Type III of the boundary conditions at the lower-end since this type is more challenging
than the other two types for the beam in moving water. The beam is made from steel and has
parameters, which are given in Table 1. The external loads fi0, i = 1, 2, 3 are taken as

f10 = CM cos(θ)
ϱwπd

2
oϑ1t(z, t)

4
+ (CD cos(θ) + CF sin(θ))

ϱwdo
2

√
8
πσ1(z, t)ϑ1(z, t),

f20 = CM cos(θ)
ϱwπd

2
oϑ2t(z, t)

4
+ (CD cos(θ) + CF sin(θ))

ϱwdo
2

√
8
πσ2(z, t)ϑ2(z, t),

f30 = CM
ϱwπd

2
oϑ3t(z, t)

4
+ CD

ϱwdo
2

√
8
πσ3(z, t)ϑ3(z, t),

(90)

where ϱw = 1025 kg
m3 is the water density; CM = 2 is the fluid inertia coefficient; CD = 1.2 and CF =

0.06 are respectively the drag coefficient of flow past a cylinder and the skin-friction drag coefficient,
which are chosen to be appropriate to the typical Reynolds number for the present application; and
σi(z, t) is the root mean square of the water particle velocity, ϑi(z, t). The water particle velocities ϑi

are (Niedzwecki & Liagre, 2003):

ϑi(z, t) =
∑Ni

j=1Aijωij
cosh(kijz)
sinh(kijΓ)

sin(ωijt), (91)
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where the amplitude Aij , wave number kij , and frequency ωij of the wave jth are given by

ωij = ωim + ωim−ωiM

Ni
j, Sij =

1.25
4

ω4
io

ω5
j
H2

i e
−1.25

ω4
io

ω4
j , Aij =

√
2Sij

ωiM−ωim

Ni
, kij tanh(kijΓ) =

ω2
ij

9.8 .
(92)

In (92), the minimum and maximum wave frequencies are ωim = 0.2 rand
s , ωiM = 2.5 rand

s ; the two-
parameter Bretschneider spectrum Sij is used with the significant wave height Hi = 4m; the modal
frequency is ωio = 2π

Ti
with Ti = 7.8; and Ni = 10. The loads fiB0 are equal to the value of fi0

evaluated at z = Γ; and fiP0 are equal to 103 times of fi0 evaluated at z = 0.
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a) Simulation results without any boundary controls.
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b) Simulation results with boundary controls.

Figure 2.: Comparison of simulation results without and with the proposed boundary controls.
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Figure 3.: Simulation results with boundary controls
designed in (Do, 2017a).

Since P0 = mP g < EA|εm|, we are con-
sidering the small P0 case. As per guidelines
in Procedures 4.1, 4.2, 4.3, and values of the
beam parameters, the control gains kiB, i =
1, 2, and γ are chosen as k1B = k2B = 1

20EA,

and γ = 1
4Γ . Note that there are many other

values of kiB, i = 1, 2, and γ that can be
chosen according to Procedures 4.1, 4.2, 4.3.
The above choice is only an example. Indeed,
since kiB, i = 1, 2, and γ have been chosen ac-
cording to Procedures 4.1, 4.2, 4.3, they en-
sure that all the conditions specified in Theo-
rem 4.1 hold (particularly note that Remark
2 has to be applied for this case) for some
positive constants ϵ0ij , i = 1, 2, 3; j = 1, 2,
ϱ11, ϱ12, c

B0
ij , (i, j) = 1, 2, ϱB0

11 , and ϱB0
21 .

The initial conditions are taken as t0 = 0,
w1(t0) = 0.2 sin

(
2π
Γ z

)
, u1(t0) = cos

(
5π
Γ z

)
,

and w2(t0) = u2(t0) = 0.
The central difference scheme is used to nu-

merically solve the partial differential equa-
tions (1) together with the boundary conditions (6), (7), where the boundary controls ϕiB, i = 1, 2, 3
are given in (59). We choose the time step ∆t = 0.1 and space step ∆s = 0.5 to ensure that the
convergence parameter r = ∆t

(∆s)2 = 0.4 is positive and less than 0.5 as required for stable solutions

(Smith, 1985). We run two cases: 1) without the proposed boundary controller, and 2) with the pro-
posed boundary controller. For both cases, the length of simulation time is 200 seconds and w(z, t)
and u(z, t) at z = 20im, i = 0, ..., 10 are examined.
Case 1: The results are plotted in Fig. 2a. The displacements (w(z, t), u(z, t) are plotted in Sub-figs.
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2a.A and 2a.B at the aforementioned locations. The red lines denote displacements of (w(z, t), u(z, t)
at z = 0 and z = Γ. The displacements and angle oscillate with quite large magnitudes due to the
sea loads but are bounded due to structural stiffness. The controls are plotted in Sub-fig. 2a.C.
Case 2: The results are plotted in Fig.2b. Comparing Sub-figs. 2b.A and 2b.B in this case with

corresponding Sub-figs. 2a.A and 2a.B in the case where no boundary controls are applied clearly
shows that a significant reduction (about 15 times less) in magnitude of all displacements at all the
examined locations. The controls are plotted in Sub-fig. 2a.C, where the blue line denotes ϕ1B and
the red line denotes ϕ2B. Note that all the displacements do not exponentially converge to zero but
to a ball centered at the origin due to the non-zero sea loads as stated in Theorem 4.1. Note also that
transversal displacement u(z, t) is much larger than longitudinal displacement for both cases. This is
a normal observation in flexible beams due to their slenderness.
Next, we run a simulation with the boundary controls designed in (Do, 2017a) for comparison,

see Fig. 3. The reason that the control design in (Do, 2017a) is chosen for comparison is because all
the control designs, which appeared before the one in (Do, 2017a), for a linearized model of (1) are
suffering from stability issue as mentioned in (Do, 2017a), Subsections 1.1 and 1.2, and Remark 4.3
(Item 3). As mentioned in Section 1, the model used in (Do, 2017a) was obtained by linearizing (1) at
the origin. Thus the controls in (Do, 2017a) can only handle small motions. This can be clearly seen
from Sub-figs 3.A and 3.B, the controls, which are plotted in Sub-fig. 3.C, where the small motions
around the large ones reduce. It is also observed that the controls plotted in Sub-fig. 3.C contain only
small signals.

6. Conclusions

A design of boundary controls was proposed to globally practically K∞-exponentially stabilize large
motions of Euler-Bernoulli beams with non-neglectable moment of inertia under external loads. Three
types of boundary conditions were considered, where Type III is the most challenging. This is because:
physically the lower-end is freely moving, and theoretically Sobolev embedding has to use to relate
motion of the lower-end to that of the top-end and the controls need to propagate from the top-end
to the lower-end. Future work is extend the current work to the space case for (particularly) Type
III of boundary conditions at the lower-end.

Appendices

Appendix A. Proof of Lemma 2.1

To prove the first equation of (8), we note from (2) that

(1 + ε)2 = (1 + wz)
2 + u2z ≥ (1 + wz)

2, (A1)

for all (z, t) ∈ [0,Γ] × [t0,∞), which gives the first inequality of (8) after a simple manipulation. To
prove the second equality of (8), we note from the first equation of (A1) that

ε2 = w2
z + u2z − 2(ε− wz), (A2)

which gives the second inequality of (8). The third inequality follows from Lemma 3 in (Do & Pan,
2008a). To prove the fourth inequality of (8), we use Lemma 4 in (Do & Pan, 2008a) and Young’s
inequality to obtain

w2(0, t) ≤ w2(Γ, t) + 2

√∫ Γ

0
w2(z, t)dz

√∫ Γ

0
w2
z(z, t)dz

≤ (1 + 2Γρ)w2(Γ, t) +
(
4ρΓ2 +

1

ρ

)∫ Γ

0
w2
z(z, t)dz

(A3)

where we have used the first third inequality of (8) and ρ is a positive constant, which gives the fourth
inequality of (8) by picking ρ = 1

2Γ . �
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Appendix B. Proof of Theorem 3.2

Since all the conditions of Theorem 3.1 hold, the system (14) has a unique variational solution. We
now calculate U(X, t) as

U(X(t), t) = U(X(s), s) +
∫ t

s
LU(X(r), r)dr. (B1)

Applying the conditions (20) and (21) to (B1) yields

c1∥X(t)∥2H ≤ α2(∥X(s)∥2H)−
∫ t

s

(
c3∥X(r)∥2H − c0

)
dr. (B2)

Applying the Gronwall inequality shows that there exists δ := δ(∥X0∥H) such that

sup
t0≤s≤t

∥X(s)∥H ≤ δ(∥X(t0)∥H) (B3)

for each X0 ∈ H and a.e. (t,X(t) ∈ [t0,∞) × V . This proves global stability of (14). Let us define

c2 =
α2(∥X0∥2

H)
∥X0∥2

H
, which is well-defined and is a non-decreasing function of ∥X0∥2H because α2 is a class

K∞-function. Now, we calculate e
c3
c2

(t−t0)U(X(t), t) along the solutions of (14) as

e
c3
c2

(t−t0)U(X(t), t) = U(X(t0), t0) +
∫ t

t0
e

c3
c2

(τ−t0)
(
LU(X(τ), τ) +

c3
c2
U(X(τ), τ)

)
dτ. (B4)

Applying the conditions (20) and (21) to (B4) and using (B3) yield

e
c3
c2

(t−t0)c1∥X(t)∥2H ≤ α2(∥X0∥2H) +
∫ t

t0
e

c3
c2

(τ−t0)
(
− c3∥X(τ)∥2H + c0 +

c3
c2
α2(∥X(τ)∥2H)

)
dτ

≤ α2(∥X0∥2H) +
∫ t

t0
e

c3
c2

(τ−t0)
(
− c3∥X(τ)∥2H + c0 +

c3
c2

α2(∥X0∥2H)

∥X0∥2H
∥X(τ)∥2H

)
dτ

= α2(∥X0∥2H) +
∫ t

t0
e

c3
c2

(τ−t0)c0dτ,

(B5)

which by applying the Gronwall inequality further yields the proof of Theorem 3.2. �

Appendix C. Proof of Theorem 4.1

We only provide proof of Theorem 4.1 for Type III of the boundary conditions at
the lower-end. The proof for Types I and II can be carried out similarly. Let us
define X = col(w1, u1, θ1, w2, u2, θ2, w

BΓ
1 , uBΓ

1 , wBΓ
2 , uBΓ

2 , wB0
1 , uB0

1 , wB0
2 , uB0

2 ) and F (X, t) =
col(w2, u2, θ2, F1, F2, F3, w

BΓ
2 , uBΓ

2 , FBΓ
1 , FBΓ

2 , wB0
2 , uB0

2 , FB
1 , F

B0
2 ), where Fi, i = 1, 2, 3; FBΓ

i , i = 1, 2;
and FB0

i , i = 1, 2 are defined in (22), (23), and (24) with ϕiB, i = 1, 2 being defined in (59),
respectively. Then, we can write (22), (23), and (24) as (14). Thus, to study well-posedness
and stability of the closed-loop system together with the static boundary conditions in (23) and

(24), we introduce the functional spaces: H = (W 1,2(D))3 × (L2(D))3 × R8, V = (W 1,2
0 (D))3 ×

(L2
0(D))3 × R8, V ∗ = (W−1,2(D))3 × (L2(D))3 × R8, where D := (0,Γ), W−m,p(D) denotes the

dual of Wm,p(D); W 1,2
0 (D) and L2

0(D) denotes W 1,2- and L2-spaces satisfying the static bound-
ary conditions in (23) and (24). Then, we have the embedding V ⊂ H ≡ H∗ ⊂ V ∗. Let
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X = col(w̄1, ū1, θ̄1, w̄2, ū2, θ̄2, w̄
BΓ
1 , ūBΓ

1 , w̄BΓ
2 , ūBΓ

2 , w̄B0
1 , ūB0

1 , w̄B0
2 , ūB0

2 ). Define

⟨
X, X̄

⟩
H

=
m0

2

[⟨
w2, w̄2

⟩
L2 +

⟨
u2, ū2

⟩
L2

]
+

J0
2

⟨
θ2, θ̄2

⟩
L2 +

EA

2

⟨
ε, ε̄

⟩
L2 +

EI

2

⟨
Dθ1,Dθ̄1

⟩
L2

+
P0

2

⟨
1, ε− Dw1

⟩
L2 +

P0

2

⟨
1, ε̄− Dw̄1

⟩
L2 +

γm0

2

⟨
w1, w̄2

⟩
L2 +

γm0

2

⟨
w̄1, w2

⟩
L2

+
γm0

2

⟨
u1, ū2

⟩
L2 +

γm0

2

⟨
ū1, u2

⟩
L2 +

γJ0
2

⟨
θ2,

sin(θ̄1)

1 + ε̄

⟩
L2

+
γJ0
2

⟨
θ̄2,

sin(θ1)

1 + ε

⟩
L2

+
m1B

2

(
wBΓ
2 + γwBΓ

1

)(
w̄BΓ
2 + γw̄BΓ

1

)
+

m2B

2

(
uBΓ
2 + γuBΓ

1

)(
ūBΓ
2 + γūBΓ

1

)
+ k1Bγw

BΓ
1 w̄BΓ

1 + k2Bγu
BΓ
1 ūBΓ

1 +
mP

2
(γwB0

1 + wB0
2 )(γw̄B0

1 + w̄B0
2 ) +

mP

2
(γuB0

1

+ uB0
2 )(γūB0

1 + ūB0
2 ) +

(d1P − γmP )γ

2
wB0
1 w̄B0

1 +
(d2P − γmP )γ

2
uB0
1 ūB0

1 .

(C1)

where ε̄ is the value of ε with Du1, Dw1, and θ1 being replaced by Dū1, Dw̄1, and θ̄1, respectively.
The constant γ and the constant axial force P0 satisfy the conditions specified in Theorem 4.1. Let us
denote by

⟨
X, X̄

⟩
LH

linearization of
⟨
X, X̄

⟩
H

at the origin. Then, it can be verified that
⟨
X, X̄

⟩
LH

is a inner product with the norm
⟨
X,X

⟩
LH

= ∥X∥2LH . In fact, there exist strictly positive constants

c̄01 and c̄02 such that c̄01E III
LH ≤ ∥X∥2LH ≤ c̄02E III

LH locally, where ELH is the linearization of E III with
E III defined in (12), which is defined in (12).
Now, to prove Theorem 4.1 we just need to verify all the conditions of Theorem 3.2. The conti-

nuity condition in Assumption 3.1 holds due to continuity of F (X, t). By using
⟨
X − X̄,F (X, t)−

F (X̄, t)
⟩
V,V ∗ =

⟨
X − X̄,F (X, t)−F (X̄, t)

⟩
H

with the use of the local inner product in LH defined

as above and integration by parts similarly to the calculation of LU in Section 4, it is readily shown
that the local monotonicity condition (16) holds. From the second inequality of (29) and (83), it is
clear that the conditions (20) and (21) hold. Thus, proof of Theorem 4.1 is completed. �
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