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Summary 

The interpretation of resistivity measurements acquired in high-angle and horizontal 

wells is a critical technical problem in formation evaluation. We develop an efficient parallel 

3D inversion method to estimate the spatial distribution of electrical resistivity in the 

neighborhood of a well from deep directional electromagnetic induction measurements. The 

methodology places no restriction on the spatial distribution of the electrical resistivity around 

arbitrary well trajectories. The fast forward modelling of triaxial induction measurements 

performed with multiple transmitter-receiver configurations employs a parallel direct solver. 

The inversion uses a preconditioned gradient-based method whose accuracy is improved using 

the Wolfe conditions to estimate optimal step lengths at each iteration. The large transmitter-

receiver offsets, used in the latest generation of commercial directional resistivity tools, 
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improve the depth of investigation to over thirty meters from the wellbore. Several challenging 

synthetic examples confirm the feasibility of the full 3D inversion-based interpretations for 

these distances, hence enabling the integration of resistivity measurements with seismic 

amplitude data to improve the forecast of the petrophysical and fluid properties. Employing 

parallel direct solvers for the triaxial induction problems allows for large reductions in 

computational effort, thereby opening the possibility to invert multiposition 3D data in practical 

CPU times. 

 

Keywords: Electromagnetic theory; Inverse theory; Numerical modelling; Numerical 

approximations and analysis; Controlled source electromagnetics (CSEM). 

 

 

Introduction 

With hydrocarbon exploration and production continuously moving into areas of 

increasing geological and fluid complexity, the oil and gas industry is adopting new 

technologies to improve the efficiency of the well placement. One of the most important 

properties of geological formations is their electrical resistivity, which has high sensitivity to 

both porosity and hydrocarbon saturation. Given the limitations of current electromagnetic 

(EM) technologies such as logging-while-drilling (LWD), new monitoring and exploration 

methods were recently introduced. A new generation of deep directional resistivity (DDR) tools 

provides accurate estimations of various petrophysical properties of hydrocarbon-producing 

rock formations and has an improved depth of investigation of more than 30 m from the 

wellbore (Seydoux et al. 2014; Ezioba & Denichou 2014; Dupuis & Denichou, 2015). This 

technology, often referred to as reservoir mapping-while-drilling (MWD or RMWD), several 

times exceeds the spatial coverage of conventional LWD tools and offers an unprecedented 
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opportunity to map the near-wellbore reservoir structure. In turn, the improved ability to 

navigate well trajectories with respect to geological and fluid boundaries using real-time 

information allows operators to reduce drilling risk, maximize reservoir exposure, and increase 

the overall production potential. 

With recent advances in drilling technology, long high-angle (HA) and horizontal (HZ) 

wells have become common in the oil and gas industry (Ijasan et al. 2014). The accuracy of 

landing HZ wells in a reservoir embedded in a complex geology often determines the overall 

financial viability. Many of the conventional LWD modelling methods were developed for 

vertical wells and are not suitable for interpretation of DDR measurements in HA/HZ wells. 

The real-time processing of DDR measurements in complex geologic media requires a full 

three-dimensional (3D) inversion method. An efficient inversion will open the possibility of 

estimating 3D distributions of electrical conductivity. However, one of the main practical 

limitations of this approach is its high computational cost. Because the DDR tool is moving in 

the well, modelling needs to consider a large number of transmitter and receiver positions (in 

the range of thousands of samples when the position and the three independent emission 

directions are considered) for a long HA/HZ well. 

The inversion process, in turn, involves a high number of forward modelling operations. 

Thus, the total computational cost is mainly influenced by the cost of the forward modelling. 

Multiple 3D modelling methods of multicomponent borehole EM induction logging 

measurements have been developed during the past decades (e.g., Newman & Alumbaugh 

2002; Davydycheva et al. 2003; Hou et al. 2006; among others). However, the complexity of 

3D models dramatically increases the computational requirements for modelling and hence for 

inversion. The size of these problems has often been considered excessively large to be solved 

in real time for practical applications, thereby preventing the widespread use of full 3D methods 

for the interpretation of borehole induction measurements. Many of the published borehole 
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induction modelling methods take advantage of the axial symmetry of formation geometry and 

employ 2D or 2.5D modelling and inversion algorithms (Pardo et al. 2006; Abubakar et al. 

2008; Wang et al. 2009; Pardo et al. 2013; Wiese et al. 2015). Other approximations have been 

employed as well to limit the large number of model parameters and to mitigate the 

computational cost of inversion. For example, recently, Thiel et al. (2016) documented a fast 

2D inversion that utilized pointwise 1D forward simulations for real-time interpretation of DDR 

measurements for MWD. Bensdorp et al. (2016) described the inversion for 3D conductivity 

distributions based on single spherical scatterer approximations. Bakr et al. (2017) used 1.5D 

simulations for fast inversion of 3D transversely isotropic formations approximated by planar 

layers. 

With the development of high-performance computing methods and the increase in the 

availability of computer resources, 3D inversion of geophysical data sets no longer poses an 

insurmountable computational challenge. While still requiring significant computational 

resources for large-scale exploration problems, inversion of local data sets can be performed on 

a workstation or a small computer cluster in practical CPU times, that is, hours or even minutes. 

In particular, recent advances in parallel direct solvers allow us to improve the efficiency of 

simulations of multiposition and multicomponent triaxial induction measurements in complex 

reservoir formations with extreme resistivity contrasts (Puzyrev & Torres-Verdín 2016). The 

main limitation of these solution techniques is their large computational and memory demand; 

however, many state-of-the-art electromagnetic modelling problems involve up to several 

million unknowns and thus can be efficiently solved with direct solvers. Recent work by 

Shantsev et al. (2017) presents a large-scale 3D controlled-source EM problem with more than 

twenty million unknowns solved with a block low-rank multifrontal direct solver. 

In this paper, we describe a full 3D parallel inversion method to interpret 

multicomponent DDR measurements acquired in HA/HZ and apply it to several synthetic 
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models. The remainder of this paper is organized as follows. In the next section, we summarize 

the fundamentals of the inverse problem. Then, we discuss the numerical approach used for 

forward modelling of multicomponent DDR measurements and specific details of the 

minimization algorithm such as preconditioning and optimal step length estimation. In the 

Examples section, we study the sensitivity of DDR tools to determine the oil-water contact 

during production (monitoring problem) and to locate favorable sandstone targets (exploration 

problem). Finally, the last section summarizes the conclusions and implications of our study. 

 

Theory 

The inverse problem is formulated as a regularized nonlinear minimization problem 

with the following quadratic cost function: 

 
2

2

1 1
( ) ( )

2 2
   obs(m) D F m d R m ,     (1) 

where the first term in the right-hand side is the L2-norm based data misfit, obsd  is the vector 

of measurements (observations), ( )F m  is the forward problem mapping, D  is a diagonal data 

weighting matrix, ( )R m  is the stabilizing functional, and   is the Lagrange multiplier. In this 

study, we use the preconditioned nonlinear conjugate gradient (NLCG) method to minimize the 

misfit between the measurements and their numerical simulations. This algorithm is efficient 

for parallel computers and has a small memory footprint compared to second-order 

minimization schemes (Rodi & Mackie 2001; Nocedal & Wright 2006). 

The stabilizing functional ensures the well-posedness of the nonlinear inverse problem 

in the presence of noise and/or inadequate measurements. Various regularization methods exist 

in the literature (Farquharson & Oldenburg 2004; Zhdanov 2009). In the examples described 

below, we use the Tikhonov minimum-norm regularization, given by 

2

2
( )   refR m m m ,        (2) 
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where vectors m  and refm  designate the parameters of the current and the reference models, 

respectively. The model parameters are commonly chosen as the logarithm of the conductivity 

 , thus decreasing large gradient variations 

lnm σ ,   lnref refm σ .       (3) 

The reference model contains a priori information about subsurface properties, which is 

especially important for spatially complex geologies. Because one can often choose a good 

reference model refm  and expect sharp resistivity contrasts in the conditions under analysis, 

regularization (2) has been found more suitable than, for example, maximum smoothness 

methods based on L2 or L1 norms. 

The inversion algorithm estimates formation resistivity by progressively minimizing the 

misfit function (1). The data gradient (i.e. the derivative of the data term in (1) with respect to 

the model parameters, m ) is given by (Newman & Boggs 2004) 

   
*

( ) Re ( )
T

          
d d obsg m DJ D F m d ,     (4) 

where * stands for complex conjugation. Deriving a computationally efficient form of (4) is 

critical for a robust inverse solution (McGillivray & Oldenburg 1990). The adjoint method to 

calculate the data gradient has been used previously in electromagnetic (Newman & 

Alumbaugh 1997) and seismic full waveform inversion (Plessix 2006). This procedure allows 

us to avoid the explicit calculation and storage of the Jacobian matrix, J . When a direct solver 

is employed, the adjoint field can be calculated at a relatively low cost since the EM inverse 

problem is self-adjoint. At each iteration step, after the frequency-dependent forward problem 

( )F m  is solved, we used the system matrix factorization to calculate the misfit gradient using 

the adjoint method. Thus, the expensive factorization is performed once for each frequency at 

the beginning of each iteration and then it is applied in the forward and the adjoint solves 

throughout this iteration. 
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The data misfits are added over all frequencies and preconditioned to calculate the 

conjugate gradient and the search direction k+1u  given by 

k  k+1 k+1 ku g u ,    0 0u g .      (5) 

Here, the scalar k  is the conjugate gradient update parameter. Different conjugate gradient 

methods correspond to different choices for k . We refer the reader to Hager & Zhang (2006) 

for a detailed chronological description of the update parameters. For large-scale problems, we 

prefer a k  that does not require the evaluation of the Hessian matrix. We use the standard 

Polak-Ribiere formula in our geophysical inversion algorithm (Polak & Ribiere 1969). 

Finally, the optimal step length k  is estimated as described below and the model is 

updated as 

k k+1 k km m u .       (6) 

This iterative process starts from the starting model 0m  which can be (but not 

necessarily is) chosen the same as the reference model. 

 

Forward modelling 

To obtain the simulated measurements ( )d F m , we solve the forward problem ( )F m  

that is described by the time-harmonic diffusive Maxwell equations 

0i    sE H M ,        sH E J ,      (7) 

where   is angular frequency, ( ) r  is electric conductivity tensor, 0  is magnetic 

permeability of free space, sJ  and sM  are the electric and magnetic sources, respectively 

(Ward & Hohmann 1988). Taking the curl of the first equation in (7) and substituting it in the 

second one gives the curl-curl equation for the electric field 

0 0i i      s sE E J M .      (8) 

https://academic.oup.com/gji/article/202/3/1859/612663#equ3


8 

 

Reliable inversion and interpretation of multicomponent induction data in complex 

geological environments requires accurate and efficient forward modelling. In our 

implementation, we approximate (8) by finite differences based on a staggered-grid method that 

is commonly applied in geophysical inversion (e.g., Newman & Alumbaugh 2002; Hou et al. 

2006; Abubakar et al. 2008). The scattered-field formulation of (8) is used to avoid excessive 

meshing near the sources. Our method handles large-scale problems in parallel and was 

successfully tested on complex isotropic and transversely isotropic reservoir models with 

extreme resistivity contrasts. The results were in good agreement with those obtained from a 

semianalytic 1D approach, thus confirming the accuracy and reliability of the simulation 

method. Arbitrary anisotropic media could be accurately simulated by using Lebedev grids 

(Davydycheva et al. 2003; Jaysaval et al. 2016). 

Modern DDR tools provide multicomponent measurements at various frequencies and 

transmitter-receiver offsets to estimate the complexity of the surrounding formations with better 

spatial resolution. Triaxial induction tools introduced at the beginning of the century 

(Kriegshauser et al. 2000) are now routinely used to estimate the resistivity anisotropy and 

formation dip in rock formations. These tools comprise three mutually orthogonal transmitter 

coils located at the same position and a similar configuration of receiver coils separated by an 

offset distance. Using this configuration, all nine couplings between each transmitter and 

receiver are measured, giving the most complete data set possible. One set of triaxial induction 

tool measurements includes nine orthogonal magnetic field components, these are the three 

orthogonal magnetic fields xH , yH , zH  separately excited by each of three mutually 

orthogonal magnetic sources xM , yM , zM ; the H  component excited by M  source is 

denoted by H . 

The sensitivity of triaxial induction instruments to both vertical and horizontal 

resistivities of the formations has led to the wide use of these tools in transversely isotropic and 
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general anisotropic media (Wang et al. 2009). A high number of distinct measurements allows 

for full 3D inversion of a complex formation structure at an increased depth of investigation. 

Typical transmitter-receiver spacing for the current generation of DDR technology (e.g., 

Schlumberger's GeoSphere tool) ranges from 5 m to 35 m and matches the scales of many 

reservoir environments and overlaps with the surface-seismic resolution (Dupuis & Denichou 

2015). A rule of thumb is that the effective depth of investigation is equal to the maximum 

transmitter-receiver spacing in high resistivity environments and is halved in conductive 

formations. Multiple frequencies that vary by about an order of magnitude provide different 

sensitivities and depths of investigation thus improving the information content and making the 

inversion more robust. 

The simulation of a triaxial induction tool moving in a long HA/HZ well is a 

computationally demanding task since a large number of transmitter positions with three 

emission directions at each position. For a typical production well, the total number of forward 

modelling tasks can be in the thousands per frequency. In order to make the 3D DDR inversion 

computationally feasible, one requires a forward solver that can accurately and efficiently 

simulate the forward problem for multiple transmitter positions. If a single mesh can include 

all source-receiver positions in the wellbore, the discretization of (8) results in a sparse linear 

system with multiple right-hand sides. Thus, we use a parallel direct solver to simulate all 

transmitter positions at a comparable cost to one matrix factorization. The matrix factors of the 

forward model allow us to compute the adjoint solution at a small extra cost at the end of the 

iteration. 

 

Preconditioning 

A preconditioning for the NLCG method optimizes its convergence and provides a 

better detection of deeper targets by preventing their shielding by shallower objects. Due to the 
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physics of the problem, the amplitude of the gradient is strongly influenced not only by 

geometric decay of the EM field, but also by galvanic attenuation in conductive media. Using 

a wide range of frequencies in inversion can partially alleviate this problem since both 

resolution and penetration depth depend on the frequency content of the data. When the number 

of different frequencies at which data are collected or frequency bandwidth are relatively small, 

quality of inversion can be greatly improved by a proper preconditioning scheme. Without such 

scheme, the model updates may focus in the near-wellbore zone and conductivity changes at 

large distances from the tool may not be determined correctly during the inversion process (even 

when the forward modelling could detect them). At each iteration step, the gradient for 

frequency f  and source s  is rescaled according to the following rule 

( ) ( )
( , ) ( , ) exp

( )

k f z s
f s f s

f

 
   

 
g g .      (9) 

This compensates the depth-attenuation of the diffusive electromagnetic signal (Zach et al. 

2008). Similar depth weighting schemes have been used in inversion of magnetic and gravity 

data (Oldenburg et al. 1998). Here, ( )z s  is the vertical distance to the current transmitter 

position in the wellbore, ( )f  is the skin depth for a given frequency, and ( )k f  is a parameter 

based on the near-wellbore resistivity that adjusts the scaling factor. The effect of such 

exponential rescaling of the gradient is shown in Fig. 1. The influence of deeper zones of the 

model is enhanced which is essential for inversion of the DDR measurements. 
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Figure 1. Magnitude of the exponential scaling function (top) for the wellbore trajectory (black 

line); data gradient for two equal targets located at different depths from the wellbore (middle) 

and the same gradient as in the middle panel but rescaled (bottom). 

 

Wolfe conditions 

Once the search direction ku  is calculated at iteration k , the step length k  is chosen 

to update the model (6). The step lengths are typically chosen large for the first iterations 

(resulting in large model updates), then we decrease their size as the minimum is localized. 

Determining an optimal value for k  further decreases the misfit at the current iteration and 

thus reduces the total number of iterations, and avoids extra forward simulations at each 

iteration. At least one extra modelling is required to evaluate the sensitivity of the misfit 

function to the current step length and search direction. To determine whether a step length is 

sufficient, we use the Wolfe conditions (Wolfe 1969). When these conditions are satisfied for 
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a given step length k , it is considered suitable for the next model update. Otherwise, the step 

length is modified and Wolfe conditions are re-checked. Our method uses a parabolic 

interpolation technique to determine the optimal step length through a reduced number of 

evaluations. 

The first and the second Wolfe conditions are given by (Wolfe 1969) 

1( ) ( ) ( )T
k k k k k k kc       m u m u m ,               (10) 

2( ) ( )T T
k k k k k kc     u m u u m ,               (11) 

where 1c  and 2c  are constants between 0 and 1. 1c  is usually chosen to be quite small (around 

10-3 – 10-4), while 2c  should be around 0.1 for the NLCG method (Nocedal & Wright 2006). 

The first Wolfe condition ensures that the step length k  decreases the misfit function 

sufficiently, and the second one is the curvature condition that verifies whether the slope has 

been reduced sufficiently. 

In practice, only the first Wolfe condition can be used (dos Santos & Pestana 2015) 

because checking both of them (or using stricter conditions, such as the strong Wolfe condition) 

requires the evaluation of the gradient of the misfit function for the next model 

( ),k k k  m u  thereby demanding an additional adjoint solve. When a direct solver is 

employed and the matrix is already factorized during the forward solve, this additional adjoint 

problem can be solved relatively cheaply. 

Other acceptance conditions can be used to evaluate the step length guesses as well (see, 

for example, the discussion in Hager & Zhang 2006). However, simpler conditions, such as 

decreasing the misfit function ( ) ( )k k k k   m u m  can result in accepting suboptimal step 

lengths, while more complicated rules introduce additional parameters to tune. The Wolfe 

conditions ensure a sufficient misfit reduction at every iteration. Once the step length is 
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accepted, the forward modelling used to evaluate the first Wolfe condition is re-used in the next 

iteration requiring no extra computations. 

To improve the computational efficiency of the forward and inverse modelling, we 

employ a hybrid MPI/OpenMP parallelization scheme, which is well-suited for modern 

multicore processor architectures. The frequencies are processed independently on different 

computational nodes, so the parallel scalability is mainly limited by the size of the forward 

problems. In the numerical examples given below, we use one node per frequency when 

distributing the modelling tasks among the computational nodes. A shared-memory solver 

PARDISO (Schenk & Gärtner 2004) is employed in this case. As the number of frequencies in 

inversion typically does not exceed 7-10, distributed-memory solvers can be used for inversion 

on a larger cluster. 

 

Numerical results 

We illustrate the performance of the inversion scheme we describe above by simulating 

two synthetic examples that illustrate the main application conditions of DDR tools. The first 

example models reservoir monitoring during production seeking to define the dynamic location 

of the oil-water contact (OWC) and thus to estimate the thickness of an oil column and the 

well’s production potential. In this case, the extended depths of investigation of DDR tools can 

detect early water breakthroughs and increase the field recovery factor by maximizing the 

production performance of HA/HZ wells. 

The second scenario, which we refer to as the exploration condition, aims to detect and 

delineate the hydrocarbon-bearing sandstones from low-resistivity formations and shales in the 

vicinity of the wellbore. Such detection is necessary for finding good-quality reservoir sands 

and drilling on target for real time geosteering. The latest generation of DDR tools can reveal 
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subsurface bedding and fluid-contact details at distances of several tens of meters away from 

the wellbore. In the following examples, we examine this sensitivity in the inversion process. 

The optimal survey configurations that exhibit the highest sensitivity in both conditions 

were determined from prior modelling studies (Puzyrev & Torres-Verdín 2016). Different 

depths of investigation are better illuminated with different frequencies. This requires 

simultaneous inversion at several frequencies from the induction range (5–50 kHz) used by 

many commercial instruments. More frequencies improve the inversion quality while they 

increase the computational cost since we use a frequency domain forward solver. We choose 

the frequency intervals used in the inversion from the modelling studies, which mainly depend 

on the resistivity in the near-wellbore zone. In the monitoring condition, the transmitter is 

located in resistive zones and the goal is to determine the OWC (i.e., the boundary with the 

conductive media). In the exploration condition, resistivity of the near-wellbore zone is lower 

than that of the sandstone targets being located. Thus, the frequencies employed in this case are 

lower than those used in the monitoring condition. 

We estimate the resistivity of a fluid saturated rock using Archie’s relations that relate 

it to the porosity,  , the brine resistivity, wR , and the water saturation, wS , as follows 

 
m n

t w wR a R S     .                 (12) 

We choose the following rock/fluid properties and Archie’s parameters in the 

monitoring condition: 0.13wR   Ohm-m, 0.25  , and 0.15wS  . We set the porosity 

exponent m  and the saturation exponent n  to 2, and Winsauer’s factor a  to 1. Thus, the 

resistivity contrasts in the examples below do not exceed two orders of magnitude. In the 

applications considered herein, the wells typically do not have steel casings which can seriously 

affect the EM measurements. Steel-cased wells can be modeled with finite differences using 

finer grids (Puzyrev et al. 2017). Possibly, a more efficient and robust way to simulate wells of 
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arbitrary trajectories with the state-of-the-art simulation methods lies in the development of 3D 

inversion based on unstructured meshes. 

 

Monitoring condition 

Fig. 2 shows the 3D synthetic reservoir model we use as a target model for inversion of 

the monitoring scenario. We choose the resistivities of the fluid saturated rocks according to 

Archie’s equation (12) which vary in this example from approximately 1.2 to 90 Ohm-m. Fig. 3 

shows 2D vertical slices through the center of the target and initial models. The target model 

has two zones where an early water breakthrough should be expected. The main goal of this 

monitoring exercise is to detect these zones and thus diminish the chance of early water 

breakthrough and increase the well's producing lifetime. 

 

 

Figure 2. Target resistivity model of the reservoir monitoring condition. A hydrocarbon 

reservoir is penetrated by a HA/HZ well. 

 

As a starting/reference model, we use an almost flat OWC representing the reservoir 

before the onset of production (Fig. 3). In this model, the OWC (i.e., the resistive/conductive 

boundary under the wellbore path) is located 12-18 m true vertical depth (TVD) below the well, 
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while during production the OWC raises to 7 and 5.5 m in Zones 1 and 2, respectively. The top 

of the reservoir is located 6-8 m TVD above the well path. 

 

 

Figure 3. XZ slice at the center of the true monitoring model (top) and the starting model 

(middle); YZ slices at Zones 1 and 2 of the starting model (bottom). The well path is indicated 

with the black line. 

 

Fig. 4 shows the inversion results obtained using two multicomponent receivers located 

at offsets of 20 and 40 m from the transmitter. We choose this receiver spacing since alternatives 
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lower that 20 m would be less sensitive in these monitoring conditions. This is due to the initial 

position of the OWC relative to the well which was 12-18 m. We use seven frequencies 

logarithmically spaced from 5 to 25 kHz in this case. At lower frequencies, the skin depth is 

too large compared to the dimensions of the problem, while at higher ones the signal falls below 

the noise floor at the longest offsets. We add a 2% Gaussian noise to the data at each frequency. 

The OWC in both zones is successfully detected with a slight overestimation of its TVD and 

underestimation of the water conductivity in Zone 2. The strongest OWC response is observed 

at the 40 m offset for the source positions directly above the water-rise zones. The inversion 

process is not able to detect the resistivity variations in the middle part of the model, most likely 

because of the shadowing of this region by the water-rise zones. 

 

 

Figure 4. Resistivity variations in the monitoring model estimated with the inversion using long 

offsets (20 and 40 m). XZ slice at the center of the model (top) and two YZ slices through the 

first (bottom left) and the second (bottom right) water breakthrough zones. The white box shows 

the inversion area. 
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Fig. 5 shows the monitoring model inverted using the same configuration but with larger 

source-receiver offsets (30 and 60 m). These results are slightly better than the ones shown in 

Fig. 4. The position and TVD of the OWC in the water breakthrough zones, as well as their 

resistivity, are more precise. Both inversions show that this configuration provides accurate 

estimations of the formation resistivity in the monitoring scenario. The triaxial induction 

measurements produce significantly more useful information than coaxial measurements, thus 

leading to better inversion results. 

 

 

Figure 5. Resistivity variations in the monitoring model estimated with the inversion using very 

long offsets (30 and 60 m). XZ slice at the center of the model (top) and two YZ slices through 

the first (bottom left) and the second (bottom right) water breakthrough zones. The white box 

shows the inversion area. 

 

The finest grid used in the modelling has 220 x 120 x 80 cells resulting in about six 

million unknowns in the forward problem. The number of model parameters to be determined 
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by inversion is approximately 1.1 million. We analyze 180 positions of the triaxial induction 

source with a spacing of 0.6 m in the well, resulting into 540 modelling tasks. While these 

numbers would pose a serious challenge for iterative schemes, the main limitation of using a 

direct solver in 3D problems is not the number of sources, but rather the size of the resulting 

linear system. The computational effort for forward and backward substitutions of 540 right-

hand-side vectors is still small compared to the cost of the factorization of a matrix of this size 

(Puzyrev et al. 2016). The inversion depicted in Fig. 5 took about 30 hours of CPU time using 

one computational node equipped with 16 Intel Xeon cores per frequency. Fig. 6 shows the 

convergence plot of the NLCG method with and without the preconditioning scheme. The misfit 

values are normalized to the initial misfit. The convergence is fast at the beginning of the 

inversion, when we determine the main structures of the target model. The misfit curve flattens 

after 15-20 iterations as only small changes in the model are performed. The computational cost 

of one iteration with or without the preconditioner is roughly the same since the gradient 

rescaling (9) is a very cheap operation compared to the forward solution. 

 

 

Figure 6. Convergence of the NLCG method for the monitoring problem of Figure 5. 

Preconditioned and non-preconditioned normalized misfits are shown as functions of iteration 

number. 
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Exploration condition 

Herein, we test the accuracy and detectability of our inversion algorithm in exploration 

conditions. Fig. 7 shows the exploration model that includes several small resistive bodies (100 

Ohm-m) located in the shales of varying resistivity (6–8 Ohm-m) below the wellbore. The 

dimensions of the targets range from 12 to 20 m in the horizontal direction and from 3 to 5.5 m 

in depth. In the previous studies, we confirmed that DDR tools are sensitive to small targets 

located at these distances from the well trajectory. Hence, we expect the DDR inversion to 

correctly map and characterize these resistive targets (possible hydrocarbon reservoirs). Fig. 8 

shows the true and reference explorations models discretized on a quite coarse grid with about 

0.4 million of cells. As a reference model in this example, we use a model with homogeneous 

6 Ohm-m resistivity below the wellbore. 

 

 

Figure 7. The target resistivity model of the exploration condition. Several resistive targets 

(100 Ohm-m) are located in the shales of varying resistivity (6–8 Ohm-m) below the wellbore. 
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Figure 8. XZ slice at the center of the true exploration model (top) and YZ slices at Targets 1 

and 2 (middle). As a starting model, we use the model with homogeneous 6 Ohm-m resistivity 

below the wellbore (bottom). 

 

Figs. 9 and 10 show the results from two inversions using short (10 and 20 m) and 

medium (15 and 30 m) transmitter-receiver offsets, respectively. Both figures show that 

Target 1 (located several meters below the wellbore) produces a much stronger response than 

the deeper resistor (Target 2) buried at 12–16 m. The presence of the latter is not visible at the 
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short offsets (under 20 m) in this exploration condition. Inversion using longer offsets detects 

a resistive object and recovers accurately its size and depth, but not the horizontal position. The 

edge of Target 3 is visible in both configurations. These results confirm that the inversion 

method yields accurate estimates of electrical resistivity for the exploration condition. Three 

frequencies from the 5-12 kHz range and 100 positions of the source (spacing of 0.5 m) are 

used in these simulations. Such dense transmitter coverage is not strictly necessary in this case 

and one can employ only a subset of the transmitter-receiver positions for the inversion. The 

size of the forward modelling problems ranges from approximately 1.2 to 2.5 million of 

unknowns and the number of model parameters is approximately 0.4 million. The CPU time 

required is less than 3 hours using one computational node per frequency. 

 

 

Figure 9. Inversion results for the exploration model using short offsets (10 and 20 m). XZ slice 

at the center of the model (top) and two YZ slices through the first (bottom left) and the second 

(bottom right) targets. The white box shows the inversion area. 
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Figure 10. Inversion results for the exploration model using medium offsets (15 and 30 m). XZ 

slice at the center of the model (top) and two YZ slices through the first (bottom left) and the 

second (bottom right) targets. The white box shows the inversion area. 

 

Discussion 

DDR tools provide multi-spacing and multi-frequency data sets and thus are no longer 

restricted to the detection of a single boundary with simplified inversion methods. These 

logging tools enable reliable estimation of spatial distributions of electrical resistivity several 

tens of meters away from the well. The interpretation of DDR data in complex multilayered 

structures should rely on full 3D modelling and inversion. However, the high computational 

cost of 3D numerical methods often constrains the development and usage of inversion-based 

interpretation. 

Our numerical results show that by making use of recent advances in linear algebra and 

parallel computing, the full 3D inversion of DDR data can be performed in practical CPU times. 
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The inversion of the fine-scale monitoring condition took about 30 hours of wall clock time 

using one computational node per frequency. The exploration test case was inverted by using 

smaller grids in 3 hours of CPU time. With appropriate computing resources, 3D multisource 

inversion similar to our reservoir monitoring example can be performed within a few hours. A 

computationally efficient method based on unstructured grids would allow for further 

improvements in performance. 

Optimal transmitter-receiver configurations vary for different application conditions 

and frequencies. With the acquisition geometry being limited when compared to surface EM 

surveys, deeper zones are often shadowed by nearby resistivity inhomogeneities. Large source-

receiver offsets (double of the target depth for the second receiver) provide advantageous 

inversion results compared to short offsets. The combination of resistivity measurements 

acquired with the DDR tools and seismic amplitude measurements will make possible the 

optimal steering of wells in geologically complex reservoirs. 

 

Conclusions 

We introduce and benchmark a new inversion method for 3D deep directional resistivity 

measurements in complex heterogeneous reservoirs penetrated by high-angle and horizontal 

wells. The key ingredients of our numerical scheme are the following. The minimization 

scheme employs the nonlinear conjugate gradient algorithm whose accuracy and performance 

is improved by invoking a preconditioning scheme. We use the Wolfe conditions to evaluate 

whether the step length is sufficient to provide near optimal convergence. Forward modelling 

of multicomponent triaxial induction data for multiple transmitter-receiver configurations uses 

a parallel direct solver. All components of the scheme, namely forward modelling, inversion 

algorithm, regularization, and preconditioner, are implemented in parallel and are well suited 

for execution on modern computer architectures. 
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The workflow is validated on synthetic data sets that include monitoring and exploration 

borehole induction logging conditions. Numerical results verify that large transmitter-receiver 

offsets increase the depths of investigation to several tens of meters. Inversion of the monitoring 

example shows that the developed inversion-based method can determine the position of the 

oil-water contact in early water breakthrough zones, as well as the resistivity of the nearest 

formations. At the same time, the resistivity variations located at larger distances from the 

wellbore are not detected. These variations are most likely shadowed by water-rise zones. In 

the exploration conditions, the inversion algorithm provides accurate estimations of formation 

resistivity as well. The detection of deep (12-16 m away from the wellbore) targets requires 

offsets of 30 m to be reliably captured. These zones are often hidden by the resistivity variations 

in the vicinity of the well. These limitations of the acquisition geometry can be mitigated, for 

example, by using additional structural information available from other datasets, such as 

seismic amplitudes, to constrain the target formations. The synthetic datasets used in these 

simulations include 2% Gaussian noise. Additional simulations with higher levels of noise 

verify the reliability of the inversion process. In particular, when some of the resistivity 

measurements are significantly noisier than the others (or missing at all). 

The forward modelling uses the finite difference method with a direct solver. For a 

multisource triaxial induction problem, this method enables a large reduction in the 

computational cost when compared to schemes based on iterative solvers. Future work will 

study the reliability and efficiency of the finite element method for this class of problems. 

Extending the inversion-based method to unstructured grids to reduce the number of unknowns 

in the resulting linear systems and thus to use solvers in a more efficient way is the subject of a 

forthcoming study. 
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