
Sediment routing and basin evolution in Proterozoic to Mesozoic 1 

east Gondwana: a case study from southern Australia 2 

 3 

M. Barham1, S. Reynolds1, C.L. Kirkland1,2, M.J. O’Leary1,3, N.J. Evans1,4, H.J. Allen5, 4 

P.W. Haines5, R.M. Hocking5, and B.J. McDonald1,4 5 

1The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, 6 

Curtin University, GPO Box U1987, Perth, WA 6845, Australia 7 

2Centre for Exploration and Targeting (CET), Curtin University, GPO Box U1987, Perth, 8 

WA 6845, Australia 9 

3School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 10 

6845, Australia 11 

4John de Laeter Center, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 12 

5Geological Survey of Western Australia, 100 Plain St., East Perth, WA 6004, Australia 13 

 14 

Key words: Bight Basin, Madura Shelf, geochronology, Hf, provenance, detrital zircon 15 

 16 

ABSTRACT 17 

Sedimentary rocks along the southern margin of Australia host an important record of the 18 

break-up history of east Gondwana, as well as fragments of a deeper geological history, 19 

which collectively help inform the geological evolution of a vast and largely underexplored 20 

region. New drilling through Cenozoic cover has allowed examination of the Cretaceous rift-21 

related Madura Shelf sequence (Bight Basin), and identification of two new stratigraphic 22 

units beneath the shelf; the possibly Proterozoic Shanes Dam Conglomerate and the 23 
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interpreted Palaeozoic southern Officer Basin unit, the Decoration Sandstone. Recognition of 24 

these new units indicates an earlier basinal history than previously known. 25 

Lithostratigraphy of the new drillcore has been integrated with that published from onshore 26 

and offshore cores to present isopach maps of sedimentary cover on the Madura Shelf. New 27 

palynological data demonstrate progression from more localized freshwater-brackish fluvio-28 

lacustrine clastics in the early Cretaceous (Foraminisporis wonthaggiensis – Valanginian to 29 

Barremian) to widespread topography-blanketing, fully marine, glauconitic mudrocks in the 30 

mid Cretaceous (Endoceratium ludbrookiae – Albian). 31 

Geochronology and Hf-isotope geochemistry show detrital zircon populations from the 32 

Madura Shelf are comparable to those from the southern Officer Basin, as well as Cenozoic 33 

shoreline and palaeovalley sediments in the region. The detrital zircon population from the 34 

Shanes Dam Conglomerate is defined by a unimodal ~1400 Ma peak, which correlates with 35 

directly underlying crystalline basement of the Madura Province. Peak ages of ~1150 Ma and 36 

~1650 Ma dominate the age spectra of all other samples, indicating a stable sediment 37 

reservoir through much of the Phanerozoic, with sediments largely sourced from the Albany-38 

Fraser and Musgrave Orogens (directly and via multiple recycling events). The Madura Shelf 39 

data differ from published data for the Upper Cretaceous Ceduna Delta to the east, indicating 40 

significant differences in sediment provenance and routing between the Ceduna Sub-basin 41 

and central Bight Basin. 42 

 43 

1 INTRODUCTION 44 

Sedimentary rocks provide an important record of their eroded source region(s) and the 45 

opportunity to chart long-term changes in Earth-surface conditions. Analysis (compositional, 46 

geochronological and geochemical) of detrital minerals allows greater resolution of the 47 

overall tectonic framework and geological history of a region than can be discerned from 48 
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primary basement outcrops (and subcrops) alone (Carrapa, 2010; Cawood et al., 2012; 49 

Dhuime et al., 2011; Dickinson and Suczek, 1979; Iizuka et al., 2013; Kemp et al., 2006; 50 

Maidment et al., 2007; McCann and Saintot, 2003; O'Sullivan et al., 2016; Tucker et al., 51 

2016). With an increasingly comprehensive geological understanding of regional crystalline 52 

basement blocks, geochronology and geochemistry of detrital minerals are becoming 53 

established as powerful techniques to elucidate palaeogeographic and stratigraphic 54 

relationships, as well as uplift, erosion and sediment routing histories (Cawood and Nemchin, 55 

2000; Fielding et al., 2017; Kirkland et al., 2007; Lancaster et al., 2017; Mark et al., 2016; 56 

Tyrrell et al., 2007; Xu et al., 2016). 57 

The extensive passive margin defining the southern limit of the Australian continent was 58 

formed during the ultimate Mesozoic break-up phase of Gondwana as Australia rifted away 59 

from Antarctica (Brown et al., 2003). This separation ended over a billion years of shared 60 

history between the Australian and Antarctic continents (Cawood and Korsch, 2008; Huston 61 

et al., 2012; Johnson, 2013) and reshaped their surface environments. Prior to this, the 62 

Proterozoic assembly of the West Australian Craton (WAC) and North Australian Craton 63 

with the South Australian Craton (SAC) and its Antarctic extension (Mawson Craton; 64 

Fitzsimons, 2003; Goodge and Fanning, 2016; Huston et al., 2012; Johnson, 2013; Payne et 65 

al., 2009) had resulted in well-defined orogenic belts with enhanced mineral endowment 66 

facilitated by crustal-scale tectonic structures, juvenile mantle input, crustal reworking, 67 

disturbed thermal gradients and fluid migration (Groves and Bierlein, 2007; Huston et al., 68 

2012; Jaques et al., 2002; Leahy et al., 2005; Wyborn et al., 1994). Unfortunately, little 69 

evidence of post-assembly Neoproterozoic to Mesozoic events is preserved at the surface on 70 

the southern margin of Australia, while equivalent geology on Antarctica is largely ice-71 

covered and inaccessible. Between the WAC and the SAC, a blanket of Eocene and Miocene 72 

carbonates and associated clastics (Eucla Basin) form the present-day Nullarbor Plain, which 73 
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obscures almost a quarter of a million square kilometres of underlying sedimentary and 74 

basement rocks (Fig. 1). Consequently, the Proterozoic to Cenozoic geological history of 75 

central southern Australia is very poorly understood. 76 

With growing awareness of the importance of suture zones in regions of enhanced mineral 77 

fertility (e.g. Groves and Santosh, 2015; Jaques et al., 2002; Kirkland et al., 2015b), interest 78 

in the potential continuation of mineralization associated with the edge of the Yilgarn Craton 79 

margin beneath central southern Australia has increased (Spaggiari and Smithies, 2015). 80 

Furthermore, offshore Mesozoic sedimentary basins along the southern Australian margin 81 

represent sites of frontier hydrocarbon exploration, and world-class heavy mineral sand 82 

deposits are mined along Cenozoic palaeoshorelines (Hou et al., 2011; Reid et al., 2013). 83 

Despite this collective recognition of the significant economic potential of the region, and a 84 

capacity to further understanding of Australia-Antarctica separation, pre-Cenozoic sediments 85 

of southern Australian basins between the WAC and SAC remain relatively understudied as a 86 

result of remoteness and lack of outcrop. However, new drillcore produced through the 87 

Western Australian governments’ Exploration Incentive Scheme has uncovered new 88 

information, described here, about sedimentary packages sandwiched between the obscured 89 

Mesoproterozoic basement and overlying Cenozoic carbonates. 90 

The work reported herein integrates new and existing observations on sedimentology, 91 

stratigraphic architecture, detrital mineral provenance, and palynology, to facilitate a robust 92 

analysis of sedimentation in central southern Australia from the Proterozoic to mid 93 

Cretaceous. Zircon Hf-isotopic geochemistry combined with U/Pb geochronology provides a 94 

more refined mechanism to characterize sediment source areas; especially in regions that may 95 

have shared similar timings of igneous events but with different magmatic sources. 96 

Reconstruction of evolving palaeoenvironmental conditions on Australia’s southern margin, 97 

and comparison of sediment character with adjacent depocenters provides insight into the 98 
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timing of key basinal and regional events, such as mechanical and thermal subsidence, 99 

sediment sourcing, and depocenter connectivity and help improve understanding of the 100 

geodynamic history of the region. 101 

 102 

2 GEOLOGICAL BACKGROUND 103 

The Nullarbor Plain along central southern Australia’s margin is underlain in turn by the 104 

Cenozoic Eucla Basin, the Cretaceous Madura Shelf of the Bight Basin, the Neoproterozoic-105 

Palaeozoic Officer Basin, and Proterozoic basement (Fig. 1). The region is flanked by the 106 

crystalline Archean Yilgarn Craton and its southeastern Palaeo- to Meso-Proterozoic-107 

modified Albany-Fraser Orogen (AFO) margin to the west, the Mesoproterozoic Musgrave 108 

Province to the north and the Archean Gawler Craton to the east (Fig. 1). Published mineral 109 

geochronology and geochemistry datasets from these crystalline source regions provide age 110 

and isotopic characteristics with which to assess the provenance of later sediments that are 111 

preserved on or adjacent to these basement rocks (Belousova et al., 2009; Kirkland et al., 112 

2013a; 2015a; 2017; Kositcin, 2010a; Spaggiari et al., 2015). 113 

In the late Palaeoproterozoic-Mesoproterozoic, subduction and island-arc collisions 114 

preceding the eventual Mesoproterozoic amalgamation of cratonic Australia are recorded in 115 

the Musgrave Province of central Australia, Albany-Fraser Orogen of southwestern Australia 116 

and Wilkes Orogen in Antarctica (Cawood and Korsch, 2008; Johnson, 2013; Kirkland et al., 117 

2015a). Previously, very little was known about the basement architecture beneath the 118 

Madura Shelf but recent deep seismic and drillcores have revealed the presence of crystalline 119 

rocks that demonstrate the existence of a sutured Proterozoic ocean between the Yilgarn and 120 

Gawler Cratons (Kirkland et al., 2017; Korsch et al., 2014; Spaggiari and Smithies, 2015). 121 

This inter-cratonic region forms the basement to the majority of the area studied here (Fig. 1), 122 
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and is defined by the Madura and Coompana Provinces, which exhibit isotopic and 123 

geochemical signatures indicating an oceanic affinity (Kirkland et al., 2017). Plutonic 124 

remnants of an oceanic magmatic arc, the Loongana Arc, have also been identified in the 125 

Madura Province (Haig Cave Supersuite; Spaggiari et al., 2014). Significant magmatism and 126 

crustal suturing had ceased by the late Mesoproterozoic (late Stenian) assembly of Rodinia, 127 

with sedimentary processes dominating the geological record for the next billion years 128 

(Cawood and Korsch, 2008). 129 

 130 

Fig. 1 Map of the major crustal elements of parts of the southern and eastern margins of 131 

Australia relevant to this work with overlying selected sedimentary basins. Palaeoshorelines 132 

define the limits of the Eucla Basin. “Eastern volcanic province” corresponds to the siliceous 133 

large igneous province of Bryan et al. (2012). AB on main map indicates the outcrop of the 134 

Arid Basin of the Albany-Fraser Orogen. Only present-day outcrops of the Pinjarra Orogen 135 
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are shown on the west coast of Australia, with the rest hidden under the Perth and Carnarvon 136 

Basins (not shown). Inset globe shows a general early Cretaceous palaeogeographic 137 

reconstruction centred on the south pole; Af – Africa, Au – Australia, EA – East Antarctica, 138 

In – India, SA – South America, Z – Zealandia (modified from Blakey, 2008). 139 

 140 

A vast (approximately half a million square kilometres) region of sedimentary rocks 141 

(primarily the Neoproterozoic-Palaeozoic Officer Basin, Mesozoic Madura Shelf and 142 

Cenozoic Eucla Basin) is preserved in the area bound by the AFO, Musgrave Province and 143 

Gawler Craton. Offshore, an even greater area of sedimentary rocks is preserved in the 144 

remainder of the Mesozoic Bight Basin, extending for over 2000 km along the southern 145 

margin of Australia and encompassing several sub-basins, intervening highs (including the 146 

Madura Shelf) and the largest delta preserved in Australia today (Upper Cretaceous Ceduna 147 

Delta; Fig. 1). Separation of Australia and Antarctica was initiated by Mesozoic crustal 148 

thinning, and characterized by brittle upper crustal extension that progressed eastwards from 149 

the Late Jurassic (Bradshaw et al., 2003; Totterdell et al., 2000; Willcox and Stagg, 1990). 150 

Initially, sedimentation was largely restricted to a series of half-grabens now offshore, but 151 

later became more widespread, in response to regional thermal subsidence and global eustatic 152 

high sea-levels (Cloetingh and Haq, 2015; Conrad, 2013; Totterdell and Krassay, 2003). This 153 

Cretaceous transgression facilitated sedimentation that defines the preserved Madura Shelf, 154 

which overlies Officer Basin sediments in the north and sits directly on the AFO and Madura 155 

Province in the west and the Coompana Province in the east. Accelerated rifting in the 156 

Eocene resulted in an open seaway between Australia and Antarctica and the establishment of 157 

an extensive carbonate province across several thousand kilometres of Australia’s southern 158 

margin (Eucla Basin; Clarke et al., 2003). 159 
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The stratigraphy of the Madura Shelf (Fig. 2) and overlying Cenozoic Eucla Basin was 160 

largely established by Lowry (1970) who recognized an irregular distribution of coarse 161 

clastics (Loongana Formation) that are conformably succeeded by silts and fine sands of the 162 

Madura Formation. Deposition was terminated by exposure in the late Cretaceous, and a 163 

hiatus of 25-60 Myr separates the Mesozoic sequence from the overlying limestone-164 

dominated (Eocene to Miocene) Hampton Sandstone and Eucla Group carbonate succession 165 

comprising the Wilsons Bluff, Abrakurrie and Nullarbor Limestones (Reynolds, 2016). Each 166 

of the carbonate units are separated by disconformities representing successive marine 167 

transgressions and regressions (Hou et al., 2008). 168 

 169 

3 MATERIALS AND METHODS 170 

3.1 Boreholes 171 

Samples and new lithostratigraphical data were derived from drillcore housed at the 172 

Geological Survey of Western Australia (GSWA) Perth Core Library at Carlisle, Perth, and 173 

initially presented as an undergraduate honours thesis (Reynolds, 2016). Zircon 174 

geochronology/geochemistry and dinocyst palynology from a single sample from the upper 175 

Madura Formation (199453) were reported in Barham et al. (2016) but are included here for a 176 

more complete basinal synthesis. In total, three new GSWA cores (FOR004, FOR010, 177 

FOR011) drilled during the 2013/2014 Eucla basement drilling program were logged, in 178 

addition to four cores that recently became public (HDDH001, HDDH002, SDDH001, 179 

SDDH002; Supplementary Fig. 1). All new stratigraphic data were integrated with published 180 

material from the Madura Shelf across Western Australia and South Australia states (Fig. 3; 181 

Supplementary Table 1). Metre values quoted in this work correspond to depth in the 182 

respective cores, while data normalized to elevation above sea-level (calculated from collar 183 
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elevations, drilling angles and known deviations) are suffixed with AHD (Australian Height 184 

Datum). 185 

 186 

Fig. 2 Simplified stratigraphy of the study region in southern Australia. 187 

 188 

3.2 Palynostratigraphy 189 

Six organic-rich mud-grade lithological samples were submitted for palynological processing 190 

at MGPalaeo (Fig. 3). Palynostratigraphical designations were based on standard 100 191 

specimen counts, as well as identification of other key palynomorphs, on prepared slides.  192 
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 193 

 194 

Fig. 3 Location map of studied boreholes/wells and stratigraphy of sampled sequences. Wells 195 

highlighted in red correspond to those sampled for palynology and detrital zircon 196 

geochronology in this study. 197 

 198 

3.3 Detrital mineral preparation 199 

Eight ~1kg, dominantly arenaceous core samples were submitted for mineral processing with 200 

a focus on extraction of zircon. Cemented samples were disaggregated using SELFRAG and 201 

heavy mineral phases concentrated via standard panning, polytungstate-based heavy-liquid 202 

flotation and Frantz magnetic separation. Representative zircon grains from heavy mineral 203 

concentrates were mounted in rows on double sided tape attached to glass plates along with 204 

zircon standards BR266, TEMORA II, CZ3, and OG1 within 10 mm diameter circular areas. 205 

Epoxycure resin was used to produce 25 mm diameter mounts, which were polished (to a 1 206 

µm finish) back to approximate half-grain thickness to expose internal grain structure. 207 

Mounted grains were imaged using standard light microscopy, back-scattered electron 208 
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microscopy and cathodoluminescence electron microscopy using a MIRA3 VP-FESEM at the 209 

Microscopy and Microanalysis Facility, John de Laeter Centre, Curtin University. Inclusions, 210 

metamict zones or grains with polyphase growth histories identified during microscopic 211 

examination were subsequently avoided during grain geochronological and geochemical 212 

analyses. Oscillatory zoned regions of grains were targeted to obtain crystallization ages. 213 

 214 

3.4 U/Pb zircon geochronology 215 

Isotopic compositions of zircon mineral fractions were analysed using laser ablation 216 

inductively coupled plasma mass spectrometry (LA-ICP-MS) at the GeoHistory Facility, 217 

John de Laeter Centre, Curtin University. Targeted portions of individual zircon grains were 218 

ablated using a Resonetics M-50 193nm ArF excimer laser with isotopic intensities measured 219 

using an Agilent 7700s quadrupole ICP-MS, with high purity Ar as the carrier gas. Elements 220 

28Si, 29Si, 204Pb, 206Pb, 207Pb, 208Pb, 232Th, and 238U were monitored for 0.03 seconds each. 221 

Following 10 s of background analysis, samples were spot ablated for 30 s using a 33 μm 222 

beam, laser energy of 2.5 J/cm2 and a 7 Hz repetition rate. The sample cell was flushed with 223 

ultrahigh purity He (0.68 L min-1) and N2 (2.8 mL min-1). Natural lead concentration was 224 

monitored throughout the analysis, however, no 204Pb was resolved above the level of 225 

detection and no natural lead correction has been applied. Plesovice (337.13 ± 0.37 Ma; 226 

Sláma et al., 2008) was utilised as the primary age standard in this study, with 91500 (1062.4 227 

± 0.4 Ma; Wiedenbeck et al., 1995) and GJ-1 (608.5 ± 1.5 Ma; Jackson et al., 2004) used as 228 

secondary age standards. 206Pb/238U ages calculated for all secondary zircon standards were 229 

treated as unknowns and found to be within 3% of the accepted value. Data were reduced in 230 

Iolite (U/Pb Geochron4; Paton et al., 2011) and in-house excel macros. All data are reported 231 

as 207Pb/206Pb ages where grains are >1500 Ma and 206Pb/238U for analyses < 1500 Ma 232 

(Spencer et al., 2016). Detrital zircon data are considered concordant within 10% of age 233 
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agreement between the 207Pb/206Pb and 206Pb/238U systems. Detrital zircon population ages 234 

were assessed using the software isoplot 4.15 (Ludwig, 2012), with Excel macros available 235 

from the Arizona Laserchron Centre website (http://www.geo.arizona.edu/alc) used to 236 

produce detrital zircon age normalised probability density plots (PDP). Peak ages were 237 

assessed with the AGE PICK analytical tool (Gehrels et al., 2008), while kernel density plots 238 

of detrital zircon age populations, and comparisons of detrital zircon age populations between 239 

samples (multidimensional scaling - MDS) were performed in the R statistical “provenance” 240 

analysis package (Vermeesch et al., 2016). MDS is based on dissimilarity measures derived 241 

from the Kolmogorov–Smirnov test, which investigates the null hypothesis that two 242 

distributions (in this case of detrital zircon population ages) are the same, and is derived from 243 

the vertical distance between sample cumulative distribution curves of grain ages. 244 

3.5 Lu/Hf zircon geochemistry 245 

Hafnium isotope analyses were subsequently undertaken on the same zircon grains subjected 246 

to U/Pb geochronology, using a New Wave/Merchantek LUV213 laser-ablation microprobe, 247 

attached to a Nu Plasma multi-collector inductively coupled plasma mass spectrometer, 248 

housed at GEMOC, Macquarie University, Sydney. Analytical procedures followed those 249 

described in Griffin et al. (2000) and outlined below. Analyses involved a c. 40 µm diameter 250 

laser beam with ablation pits 40–60 µm deep. The ablated sample material was transported 251 

from the laser cell to the ICP–MS torch in a helium gas flow. Interference of 176Lu on 176Hf 252 

was corrected by measurement of the interference-free 175Lu and using an invariant 253 

176Lu/175Lu correction factor. Isobaric interference of 176Yb on 176Hf was corrected by 254 

measurement of the interference-free 172Yb isotope and using the 176Yb/172Yb ratio to 255 

calculate the intensity of interference free 176Yb. The appropriate value of 176Yb/172Yb was 256 

determined by successive doping of the JMC475 Hf standard with various amounts of Yb. 257 
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Zircon grains from the Mud Tank carbonatite locality were analysed, together with the 258 

samples, as a measure of the accuracy of the results. Most of the data and the mean 259 

176Hf/177Hf value (0.282533 ± 32, n = 81) are within two standard deviations of the 260 

recommended value (0.282522 ± 42, 2σ; Griffin et al., 2007). Temora-2 zircon was analysed 261 

as an independent check on the accuracy of the Yb correction. Temora zircon has an average 262 

176Yb/177Hf ratio of 0.04, which is similar to the median 176Yb/177Hf ratio of zircon in this 263 

study (0.04, n = 77). The average 176Hf/177Hf ratio for the analysed Temora-2 was (0.282693 264 

± 34, n= 56) consistent with the published value for the Temora-2 standard (0.282687 ± 24, 265 

LA-ICP-MS; Hawkesworth and Kemp, 2006). Calculation of εHf values employs the decay 266 

constant of Scherer et al. (2001) and the chondritic uniform reservoir (CHUR) values of 267 

Blichert-Toft and Albarède (1997). We report model ages (TDM
2) calculated as two-stage 268 

evolution lines assuming that the parental magma was produced from an average continental 269 

crust (176Lu/177Hf = 0.015) that originally was derived from a depleted-mantle source with 270 

(176Hf/177Hf)i = 0.279718 at 4.56 Ga and 176Lu/177Hf = 0.0384 (Griffin et al., 2004). 271 

 272 

4 RESULTS 273 

4.1 Regional stratigraphy 274 

All boreholes encountered crystalline basement, typically in the form of granitic gneiss. In 275 

some cores in the west (e.g. HDDH001), up to 20 m of quartz-rich, mottled saprolitic regolith 276 

immediately overlies fresh crystalline rock. Two new units (Shanes Dam Conglomerate and 277 

Decoration Sandstone; Reynolds, 2016) have been established as a result of this work, in 278 

distinct sedimentary packages disconformable beneath classic Mesozoic rift-related Madura 279 

Shelf sediments (Fig. 2). 280 

 281 
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4.1.1 Shanes Dam Conglomerate 282 

The Shanes Dam Conglomerate is present in four cores; HDDH001, HDDH002, SDDH001 283 

and SDDH002 in the west of the study area, and ranges from <1–25 m in thickness (Fig. 3-4). 284 

In all wells, the unit is nonconformable on crystalline basement of the Madura Province and 285 

is disconformably overlain by the Madura Formation. The disconformity with the Madura 286 

Formation is most distinct in SDDH002 at 413 m depth, where highly ferruginised 287 

conglomerate is succeeded by unaltered Madura Fm. (Supplementary Fig. 2). The 288 

conglomerate is oligo- to poly-mict, with typically well rounded sandstone, soft green and 289 

white claystone, vein quartz, mafic and gneissic/granitic clasts identifiable. Clasts typically 290 

range from 1 to 20 mm in size, with a maximum of 60 mm. The unit is commonly highly 291 

magnetic, clast-supported and well-indurated, with carbonate cementation variable 292 

throughout. 293 
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 294 

Fig. 4 Sediment thickness and stratigraphic horizon elevation maps of the Madura Shelf. a – 295 
basal clastic units (Shanes Dam Conglomerate, Decoration Sandstone and Loongana 296 
Sandstone); b – Madura Formation. Offshore depth to horizons inferred from seismic data 297 
(JNOC, 1992). 298 

 299 
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4.1.2 Decoration Sandstone 300 

The Decoration Sandstone was encountered in a single well (FOR010) underlying the central 301 

Madura Shelf, where it is 109 m thick (249.3-357.62 m depth, Fig. 3-4). FOR011, less than 302 

24 km from FOR010, intersected no equivalent stratigraphy. The Decoration Sandstone 303 

nonconformably overlies crystalline basement of the Coompana Province and is 304 

disconformably overlain by carbonaceous mud-grade sediments attributed to the Loongana 305 

Formation, with eroded cm-scale clasts incorporated into the overlying unit. 306 

The Decoration Sandstone is predominantly a red-bed sandstone, with the unit broadly 307 

divisible into three sections based on facies, the degree of oxidation and hyperspectral data 308 

(Supplementary Fig. 1): 309 

• The uppermost six metres (249.3-255.05 m) consists of faintly laminated mottled green 310 

and red mudrock. An interval of 20 cm appears to be an exposure surface. The contact 311 

with underlying sandstone appears sharp. However, given the similarity of the green silts 312 

in the mudrock sequence and finer intervals of the underlying sand-grade dominated 313 

succession, and absence of definitive evidence of a significant temporal break, the 314 

mudrock is included in the Decoration Sandstone for this work. 315 

• A pale, reduced section from 255.05 m to 295.4 m comprises a fining-upward succession 316 

of white sandstone and pale green mudstone interbeds comparable to the overlying 317 

mudrock unit. The lower contact is gradational. 318 

•  A basal hematite rich, oxidised zone from 295.4 m to 358 m consists of a basal pebbly 319 

conglomerate with several pebbly horizons and alternating >1 m thick beds of massive, 320 

fining-upwards, planar- and irregular-stratified sands. The irregular-stratified sands have 321 

a distinctive wavy/irregular fabric that is interpreted as a product of both intense 322 

horizontal bioturbation and fluid disturbance. Conclusive dish and other fluid structures 323 
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and vertical burrows up to 1.5 cm wide and 6 cm deep, are also apparent (Supplementary 324 

Fig. 2).  325 

Overall the sand is quartz dominated with minor hematite and lithic grains. Grains range from 326 

<0.1 to 0.5 mm in size, average ~0.3 mm and are moderately to poorly sorted with the coarser 327 

grains being highly spherical and well rounded. The upper sandstone section is lithologically 328 

and texturally similar to the basal section but lacks pebble conglomerate and hematite stained 329 

levels. Instead, pyrite nodules are common. The upper section also exhibits soft-sediment 330 

deformation and fine green muddy laminations with similar patterns to the wavy bedding 331 

observed lower in the formation. 332 

 333 

4.1.3 Madura Shelf sediments 334 

The Madura Shelf sequence is represented by two formations, with a conformable, commonly 335 

gradational contact. The basal Loongana Formation is intersected in nine of the wells studied 336 

(Supplementary Table 1) and is thickest (20-40 m) and most commonly developed in the 337 

southeast (Fig. 4). It nonconformably overlies crystalline basement in all wells except (i) 338 

FOR010 where it disconformably overlies the Decoration Sandstone, and (ii) KN 1 where it 339 

overlies Permian sandstone in South Australia. The Loongana Formation typically comprises 340 

very poorly consolidated quartz dominated, feldspathic sand with minor mica. As a result of 341 

its lack of cementation, little information is retained about original depositional sedimentary 342 

structures. The sediment is grain-supported and particles are typically angular, low sphericity, 343 

and poorly sorted. Grain sizes are estimated to average 0.5 mm to 1 mm but grains up to 5 344 

mm in size are common. 345 

The Madura Formation is the thickest and most laterally extensive unit of the onshore Bight 346 

Basin and is intersected in all the wells studied (Fig. 4; Supplementary Table 1). The 347 
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formation reaches a thickness of at least 355 m in Madura 1, where it is intersected between -348 

180 m and -535 m (AHD) without encountering the base of the unit. In general, the unit thins 349 

towards the basin margins, but remains relatively thick in central areas. The Madura 350 

Formation is anomalously thin in wells Eucla 1 and BN 1, where only 30 m and 21 m of the 351 

unit are preserved, respectively (Fig. 4). 352 

Where penetrated, the Madura Formation variously conformably overlies the Loongana 353 

Formation; disconformably overlies Shanes Dam Conglomerate; or nonconformably overlies 354 

crystalline basement (eastern Nornalup Zone, Albany-Fraser Orogen - NDDH002 and 355 

Coompana Province - Eucla 1). The Madura Formation is disconformably overlain across the 356 

region by Cenozoic units, and typically the Hampton Sandstone, which transitions to 357 

carbonates of the Eucla Group. 358 

Lithologically the base of the Madura Formation typically consists of a finer sandy, 359 

micaceous and carbonaceous (occasionally charcoal-rich) interval. The formation fines 360 

upwards and is dominated by initially barren light grey siltstone and subordinate beds of fine 361 

sandstone. Characteristically the upper levels of the formation become increasingly 362 

glauconitic, bioturbated and fossiliferous (Supplementary Fig. 2). Most bioclasts are 363 

fragmented, though more complete brachiopods, as well as nektic belemnites and coiled 364 

cephalopods of unknown designation were identified. In many of the wells, distinct 10-20 cm 365 

thick carbonate-cemented horizons are developed within thicker sections of monotonous 366 

siltstone. 367 

 368 

4.2 Palynology 369 

Five samples (Loongana and Madura Formations; Fig. 3) yielded palynomorph assemblages 370 

sufficient to designate a biostratigraphic zone/age to the sample according to the Cretaceous 371 
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zones of the Great Australian Bight (Partridge, 2006). A sample from finer facies at the top of 372 

the Decoration Sandstone (252.9-252.95 m) in FOR010 proved essentially barren of in-situ 373 

palynomorphs, with uncommon dinocysts attributed to mud contamination. Complete counts 374 

of identified taxa are presented in Supplementary Table 2. 375 

Samples from the Loongana Formation in the FOR010 borehole (235.9-235.92 m and 244.3-376 

244.5 m) contained a distinctive and rich palynomorph assemblage, dominated primarily by 377 

the spore/pollen Microcachryidites antarticus and Corollina torosa and with important 378 

occurrences of Dictyosporites speciousus and Cicatricosisporites hughesii attributed to the 379 

Foraminisporis wonthaggiensis spore-pollen zone (~ Senoniasphaera tabulate Dinocyst 380 

Zone) indicating an Early Cretaceous age. Significant numbers of low salinity/freshwater 381 

algae taxa (Microfasta, Sigmopollis, Horologinella, Botryococcus, etc.) were also recovered. 382 

Samples from basal portions of the Madura Formation in both the HDDH001 (397.6-397.7 383 

m) and FOR011 (256.8-257 m) yielded extremely similar assemblages despite a separation of 384 

~275 km. Samples comprise a rich and distinctive assemblage dominated by the spore/pollen 385 

Dictyophyllidites harrisii, Corollina torosa and a diverse suite of Retitriletes spp. and 386 

including the stratigraphically significant taxa Dictyosporites speciousus and Retitriletes 387 

watharooensis. No specimens of Cicatricosisporites or other distinctive marker taxa were 388 

recovered and a Foraminisporis wonthaggiensis Zone designation is suggested. Several low-389 

salinity algae taxa were recovered in high numbers, including, but not limited to, Microfasta, 390 

Sigmopollis, Horologinella, Botryococcus. 391 

The uppermost Madura Formation sampled in FOR011 (104.25-104.4 m) contained an 392 

extremely distinctive and rich dinocyst-dominated palynomorph assemblage (Barham et al., 393 

2016). Key dinocyst taxa identified include Pseudoceratium exuisitum, P. turneri, 394 

Cyclonephelium compactum, Litosphaeridium arundum, Diconodinium cristatum, D. 395 
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psilatum and D. tuberculatum. These, in conjunction with the spore pollen taxa Pilosisporites 396 

notensis, common Dictyophyllidites harrisii, Falcisporites grandis and Gleichenidites spp. 397 

suggest an Albian (Endoceratium ludbrookiae Zone) age and marine conditions. 398 

 399 

4.3 Geochronology 400 

A total of 1023 zircon grains were analysed from six samples (770 from five previously 401 

unreported samples and 253 analyses from a previously reported sample; Barham et al., 402 

2016), with 729 of these within 10% of the concordia curve (Fig. 3, 5-6, Supplementary 403 

Table 3-4). All samples from the Decoration Sandstone, Loongana Formation and Madura 404 

Formation exhibit major concordant age peaks at c. 1150 and 1650 Ma, while zircon grains in 405 

Shanes Dam Conglomerate are represented by a single, well-defined concordant c. 1412 Ma 406 

peak (Fig. 5-6). Sample 199453, from the upper Madura Formation (FOR011) also records a 407 

significant age peak at c. 106 Ma (Barham et al., 2016). 408 
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 409 

Fig. 5 Cumulative probability plots of detrital zircon age spectra of near-concordant data 410 

(<10% discordant) for samples analysed here, as well as comparative sediment reservoirs. 411 

Ceduna Delta in eastern Bight Basin (MacDonald et al., 2013), Leeuwin Complex derived 412 

material in modern shorelines representing the Pinjarra Orogen (composite dataset from 413 

combined Yallingup and Augusta samples; Requilme, 2016; Sircombe and Freeman, 1999), 414 

Frankland River sediment draining the Albany-Fraser Orogen (FR3; Cawood et al., 2003), 415 

Officer Basin sediments (Bodorkos et al., 2006; Nelson, 1999, 2002a, b, 2004a, b, c; Reid et 416 

al., 2013; Wingate and Bodorkos, 2007b, c, d; Wingate et al., 2013), Cenozoic shorelines 417 

fringing Eucla Basin (Reid et al., 2013). Coloured vertical bars indicate the significant age 418 

signatures of crystalline source regions and may indicate ultimate zircon grain origin when 419 

correlated with sudden vertical inflections in a cumulative probability spectrum. WVP – 420 

Whitsunday Volcanic Province (Bryan et al., 2012), NEO – New England Orogen and LO – 421 

Lachlan Orogen (Veevers et al., 2016; and references therein), LC – Leeuwin Complex of the 422 
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Pinjarra Orogen (Collins, 2003), AFO – Albany-Fraser Orogen (Spaggiari et al., 2015), MO 423 

– Musgrave Province (Kirkland et al., 2015a), MP – Madura Province and CP – Coompana 424 

Province (Fraser and Neumann, 2016; Kirkland et al., 2017), HCS – Haig Cave Supersuite 425 

of the Madura Province (Kirkland et al., 2017), GC – Gawler Craton (Kositcin, 2010b), YC – 426 

Yilgarn Craton (Nelson, 1997; Veevers et al., 2005). 427 

 428 

4.4 Hf-isotope data 429 

All Hafnium isotope data are shown in Fig. 7 and listed in Supplementary Table 5. Two 430 

samples from the Madura Formation (199453, 199454) show similar Hf isotopic 431 

characteristics, with the exception of a unique <350 Ma zircon population in sample 199453 432 

(Barham et al., 2016). The majority of grains in both samples are Proterozoic and range 433 

between depleted mantle (DM) -like to sub-CHUR and scatter around an evolutionary array 434 

that tracks back to between 1.5-2.0 Ga along a 176Lu/177Hf slope of approximately 0.015 (Fig. 435 

7). The young <350 Ma population in 199453 (upper Madura Formation) sits between CHUR 436 

and DM and ranges up to Hfi = 0.283075 (at 106 Ma; εHf = 12.94). Two stage Hf model ages 437 

for both samples are essentially unimodal and peak at c. 1.8 Ga. 438 

One sample of the Loongana Formation (199455) defines a tight evolutionary array along a 439 

176Lu/177Hf slope of c. 0.015 that intersects DM at 1.9-2.0 Ga. Essentially all data sit between 440 

CHUR and DM, with the most evolved analysis indicating a value Hfi = 0.281833 at 1576 441 

Ma (εHf = 1.83; Fig. 7). 442 

Two samples from the Decoration Sandstone (199443 and 199444) yield very similar Hf 443 

isotopic signatures mainly ranging from CHUR-like to more radiogenic values around DM 444 

(Fig. 7). The majority of grains are Proterozoic with values as evolved as Hfi = 0.281483 (at 445 

1632 Ma; εHf = -9.34) but range to as radiogenic as Hfi = 0.282445 (at 990 Ma; εHf = 10.34). 446 
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A minor subpopulation of Archean grains range between CHUR and somewhat more evolved 447 

signatures (0.280864 Hfi at 2514 Ma; εHf = -11.17). Two stage model ages (assuming a 448 

Lu/Hf ratio of 0.015; Griffin et al., 2002) range from c. 1.1 Ga to 3.8 Ga with the majority 449 

indicating a model age of c. 1.8 Ga, with a secondary mode at c. 2.6 Ga. 450 
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 451 

Fig. 6 Stacked plots of detrital zircon age spectra. Red dashed lines represent kernel density 452 

estimates of near-concordant data (<10% discordant), grey fill areas represent standard 453 

probability density functions (light grey = all age data; dark grey = near-concordant data). 454 
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Black plots represent concordant data from published comparable detrital datasets. Pie-455 

charts correspond to the relative proportions of concordant and discordant analyses with 456 

colours matching those of the plotted spectra. CED – Ceduna Delta in eastern Bight Basin 457 

(MacDonald et al., 2013), LC - Leeuwin Complex derived material (composite dataset from 458 

combined Yallingup and Augusta samples; Requilme, 2016; Sircombe and Freeman, 1999), 459 

FR – Frankland River sediment draining the Albany-Fraser Orogen (FR3; Cawood et al., 460 

2003), OFF – Officer Basin sediments (Bodorkos et al., 2006; Nelson, 1999, 2002a, b, 2004a, 461 

b, c; Reid et al., 2013; Wingate and Bodorkos, 2007b, c, d; Wingate et al., 2013), EUC – 462 

Cenozoic shorelines fringing Eucla Basin (Reid et al., 2013). Coloured bars indicate 463 

significant age signatures of crystalline source regions. WVP – Whitsunday Volcanic 464 

Province (Bryan et al., 2012), NEO – New England Orogen and LO – Lachlan Orogen 465 

(Veevers et al., 2016; and references therein), LC – Leeuwin Complex of the Pinjarra Orogen 466 

(Collins, 2003), AFO – Albany-Fraser Orogen (Spaggiari et al., 2015), MO – Musgrave 467 

Province (Kirkland et al., 2015a), MP – Madura Province and CP – Coompana Province 468 

(Fraser and Neumann, 2016; Kirkland et al., 2017), HCS – Haig Cave Supersuite of the 469 

Madura Province (Kirkland et al., 2017), GC – Gawler Craton (Kositcin, 2010b), YC – 470 

Yilgarn Craton (Nelson, 1997; Veevers et al., 2005). 471 

 472 
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 473 

Fig. 7 Hafnium-evolution plot of detrital zircon grains analysed overlain on magmatic zircon 474 

data from the Musgrave Province (Kirkland et al., 2015a) and Albany-Fraser Orogen 475 

(Spaggiari et al., 2015). Hafnium isotope values calculated at grain crystallisation age. Age 476 

and Hf-isotope uncertainty within data points as plotted. DM—depleted mantle; CHUR—477 

chondritic uniform reservoir. Inset shows main detrital populations in more detail with 478 

respect to the Hf-isotopic compositions of AFO and Musgrave Province source regions. 479 

 480 

Data from Shanes Dam Conglomerate (199456) are relatively clustered and sit between 481 

CHUR and DM on an evolutionary diagram (Fig. 7). A best fit line through the dataset lies 482 

along a Lu/Hf slope of approximately 0.015 and intersects DM at c. 1.8 Ga. Two of the oldest 483 

grains analysed have a DM like composition at 1.8 Ga. 484 

 485 
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5 DISCUSSION 486 

5.1 Geological significance of Shanes Dam Conglomerate and the Decoration Sandstone 487 

The definition of Shanes Dam Conglomerate and the Decoration Sandstone provide 488 

independent evidence of pre-Mesozoic sedimentary systems on the southern margin of 489 

Australia. 490 

Despite the polymict nature of Shanes Dam Conglomerate, zircon provenance data 491 

demonstrate a surprisingly uni-modal age population centered on 1412 Ma (Fig. 5-6; 492 

Supplementary Fig. 3). This detrital zircon populations age is indistinguishable from that of 493 

the underlying Haig Cave Supersuite (associated with the Loongana Arc; Spaggiari et al., 494 

2015) basement of the Madura Province dated to 1403-1415 Ma ~40 km to the northeast of 495 

HDDH001 in wells LNGD-0001 and LNGD-0002 (metagabbro, metatonalite and 496 

amphibolite samples with a mean age of 1409 ± 6 Ma; Kirkland et al., 2013b, c; Nelson, 497 

2005a, b, c; Wingate et al., 2015), and 1389 ± 7 Ma in MAD002, ~20 km to the west 498 

(Wingate et al., 2016). This indicates local sediment sourcing from underlying crystalline 499 

basement and potential intermediate sedimentary packages (indicated by sedimentary clasts). 500 

The significant contribution of Mesoproterozoic zircon grains from a volcanic arc is mirrored 501 

regionally in mid-Mesoproterozoic basins in the AFO (Arid Basin; Spaggiari et al., 2015) and 502 

correlative geology in Wilkes Land, East Antarctica (metasediments on the Windmill Islands; 503 

Morrissey et al., 2017), as well as the Musgrave Orogen (Ramarama Basin; Evins et al., 504 

2012). These data point to an extensive switch to convergence along the boundaries between 505 

the West Australian Craton, North Australian Craton and Mawson Craton at this time, with 506 

subduction-related arc-volcanism defining basin settings and influencing sediment 507 

provenance prior to final cratonic amalgamation. 508 

A single concordant zircon grain with a Devonian age of 407 Ma is an outlier in the detrital 509 

zircon age signature, which, assuming it is not disturbed nor a contaminant, provides a 510 
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maximum depositional age constraint for Shanes Dam Conglomerate. Deposition of Shanes 511 

Dam Conglomerate is otherwise temporally constrained by the next youngest concordant 512 

zircon age subgroup at 1301 Ma (1300 ± 15 Ma; 1302 ± 16 Ma; Supplementary Fig. 3). Since 513 

the conglomeratic unit is significantly ferruginised in places and the disconformity with 514 

overlying Madura Shelf units is pronounced, Shanes Dam Conglomerate is considered to 515 

significantly pre-date the Mesozoic. Shanes Dam Conglomerate could be equivalent to 516 

Devonian units in the Officer Basin. However, if the Devonian grain is not representative of 517 

Shanes Dam Conglomerate, the unit may be Mesoproterozoic in age, given the next youngest 518 

Mesoproterozoic zircon age constraint and characteristic 1400 Ma detrital zircon population, 519 

similar to sediments of this age in the Arid Basin within the Albany-Fraser Orogen (Spaggiari 520 

et al., 2015). Lower Permian diamictites correlated to the Wilkinson Range beds and Paterson 521 

Formation crop out, or are adjacent in the subsurface to, Madura Shelf stratigraphy, and 522 

equivalent late Palaeozoic glacigene rocks are also known to underlie the Bight and Eucla 523 

Basins in South Australia (Lowry, 1970). However, a possible glacigene origin for Shanes 524 

Dam Conglomerate is not suggested by any core features and the unimodal zircon population 525 

indicates a local source, correlating with underlying basement. Instead, the depositional 526 

environment of Shanes Dam Conglomerate is inferred based on sedimentology and detrital 527 

zircon geochronology to have been a high energy, alluvial-fluvial setting with localised steep 528 

topography (Fig. 4) capable of transporting and rounding cobbles and pebbles. 529 

The Decoration Sandstone appears geographically restricted despite its stratigraphic 530 

thickness, indicating either that the unit itself developed in a pronounced topographic 531 

irregularity or that it is preserved locally due to subsequent down-faulting prior to Mesozoic 532 

sedimentation. The absence of “pan-Gondwanan” ~500-700 Ma zircon grains (Fig. 5-6), 533 

which are commonly encountered in Officer Basin sediments to the north, as well as wider 534 

Palaeozoic Australia (c.f. Haines et al., 2013; Shaanan et al., 2017; Veevers et al., 2006; 535 
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2016), suggests either: (i) the Decoration Sandstone pre-dates the generation of this sediment 536 

pulse, or (ii) sediment contribution of 500-700 Ma orogenesis decreased towards the southern 537 

Officer Basin and were effectively diluted out by AFO and Musgrave Province sources. 538 

Given the interpreted presence of bioturbation in the Decoration Sandstone, similarities in 539 

aspects of zircon population age spectra (Fig. 5-6), and basin interpretation from 540 

aeromagnetics, the Decoration Sandstone is interpreted as part of the revised southerly 541 

Palaeozoic extension of the Officer Basin (Fig. 1; Westwood Shelf; Grey et al., 2005; Haines 542 

et al., 2008). The apparent relative textural immaturity of the Decoration Sandstone 543 

sediments and differences in the dominant peak ages in the zircon age spectra from Officer 544 

Basin sediments (e.g. Lennis Sandstone and Wanna Formation; Haines et al., 2013) suggests 545 

a stronger influence of more proximal sediment contributions (i.e. Albany-Fraser Orogen and 546 

Musgrave Province) and a sufficiently distal position to reduce the influence of any 547 

significant pan-Gondwanan component. This interpretation is supported by similar detrital 548 

zircon age spectra signatures in southerly samples from the Officer Basin (Trainor Hill 549 

Sandstone and Apamurra Fm.; Reid et al., 2013). The minimum depositional age of the 550 

Decoration Sandstone is constrained by its disconformable contact with the overlying Early 551 

Cretaceous (Valanginian-Hauterivian Foraminisporis wonthaggiensis Zone) Loongana 552 

Formation. The Decoration Sandstone was likely deposited in a fluvial to intertidal/coastal 553 

environment with an occasional aeolian influence, in an arid climate because of the red-bed 554 

colouration. This is evidenced by the cyclical nature of the sandstone, which switched from 555 

periods of deposition in a wet environment, characterised by the wavy bioturbated beds, 556 

transitioning to sections of planar laminated and cross-stratified sandstones with well 557 

rounded, highly spherical quartz that are more characteristic of aeolian sands (Pye and Tsoar, 558 

2009). The formation is capped by a mudrock, which indicates deposition in a low energy 559 

environment, and possibly represents a rise in relative base-level. In general, the structure and 560 
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oxidation state of the irregular bedded sandstone section of the Decoration Sandstone 561 

resembles that of the mid-Palaeozoic Wanna Formation of the Officer Basin (Jackson and 562 

van de Graaff, 1981), parts of the Silurian-Devonian Mereenie Sandstone of the Amadeus 563 

Basin in central Australia (Edgoose, 2013) and Tandalgoo Formation in the Canning Basin of 564 

NW Australia (Lehmann, 1984), and the mid-Palaeozoic fluvial-paralic Tumblagooda 565 

Sandstone of the Southern Carnarvon Basin (Fig. 1; Hocking, 1991). An early Cambrian age 566 

would satisfy (i) the presence of bioturbation, (ii) lack of significant 500-700 Ma detritus 567 

(which appears to have become widespread in the Ordovician regionally), (iii) aeolian 568 

influence (evidenced widely across southern central Australia in response to the Paterson-569 

Petermann Orogeny, e.g. McFadden and Lungkarta Formations; Grey et al., 2005), and (iv) 570 

similarities in detrital zircon spectra with Cambrian fluvial sediments from the Officer Basin 571 

(c.f. Durba Sandstone - Wingate and Bodorkos, 2007a). 572 

 573 

5.2 Palaeotopography and Mesozoic evolution of the Madura Shelf and southern 574 

margin of Australia 575 

Overall, there is a gentle, broadly southerly dip across the basement surface towards the 576 

central, deepest wells of Eyre 1 and Madura 1 (the latter drilled to -535 m AHD without 577 

encountering basement; Fig. 4). Although data constraints are sparsely distributed, the 578 

magnitude of apparent dip varies from an essentially flat >0.2° (~450 m drop over ~200 km 579 

between MAD014 and Madura 1) to a more locally variable 2° (a change of ~60 m over 1.8 580 

km between SDDH002 and SDDH001). Eucla 1 intersected basement at -201 m (AHD), 581 

higher than other coastal wells and up-slope from other wells to the north, against the 582 

regional trend (Fig. 4). 583 
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Mesozoic sedimentation on the southern margin Bight Basin is recorded from at least the late 584 

Jurassic in presently offshore half-graben structures (e.g. Jerboa 1, Eyre Sub-basin - 585 

Totterdell et al., 2000), which formed in a series of west to east propagating rifts (Blevin and 586 

Cathro, 2008; Totterdell and Bradshaw, 2004). However, by the early Cretaceous, more 587 

regional thermal subsidence is evidenced by deposition of the Loongana Formation (dated via 588 

palynology as Valanginian-Hauterivian; ~140-130 Ma), which corresponds to Valanginian to 589 

mid-Albian (~140-100 Ma) fluvio-lacustrine sediments of the Bronze Whaler Supersequence 590 

interpreted in offshore basins (Bradshaw et al., 2003; Totterdell et al., 2000). 591 

Penecontemporaneous sedimentation began in low lying areas, including the central 592 

SDDH/HDDH boreholes and Madura 1 area, and further east in the FOR010/011/014 and 593 

Albala-Karoo wells (Figs. 3, 4, 8). Variations in the thickness and spatial development of 594 

basal clastics in the region imply some topographic control on sedimentation. However, given 595 

the relatively minor nature of thickness variations (tens of metres in the Loongana Formation) 596 

over the extensive area, and later regional shared sedimentation, pre-Cretaceous landscape 597 

planation/denudation is inferred (Fig. 4a). The high-energy fluvio-lacustrine coarse-grained 598 

clastic facies of the Loongana Formation are poorly sorted and texturally immature, 599 

suggesting rapid deposition and limited reworking. 600 

31 
 



 601 

Fig. 8 palynologically constrained (Supplementary Table 2) timing of sedimentation on the 602 

Mesozoic Madura Shelf. Basin phases adapted from Totterdell et al. (2000). Additional 603 

palynostratigraphical constraints from wells marked with an * derived from Totterdell and 604 

Krassay (2003). 605 

 606 

Continued thermal subsidence in the Cretaceous led to more widespread deposition of finer 607 

sediments of the Madura Formation (Fig. 4b). Algal palynomorphs suggest that freshwater-608 

brackish conditions continued through from the Loongana Formation into the basal Madura 609 

Formation (Foraminisporis wonthaggiensis Zone). Total organic carbon data near the base of 610 

the Madura Formation in Gambanga 1 also suggest a non-marine influence (Totterdell and 611 

Krassay, 2003). Thin charcoal beds are especially concentrated in the Loongana Formation 612 

and at the base of the Madura Formation (Supplementary Fig. 1-2) and suggests that the 613 

Cretaceous catchment surrounding the Madura Shelf, or localised topographic highs, were 614 
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vegetated and subjected to occasionally significant fire events (c.f. Nichols and Jones, 1992). 615 

Although the Madura Formation was initially deposited under freshwater conditions, the 616 

presence of glauconite in some wells (FOR011, HDDH002 and SDDH002) demonstrates at 617 

least intermittent marine conditions at or near the base of the formation. Lithological 618 

(glauconite, progressive dominance of finer grain size) and macrofaunal (incursion of pelagic 619 

cephalopods) indicators concur with palaeoenvironmental reconstructions based on marine 620 

dinocysts, that marine conditions became fully established on the Madura Shelf by the mid-621 

Cretaceous (Mid-Albian to Maastrichtian; ~110-66 Ma; Fig. 8). This was during a period of 622 

accelerated subsidence and a global eustatic high that saw similar marine conditions 623 

established across the Bight Basin (mid-Albian to Cenomanian Blue Whale Supersequence; 624 

Blevin and Cathro, 2008; Bradshaw et al., 2003; Cloetingh and Haq, 2015; Totterdell et al., 625 

2000). The exact timing of the transgression across the Madura Shelf is uncertain – it may 626 

predate the mid-Albian since the palynology sample from the upper Madura Formation 627 

(FOR011) overlies ~80 m of glauconitic siltstone. 628 

Across most of the Madura Shelf, palynology indicates initiation of sedimentation in the -629 

Barremian-Valanginian (~145-133 Ma; Fig. 8; Section 4.2). However, in Eyre 1 and Eucla 1, 630 

deposition appears to have commenced much later, in the Albian (Totterdell and Krassay, 631 

2003). The Madura Formation is relatively thin in Eucla 1, which is situated on, or adjacent 632 

to, a relative basement high just inboard of a region interpreted from seismic profiles to have 633 

elevated basement and an associated thin or absent Mesozoic sequence (Fig. 4 & 8; Bradshaw 634 

et al., 2003; JNOC, 1992). Since Eucla 1 lacks typical non-marine strata (Loongana 635 

Formation and lower Madura Formation) at the base of the Cretaceous sequence, this area is 636 

interpreted as a palaeohigh that was simply inundated later than elsewhere. However, unlike 637 

Eucla 1, the sequence in Eyre 1 is relatively thick, with one of the deepest basement contacts 638 

(Fig. 4 & 8), and thus, a delayed transgression of higher ground requires that the area 639 

33 
 



subsequently experienced enhanced subsidence relative to surrounding areas. Late-stage 640 

subsidence is supported by the apparent continuation of sedimentation in the well beyond that 641 

experienced in other wells (Fig. 8; Maastrichtian vs. Cenomanian commonly elsewhere; ~66 642 

Ma vs. ~105 Ma). Graben-like structures have been identified in 2D seismic shot across the 643 

offshore Bight Basin, which are orientated north-northeasterly from the main east-west sub-644 

basin trend towards the area of Madura 1 and Eyre 1 (Fig. 4; Bradshaw et al., 2003; JNOC, 645 

1992; Totterdell and Krassay, 2003). Onshore fault-related localised subsidence may be 646 

supported by recent onshore passive seismic, which suggests significant basement depth 647 

changes in the area (Scheib et al., 2016). The identification of this faulting, much later than 648 

the typical mechanical rift phase of the Bight Basin, has implications for the subsidence 649 

temporal framework of the southern Australian margin, as well as interpretation of the timing 650 

of faults and fault-affected depositional packages in seismics offshore that are poorly 651 

constrained by well ties. 652 

At the termination of sedimentation, the Madura Formation had largely blanketed pre-653 

existing topography, leaving a relatively flat surface with only a slight north-south slope that 654 

is remarkably consistent across the region (~0.1° based on contouring of well constraints), 655 

essentially equivalent to that of the modern continental shelf and parallel to the modern 656 

shoreline (Fig. 4). At the end of the Cretaceous, the Madura Shelf experienced an interval of 657 

regional uplift that effectively marked the end of Mesozoic sedimentation and led to a period 658 

of prolonged exposure for several tens of millions of years prior to the Eocene onset of 659 

carbonate sedimentation across the Eucla Basin (Clarke et al., 2003; Hou et al., 2011; Lowry, 660 

1970; MacDonald et al., 2013; Totterdell and Krassay, 2003). Despite this hiatus, very little 661 

evidence for prolonged exposure and denudation is preserved. Well BN1 (Fig. 4b) presents 662 

the only significant anomaly in the surface elevation of the Madura Formation, being some 663 

100 m lower than in surrounding wells. Given that the basement depth is relatively consistent 664 
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in this area, and the formation is relatively thin in BN1, the lower elevation is interpreted to 665 

represent localised erosion. 666 

Present-day elevation differentials across raised Cenozoic palaeoshoreline features fringing 667 

the Cenozoic Eucla Basin demonstrate significant uplift differences have developed across 668 

the region since at least the Miocene (Fig. 1; Hou et al., 2008; Sandiford, 2007). Patterns of 669 

uplift, as well as the geographical migration of depocenters through time, disparities in the 670 

width of the continental shelf around Australia and upstream migration of nick points in river 671 

profiles draining the Australian continent, have all been discussed in terms of the drift of the 672 

Australian Plate over mantle buoyancy irregularities, i.e. dynamic topography (Barnett-673 

Moore et al., 2014; Czarnota et al., 2013; Müller et al., 2016; Quigley et al., 2010; Sandiford, 674 

2007; Schellart and Spakman, 2015). Since the Cretaceous, the Australian Plate has 675 

interacted with both positive and negative mantle buoyancy anomalies associated with 676 

spreading between Australia and Antarctica as well as subduction along the northern margin 677 

of Australia and ancient crustal slabs that were over-ridden as the Australian Plate moved 678 

rapidly north (Czarnota et al., 2013; 2014). Although many finer details are still unclear, it 679 

has been suggested that a substantial part of the uplift experienced in SW Australia through 680 

the later Cenozoic relates to migration away from a dynamic topography low associated with 681 

an ancient subducted slab (Barnett-Moore et al., 2014). The apparent absence of any E-W 682 

elevation differential on the surface of the Madura Formation suggests that the Madura 683 

Formation was entirely deposited prior to the later, probable Eocence subsidence associated 684 

with the dynamic topographic low responsible for the development of the Eucla Group 685 

carbonates and later tilting of Cenozoic palaeoshorelines. Subsequently, exiting the dynamic 686 

topographic low has returned the Madura to its pre-existing state, while the Cenozoic 687 

carbonate sequence has been uplifted to different degrees dependent on original position 688 

within the dynamic topographic low. 689 
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 690 

5.3 Zircon provenance and implications for source region denudation 691 

5.3.1 c. 1650 Ma (~1500-1800 Ma) grains 692 

Detrital zircon grains of this age constitute the dominant age peak for sample 199443 – the 693 

upper Decoration Sandstone and secondary peak in the age spectra of samples 199444, 694 

199453, 199454 and 199455, spanning the Decoration Sandstone (lower), Loongana 695 

Formation and the Madura Formation. 696 

Underlying the Madura Shelf through eastern regions (Forrest Zone of the Coompana 697 

Province; Fig. 1) are c. 1610 Ma granites and monzodiorite (Toolgana Supersuite - Kirkland 698 

et al., 2017). Further west, magmatism associated with the 1710-1650 Ma Biranup Orogeny 699 

of the Albany-Fraser Orogen (Spaggiari et al., 2014; 2015) also constitutes a potential source 700 

region for this zircon population age peak. Further north, the Warlawurra Supersuite in the 701 

western Musgrave Province has been dated to 1607-1583 Ma (de Gromard et al., 2016), 702 

whilst through the central and eastern Musgrave Province, basement ages range from 1665 to 703 

1540 Ma (de Gromard et al., 2016; Edgoose et al., 2004; Jagodzinski and Dutch, 2013). 704 

However, there is a paucity of grains of this age in most Officer Basin samples between the 705 

Madura Shelf and Musgrave Province (Fig. 5-6; Haines et al., 2013; Reid et al., 2013). 706 

Younger components of the c. 1650 Ma zircon age spectrum peak could represent sub-707 

populations derived from the central Gawler regions of the Gawler Range Volcanics (c. 1590 708 

Ma), Hiltaba Suite (c. 1590 Ma) and St. Peter Suite (c. 1620 Ma) (Belousova et al., 2009; 709 

Reid et al., 2014). However, the lack of other distinctive Palaeoproterozoic peaks in the age 710 

spectra (c. 1740, 1850, 2020 and 2500 Ma; Belousova et al., 2009) of the samples analysed 711 

herein, argues against derivation of material from the east. 712 

 713 
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5.3.2 c. 1400 Ma grains 714 

The grains of a c. 1400 Ma age that dominate sample 199456 (Shanes Dam Conglomerate in 715 

HDDH001) correspond with zircon crystals with juvenile Hf-signatures (Hfi = ~0.2820-716 

0.2822 at ~1400 Ma; εHf = ~3.5-11.0) in the Haig Cave Supersuite basement of the Madura 717 

Province (representing the "Loongana Arc"; Spaggiari et al., 2015) with a mean age of 1409 718 

± 6 Ma (Wingate et al., 2015). Hafnium isotopic characteristics of these zircon grains are 719 

similar to those formed in parts of the Musgrave Province at this time and point to similarities 720 

in geological evolution (Fig. 7; Kirkland et al., 2017). Essentially contemporaneous 721 

sedimentation in the Arid Basin (eastern AFO; Fig. 1) preserves detrital zircon grains with a 722 

pronounced 1425-1375 Ma age spectrum peak, implicating erosion of the oceanic “Loongana 723 

Arc” into adjacent depocentres during the Mesoproterozoic (Spaggiari et al., 2014; 2015). 724 

 725 

5.3.3 c. 1150 Ma (~1000-1300 Ma; Grenville) grains 726 

Zircon grains of 1300-1000 Ma age represent the dominant peak in the detrital zircon age 727 

spectra for samples 199444, 199453, 199454 and 199455, spanning the lower Decoration 728 

Sandstone, Loongana Formation and the Madura Formation, and the secondary peak for 729 

sample 199443 – the upper Decoration Sandstone. A number of “Grenvillian” rock-forming 730 

events in potential source regions match these ages (Clarke et al., 1995). Crystalline rocks of 731 

the Moodini Supersuite are found throughout the eastern Madura Province and across the 732 

Coompana Province beneath the Madura Shelf and ranges in age from 1181-1125 Ma (Fig. 1; 733 

Neumann and Fraser, 2016; Wingate et al., 2015). Further north, metamorphism and 734 

widespread felsic intrusions occurred from c. 1220-1150 Ma during the Musgrave Orogeny 735 

(Edgoose et al., 2004; Jagodzinski and Dutch, 2013; Kirkland et al., 2015a). To the west, 736 

from 1200-1140 Ma, the Esperance Supersuite was intruded during Stage II of the Albany-737 

Fraser Orogen (Clark et al., 2000; Spaggiari et al., 2014). 738 
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A compilation of detrital zircon data from across the Gawler Craton to the east of the study 739 

area shows a significant peak in the age spectrum at 1169±48 Ma that does not match any 740 

known magmatic or metamorphic events in the Gawler Craton (Belousova et al., 2009). 741 

Given the widespread distribution of this sub-population across the Gawler Craton, 742 

Belousova et al. (2009) argued that these data indicate the presence of unrecognized sources 743 

of this age within the craton itself. However, based on new data from basement beneath the 744 

Nullarbor Plain, a more plausible explanation of their occurrence, age and relatively juvenile 745 

Hf-signatures (Kirkland et al., 2017) appears to be shedding of material from the Moodini 746 

Supersuite, in the Coompana and Madura Provinces (Fig. 1). 747 

 748 

5.3.4 c. 106 Ma grains 749 

Sample 199453 from the upper Madura Formation (FOR011) yielded 28 grains contributing 750 

to the c. 106 Ma sub-population. This sample is stratigraphically proximal to a palynological 751 

sample (Fig. 3) containing a diagnostic assemblage attributed to the Pseudoceratium 752 

[Endoceratium] ludbrookiae zone of Helby et al. (1987), which ranges from c. 104 to 107.5 753 

Ma. Microscopic investigation of the zircon grains in this sub-population demonstrate 754 

preservation of euhedral form and distinctive oscillatory zoning indicative of growth in a 755 

magma chamber (Barham et al., 2016). The mid-Cretaceous age, more radiogenic Hf-isotope 756 

characteristics and light rare-earth element depleted characteristics of these zircon grains are 757 

all consistent with the broader eastern Gondwanan siliceous large igneous province defined 758 

by Bryan et al. (2012) that formed preceding Zealandia-Australia separation (Barham et al., 759 

2016). 760 
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5.4 Evolution of sediment routing 761 

5.4.1 Cratonic planation 762 

The absence of typical Yilgarn-aged (~2.6 Ga) zircon grains in samples analysed, or in 763 

reference samples from the underlying Officer Basin (Fig. 5-6; Haines et al., 2013; Reid et 764 

al., 2013), informs aspects of palaeodrainage patterns in the west of the study region. The 765 

potential for the Albany-Fraser Orogen to have acted as a physical barrier to sedimentation 766 

from the Yilgarn Craton toward the study region may be significant through much of the 767 

Proterozoic history of the Officer Basin. However, comparisons with Palaeozoic 768 

palaeovalleys in the Northern Territory and mapping of Yilgarn Craton palaeovalleys and 769 

their hosted sediments demonstrates a protracted (at least Mesozoic) history of drainage (Bell 770 

et al., 2012; de Broekert and Sandiford, 2005) that would have facilitated detrital grain 771 

transfer to the Madura Shelf even with reported tectonically induced reversals and 772 

adjustments to drainage patterns during separation of Australia and Antarctica (Beard, 1999; 773 

Hou et al., 2008). Therefore, the paucity of Archean grains supports hypotheses (Cawood and 774 

Nemchin, 2000; Sircombe and Freeman, 1999) of a denuded Yilgarn Craton landscape 775 

lacking sufficient topography to generate a significant supply of detrital zircon grains from at 776 

least the Mesozoic. 777 

5.4.2 Stabilised sediment sourcing and recycling 778 

Similarities are apparent in the broadly bimodal detrital zircon age spectra of samples 779 

analysed herein and sediment from Cenozoic shorelines and fringing palaeovalleys, modern 780 

streams draining the AFO as well as parts of the Officer Basin (Fig. 5-6 & 9). These 781 

similarities and parallels in Hf-isotope character, which match magmatic events in the 782 

Albany-Fraser Orogen and Musgrave Province (Fig. 7), suggest the Decoration Sandstone 783 

and sediments of the Madura Shelf were sourced predominantly from these orogens either 784 

directly or secondarily (principally via the Officer Basin), given known drainage and long-785 
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shore-drift sediment routing pathways (Hou et al., 2011; Reid et al., 2013). However, nuances 786 

in the abundance and absolute age of principal components in the zircon age spectra and Hf-787 

isotopic values inform temporal variability in the dominant inputs of detritus into this 788 

recycled southern margin sediment pool. The Decoration Sandstone shows sourcing of 1600-789 

1800 Ma zircon from the AFO, specifically two peaks in the zircon age spectra whose ages 790 

(~1.65 and 1.8 Ga) and more evolved Hf isotopic values (relative to Madura Shelf samples) 791 

suggest derivation from the Biranup and eastern Nornalup Zones of the Albany-Fraser 792 

Orogen (Fig. 5-7; Spaggiari et al., 2014). Significant contributions of late Mesoproterozoic 793 

(~1.3-1.0 Ga) zircon grains are recognised across the Officer Basin and wider central 794 

Australian basins, which are attributed to derivation from the Musgrave Province (e.g., 795 

Haines et al., 2016; Reid et al., 2013). Similarly, the more juvenile Hf-character and age of 796 

~1.3-1.0 Ga detrital zircon grains in the Decoration Sandstone are here attributed to 797 

derivation from the Musgrave Province. 798 

Mesoproterozoic c.1400 Ma zircon grains are a barely perceptible or negligible component in 799 

all but one sample studied (Shanes Dam Conglomerate – 199456), despite basement of this 800 

age underlying parts of the Madura Shelf. This indicates a paucity of sediment supply from 801 

the underlying Madura and Coompana Provinces, and therefore likely complete planation of 802 

pre-existing topography. Consequently, although basement with similar ages to the AFO and 803 

Musgrave Province exist in the Madura and Coompana Provinces beneath the study area, 804 

what little sediment may have derived directly from underlying crystalline sources was likely 805 

diluted by more significant direct and recycled source regions of the AFO and Musgrave 806 

Province prior to the deposition of the Decoration Sandstone, Madura Shelf and broader 807 

Bight Basin. This, combined with difficulties associated with recycling material from the 808 

Coompana and Madura Provinces into upstream palleovalleys that record the characteristic 809 

age peaks discussed, as well as reconciling the sheer quantity of sediment preserved, argue 810 
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against substantial derivation of material from these basement regions into the peak c. 1150 811 

and 1650 Ma zircon sub-populations. 812 

A slightly younger shift in the sub-population age, coupled with more juvenile Hf-isotope 813 

signatures, indicates a different source for the majority of detrital zircon grains from the 814 

Madura Shelf in the c. 1650 Ma age peak, and infer a greater input from the Musgrave 815 

Province than the AFO (Fig. 5-7). The Hf isotopic signature of the zircon detritus charts an 816 

evolutionary pattern that strongly resembles that recorded in basement rocks of the region; 817 

that is both the Madura and Coompana Provinces (Kirkland et al., 2017), and the juvenile 818 

magmatic component of the Musgrave Province that appears to have been extracted from the 819 

mantle at c. 1.9 Ga and then been repeatedly refertilized by mantle addition from c. 1.7 Ga 820 

until at least c. 1.4 Ga (Kirkland et al., 2015a). This evolutionary pattern contrasts strongly 821 

with that seen in the Albany-Fraser Orogen where much of the magmatic record is more 822 

evolved, especially in the period 1.4 to 1.8 Ga when Albany-Fraser magmatism also 823 

incorporated progressively greater amounts of Archean Yilgarn crust. Unfortunately, overlap 824 

in the age and Hf-isotope character of zircon grains from the AFO and Musgrave Province 825 

complicates their distinction as potential sources for the c. 1150 Ma zircon age peak 826 

identified. Similarities of the detrital zircon age spectra recognised here and those of modern 827 

stream sediments draining the Yilgarn and western AFO (Cawood et al., 2003) suggest a 828 

dominant AFO sourcing over similar aged Musgrave sources (Fig. 5,6 & 9). However, the 829 

more juvenile Hf-isotopic character of the Madura Shelf detrital zircon grains is more similar 830 

to 1100-1200 Ma zircon grains from the Musgrave Province rather than more evolved AFO 831 

sources that have been characterised (Fig. 7). 832 
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 833 

Fig. 9 Kolmogorov–Smirnov based multi-dimensional-scaling plot of detrital zircon sample 834 

age dissimilarities (conducted using the statistical software package "provenance" in R; 835 

Vermeesch, 2013; Vermeesch et al., 2016). Data have been classically scaled to enable the 836 

dissimilarities of the Mesoproterozoic and Palaeoproterozoic dominated samples to be 837 

resolved, with increasing distance between sample points indicating greater distinction of 838 

detrital zircon population age characteristics. Medium grey points refer to comparable 839 

sedimentary datasets. LC - Leeuwin Complex derived material (composite dataset from 840 

combined Yallingup and Augusta samples; Requilme, 2016; Sircombe and Freeman, 1999), 841 

CED – Ceduna Delta in eastern Bight Basin (MacDonald et al., 2013), FR – Frankland River 842 

sediment draining the Albany-Fraser Orogen (FR3; Cawood et al., 2003), EB – Cenozoic 843 

shorelines fringing Eucla Basin (Reid et al., 2013), OFF – Officer Basin sediments (Bodorkos 844 

et al., 2006; Nelson, 1999, 2002a, b, 2004a, b, c; Reid et al., 2013; Wingate and Bodorkos, 845 

2007b, c, d; Wingate et al., 2013). DSl – Decoration Sandstone lower (199444), DSu – 846 
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Decoration Sandstone upper (199443), LF – Loongana Formation (199455), MFl – Madura 847 

Formation lower (199454), MFu – Madura Formation upper (199453), SDC – Shanes Dam 848 

Conglomerate (199456). 849 

 850 

5.4.3 Isolation of sediment systems 851 

Large volumes of early-mid Cretaceous volcanic-derived and subsequently fluvially 852 

transported detritus have been reported from the Eromanga Basin (Tucker et al., 2016) across 853 

northeastern Australia and even as far as the Upper Cretaceous Ceduna Delta in the eastern 854 

Bight Basin on Australia’s southern margin (Fig. 1 & 5-6; Lloyd et al., 2016; MacDonald et 855 

al., 2013; Veevers et al., 2016). Although interpretations differ on the final scale of the 856 

drainage system and the degree of local sediment recycling, U/Pb geochronology and Hf-857 

isotope data from detrital zircon grains from Santonian-Maastrichtian (~86-66 Ma) sediments 858 

of the Ceduna Delta indicate substantial ultimate sourcing of material from eastern Australia, 859 

with several distinctly different characteristic zircon populations to those that have been 860 

identified on the Madura Shelf. Comparisons of detrital zircon age spectra show that the main 861 

c. 1150 Ma and c. 1600 Ma age peaks from the Madura Shelf samples are negligible in the 862 

Ceduna Delta, and the main Ceduna Delta lobe age peaks of c. 200-300 Ma and c. 500-700 863 

Ma are essentially absent in the Madura Shelf samples (Fig. 5-6 & 9). These differences 864 

suggest that erosion of the Madura Shelf was unlikely to have been a major contributor of 865 

sediment to the younger Ceduna Delta. Furthermore, the mid-Cretaceous zircon sub-866 

population shared between the Ceduna Delta and upper Madura Formation appears unlikely 867 

to have been delivered by related transport systems (Barham et al., 2016). In the Madura 868 

Formation sample, the pristine nature of the zircon grains, their stratigraphic 869 

definition/isolation and the synchroneity of zircon age peak and palynological age, all argue 870 

against typical aeolian, fluvial, alluvial or marine transportation. These data led Barham et al. 871 
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(2016) to conclude that the c. 106 Ma volcanic zircon grains had been rapidly and 872 

significantly transported with little modification in an eruptive cloud from violent explosive 873 

eruptions around the Whitsundays and incorporated into the catchment of sediments at this 874 

level on the Madura Shelf. Alternatively, these Phanerozoic components could represent a 875 

short-lived Ceduna precursor connection between the Eromanga Basin and Madura Shelf in 876 

the Albian. The grain characteristics, palynology and dominance of the youngest zircon age 877 

component would then suggest limited transport of extremely distal eruption products quite 878 

distinct from the eventual large-scale sediment routing that later supplied the Ceduna Delta 879 

and also contributed a variety of other east-coast zircon signatures. Interestingly, detrital 880 

zircon age spectra from a Cenozoic palaeovalley draining into the eastern onshore Eucla 881 

Basin, have a distinct eastern Australia signature mixed more thoroughly with local 882 

crystalline sources (Reid et al., 2009). Ultimately though, a precursor south coast connection 883 

from the Eromanga Basin supplying the Madura Shelf would require very dramatic 884 

reconfiguration and broadening of the source region, acceleration of erosion across parts of 885 

northeastern Australia during the mid-Cretaceous, and significant redirected channelling of 886 

sediment to form the Ceduna Delta. Proposed regional reworking of Permian to Early 887 

Cretaceous sediments into the Ceduna Delta (MacDonald et al., 2013) would suggest greater 888 

similarities of the Madura Shelf and Ceduna Delta zircon spectra should be expected if these 889 

two systems shared localised sediment routing systems. However, the distinctiveness of the 890 

systems is instead interpreted as the Ceduna Sub-basin and Madura Shelf being largely 891 

decoupled in sediment supply systems (Fig. 9), with eastern Madura Shelf sediments also 892 

reportedly expressing similar detrital zircon age spectra to that reported here for the 893 

Loongana Formation (Bendall et al., 2016). The temporally defined nature of the eastern 894 

Australian detritus in the Ceduna Sub-basin of the Bight, distinct from slightly older Madura 895 

Shelf sediments, as well as later Cenozoic shoreline detritus, agrees with modelling of eastern 896 
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Australian driving a temporally defined sediment pulse across the Eromanga Basin and 897 

ultimately into the Ceduna Delta (Müller et al., 2016). With interruption of this uplift and 898 

reorganisation of drainage pathways, central southern Australian sediment routing systems 899 

returned to a disconnected state from those of eastern Australia. 900 

Westerly longshore drift has been argued as significantly affecting sediment derivation and 901 

distribution of paleoshorelines through the Cenozoic of the Eucla Basin (Fig. 1), with minor 902 

sediment even suggested as deriving from the Pinjarra Orogen (likely the Leeuwin Complex) 903 

on the western margin of WA (Hou et al., 2011; Reid et al., 2013). The lack of detritus of this 904 

nature recorded in the samples analysed herein suggests that such coastal-driven sediment 905 

transport was not significant for any of the units analysed, probably as a result of a limited 906 

seaway in the case of the Mesozoic units (Fig. 5-6 & 9). Recycling of the existing sediment 907 

reservoir and continued sourcing from the AFO and Musgrave Province would have diluted 908 

out any small amounts of western margin sediment that may have been delivered, effectively 909 

isolating the Madura Shelf and underlying sequences from western margin crystalline 910 

sediment routing systems, which instead were focussed into rift-basins between India and 911 

Australia (e.g. Perth Basin, Fig. 1; Cawood and Nemchin, 2000). 912 

6 CONCLUSIONS 913 

The recognition of the Shanes Dam Conglomerate and the Decoration Sandstone under the 914 

Madura Shelf highlights an older sedimentary history on the southern margin than previously 915 

recognised. Likely Proterozoic erosion caused denudation of the Loongana Arc and other 916 

palaeotopography across the Madura and Coompana Provinces, as evidenced by the 917 

restriction of the c. 1400 Ma detrital zircon component to the Shanes Dam Conglomerate and 918 

Arid Basin succession in the AFO. The Decoration Sandstone is interpreted as a southerly 919 

Palaeozoic extension of the Officer Basin (Westwood Shelf) preserved in a relatively 920 

localised fault structure or depocenter. These greater stratigraphic complexities identified in 921 
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the new drillcore are likely a conservative reflection of reality given the relative paucity of 922 

stratigraphic drilling in the vast region. However, as well as Cretaceous late-stage fault-923 

subsidence of the Madura Formation inferred from palynology, these new stratigraphic 924 

details have significant implications for ongoing resource exploration onshore in terms of 925 

determining depth to potential mineralised basement (Scheib et al., 2016), as well as the 926 

interpretation of seismic units and structural histories in the offshore Bight Basin. 927 

Despite overlaps in magmatic ages and Hf-isotope systematics of zircon grains from the 928 

Madura and Coompana Provinces with the detritus analysed here, data suggest that the 929 

majority of sediment in the Decoration Sandstone and Madura Shelf was supplied from the 930 

Albany-Fraser Orogen (Biranup and Nornalup Zones) and Musgrave Province. Consistencies 931 

in the detrital zircon characteristics throughout various sediment reservoirs in the region 932 

suggest prolonged stability of the sediment reservoir in the Phanerozoic. 933 

During the Early Cretaceous, fluvio-lacustrine sedimentation dominated the weak topography 934 

of the Madura Shelf. By the mid-Albian, widespread marine conditions had become 935 

established, which led to complete blanketing of the region and almost complete concealment 936 

of any pre-existing topography by the end Cretaceous and termination of the Madura 937 

Formation sedimentation. Although widespread similarities in the evolution of depositional 938 

environments across the Bight Basin are recognised between offshore and onshore 939 

stratigraphy, substantial differences exist between the detrital zircon character of the northern 940 

Bight Basin (Madura Shelf), and the distinct Ceduna Delta in the east. These differences 941 

imply a sedimentary disconnect between the eastern Bight Basin and Madura Shelf, and that 942 

a relatively temporally distinct and compositionally unique sediment routing system rapidly 943 

developed in the eastern Bight Basin by at least the Upper Cretaceous in response to uplift of 944 

Australia’s eastern margin. 945 
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