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ABSTRACT 8 

A combined method of finite element reliability analysis and multiplicative dimensional reduction method (M-9 

DRM) is proposed for systems reliability analysis of practical bridge structures. The probability distribution 10 

function of a structural response is derived based on the maximum entropy principle. To illustrate the accuracy 11 

and efficiency of the proposed approach, a simply-supported bridge structure is adopted and the failure 12 

probability obtained are compared with the Monte Carlo simulation method. The validated method is then 13 

applied for the system reliability analysis for a practical high-pier rigid frame railway bridge located at the 14 

seismic-prone region. The finite element model of the bridge is developed using OpenSees and the M-DRM 15 

method is used to analyse the structural system reliability under earthquake loading. 16 
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1.  INTRODUCTION 19 

Reliable and efficient operation of large infrastructure systems such as road and highway networks is essential 20 

to life of people and prosperity of the entire society. These engineering systems usually consist of a number of 21 

sub-systems, -structures and -components that are likely to experience various failures during the service 22 

period, and engineering reliability analysis then become a useful tool for design, operation and maintenance 23 

of these engineering systems. Engineering structural reliability analysis normally bases on structural responses, 24 
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which are normally evaluated by the finite element analysis (FEA) method considering the linear and/or 25 

nonlinear behaviour of structure elements (Zhang & Pandey, 2013; Wei & Rahman, 2010). Therefore, it is 26 

necessary to perform structural reliability analysis in conjunction with the FEA, which is often termed as finite 27 

element reliability analysis (FERA) (Balomenos & Pandey, 2016). However, it is commonly difficult for the 28 

engineers to have advanced programming experience and skills to connect FEA with reliability analysis 29 

techniques in the practical engineering design and analysis work.     30 

Monte Carlo Simulation (MCS) (Rubinstein, 2008) can be used as a general and direct method for the 31 

FERA by repeatedly running the FEA code; however, it can become computationally expensive since the 32 

accuracy and efficiency depends on the total number of required simulations (Sudret & Kiureghian, 2002; 33 

Frangopol, 2008). The first-order and second-order reliability methods (FORM/SORM) are also the most 34 

commonly used approaches, which are based on the linear and quadratic approximations of the limit-state 35 

surface function, respectively. The FORM provides a direct scheme that can be used conveniently to get 36 

structural reliability index. The algorithms based on SORM require the computation of gradients and Hessians 37 

matrix of limit state function that cannot be easily obtained. Furthermore, both FORM and SORM cannot 38 

always provide results with desired accuracy, especially when the levels of uncertainty in the input parameters 39 

are high (Madsen, Krenk, & Lind, 1985; Rackwitz, 2001; Ditlevsen & Madsen, 1996).  40 

Response surface method (RSM) is also commonly used in structural reliability analysis (Faravelli, 1989; 41 

Zheng & Das, 2000; Zhao, Liu, & Yang, 2016). The principle of RSM is to use a series of basis function to 42 

approximate the real complex performance function. Whether the response surface function and sampling 43 

points fit well or not is a key for the RSM. Furthermore, the criteria how to select samples and determine the 44 

sizes of those representative responses need further exploration (Zhang, Pandey, & Zhang, 2011). 45 

Therefore, there is a need for an efficient method which can minimize the FEA computations and provide 46 

accurate approximation of the response probability distribution. Recently, the multiplicative dimensional 47 

reduction method (M-DRM) was proposed to approximate the FEA model by a surrogate function (Zhang & 48 

Pandey, 2013). Several examples are presented in Zhang and Pandey (2013) to illustrate the numerical 49 

accuracy and efficiency of the proposed method in comparison to the Monte Carlo simulation method. The M-50 

DRM primarily includes, an additive decomposition of a multi-dimensional response function into multiple 51 
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one-dimensional functions, an approximation of response moments by moments of single random variable, 52 

and a moment-based quadrature rule for numerical integration. Thus the structural response moments can be 53 

calculated conveniently using M-DRM with a limited number of FEA evaluations. The probability distribution 54 

can then be estimated using the maximum entropy (MaxEnt) principle in combination with the fractional 55 

moments of the response. A small number of fractional moments with MaxEnt provide a highly accurate 56 

approximation of the response distribution.  57 

 From the perspective of application, Balomenos and Pandey (2016) used the M-DRM method for 58 

probabilistic analysis of two tested reinforced concrete slabs with and without shear reinforcement in the FEA 59 

platform ABAQUS. The results predicted by the deterministic FEA simulation show reasonable responses 60 

comparing to the behaviors of test specimens including the ultimate load, deflection and cracking pattern. The 61 

similar approach was used for nonlinear finite element analyses of reinforced concrete and steel frames based 62 

on OpenSees software (Balomenos & Pandey, 2016). 63 

 Following the above discussions, only few researches employed the M-DRM method for structural 64 

reliability analysis for single component or simple structures. In reality, the reliability assessment for complex 65 

structures is more worthy of attention. This paper has extended the application scope of M-DRM method into 66 

the actual complex engineering structures, the high-pier railway bridges, under earthquake loadings. 67 

 In recent years, many high-pier railway bridges have been constructed in Southwestern regions of China 68 

due to rapid economic development and the area’s mountainous site topography (Wang & Gan, 2011). 69 

According to the statistics for Chinese high-pier railway bridges, around 90% of these bridges are located in 70 

the west of China, and approximately 40% of them have piers higher than 40m. Furthermore, these 71 

mountainous railway bridges with piers of varying heights usually have continuous and rigid frame girders in 72 

the superstructure and thin-walled hollow piers. Most of these bridges exceed the specification requirements 73 

and are different from highway bridges which have relatively flexible main girders (Cheng, Yang, Yeh & Chen, 74 

2003). On the other hand, the southwest area of China, where these railway bridges are located, is a dense 75 

seismic zone (e.g., the 2008 Wenchuan Earthquake occurred on May 12, 2008 in Sichuan province with an 76 

earthquake magnitude of 8.0, and the Lushan Earthquake on April 20, 2013, also in Sichuan province, with an 77 

earthquake magnitude of 7.0) (Wang, 2008). Meanwhile, almost all the high-pier railway bridges built in the 78 
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mountainous area, such as the span lengths and pier heights, are beyond the range of seismic design codes 79 

(MRC, 2006).  80 

Moreover, the seismic performance of high-pier railway bridges may be significantly different from that 81 

of highway or pedestrian bridges because of the special structural configurations and varying complex gully 82 

site conditions. For instance, the high-pier railway bridges in the substructure usually have high yet flexible 83 

piers, while the girders in the superstructure are often required to be more rigid in order to avoid derailment of 84 

high-speed trains and excessive vertical deflection caused by rail loads. Consequently, this has shed light on 85 

the importance and necessity of seismic analysis and the design of high-pier railway bridges in the 86 

southwestern regions of China (Caglayan, Ozakgul, Tezer & Uzgider, 2011; Liang, 2007). Therefore, it is of 87 

great importance to study the reliability of high-pier railway bridges under earthquake loading for real-world 88 

applications of seismic design and analysis.  89 

This paper applies the M-DRM with MaxEnt approach for the complex structural system reliability 90 

analysis based on the structural responses evaluated from the FEA. A new multiplicative form of dimensional 91 

reduction method is adapted in this paper. First, the proposed reliability analysis method was applied for a 92 

simple supported highway bridge to validate its numerical accuracy and efficiency in comparison with the 93 

MCS, FORM and SORM. Then, based on the FEA software OpenSees, a high-pier rigid frame railway bridge 94 

was employed using the M-DRM scheme to analyze structural system reliability under earthquake loading. 95 

2.  THEORETICAL BACKGROUND AND NUMERICAL VALIDATION 96 

2.1 Multiplicative dimensional reduction method 
97 

The N-dimensional integration for a continuous, differentiable, and real-valued function ( )  having N 98 

variables 1 2{ , , , } N
N R     in the domain 1

[ , ]
N

i ii
a b

  can be defined as  99 

1

1
1 2 1[ ( )] ( , , , )

N

N

b b

N N
a a

I d d                                  (1) 100 

By using the following linear transformation 101 

, 1, ,
2 2

i i i i
i i

b a b a
x i N

 
                             (2) 102 
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The integration of Equation (1) can be transformed into the symmetric domain as  103 

1 1

1 2 11 1
1

[ ( )] ( , , , )
2

N
i i

N N
i

b a
I x x x x dx dx 

 



                           (3) 104 

By using Taylor series expansion of ( )y x at
1{ , , }T

nx u u u  , Equation (3) can be expressed by 105 

(Rahman & Xu, 2004): 106 

2 4 4
2 4 2 2

2 4 2 2
1 1

1 1 1
[ ( )] [ ( )] ( ) [ ] ( ) [ ] ( ) [ ] ,

2! 4! 2!2!

N N

i i i j

i i i ji i i j

y y y
I x I y u u I x u I x u I x x

x x x x


  

  
    

   
               (4) 107 

where the terms
1

[ ]i
N k

ii
I x

  vanish when k
i

is an odd integer. Consider a univariate approximation: 108 

1

1

ˆ ˆ( ) ( , , ) ( , , , , , , ) ( 1) ( , , )
N

N i

i

x x x u u x u u N u u   


                          (5) 109 

where each term in the summation is a function of only one variable and can be subsequently expanded in a 110 

Taylor series at
1{ , , }T

nx u u u  , and 1{ , , }T
nu u represents the vector of random variables. The following 111 

Equation can then be derived 112 

2 4
2 4

2 4
1 1

1 1
ˆ[ ( )] [ ( )] ( ) [ ] ( ) [ ]

2! 4!

N N

i i

i ii i

y y
I x I y u u I x u I x

x x


 

 
  

 
                           (6) 113 

The univariate approximation leads to the residual error: 114 

4
2 2

2 2

1
ˆ[ ( )] [ ( )] ( ) [ ]

2!2!
i j

i j i j

y
I x I x u I x x

x x
 




  

 
                          (7) 115 

which includes the contributions from integrations of dimension two and higher. For sufficiently smooth ( )x116 

with convergent Taylor series, the coefficients associated with higher-dimensional integrations are much 117 

smaller than that with one-dimensional integrations. In that case, terms associated with higher dimensional 118 

integrations can be neglected. In contrast, the residual error due to the second-order Taylor approximation ( )x119 

can be given by 120 

4 4
4 2 2

4 2 2
1

1 1
[ ( )] [ ( )] ( ) [ ] ( ) [ ]

4! 2!2!

N

i i j

i i ji i j

y y
I x I x u I x u I x x

x x x
 

 

 
   

  
                   (8) 121 

It should be noted that ˆ[ ( )]I x represents a reduced integration since only N number of one-dimensional 122 

integration is required, as opposed to one N-dimensional integration in [ ( )]I x . Furthermore, there is no need 123 
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to calculate the partial derivatives. If the contributions from two and higher dimensional integrations are 124 

negligibly small, ˆ[ ( )]I x provides a satisfactory approximation for [ ( )]I x .  125 

As discussed in Introduction, in structural reliability analysis, the probability of failure for a specific 126 

failure mode is usually calculated through the numerical calculation of multiple integration for the limit state 127 

function. Due to the difficulty in achieving the multiple integration, the univariate dimensionality reduction 128 

method has been used in this paper to approximate the multiple integration by reducing the dimensionality of 129 

the integral and ensuring the adequate accuracy. The methodology of the used univariate dimensionality 130 

reduction method is presented through Equations (1) to (7), along with the approximation error estimated in 131 

Equation (7). In addition, the univariate dimensionality reduction method was compared with the second-order 132 

Taylor approximation scheme of Equation (8), and it is concluded that the approximation based on the 133 

univariate integration can achieve adequate accuracy for the multiple integral evaluation. 134 

For a mechanical system with a random input vector of
1 2{ , , , } N

nX X X X R   that characterizes the 135 

uncertainty in loads, material properties, and geometry, ( )Y X  represent a response of interest with the lth 136 

statistical moment of 137 

[ ( )] ( ) ( )
N

l l l
Y XR

m Y X y x f x dx                              (9) 138 

where 
1

( )X Xf x f  is the joint probability density function of X and  is the expectation operator. Following 139 

the dimension-reduction procedure, the lth moment in Equation (9) can be approximated as 140 

1 1 1 1
1

ˆ[ ( )] ˆ[{ ( )] [{ ( , , , , , , ) ( 1) ( , , )} ]l l
Y

N
l

i N Ni i
i

m Y X x u u x u u N u u  
 



               (10) 141 

In traditional dimensional reduction method, Equation (10) Applying binomial formula: 142 

1 1 1 1

0 1

!ˆ[ ( )] {[ ( , , , , , , )] [ ( 1) ( , , )] } ,
!( )!

l N
l l j j l j j

Y l i i i N N l

j i

l
m Y X C u u x u u N u u C

j l j
  

 

 

       


          (11)   143 

According to Zhang and Pandey (2013), it is proposed to apply the logarithmic transform of the response 144 

function, i.e., log[ ( )]x , which drives a multiplicative form approximate model of the original function. 145 

Consider a general response function, ( )y x , By using the logarithmic transformation, one can obtain: 146 

1 1

1 1 1 1 1 1

( ) log( ) log[ ( )]

( , , ) log[ ( , , )]

( , , , , , , ) log[ ( , , , , , , )]
N N

i iN Ni i i i

x y x

u u u u

u u x u u u u x u u

 

 
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 





               (12) 147 
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By using the inverse transformation, the original function can be written as 148 

1 1 1 1
1

1 1 1 1
1

exp[ ( )] exp[log( (x)] exp[ ( , , , , , , ) ( 1) ( , , )]

exp[(1 ) ( , , ) exp[ ( , , , , , , )]

N

i N Ni i
i

N

iN Ni i
i

x u u x u u N u u

N u u u u x u u

   

 

 


 

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  





           (13) 149 

Substitution of Equation (12) into Equation (13) leads to a multiplicative approximate of the response function 150 

in the following 151 

 
1

1 1 1 1 1
1

ˆ ˆ( ) ( , , ) [ ( , , )] ( , , , , , , )
n

N
iN N Ni i

i

x x x u u u u x u u   
 



                (14) 152 

Then on obtains  153 

1

1 1 1 1

1

1 1 1 1

1

ˆ1

1
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i
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u u u u x u u

u u m
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

 
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 

 
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
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      (15) 154 

The resultant moment evaluation in Equation (15) entails the n-fold numerical integration as n one-dimensional 155 

integrals, which is substantially more efficient. According to Equation (9), the lth-order moment of Y can be 156 

determined by the one-dimensional moment of 157 

ˆ 1 1 1 1 1 1
[ ( , , , , , , )] [ ( , , , , , , )] ( )

i

l l l

i i i N i i i N i iY
m Y u u X u u Y u u X u u f X dX

   
                 (16) 158 

Using the Gaussian quadrature method, the one dimensional integral can be numerically approximated by 159 

a sum of weighted integrand items evaluated at the Gauss points (abscissas) as: 160 

 
1
ˆ 1 1 1 1 1 1 1 1 1

1

[ ( , , , , , , )] [ ( , , , , , , )] ( ) [ ( , , , , , , )]
N

l l l k k l

i i i N i i i N i i i i i i NY
k

m Y u u X u u Y u u X u u f X dX w Y u u X u u     



     (17) 161 

where k
iw and k

iX  represent the k-th Gauss weight and abscissa (Gauss point), respectively; N is the 162 

quadrature order. For the normal and lognormal distribution, the Gaussian quadrature integration rule, 163 

including the quadrature weights and points, can be found from Zhang, Pandey, & Zhang (2011). 164 

 165 
2.2 Probability distribution of structural response 

166 

After obtaining moments of structural response, the Maximum Entropy (MaxEnt) principle will be used for 167 

estimation of the probability distribution (Jaynes, 1957). The most unbiased probability distribution of a 168 
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random variable can be estimated by the MaxEnt principle by maximizing the entropy subjected to constraints 169 

from the available information such as moments of random variables. 170 

The entropy of a continuous random variable having the probability density function (PDF) ( )Yf y can be 171 

defined as 172 

[ ] ( )ln[ ( )]y Y
Y

H f f y f y dy                                 (20) 173 

The PDF function ( )Yf y  can be derived based on the MaxEnt parameters (i.e., the Lagrange multipliers i and 174 

the fractional exponents i ). The MaxEnt parameters can be obtained following the optimization scheme 175 

proposed by Zhang & Pandey (2013) as 176 

0 1

:

: ( , ) ln[ exp( ) ] i

i i

l m
i

i i Y
Y

i i

find and

Minimize D y dy m

 

   
 





  


 
                     (21) 177 

A novel aspect of this computational approach is that the fractions i (i=1, 2,…,m) need not to be specified 178 

a priori as they are calculated via the above optimisation. Details behind the scheme of Equation (21) can be 179 

found in Zhang & Pandey (2013). This procedure has been implemented in the MATLAB using the simplex 180 

search method.  181 

2.3 Numerical validation of linear structure under static loading  
182 

2.3.1 Problem description 
183 

A simply-supported concrete highway bridge shown in Figure 1 is used to illustrate and validate the accuracy 184 

and efficiency of the M-DRM method. C30 concrete is used for the bridge pier and deck. The bridge has a 185 

span length of 24m and the bridge deck width of 9.5m. The cross sections of bridge girder and pier are shown 186 

in Figure 1. All the loadings are applied according to the Chinese General Code for Design of Highway Bridges 187 

and Culverts (JTG D60-2004) (HPDI, 2004). The vertical deflection at middle span is required to be less than 188 

L/800=30mm in accordance with JTG D60-2004. 189 

Eight random variables are considered with the distribution parameters in Table 1. Two variables related 190 

to the uncertainties of structural properties are considered, i.e. the Young’s modulus of the concrete and 191 

moment of inertia of the beam cross-section. The other variables are all related to the loadings and the 192 

distribution of wind load is assumed to be lognormal while other loads follow the normal distribution. 193 
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Table 1.Statistical properties of random variables of the example bridge (linear) 194 

Variable Description Distribution Mean-value Std.D COV Reference 

E Young’s modulus Normal 3.0E10 Pa 2.4E9 Pa 0.08 

(Ellingwood 

& 

Rajashekhar 

, 1995) 

Iz Moment of inertia Normal 0.828 m4 0.041 m4 0.05 Assumed 

W1 Wind load Lognormal 4.66KN 1.025KN 0.22 

(Bartlett, 

Hong & 

Zhou, 2003) 

W2 Wind load Lognormal 5.46KN 1.201KN 0.22 

Q1 Lane load Normal 21KN/m 4.41 KN/m 0.21 

Q2 Human load Normal 4.5KN/m 0.945KN/m 0.21 

D Gravity load Normal 110KN/m 11.0KN/m 0.10 

P Concentrated load Normal 512KN 107.52 KN 0.21 

 195 

 196 

Figure1. Schematic view of a simply-supported railway bridge (linear) (unit: mm) 197 

2.3.2 FERA analysis based on M-DRM 
198 

The FEA model of the simply-supported bridge is developed using the MATLAB software. The response is a 199 

product of 8 sub-functions due to the total of 8 random variables considered. Based on a fifth-order Gauss-200 

Hermite integration scheme, a total of 41 structural analyses need to be performed to derive the distribution 201 

function of vertical deflection at the middle span. A schematic view of the input and output data in performing 202 

the FEA is given in Table 4.  203 

To clearly elaborate on Table 4, a specific case with respect to the Young’s modulus of concrete (E) is 204 

taken as an example. The five quadrature points are given in Table 2 and the rest random variables are fixed 205 

at their mean values. The vertical displacement at the middle span (Y) in each combination can be calculated 206 

using MATLAB and they are tabulated in the table as well. By following this manner, computations are 207 

repeated for all the other random variables. The mean and variance values of structural response can then be 208 
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calculated as 1 1

N

ik
M wY


 and 2

2 1

N

ik
M wY


 respectively. In fact, any fractional moment of order i  can 209 

be approximated in a similar manner as
1

i

i

N

ik
M wY



 
 . aiM is the fractional moment, iw represent  Gauss 210 

weight and ia represent  the -ia th order. 211 

Table 2. Input and Output gird of structural response 212 
Var. N XJ E … P Y(mm) WJ WJ×Y M1 WJ×Y2 M2 

E 

1 -2.8570 2.96E+10 … 5.120E+05 22.8 0.011 0.257 

22.599 

5.853 

510.720 

2 -1.3556 2.98E+10 … 5.120E+05 22.7 0.222 5.041 114.436 

3 0 3.00E+10 … 5.120E+05 22.6 0.533 12.053 272.404 

4 1.3556 3.02E+10 … 5.120E+05 22.5 0.222 4.997 112.428 

5 2.8570 3.04E+10 … 5.120E+05 22.3 0.111 0.251 5.599 

… .. … … … … … … … … … … 

P 

36 -2.8570 3.00E+10 … 2.048E+05 19 0.011 0.214 

22.600 

4.065 

512.341 

37 -1.3556 3.00E+10 … 3.662E+05 20.9 0.222 4.641 97.007 

38 0 3.00E+10 … 5.120E+05 22.6 0.533 12.053 272.404 

39 1.3556 3.00E+10 … 6.578E+05 24.3 0.222 5.397 131.136 

40 2.8570 3.00E+10 … 8.192E+05 26.2 0.111 0.295 7.729 

Mean 41  3.00E+10 … 5.120E+05 22.6      

 213 

As shown in Table 2, when the random variable E is considered, the other seven random variables are 214 

fixed at their mean values and the vertical displacement response Y at middle span can be conveniently 215 

obtained by calling the finite element analysis in MATLAB. The mean value M1 and second order raw moment   216 

M2 of displacement response Y can then be calculated. By following this manner, a total of 8 M1 and M2 will 217 

be calculated. In the last row of Table 4, the vertical displacement response is predicted using the mean values 218 

for all the random variables. Based on Equation (15), the integral statistics moment can be calculated using the 219 

simulation results for the single random variable. The results obtained from M-DRM are given in Table 3. 220 

To demonstrate the accuracy of the proposed method, the results obtained from Metro Carlo simulation 221 

(MCS) method are also presented. Numerical results show that the mean, standard deviation and coefficient of 222 

variation obtained from these two methods are almost the same with a maximum relative error of 0.38%, which 223 

demonstrates the high accuracy of the proposed method. It should be noted that, to have the almost accurate 224 

results, only 41 trials are needed in the M-DRM method but 106 trials are required in the MCS method, meaning 225 

that the M-DRM method can significantly improve the efficiency of the calculation. 226 

 227 

 228 
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Table 3.Comparisons of the response statistics of the example highway bridge 229 
 Vertical displacement at middle span (Y) 

Response statistics M-DRM(41 Trials) MCS(106 Trials) Relative error (%) 

Mean(mm) 22.6530 22.7348 0.38 

Standard deviation  1.8462 1.8502 0.22 

Coefficient of variation 0.0815 0.0814 0.16 

                       Note: Relative error= |MDRM-MCS |/MCS 230 

2.3.3 Failure probability of the highway bridge 
231 

After obtaining the statistic moments of structural responses in Section 3.2, the MaxEnt principle in Section 232 

2.2 is applied to estimate the probability distribution of the vertical displacement response at middle span of 233 

the highway bridge. The MaxEnt optimisation can provide the Lagrange multipliers i  and fractional 234 

exponents i , which are listed in Table 4, and i  and i  can then be used to derive the probability 235 

distribution function. 236 

Table 4. MaxEnt distribution parameters for simply-supported bridge(linear) 237 
Fractional moments Entropy k  0 1 2 3 

m=3 2.28 
i  31.4231 -1.1464 0.5891 0.0277 

i   1.8155 1.9980 1.0078 

 238 

Figure 2 compares the PDFs of the middle span vertical displacement using the MCS and M-DRM 239 

methods, which shows that the PDF results resulting from two methods agree with each other very well.  240 

 241 

 242 
  Figure 2. PDF of the vertical displacement          Figure 3. POE of the vertical displacement  243 

In order to further illustrate the accuracy of M-DRM, Figure 3 presents the probability of exceedance 244 

(POE) of the vertical displacement at middle span using MCS, M-DRM, FORM and SORM methods. It is 245 
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seen that the POE curve for vertical displacement at middle span using the M-DRM is consistent with that of 246 

MCS, while the results from FORM and SORM have large difference with that of MCS. Specifically, Table 5 247 

gives the results of failure probability calculated by MCS method using a total of 106 samples and the other 248 

three methods M-DRM, FORM and SORM. It is observed that M-DRM method lead to accurate estimation of 249 

failure probability with only a relative error of 5.8%, while the relative errors for the FORM and SORM 250 

methods are 42.6% and 36.1%, respectively. 251 

Table 5. Failure probability obtained by different methods 252 
Method MCS M-DRM FORM SORM 

Failure probability 1.55×10-4 1.64×10-4 2.21×10-4 2.11×10-4 

Error (%) - 5.8 42.3 36.1 

2.4 Numerical validation of nonlinear structure under dynamic loading 
253 

2.4.1 Problem description 
254 

The same simply-supported concrete highway bridge of Figure 4 is used to validate the accuracy and efficiency 255 

of the M-DRM method by using the nonlinear structure under dynamic loading. The parameters of the structure 256 

are described in Section 2.3.1 in addition to the nonlinear material models and input ground motion provided 257 

in this section.  258 

The cross section of the pier is shown in Figure 4 and a total of 44 longitudinal reinforcement bars (a 259 

diameter of 22mm) are used having the longitudinal reinforcement ratio of 0.59%. The stirrup rebar has a 260 

diameter of 12mm, the spacing of 100 mm and the volumetric reinforcement ratios of 0.64%. The bottom of 261 

the two piers are fixed and the pile-soil-interaction is not considered. 262 

 263 
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Figure 4. Schematic view of a simply-supported railway bridge (nonlinear analysis) (unit: mm) 264 

2.4.1.1 Ground motions  
265 

The 1979 Imperial Valley earthquake (magnitude 6.53) motions are used. The ground motion has a PGA of 266 

0.162g and a PGD of 0.042m and are shown in the following Figure 5. 267 

 268 
    (a) Acceleration                  (b) Displacement 269 

Figure 5. Ground motion record for the 1979 Imperial Valley earthquake.  270 

2.4.1.2 Uncertainties of bridge structure 
271 

A total of nine random variables are considered in the present study and are listed in Table 6. These variables 272 

can be categorized into three groups, i.e. the parameters for the pier, girder and load. The variables associated 273 

with piers are the Young’s modulus and strength of concrete and steel. The variables for the bridge girder are 274 

the Young’s modulus and compressive strength of concrete. The distribution of the wind load is assumed to 275 

be the lognormal and the gravity loading follows the normal distribution. The mean, standard deviations and 276 

coefficient of variations for all the variables are listed in Table 6. 277 

Table 6. Statistical properties of random variables for the bridge (nonlinear analysis) 278 

Component Variable Description Distribution Mean Std.D COV Reference 

Piers  

Ec1 
Young’s modulus of 

concrete 
Normal 3.00E10 Pa 2.40E9Pa 0.080 

(Ellingwood & 

Rajashekhar, 1995) 

Fc1 
compressive strength 

of concrete 
Normal 2.01E7 Pa 2.71E6Pa 0.135 

(Nowak, Rakoczy, & 

Szeliga, 2011) 

Es 
Young’s modulus of 

steel 
Normal 2.00E10 Pa 6.60E8Pa 0.033 

(Mirza & 

Skrabek1991) 

Fy yield strength of steel Normal 3.35E8 Pa 1.34E7Pa 0.040 

(A. Nowak, S. 

Nowak & Szerszen, 

2003) 

Girder  

Ec2 
Young’s modulus of 

concrete 
Normal 3.00E10 Pa 2.40E9Pa 0.080 

(Ellingwood & 

Rajashekhar, 1995) 

Fc2 
compressive strength 

of concrete 
Normal 2.01E7 Pa 2.71E6Pa 0.135 

(Nowak, Rakoczy, & 

Szeliga, 2011) 

Load W1 Wind load Lognormal 4.66KN 1.025KN 0.22 
(Bartlett, Hong & 

Zhou, 2003) 
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W2 Wind load Lognormal 5.46KN 1.201KN 0.22 

D Gravity load Normal 110KN/m 11.0KN/m 0.10 

2.4.2 FERA analysis based on M-DRM 
279 

The FEA model of the simply-supported bridge with nonlinear material is developed using the OpenSees 280 

software. Due to the 9 random variables considered, a total of 46 structural analyses need to be performed to 281 

derive the distribution function for the curvature response at bottom section of the pier based on a fifth-order 282 

Gauss-Hermite integration scheme.  283 

2.4.2.1 Finite element modelling 
284 

To assess the nonlinear behaviours of the simple supported bridge under earthquake loading, the finite element 285 

model is developed in the OpenSees software. Since there is very less severe damage of the bridge girder 286 

observed during an earthquake, it is assumed that the girder remains linear elastic in the present study and is 287 

modelled using the elastic beam column element. For the bridge piers, they may experience significant 288 

nonlinear deformation during a severe earthquake due to the height, and thus are modelled by the nonlinear 289 

beam column element.  290 

The uniaxial material Concrete02 is used to model the concrete in the deck and piers. Material Steel01 is 291 

used to model the reinforcement bar in the piers. The constitutive models for different material models are 292 

presented in Figure 5. For the constitutive model of steel01 in Figure 6(a), 
y is the yield strength of steel bar 293 

with a value of 335MPa, E represents the initial elastic tangent having a value of 200GPa, and b  is ratio 294 

between post-yield tangent and initial elastic tangent with a value of 0.01.  295 

 296 
                 a) Steel01                            b) Concrete02   297 

Figure 6. Nonlinear material models 298 
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Figure 6(b) shows the constitutive model of Concrete02, where
pcF  is the 28-day concrete compressive 299 

strength equalling 20.1MPa, 
pcuF is concrete ultimate compressive strength with the value of 4.68MPa, 

tsE is 300 

the tension softening stiffness with a value of 100, 
tF is the concrete tensile strength with the value of 301 

3.28MPa,
0
  is the concrete strain at maximum strength equalling 0.002, and 

u
is concrete ultimate strain 302 

having a value of 0.004.   303 

2.4.2.1 Failure probability of the bridge under earthquake loading 
304 

A total of 46 transient analyses are carried out in the OpenSees using the Imperial Valley ground motion of 305 

Figure 5. Figures 7 (a) and (b) present the mean displacement time history responses at the top of pier and the 306 

mean curvature response of the bottom section of pier. The maximum displacement response at the top of pier 307 

is 0.009m at 20.02s, and the maximum curvature of the bottom section of pier is 7.35e-4 at 20.02s.  308 

After the structural response of interest has been obtained, the MaxEnt principle is used to estimate the 309 

probability distribution for the bearing and the system. The Lagrange multipliers i  and fractional exponents310 

i  are derived based on the MaxEnt optimization scheme for the bridge response and are presented in Table 311 

7. 312 

 313 

      a) Displacement history at top of pier     b) Curvature history of the bottom section of pier 314 
Figure 7. Dynamic response of bridge under the Imperial Valley ground motion 315 

Table7. MaxEnt distribution parameters for simply-supported bridge (nonlinear analysis) 316 

Bearing 

Entropy k  0 1 2 3 

7.53e-8 i  -43.1994 -6.6819 0.9119 58.5415 

 
i   1.7644 2.5219 0.3987 
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The PDF of the maximum curvature at the bottom section of the pier is shown in Figure 8. The PDF curve 317 

of the maximum curvature using the M-DRM method agree well with the one by the MCS method. To further 318 

illustrate the accuracy of the M-DRM method, Figure 9 presents the probability of exceedance (POE) of the 319 

maximum curvature at the bottom section of the pier using both MCS and M-DRM methods. It is seen from 320 

Figure 9 that the POE curve derived by the M-DRM method is consistent with the one by the MCS method 321 

with a maximum relative error of 1%. 322 

  323 

Figure 8. PDF of the curvature at the bottom section of the pier   324 

 325 
Figure 9. POE of the curvature at the bottom section of the pier 326 
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3. PRACTICAL APPLICATION: RELIABILITY ASSESSMENT OF A HIGH-PIER RAILWAY 334 

BRIDGE 335 

3.1 Description of the bridge  
336 

A large-span high-pier continuous rigid frame highway bridge located in Guizhou province, China is employed 337 

to be studied. Figure 4 shows the schematic view of the bridge. The prestressed-concrete continuous rigid 338 

frame bridge is located at a V-shaped canyon site. The span lengths of the bridge are 89, 168 and 89 m, 339 

respectively. The cross sections of the bridge deck along the longitudinal direction vary with the locations, 340 

with the maximum height appearing at the pier. Two typical cross-sections of the bridge girder are presented 341 

in Figure 10.  342 

Because of the site conditions, two high piers were designed for the bridge. The pier heights reach 75m 343 

and 103 m, respectively, at Piers #1 and #2. The dimensions of the pier also vary with the pier height. Three 344 

typical cross sections of the pier are given in Figure 4. In the 3-3, 4-4 and 5-5 section views, a total of 584, 768 345 

and 801 longitudinal reinforcement bars with a diameter of 22 mm are used, with the longitudinal 346 

reinforcement ratio of 0.44%, 0.24% and 0.18%, respectively. The diameter of the stirrup is 12 mm. The 347 

distance between adjacent stirrups is 100 mm. For Piers #1 and #2, the volumetric reinforcement ratios for the 348 

stirrup are 0.56% and 0.63%, respectively. Since the main girder is not a vulnerable component of this type of 349 

bridge, only the concrete without accounting for reinforced bars are considered in the modelling. All the 350 

degrees of freedom at the bottom of the two piers are fixed and the pile-soil interaction are not considered. 351 

3.2 Finite element modelling 
352 

To assess the nonlinear behaviours of the rigid frame bridge under earthquake loading, the 3D finite element 353 

model is developed in the OpenSees software. Since there is normally very less severe damage of the bridge 354 

deck observed for the rigid frame bridge during an earthquake, it is assumed that the deck remain linear elastic 355 

in the present study and is modelled using the elastic beam column element. For the bridge piers, they may 356 

experience significant nonlinear deformation during a severe earthquake due to the height, and thus are 357 

modelled by the nonlinear beam column element. The modelling scheme for bridge deck and piers are similar 358 

to that used in Ref. (Matthew & Greg 2008). Bearings may also experience damage under earthquake loading, 359 
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and they are modelled by the two node link element in OpenSees (i.e., TwoNodeLink) (Mazzoni, McKenna, 360 

Scott, & Fenves, 2006). TwoNodeLink element is defined by two nodes and can have a zero or non-zero length. 361 

This element can also have 1 to 6 degrees of freedom, where only the transverse and rotational degrees of 362 

freedom are coupled as long as the element has non-zero length.  363 

 364 

Figure 10. Schematic view of the high-pier railway bridge 365 

The uniaxial material Concrete02 is used to model the concrete in the deck and piers. Material Steel01 is 366 

used to model the reinforcement bar in the piers. For the bearings at the expansion joint, the hardening uniaxial-367 

material is adopted to model the longitudinal nonlinear behaviour of the bearings. The constitutive models for 368 

different material models are presented in Figure 11. For the constitutive model of steel01 in Figure11(a), y369 

is the yield strength of steel bar with a value of 335 MPa in, E represents the initial elastic tangent having a 370 

value of 210GPa, and b  is ratio between post-yield tangent and initial elastic tangent with a value of 0.01. 371 
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Figure 11(b) shows the constitutive model of Concrete02, where pcF  is the concrete compressive strength at 372 

28 days equalling to 23.4MPa, pcuF is concrete compressive strength at ultimate state with a value of 4.68MPa, 373 

tsE is the tension softening stiffness with a value of 100, tF  is the concrete tensile strength with the value of 374 

3.28Mpa, 0
  is the concrete strain at maximum strength equalling 0.002, and u is concrete ultimate strain 375 

have a value of 0.004.   376 

In the constitutive model of Hardening, as shown in 11(c), yF is the yield force of bearing, according to 377 

the bearing reaction force analysis, the value can be used 192.52KN. X is yield deformation, according to the 378 

actual bearing and literature (MRC, 2013), the value is 0.004. b  is ratio between post-yield tangent and initial 379 

elastic tangent, equal to 0.0001. 380 

 381 
           a) Steel01               b) Concrete02                c) Hardening 382 

Figure 11. Material models 383 

3.3 Uncertainty of inputs 384 

3.3.1 Uncertainties of bridge structure 385 

.A total of eight random variables are considered in the present study and they are listed in Table 8. These 386 

variables can be divided into four different categories, i.e. the parameters related to the pier, girder, bearing 387 

and system. The variables associated with piers are the Young’s modulus and strength of concrete and steel; 388 

the corresponding variables related to the bridge girder are the Young’s modulus and compressive strength of 389 

the concrete. The possible variations on the bearing friction factor and damping ratio of system are also 390 

considered in the present study. Lognormal distribution is assumed for the friction factor of the bearing, all 391 

other parameters are assumed following a normal distribution. The mean values, standard deviations and 392 

coefficient of variations of all the variables are tabulated in Table 8. 393 
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Table 8. Statistical properties of random variables of the rigid frame bridge 394 

component Variable Description Distribution Mean Std.D COV Reference 

Piers  

Ec1 
Young’s modulus of 

concrete 
Normal 3.25E10 Pa 2.60E9Pa 0.080 

(Ellingwood & Rajashekhar, 

1995) 

Fc1 
compressive strength 

of concrete 
Normal 2.86E7 Pa 3.86E6Pa 0.135 

(Nowak, Rakoczy, & Szeliga,  

2011) 

Es 
Young’s modulus of 

steel 
Normal 2.00E10 Pa 6.60E8Pa 0.033 (Mirza & Skrabek1991) 

Fy yield strength of steel Normal 3.35E8 Pa 1.34E7Pa 0.040 
(A. Nowak, S. Nowak & 

Szerszen, 2003) 

Girder  

Ec2 
Young’s modulus of 

concrete 
Normal 3.55E10 Pa 2.84E9Pa 0.080 

(Ellingwood & Rajashekhar,  

1995) 

Fc2 
compressive strength 

of concrete 
Normal 3.93E7 Pa 5.31E6Pa 0.135 

(Nowak, Rakoczy, & Szeliga,  

2011)) 

Bearing  𝑢 Friction factor  Lognormal 0.02 0.002 0.100 Assumed  

System   Damping ratio Normal 0.05 0.005 0.100 (Nielson & Desroches, 2007). 

3.3.2 Uncertainty of ground motions 395 

Selection of input ground motions for seismic analysis, especially for the nonlinear dynamic analysis of 396 

structures, is changeling. This is because that a slight fluctuations in the inputs can lead to significant 397 

differences in the output structural responses. In the engineering practice, either the recorded or the synthesized 398 

ground motions are normally used. In the present study, the synthesized ground motions are used due to a lack 399 

of ground motion records in Guizhou Province, China.  400 

The spectral representation method proposed by Bi and Hao (2012) is used to generate the ground motion 401 

time histories. A total 30 ground motions are generated to be compatible with the design acceleration response 402 

spectrum from the Fundamental Code for Design on Railway Bridge and Culvert (J460-2005) (MRC, 2005).  403 

 404 

            a) 30 synthetic ground motions            b) Simulated and target response spectra  405 

Figure 12. Simulated ground motions and response spectra   406 
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According to the site-specific probabilistic seismic hazard analysis for the Chahe Railway bridge (GSB, 407 

2010), the seismic intensity of the high-pier railway bridge is moment magnitude Mw=7 with the design PGA 408 

of 0.15g and the site predominant period of 0.65s. The time duration of the synthesis ground motions is 40.96 409 

s. Figure 12(a) shows the simulated acceleration time histories and good compatibility are observed in Figure 410 

12(b). Based on the ground motion selection requirements and recommendations under JTG/T B02-01 (MTC, 411 

2008) and FEMA P-695 (ATC, 2008), the total 30 synthetic ground motions can well represent the design 412 

response spectra of the bridge. 413 

3.4 Failure modes of RFB 414 

The primary failure modes for the high-pier railway bridge include the failure of bearing displacement 415 

exceeding the limit and the pier ductility failure. 416 

3.4.1 Bearing failure 417 

The limit state function of bearing failure can be expressed as (MRC, 2013): 418 

LS LSOD D                                   (22) 419 

where LSD  is the peak value of displacement response of bearing under earthquake loading, and LSOD is the 420 

limit displacement of bearing. In the present study for the pot type expansion bearing, LSOD  is defined as 0.30m 421 

in according with the specification in Ref. (MRC, 2013). 422 

3.4.2 Failure of pier 423 

Damage to a column can be determined using the relative displacement ductility ratio of the column, namely 424 

(Hwang, Liu, & Chiu, 2001), 425 

1

d

cy







                                   (23) 426 

where Δ is the relative displacement of a column obtained from seismic response analysis of the bridge, and 427 

1cy is the relative displacement of a column when the vertical reinforcing bars begin to yield. In Hwang’s study 428 

(Hwang, Liu, & Chiu, 2001) , according to the displacement ductility ratios, column damages can be 429 

categorized into four states, including the slight damage, moderate damage, extensive damage and complete 430 
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damage, with the respective ductility ratios of 1 1.0cy  , 1.2cy  , 2 1.76c  , and 4.76cmzx  . In this study, the 431 

complete damage state of the piers are defined as the ultimate limit state, i.e., the ductility ratio of 4.76d  is 432 

selected. 433 

At the first yielding, the relative displacement at top of the column can be calculated as (MTC, 2008): 434 

2

1
1

2 /2

3
cy

L
 

（ ）
                                (24) 435 

in which, 1  is the cross-section curvature when the vertical reinforcing bars reach the first yield, L the 436 

column height with 1 75L m  and 2 103L m , respectively, for Pier #1 and Pier #2.The relationship of bending 437 

moment and curvature at different sections of Piers #1 and #2 are shown in Figure 13 based on a pushover 438 

analysis in OpenSees. 439 

 440 

Figure 13. Relationship between bending moment and curvature: (a) bottom of pier #1 (b) bottom of pier #2 441 

(c) top of piers #1 and #2 442 

In Figure13, the blue curves represent actual relationships of the bending moment and curvature of three 443 

sections. It can be easily found, as the curvatures of the sections increase, the bending moments of the sections 444 

increase gradually, and then tend to be stable, the maximum bending moments of 3-3, 4-4 and 5-5 section are445 
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94.75 10 ,N m   
96.45 10 N m  and 

91.62 10 N m  ，respectively. The red curves are the equal relationships of 446 

bending moment and curvature of three sections, which are gotten by the proposed method in the Guidelines 447 

for seismic design of bridge (MTC, 2008). For example in Figure 13(a), we can switch the blue curve to red 448 

curve in accordance with two shaded areas are equal. When the red curve and blue curve are drown together, 449 

the first intersection of two curves is the point that vertical reinforcing bars reach begin to yield in the section. 450 

Like this, we can conveniently get the yield curvature of three cross sections, then according Equation (24) 451 

and (23), the relative displacement ductility ratio are calculated. 452 

3.4.3 Structural system failure  453 

After determining the failures for the bridge bearings and piers, the limit state equations of the structural system 454 

can be calculated. The generalized multidimensional threshold limit state (MTLS) function provides a tool that 455 

allows considering these dependencies among different components of the threshold vector related to different 456 

quantities. The MTLS function L(R, Rlim) are used for the case when n different types of response parameters 457 

considered simultaneously, and can be defined in a n-dimensional form (a mathematical “surface”) as 458 

(Cimellaro, Reinhorn, Bruneau, & Rutenberg, 2006): 459 

1

1 lim

( , , ) ( ) 1
n

Nii
n

i i

R
L R R

R

                             (25) 460 

where iR ith  component of the response vector (e.g., drifts, accelerations, forces, velocities, etc.); limiR ith   461 

component of the threshold vector, representing the one-dimensional limit states; and Ni= interaction factors 462 

determining the shape of the n-dimensional surface. 463 

In the above proposed formulation, the limit states can be considered either linear or nonlinear dependent 464 

and independent. All these options can be formulated as the particular cases from the more general one with 465 

suitable parameters. For the bi-dimensional case in this study, the proposed multidimensional threshold limit 466 

state can be expressed by  467 

( ) ( ) 1 0D
N NLS LS

LSO LSO

D

D





                              (26) 468 



 24 / 32 

 

where LSO  and LSOD = pier displacement ductility ratio and bearing displacement thresholds, their values 469 

are 4.76 and 0.30, respectively; LS  and LSD = displacement response ductility ratio of pier and peak 470 

displacement response of bearing, respectively; N and DN =coefficients determining the shape of the limit 471 

state surface.  472 

A simpler expression is obtained by assuming 1N  and according to (Cimellaro, Reinhorn, Bruneau, & 473 

Rutenberg, 2006), 2DN  , which results in:  474 

2( ) ( ) 1 0LS LS

LSO LSO

D

D




                             (27) 475 

which is the final limit state function of system. Based on Equation (27), on can conveniently combine the 476 

limit state equations for each single component into the limit state equation of the structural system. Then the 477 

limit state equation of the structural system can be used as the objective function to analyze the structural 478 

system reliability using the M-DRM method. 479 

3.5 Failure probability of RFB 480 

After the limit state functions of the components (bearings and piers) and structural system are developed, the 481 

transient analysis can be performed in the OpenSees to obtain the structural responses under the simulated 30 482 

ground motions given in Figure 12. Because a total of 8 random variables are considered and each variable 483 

corresponds to five Gaussian interpolation points, the finite element calculation needs to be performed 41 times 484 

under each ground motion (including the calculation for mean values of each variable). Therefore, a total of 485 

1230 transient analyses are carried out in the OpenSees. Figures 14 (a) and (b) present the typical displacement 486 

time history responses of bearings and piers under the #1 ground motion. 487 

As shown in Figures 14(a) and (b), the displacement responses of bearing show the consistent variation 488 

trend with that of pier for both #1 bearing and pier and #2 bearing and pier. This is due to the fact that well-489 

integral deformation can be maintained for the rigid frame bridge. Specifically, the peak displacement of #1 490 

bearing is slightly larger than that of #1 pier due to the axial deformation of the bridge deck. Under #1 ground 491 

motion, the peak displacement of #1 bearing is 0.1082m while that for #1 pier is 0.0785m.  492 

 493 
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 494 

(a) #1 bearing and pier                     (b) #2 bearing and pier 495 

Figure 14. Displacement response under #1 ground motion  496 

It should be noted that peak value of structural response in the limit state functions is used. According to 497 

Li et al. (Li, Chen, & Fan, 2007), an equivalent extreme-value function can be used for the multiple components 498 

that have same failure mode. For the bearings: 499 

1 2( , )LS LS LSD Minimum D D                               (28) 
500 

1 2,LS LSD D are the peak longitudinal displacement response of #1 bearing and #2 bearing, respectively. For 501 

example, under #1 ground motion, the values of 1LSD and 2LSD are 0.1082m, 0.0995m, respectively, resulting 502 

in a value of 0.1082m for LSD . 503 

For the bridge piers, according to Equations (23) and (24), the relative displacements of piers #1 and #2 504 

can be obtained when the plastic hinges are formed. Also equivalent extreme-value function can be expressed 505 

as: 506 

  1 1 2( , , )cy cy T cy B cy BMinimum                                (29) 
507 

in which 1 1 2, andcy T cy B cy B    are the relative displacements of pier when the plastic hinges are formed at 508 

Sections 3-3, 4-4 and 5-5, respectively. According to Equation (24), the values of 1 1 2, andcy T cy B cy B    are 509 

0.1810m, 0.1953m and 0.3830m, respectively, in this study, so the value of cy  is 0.1810m. It is found that 510 

the top section of #1 pier will form the plastic hinge firstly.  511 
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As discussed in Section 4.4.2, the serious damage state is considered as the limit state in the reliability 512 

analysis for piers, with the relative displacement ductility ratio d of 4.76. According to Equation (30), when 513 

the serious damage occur first at #1 pier, the relative displacement Δ of #1 pier is 0.8616m. Comparing with 514 

the failure displacement of bearing 0.25LSOD m , the failure displacement of #1 pier is larger. This means that 515 

the bearing failure will occur prior to the failure of piers under rare earthquake loading. 516 

After the structural response of interest was obtained, the MaxEnt principle is used to estimate the 517 

probability distribution of bearing and system. Then, i and i are used to define the probability distribution 518 

function. The MaxEnt optimization gives the Lagrange multipliers i  and the fractional exponents i for the 519 

bridge response under #1 ground motion in Table 9. 520 

Table 9. MaxEnt distribution parameters of the bridge under #1 ground motion 521 

Bearing 

Entropy k  0 1 2 3 

9.65e-9 i  -232.4229 335.2931 82.6674 145.1932 

 
i   -0.9526 -36.2530 0.1347 

System 

Entropy k  0 1 2 3 

4.07e-10 i  -92.4705 26.7038 22.1701 110.9979 

 i   0.4838 -0.2410 -1.0642 

The probability distribution of displacement response of #1 bearing under #1 ground motion is shown in 522 

Figure 15(a). It can be seen that, under the #1 ground motion excitation, the probability density value of the 523 

displacement response of #1 bearing is 0.161 at the displacement of 0.132m, which is also the maximum 524 

possible displacement response. For the structural system, the maximum probability density value is 0.527 at 525 

the system ratio of 0.667, as shown in Figure 15(b). 526 

Finally, the failure probability of bearing and system of rigid frame bridge under 30 ground motions is 527 

listed in Table 10 and shown in Figure 16. It is seen from Figure16 that the maximum failure probability of 528 

the bearing is 2.722*10-4 under #13 ground motion. In contrast, the failure probability of the structural system 529 

is greater than that of the bearing, meaning that it is not safe to simply use the failure probability of the 530 

structural system with the failure probability of a component. Similarly, the maximum failure probability of 531 

structural system is 6.265*10-4under #13 ground motion. The failure probability varies with ground motions 532 

obviously for either the structural bearing or system and uncertainty of the ground motions affects the structural 533 
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failure probability much more than the structural parameters. The average failure probabilities of bearing and 534 

structural systems under the total 30 ground motions are 1.071*10-4 and 2.466*10-4, respectively. 535 

 536 

                      a) #1 Bearing                             b) System
 

537 

Figure 15. PDF of the #1 bearing and structural system 538 

 539 

 
540 

Figure16. Failure probability of the high-pier railway bridge under earthquake loading 541 
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Table10. Failure probability of the high-pier railway bridge under 30 ground motions (*10-4) 547 

Ground motion No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 

Bearing 2.120 1.125 0.379 0.536 1.004 1.315 2.192 0.634 0.908 0.513 

System 4.880 2.589 0.873 1.233 2.312 3.026 5.047 1.458 2.091 1.180 

Ground motion No.11 No.12 No.13 No.14 No.15 No.16 No.17 No.18 No.19 No.20 

Bearing 0.518 0.967 2.722 0.884 0.565 1.102 2.114 2.269 0.971 0.365 

System 1.192 2.227 6.265 2.036 1.301 2.537 4.867 5.224 2.236 0.841 

Ground motion No.21 No.22 No.23 No.24 No.25 No.26 No.27 No.28 No.29 No.30 

Bearing 0.412 1.324 0.805 0.750 1.429 1.146 0.582 0.398 0.203 1.887 

System 0.948 3.048 1.853 1.726 3.290 2.638 1.340 0.917 0.468 4.345 

 548 

CONCLUSION 549 

This paper employs the M-DRM method to compute the fractional moments of the response function in 550 

conjunction with the finite element modelling. The method derives the probability distribution of a function of 551 

random variables representing the structural response based on the maximum entropy principle. A highway 552 

simply-supported bridge was used to validate numerical accuracy and efficiency of the M-DRM method. Then 553 

based on OpenSees software, the M-DRM method was used for the structural system reliability assessment of 554 

an actual high-pier rigid frame bridge under earthquake loading. Conclusions are drawn in the following:  555 

(1) The linear static and nonlinear dynamic analysis for a simply supported bridge were carried out to 556 

validate the numerical accuracy and efficiency of the M-DRM method in comparison with the Monte 557 

Carlo simulation. Highly accurate results were obtained via the M-DRM method based on a total of 558 

41 and 46 deterministic model evaluations for both the linear static and nonlinear dynamic analysis, 559 

respectively. 560 

(2) The nonlinear FEA model of an actual high-pier railway bridge was used to approximate the 561 

probability of failure of structure system using the M-DRM method. The M-DRM method is 562 

implemented in OpenSees FEA Software and a total of 1230 deterministic models are evaluated. If 563 

the direct Monte Carlo simulation method was used, a total of 104 deterministic models should be 564 

evaluated at least. The numerical efficiency of M-DRM has been considerably improved by adopting 565 

the Gaussian quadrature for the low-dimensional integration. 566 
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(3) Uncertainties of structural parameters and ground motions are considered. Under earthquake loading, 567 

expansion bearing failure is the primary structural failure mode. For the piers, plastic hinge is formed 568 

first at the top section of #1 pier but the serious damage of pier did not occur. 569 

(4) When only component bearing failure is considered, the average bearing failure probability 570 

is1.071*10-4 under 30 ground motions. When considering a combination of bearing and pier failure, 571 

the average structural system failure probability is 2.466*10-4 under 30 ground motions. Therefore, it 572 

is not safe to simply use the failure probability of the component as the failure probability of the 573 

structural system. 574 
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