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Spatial and temporal variations of spatial population accessibility to public hospitals: A 22 

case study of rural-urban comparison 23 

Abstract 24 

Quantification and assessment of nation-wide population access to health care services is a 25 

critical undertaking for improving population health and optimizing the performance of 26 

national health systems. Rural-urban unbalance of population access to health care services is 27 

widely involved in most of nations. This unbalance is also potentially affected by varied 28 

weather and road conditions. This study investigates the rural and urban performances of public 29 

health system by quantifying the spatio-temporal variations of accessibility and assessing the 30 

impacts of potential factors. Australian health care system is used as a case study for the rural-31 

urban comparison of population accessibility. A nation-wide travel time based modified kernel 32 

density two-step floating catchment area (MKD2SFCA) model is utilized to compute 33 

accessibility of travel time within 30, 60, 120 and 240 minutes to all public hospitals, hospitals 34 

that provide emergency care and hospitals that provide surgery service respectively. Results 35 

show that accessibility is varied both temporally and spatially, and the rural-urban unbalance 36 

is distinct for different types of hospitals. In Australia, from the perspective of spatial 37 

distributions of health care resources, spatial accessibility to all public hospitals in remote and 38 

very remote areas is not lower (and may even higher) than that in major cities, but the 39 

accessibility to hospitals that provide emergency and surgery services is much higher in major 40 

cities than other areas. From the angle of temporal variation of accessibility to public hospitals, 41 

reduction of traffic speed is 1.00% - 3.57% due to precipitation and heavy rain, but it leads to 42 

18% - 23% and 31% - 50% of reduction of accessibility in hot-spot and cold-spot regions 43 

respectively, and the impact is severe in NSW, QLD and NT during wet seasons. Spatio-44 

temporal analysis for the variations of accessibility can provide quantitative and accurate 45 

evidence for geographically local and dynamic strategies of allocation decision making of 46 

medical resources and optimizing health care systems both locally and nationally. 47 

Keywords: Accessibility; spatial and temporal variations; public hospitals; emergency and 48 

surgery service; MKD2SFCA model 49 
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1 Introduction 52 

Nation-wide measurement of population access to health care services and the 53 

assessment of its quality and difference can provide accurate and reasonable evidence for the 54 

improvement of local population health and the performance of health systems (Barber et al. 55 

2017). Universal health coverage (UHC) is an important issue for all nations to achieve 56 

equitable and sustainable development of health systems so that all residents and communities 57 

have access to quality health care services (UN 2015). Australian health care system is highly 58 

valued and considered as a model of transparent and public, easy access, quality and 59 

comprehensive health care services. The spending of health care accounts for about 3.7% of 60 

annual gross domestic product (GDP) or nearly 2 542 Australian dollars per person (Australian 61 

Institute of Health and Welfare 2015). Australian health system contains diverse public and 62 

private hospitals and their care services including preventive health services, primary and 63 

community health services, spatialized services for all residents across the nation (Australian 64 

Institute of Health and Welfare 2011, Australian Institute of Health and Welfare AIHW 2016b). 65 

While, the internal unbalance of population access to health care services exists in the health 66 

systems of all nations, especially in Australia with a vast territory, due to various factors: varied 67 

locations of residents, distinct geographical conditions, the spatial variations of road network 68 

and traffic conditions, seasonal variation of weather conditions, uneven distributions of 69 

population and the allocation of hospital resources such as general practitioners, medical 70 

specialists and available beds (Smith et al. 2017, Makanga et al. 2017, Cheng et al. 2016, 71 

Arcury et al. 2005, Wang and Luo 2005, Guagliardo 2004). Most of the previous studies 72 

concern the geographical access to health care services from the scale of a city or region to 73 

learn the performance of local health system (Cheng et al. 2016, Luo and Wang 2003, Shah, 74 

Bell, and Wilson 2016), but only a few researches accurately quantify the access to hospitals 75 

in a vast-territory nation (Brabyn and Skelly 2002, Sanmartin et al. 2004, Schoen et al. 2004). 76 

Access to health care services within a nation is much more sophisticated, potentially 77 

unbalance, uncertain and distinct spatially and temporally than city-wide conditions. In 78 

addition, compared with the researches in cities, current studies lack the information and 79 

assessment about the geographic distribution of health care services especially specialty 80 

services in rural regions and remote areas (Guagliardo 2004, Jütting 2004, McGrail and 81 

Humphreys 2009, Shah, Milosavljevic, and Bath 2017). Thus, accurately quantifying local 82 

access to health care services across a nation is a critical undertaking to have comprehensive 83 

understanding of a complex nation-wide health system.  84 
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Spatial or geographical accessibility refers to the ease and resources with which 85 

residents in a region can access facilities and services (Hewko, Smoyer-Tomic, and Hodgson 86 

2002). It provides essential quantitative information of the spatial and social inequalities in the 87 

access for the decision making of planning, maintenance and optimization of facilities 88 

(Apparicio et al. 2008). These inequalities potentially lead to both positive health conditions 89 

such as quality health care services and easy access to recreational facilities in some regions 90 

and negative ones with waste and pollution related facilities and infrastructures in other areas 91 

(Wang and Luo 2005, Witten, Exeter, and Field 2003, Song et al. 2015, Wu et al. 2017, Wu et 92 

al. 2016). Spatial accessibility is commonly measured indicator based on the travel distance or 93 

time to the facilities from demands (Luo and Wang 2003). In terms of the travel distance or 94 

time-based calculation, the measurements of spatial accessibility can be divided into two 95 

categories. The first one is calculating distance or time, and series of indicators are utilized 96 

such as the distance or time between a demand and its closest facility or a given number of 97 

closest facilities, the average distance or time between a demand and all facilities or a given 98 

number of facilities, etc. (Apparicio et al. 2008, Apparicio, Cloutier, and Shearmur 2007, Smith 99 

et al. 2017). Another category of measurements is to compute the number of facilities or 100 

facility-demand ratio within a certain administrative unit, time or distance threshold (Apparicio 101 

et al. 2008, Luo and Wang 2003, Jamtsho, Corner, and Dewan 2015, Love and Lindquist 1995). 102 

The latter one has improvements to quantify spatial accessibility by incorporating the medical 103 

staff or beds to population ratios with the relative geographical relations in capturing the 104 

population access to hospitals (Love and Lindquist 1995). For instance, doctor-population ratio 105 

(DPR) is applied in analyzing the spatial layout and distributions of high level medical 106 

resources in Shenzhen, China (Cheng et al. 2016), and bed-population ratio (BPR) together 107 

with distinct critical distances from inhabitants to hospitals is used to study the accessibility of 108 

cardiovascular diseases to hospitals in Kentucky, US (Hare and Barcus 2007). 109 

The DPR or BPR oriented spatial accessibility to hospitals is generally analyzed using 110 

floating catchment area (FCA) models (Luo and Wang 2003, Jamtsho, Corner, and Dewan 111 

2015). Compared with traditional gravity model, FCA models are specialized variants and have 112 

improvement since they are intuitively interpretable for the facility-demand relations, and use 113 

spatially varied population catchment areas for service centers (McGrail and Humphreys 2014, 114 

Delamater 2013, Wan, Zou, and Sternberg 2012). To further describe the spatial competing 115 

relationships between population and hospitals that local residents compete for the finite health 116 

care resources in the nearby hospitals, and hospitals share the necessities of surrounding 117 
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residents, a two-step floating catchment area (2SFCA) model is proposed by repeating FCA 118 

process twice for both facilities and demands (Radke and Mu 2000). 2SFCA model is a primary 119 

measurement of spatial accessibility to health care services due to its incorporation of 120 

population demands, hospital resources and the travel cost calculated as geographical distance 121 

or travel time (Cheng et al. 2016, Luo and Wang 2003). Two concerns need to be determined 122 

to analyze spatial accessibility using 2SFCA model and its revised or improved versions. The 123 

first one is to outline the catchment areas of population. Catchment areas are commonly 124 

outlined by the concentric circles within a given travel time or distance including Manhattan 125 

distance, Euclidean distance and the travel distance in the road network (Apparicio et al. 2008, 126 

Luo and Qi 2009, McGrail 2012). The nearest administrative or geographical neighbors within 127 

a clustering region also could be utilized to define catchment areas (Jamtsho, Corner, and 128 

Dewan 2015). Second, a proper distance decay function should be determined to descript 129 

relative distance weights of distance impendence parameters related to residents, resources of 130 

hospitals, and DPR or BPR. Since few studies investigate the impact of distance decay function 131 

on spatial accessibility, the choice of distance decay function depends on the case and expert 132 

experience (Jamtsho, Corner, and Dewan 2015). The commonly used distance decay functions 133 

include inverse power, linear, exponential, Gaussian and their revisions (Apparicio et al. 2008, 134 

Cheng et al. 2016, Langford, Fry, and Higgs 2012, Bauer et al. 2017, Jamtsho, Corner, and 135 

Dewan 2015, Fransen et al. 2015, Pan et al. 2015, Kwan 1998). A proper distance decay 136 

function can benefit the determination of critical weighted distance of both demands of 137 

residents and resources of hospitals. For instance, an enhanced 2SFCA (E2SFCA) model is 138 

proposed to apply different constant weights to the accessibility within discrete zones of the 139 

catchment areas of residents and hospitals (Luo and Qi 2009), and kernel density 2SFCA 140 

(KD2SFCA) utilized a continuous function of decay distance for weighting parameters 141 

(McGrail 2012, Polzin, Borges, and Coelho 2014).  142 

In recent studies, the 2SFCA series of models are further improved to deal with the 143 

overestimation of spatial accessibility. 2SFCA, E2SFCA and KD2SFCA models tend to 144 

overestimate the accessibility in the catchment areas where hospitals are densely distributed 145 

(Chu et al. 2016). The three-step FCA (3SFCA) model is proposed to introduce competition 146 

among health care resources of hospitals to minimize variability in spatial accessibility under 147 

the assumption that the demands of residents are affected by the availability of health care 148 

resources in other neighboring hospitals (Chu et al. 2016, Wan, Zou, and Sternberg 2012, Shah, 149 

Milosavljevic, and Bath 2017). All the above FCA models contain an underlying assumption 150 
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that hospitals are optimally allocated to meet the requirements of the population within the 151 

health system, but truly optimal allocations are extremely unlikely in real-world health care 152 

systems, leading to an overestimation of spatial accessibility throughout the system (Delamater 153 

2013, Jamtsho, Corner, and Dewan 2015). To address this issue, a modified 2SFCA (M2SCFA) 154 

model is proposed based on 2SFCA and permits suboptimal allocations of health care resources 155 

of hospitals in the health system (Delamater 2013). Due to the integration of the accessibility 156 

to hospitals and availability of health care resources, and progressively decreased total 157 

opportunities available for the population access to hospitals with the increased distance from 158 

residents to hospitals, M2SCFA model makes more sense in the real-world health systems and 159 

is much more reliable for measuring spatial accessibility to health care services than previous 160 

models (Delamater 2013, Jamtsho, Corner, and Dewan 2015). Especially, it has advantages 161 

over quantitative assessment and comparison of large spatial scale health systems in a state or 162 

nation, and is accurate in evaluating the overall impacts of local variations in the whole health 163 

system (Delamater 2013, Jamtsho, Corner, and Dewan 2015).  164 

This paper aims to investigate the spatial and temporal variations of population 165 

accessibility to public hospitals in Australia. In this paper, three aspects are involved in 166 

accessibility calculation: health care resources in hospitals, demands of health care and the 167 

travel time of residents to hospitals. The number of beds is used as a proxy variable of health 168 

care resources in all public hospitals across Australia, since medical staff and available beds 169 

are two primary indicators of health care resources as mentioned above, but data of medical 170 

staff is not available in this study. Spatial accessibility of all public hospitals is studied, and 171 

accessibility of the hospitals that provide emergency care and those providing surgery service 172 

are also studied respectively. Public hospitals are the objective in this study and private 173 

hospitals are not concerned, because public hospitals are mainstream in Australian health care 174 

system, which are more concerned by authorities in their decision making, and public and 175 

private hospitals provide different services. In 2011-12 fanatical year, public hospitals and 176 

available beds are 1.27 times and 2.33 times the numbers of private hospitals, and public 177 

hospitals provide most emergency (94%) and outpatient (97%) services, but private hospitals 178 

are primarily serving hospitalizations (Australian Institute of Health and Welfare AIHW 179 

2014a). Population weighted centroids (PWCs) and the total population within local 180 

government areas (LGAs) are computed with high spatial resolution population data to reflect 181 

the demands of health care resources. Then the nation-wide travel time based spatial 182 

accessibility is measured using a modified kernel density 2SFCA (MKD2SFCA) model by 183 
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incorporating the M2SCFA model and a continuous kernel density function of decay distance 184 

for weighting distance impendence functions. Precipitation is regarded as a primary variable 185 

affecting the travel speed in local road segments, influencing the spatial and temporal variations 186 

of travel time and population accessibility to public hospitals. Spatially local autocorrelation is 187 

performed to explore the spatial and temporal variations of the hot-spot and cold-spot regions 188 

of accessibility with local indicators of spatial association (LISA) (Anselin 1995), respectively. 189 

Variations of accessibility are investigated by the monthly summary of accessibility and its 190 

spatial clusters within different remoteness regions, states and the selected cities.  191 

2 Material and Methods 192 

2.1 Public hospitals data 193 

Australian health system is an important exemplar for nation-wide accurate study of the 194 

performance of health care services due to continuous and relatively complete statistics, diverse 195 

hospitals and health care resources, and the complex conditions of access to hospitals across a 196 

vast territory. Statistical information of 778 public hospitals, including 204 hospitals that 197 

provide emergency care and 246 hospitals providing surgery service, are collected by the 198 

Australian Institute of Health and Welfare (AIHW) across Australia in the 2012-13 financial 199 

year (Australian Institute of Health and Welfare AIHW 2014c, b). The numbers of beds in three 200 

types of hospitals are 58 311, 44 404 and 46 576 respectively. According to the statistical report 201 

from AIHW, the spatial distributions of public hospitals and their health care resources are 202 

stable and have no great changes, where the total number of public hospitals is slightly 203 

decreased, and the bed numbers are increased by an average of 1.0% per year from 2011-2012 204 

to 2015-2016 (Australian Institute of Health and Welfare AIHW 2017). Thus, the data of public 205 

hospitals in 2012-13 is representative for assessing the spatial and temporal variations of 206 

accessibility to public hospitals. Public hospitals of different types are geocoded and mapped 207 

in Fig. 1, where Fig. 1 A shows the distributions of hospitals and bed numbers across Australia, 208 

and the distributions in eight capital cities in the states or territories are mapped in Fig. 1 B - I. 209 

The capital cities are Sydney in New South Wales (NSW), Melbourne in Victoria (VIC), 210 

Brisbane in Queensland (QLD), Perth in Western Australia (WA), Adelaide in South Australia 211 

(SA), Canberra in Australian Capital Territory (ACT), Hobart in Tasmania (TAS) and Darwin 212 

in Northern Territory (NT).  213 

Fig. 1 about here 214 
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2.2 Variables affecting spatial accessibility 215 

The demands of residents are characterized by population located at PWCs of LGAs. 216 

Population is unlikely distributed homogeneously within a local administrative census unit, 217 

particularly in Australia. PWC can therefore more accurately represent the location of 218 

population in a LGA than the geometric centroid (Hwang and Rollow 2000). The spatial 219 

locations of PWCs are probably distinct and far from the geometric centroids of LGAs 220 

especially in the suburban, rural and remote regions with large geographical space but dense 221 

population distributed in small areas (Luo and Wang 2003). To accurately generate the 222 

geographical locations of PWCs of LGAs, grid population in Australia in 2012-13 is calculated 223 

by the average of grid population data in 2010 and 2015 with spatial resolution of 1 km, which 224 

is sourced from NASA Socioeconomic Data and Applications Centre (SEDAC) (Center for 225 

International Earth Science Information Network - CIESIN - Columbia University 2016). The 226 

location of PWC is as population weighted coordinates within a LGA, which is calculated by: 227 

{
𝑥0 =

∑ 𝜌𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝜌𝑖
𝑛
𝑖=1

𝑦0 =
∑ 𝜌𝑖𝑦𝑖

𝑛
𝑖=1

∑ 𝜌𝑖
𝑛
𝑖=1

                                                             (1) 228 

where 𝑥0 and 𝑦0 are coordinates of PWC of a LGA, 𝑥𝑖 (𝑖 = 1, 2, … , 𝑛) and 𝑦𝑖 are coordinates 229 

of population grid within the LGA, and 𝜌𝑖  is the population value at 𝑖 th grid. PWCs and 230 

corresponding population of 564 LGAs (2013) in Australia (Australian Bureau of Statitics ABS 231 

2013) are computed and shown in Fig. 1.  232 

In addition to the health care resources in hospitals and demands of residents, the spatial 233 

and temporal variations of spatial population accessibility to hospitals are also potentially 234 

affected by the geographical locations and the traffic conditions affected by weather conditions. 235 

The spatial difference of accessibility is explored from three stages of spatial scales, LGA, state 236 

or territory and remoteness area. The geographical remoteness structure is a critical undertaking 237 

of government services in Australia, such as census statistics (Australian Bureau of Statitics 238 

ABS 2011). The Australian Bureau of Statistics (ABS) defines five primary levels of 239 

remoteness areas across the nation by the Australian Statistical Geographical Classification 240 

(ASGS) Remoteness Structure: major cities, inner area, outer area, remote area and very remote 241 

area (Australian Bureau of Statitics ABS 2011). Remoteness structure is also an effective 242 

indicator to differentiate the varied performance of health care services nationally in Australia 243 

(McGrail and Humphreys 2014).  244 
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Weather condition especially the severe weather near road network has negative impact 245 

on accessing health care services and it is a barrier for residents to seek specialized hospitals 246 

(Blanford et al. 2012, Makanga et al. 2017). Geospatial data of road network, including primary 247 

and secondary roads, with 86 989 road segments is collected in Australia (MapCruzin). Since 248 

the real monitoring data of traffic speed and the speed limits of all road segments are 249 

unavailable, the default speed limit of primary and secondary roads defined by states and 250 

territories is used as a proxy variable of traffic speed of road segments. The speed limit in built-251 

up regions is 50 km/h except for NT with 60 km/h, and the speed limit outside built-up regions 252 

is 100 km/h except for WA and NT with 110 km/h (Wolhuter 2015). In general, precipitation 253 

and its duration can affect vehicle speed and thereby have impact on the travel time determined 254 

spatial accessibility. In this paper, the spatio-temporal variation of precipitation is characterized 255 

using the monthly remote sensing data of precipitation rate (mm/h) with the spatial resolution 256 

of 0.25° (~25 km) during July 2012 – June 2013 from the Tropical Rainfall Measuring Mission 257 

(TRMM) 3B43 (version 7) product (Huffman et al. 2007). Monthly precipitation data is 258 

resampled and computed to the data with the spatial resolution of 10 km and the unit of 259 

mm/week (Song et al. 2016) (Fig. 2). Previous studies show the negative impacts of 260 

precipitation on traffic conditions that light rain may cause a 3% - 13% or 1.9 to 12.9 km/h 261 

reduction of traffic speed, and heavy rain leads to a 3% - 17% or 4.8 to 16.0 km/h reduction 262 

depending on precipitation and time of day (Program 2009, Rahman and Lownes 2012, Akin, 263 

Sisiopiku, and Skabardonis 2011). In this paper, by summarizing these studies, the statistical 264 

relationship between precipitation and potential impact on traffic speed is defined as: 265 

𝑣𝑝 = {
𝑣𝑑 𝑝 < 𝜏

𝑣𝑑(1 − 𝛼
𝑝

𝛿
) 𝑝 ≥ 𝜏                                              (2) 266 

where 𝑣𝑑  is the default speed limit and 𝑣𝑝  is the estimated speed in a road segment, 𝑝  is 267 

precipitation rate (mm/week), 𝜏 and 𝛿 are critical values between dry month and light rain 268 

month, and that between light rain and heavy rain months respectively, and 𝛼 is a precipitation 269 

caused speed reduction rate. Based on the above discussion of the associations between traffic 270 

speed and precipitation or heavy rain, approximately consistent parameters are set in this paper, 271 

where 𝜏 = 1 mm/week, 𝛿 = 42 mm/week or 0.25 mm/h, and 𝛼 = 5%. Distributions of two 272 

critical values for light and heavy rain are mapped in Fig. 2. For instance, given the default 273 

speed limit of a road segment 𝑣𝑑 = 100 km/h and monthly average precipitation rate 𝑝 = 20 274 

mm/week, the estimated speed is 𝑣𝑝 = 97.6 km/h, which means that precipitation leads to a 2.4 275 

km/h or 2.4% reduction of traffic speed in this road segment. If the precipitation is 100 276 
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mm/week on this road, the estimated speed will be 88.1 km/h, which is decreased 11.9 km/h 277 

or 11.9% of traffic speed. These examples demonstrate that the proposed statistical relationship 278 

presents a reasonable and conservative estimation of the potential impact of precipitation on 279 

the reduction of traffic speed.  280 

Fig. 2 about here 281 

2.3 MKD2SFCA-based assessment of spatial accessibility 282 

MKD2SFCA model is applied on the assessment of nation-wide spatial accessibility to 283 

public hospitals by incorporating the reliable M2SCFA model and a continuous kernel density 284 

function of decay distance for weighting distance impendence parameters. The result of spatial 285 

accessibility is a BPR adjusted by the weighted interactions of both hospital side and demand 286 

side in each LGA. There are two steps to calculate the spatial population accessibility of LGA 287 

at the location of PWC to hospitals. First, BPR is computed for all pairs of hospitals and PWCs 288 

within a given threshold of travel time. The computation equation is: 289 

𝑅𝑖,𝑗 =
𝐵𝑗𝑓(𝑡𝑖,𝑗)

∑ 𝐶𝑖𝑓(𝑡𝑖,𝑗)𝑖∈[𝑡𝑖,𝑗≤𝑡0]
                                                 (3) 290 

where 𝑅𝑖,𝑗 is an adjusted ratio of number of beds in 𝑗th hospital to population in 𝑖th LGA, 𝐵 is 291 

the number of beds, 𝑡0 is a given threshold of travel time for the range of health care services, 292 

 𝑡𝑖,𝑗 is the travel time between 𝑗th hospital and PWC of 𝑖th LGA, 𝐶 is the population of a LGA 293 

that located within the range of 𝑡𝑖,𝑗 ≤ 𝑡0, and 𝑓(𝑡) is an impedance function describing the 294 

preference of residents to the relatively near hospitals with less travel time. In this paper, a 295 

Gaussian kernel is used for the density function 𝑓(𝑡) due to its slow rate of reduction and 296 

avoiding rapid dropping to zero. 𝑓(𝑡) is calculated by: 297 

𝑓(𝑡) = {𝑒−
𝑡2

𝑛 𝑡 ≤ 𝑡0

0 𝑡 > 𝑡0

                                                (4) 298 

where 𝑛 is the number of PWCs of LGAs within the range of 𝑡 ≤ 𝑡0.  299 

The second step is to search all hospitals within the given threshold of travel time 𝑡0 for 300 

each PWC of LGA. The spatial population accessibility of a PWC to hospitals is a sum of 301 

weighted adjusted bed-population ratio:  302 

𝐴𝑖 = ∑ 𝑅𝑖,𝑗𝑓(𝑡𝑖,𝑗)𝑗∈[𝑡𝑖,𝑗≤𝑡0]                                              (5) 303 
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where 𝐴𝑖 is accessibility of PWC of 𝑖th LGA. 𝐴𝑖 with a higher value reveals a better spatial 304 

accessibility to hospitals, which means easier access and more health care resources, and that 305 

with a lower value indicates the shortage in this LGA (Cheng et al. 2016). Thus, the spatial 306 

accessibility generated by MKD2SFCA model can be summarized as:  307 

𝐴𝑖 = ∑
𝐵𝑗𝑓(𝑡𝑖,𝑗)𝑓(𝑡𝑖,𝑗)

∑ 𝐶𝑖𝑓(𝑡𝑖,𝑗)𝑖∈[𝑡𝑖,𝑗≤𝑡0]
𝑗∈[𝑡𝑖,𝑗≤𝑡0]                                        (6) 308 

In this paper, monthly spatial accessibility is computed across Australia from July 2012 309 

to June 2013. Temporal variation of population accessibility to public hospitals is primarily 310 

caused by on-road precipitation especially heavy rain, and it is assessed by transforming the 311 

monthly variation of accessibility to the equivalent number of beds reduction. The equivalent 312 

beds reduction calculated for each remoteness area using a linear regression: 313 

𝐴𝑘,𝑙 = 𝛽𝑘𝑝𝑘,𝑙 + 𝜀𝑘                                                      (7) 314 

where 𝛽𝑘 is the equivalent beds reduction rate within 𝑘th remoteness area, 𝐴𝑘,𝑙  and 𝑝𝑘,𝑙  are 315 

spatial accessibility and mean on-road precipitation in 𝑙th LGA within 𝑘th remoteness area, 316 

and 𝜀𝑘  is a random error. Further, once 𝛽𝑘  is determined, the corresponding percentage of 317 

reduced equivalent beds to all beds in Australia is: 318 

𝑞 = ∑
𝛽𝑘𝑝𝑘

′ 𝐶𝑘

𝐵𝑘
𝑘                                                           (8) 319 

where 𝑞 is the percentage of reduced equivalent beds to all beds, 𝑝𝑘
′ , 𝐶𝑘 and 𝐵𝑘 are the range 320 

of monthly average on-road precipitation, total population and total number of beds in hospitals 321 

in 𝑘th remoteness area. The molecular is a sum of reduced equivalent number of beds in the 322 

𝑘th remoteness area. 323 

Spatial variation of the monthly spatial accessibility is assessed by identifying its spatial 324 

clusters. LISA is utilized to present the geographically local autocorrelations or clusters that 325 

are statistically significant spatial outliers in accessibility (Anselin 1995, Ge et al. 2016). LISA 326 

is a relative indicator that is only meaningful within a given significance level (McKinley et al. 327 

2013). The local clusters here are explored with the statistical significance level of 0.05. In the 328 

results of LISA analysis, a hot-spot region indicates that an LGA has high accessibility and its 329 

surrounding LGAs are of high accessibility simultaneously, and a cold-spot region is an LGA 330 

that has low accessibility and low-value neighbors (Ge et al. 2016).  331 
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3 Results  332 

3.1 Impact of precipitation on traffic speed 333 

Monthly variation of traffic speed at road segment level is computed using the proposed 334 

statistical equation between precipitation and traffic speed. Fig. 2 illustrates the monthly traffic 335 

speed distributions affected by precipitation, where the speed variation is the monthly speed 336 

minus the annual mean speed. Fig. 3 shows the distributions of the estimated annual mean 337 

speed of road segments in Australia. On-road precipitations are distinct spatially and 338 

temporally. In July 2012 to June 2013, the estimated monthly average on-road precipitation 339 

ranges from the minimum of 8.42 mm/week in October 2012 to the maximum of 30.03 340 

mm/week in February 2013. In this paper, month precipitation of 1 mm/week and 42 mm/week 341 

are defined as critical values between dry month and light rain month, and that between light 342 

rain and heavy rain months respectively. The on-road precipitations on more than 66.37% the 343 

number of road segments are higher than 1 mm/week in every month in a year. On-road 344 

precipitations higher than 42 mm/week appear on more than 39.53% of road segments at least 345 

in one month, and on more than 16.38% the number of road segments over three months. In 346 

January, February, March and June 2013, 29.06%, 36.15%, 12.29% and 14.21% the number 347 

of road segments suffered from heavy rain respectively, but less than 1% of road segments 348 

encounter heavy rain in other months.  349 

Fig. 3 about here 350 

Fig. 4 summarizes the monthly average precipitation rate, average traffic speed and the 351 

percentage of speed reduction compared with the default speed limit in each LGA for eight 352 

states or territories respectively in Australia. Traffic speed is associated with the seasonal 353 

variation of on-road precipitation. The monthly average reduction rate of speed ranges from 354 

1.00% to 3.57%. More than 1% of average speed reduction caused by precipitation appears in 355 

more than ten months in ACT and TAS, more than eight months in NSW, QLD and WA, and 356 

more than five months in SA and NT. Continuous rainfall especially heavy rain leads to more 357 

than 5% of traffic speed reduction in NSW in January and June, in QLD from January to 358 

February, and in NT in March, 2013.  359 

Fig. 4 about here 360 
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3.2 Spatial accessibility to public hospitals 361 

Cumulative population coverage of hospitals is a direct method to describe and compare 362 

the performance of health care services in different regions. In this paper, cumulative 363 

population coverage is computed as a function of travel time to the nearest hospital from each 364 

PWC of LGA. Fig. 5 presents the cumulative population coverage in Australia, in each state or 365 

territory, and in each remoteness area. Table 1 summarizes the average travel time from PWCs 366 

of LGAs to the nearest hospitals in different remoteness areas and population coverage by 367 

travel time of 30, 60, 120 and 240 minutes. In Australia, more than 50% of population at PWCs 368 

have access to their nearest hospitals within 5 minutes, over 90% of population can reach 369 

hospitals within 15 minutes, and more than 99% of residents live within 34-minute range of 370 

hospitals. It is estimate that about 39 191 (0.17%) of residents live in the regions over two hours 371 

from the nearest public hospitals, and all population are within four-hour coverage of hospitals. 372 

Further, the population coverage of hospitals varies in different locations. For instance, 80% 373 

of population can be covered by hospitals with 8-minute range in SA, 14-minute range in WA, 374 

21-minute range in TAS and 37-minute range in NT. In average, 80% of residents in major 375 

cities have access to hospitals within 10 minutes. Residents in inner area, outer area and remote 376 

area may spend 15 – 16 minutes, but those live in very remote area need 58 minutes. In addition, 377 

all residents in outer area are covered by 60-minute range of hospitals. Residents in major cities, 378 

inner area and remote area live within 120-minute travel to hospitals, and those in very remote 379 

are covered by 240-minute range. Within a 30-minute range of public hospitals, percentages of 380 

residents live in major cities, inner area, outer area, remote area and very remote area are 381 

69.08%, 20.15%, 9.13%, 0.87% and 0.76% respectively.  382 

Fig. 5 about here 383 

Table 1 about here 384 

The monthly accessibility to hospitals is visualized in a map with two statistical 385 

indicators: annual mean accessibility and the coefficient of variance (CV) of monthly 386 

accessibility in each LGA. CV is a percentage ranging from 0 to 1, computed as the ratio of 387 

standard deviation to the mean, showing the extent of accessibility variability in different 388 

months in relation to the mean accessibility. Further, CV also indicates the potential impact of 389 

precipitation on the variation of spatial accessibility. Fig. 6 shows the spatial distributions of 390 

annual mean population accessibility from PWCs to all public hospitals, hospitals that provide 391 

emergency care and hospitals that provide surgery service, respectively. To simplify the display 392 
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of results and highlight the spatial difference and variations, only the distributions of 393 

accessibility within 30-minute and 240-minute travel time are presented. Since 67.06% of 394 

population are gathered in eight capital cities, where 20.74%, 19.24% and 8.56% of national 395 

population respectively are distributed in Sydney, Melbourne and Perth (Australian Bureau of 396 

Statitics 2017b), but other regions with large areas are sparsely populated with a few residents, 397 

distributions of spatial accessibility in Perth, Sydney and Melbourne are enlarged in the maps. 398 

In general, for all three types of hospitals, accessibility is increased and the range of high 399 

accessibility is enlarged with the increase of threshold of travel time from 30 minutes to 240 400 

minutes. In addition, LGAs with high accessibility to all public hospitals are distributed in both 401 

major cities and other areas, but those with high accessibility to hospitals that provide 402 

emergency and surgery services are primarily distributed in major cities, and sparsely 403 

distributed in other areas. There are 142 LGAs where there are no public health services (BPR 404 

= 0) and 118 LGAs with the spatial accessibility of travelling within 240 minutes smaller than 405 

0.001 beds per 1000 persons, which means residents within at least 24 LGAs without beds in 406 

hospitals can access hospitals in the neighbour LGAs. Similarly, residents within at least 15 407 

LGAs (402 LGAs with BPR = 0 and 387 LGAs with accessibility = 0) and 27 LGAs (361 408 

LGAs with BPR = 0 and 334 LGAs with accessibility = 0) can access public hospitals that 409 

provide emergency and surgery services in the nearby LGAs respectively, even when there are 410 

no beds in hospitals within their local LGAs.  411 

Fig. 6 about here 412 

3.3 Spatial and temporal variation of accessibility  413 

Fig. 7 shows the equivalent beds reduction of temporal variation of spatial accessibility 414 

caused by monthly variation of precipitation to public hospitals, the corresponding percentages 415 

of reduced equivalent beds to all beds, and their relationships with the thresholds of travel time 416 

to hospitals in each remoteness area and in Australia. The maximum reductions of equivalent 417 

beds due to monthly variation of precipitation appear in major cities for all public hospitals and 418 

hospitals supporting emergency and surgery services. With the increase of 1 mm/week of 419 

monthly precipitation, the reductions of spatial accessibility to three types of hospitals is 420 

equivalent to respective 9 – 22 beds, 16 – 17 beds and 11 – 16 beds in major cities. With the 421 

expand of travel time threshold from 30 to 240 minutes, the percentages of reduced equivalent 422 

beds are generally decreased, and they are close to zero when travel time is 240 minutes. 423 

Compared with the minimum monthly average on-road precipitation, the maximum monthly 424 
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precipitation leads to 1.13%, 1.38% and 1.19% of reductions of national equivalent beds of 425 

accessibility to all public hospitals within 30-minute travel time, to hospitals that provide 426 

emergency care within 60-minute travel time, and to hospitals that provide surgery service 427 

within 30-minute travel time.  428 

Fig. 7 about here 429 

Fig. 8 illustrates the spatial variation of accessibility by the state-wide statistical 430 

summaries. For the health care services in all public hospitals, the accessibility in inner area is 431 

lower than that in major cities even when its BPR is not significantly low, but the accessibility 432 

in outer area, remote area and very remote area is not lower (and may even be higher) than that 433 

in major cities. Especially, accessibility in outer and remote areas of QLD is much higher than 434 

other states or territories. For health care in hospitals that have emergency and surgery services, 435 

accessibility in major cities is higher than other remoteness areas, except for the outer area in 436 

QLD where mean spatial accessibility is higher than that in major cities. In addition, the results 437 

also demonstrate that BPR is higher than most of accessibility across nation. This means that 438 

BPR is an overestimated indicator of health care resources that residents can share, but the true 439 

accessibility to health care services is affected by various variables such beds and population 440 

in the neighbour LGAs, traffic conditions of road network, etc.  441 

Fig. 8 about here 442 

Temporally varied spatially local clusters of accessibility are analysed by the LISA 443 

statistic. Spatial clusters of accessibility are computed monthly for the accessibility of traveling 444 

within 30, 60, 120 and 240 minutes to all public hospitals, hospitals with emergency care, and 445 

those providing surgery service respectively. Since the spatial clusters of accessibility is 446 

gradually varied from 30-minute to 240-minute travel time, to simplify the presentation of 447 

results and highlight the difference and changes of spatial clusters, spatial clusters of 448 

accessibility within 30 and 240 minutes and corresponding assessment to three types of 449 

hospitals are presented in Fig. 9, Fig. 10 and Fig. 11, respectively. Table 2 lists their statistical 450 

summary with the cumulative number of months, percentage of monthly mean population to 451 

all national population, and minimum, maximum and mean accessibility in hot-spot and cold-452 

spot regions respectively, where cumulative number of months presents the cumulative months 453 

of LGAs located in clusters.  454 

Fig. 9 about here 455 
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Fig. 10 about here 456 

Fig. 11 about here 457 

Table 2 about here 458 

Fig. 9 A, D, G and J show the respective sum number of months of hot-spot (H-H) and 459 

cold-spot (L-L) regions of accessibility with the travel time threshold of 30, 60, 120 and 240 460 

minutes explored by LISA statistic with the base map of corresponding annual mean 461 

accessibility. Locations of spatial clusters are varied with the increase of travel time thresholds. 462 

For instance, clusters in SA are primarily gathered in Adelaide, the capital city of SA, for the 463 

accessibility with 30-minute travel time, but they are gradually moved to the outer and remote 464 

areas, even very remote areas in SA, with the increase of travel time threshold. Further, hot-465 

spot and cold-spot clusters are also monthly varied in different remoteness areas and across 466 

nation (Fig. 9). The annual mean population in hot-spot and cold spot regions account for 4.7‰ 467 

– 10.1‰, and 29.6‰ – 53.7‰ of all national population respectively, where the ratios vary by 468 

trave time. Hot-spot regions are not just located in major cities, but also include some of the 469 

remote and very remote areas. The percentage of cumulative number of months in major cities 470 

of hot-spot regions is 74% for accessing to hospitals within 30 minutes and 27% for accessing 471 

to hospitals in 240 minutes, where the percentage of cumulative number of months presents 472 

the cumulative months of LGAs located in clusters divided by all months of LGAs. Most of 473 

population in cold-spot regions live in major cities, inner and outer areas, instead of remote and 474 

very remote areas. Only 1% - 5% of population live in 6% - 22% of LGAs in very remote areas 475 

of cold-spot regions which varies in different thresholds of travel time. Meanwhile, monthly 476 

mean accessibility of hot-spot regions clustered in Perth is higher than the national average 477 

accessibility. In addition, Table 2 also shows that with the increase of travel time of accessing 478 

to all public hospitals, hot-spot clusters will cover fewer population in major cities and cold-479 

spot regions will cover more population in very remote areas.  480 

Fig. 10 and Fig. 11 show that the hot-spot regions of accessing to hospitals that provide 481 

emergency and surgery services are primarily clustered in major cities of Perth, Adelaide, 482 

Sydney and Melbourne, but few of them are located in rural and remote areas in Australia. 483 

Monthly mean accessibility and population in the hot-spot clusters also vary temporally due to 484 

the impacts of precipitation on the road network. Annual mean population in major cities of 485 

hot-spot and very remote areas in cold spot regions of accessing to hospitals that provide 486 

emergency care account for 24.5‰ – 40.9‰ and 0.04‰ – 11.5‰ of national population 487 
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respectively, and the respective ratios of accessing to hospitals supporting surgery service are 488 

20.3‰ – 23.0‰ and 0.26‰ – 27.1‰. Also, with the increased travel time to access these 489 

hospitals, cold-spot regions will cover fewer very remote areas.  490 

4 Discussion 491 

Nation-wide travel time based MKD2SFCA model is employed in computing spatial 492 

population accessibility to public hospitals in Australia, which reveals that the accessibility is 493 

significantly varied temporally and across space. MKD2SFCA model provides a reliable 494 

measure of spatial accessibility and makes sense in the real-world health systems, especially 495 

for the large spatial scale health system in a nation and the accurate evaluation of its overall 496 

performance when considering local variations. Multi-source data with high spatial resolution 497 

is utilized to characterize the potential factors associated with the spatial and temporal 498 

variations of accessibility to hospitals, where grid population estimation data is used to 499 

compute PWCs of LGAs and TRMM remote sensing product is applied on calculating on-road 500 

precipitation and its impact on traffic speed. Thus, nation-wide spatio-temporal accessibility is 501 

calculated as the monthly accessibility with travel time of 30, 60, 120 and 240 minutes in 564 502 

LGAs to all public hospitals and hospitals that provide emergency and surgery services 503 

respectively. Spatial autocorrelation is performed to explore local hot-spot and cold-spot 504 

clusters of accessibility.  505 

Both spatial and temporal variations of accessibility are evaluated from multiple 506 

perspectives to investigate the performance of the national public health system in Australia. 507 

From the angle of spatial variation, accessibility to hospitals and its local clusters are analyzed 508 

within different states or territories and remoteness areas. Results show that accessibility in 509 

outer, remote and very remote areas is not lower (and may even be higher) than that in major 510 

cities, and the hot-spot clusters of LGAs with high accessibility distribute in both major cities, 511 

remote and very remote areas. This result indicates that Australian authorities of public health 512 

have spent efforts on improving the performance of health system in rural and remote regions 513 

to achieve more even distributions of health care services. However, accessibility to hospitals 514 

that provide emergency and surgery services is much higher in major cities than that in other 515 

remoteness areas, except for the accessibility in outer area of QLD which is higher than other 516 

that in major cities. Meanwhile, hot-spot regions with high accessibility to hospitals supporting 517 

emergency and surgery services are primarily clustered in major cities and cold-spot clusters 518 

are primarily located in remote and very remote regions, especially for the accessibility of 519 
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traveling within 30 and 60 minutes. In contrast with the relative shortage of emergency and 520 

surgery services in remote and very remote areas, the rate for emergency hospital admissions 521 

involving surgery is highest for residents living in very remote areas with 22 per 1000 persons 522 

and reduced from very remote areas to major cities (12 per 1000 persons) in 2013-14 financial 523 

year in Australia (Australian Bureau of Statitics 2017a, Australian Institute of Health and 524 

Welfare AIHW 2016a). In addition, people living in remote and very remote areas have more 525 

requirements on emergency and surgery services since they have higher rates of chronic disease, 526 

mortality, traffic accidents and overweight or obese than those live in major cities (Australian 527 

Bureau of Statitics 2015a, Australian Institute of Health and Welfare 2014, Australian Bureau 528 

of Statitics 2015b, Australian Institute of Health and Welfare 2010). Therefore, health care 529 

resources of specialized services such as emergency and surgery should be gradually improved 530 

in remote and very remote areas in the future development of health care system.  531 

Temporal variation of spatial accessibility is associated with the monthly varied local 532 

traffic speed, which is seasonally affected by precipitation especially heavy rain (Makanga et 533 

al. 2017). Temporal variation is assessed from three stages. First, traffic speed is affected by 534 

precipitation. In average, monthly precipitation causes 1.00 % to 3.57% of speed reduction, 535 

which varies in different months and across space. In addition, monthly variation of 536 

accessibility caused by precipitation is transformed as an equivalent beds reduction. For a given 537 

amount of health care resources, which are represented by the number of beds in hospitals here, 538 

the losses of accessibility affected by precipitation and heavy rain to all public hospitals, 539 

hospitals providing emergency and surgery service equal to 1.13%, 1.38% and 1.19% of the 540 

national health care resources. Third, accessibility and its related population within spatial hot-541 

spot and cold-spot clusters are investigated temporally. Nationally, the reductions in the 542 

minimum monthly mean accessibility of 30, 60, 120 and 240-minite travel to all public 543 

hospitals are 1.21%, 1.00%, 0.77% and 1.04% of the maximum one. However, in hot-spot 544 

regions, the minimum monthly mean accessibility to all public hospitals is reduced by 18% - 545 

23%, varying by the threshold of travel time, compared with the maximum one, and the 546 

reduction ratio reaches 31% to 50% in the cold-spot clusters. Thus, temporal variation of 547 

accessibility caused by precipitation and heavy rain is slightly fluctuated seen from the nation-548 

wide average values of accessibility, but it varies significantly in the spatially local clusters. In 549 

addition, the improvement of temporal variations of accessibility to public hospitals can have 550 

positive influence on reducing seasonal diseases. For instance, the average incidence of 551 

influenza during July to September is 7.81‰, which is 9.6 times the incidence of influenza in 552 
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other months (0.81‰), and the incidence also varies in different states (Australian Government 553 

- Department of Health 2018). Thus, during high incidence periods of seasonal diseases, 554 

improving accessibility is helpful for reducing incidence.  555 

Findings from this research indicate spatial and temporal variations of accessibility with 556 

multiple potential variables including population centroids, on-road precipitation and estimated 557 

traffic speed on each road segment. There are still limitations in this study. First, in addition to 558 

the geographical relations between hospitals and population and the health care resources of 559 

hospitals, the utilization of health care services is also linked with potential social factors such 560 

as income, education, insurance status and individual preference (Love and Lindquist 1995). 561 

Individual difference is also related to the health care services utilization that old people, 562 

children and pregnant women require more hospital accessibility than other age groups. Next, 563 

private hospitals are also important in the whole health care system even their number and 564 

available beds are fewer than those in public hospitals. Third, this study presents a monthly 565 

varied traffic speed estimation approach based on the precipitation and speed association 566 

function, which is useful for temporally traffic speed estimation on road networks at a large 567 

spatial scale. However, the real monitoring data of monthly varied traffic speed is unavailable 568 

in most of the current public traffic data released by transportation authorities. Finally, this 569 

study has explored and discussed the associations between the temporal variations of traffic 570 

speed across space and precipitation or heavy rain using a relationship function, but doesn’t 571 

involve other potential weather conditions data, such as fog and wind, since few evidence 572 

provided by research is available for determining their relationships by proper functions. 573 

Therefore, the individual potential factors and conditions of private hospitals might be 574 

considered, and temporally varied traffic speed data on the road network can be monitored and 575 

utilized in the future work to have a more comprehensive understanding of the performance of 576 

national health systems.  577 

5 Conclusion 578 

This paper estimates a reliable nation-wide distribution of population accessibility to 579 

public hospitals, quantifies the spatial and temporal variations of accessibility, and investigates 580 

the performance of public health systems in Australia. The quantitative outcomes of spatial and 581 

temporal variations of accessibility can benefit a wise decision-making process for health care 582 

authorities to allocate medical resources and optimize of health care systems. From the 583 

perspective of spatial distributions of health care resources, spatial accessibility to all public 584 
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hospitals in remote and very remote areas is not lower (and may even be higher) than that in 585 

major cities, but the accessibility to hospitals that provide emergency and surgery services is 586 

much higher in major cities than other areas. This means the allocation of health care resources 587 

should be optimized to enhance emergency and surgery services in outer, remote and very 588 

remote areas. From the angle of temporal variation of accessibility to public hospitals, 589 

reduction of traffic speed is 1.00% - 3.57% due to precipitation and heavy rain, but it leads to 590 

18% - 23% and 31% - 50% of reduction of accessibility in hot-spot and cold-spot regions 591 

respectively, and the impact is severe in NSW, QLD and NT during wet seasons. Spatio-592 

temporal analysis for the variations of accessibility can provide quantitative and accurate 593 

evidence for geographically local and dynamic strategies of allocation decision making of 594 

medical resources and optimizing health care systems both locally and nationally. 595 
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Captions of Figures 826 

Fig. 1. Distributions of hospitals, population weighted centroids (PWCs) of local government 827 

areas (LGAs) and their populations in Australia (A) and the capital cities of states or 828 

territories: (B) Sydney, (C) Melbourne, (D) Brisbane, (E) Perth, (F) Adelaide, (G) Canberra, 829 

(H) Hobart and (I) Darwin. 830 

Fig. 2. Monthly precipitation and its impact on the spatio-temporal variations of traffic speed 831 

from July 2012 to June 2013 in Australia. 832 

Fig. 3. Spatial distribution of estimated annual mean speed in each road segment across 833 

Australia. 834 

Fig. 4. State-wide statistical summary of monthly precipitation and average vehicle speed in 835 

Australia.  836 

Fig. 5. Cumulative distributions of population within states or territories and remoteness areas 837 

to the nearest hospitals: all hospitals (A), hospitals that provide emergency care (B), and 838 

hospitals that provide surgery service (C). 839 

Fig. 6. Distributions of spatial accessibility of traveling within 30 and 240 minutes to all 840 

public hospitals (A and B), accessibility to hospitals that provide emergency care (C and D), 841 

and accessibility to hospitals that provide surgery service (E and F), respectively. 842 

Fig. 7. Equivalent beds reduction of precipitation caused temporal variation of spatial 843 

accessibility to all public hospitals (A), hospitals that provide emergency care (B), hospitals 844 

that provide surgery service (C), and corresponding percentage of reduced equivalent beds to 845 

all beds in Australia and in each remoteness area (D, E and F). 846 

Fig. 8. State-wide statistical summary of bed-population ratio (BPR) and spatial accessibility 847 

separated by remoteness for all hospitals (A), hospitals that provide emergency care (B) and 848 

hospitals that provide surgery service (C). 849 

Fig. 9. Maps of annual mean spatial accessibility to hospitals and the summary of spatial 850 

local autocorrelations, the corresponding time series of mean spatial accessibility in high-high 851 

(H-H) clusters and those in low-low (L-L) clusters for the traveling to hospitals within 30 852 

minutes (A, B and C) and 240 minutes (D, E and F).  853 

Fig. 10. Maps of annual mean spatial accessibility to hospitals that provide emergency care 854 

and the summary of spatial local autocorrelations, the corresponding time series of mean 855 

spatial accessibility in high-high (H-H) clusters and those in low-low (L-L) clusters for the 856 

traveling to hospitals serving for emergency within 30 minutes (A, B and C) and 240 minutes 857 

(D, E and F).  858 

Fig. 11. Maps of annual mean spatial accessibility to hospitals that provide surgery service 859 

and the summary of spatial local autocorrelations, the corresponding time series of mean 860 

spatial accessibility in high-high (H-H) clusters and those in low-low (L-L) clusters for the 861 

traveling to hospitals serving for surgery within 30 minutes (A, B and C) and 240 minutes (D, 862 

E and F).   863 
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Table 2 Statistical summary of spatially local cluster analysis for population accessibility with 867 
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Table 1 Average travel time from PWCs of LGAs to the nearest hospitals and population 872 

coverage by travel time of 30, 60, 120 and 240 minutes 873 

Hospital 

type 

Average travel time (minute) Population coverage by travel time 

Australia 

Remoteness areas 

30 min 60 min 
120 

min 

240 

min Major 

cities 

Inner 

area 

Outer 

area 

Remote 

area 

Very 

remote 

area 

All 13.1 12.4 23.5 27.2 19.2 41.7 81.7% 92.6% 98.5% 99.0% 

Providing 

emergency 

care 

19.0 10.3 19.9 21.8 16.3 31.7 83.8% 95.2% 98.6% 99.0% 

Providing 

surgery 

service 

23.4 12.1 20.7 20.4 19.2 41.7 84.8% 93.5% 98.9% 99.0% 
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Table 2 Statistical summary of spatially local cluster analysis for population accessibility with the travel time of 30, 60, 120 and 240 minutes to 876 

all public hospitals and hospitals that provide emergency and surgery services. 877 

Hospital 

type 

Travel 

time 

(minute) 

Cumulative number of 

months 

Percentage of mean 

population (‰) 

Accessibility (beds per 1000 persons) 

National 

mean 

Hot-spot Cold-spot 

Hot-spot Cold-spot Hot-spot Cold-spot min mean max min mean max 

All 

30 121 (74%)a 428 (6%)b 10.06 (98%)c 29.61 (1%)d 1.84 7.58 8.22 9.45 0.06 0.08 0.10 

60 117 (79%) 581 (10%) 9.35 (99%) 34.39 (3%) 2.04 7.30 8.08 9.46 0.06 0.09 0.12 

120 163 (44%) 559 (15%) 6.13 (91%) 43.82 (3%) 2.29 6.84 7.38 8.39 0.12 0.15 0.18 

240 176 (27%) 592 (22%) 4.68 (78%) 53.70 (5%) 2.56 6.18 6.99 7.56 0.22 0.28 0.32 

Providing 

emergency 

care 

30 100 (100%) 2 (100%) 24.48 (100%) 0.04 (100%) 0.60 7.76 8.64 9.70 / / / 

60 181 (100%) 25 (64%) 40.67 (100%) 1.90 (15%) 0.66 4.41 5.05 5.78 0.00 0.00 0.00 

120 187 (100%) 66 (55%) 39.26 (100%) 4.34 (19%) 0.70 4.41 4.92 6.13 0.00 0.00 0.00 

240 196 (100%) 181 (37%) 40.94 (100%) 11.47 (8%) 0.82 4.34 4.72 5.15 0.00 0.02 0.06 

Providing 

surgery 

service 

30 125 (100%) 13 (100%) 20.30 (100%) 0.26 (100%) 0.74 6.88 7.49 8.21 0.00 0.00 0.00 

60 138 (100%) 69 (71%) 20.88 (100%) 0.97 (76%) 0.83 6.44 6.86 7.30 0.00 0.00 0.00 

120 163 (100%) 335 (32%) 22.38 (100%) 14.03 (11%) 0.94 5.35 5.82 6.60 0.00 0.01 0.01 

240 164 (100%) 640 (30%) 23.02 (100%) 27.14 (7%) 1.06 5.32 5.74 6.33 0.01 0.02 0.03 
a. Percentage of cumulative number of months in major cities of hot-spot regions to that in all hot-spot regions. 
b. Percentage of cumulative number of months in very remote area of cold-spot regions to that in all cold-spot regions. 
c. Percentage of population in major cities of hot-spot regions to that in all hot-spot regions. 
d. Percentage of population in very remote area of cold-spot regions to that in all cold-spot regions. 
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Highlights 

1) MKD2SFCA model provides a reliable measure of spatial accessibility and makes 

sense in real-world nation-wide health systems.   

2) MKD2SFCA-based performance investigation reveals that the accessibility is spatially 

and temporally varied in Australian public health system.  

3) Accessibility to all hospitals in remote areas is not lower (and even higher) than that in 

major cities, but the accessibility to hospitals that provide emergency and surgery 

services is higher in major cities.  

4) Precipitation have significantly negative impact on accessibility in hot-spot and cold-

spot regions.  
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