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ABSTRACT 
 

An ideal open-pit mining operation comprises of an open-pit, processing mill, and 

refinery that produces the marketable metal product. An open-pit produces valuable material 

(ore) and waste. The ore is transported to mill for processing to produce concentrates whereas 

waste is transported to waste dumps. The concentrate is further refined to produce marketable 

metal. The material of low-grade ore which has potential value is stored in stockpiles for 

future processing. 

Open-pit mining operation uses economic criterion to distinguish between ore and 

waste material, which is termed as a cut-off grade. All material within the boundaries of the 

open-pit comprises of heterogenic nature of the metal content, which may not justify 

processing, so in economic terms material above cut-off grade is termed as ore (valuable 

material) and material below is termed as waste (non-valuable material). 

It is observed in previous studies, that cut-off grade policy uses economic parameters 

(metal price, operating cost, and percentage yield and discount factor) in addition to the 

grade-tonnage distribution of mineralization as input, with the assumption that grade or metal 

content is uniformly distributed throughout the deposit. However, facts are contrary to the 

assumption and in reality, the grade is location dependent, where each mining block in an ore 

body model constitutes a unique grade, and the variation in grade from one mining block to 

the other is quite imminent. Consequently, the cut-off grade policy over the life of mining 

operation which is defined using uniformly distributed grade-tonnage curve remains 

impracticable for short-term plans, and it becomes difficult to synchronize short and long-

term plans for defining an optimal cut-off grade policy. 

In addition, conventional open-pit production scheduling model takes economic, 

geologic (ore-body model) and operational parameters as inputs and converts this information 
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into economic block models, where an economic value based on the breakeven cut-off grade 

describes ore and waste blocks in the block model, and then this economic value becomes an 

input to the production scheduling formulation. 

The aim of this study is to develop and implement mathematical formulation that 

overcomes these deficiencies in the existing procedures, and which can effectively find an 

optimal solution in addition to the yearly production sequence without using economic block 

values. Therefore, in addition to the economic and operational parameters as inputs, the 

proposed model takes the realistic ore-body model as a geological input, and an 

implementation of the model not only derives an optimal cut-off grade policy but also it 

generates the corresponding optimal sequence of block-by-block and year by year production.  

The proposed MILP based mathematical model maximises the net present value 

(NPV) of the mining operation subject to precedence, production (mine, processing plant and 

refinery) capacity and grade blending constraints. This bring the proposed model into NP-

hard (Atai et al., 2004) category i.e. computationally complex and generating solution to the 

model that takes realistic block ore-body models with thousands of blocks as an input, 

becomes impossible. Therefore, to overcome this issue, a hybrid metaheuristic (a 

combination of genetic and ant colony optimization algorithms) technique is introduced, 

developed and implemented in this research as an alternative approach for solving the 

mathematical model, and to define optimal cut-off grade policy to nearest optimum values. 

The gap analysis is performed in this research to evaluate the performance of both the 

methods in addition to the graphical representation of the results. The analysis shows that the 

hybrid-metaheuristic does not generate an exact solution to the problem, but effective in 

setting up a roadmap for cut-off grade policy which may lead to potential investments and 

higher returns on investments for future mining projects. 
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Chapter 1: Introduction 
 

1.1    Introduction: 

Open-pit mine planning optimisation for minerals’ exploitation is a challenge for 

scientists and engineers for the last few decades. Different techniques and methods have been 

introduced and implemented for achieving production optimisation in order to attain 

maximum profits. The revenue estimated at a certain cut-off point where the value of 

marketable product successfully justifies the cost of production, generates profit and 

maximises net present value (NPV). That is the stage where further extraction of mineral 

transforms profits into operational expenditures. 

In an open-pit mining operation (Figure 1.1), minerals of various categories are 

extracted and sent to appropriate destinations depending on the grade of the ore. The open-pit 

mine, processing plant, refinery, waste dumps and stockpiles are important components of the 

mining operation.  

 

Figure 1.1: Layout plan of open-pit mining operation 

The ore and the waste are the two different extremes to be catered for in the mining 

operations. Ore is sent to a processing plant for producing metal concentrate and then further 

directed to a refinery to yield marketable mineral (McKee et al., 1995) for attaining returns 

Waste Dumps 
Marketable metal Tailings 

Refining Stream Open Pit Mine 

Stockpiles 

Processing 

Streams 
Ore 

Ore 
Concentrate 

Potential Ore 
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on investments, whereas waste is hauled to waste dumps. The economics behind this entire 

operation usually decides the net profit generated from overall mining operations.  

Cut-off grade is the significant economic standard (Asad et al., 2016) which specifies 

the destinations of the ore (to the processing plant), potential ore (to stockpiles) and waste (to 

waste dumps) in an open-pit mining operation. The material with metal content above cut-off 

grade is termed as ore, which not only covers the cost of mining, processing, and refining but 

also generates profit (Asad et al., 2016); whereas the material with grade less than cut-off 

grade is termed as waste (Dagdelen, 2001). A cut-off grade of the mining operation is a cut-

off point, which shows that any further operation (processing waste) transforms profit into 

operational cost. Cut-off grade policy thus defines a schedule of cut-off grades over the life of 

mining operation (Asad et al., 2016), along with the quantity of material (ore and waste) 

mined, quantity of ore processed, and quantity of metal refined (Hirai et al., 1987; Marques 

and Costa, 2013, Asad et al., 2016). The heterogeneity of the metal content in the deposit 

limits the process of extraction, processing, and refining within the capacities. The objective 

of this research is to maximise NPV through optimal cut-off grade strategies in line with the 

capacity constraints. 

           Geological block-by-block ore-body model, economic and operational capacities are 

considered as inputs in general open-pit mine planning operations. A typical ore-body 

consists of several thousands of blocks; each of which is defined by its location, grade, and 

associated tonnage. Policy decisions are made in mine planning whether a block is to be 

mined at a certain specific time, if mined, then whether to send it as an ore to the processing 

plant or whether it must be stockpiled at this stage. These decisions ultimately define the 

long-term sequence for production and optimal cut-off grade at the point where NPV is 

maximised over the life of the mine. Regardless of the block-by-block model of the ore-body, 

Lane (1964, 1988) show that geological input is transformed into grade-tonnage distribution 
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with respect to the incremental grades along with corresponding quantity of material, within 

each grade classification increment (Dagdelen, 1992; Asad et al., 2016). The economic 

parameters such as the price of metal, mining cost, processing cost, refining/selling cost 

define the economic worth of the material to be mined, whereas operational parameters 

consist of mining, milling, refining capacities, and metallurgical recovery. 

Generally, an optimal cut-off grade strategy to maximise NPV in an open-pit mining 

operation is subject to mining, processing and marketing constraints (Rendu, 2008; King, 

2011). They are usually expressed as annual constraints to the quantity of material excavated, 

quantity of material sent for processing and the quantity of saleable product in the market. 

However, there are chances that any one of the constraints bottlenecks the whole operation at 

any given point of time. In strategic mine planning, two cut-off grade policies are in practice; 

the breakeven cut-off grade policy and Lane’s optimal cut-off grade strategy.  

The breakeven model defines the size and extent of the extraction (Dagdelen, 1992), 

and defines mining cut-off grade and classifies ore and waste blocks within the ore-body 

model. Many extensions to the breakeven model are made (Dagdelen, 1992; Vickers, 1961; 

Henning, 1963, Asad et al., 2016) in order to achieve better NPVs and variable annual cut-off 

grade, but regardless of all of these changes, the breakeven model defines a cut-off grade 

policy without considering the grade-tonnage distribution and operational capacities over the 

life of mining operation (Taylor, 1972).   

Lane’s optimal cut-off grade strategy (Lane, 1964, 1988), on the other hand, is a 

heuristic approach which takes grade-tonnage distribution of the available mineralization as 

input, in addition to mining, milling, and processing capacities. Lane’s model generates a 

schedule of dynamic cut-off grades over the life of mining operation especially for the long-

term mining. The use of normal distribution of grades and tonnage in Lane’s optimal cut-off 
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grade policy entails the development of a mathematical model for cut-off grade optimisation 

problems (Dagdelen and Kawahata, 2007, 2008) where block-by-block grade and tonnage is 

considered for defining a cut-off grade policy.  

An improvement in Lane’s model is proposed in linear (Ganguli et al., 2011) and non-

linear (Yasrebi et al., 2015) programming models which are presented in different studies to 

achieve an optimal value of cut-off grades in open-pit mining operation. Mixed integer linear 

programming (MILP) formulation is developed (Dagdelen and Kawahata, 2007, 2008) to 

solve mathematical model considering multiple mines and multiple destinations including 

processing plants, stockpiles, and waste dumps. However, these models consider grade-

tonnage distribution of deposit as an input. MILP models (Dagdelen and Johnson, 1986; 

Ramazan, 2007; Ramazan and Dimitrakopoulos, 2007; Newman et al., 2010; Ramazan and 

Dimitrakopoulos, 2012, Topal and Ramazan, 2010; Lamghari and Dimitrakopoulos, 2012) 

offer production schedule, however, these models depend on the pre-defined economic block 

values of a mining block, derived from the breakeven cut-off grades (Asad et al., 2016). 

Mathematical models are developed both for production scheduling and optimum cut-

off grades, but previous studies show that solving the mathematical model using an exact 

approach for a realistic block model is computationally inefficient, especially in the case of 

an ore-body model consisting of several thousands of blocks. Generally, the decision 

variables are defined in these formulations, where variables’ size increases exponentially with 

the increase in the life of mining operation. Therefore, such formulations are termed as NP-

hard combinatorial problems (easy to state and difficult to solve) (Atai et al., 2004).  

The challenges to the extended solution time lead to near optimum solutions for cut-

off grade optimisation over the life of mining operation, which substitutes the development of 

algorithms based on metaheuristics, and are defined as a set of algorithmic concepts used to 
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improve the heuristic methods to solve complex problems. These concepts are inspired by 

biological and natural sciences. Metaheuristics are based on evolutionary algorithms like 

Genetic Algorithm (GA), Ant Colony Optimisation (ACO) (Gilani and Sattarvand, 2016), 

Tabu Search (TS), Simulated Annealing and Particle Swarm Optimisation (PSO), which is 

used for solving large-scale MILP formulations for open-pit mine planning problem (Askari-

Nasab and Szymanksi, 2006; Denby and Schofield, 1995). The use of metaheuristics is 

considerably increased for large-scale combinatorial problems for being time efficient and 

capable of producing high-quality solutions.  

1.2.     Problem statement: 

Existing procedures for the development of cut-off grade policy take economic 

parameters (price of metal, operating costs, recoveries, and discount rate) and grade-tonnage 

distribution of the mineralization as inputs. Considering the grade-tonnage curve as an input, 

one common aspect of the previously discussed studies is the assumption that the metal 

content or grade is uniformly distributed throughout the deposit. However, in reality, the 

grade is location dependent, that is, each mining block in an ore-body model constitutes a 

unique grade. Thus, the variation in grade from one mining block to the next is imminent. 

Consequently, the optimal cut-off grade policy, i.e. the long-term or life of operation 

schedule of cut-off grades, resulting from the grade-tonnage curve-based uniformly 

distributed inputs, remains aloof to the short-term operational plans. Thus, without 

synchronization of the long and short-term plans, mining engineers find it difficult to 

implement the optimal cut-off grade policies. 

Given this, it is required that a realistic mathematical model for cut-off grade 

optimisation shall take into account the economic parameters and a three-dimensional ore-

body model as an input, such that, the ore-body model retains the grade-tonnage distribution 
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of the deposit on a block-by-block basis, where location (along XYZ-direction), metal 

content, and the quantity of material of an individual mining block are described exclusively. 

An ore-body model in practice constitutes thousands of mining blocks, and a MILP-based 

mathematical model considers these mining blocks as binary (0/1) variables. Thus, a practical 

instance of the cut-off grade optimisation problem may constitute thousands of binary 

variables, categorizing it as a computationally complex optimisation problem, and an exact 

optimal solution to the mathematical model therefore becomes impossible. As such, the 

solution of this problem requires a consideration of the metaheuristics such as GA or ACO 

algorithms or their combination, providing a close optimal solution within reasonable time 

and accuracy (Dagdelen and Johnson, 1987; Dagdelen and Asad, 2002; Johnson et al., 2011; 

Caccetta and Hill, 2003; Ramazan and Dimitrakopoulos, 2004).  

1.3.     Objectives  

The objectives of the proposed study may be outlined as follows: 

1.     To develop a MILP based mathematical model for cut-off grade optimisation in open-

pit mining operations. 

2.   To solve the MILP model through an exact optimisation approach using CPLEX 

optimisation software. 

3.       To solve the MILP model through hybrid-metaheuristic (combination of GA and 

ACO algorithms) approach. 

4.      To evaluate the performance of hybrid-metaheuristic against the exact solution. 

1.4.     Significance of research 
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The research is based on a new hybrid-metaheuristic approach which derives the cut-

off grade optimisation policy in open-pit mining operations. It helps in solving the 

mathematical model for a cut-off grade but it also improves the computational efficiency. A 

hybrid-metaheuristic algorithm is developed while combining two different algorithms 

namely ACO and GA, where both of these metaheuristics contributed towards problem-

solving in many planning, functional and engineering optimisation, especially in the field of 

open-pit mine production optimisation. The benefit of this research for the mining industry in 

Australia is to get an alternative cut-off grade optimisation framework. This research plays a 

significant role in improving metal mine productivity through more accurate results and 

computer efficient solutions in realistic problems. This study also solves the difficulty of the 

currently available commercial software applications and achieves more efficient 

optimisation results through advanced algorithms.  

The economy of any country depends on its growth and annual GDP. According to 

Australian Bureau of Statistics, metal mining has contributed to nearly 41% of the annual 

production in Western Australia in the last few years. The research in cut-off grade 

optimisation makes a significant difference, and new investment and employment 

opportunities in Western Australia could be expected if more efficient production 

optimisation solutions are developed. This research can be considered as a step forward 

towards it, and can be expected to contribute effectively towards production optimisation in 

mining and metallurgical industries, which ultimately benefits the overall economy of 

Western Australia. 

1.5.     Research methodology 

The following methodology helps achieve the objectives of the proposed study: 
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 A comprehensive literature review establishes the relevance, innovation and 

significance of the proposed method for cut-off grade optimisation and production 

scheduling in an open-pit mining operation.  

 The development of mixed integer linear programming (MILP) based mathematical 

model and a creation of formulation using JAVA programming language and IBM 

ILOG CPLEX CONCERT technology. 

 An implementation of the MILP formulation through exact approach using CPLEX. 

 The development of a new algorithm using hybrid-metaheuristics (combination of GA 

and ACO algorithms) as an alternate approach for solving mathematical model. 

 An implementation of hybrid-metaheuristic algorithm using JAVA programming 

language using realistic block model. 

 Comparison of the solutions for MILP model using exact approach and hybrid-

metaheuristic approach through gap analysis. 

1.6.     Structure of the thesis: 

Chapter 2 presents a critical overview of the cut-off grade optimisation policies, methods, 

and variations. It covers a detailed discussion on the relevant work done in previous studies. 

Chapter 3 is a detailed analysis on the cut-off grade formulation developed in this research. 

It describes the step by step methods and techniques used in developing MILP based 

mathematical model with examples.   

Chapter 4 examines the cut-off grade optimisation strategy model developed and 

implemented using hybrid metaheuristics formulation. It covers the concepts of GA and ACO 

and their combination.  
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Chapter 5 is a case study discussion of a hypothetical block model with all geological, 

operational and economic parameters. The implementation of both MILP formulation and 

hybrid metaheuristics, with their comparison, is also discussed in this chapter. The realistic 

block model is also implemented and analysed in this research using hybrid-metaheuristic. 

Chapter 6 is the conclusions extracted from the research findings, analysis, and the potential 

future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

Chapter 2: Literature review 
 

The material produced from an open-pit mining operation is either ore or waste, 

which is further transported to different destinations including processing streams for ore, and 

waste dumps for waste material as shown in Figure 2.1. The ore is transported in raw form to 

the processing plant and after processing, the concentrate is sent to a refinery for preparing 

the final saleable product (McKee et al., 1995; Asad et al., 2016). The material movement in 

the overall mining operation is evaluated in economic terms to finally decide whether to send 

the material to the processing plant, waste dumps or stockpiles for future processing.  

 

. 

 

 

 

 

 

 

 

 

Cut-off grade is a significant economic standard (Asad et al., 2016), which maximises 

NPV and defines the final destination of the material (King 1999, 2001; Wooler, 2001; Asad 

et al., 2016). The metal content present in the ore justifies the cost of mining (including 

excavation and haulage cost) after processing, and generates the profit. On the other hand, 

waste increases the cost of mining and if the material present in stockpiles (potential ore) is 

processed, it supplements the cost with the potential increase in profits. Cut-off grade policy 
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Figure 2.1: Schematic diagram of a model open pit mining system 
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thus delineates annual cut-off grades over the life of mining operation; including the quantity 

of material mined, the quantity of ore processed and quantity of concentrate refined (Hirai et 

al., 1987; Marques and Costa, 2013, Asad et al., 2016). Subsequently, this policy defines the 

net present value (NPV) over the life of mining operation. The strategic mine planning and 

cut-off grade policies are interrelated and also related to the operational plans of the mining 

operation (Lane, 1988; Hustrulid et al., 2013; Rendu, 2014; Hall, 2014; Asad et al., 2016).  

2.1. Inputs of the cut-off grade model: 

 

The understanding of the inputs to cut-off models is significant for developing cut-off 

grade polices. Generally, geological, economic, and operational parameters are used as inputs 

to define cut-off grade strategies (Taylor, 1972; King, 2001, Asad et al., 2016). 

The economic parameters are defined as follows: 

 Cost of mining 𝒎 (Price units per tonnes) 

 Milling cost 𝒄 (Price units per tonnes) 

 Sale price 𝒔 (Price units per tonnes; or grams in case of valuable material) 

 Fixed cost 𝑭𝑪 (Price units per period or year) 

 Discount rate 𝒅 (percentage) 

 As block-by-block configuration of resource mineralization is taken as geological 

input, both for production scheduling and cut-off grade estimation. The ore-body model 

generally comprises of thousands to millions of blocks depending on the size with the 

following specifications; 

 Spatial location (X, Y and Z coordinates) 

 Grade (metal content in a mining block) 
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 Quantity of material (tonnes) 

 

Figure 2.2: Hypothetical ore-body model (grade in % Cu) in 3D (Source: Asad et al., 2016) 

2.2. Grade-tonnage distribution: 

 

 The conventional approaches for cut-off grade optimisation take geological ore-body 

model as primary input, but not in the form of realistic block model instead, the primary input 

is converted into grade-tonnage distribution curve that constitutes lower and upper bounds of 

grades and their corresponding material (tonnage) in tonnes (Dagdelen, 1992). The 

conventional approaches use a grade-tonnage curve especially in developing optimal cut-off 

grade policies, defining a best schedule of dynamic cut-off grades. Figure 2.3 shows the 

grade-tonnage distribution of a hypothetical ore-body model (Hustrulid et al., 2013; Asad et 

al., 2016). Lower and upper bounds are shown as 𝑔𝑙𝑏 and 𝑔𝑢𝑏, whereas the quantity of 

material within lower and upper bounds of grades is termed as 𝑞𝑙𝑏−𝑢𝑏, and together with 𝒏 

number of increments, they can be represented as (Asad et al., 2016): 

 [(𝑔𝑙𝑏_1, 𝑔𝑢𝑏_1), 𝑞𝑙𝑏_1−𝑢𝑏_1], [(𝑔𝑙𝑏_2, 𝑔𝑢𝑏_2), 𝑞𝑙𝑏_2−𝑢𝑏_2],.., [(𝑔𝑙𝑏_𝑛, 𝑔𝑢𝑏_𝑛), 𝑞𝑙𝑏_𝑛−𝑢𝑏_𝑛] where Q 

is the total quantity of material. 
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Table 2.1: The grade-tonnage distribution of a hypothetical copper deposit (Lane, 1964; Asad 

et al., 2016) 

 

  

Grade (% Metal) Grade Category Interval (% Metal) 

Figure 2.3: The grade-tonnage distribution of a hypothetical copper deposit (Source: Asad et al., 2016) 

2.3. Breakeven cut-off grade policy: 

 

 Breakeven cut-off grade policy is a fundamental policy for cut-off grades which takes 

the following inputs and generates profit (𝑃) as follows (Henning, 1963; Taylor, 1972, 1984; 

Asad et al., 2016): 

𝑃 = (𝑠 − 𝑟)𝑔𝑦 − 𝑚 − 𝑝                                                                                                      (2.1) 

Using Eq. (2.1) the breakeven cut-off grade is then calculated as follows: 
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𝜎 =
𝑚+𝑝

(𝑠−𝑟)𝑦
                                                                                                      (2.2) 

The unit value of 𝜎 is based on the mineral commodity which may be in %, grams per 

tonne, pounds per tonne, or ounces per tonne (Asad et al., 2016). Equation (2.2) is also 

significant for determining the size or extent of the mineral extraction i.e. ultimate pit limit 

(UPL) (Dagdelen, 1992; Asad et al., 2016). Equation 2.2 represents σ as mining cut-off 

grade, which differentiates between ore and grade. The economic value (𝑉) of each block is 

calculated using Equation 2.1 and finally an ultimate pit is generated using graph theory 

based algorithms (Asad et al., 2016). The worth of each block and its actual location i.e. 

whether it is inside the UPL or not, or whether mining such block helps in covering the cost 

of removing overlying waste is determined at this stage. 

 The final contour or the ultimate pit (regardless of the material is a waste or ore) leads 

to the final destination of all the blocks mined within UPL i.e. whether the material is 

transported to the processing stream or hauled to the waste dumps. The block is termed to be 

suitable for processing stream if it contains enough valuable metal content capable to cater 

the costs of mining, processing, and refining, if not then it shall be destined to waste dumps. 

Equation 2.2 is then modified to Equation 2.3 as shown below, and it generates processing 

cut-off grade (Asad et al., 2016). 

𝜎 =
𝑝

(𝑠−𝑟)𝑦
                              (2.3) 

 In contrast to the mining cut-off grade, the processing cut-off grade takes a grade-

tonnage distribution of the mineralization as input (Asad et al., 2016) within the UPL and 

defines the cut-off grade policy over the life of mining operation (when all reserves are 

exhausted). Many researchers worked on the extensions in breakeven model, Vickers (1961) 

introduced marginal analysis for defining cut-off grade (Asad et al., 2016) policy using 

graphical representation, with the assumption of maximising profits in breakeven cut-off 
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grades. However, the proposed method delivers a schedule of constant cut-off grades over the 

life of the operation. Henning (1963) on the other hand, provides a framework for defining 

cut-off grade while varying the enterprise objectives (Asad et al., 2016). The difference 

between the total annual profit and associated costs is maximised in Henning’s (1963) 

approach, which gives higher cut-off grades in the initial years, ultimately reducing 

breakeven value for later years. Dagdelen (1992) depicts a similar strategy where higher 

breakeven values are achieved in the initial years over the total life of the open-pit mine.  

The breakeven model, regardless of many variations plays a significant role in the 

calculations of the cut-off grade policy using Equation 2.3 (Asad et al., 2016). The gap in the 

breakeven model is its reliance on economic parameters and it ignores the practicality of 

grade-tonnage distribution of the mineral deposit, and this policy does not consider 

operational capacities, and ultimately generates constant cut-off grades over the life of 

mining operation (Taylor, 1972; Asad et al., 2016). 

2.4. Lane’s cut-off grade model: 

 

 Lane proposes an optimal cut-off grade policy (Lane, 1964, 1988), which considers a 

grade-tonnage distribution of mineral deposits and maximises NPV subject to operational 

capacities, including mining, milling and marketing constraints as presented in the following 

equations. NPV is maximised using discounted cash flows as shown is Equation 2.4. 

 𝑀𝑎𝑥 𝑍 = ∑
𝑃𝑡

(1+𝑑)𝑡
𝑇
𝑡=1                                        (2.4)  

Subject to  

𝑄𝑚𝑡 ≤ 𝑀, ∀𝑡                                                                                                        (2.5) 

𝑄𝑐𝑡 ≤ 𝐶,    ∀𝑡                                                                (2.6) 
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𝑄𝑟𝑡 ≤ 𝑅,    ∀𝑡                                                               (2.7) 

 Where 𝑃𝑡 = (𝑝 − 𝑟)𝑄𝑟𝑡 − 𝑚𝑄𝑚𝑡 − 𝑐𝑄𝑐𝑡 − 𝐹𝐶𝑡 is the cash flow or profit generated 

by the mining quantity of material mined 𝑄𝑚𝑡 in time 𝑡, the quantity of material processed 

𝑄𝑐𝑡 in time 𝑡, quantity of material refined 𝑄𝑟𝑡 in time 𝑡. The cut-off grade strategy generates a 

schedule of cut-off grades over the life of mining operation 𝑇, in a manner that NPV is 

maximised and the constraints mentioned in Eq. (2.5)- (2.7) are satisfied (Asad et al., 2016). 

Given a grade-tonnage distribution and production capacities, if 𝑔𝑙 is taken as the cut-

off grade, then quantity of waste (𝑞𝑤), and quantity of ore (𝑞𝑜), and the average grade (𝑔̅) 

are considered in terms of cut-off grades are as follows where C is the total processing 

capacity and y is the metallurgical recovery (% age yield) (Asad et al., 2016). 

𝑄𝑐 = {
𝐶;         𝑖𝑓 𝑞𝑜 > 0

𝑞𝑜 ;         𝑖𝑓 𝑞𝑜 < 0
                                                                                               (2.8) 

𝑄𝑚 = 𝑄𝑐 [1 +
𝑞𝑤 

𝑞𝑜 
]                                                                (2.9) 

𝑄𝑟 =  𝑄𝑐 (𝑔̅ 𝑦)                                                                                              (2.10) 

 Here, if 𝑄𝑚 (quantity of material) in Equation (2.9) is mined over the time 

period  𝑡, and a cash flow 𝑃𝑡 is realized at the end of the time 𝑡.  However, after mining 𝑄𝑚, 

𝑄 − 𝑄𝑚 quantity of the deposit still exists, and if scheduled to be mined from time period 

𝑡 + 1 to T, with possible cash flows 𝑃𝑡+1 to 𝑃𝑇, and 𝑊 is the present value of these cash 

flows in time 𝑡, then overall present value  𝑣 for the future cash flows generated from time 

𝑡  to 𝑇 (Asad et al., 2016) shown in Figure 2.4 (Asad et al., 2016). 
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Figure 2.4: Presentation of the cash flows and the present value in Lane's model (Source: Asad et al., 2016) 

If, 𝑊 = 
𝑃𝑡+1

(1+𝑑)1
+ 

𝑃𝑡+2

(1+𝑑)2
+ ⋯ + 

𝑃𝑇

(1+𝑑)𝑇−1
  

Then 𝑣 =  
𝑃𝑡+𝑊

(1+𝑑)𝑡
                                                        (2.11) 

Thus, increase in present value (𝑣) by mining next 𝑄𝑚 quantity of material may be abstracted 

from Equation 2.11 as follows (Asad et al., 2016): 

𝑣 =  𝑣 − 𝑊 =  𝑃𝑡 − 𝑣 𝑑𝑡                                                     (2.12)  

Substituting value of  𝑃𝑡  in Equation 2.12 (Asad et al., 2016): 

𝑣 = (𝑠 − 𝑟)𝑄𝑟 − 𝑚𝑄𝑚 − 𝑝𝑄𝑐 − (𝑓 + 𝑣 𝑑)𝑡                        (2.13) 

Where time 𝑡 is purely dependent upon the either of limiting production capacities, i.e. if 

mine bottlenecks the operation then  𝑡 =
𝑄𝑚

𝑀
 , if any of processing plant or refinery delays the 

operation, the value of  𝑡 becomes 𝑡 =
𝑄𝑐

𝐶
  in case of processing or  𝑡 =

𝑄𝑟

𝑅
  in case of refining. 

The opportunity cost (𝑓 + 𝑣 𝑑) for either of these three conditions is distributed per unit if 

material mined, processed or refined respectively, as shown in Equations (2.14- 2.16) (Asad 

et al., 2016). 

𝑣𝑚 = (𝑠 − 𝑟)𝑄𝑟 − (𝑚 +
𝑓+𝑣 𝑑

𝑀
)𝑄𝑚 − 𝑝𝑄𝑐      (2.14) 

𝑣𝑐 = (𝑠 − 𝑟)𝑄𝑟 − 𝑚𝑄𝑚 − (𝑝 +
𝑓+𝑣 𝑑

𝐶
)𝑄𝑐      (2.15) 

𝒗             𝑷𝒕 + 𝑾        𝑷𝒕+𝟏 

 𝟎                   𝒕               𝒕 + 𝟏 

𝑷𝑻            

𝑻            
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𝑣𝑟 = (𝑠 − (𝑟 +
𝑓+𝑣 𝑑

𝑅
 )) 𝑄𝑟 − 𝑚𝑄𝑚 − 𝑝𝑄𝑐      (2.16) 

 

 

Figure 2.5: A graphical presentation of 𝑣𝑚, 𝑣𝑐  and 𝑣𝑟  as a function of 𝑔𝑙 (Source: Asad et al., 2016) 

The optimum value of cut-off grade 𝜎 thus calculated as increase in present 

values 𝑣𝑚, 𝑣𝑐 and 𝑣𝑟 as a function of 𝑔𝑙. Graphical representation of Lane’s model shown in 

Figure 2.5 depicts that grade at the maximum value of three curves 𝑣𝑚, 𝑣𝑐 and 𝑣𝑟 represents 

that either of mining, processing or refining bottlenecks the operation, considering either of 

values in Equations (2.5 to 2.7) as equality, and generates corresponding mine limiting cut-

off grade 𝜎𝑚, process limiting cut-off grade  𝜎𝑐 and refinery limiting cut-off grade 𝜎𝑟 

respectively. 

 Figure 2.5 also shows that point of intersection of curves 𝑣𝑚 and 𝑣𝑐 that both mine 

and processing limit the operation (i.e. Equation 2.5 and 2.6 represents an equality), and the 

grade at this point is mine and processing plant balancing cut-off grade (𝜎𝑚𝑐), ensuring 

maximum throughput in both the stages. Similarly, mine and refinery balancing cut-off grade 

(𝜎𝑚𝑟) is a grade where both mine and refinery limit the operation (i.e. Equation 2.5 and 2.7 
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represents equality) and same in the case if processing and refinery bottlenecks the operation 

(i.e. Equation 2.6 and 2.7 represents equality), then grade corresponds to the balancing cut-off 

grade (𝜎𝑐𝑟) (Asad et al. , 2016). 

  

 

Figure 2.6: Choosing the optimum value in Lane's model (Source: Asad et al., 2016) 

Therefore, the optimum cut-off grade (𝜎) is one of the six limiting and balancing cut-

off grades without violating any of the mining, milling and processing constraints (Asad et 

al., 2016). Figure 2.6 represents Lane’s model (Lane, 1988) for estimating the optimal cut-off 

grade (𝜎) corresponding to the maximum value of 𝑣𝑚𝑎𝑥 among the minimums from the 

functions 𝑣𝑚, 𝑣𝑐 and 𝑣𝑟 . 

 

𝑣𝑚𝑎𝑥(𝜎) = 𝑚𝑎𝑥 [𝑚𝑖𝑛 (𝑣𝑚, 𝑣𝑐 ,𝑣𝑟)]                 (2.17) 

 

2.5. Extensions in Lane’s model: 
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 Lane’s optimal cut-off grade strategy offers a basic methodology for dynamic cut-off 

grades and it opens an avenue of new innovations in cut-off grade optimisation. The 

comparison between both the breakeven and Lane’s approaches gives an insight about the 

significance of Lane’s approach, as it considers all the aspects of economic, geological and 

operational parameters for cut-off grades calculations, and this is the reason for its vast 

acceptance in the mining industry (Asad et al., 2016). Whittle and Vassiliev (1998) 

implements Lane’s model for standard strategic mine planning software. 

There are several extensions made to Lane’s approach, like Mol and Gillies (1984) 

suggest advancement into conventional cut-off grade prototypes, to make it more relevant to 

the iron mining operation, and in this context, marketable material is prioritised to maximise 

NPV, and material blending is used to attain required grade specifications (Asad et al., 2016). 

Dagdelen (1992, 1993) present different algorithms for implementation of Lane’s 

model through a case study, which depict the advantages of this approach. Higher cut-off 

grades are obtained in the initial years of the mining operation, leading to a faster rate of 

return on the capital investments. Balancing the cut-off grade using linear interpolation by 

Dagdelen (1993) is also used for the implementation of Lane’s approach (Asad et al., 2016). 

Whittle and Vassilev (1998) makes an extension in Lane’s cut-off grade calculation 

model by changing the processing cost, recovery cost, and capacities, based on the stochastic 

liberation modelling method which provides a recovery prediction system which is contrary 

to Lane’s approach. This takes variable inputs for recovery cost, where Whittle and Wooler 

(1999) depicts the relation between cut-off grades and the required milling time, which 

implements stochastic liberation modelling procedure in Whittle and Vassilev (1998). Whittle 

also presents Opti-Cut
®
, commercial software for Lane’s model for defining optimal strategy 
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for a milling operation, in parallel to mill throughput and mining cut-off grade optimisation 

(Wooler, 2001; Asad et al., 2016).  

 Generalised Reduced Gradient (GRG) factor is introduced by Nieto and Bacetin 

(2006). Bacetin and Nieto (2007) modifies opportunity cost with the addition of optimisation 

factor, and a solution is extracted considering non-linear characteristics of the model. The 

optimisation factor helps in converging NPV over different iterative processes, ultimately 

showing enhancement in the overall NPV of the operation (Asad et al., 2016).  

 Asad (2007) presents a realistic cut-off grade policy by introducing commodity price 

escalation as an addition to Lane’s optimal model, for the reason that the commodity price is 

changed annually and operating cost also escalates (depending on fixed escalation rates and 

economic parameters) over the life of mining operation. Asad (2007) presents calculations 

based on the hypothetical grade-tonnage distribution, showing impact and importance of 

price variation and cost escalation in this model, on the overall NPV of the operation. The 

stockpiling option presented in Asad (2007) is implemented through mathematical modelling 

in Asad and Topal (2011), which also outlines the strategy to salvage the stockpiled material 

after the valuable mineral present in the pit is exhausted. Asad and Topal (2011) also 

compares the cut-off grade policies with and without stockpiling scenarios, and its impact on 

overall NPV and life of mining operation (Asad et al., 2016).  

 Osanloo et, al. (2008) extends Lane’s model by the incorporation of environmental 

factors influencing the copper deposits, where the mathematical formulation is developed 

while catering the operating cost of dumping waste and tailings (acidic and non-acidic 

generating wastes), which consequently improves NPV relevant to Lane’s model, while 

ensuring environmental impregnability. Narri and Osanloo (2015) also modifies Lane’s 

model on the similar grounds with the incorporation of a reduction in cost due to the findings 
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of environmental impact, in addition to extra revenue generating through waste rock recovery 

(Asad et al., 2016).  

 He et al. (2009) employs a hybrid algorithm by combining genetic and neural 

networks for dynamic optimisation of cut-off grades. Evolutionary algorithms are used in this 

study to define the solution considering Lane’s model as a non-linear approach. Genetic 

algorithm (GA) generates chromosomes and its combination with neural networks develops a 

link between revenue factor and chromosomes, where GA performs a search for the global 

optimal cut-off grade. This method is applied to the iron ore deposit generating cut-off 

grades, and leads to substantial increase in NPVs (Asad et al., 2016). 

 Gholamnejad (2008, 2009) incorporates waste dump reclamation cost in Lane’s 

model as a cash flow function, which in return changes the relationships of mining, 

processing and refining values, with a subsequent shift of optimal point. The case study 

model elaborates on the waste dump rehabilitation costs, leading to a reduction in the cut-off 

grade value, and with the decrease in the quantity of waste to be sent to the waste dumps, 

subsequently sees an increase in NPV while processing low-grade ores (Asad et al., 2016). 

King (2009), following the initial studies in King (1999, 2001, 2004) extends Lane’s 

approach by introducing various strategies and their insinuations regarding operating and 

administrative cost modelling. For example, the study depicts changes to the cut-off grade 

policy by distributing the cost to two different extremes (cost of mining ore is different to the 

cost of mining waste). This cost separation is based on the operations which comparatively 

take less cost for blasting, whereas the cost of hauling ore and waste is always different.  

Rendu (2009) introduces a modification in Lane’s optimal cut-off grade strategy that 

exhibits relationships among different policies so that they are in permissible range with 

different conditions and scenarios, and secondly, it identifies the difference among different 
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cut-off grade policies that maximise NPV or internal rate of return (IRR). In this study, the 

geological and self-designed variables are considered to define optimal cut-off grade strategy. 

Abdollahisharif et al. (2012) introduces an idea of variable production capacities in 

the optimal Lane’s approach (Asad et al., 2016). The modifications made to Lane’s model 

incorporate refinery capacity according to the market demand and incorporate processing and 

mining capacity as a function of cut-off grade and refinery capacity. Although, this study 

opposes the accepted mathematical model developed by Lane (1964,1988), but it still shares 

a crude framework for defining optimum cut-off grades, and reflects a higher NPV as 

compared to Lane’s model and Gholamnejad (2009) (Asad et al., 2016). By using a variable 

capacity based model, it ensures the processing of low-grade ore and reduces the waste 

material (Asad et al., 2016). 

 Khodayari and Jafarnejad (2012) delineate a concept of balancing mine and 

processing plant in Lane’s approach to maximise the quantity of metal (𝑄𝑟) per year. In this 

study, an optimum cut-off grade is achieved where maximum metal quantity becomes 

possible, and it only happens when the optimal value is equal to the mine and processing 

plant balancing cut-off grade (Asad et al., 2016). 

Gama (2013) reforms the profit function in Lane’s model for finding the optimal 

value of cut-off grade. This study discusses the formulation of minimum permissible cut-off 

grade and maximum stripping ratio (waste to ore ratio). The sensitivity analysis used in the 

case study verifies optimum cut-off grade, which is not less than the minimum permissible 

cut-off grade, and secondly the corresponding stripping ratio does not surpass the maximum 

stripping ratio. 

Hustrulid et al. (2013) and Rendu (2014) share a detailed review of both the 

breakeven and cut-off grade strategy, followed by elaborating the complications in Lane’s 
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approach both in open-pit and underground scenarios. These studies also share appreciated 

case studies with different stockpiling approaches. 

Rahimi and Ghasemzadeh (2015) and Rahimi et al. (2015a, 2015b) depict Lane’s 

model as a basis for sharing an innovative approach towards the estimation of cut-off grade 

policy that takes bio-heap leaching and concentration as processing means in parallel. In 

addition, it is associated with environmental recoveries and capital costs (Asad et al. 2016). 

This study depicts a performance evaluation of proposed models using realistic case studies. 

Rahimi et al. (2015b) covers the development of optimal cut-off grade strategy considering 

the environmental costs to accommodate low-grade mining operations (Asad et al., 2016). 

The environmental responsive hydrometallurgical methods are used in this study; in addition 

to the implementation of mathematical models and projected algorithm for a case study, 

which prove to be an increase in the NPV in comparison to the basic Lane’s approach (Asad 

et al., 2016).  

Lane (1984) followed by Lane (1988) propose an important extension to the novel 

Lane (1964) model, with the introduction of methods to calculate cut-off grades for multiple 

economic minerals present in the mineral deposits, whereas, Lane (1964) and the discussions 

above explains single economic mineral present in the deposit. According to Lane (1984), the 

procedure of calculating the cut-off grade for a single economic mineral is valid in multiple 

minerals’ mining operations. Such calculation becomes unrealistic if multiple mineral grades 

are converted to single equivalent grade (Osanloo and Ataei, 2003), specifically if any of the 

minerals is subject to market demand constraint. Solving this problem, Lane (1984) and 

(1988) exploit the grid search (GS) technique which is further extended by many researchers. 

Dagdelen and Asad (1997) implements the grid search (GS) method for cut-off grade 

policy using sensitivity analysis with variable production capacities, whereas Cetin and Dowd 
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(2002) made a comparison for GA based search method for defining cut-off grades with GS 

method mentioned in Lane’s approach.  

Osanloo and Ataei (2003) employs equivalent grade factor in Lane’s approach and 

golden search method for deliberating cut-off grade policy, followed by Osanloo and Ataei 

(2003a) where golden search method (without using equivalent grade factor) is implemented 

(Asad et al., 2016), whereas, Osanloo and Ataei (2003b) covers the implementation of GA, 

GS, and equivalent grades methods in the Lane’s approach using a case study of lead-zinc 

ore-body; extended by Osanloo and Ataei (2004) which use Lane’s model through 

algorithmic structure with the combination of GA and GS, resulting in optimal cut-off grades 

(Asad et al., 2016). 

Asad (2005) introduces stockpiles in multi-mineral deposits and solves this through 

an algorithmic method using GS and implements Lane’s model, whereas Cetin and Dowd 

(2013) improves Lane’s model using GS in the multi-mineral deposits. Nieto and Zhang 

(2013) presents a modification in Lane’s approach using equivalent grade distribution and 

present valued sensitivity analysis that incorporates price variation of secondary mineral. 

2.6. Stochastic cut-off grade models: 

 

 The context above shows that in both the breakeven and Lane’s model, deterministic 

values of the metal selling price and grade-tonnage distribution are considered (Asad et al., 

2016); whereas, realistically it does not remain the same over the life of mining operation and 

it is subject to variation depending on the demand and supply of a particular metal. 

Sometimes, the changes in prices are enormous due to the economic recession (Abdel Sabour 

and Dimitrakopolous, 2011). The production targets are affected with the variable metal 

content present in the ore which leads to uncertain supply of ore for processing. This study 
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also discusses about the pre-mature shutting down of mining operations due to the poor 

estimation of the ore and its metal content (Baker and Giacomo, 1988; Vallee, 2000; Asad et 

al., 2016). 

 Dimitrakopolous (2011) defines the importance of stochastic models to cater the 

market and grade uncertainties, as constant inputs of metal prices and grade-tonnage 

distribution seems to be unviable under such scenarios. Asad and Dimitrakopolous (2013) 

derives a framework for addressing stochasticity in the grade-tonnage distribution using equal 

probable realizations and develops a unique cut-off grade policy which addresses low-grade 

ore bodies; whereas Goodfellow and Dimitrakopolous (2016) develop stochastic models 

using equally probable realization of metal price and/or grade-tonnage distribution (Asad et 

al., 2016).  

 There are several other contributions towards stochastic models for cut-off grade 

optimisation, Dowd (1976) is the initial contribution that shares a programme model which 

shows dynamicity and stochasticity, Krautkraemer (1988) shares a hypothetical stochastic 

model considering anticipated increase or decrease in metal price (Asad et al., 2016). 

Mardones (1993) develops a cut-off grade strategy using an option valuation approach under 

market price uncertainty, whereas, Cairns and Shinkuma (2003) presents a model to address 

the impact of a changing the price on cut-off grades (Asad et al., 2016).  

 Johnson et al. (2011) develops a mathematical model using partial differential 

equations that generate dynamic cut-off grades under market uncertainty. Azimi et al. (2012) 

delineates a comparison based on analysis using real options’ evaluations and discounted 

cash flow. Li and Chang (2012) consider uncertainty in grades and develop a model for 

calculating the cut-off grades as a multi-stage stochastic programming model. Thompson and 

Barr (2014) incorporate uncertain selling price and solve the cut-off grade optimisation 
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problem using a numerical approach considering it as a structure of non-linear differential 

equations (Asad et al., 2016). 

2.7. Mathematical programming models: 

The heuristic nature of Lane’s model that does not follow realistic block model, leads 

to the development of an approach or mathematical model which takes realistic block model 

as input, delivers optimal cut-off grade optimisation solution to the mining problem 

(Dagdelen and Kawahata, 2008; Ganguli et al., 2011; Yasrebi et al., 2015). Mathematical 

based modelling is used in production scheduling problems, where the solutions are derived 

through exact approach (methodology to solve MILP based mathematical model), leads 

toward the development of ultimate pit and production sequences over the life of mining 

operation. Linear programming (LP) and mixed integer linear programming MILP based 

models are the most common models for production scheduling. 

Dagdelen and Kawahata (2007, 2008) present mathematical formulation using MILP 

based models for defining optimal cut-off grade for open-pit mining operations (Asad et al., 

2016), comprises of multi-sources, multi-destinations (waste dumps, stockpiles, and 

processing plants). Dagdelen and Kawahata (2007) discusses different scenarios where MILP 

formulation can be applied successfully, whereas Dagdelen and Kawahata (2008) deploy 

MILP model on multiple processing streams (run-of-mine leach, crushes one leach, floatation 

circuit with concentrates fed to autoclave mill, and direct feed to autoclave mill) (Asad et al., 

2016), with the development of production schedules, and a schedule of dynamic cut-off 

grades (Asad et al., 2016). A performance evaluation of cut-off grade policies with stockpiles 

inclusive leads to further operational intricacies (Asad et al., 2016), due to the increase in the 

number of variables and their solution time.  
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Ganguli et al. (2011) uses the theoretical MILP structure bases on cut-off grade policy 

developed by Dagdelen and Kawahata (2007, 2008), while taking grade-tonnage distribution 

as input in addition to economic parameters, maximises NPV of the operation, subject to 

constraints (reserve, mining, milling, blending, precedence) over the life of mining operation. 

Moosavi et al. (2004) employs an MILP model that develops solution for production 

sequences and dynamic cut-off grade optimisation problems, which minimizes economic 

losses subject to constraints (reserve, mining, milling, blending, precedence); whereas the 

computational intricacies are not discussed in this study. On the other hand, Yasrebi et al. 

(2015) and Hustrulid (2013) deploy a non-linear model for cut-off grade optimisation, which 

shows no improvement in NPV when compared with Lane’s optimal cut-off grade models 

(Asad et al., 2016). 

While MILP based cut-off grade optimisation models derive a schedule of cut-off 

grades over a life of mining operation, several MILP models (Dagdelen and Johnson, 1986; 

Ramazan, 2007; Ramazan and Dimitrakopoulos, 2007; Newman et al., 2010; Ramazan and 

Dimitrakopoulos, 2012, Topal and Ramazan, 2010; Lamghari and Dimitrakopoulos, 2012) 

are available that offer a block-by-block and period-by-period production schedule for open-

pit mining operations. The common factor among these models is given an ore-body model, 

whereas economic parameters are applied to derive economic block models which then 

become input to the MILP formulation. Breakeven cut-off grade is thus inherently considered 

as part of this procedure, which dictates the division of  mining blocks into ore (block 

economic value 𝑉 > 0) and waste blocks (𝑉 ≤ 0). MILP based production scheduling 

formulation then generates optimum production sequence (where NPV is maximised) 

considering all its significant parameters (geological, economic, operational and slope) 

(Newman et al., 2010).   
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The parameters and variables used in MILP formulation for production scheduling 

are  economic value (𝑉𝑖) of each block 𝑖, where 𝐼 is the total number of blocks  (𝑖 =1, 2, 

…. 𝐼), discount rate (𝑑), binary variable (𝑋𝑖𝑡) equal to 1 if block is mined in period 𝑡 or 0 

otherwise, 𝑇 is the total number of years (life of mining operation i.e. 𝑡 =1, 2, …. 𝑇) and 𝑞𝑖  is 

the available quantity of material for a block 𝑖. The breakeven cut-off grade is inherently part 

of the calculation as it helps in defining the block values as 𝑉 = (𝑠 − 𝑟)𝑔𝑦 − 𝑚 − 𝑐 as a 

function of total tonnage of the block (Newman et al., 2010). 

The objective is to maximise the overall net present value (NPV) using the sum of 

discounted economic block values presented in Equation (2.18) subject to reserve constraint, 

slope constraint, mining capacity constraint and milling capacity constraint as shown in 

Equation 2.19 to 2.22. 

𝑀𝑎𝑥 𝑍 = ∑ ∑
𝑉𝑖

(1+𝑑)𝑡 𝑋𝑖𝑡
𝐼
𝑖=1

𝑇
𝑡=1                                                             (2.18) 

Subject to: 

∑ 𝑋𝑖𝑡 ≤ 1                                                ∀ 𝑖 𝑇
𝑡=1 , 𝑡                                                         (2.19) 

𝑋𝑖𝑡 − ∑  𝑋𝑗𝑡 ≤ 0                                  ∀ 𝑡 , ∀ 𝑗 ∈ 𝑁 = 𝑠𝑒𝑡 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑠 𝑡
𝑡=1           (2.20) 

∑ 𝑞𝑖𝑋𝑖𝑡  𝐼
𝑖=1 ≤ 𝑀𝑐𝑎𝑝𝑡                                 ∀ 𝑡                             (2.21) 

∑ 𝑞𝑖𝑋𝑖𝑡  𝐼
𝑖=1 ≤ 𝑃𝑐𝑎𝑝𝑡                                 ∀ 𝑖 { 𝑔𝑖 > 0}                                           (2.22) 

Despite having said, that linear programming and MILP formulation generates an 

optimum solution to open-pit mine planning problem for production scheduling and cut-off 

grade optimisation problems, it leads to complexity for large scale models. Although, 

previous studies aim to achieve exact solution using MILP formulation both for production 

scheduling and cut-off grade optimisation, but considering realistic block models (consisting 
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of hundreds and thousands of blocks) as inputs, the solution becomes computationally 

inefficient and leads to complexity. To overcome this problem, metaheuristics are introduced 

based on the biological and natural sciences, as an alternative solution to the exact approach, 

which helps in attaining near optimum solutions in a reasonable time. The following section 

discusses an overview on the metaheuristics in detail. 

2.8. Metaheuristics:  

 

The metaheuristics are defined as follows (Voss, 2001; Osanloo et al., 2004): 

“A meta-heuristic is an iterative master process that guides and modifies the operation 

of subordinate heuristics to efficiently produce high-quality solutions. It may 

manipulate a complete single solution or a collection of solutions at each iteration. 

The subordinate heuristics may be high-level procedures or a single local search, or 

just a construction method. The family of the metaheuristics includes, but not limited 

to, Tabu Search, Ant Systems, Greedy Randomized Adaptive Search, Variable 

Neighborhood Search, Genetic Algorithms, Scatter Search, Neural Networks, 

Simulated Annealing and their hybrids.” 

Denby and Schofield (1994) and Denby et al. (1998) used a GA for optimisation 

problems both for the open-pit and underground mine operations. The following procedure of 

GA is summarised by Osanloo et al. (2008), as some algorithms support extraction 

scheduling and cut-off grade optimisation. 

1. “Generation of random pit population; 

2. Assessment of fitness function, which can be used to assess the suitability of a 

produced solution. A typical fitness function includes: maximising NPV, minimizing 
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early stripping, balancing stripping and balancing ore production of multiple 

minerals; 

3. Reproduction of pit population using probabilistic techniques;  

4. Crossover of pits such that between 40 and 60% of the schedules are crossed over;  

5. Mutation of pits with a probability between 1 and 5% ; 

6. Normalization of pits to ensure that extraction constraints are not violated; 

7. Local optimisation of pits to improve the fitness of individual schedules; 

8. Stopping condition is met when 𝑛 generations (between 20 and 40) have occurred 

without any improvement in the best schedule;” 

GA generates better optimisation results in an acceptable time, flexible and effective for 

UPL and production planning problems (Osanloo, 2008). The results differ in each run of this 

program, after several generations, due to the stochastic nature of GA (Osanloo, 2008). On 

the other hand, it also ignores the effect of pit volume on the unit cost of mining. The flow 

chart of GA is shown in Figure 2.4. 

 

Figure 2.7: Flow chart showing optimised solution using genetic algorithm (Source: Osanloo, 2008) 
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The cut-off grade of a metalliferous deposit is dynamic in nature and dynamic 

programming (DP) approach is quite suitable for cut-off grade determination problems 

(Mishri, 2006). Davey (1979) states that production forecast for an operational property is 

based on the grade at which the minerals can no longer be processed for profit. DP method 

discusses where a cut-off grade is calculated as a variable (Dowd, 1976), and can also be 

extended to a more general case of stochastic programming, which permits future market 

value in probabilistic terms. Mishri (2006) uses a computer tool in dynamic programming 

based on mathematical models to solve cut-off grade problems in smaller stages.  

Sattarvand and Neimann-Delius (2008) presents three cost components including 

penalty costs (stockpiling) for production out of required tonnage limit, an average metal 

content cost for a period exceeding prescribed limits and the cost incurred due to non-

uniformity of production. These three cost components are transferred to a single objective 

problem using a weighing scheme depending on ore-body, sales structure and plant 

characteristics (Sattarvand and Neimann-Delius, 2008). SA Kumral and Dowd (2005) uses 

Langragian parameterization for an initial solution proposed by (Dagdelen, 1985). 

Perturbation and cooling schedule are defined after the initial solution to get the acceptable 

solutions (Sattarvand and Neimann-Delius, 2008; Kumral and Dowd, 2005). 

Artificial ants traveling through the schedule array are used to construct a population 

of scheduling solution (Sattarvand and Neimann-Delius, 2008), which can also be used for 

cut-off grade optimisation, where pit depths in each planning period are used in terms of 

integer variables. A pheromone update procedure runs and either extra reinforcement is given 

to the best- scheduled blocks or identifying the best ants to deposit pheromones (Sattarvand 

and Neimann-Delius, 2008; Dorigo and Sttuetzle, 2004). ACO algorithm depicted by 

Sattarvand (2009) is shown in Figure 2.8. 
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Figure 2.8: Procedure involved in ACO Algorithm (Source: Sattarvand, 2009) 

Many other metaheuristics like Tabu Search (TS) (Lamghari and Dimitrakopoulos, 

2012; Glover and Laguna, 1997) and Particle Swarm Optimisations (PSO) are being used 

extensively in the field of open-pit mine optimisation (Sattarvand and Neimann-Delius, 

2008). TS uses a neighbourhood search procedure to iteratively move from one solution to 

another neighbourhood until stopping conditions are achieved where PSO is stochastic and 

population-based evolutionary algorithm (Sattarvand and Neimann-Delius, 2008; Osanloo et 

al., 2008), that uses an iterative process of evaluation of fitness while considering the location 

of the block for the best solution.  

Models based on a combination of artificial intelligence (AI) techniques have been 

articulated (Askari-Nasab, 2006; Askari-Nasab and Awuah-Offei, 2009; Denby et al., 1996; 

Askari-Nasab et al., 2010; Tolwinsiki and Underwood, 1996). Askari-Nasab et al. (2010) is 

of the opinion that there is no quality measure to solutions provided through heuristics and 

AI, comparing against the optimum.  

Myburgh et al. (2014) introduce hybrid evolutionary algorithm based engine with one 

“master” algorithm which manages variation of cut-off grade and extraction sequence while 

the other two “slaves” or low-level optimisation algorithms which consist of LP algorithm 

and search technique. First determines an optimal flow of material through multiple 

processing streams while managing stockpile policy and the second finds the fittest schedule. 
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Following the same theory, Maptek (2014) introduces “Strategy Engine” shown in Figure 2.9 

as follows: 

   

 

Figure 2.9: Strategy Engine (Source: Maptek 2014) 
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develop a realistic cut-off grade policy which generates optimum cut-off grades over the 

operational life of a mine. As discussed earlier, the breakeven cut-off grade model and Lane’s 

optimal cut-off grade policy are restricted to certain conditions, e.g. breakeven model does 

not consider mining, milling and processing constraints and gives constant mining cut-off 

grade over the operational life of mine, whereas Lane’s optimal policy considers grade-

tonnage distribution as input to estimate dynamic processing cut-off grades. The grade-

tonnage distribution is unrealistic in view that metal content is not uniformly distributed 

throughout the deposit. The grade is location dependent, that is, each mining block in the ore-

body model constitutes a unique grade. Thus, the variation in grade from one mining block to 

the other cannot be disregarded in the grade-tonnage curve. Subsequently, the optimal cut-off 

grade problem, for long-term schedules extracted from the grade-tonnage based normally 

distributed inputs, remains unresolved. Therefore, this research develops and implements a 

Graph theory used in creation of 

extraction sequences for initial 

population 

Linear Programming Algorithm 

1. Optimise flow through processes 

2. Optimise flow to and from 

stockpiles 

Evolutionary Master Algorithms 

1. Process COGs 

2. Stockpile COGs 

3. Stockpile Availability 

4. Extraction Sequence 

 

 

Evolutionary Local Search Algorithm 

1. Refine Process cut-offs 

2. Refine Stockpile cut-offs 



35 
 

strategy where short-term and long-term plans are synchronised. The new MILP based 

mathematical model for defining cut-off grade optimisation policy is defined in the 

forthcoming sections, which is first solved using exact approach, and later solved using 

hybrid-metaheuristic. The hybrid-metaheuristic algorithm is introduced, developed and 

implemented to overcome the complexity of the exact solution in this research and later the 

results are analysed and evaluated in the form of case studies.  

Summary: 

This chapter provides a detailed overview of different cut-off grade optimisation models and 

policies developed and implemented in the previous studies. Two main cut-off grade models, 

i.e. breakeven and Lane’s model with their applied extensions are discussed in detail in the 

literature review. Later, linear programming and MILP based mathematical models for 

optimisation are also cited in this chapter. MILP based mathematical model for production 

scheduling optimisation problem is discussed while mentioning its objective function and 

constraints considering geological block model, economic parameters and operational 

capacities as inputs. Keeping in mind the complexities involved in solving mathematical 

models using exact solution, the literature discusses metaheuristics and hybrid-metaheuristics 

as an alternative solution to the problem. 
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Chapter 3: Mixed integer linear programming (MILP) model 
 

The new MILP based mathematical is unique as it maximises NPV using annual cash 

flows subject to the precedence or slope, production capacity and grade blending constraints. 

This model takes a three-dimensional ore-body model and economic parameters as inputs and 

generates a schedule of dynamic cut-off grades as well as block-by-block and period-by-

period sequence of production. The general problem for cut-off grade optimisation is 

mathematically presented as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑁𝑃𝑉 

Subject to 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑄𝑚) ≤ 𝑀𝑖𝑛𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑀) 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑂𝑟𝑒 (𝑄𝑐) ≤ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (C) 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑀𝑒𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡  (𝑄𝑟) ≤ 𝑅𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  (𝑅) 

3.1. Inputs to the mathematical model: 

 

An ore-body model is a three dimensional array of fixed size thousands of blocks 

(Osanloo et al., 2008; Limghari and Dimitrakopolous, 2012; Asad et al. 2016). This ore-body 

model is considered as a geological resource, where each mining block is defined by its 

spatial location (XYZ coordinates), metal content (grade) and quantity of material (tonnage). 

The grade for each block is assigned from the geological data collected from drill cores and 

by using any of inverse distance weighted interpolation, weighted moving average or kriging 

techniques (Osanloo et al., 2008).  
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3.1.1. Economic parameters: 

 

Economic parameters comprise of the market price of metal, mining cost, milling 

cost, and metallurgical recovery (yield). These parameters normally decide the economic 

value of each block present in the ore-body model in the conventional production scheduling 

problem, and depend on the metal content (grade) present in the block. In the new MILP 

formulation which defines cut-off grade optimisation policy and it does not consider 

economic block values, and the parameters mentioned above are used to estimate cash flow 

as part of the formulation. All these parameters are taken as input on yearly basis. As the 

deterministic block model is considered in this research, therefore, the prices are considered 

constant over the life of mining operation.  

3.2. New optimal cut-off grade model for an open-pit mining operation: 

The new cut-off grade formulation is designed and implemented for 2D and 3D block 

models considering block-by-block realizations as inputs. Table 3.1 discusses parameters and 

variables used in the MILP formulation. 

3.2.1.  Objective function: 

 

The objective is to maximise net present value (NPV) using undiscounted cash flow 

𝑃𝑡, where 𝑃𝑡 is computed as part of MILP formulation (Equation 3.2): 

𝑀𝑎𝑥 𝑍 = ∑
𝑃𝑡

(1+𝑑)𝑡
𝑇
𝑡=1                                                                                                          (3.1) 

3.2.2.  Cash flow constraint: 

The cash flow 𝑃𝑡   in period or year 𝑡 is determined using Equation (3.2). The values 

for 𝑄𝑚𝑡 and 𝑄𝑐𝑡 and  𝑄𝑟𝑡 are determined during simulation using mining, processing and 

milling constraints. 
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𝑃𝑡 − (𝑝 − 𝑟)𝑄𝑟𝑡 − 𝑚𝑄𝑚𝑡 − 𝑐𝑄𝑐𝑡 − 𝐹𝐶𝑡 = 0                        ∀ 𝑡                                           (3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Grid of parameters and variables defined for mathematical model 

𝒊 Block index 

𝒕 Period or year index 

𝑻 Total life of mining operation, where  𝑡 =1, 2… 𝑇 

𝒑 Price of metal per tonne or ounce or gram of metal (in $/tonne or $/gram) 

𝒓 Refining cost  per tonne or ounce or gram of metal (in $/tonne or $/gram) 

𝒎 Mining cost per tonne of material (in $/tonne) 

𝒄 Processing cost per tonne of ore (in $/tonne) 

𝒅 Discount rate (in %) 

𝒚 Metallurgical recovery (in %) 

𝒈𝒊 Grade (metal content) of block 𝑖 (in %,  ounce or gram of metal) 

𝒒𝒊 Quantity of material of block 𝑖 (in tonnes) 

𝑴𝒄𝒂𝒑𝒕 Mining capacity in year or period 𝑡 (in tonnes) 

𝑷𝒄𝒂𝒑𝒕 Processing capacity of a processing plant in period or year 𝑡 (in tonnes) 

𝒁 Net present value (NPV) (in $) 

𝑷𝒕 Profit or cash flow  in a period or year 𝑡 (in $) 

𝑸𝒎𝒕 Quantity of material mined in a period or year 𝑡 (in tonnes) 

𝑸𝒄𝒕 Quantity of ore processed in a period or year 𝑡 (in tonnes) 

𝑸𝒓𝒕 Quantity of metal refined in a period or year 𝑡 (in tonnes) 

𝒈
𝒕
 Average grade of ore in time period or year 𝑡  

(in %,  ounce or gram of metal) 

𝑪𝑶𝑮𝒕 Cut-off grade of ore blocks mined in a period or year 𝑡  

(in %,  ounce or gram of metal)  

𝑪𝑶𝑳𝑩 Cumulative quantity of material in blocks with grade less than or equal 

to 𝐶𝑂𝐺𝑡 (lower bound) (in tonnes) 

𝑪𝑶𝑼𝑩 Cumulative quantity of material in blocks with  grade greater than or 

equal to 𝐶𝑂𝐺𝑡 (upper bound) (in tonnes) 

𝑿𝒊𝒕 Binary variable which is equal to 1 if block is mined  in a period or 

year 𝑡 and 0 otherwise 
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3.2.3. Refining constraint: 

 

Refining constraint ensures that the quantity of metal refined in period 𝑡 remains 

within the refining capacity. 𝑄𝑟 depends on the quantity of ore processed 𝑄𝑐𝑡 , average grade 

𝑔
𝑡
 and metallurgical recovery  𝑦 (𝑄𝑟 = 𝑄𝑐𝑡  ×  𝑔

𝑡
×  𝑦) as presented in Equation 3.3. 

 𝑄𝑟𝑡 − ∑ 𝑞𝑖𝑋𝑖𝑡  ×  𝑔
𝑡

 ×  𝑦  = 0                                      ∀ 𝑖 𝐼
𝑖=1 {𝑔𝑖 ≥ 0 }, 𝑡                            (3.3) 

Where 

𝑔
𝑡

=
∑ 𝑔𝑖𝑞𝑖𝑋𝑖𝑡  𝐼

𝑖=1

∑ 𝑞𝑖
𝐼
𝑖=1 𝑋𝑖𝑡  

                                                   ∀ 𝑖   {𝑔𝑖 ≥ 0 }, 𝑡   

𝑔
𝑡
 is computed as weighted mean of the ore blocks mined in a specific time period. Placing 

the value of  𝑔
𝑡
 in Equation 3.3:  

𝑄𝑟𝑡 − ∑ 𝑞𝑖𝑋𝑖𝑡  ×
∑ 𝑔𝑖𝑞𝑖𝑋𝑖𝑡  𝐼

𝑖=1

∑ 𝑞𝑖
𝐼
𝑖=1 𝑋𝑖𝑡  

× 𝑦  = 0                              ∀ 𝑖 𝐼
𝑖=1 {𝑔𝑖 ≥ 0 }, 𝑡      

𝑄𝑟𝑡 − ∑ 𝑔𝑖𝑞𝑖𝑋𝑖𝑡  𝐼
𝑖=1 × 𝑦  = 0                                                   ∀ 𝑖 {𝑔𝑖 ≥ 0}, 𝑡                              (3.4) 

3.2.4. Mining capacity constraint: 

 

Mining capacity constraint has two parts, first is the quantity of the material mined 

𝑄𝑚𝑡 in the time period 𝑡 must not exceed mining capacity, and second 𝑄𝑚𝑡 must be equal to 

the cumulative quantity of the material in all the blocks mined in the time period t as shown 

in Equations 3.5 and 3.6 respectively. 

𝑀𝑐𝑎𝑝𝑡_𝑙𝑏 ≤ 𝑄𝑚𝑡 ≤ 𝑀𝑐𝑎𝑝𝑡_𝑢𝑏                                             𝑓𝑜𝑟  ∀ 𝑡                      (3.5)

   

𝑄𝑚𝑡 − ∑ 𝑞𝑖𝑋𝑖𝑡    = 0                          𝑓𝑜𝑟   ∀ 𝑖 , 𝑡𝐼
𝑖=1                                                             (3.6) 



40 
 

3.2.5.  Processing capacity constraint: 

 

The processing constraint shows that the quantity of the ore processed 𝑄𝑐𝑡 in the 

specific time period 𝑡 must not exceed processing capacity, and secondly 𝑄𝑐𝑡 must be equal 

to the cumulative quantity of ore (𝑔𝑖 ≥ 𝐶𝑂𝐺𝑡 ) in the time period 𝑡 as shown in Equation 3.7 

and Equation 3.8 respectively. 

𝑃𝑐𝑎𝑝𝑡_𝑙𝑏 ≤ 𝑄𝑐𝑡 ≤ 𝑃𝑐𝑎𝑝𝑡_𝑢𝑏                                                𝑓𝑜𝑟  ∀ 𝑡                        (3.7) 

𝑄𝑐𝑡 − ∑ 𝑞𝑖𝑋𝑖𝑡      = 0                                    𝑓𝑜𝑟  ∀ 𝑖 𝐼
𝑖=1 {𝑔𝑖 ≥ 0  }, 𝑡                                     (3.8) 

3.2.6.  Reserve constraint: 

 

The reserve constraint ensures that each block is mined once during the life of the mining 

operation. It can be mathematically shown as follows: 

∑ 𝑋𝑖𝑡 ≤ 1                                                𝑓𝑜𝑟  ∀ 𝑖 𝑇
𝑡=1 , 𝑡                                                            (3.9) 

3.2.7. Precedence or slope constraint: 

The condition for each block 𝑖 to be mined in any period 𝑡, a set 𝑁 of the overlying 

blocks which is also termed as set of predecessors in the X, Y and Z location must be mined 

prior to or in the same period 𝑡. This is mathematically shown in Equation 3.10 as a slope 

constraint.  

𝑋𝑖𝑡 − ∑  𝑋𝑗𝑡 ≤ 0                                        𝑓𝑜𝑟 ∀ 𝑡,  ∀ 𝑗 ∈ 𝑁        𝑡
𝑡=1                                              (3.10) 

3.2.8. Cumulative ore tonnage constraint:  

The cumulative ore tonnage constraint helps establish the cut-off grade for a period or 

year 𝑡 at different mining sequences, which means a value where neither of mine or 

processing plant bottlenecks the mining operation.  
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𝐶𝑂𝐺𝑡 × ∑ 𝑞𝑖𝑋𝑖𝑡   ≥     𝐶𝑂𝐿𝐵                        𝑓𝑜𝑟  ∀ 𝑖 𝐼
𝑖=1 , 𝑡                                                   (3.11) 

𝐶𝑂𝐺𝑡 × ∑ 𝑞𝑖𝑋𝑖𝑡 ≤        𝐶𝑂𝑈𝐵                        𝑓𝑜𝑟  ∀ 𝑖 𝐼
𝑖=1 , 𝑡                                                  (3.12) 

𝑤ℎ𝑒𝑟𝑒       𝐶𝑂𝐿𝐵 = ∑ 𝑔𝑖𝑞𝑖𝑋𝑖𝑡                           𝑓𝑜𝑟  ∀ 𝑖 {0 < 𝑔𝑖 ≤  𝐶𝑂𝐺𝑡

𝐼

𝑖=1

) 

𝑤ℎ𝑒𝑟𝑒       𝐶𝑂𝑈𝐵 = ∑ 𝑔𝑖𝑞𝑖𝑋𝑖𝑡                           𝑓𝑜𝑟  ∀ 𝑖 {𝑔𝑖  ≥  𝐶𝑂𝐺𝑡

𝐼

𝑖=1

) 

3.3. Summary of new MILP based cut-off grade formulation: 

 

The summary of the formulation is presented in Equations (3.13 to 3.26). 

𝑀𝑎𝑥 𝑍 = ∑
𝑃𝑡

(1+𝑑)𝑡
𝑇
𝑡=1                      (3.13) 

Subject to 

𝑃𝑡 − (𝑝 − 𝑟)𝑄𝑟𝑡 − 𝑚𝑄𝑚𝑡 − 𝑐𝑄𝑐𝑡 − 𝐹𝐶𝑡 = 0                             ∀ 𝑡                                                   (3.14)                                           

𝑀𝑐𝑎𝑝𝑡_𝑙𝑏 ≤ 𝑄𝑚𝑡 ≤ 𝑀𝑐𝑎𝑝𝑡_𝑢𝑏                                                𝑓𝑜𝑟  ∀ 𝑡                                     (3.15) 

𝑄𝑚𝑡 − ∑ 𝑞𝑖𝑋𝑖𝑡     = 0                                                               𝑓𝑜𝑟   ∀ 𝑖 , 𝑡𝐼
𝑖=1                                          (3.16) 

𝑃𝑐𝑎𝑝𝑡_𝑙𝑏 ≤ 𝑄𝑐𝑡 ≤ 𝑃𝑐𝑎𝑝𝑡_𝑢𝑏                                                      𝑓𝑜𝑟  ∀ 𝑡                                     (3.17) 

𝑄𝑐𝑡 − ∑ 𝑞𝑖𝑋𝑖𝑡       = 0                                                             𝑓𝑜𝑟  ∀ 𝑖 𝐼
𝑖=1 {𝑔𝑖 ≥ 𝐶𝑂𝐺𝑡   }, 𝑡                  (3.18) 

𝑄𝑟𝑡 − ∑ 𝑔𝑖𝑞𝑖𝑋𝑖𝑡   𝐼
𝑖=1 × 𝑦  = 0                                                    ∀ 𝑖 {𝑔𝑖 ≥ 𝐶𝑂𝐺𝑡}, 𝑡                                 (3.19) 

Where       𝑔
𝑡

=
∑ 𝑔𝑖𝑞𝑖𝑋𝑖𝑡  𝐼

𝑖=1

∑ 𝑞𝑖
𝐼
𝑖=1 𝑋𝑖𝑡  

                               ∀ 𝑖   {𝑔𝑖 ≥ 𝐶𝑂𝐺𝑡 }, 𝑡           (3.20) 

𝑋𝑖𝑡 − ∑  𝑋𝑗𝑡 ≤ 0                                                                   𝑓𝑜𝑟  ∀ 𝑡, ∀ 𝑗 ∈ 𝑁        𝑡
𝑡=1                                (3.21) 
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∑ 𝑋𝑖𝑡 ≤ 1                                                                                 𝑓𝑜𝑟  ∀ 𝑖 𝑇
𝑡=1 , 𝑡                                            (3.22) 

𝐶𝑂𝐺𝑡 × ∑ 𝑞𝑖𝑋𝑖𝑡    ≥     𝐶𝑂𝐿𝐵                                             𝑓𝑜𝑟  ∀ 𝑖 𝐼
𝑖=1 , 𝑡                                              (3.23) 

𝐶𝑂𝐺𝑡 × ∑ 𝑞𝑖𝑋𝑖𝑡  ≤        𝐶𝑂𝑈𝐵                                           𝑓𝑜𝑟  ∀ 𝑖 𝐼
𝑖=1 , 𝑡                                              (3.24) 

𝑤ℎ𝑒𝑟𝑒       𝐶𝑂𝐿𝐵 = ∑ 𝑔𝑖𝑞𝑖𝑋𝑖𝑡                                     𝑓𝑜𝑟  ∀ 𝑖 {0 < 𝑔𝑖 ≤  𝐶𝑂𝐺𝑡
𝐼
𝑖=1 )                           (3.25) 

𝑤ℎ𝑒𝑟𝑒       𝐶𝑂𝑈𝐵 = ∑ 𝑔𝑖𝑞𝑖𝑋𝑖𝑡                                    𝑓𝑜𝑟  ∀ 𝑖 {𝑔𝑖  ≥  𝐶𝑂𝐺𝑡
𝐼
𝑖=1 )                                  (3.26) 

3.3.1 Structure of the new MILP formulation for cut-off grade optimisation: 

 

The MILP based new formulation for cut-off grade optimisation computes the 

simultaneous estimation of cut-off grades and production sequences; where undiscounted 

cash flows are estimated as part of MILP formulation to define the objective function. This 

new cut-off grade formulation is unique in a sense that the objective function which 

maximises NPV uses cash flow 𝑃𝑡 = (𝑝 − 𝑟)𝑄𝑟𝑡 − 𝑚𝑄𝑚𝑡 − 𝑐𝑄𝑐𝑡 − 𝐹𝐶𝑡 instead of 

economic block value (thus ignores breakeven cut-off grades), whilst estimating 𝑃𝑡 as a 

function of quantity of material mined in time 𝑡 (𝑄𝑚𝑡), quantity of ore processed in time 𝑡 

(𝑄𝑐𝑡), and quantity of metal refined in time 𝑡 (𝑄𝑟𝑡), in addition to the binary decision 

variable  𝑋𝑖𝑡  representing a value equals to 1 or 0 depending on whether the respective block 

𝑖 is mined in period or year 𝑡 or not. Mining, processing and refining capacity constraints are 

defined in terms of grade 𝑔𝑖 for each block other than the slope, and reserve constraints in 

this formulation. The yearly weighted average grade 𝑔
𝑡
 is also computed as part of this 

formulation as a function of grade  𝑔𝑖 for each block. As refining capacity is equal to the 

product of processing capacity, average ore grade and metallurgical recovery (𝑄𝑟𝑡 = 𝑄𝑐𝑡  ×

 𝑔
𝑡

 × 𝑦) which is estimated simultaneously depending on the number of blocks mined, 

whilst running the simulation for the new MILP formulation. 
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Cumulative ore tonnage constraint is introduced in this formulation to determine cut-

off grade 𝐶𝑂𝐺𝑡 for each period or year 𝑡 over the life of mine operation. In addition, it 

indirectly controls the 𝑄𝑐𝑡 and 𝑄𝑟𝑡 constraints. The MILP formulation includes these 

cumulative tonnage constraints through a random selection of grades available in the ore-

body model; however, the minimum value of these randomly selected grades may not be 

lower than the processing plant required head grade. Cumulative lower bound 𝐶𝑂𝐿𝐵  and 

cumulative upper bound tonnage 𝐶𝑂𝑈𝐵  is defined in this constraint. Cut-off grade for the 

blocks mined in year 𝑡 is the maximum grade (must be more than or equal to processing plant 

head grade) value which when multiplied with the sum of the quantities of all ore blocks 

(with 𝑔𝑖 ≤  𝐶𝑂𝐺𝑡 )  mined in time period 𝑡 must be greater than the cumulative quantity of ore 

blocks at lower bound, and must be less than the cumulative quantity of ore blocks at upper 

bound. Clearly, the cumulative lower and upper bound tonnage considers the ore blocks 

having grades lower than the cut-off grade and upper than the cut-off grade respectively.  

Figure 3.1 (a) and (b) presents the structure of the precedence constraint using two 

dimensional (2D) and three dimensional (3D) block models respectively. Layer 1 shows the 

overlying blocks, whereas layer 2 shows underlying blocks within the ore-body model. The 

model considers 5 to 1 ratio (as defined in Equation 3.26) for precedence constraint, which 

infers that for each block to be mined, 5 overlying blocks are mined at XYZ location for a 3D 

block model as shown in the Figure 3.1 (b). The slope constraints in the formulation consider 

the same pattern (5:1) and they are mathematically defined in Equation 3.26. 

                    

 

                                                                                                 

(a) 2D block model with predecessors                                                   (b)   3D block model with predecessors 

Figure 3.1:  Block model with predecessors 
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3.3.2 Case 1: MILP based cut-off grade optimisation using 2D block model (25 

blocks): 

Case 1 discusses the implementation of the MILP based cut-off grade optimisation 

model for the one year life of mining operation considering 2D block model, which 

comprises of 25 blocks as shown in Figure 3.2. The problem in this case study is defined as a 

new MILP formulation and manually solved through step by step development and 

implementation of the formulation, while considering 3:1 for 2D model (for each block to be 

mined three overlying blocks need to be mined) slope constraint. The processing plant head 

grade is assumed as 0.35 for case 1.For clarity, the block index (𝑖) and the time index (𝑡) the 

format of the binary variable 𝑋𝑖𝑡 is used as 𝑋𝑖..𝑡 in the following solved examples. 

1 2 3 4 5 

6 7 8 9 10 

 11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 
 

 

0 0 0 0 0 

0 0.2 0.4 0.5 0 

0.1 0 0.3 0.5 0 

0 0.5 0.6 0 0 

0 0 0.4 0 0 

 

Figure 3.2: Hypothetical 2D (grid of 25 blocks) block model with a section map 

 

Economic and operational parameters: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2: Economic and operational parameters for 2D hypothetical model 

  Objective function: 

 Using Equation (3.13) and putting value of discount factor 

Parameters value Units 

Fixed tonnage per block 150 Tonnes 

Mining capacity 𝑴𝒄𝒂𝒑𝒕 1500 tonnes/year 

Processing capacity 𝑷𝒄𝒂𝒑𝒕 700 tonnes/year 

Discount rate 𝒅 15 % 

Metal price 𝒑 1500 $/ tonne 

Refining cost  𝒓 500 $/ tonne 

Milling cost 𝒄 5.3 $/tonne 

Mining cost 𝑚 1.25 $/tonne 

Metallurgical recovery  𝒚 95 % 

Fixed cost 𝑭𝑪 2500 $/tonne 
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𝑀𝑎𝑥 𝑁𝑃𝑉 =  
𝑃1

(1+0.15)1                                                                                            (3.27) 

Putting values of 𝑝, 𝑟, 𝑚 and 𝑐  from Table (3.2) in Equation (3.14) 

𝑃1 =  (1500 − 500)𝑄𝑟1 − (1.25)𝑄𝑚1 − (5.3)𝑄𝑐1 − 2500                                 (3.28) 

Mining capacity constraint: 

Applying constraints as mentioned in Equations (3.15) and (3.16): 

𝑄𝑚1 ≤ 1500                                    (3.29)

 𝑄𝑚1 − 150(𝑥1..1 + 𝑥2..1 + 𝑥3..1 + 𝑥4..1+ ⋯ + 𝑥24..1+𝑥25..1 ) = 0                     (3.30) 

Processing capacity constraint:   

Applying constraints as mentioned in Equations (3.17) and (3.18): 

              𝑄𝑐1 ≤ 700                                      (3.31) 

  𝑄𝑐1 −150(𝑥7..1 + 𝑥8..1 + 𝑥9..1 + 𝑥11..1+ 𝑥13..1 + 𝑥14..1+𝑥17..1 + 𝑥18..1 + 𝑥23..1) = 0      (3.32) 

Calculating average grade: 

Calculating weighted average grade using Equation (3.19): 

𝑔
1

 =
 150(0.2𝑥7..1 + 0.4𝑥8..1 + 0.5𝑥9..1 + 0.1𝑥11..1+ 0.3𝑥13..1 + 0.5𝑥

14..1
+0.6𝑥17..1 + 0.5𝑥18..1 + 0.5𝑥23..1)

150(𝑥7..1 + 𝑥8..1 + 𝑥9..1 + 𝑥11..1+ 𝑥13..1 + 𝑥
14..1

+𝑥17..1 + 𝑥18..1 + 𝑥23..1)
 

                  (3.33)  

Refining capacity constraint: 

Using Equation (3.19):     

𝑄𝑟1 =   {150(𝑥7..1 + 𝑥8..1 + 𝑥9..1 + 𝑥11..1+ 𝑥13..1 + 𝑥14..1+𝑥17..1 + 𝑥18..1 + 𝑥23.1)} × 𝑔
1

  × 𝑦       (3.34) 

 Precedence or slope constraint: 

Applying slope constraints using Equation (3.21) 
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 𝑥7..1 − 𝑥1..1 ≤ 0                                                                                                      (3.35)          

𝑥7..1 + 𝑥2..1 ≤ 0                 (3.36)          

𝑥7..1 + 𝑥3..1 ≤ 0                                                                                                       (3.37) 

 𝑥8..1 − 𝑥2..1 ≤ 0                                                                                                      (3.38)          

𝑥8..1 + 𝑥3..1 ≤ 0                 (3.39)          

𝑥8..1 + 𝑥4..1 ≤ 0                                                                                                       (3.40) 

 𝑥9..1 − 𝑥3..1 ≤ 0                                                                                                      (3.38)          

𝑥9..1 + 𝑥4..1 ≤ 0                 (3.39)          

𝑥9..1 + 𝑥5..1 ≤ 0                                                                                                       (3.40) 

Reserve constraint: 

Reserve constraints are applied using Equation (3.22) 

𝑥1..1 ≤ 1  

𝑥2..1 ≤ 1                 (3.41) 

𝑥3..1 ≤ 1   … … … … 𝑥9..1 ≤ 1  

Cumulative tonnage constraint:  

Given the ore-body model, cumulative tonnage constraints are created using 

Equations 3.23 to 3.26. 

Estimating value of 𝐶𝑂𝐿𝐵 and  𝐶𝑂𝑈𝐵 using Equation (3.25) and (3.26): 
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𝐶𝑂𝐿𝐵 =(𝑞7𝑔7𝑥7..1 + 𝑞8𝑔8𝑥8..1 + 𝑞9𝑔9𝑥9..1 + 𝑞11𝑔11𝑥11..1+ 𝑞13𝑔13𝑥13..1 +

𝑞14𝑔14𝑥14..1 + 𝑞17𝑔17𝑥17..1 + 𝑞18𝑔18𝑥18..1 + 𝑞23𝑔23𝑥23..1)                        (3.42) 

𝐶𝑂𝑈𝐵 = (𝑞7𝑔7𝑥7..1 + 𝑞8𝑔8𝑥8..1 + 𝑞9𝑔9𝑥9..1 + 𝑞11𝑔11𝑥11..1+ 𝑞13𝑔13𝑥13..1 +

𝑞14𝑔14𝑥14..1 + 𝑞17𝑔17𝑥17..1 + 𝑞18𝑔18𝑥18..1 + 𝑞23𝑔23𝑥23..1)                                   (3.43) 

As quantity of block is considered as 𝑞 = 150 𝑡𝑜𝑛𝑛𝑒𝑠 for all blocks, Equations (3.42) and 

(3.43) can be written as follows:  

𝐶𝑂𝐿𝐵 = 150(𝑔7𝑥7..1 + 𝑔8𝑥8..1 + 𝑔9𝑥9..1 + 𝑔11𝑥11..1 + 𝑔13𝑥13..1 + 𝑔14𝑥14..1 +

𝑔17𝑥17..1 + 𝑔18𝑥18..1 + 𝑔23𝑥23..1)                                                                           (3.44) 

𝐶𝑂𝑈𝐵 = 150(𝑔7𝑥7..1 + 𝑔8𝑥8..1 + 𝑔9𝑥9..1 + 𝑔11𝑥11..1 + 𝑔13𝑥13..1 + 𝑔14𝑥14..1 +

𝑔17𝑥17..1 + 𝑔18𝑥18..1 + 𝑔23𝑥23..1)                                                                           (3.45) 

Using Equation 3.23 and 3.24  

𝐶𝑂𝐺𝑡 × (𝑞7𝑥7..1 + 𝑞7𝑥8..1 + 𝑞9𝑥9..1 + 𝑞11𝑥11..1 + 𝑞13𝑥13..1 + 𝑞14𝑥14..1 + 𝑞17𝑥17..1 +

𝑞18𝑥18..1 + 𝑞23𝑥23..1) ≥ 𝐶𝑂𝐿𝐵                                                                                (3.46) 

𝐶𝑂𝐺𝑡 × (𝑞7𝑥7..1 + 𝑞7𝑥8..1 + 𝑞9𝑥9..1 + 𝑞11𝑥11..1 + 𝑞13𝑥13..1 + 𝑞14𝑥14..1 + 𝑞17𝑥17..1 +

𝑞18𝑥18..1 + 𝑞23𝑥23..1) ≤ 𝐶𝑂𝑈𝐵                                                                                (3.47) 

Solution Process: 

Following the constraints it is found from Figure 3.2, only 9 out of 25 blocks are mined in 

year 1. Therefore, using Equation (3.29 and 3.30) 𝑄𝑚1 is found as follows: 

𝑄𝑚1 ≤ 1500  

𝑄𝑚1 − 150(𝑥1..1 + 𝑥2..1 + 𝑥3..1 + 𝑥4..1+ ⋯ + 𝑥24..1+𝑥25..1 ) = 0 

𝑄𝑚1 = 150 × 9 = 1350 Tonnes                                                                             (3.48) 
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Out of total 9 blocks mined, 4 blocks have 𝑔1 > 0, but it is important here to 

determine  𝐶𝑂𝐺𝑡 value which is computed from Equation (3.52) during the simulation of the 

formulation. Therefore, using Equations (3.31), (3.32) and (3.52) only 2 blocks (𝑥8..1 

and 𝑥9..1) are considered as ore with 𝑔1 > 𝐶𝑂𝐺𝑡  and sent for processing, and blocks with 

𝑔1 < 𝐶𝑂𝐺𝑡 are ignored for being considered as waste.  

𝑄𝑐1 ≤ 700 

𝑄𝑐1 −150(𝑥7..1 + 𝑥8..1 + 𝑥9..1 + 𝑥11..1+ 𝑥13..1 + 𝑥14..1+𝑥17..1 + 𝑥18..1 + 𝑥23..1) = 0 

𝑄𝑐1 −150(𝑥8..1 + 𝑥9..1) = 0 

𝑄𝑐1 = 150 × 2 = 300 Tonnes                                                                              (3.49) 

Calculation of average grade: 

Considering 2 blocks selected for processing and using Equations (3.33) value of  𝑔
1
 is 

calculated as follows: 

𝑔1   =  150(0.4𝑥8..1+0.5𝑥9..1)
150(𝑥8+𝑥9)

   

𝑔
1

  =  0.4+0.5

2
= 0.45                                                                                                (3.50)        

Putting value of 𝑄𝑐1 from Equation (3.49), value of  𝑔
1
 from Equation (3.50), and value of 𝑦 

from Table 3.1 in Equation (3.25) 

𝑄𝑟1 =   {150(𝑥8..1 + 𝑥9..1)} × 𝑔
1

 × 𝑦 

𝑄𝑟1 =   300 × 0.45 × 0.95 

𝑄𝑟1 =   128.25 Tonnes                                                                                           (3.51)     
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Computing 𝑪𝑶𝑮𝒕 through cumulative tonnage constraints:   

The value of 𝐶𝑂𝐺𝑡 is selected and checked against the cumulative tonnage constraint. The grade 

which satisfies all the given conditions of the constraint is termed as 𝐶𝑂𝐺𝑡 of that year 𝑡, else 

if the condition at any given period 𝑡 of the constraint are satisfied at the value less than 

processing plant head grade then plant head grade is considered as 𝐶𝑂𝐺𝑡 of that particular 

year. 

@ Cumulative tonnage constraint for 𝑪𝑶𝑮𝟏  = 0.5 

Using Equations (3.44) and (3.45) to find 𝐶𝑂𝐿𝐵  and 𝐶𝑂𝑈𝐵 respectively while considering 

only the ore blocks (𝑤ℎ𝑒𝑟𝑒 0 < 𝑔𝑖 ≤  𝐶𝑂𝐺𝑡 ) for 𝐶𝑂𝐿𝐵 and ore blocks (𝑤ℎ𝑒𝑟𝑒 𝑔𝑖 ≥ 𝐶𝑂𝐺𝑡 ) 

for  𝐶𝑂𝑈𝐵, which are selected for mining in the first production sequence. 

𝐶𝑂𝐿𝐵 = 150(𝑔7𝑥7..1 + 𝑔8𝑥8..1 + 𝑔9𝑥9..1 + 𝑔13𝑥13..1)                                                                           

𝐶𝑂𝑈𝐵 = 150(𝑔9𝑥9..1𝑥9..1)                                                                            

𝐶𝑂𝐿𝐵 =  150(0.2 × 1  + 0.3 × 1 +  0.4 × 1 + 0.5 × 1) = 210 tonnes 

𝐶𝑂𝑈𝐵 = 150(0.5 × 1) =  75 Tonnes 

Considering all ore blocks mined in the first production sequence and putting the value of 

𝐶𝑂𝐺𝑡 = 0.5, and  𝑞 = 150 𝑡𝑜𝑛𝑛𝑒𝑠, and using Equations (3.46) and (3.47): 

0.5 × 150(𝑥7..1 + 𝑥8..1 + 𝑥9..1 + 𝑥13..1) ≥ 210 

0.5 × 150(4) ≥ 210  

300 ≥ 210   

Using Equations (3.47) 

0.5 × 150(4) ≤ 75 
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0.5 × 600 ≤ 75 

300 ≤ 75 (Constraint in Equation 3.24 is violated) 

@ Cumulative tonnage constraint for 𝑪𝑶𝑮𝟏  = 0.4 

Estimating value of 𝐶𝑂𝐿𝐵and  𝐶𝑂𝑈𝐵 using Equation (3.44) to (3.47) and repeating the same 

process mentioned above while selecting 𝐶𝑂𝐺1 = 0.4:   

𝐶𝑂𝐿𝐵 = 150( 0.2 × 1  + 0.3 × 1 + 0.4 × 1) = 135 Tonnes 

𝐶𝑂𝑈𝐵 = 150( 0.4 × 1 + 0.5 × 1) =  135 Tonnes 

0.4 × 600 ≥ 135 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 240 ≥ 135  

0.4 × 600 ≤ 135 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 240 ≤ 135 (Constraint in Equation 3.24 is violated) 

@ Cumulative tonnage constraint for 𝑪𝑶𝑮𝒕  = 0.3 

Estimating Value of 𝐶𝑂𝐿𝐵 and  𝐶𝑂𝑈𝐵 using Equation (3.44) to (3.47) and repeating the same 

process: 

𝐶𝑂𝐿𝐵 = 150 ( 0.2 × 1  + 0.3 × 1) = 75 Tons  

           𝐶𝑂𝑈𝐵 = 150 ( 0.4 × 1 + 0.5 × 1 + 0.3 × 1)  

         =  180 Tonnes 

Putting the values of 𝐶𝑂𝐺𝑡, 𝐶𝑂𝐿𝐵, 𝐶𝑂𝑈𝐵 and ∑ 𝑞𝑖𝑋𝑖𝑡  𝐼
𝑖=1  in Equations (3.23) and (3.24) 

0.3 × 600 ≥ 75  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 180 ≥ 75 (Condition satisfied)  

0.3  × 600 ≤ 180 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 180 ≤ 180 (Condition satisfied) 

It is found that cut-off grade is equal to 0.3, as the constraint is violated for 𝐶𝑂𝐺𝑡 > 0.3. 

Therefore, through random selection of grades it is found that 𝐶𝑂𝐺𝑡 = 0.30 satisfies the 
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cumulative tonnage constraint, but for this case minimum processing head grade is assumed 

as 0.35, so grade below 0.35 will not be considered for processing, which infers 𝐶𝑂𝐺𝑡 to be 

equal to the processing plant head grade as mentioned in Equation (3.52)  

𝐶𝑂𝐺1 = 0.35                           (3.52) 

Putting values of 𝑄𝑚1, 𝑄𝑐1 and 𝑄𝑟1 from Equations (3.42), (3.49) and (3.51) respectively, in 

Equation (3.28) 

𝑃1 =  (1000)𝑄𝑟1 − (1.25)𝑄𝑚1 − (5.3)𝑄𝑐1 − 2500  

𝑃1 =  1000 × 128.25 − 1.25 × 1350 − 5.3 × 300 − 2500  

𝑃1 = $122,472.50                                                                                                  (3.55) 

Putting value of 𝑃1 from Eq. (3.55) in Eq. (3.13), 𝑀𝑎𝑥 𝑁𝑃𝑉 can be computed as follows: 

 𝑀𝑎𝑥 𝑁𝑃𝑉 =
122,472.50

(1+0.15)1  = $106,497.83             (3.56) 

Compiling all the values for 𝑪𝑶𝑮𝟏, 𝒈
𝟏
, 𝑸𝒎𝒕, 𝑸𝒄𝒕 , 𝑸𝒓𝒕, 𝑷𝟏  and 𝑵𝑷𝑽 from Equations 

(3.52), (3.50), (3.48), (3.49), (3.51), (3.55) and (3.56) respectively are shown in Table 3.3. 

 

Table: 3.3: Results obtained from solving 2D model using new MILP based formulation 

 

3.3.3 Case 2: MILP Cut-off grade optimisation using 2D block model (100 blocks)  

 

Using economic and operational parameters as shown in Table 3.1 

Life of mining operation = 3 years 

Milling head grade (assumed) = 0.4 

Year 
(𝒕) 

𝑪𝑶𝑮𝒕  
(% 𝑪𝒖 ) 

𝒈
𝒕
 

(% 𝑪𝒖 ) 
𝑸𝒎𝒕  

(tonnes/year) 
𝑸𝒄𝒕  

(tonnes/year) 
𝑸𝒓𝒕 

(tonnes/year) 
𝑷𝒕 
($) 

𝑵𝑷𝑽𝒕  
($) 

1 0.35 0.45 1350 300 128 122,472 106,497 
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1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

 

0 0 0 0 0 0 0 0 0 0 

0 0 0.3 0.5 0.6 0 0 0 0 0 

0 0 0 0.5 0.4 0.6 0 0 0 0 

0 0 0 0.3 0.5 0.6 0 0 0 0 

0 0 0 0 0.3 0.5 0.6 0 0 0 

0 0 0 0 0.3 0.4 0.5 0 0 0 

0 0 0 0 0.4 0.3 0.5 0 0 0 

0 0 0 0.3 0.5 0.6 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Figure 3.3 (a) Number of blocks in a hypothetical 

geological Block model 

Figure 3.3 (b) Hypothetical geological block model 

showing blocks with % age grades and waste with 0 

grade 

Objective function: 

Using Equation (3.13) the objective function for maximising NPV whilst taking 3 years life 

of mining operation is defined as follows: 

Using Equation (3.13) and putting value of discount factor from Table 3.2 

  

𝑀𝑎𝑥 𝑁𝑃𝑉 =  
𝑃1

(1+0.15)1 +
𝑃2

(1+0.15)2 +
𝑃3

(1+0.15)3                                                          (3.57)                     

 

Putting values of 𝑝, 𝑟, 𝑚 and 𝑐  from Table 3.2 in Equation 3.14 

𝑃1 =  (1500 − 500)𝑄𝑟1 − (1.25)𝑄𝑚1 − (5.3)𝑄𝑐1 − 2500                                 (3.58)                     

𝑃2 =  (1500 − 500)𝑄𝑟2 − (1.25)𝑄𝑚2 − (5.3)𝑄𝑐2 − 2500                                (3.59)                    

𝑃3 =  (1500 − 500)𝑄𝑟3 − (1.25)𝑄𝑚3 − (5.3)𝑄𝑐3 − 2500                                (3.60) 

Mining capacity constraint: 

Applying mining capacity constraints using Equation (3.15) and (3.16)  

𝑄𝑚1 ≤ 1500                                                                               (3.61) 

𝑄𝑚1 − 150(𝑥1..1 + 𝑥2..1 + 𝑥3..1 + 𝑥4..1+ ⋯ + 𝑥98..1 + 𝑥99..1+𝑥100..1 ) = 0            (3.62) 

𝑄𝑚2 ≤ 1500                                                     (3.63) 

𝑄𝑚2 − 150(𝑥1..2 + 𝑥2..2 + 𝑥3..2 + 𝑥4..2+ ⋯ + 𝑥98..2 + 𝑥99..2+𝑥100..2 ) = 0            (3.64) 

𝑄𝑚3 ≤ 1500                                                                                                   (3.65)          
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𝑄𝑚3 − 150(𝑥1..3 + 𝑥2..3 + 𝑥3..3 + 𝑥4..3+ ⋯ + 𝑥98..3 + 𝑥99..3+𝑥100..3 ) = 0            (3.66) 

Processing capacity constraint:  

Applying processing capacity constraints using Equation (3.17) and (3.18) 

𝑄𝑐1 ≤ 700                                                                                          (3.67) 

𝑄𝑐1 −150(𝑥13..1 + 𝑥14..1 + 𝑥15..1 + 𝑥24..1+ 𝑥25..1 + 𝑥26..1+𝑥34..1 + 𝑥35..1 +

𝑥36..1 + 𝑥45..1 + 𝑥46..1 + 𝑥47..1+𝑥55..1 + 𝑥56..1 + 𝑥57..1 + 𝑥65..1 + 𝑥66..1 +

𝑥67..1+ 𝑥74..1 + 𝑥75..1 + 𝑥76..1) = 0             (3.68) 

𝑄𝑐2 ≤ 700                                                                                          (3.69) 

𝑄𝑐2 −150(𝑥13..2 + 𝑥14..2 + 𝑥15..2 + 𝑥24..2+ 𝑥25..2 + 𝑥26..2+𝑥34..2 + 𝑥35..2 +

                       𝑥36..2 + 𝑥45..2 + 𝑥46..2 + 𝑥47..2+𝑥55..2 + 𝑥56..2 + 𝑥57..2 + 𝑥65..2 + 𝑥66..2 +

                       𝑥67..2+ 𝑥74..2 + 𝑥75..2 + 𝑥76..2) = 0             (3.70)                                                                                                                                            

𝑄𝑐3 ≤ 700                                                                                           (3.71)         

𝑄𝑐3 −150(𝑥13..3 + 𝑥14..3 + 𝑥15..3 + 𝑥24..3+ 𝑥25..3 + 𝑥26..3+𝑥34..3 + 𝑥35..3 +

𝑥36..3 + 𝑥45..3 + 𝑥46..3 + 𝑥47..3+𝑥55..3 + 𝑥56..3 + 𝑥57..3 + 𝑥65..3 + 𝑥66..3 +

𝑥67..3+ 𝑥74..3 + 𝑥75..3 + 𝑥76..3) = 0                                                              (3.72) 

Calculation of yearly average grades: 

Weighted average grades 𝑔1̅̅ ̅,  𝑔2̅̅ ̅̅  and 𝑔3̅̅ ̅ are calculated using Equation (3.20) as 

follows: 

𝑔
1

 =

 150(0.3𝑥13..1+0.5𝑥14..1+0.6𝑥15..1+0.4𝑥24..1+ 0.5𝑥25..1+0.6𝑥26..1+0.3𝑥34..1

+0.5𝑥35..1+0.6𝑥36..1+0.3𝑥45..1+0.5𝑥46..1+0.6𝑥47..1+0.3𝑥55..1+
0.4𝑥56..1+0.5𝑥57..1+0.4𝑥65..1+0.3𝑥66..1+0.5𝑥67..1+ 0.3𝑥74..1+0.5𝑥75..1

0.4𝑥65..1+0.3𝑥66..1+0.5𝑥67..1+ 0.3𝑥74..1+0.5𝑥75..1+0.6𝑥76..1)
 150(𝑥13..1+𝑥14..1+𝑥15..1+𝑥24..1+ 𝑥25..1+𝑥26..1+𝑥34..1+𝑥35..1+

𝑥36..1+𝑥45..1+𝑥46..1+𝑥47..1+𝑥55..1+𝑥56..1+𝑥57..1+
𝑥65..1+𝑥66..1+𝑥67..1+ 𝑥74..1+𝑥75..1+𝑥76..1)

                            (3.73)          

 

𝑔
2

 =

 150(0.3𝑥13..2+0.5𝑥14..2+0.6𝑥15..2+0.4𝑥24..2+ 0.5𝑥25..2+0.6𝑥26..2+0.3𝑥34..2

+0.5𝑥35..2+0.6𝑥36..2+0.3𝑥45..2+0.5𝑥46..2+0.6𝑥47..2+0.3𝑥55..2+
0.4𝑥56..2+0.5𝑥57..2+0.4𝑥65..2+0.3𝑥66..2+0.5𝑥67..2+ 0.3𝑥74..2+0.5𝑥75..2

0.4𝑥65..2+0.3𝑥66..2+0.5𝑥67..2+ 0.3𝑥74..2+0.5𝑥75..2+0.6𝑥76..2)
 150(𝑥13..2+𝑥14..2+𝑥15..2+𝑥24..2+ 𝑥25..2+𝑥26..2+𝑥34..2+𝑥35..2+

𝑥36..2+𝑥45..2+𝑥46..2+𝑥47..2+𝑥55..2+𝑥56..2+𝑥57..2+
𝑥65..2+𝑥66..2+𝑥67..2+ 𝑥74..2+𝑥75..2+𝑥76..2)

                            (3.74) 
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𝑔
3

 =

 150(0.3𝑥13..3+0.5𝑥14..3+0.6𝑥15..3+0.4𝑥24..3+ 0.5𝑥25..3+0.6𝑥26..3+0.3𝑥34..3

+0.5𝑥35..3+0.6𝑥36..3+0.3𝑥45..3+0.5𝑥46..3+0.6𝑥47..3+0.3𝑥55..3+
0.4𝑥56..3+0.5𝑥57..3+0.4𝑥65..3+0.3𝑥66..3+0.5𝑥67..3+ 0.3𝑥74..3+0.5𝑥75..3

0.4𝑥65..3+0.3𝑥66..3+0.5𝑥67..3+ 0.3𝑥74..3+0.5𝑥75..3+0.6𝑥76..3)
 150(𝑥13..3+𝑥14..3+𝑥15..3+𝑥24..3+ 𝑥25..3+𝑥26..3+𝑥34..3+𝑥35..3+

𝑥36..3+𝑥45..3+𝑥46..3+𝑥47..3+𝑥55..3+𝑥56..3+𝑥57..3+
𝑥65..3+𝑥66..3+𝑥67..3+ 𝑥74..3+𝑥75..3+𝑥76..3)

                            (3.75) 

 

Refining capacity constraint: 

Applying refining capacity constraints 𝑄𝑟1, 𝑄𝑟2and 𝑄𝑟3are calculated using Equation (3.19)  

𝑄𝑟1 =   𝑄𝑐1 × 𝑔
1

 × 𝑦                           (3.76) 

𝑄𝑟2 =   𝑄𝑐2 × 𝑔
2
 × 𝑦                (3.77) 

𝑄𝑟3 =   𝑄𝑐3 × 𝑔
3

× 𝑦                (3.78) 

Precedence and slope constraint: 

Applying slope constraints for 3 different years using Equation (3.21)  

 𝑥12..1 − 𝑥1..1 ≤ 0 

 𝑥12..1 − 𝑥2..1 ≤ 0 

 𝑥12..1 − 𝑥3..1 ≤ 0 

The above equations’ format is generated in LP model file after simulation but to make it 

simple to write, the above three inequalities can be written as follows: 

 3𝑥12..1 − (𝑥1..1 + 𝑥2..1 + 𝑥3..1) ≤ 0 

 3𝑥12..2 − (𝑥1..1 + 𝑥2..1 + 𝑥3..1 + 𝑥1..2 + 𝑥2..2 + 𝑥3..2) ≤ 0 

 3𝑥12..3 − (𝑥1..1 + 𝑥2..1 + 𝑥3..1 + 𝑥1..2 + 𝑥2..2 + 𝑥3..2 + 𝑥1..3 + 𝑥2..3 + 𝑥3..3) ≤ 0 

3𝑥13..1 − (𝑥2..1 + 𝑥3..1 + 𝑥4..1) ≤ 0 

3𝑥13..2 − (𝑥2..1 + 𝑥3..1 + 𝑥4..1 + 𝑥2..2 + 𝑥3..2 + 𝑥4..2) ≤ 0 

3𝑥13..3 − (𝑥2..1 + 𝑥3..1 + 𝑥4..1 + 𝑥2..2 + 𝑥3..2 + 𝑥4..2 + 𝑥2..3 + 𝑥3..3 + 𝑥4..3) ≤ 0 

3𝑥14..1 − (𝑥4..1 + 𝑥5..1 + 𝑥5..1) ≤ 0 

3𝑥14..2 − (𝑥4..1 + 𝑥5..1 + 𝑥5..1 + 𝑥4..2 + 𝑥5..2 + 𝑥5..2) ≤ 0 

3𝑥14..3 − (𝑥4..1 + 𝑥5..1 + 𝑥4..2 + 𝑥5..2 + 𝑥5..2+ 𝑥4..3 + 𝑥5..3) ≤ 0 

Continue to  
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3𝑥45..1 − (𝑥34..1 + 𝑥35..1 + 𝑥35..1) ≤ 0 

3𝑥45..2 − (𝑥34..1 + 𝑥35..1 + 𝑥35..1 + 𝑥34..2 + 𝑥35..2) ≤ 0 

3𝑥45..3 − (𝑥34..1 + 𝑥35..1 + 𝑥35..1 + 𝑥34..2 + 𝑥35..2 + 𝑥35..2+𝑥34..3 + 𝑥35..3 + 𝑥35..3) ≤ 0 

3𝑥46..1 − (𝑥35..1 + 𝑥36..1 + 𝑥37..1) ≤ 0 

3𝑥46..2 − (𝑥35..1 + 𝑥36..1 + 𝑥37..1 + 𝑥35..2 + 𝑥36..2 + 𝑥37..2) ≤ 0 

3𝑥46..3 − (𝑥35..1 + 𝑥36..1 + 𝑥37..1 + 𝑥35..2 + 𝑥36..2 + 𝑥37..2 + 𝑥35..3 + 𝑥36..3 + 𝑥37..3) ≤ 0   

  

Reserve constraint: 

Applying reserve constraints for 3 different years using Equation (3.22)  

𝑥1..1 + 𝑥1..2 + 𝑥1..3 ≤ 1  

𝑥2..1 + 𝑥2..2 + 𝑥3..3 ≤ 1  

𝑥3..1 + 𝑥3..2 + 𝑥3..3 ≤ 1  

𝑥4..1 + 𝑥4..2 + 𝑥4..3 ≤ 1  

Continue to 

𝑥99..1 + 𝑥99..2 + 𝑥99..3 ≤ 1  

𝑥100..1 + 𝑥100..2 + 𝑥100..3 ≤ 1  

 

Cumulative tonnage constraint: 

Estimating value of 𝐶𝑂𝐿𝐵 and  𝐶𝑂𝑈𝐵 for first year of mining operation using Equation (3.25) 

and (3.26): 

𝐶𝑂𝐿𝐵 =(𝑞13𝑔3𝑥13..1 + 𝑞14𝑔14𝑥14..1 + 𝑞15𝑔15𝑥15..1 + 𝑞24𝑔24𝑥24..1+ 𝑞25𝑔25𝑥25..1 +

𝑞26𝑔26𝑥26..1+𝑞34𝑔34𝑥34..1 + 𝑞35𝑔35𝑥35..1 + 𝑞36𝑔36𝑥36..1 + 𝑞45𝑔45𝑥45..1 +

𝑞46𝑔46𝑥46..1 + 𝑞47𝑔47𝑥47..1+ 𝑞55𝑔55𝑥55..1 + 𝑞56𝑔56𝑥56..1 + 𝑞57𝑔57𝑥57..1 

+ 𝑞65𝑔65𝑥65..1 + 𝑞66𝑔66𝑥66..1 + 𝑞67𝑔67𝑥67..1+ 𝑞74𝑔74𝑥74..1 + 𝑞75𝑔75𝑥75..1 +

𝑞76𝑔76𝑥76..1)                                         (3.79) 
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𝐶𝑂𝑈𝐵 =(𝑞13𝑔3𝑥13..1 + 𝑞14𝑔14𝑥14..1 + 𝑞15𝑔15𝑥15..1 + 𝑞24𝑔24𝑥24..1+ 𝑞25𝑔25𝑥25..1 +

𝑞26𝑔26𝑥26..1+𝑞34𝑔34𝑥34..1 + 𝑞35𝑔35𝑥35..1 + 𝑞36𝑔36𝑥36..1 + 𝑞45𝑔45𝑥45..1 +

𝑞46𝑔46𝑥46..1 + 𝑞47𝑔47𝑥47..1+ 𝑞55𝑔55𝑥55..1 + 𝑞56𝑔56𝑥56..1 + 𝑞57𝑔57𝑥57..1 

+ 𝑞65𝑔65𝑥65..1 + 𝑞66𝑔66𝑥66..1 + 𝑞67𝑔67𝑥67..1+ 𝑞74𝑔74𝑥74..1 + 𝑞75𝑔75𝑥75..1 +

𝑞76𝑔76𝑥76..1)                                                                                                           (3.80) 

Using Equations (3.23) and (3.24)  

𝐶𝑂𝐺1 × (𝑞13𝑥13..1 + 𝑞14𝑥14..1 + 𝑞15𝑥15..1 + ⋯ + 𝑞75𝑥75..1 + 𝑞76𝑥76..1) ≥ 𝐶𝑂𝐿𝐵 (3.81)                                                                               

𝐶𝑂𝐺1 × (𝑞13𝑥13..1 + 𝑞14𝑥14..1 + 𝑞15𝑥15..1 + ⋯ + 𝑞75𝑥75..1 + 𝑞76𝑥76..1) ≤ 𝐶𝑂𝐿𝐵 (3.82)                                                                               

Similarly estimating value of 𝐶𝑂𝐿𝐵 and  𝐶𝑂𝑈𝐵 for second year of mining operation using 

Equation (3.25) and (3.26): 

𝐶𝑂𝐿𝐵 =(𝑞13𝑔3𝑥13..2 + 𝑞14𝑔14𝑥14..2 + ⋯ + 𝑞75𝑔75𝑥75..2 + 𝑞76𝑔76𝑥76..2)             (3.83)                                                                                           

𝐶𝑂𝑈𝐵 =(𝑞13𝑔3𝑥13..2 + 𝑞14𝑔14𝑥14..2 + ⋯ + 𝑞75𝑔75𝑥75..2 + 𝑞76𝑔76𝑥76..2)             (3.84)                                                                               

Using Equation (3.23) and (3.24)  

𝐶𝑂𝐺2 × (𝑞13𝑥13..2 + 𝑞14𝑥14..2 + 𝑞15𝑥15..2 + ⋯ + 𝑞75𝑥75..2 + 𝑞76𝑥76..2) ≥ 𝐶𝑂𝐿𝐵            (3.85)                                                                               

𝐶𝑂𝐺2 × (𝑞13𝑥13..2 + 𝑞14𝑥14..2 + 𝑞15𝑥15..2 + ⋯ + 𝑞75𝑥75..2 + 𝑞76𝑥76..2) ≤ 𝐶𝑂𝐿𝐵            (3.86)                                                                               

Similarly estimating value of 𝐶𝑂𝐿𝐵 and  𝐶𝑂𝑈𝐵 for third year of mining operation using 

Equation (3.25) and (3.26): 

𝐶𝑂𝐿𝐵 =(𝑞13𝑔3𝑥13..3 + 𝑞14𝑔14𝑥14..3 + ⋯ + 𝑞75𝑔75𝑥75..3 + 𝑞76𝑔76𝑥76..3)              (3.87)                                                                                          

𝐶𝑂𝑈𝐵 =(𝑞13𝑔3𝑥13..3 + 𝑞14𝑔14𝑥14..3 + ⋯ + 𝑞75𝑔75𝑥75..3 + 𝑞76𝑔76𝑥76..3)              (3.88)                                                                               

Using Equation (3.23) and (3.24)  
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𝐶𝑂𝐺3 × (𝑞13𝑥13..3 + 𝑞14𝑥14..3 + 𝑞15𝑥15..3 + ⋯ + 𝑞75𝑥75..3 + 𝑞76𝑥76..3) ≥ 𝐶𝑂𝐿𝐵         (3.89)                                                                               

𝐶𝑂𝐺3 × (𝑞13𝑥13..3 + 𝑞14𝑥14..3 + 𝑞15𝑥15..3 + ⋯ + 𝑞75𝑥75..3 + 𝑞76𝑥76..3) ≤ 𝐶𝑂𝐿𝐵         (3.90)                                                                               

Solution to problem: 

Using Equations (3.61) to (3.66) values of 𝑄𝑚1, 𝑄𝑚2 and 𝑄𝑚3 are calculated as follows: 

𝑄𝑚1 ≤ 1500  

𝑄𝑚1 − 150 (𝑥2..1 + 𝑥3..1 + 𝑥4..1 + 𝑥5..1 + 𝑥6..1 + 𝑥13..1 + 𝑥14..1 + 𝑥15..1 + 𝑥24..1) = 0 

𝑄𝑚1 = 150 × 9 = 1350 Tonnes                  (3.91) 

𝑄𝑚2 ≤ 1500 

𝑄𝑚2 −150(𝑥7..2 + 𝑥8..2 + 𝑥16..2 + 𝑥17..2+ 𝑥25..2 + 𝑥26..2 + 𝑥35..2) = 0 

𝑄𝑚2 = 150 × 7 = 1050 Tonnes                                                                          (3.92) 

𝑄𝑚3 ≤ 1500  

𝑄𝑚3 − 150 (𝑥1..3 + 𝑥9..3 + 𝑥12..3 + 𝑥18..3 + 𝑥23..3 + 𝑥27..3 + 𝑥34..3 + 𝑥36..3 + 𝑥45..3) = 0 

𝑄𝑚3 = 150 × 9 = 1350 Tonnes                                                                             (3.93) 

Considering values 𝐶𝑂𝐺1, 𝐶𝑂𝐺2 and 𝐶𝑂𝐺3 from Equation (3.103) to (3.105) respectively, ore 

blocks (𝑔𝑖 ≥ 𝐶𝑂𝐺𝑡) are selected for processing. Using Equations (3.67) to (3.72), the values 

of 𝑄𝑐1, 𝑄𝑐2 and 𝑄𝑐3 of are calculated as follows: 

𝑄𝑐1 ≤ 700  

𝑄𝑐1 − 150 (𝑥14..1 + 𝑥15..1 + 𝑥24..1) = 0 

𝑄𝑐1 = 150 × 3 = 450 Tonnes                                                                                (3.94) 

𝑄𝑐2 ≤ 700  

𝑄𝑐2 − 150 (𝑥25..2 + 𝑥26..2 + 𝑥35..2) = 0 

0 ≤ 𝑄𝑐2 = 150 × 3 = 450 Tonnes                         (3.95) 

𝑄𝑐3 ≤ 700  

𝑄𝑐3 − 150 (𝑥36..3) = 0 
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𝑄𝑐3 = 150 × 3 = 450 Tonnes                          (3.96) 

 

Using Equations (3.73) to (3.75), the values of 𝑔1̅̅ ̅, 𝑔2̅̅ ̅ and 𝑔3̅̅ ̅ are calculated as follows: 

𝑔
1

 =
 150 (0.5𝑥14..1+0.6𝑥15..1+0.5𝑥24..1) 

150 (𝑥13..1+𝑥14..1+𝑥15..1+𝑥24..1) 
  

𝑔
1

 =
 0.5+0.6+0.5

3
 = 0.53                                                                                          (3.97) 

 

𝑔
2

 =
 150 (0.4𝑥25..2+0.6𝑥26..2+0.5𝑥35..2) 

150 (𝑥25..2+𝑥26..2+𝑥35..2) 
  

𝑔
2

 =
 0.4+0.6+0.5

3
 = 0.50                                            (3.98) 

 

𝑔
3

 =
 150 (0.6𝑥36..3) 

150 (𝑥36..3) 
  

𝑔
3

 =
 0.6

1
 = 0.60                          (3.99) 

 

Putting values of 𝑄𝑐1, 𝑄𝑐2 and 𝑄𝑐3 from Equations (3.94) to (3.96) and values of 𝑔
1
, 𝑔

2
 and 

𝑔
3
 from Equations (3.97) to (3.99) in Equations (3.75) to (3.77) to find values 𝑄𝑟1, 𝑄𝑟2 and 

𝑄𝑟3 as follows: 

𝑄𝑟1 =   450 × 0.53 × 0.95 

𝑄𝑟1 =   226.58 Tons                                     (3.100) 

𝑄𝑟2 =   450 × 0.50 × 0.95 

𝑄𝑟2 =   213.75 Tons                         (3.101) 

𝑄𝑟3 =   150 × 0.60 × 0.95 

𝑄𝑟3 =   85.50 Tons                                                                                           (3.102) 

Cut-off grade for year 1: 

Using Equations (3.79) to (3.82) 
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@ Cumulative tonnage constraint for 𝑪𝑶𝑮𝟏 = 0.6 

𝐶𝑂𝐿𝐵 =  150 (0.3+ 0.5 + 0.5 + 0.6) = 2485 Tons 

𝐶𝑂𝑈𝐵 = 150( 0.6) =  90 Tons 

0.6 × 600 ≥ 285 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 360 ≥ 285  

            0.6 × 600 ≤ 90 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 360 ≤ 90 (Constraint in Equation 3.24 is violated) 

@ Cumulative tonnage constraint for 𝑪𝑶𝑮𝟏 = 0.5 

𝐶𝑂𝐿𝐵 =  150 (0.3+ 0.5 + 0.5) = 195 Tons 

𝐶𝑂𝑈𝐵 = 150( 0.5 + 0.5 + 0.6 ) =  240 Tons 

0.5 × 600 ≥ 195  𝑖𝑚𝑝𝑙𝑖𝑒𝑠  300 ≥ 195   

0.5 × 600 ≤ 240  𝑖𝑚𝑝𝑙𝑖𝑒𝑠  300 ≤ 240 (Constraint in Equation 3.24 is violated) 

@ Cumulative tonnage constraint for 𝑪𝑶𝑮𝟏 = 0.40 

𝐶𝑂𝐿𝐵 = 150(0.3) = 45 Tons 

𝐶𝑂𝑈𝐵 = 150(0.5 + 0.6 + 0.5) = 240 

0.40 ×   600 ≥  45 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 240 ≥ 45 (Condition satisfied) 

0.40 ×   600 ≤  240 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 240 ≤ 240 (Condition satisfied) 

𝐶𝑂𝐺1= 0.40                          (3.103) 

Cut-off grade for year 2: 

Using Equations (3.83) to (3.86) 

𝐶𝑂𝐿𝐵 = 150(0.3 + 0.3) = 90 Tons 

𝐶𝑂𝑈𝐵 = 150(0.4 + 0.6 + 0.3 + 0.5 + 0.5 + 0.3) = 390 Tonnes 

@ Cumulative tonnage constraint for 𝑪𝑶𝑮𝟐 = 0.50 

𝐶𝑂𝐿𝐵 = 150(0.3 + 0.3 + 0.4 + 0.5 + 0.5) = 300 Tonnes 

𝐶𝑂𝑈𝐵 = 150(0.6 + 0.5 + 0.5) = 240 Tonnes 

0.5 × 900 ≥ 300 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 450 ≥ 300  

0.5 × 900 ≤ 240 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 450 ≤ 240 (Constraint in Equation 3.24 is violated) 

@ Cumulative tonnage constraint for 𝑪𝑶𝑮𝟐 = 0.4 

𝐶𝑂𝐿𝐵 = 150(0.3 + 0.3 + 0.4) = 150 Tonnes 
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𝐶𝑂𝑈𝐵 = 150(0.4 + 0.6 + 0.5 + 0.5 + 0.3) = 345 Tonnes 

0.4 × 900 ≥ 150 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 360 ≥ 150  

0.4 × 900 ≤ 345 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 360 ≤ 345 (Close but constraint in Equation 3.24 is still 

violated)  

It is possible in this scenario that the cut-off grade below 0.4 satisfies the constraint, 

but as the minimum processing plant head grade is assumed to be 0.4 so the grade does not 

consider below 0.4 is not considered for processing. In that case, the processing plant grade is 

considered as cut-off grade, and it remains 0.4 for the similar cases. 

𝐶𝑂𝐺2 = 0.40                                                                                                       (3.104) 

Cut-off grade for year 3: 

Figure 3.4 shows that only one ore block with grade 0.6 is mined in year 3 in addition to 

other waste blocks. Using Equations (3.87) to (3.90) 

@ Cumulative tonnage constraint for 𝑪𝑶𝑮𝟑 = 0.6 

𝐶𝑂𝐿𝐵 = 150(0.6) = 30 tonnes 

𝐶𝑂𝑈𝐵 = 150(0.6 ) = 30 tonnes 

0.6 × 150 = 30 ≥ 30  

0.6 × 150 = 30 ≤ 30 

𝐶𝑂𝐺3 = 0.60                                                                                                       (3.105) 

  

Putting the values of 𝑄𝑚1, 𝑄𝑐1 and 𝑄𝑟1 in Equation (3.50) 

𝑃1 =  (1000)𝑄𝑟1 − (1.25)𝑄𝑚1 − (5.3)𝑄𝑐1 − 2500  

𝑃1 =  1000 × 226.58 − 1.25 × 1350 − 5.3 × 450 − 2500  

𝑃1 = $220,007.50                                     (3.106) 

 

Putting the values of 𝑄𝑚1, 𝑄𝑐1 and 𝑄𝑟1 in Equation (3.51) 

𝑃2 =  (1000)𝑄𝑟2 − (1.25)𝑄𝑚2 − (5.3)𝑄𝑐2 − 2500 

𝑃2 =  1000 × 213.75 − 1.25 × 1050 − 5.3 × 450 − 2500  
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   𝑃2 = $207,552.50                                                     (3.107)

  

Putting values of  𝑄𝑚3, 𝑄𝑐3 and 𝑄𝑟3 in Equation (3.52) 

𝑃3 =  (1000)𝑄𝑟1 − (1.25)𝑄𝑚1 − (5.3)𝑄𝑐1 − 2500  

𝑃3 =  1000 × 85.5 − 1.25 × 1350 − 5.3 × 150 − 2500  

          𝑃3 = $80,517.50                                                  (3.108) 

   

Putting values of 𝑃1, 𝑃2 and 𝑃3 from Equations (3.106) to (3.108) in Equation (3.57)  

𝑀𝑎𝑥 𝑁𝑃𝑉 =
$263382.50

(1+0.15)1 +
$207552.50

(1+0.15)2  +  
$164427.5

(1+0.15)3   = $ 1467402.80 

𝑀𝑎𝑥 𝑁𝑃𝑉 = $1467402.80                                                                                   (3.109) 

 

Compiling all the values from Equations (3.91 to 3.109), the results are shown in Table 3.4. 

 

Table 3.4: Results obtained from solving 2D model for 3 years using new MILP based formulation 

Figure 3.4 shows the production scheduling for three years life of mining operation. 

 

 

 

 

 

Figure 3.4 Production scheduling for 3 years of mining operation 

Year 
(𝒕) 

𝑪𝑶𝑮𝒕  
(% 𝑪𝒖 ) 

𝒈
𝒕
 

(% 𝑪𝒖 ) 
𝑸𝒎𝒕  

(tonnes/year) 
𝑸𝒄𝒕  

(tonnes/year) 
𝑸𝒓𝒕  

(tonnes/year) 
𝑷𝒕  

($ in millions) 
𝑵𝑷𝑽𝒕  

($ in millions) 

1 0.40 0.53 1350 600 270 

 

0.22 

 

0.37 

2 0.40 0.50 1050 450 213 0.21 0.23 

3 0.60 0.60 1350 150 85 0.08 0.07 

2 1 1 1 1 1 2 2 2 3 

 2 1 1 1 2 2 2 3 

 
  2 1 2 2 2 3   

   2 2 2 3    

    2 3     
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 The MILP formulation is developed as software application and solved using exact 

approach and implemented for the hypothetical model. It is found that the number of 

variables increases exponentially leads increase in time of simulation; thus the solution 

becomes computationally inefficient and termed as NP-hard; therefore, hybrid-metaheuristic 

is introduced as an alternate approach to solve this MILP based mathematical formulation. 

Although, it is not possible to get an optimal solution using hybrid-metaheuristic, but this 

approach generates a near optimal solution and can generate a roadmap for investment and 

returns on investment in a very reasonable time. The next section discusses the development 

of hybrid-metaheuristic followed by its implementation and analysis as a software 

application.  
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Chapter 4: Theory and development of hybrid-metaheuristic 

4.1.   Introduction: 

Computational complexity for solving a mathematical model using exact approach 

leads to the development of a heuristic approach to achieve a near-optimal solution in a 

reasonable time. The theory and development of hybrid-metaheuristics which employs a 

combination of two evolutionary algorithms (metaheuristics) known as genetic algorithm 

(GA) and ant colony optimisation (ACO) algorithms. These are introduced in this research as 

an alternative approach for solving mathematical model for cut-off grade optimisation. Both 

algorithms are used independently or in combination for solving NP-hard problems 

efficiently and provide an alternative solution to exact approach. Hybrid-metaheuristic uses 

GA and ACO in combination to find the best and fittest solution, whilst reducing any 

complexities in solving the mathematical model. 

4.2. Development of hybrid-metaheuristic for open-pit mining problem: 

4.2.1. Objective function: 

Considering the objective function defined and constraints in the MILP formulation, 

hybrid-algorithm accounts for the geological (block model), economic and operational 

parameters, generates dynamic cut-off grade policy and yearly production sequence.  

The hybrid-metaheuristic is used as an alternative solution technique for MILP model 

developed for the cut-off grade optimization. The solution construction of GA and ACO are 

independently discussed in the subsequent section followed by the hybrid-algorithm which is 

developed by combining of GA and ACO.  
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4.2.2.  Solution construction using GA: 

Step 1: Initial population: 

Given the ore-body model and the operational capacities, the initial population is the 

random selection of feasible blocks that satisfies the capacity constraints. The random 

selection of blocks at different Z location (top to bottom approach) builds the initial solutions. 

These initial solutions are termed as parent chromosomes in GA terminology. As the 

objective is to maximise NPV, the criterion to select the best set of blocks with high grades 

and their predecessors through multiple iterations are the ones which have the potential to 

generate maximum profits, while catering for the cost of mining, and processing. The 

multiple chromosomes are generated in this process.  

Step 2: Generate chromosmes and fitness function: 

The best multiple chromosomes, are the initial selection of mineable blocks after 

multiple generations. These chromosomes define a fitness function and generate production 

sequences based on the maximum NPV, depending on the selection of best set of selected 

blocks. The limit of mining ore blocks and the overall mining constraints including both 

high-grade blocks and their predecessors generating maximum profit decides the best of the 

chromosomes. Several generations in GA finalize the fittest among the best as shown in 

Figure 4.1. The fitness function (Falkenaur and Delchambre, 1992) of individuals is 

mathematically presented in Equation (4.1): 

𝑓 = ∑ (𝐹𝑛/ϒ)𝑘/𝑁
𝑖=1 𝑁                                                                                                         (4.1) 

Where 𝑓 represents fitness function, 𝑁 is number of blocks, 𝐹𝑛 is the sum of sizes of objects 

in each set of array, ϒ  is overall capacity of blocks mined within constraints each year, 𝑘 is 

constant, and thus gives the best fitness function.  
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Figure 4.1: Schematic diagram showing procedures of Genetic Algorithm 

Step 3: Crossover and mutation: 

Crossover and mutation are two different processes developed in GA which work 

simultaneously and generate best of the offsprings through a crossover of chromosomes 

(initial population) already generated after the selection of the fittest, and also complete the 

selection process of the fittest individuals. Crossover generates the best children, which 

means sequences are updated from the parental chromosomes, if parents consist of blocks 

already mined, they must not be included in the next generation of new individuals (blocks 

and their production schedules); whereas the mutation process fills a gap of block with 

another potential mineable block or a predecessor which is needed to complete the sequence, 

whilst satisfying mining and processing constraints. This ultimately defines the optimal 

strategy of cut-off grades and yearly production sequences. 
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GA uses discounted cash flow to maximise NPV through different generations, where 

a set of ore blocks is selected with possible higher grades and their predecessors, subject to 

all the given constraints. The final selection of the initial solution and production sequence 

which maximises NPV is based on the possible future production, which can save the cost of 

mining for later production. 

 4.2.3. Solution contruction using ACO: 

Step 1: Initial population using ants and pheromones: 

ACO algorithm follows the colonization behaviour of ants and their pheromones and 

generates the initial selection of blocks (ore and predecessors) following their behaviour. In 

this research, each ant is assumed as a single block and ants together with their pheromones 

(shortest distance to targetted food) are considered as production sequences. ACO algorithm 

selects the best among the pheromones (populations) as an initial solution and then develops 

further schedules on the basis of initial population. ACO develops dynamic cut-off grades 

simultaneously while maximising NPV considering the lowest grade as cut-off grade. This is 

equal to or more than the required processing plant head grade in the schedule, and eventually 

after several iterations (selection of best ants and pheromones) achieves the objective of the 

proposed mathematical model.  

Step 2: Defining fitness function: 

ACO model defines ants and pheromones giving the best of the production schedule 

over the life of the mining operation. The colonization of the ants defined in this algorithm 

builds super-sequences of the strings of the blocks. The choice of characters (predecessors) 

by ants in the strings of blocks depends on the pheromone trails which are actually the 

conditions of the constraints. The ant is defined as the one which utilizes a probabilistic rule 

(Equation 4.2) and selects the possible blocks to the lowest depth of the pit at different levels 
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starting from the top level. The pheromone trail is then built for each block. Equation (4.2) 

shows the probability of choosing ore-blocks at the different levels starting from the top level 

at a given period within the constraints. 

𝑃𝑖
𝑒 =

[𝜏𝑖]𝑎[𝜎𝑖]𝑏

∑ [𝜏𝑛]𝑎[𝜎𝑛]𝑏
𝑁𝑖

𝑒

𝑛

                                                                                                                 (4.2) 

Where 𝑃𝑖
𝑒 represents the probability of occurrences of best ant 𝑒 selecting block 𝑖 , 𝜏𝑖 is 

pheromone value at block 𝑖, 𝜎𝑖 is the heuristic information which makes that block value as 

best, 𝑎 and 𝑏 are the factors to determine the relative impact of pheromone trail and heuristic 

evidence respectively, 𝑁𝑖
𝑒 is set of feasible solutions. 

Step 4: Pheromones’ evaporation and defining production sequences: 

The first feasible solution defines the pheromones comprising the best high-grade 

blocks and their predecessors that is termed as the first production sequence. This sequence is 

not considered in the next iteration, and the process of selecting one fittest schedule (where 

NPV is maximised subject to all constraints) and ignoring the other possible best solutions is 

termed as pheromones’ evaporation. This process is iterative and continues until each set of 

ants and pheromones (production sequences) for each year are selected. Each production 

sequence and the preceding sequences are not considered in defining the future sequences, 

and ACO finds the most feasible solution for each year till the stopping conditions are 

achieved. 

Step 5: Finding the cut-off grade and average grade: 

The block grade defines the destination of each block, whether they are sent to the 

processing plant, dumped as waste or sent to stockpile. The processing head grade is 

considered as the lowest grade for each block to be sent to the mill for processing. Schedules 

comprise of a set of blocks with high grades, set of overlying blocks (predecessor blocks 
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necessary to mine to complete the sequence). The minimum grade of the blocks mined, which 

is equal to or more than the processing head grade  is considered as cut-off grade, as this is 

the grade where NPV is maximised and the objective function is achieved (i.e. NPV is 

maximised). The average grade of the blocks mined in each schedule is also computed in this 

step. 

Step 6: Stopping condition: 

The stopping conditions are accomplished when optimum or nearest optimum value is 

achieved. As the best among the population is selected, the optimum population gives the 

optimum solution, and at this stage all the corresponding values (𝑔̅𝑡, 𝑄𝑚𝑡, 𝑄𝑐𝑡 𝑎𝑛𝑑 𝑄𝑟𝑡) are 

evaluated. 

4.2.4. Flow diagram of ACO solution construction: 

Figure 4.2 shows a flow chart for the ant colony optimisation (ACO) algorithm: 

                    

Figure 4.2 Flow diagram for ACO algorithm 

Inputs (Geological and Economical parameters) 

Initial Population (Set of ore blocks and overlying 

predecessors) 

Best solution (First production sequence) 

Defining ants and pheromones (Set of ore blocks and 

predecessors following initial solution)   

Pheromones evaporation (Best among the solutions is 

selected rest are ignored) 

Deploying fitness function (Selection of set of blocks 

and predecessors among the best) 

Stopping conditions 
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4.3.  Hybrid-metaheuristic: 

 

Hybrid-metaheuristic is an important contribution to this research, as it combines GA 

and ACO and provides an alternative methodology for solving the mathematical formulation 

discussed earlier, while other heuritic algorithms such as Partical Swarm optimization (PSO), 

Tabu Search (TS) and dynamic programming are available to solving combinatorial hard 

problems (Dorigo & Stützle, 2004). The limitation of these algorithms for solving production 

scheduling problems, and the structure of the proposed cut-off grade model become the 

reason for the selection of the GA and ACO based hybrid-metaheuristic.  

The GA is used as a search algorithm for finding the best offsprings (set of ore blocks 

or production sequence) within the mining, milling and refining constraints as shown in 

Figure 4.3. The search in this algorithm is based on the best ore grade, but it is difficult to 

find the best set of the ore blocks, which satisfy the given constraints, and that if mined 

maximises NPV.  

The hybrid-metaheuristic algorithm performs two heuristics at the same time. Firstly, 

GA searches the best offspring (blocks with possible high grades), and after running a 

procedure of mutation, crossover and normalization as discussed above, it defines the fittest 

blocks and production sequences. The searching of best offsprings is performed in the 

descending order of Z values across X and Y location in the given block model. These are the 

fittest set of blocks obtained after running GA combined with their predecessors develop an 

initial solution that maximises NPV subject to all constraints. This fittest set of blocks are 

saved in an array for further processing and validation using ACO algorithm. 

The fittest set of blocks which need to be mined with their predecessors are taken as 

ants (blocks with possible high grades) and pheromones are processed using ACO method for 

the fittest production schedule in the first year providing the initial solution. The process of 
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pheromones’ evaporation is also a significant part of this algorithm, where after selecting the 

fittest solution, remaining solutions are ignored and considered as evaporated pheromones in 

addition to the blocks which are already mined in the earlier sequences, and they are not 

considered in the preceding selection process of ants and pheromones (production schedules). 

The set of ore blocks and their predecessors which are satisfying all the constraints are 

processed through repeated iterations using GA and ACO simultaneously until the final 

solution is achieved and at this stage the best among the fittest is selected, and the stopping 

conditions are applied (Figure 4.3). The number of iterations are run to validate this algorithm 

while setting different time periods. 

                          

Figure 4.3:  Flow chart for running hybrid meta-heuristic algorithm 

Although this technique gives a near-optimal solution, the results are comparable with 

the optimum values. The following case study describes the implementation of a 

mathematical model using hybrid-metaheuristics solution. 
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4.3.1.  Hybrid-algorithm pseudocode: 

 

Genetic Algrithm Sequence 

Initialise (set parameters) 

Repeat (loop) 

   Initialize generation  

Search best of array of ore blocks at each Z value within the constraints 

giving maximum NPV 

Crossover the arrays to select fittest among the best solution 

Mutate array values to redefine best of array while filling any gaps or 

repalcements 

Finalse the selection of array which maximises NPV 

Repeat generation until loop ends (search for better solution) 

Fittest set of blocks with grades and their predecessors  

Stopping conditions for GA 

Ant Colony Optimisation sequence 

Initialise (set parameters) 

   Selection of each Ant (block with grade) is located on the primary node 

 

Repeat (loop) 

   Assign ants to the best of the array of blocks including their predecessors 

Each ant employs a state move rule to increase the solution 

Make selection of ants among the selected arrays 

Validating the GA search Array  

Assign ants to the best of the array of blocks including their predecessors 

Find the pheromones ants and set f ore blocks need to be mined, relevant to 

the selected ants (ore blocks) 

   Apply the pheromone local update rule 

Until (loop ends) 

Evaporation of the pheromones once used (evaporating non optimal solutions 

and the array of blocks, already mined in the previous sequence 

Update the ants and pheromones giving the maximium NPV (best solution) 

Automate iterations till the best solution is achieved 

Until (Loop ends) 

   Stopping condition is fulfilled 

Stoppping condition apply 

New loop 

Automate the near optimal solution 

 



72 
 

The hybrid algorithm takes minimum ore-grade as input, which is equal to or higher 

than the processing plant head grade, and that is the grade where the yearly schedule is 

finalized. This grade discriminates ore and waste and it is termed as a cut-off grade. The 

grade higher or equal to the dynamic cut-off grade that is generated each year is termed as ore 

and is sent to mill for processing and the grade which is lower than cut-off grade is either 

stockpiled or sent to the waste dump. At this level, maximum possible NPV is achieved. The 

average grade of the ore for each schedule is also determined. The iterations are continued for 

the life of mining operation until the best production schedules are destined and optimum cut-

off grade is obtained.  

The practical implementation of new MILP formulation and hybrid-metaheuristic 

considering cut-off grade optimisation problems are discussed in the form of different case 

studies in the next section followed by the solutions and analysis. 
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Chapter 5: Implementations of cut-off grade models 
 

The new MILP based mathematical model is implemented and solved, primarily by 

exact solution and secondly by hybrid-metaheuristic as an alternate approach. The models are 

defined as case studies and their solutions are implemented, analysed and discussed in the 

following sections. In the first instance, the hypothetical block model is taken as input, which 

comprises of  location, grades, tonnage, and recovery in addition to the given economic and 

operational parameters. The simulation results attained using both the approaches for a 

certain period or years are analysed and compared through gap analysis.  

The hypothetical model is further solved using conventional production scheduling 

formulation that generates yearly production sequences. Later, hybrid-metaheuristic is used to 

solve mathematical model considering realistic block model as input for obtaining a near 

optimal solution (Appendix 2). 

5.1. Hypothetical block model – Case study: 1 

5.1.1. Input parameters 

Geological inputs: 

A geological 3D block model with 501 blocks is considered in the case. Table 5.1 

shows the geological parameters for a hypothetical block model. The block model is saved in 

a text file format (Appendix 1) in the directory of software application. 

 

 

 

 

 

Table 5.1: Geological parameters for hypothetical block model 

 

Parameters Value Units 

Number of blocks 501  

Slope angle  45 degrees 

Bench height  10 meters 

Number of benches 4  

Processing head grade 0.40 % Cu 



74 
 

Economic inputs: 

The economical parameters used for the hypothetical block model are given in Table 

5.2.  

 

 

 

 

Table 5.2: Economic parameters for hypothetical block model 

 

Operational inputs: 

The mining and processing capacities’ constraints has a direct impact on the overall 

mining cost and NPV estimation. As discussed in the previous chapters, that if mining and 

processing capacities are considered inaccurately, it could lead to over budgetting, which 

consequently converts profits into losses. Therefore, the capacity constraints considered for 

case study 1 are given in Table 5.3. 

 

 

 

Table 5.3: Operational parameters of hypothetical block model 

 

Software program for MILP formulation: 

The software application is developed using JAVA programing platform and CPLEX 

concert technology in case of MILP formulation; whereas only JAVA programing platform is 

used to implement hybrid metaheuristics. The geological inputs are entered in the software 

program using “File Reader” input function in JAVA, whereas input and operational 

parameters are taken using a graphical user interface (GUI) as shown in Figure 5.1. The 

program developed for MILP formulation has the ability to generate linear programming (.lp) 

model file (Appendix 1) which can be independently solved using CPLEX executable 

Parameters Value Units 

Discount rate  𝒅 15 percent 

Time period or years 4 years 

Metal price  𝒑 5300 $/tonne 

Refining cost  𝒓 1220 $/tonne 

Milling cost 𝒄 9.3 $/tonne 

Mining cost  𝒎 1.57 $/tonne 

Fixed cost  𝑭𝑪 800,000 $/tonne 

Capacities Value Units 

Mining capacity  𝑴 53550 tonnes/year 

Milling capacity  𝑷 15300 tonnes/year 
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(cplex.exe) file, generates solution (.sol) file (Appendix 1). The optimised results are obtained 

in the same program or can be processed while importing results in the spreadsheet.  

 

 

Figure 5.1: GUI for taking economic and operational parameters as inputs 

 

System specifications and  limitations: 

The program is run using following system specifications: 

Processor:  Intel (R) Core (TM)  i7-4770 CPU @ 3.40GHZ 

RAM:        8GB 

Harddisk: 600GB 

System Type: 64-bit Windows 8.01 Operating systems 

5.1.2. Implementation of MILP based mathematical model using CPLEX concert 

Technology 

 

The algorithm for MILP formulation is implemented in JAVA programing platform 

with the integration of CPLEX concert technology to generate an exact solution.  

Optimsed results using MILP formulation 

The algorithm for MILP formulation is implemented in JAVA programming language 

while importing CPLEX concert technology to generate an exact solution. The detail on the 

working of the software program is mentioned in Appendix 1. 
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Table 5.4 Optimisation results for cut-off grade and production scheduling optimisation using new-MILP 

formulation 

Table 5.4 shows the results after solving MILP problem using exact approach, which 

shows dynamic cut-off grades over 4 years life of mining operation, where dynamic values of 

𝐶𝑂𝐺𝑡 are generated for each period. The 𝑔
𝑡
 shows that the grade of blocks selected for 

mining is above the processing head grade over the life of mining operation, where 𝑄𝑐𝑡 does 

not achieve the target processing capacity (15300 tonnes). Given the structure of the ore-body 

and the distribution of ore blocks only limited quantity of ore is sent to the processing plant, 

which ultimately yields less marketable material 𝑄𝑟𝑡. However, it is expected that a higher or 

an unlimited mining capacity would help meet the demand of ore at the processing plant. 

Figure 5.2 presents 3D graphical view of the pit which is generated after simulating new 

MILP formulation for 4 years.  

 

 

 

 

 

 

 

   

 

 

Figure 5.2: 3D-View of production scheduling for 4 years simulation using new MILP formulation 

Year 
(𝒕) 

𝑪𝑶𝑮𝒕  
(% 𝑪𝒖 ) 

𝒈
𝒕
 

(% 𝑪𝒖 ) 
𝑸𝒎𝒕  

(tonnes/year) 
𝑸𝒄𝒕  

(tonnes/year) 
𝑸𝒓𝒕  

(tonnes/year) 
𝑷𝒕  

(millions) 
𝑵𝑷𝑽𝒕  

(millions) 

1 0.45 0.54 52020.00 9180.00 4496 $10.18 $45.39 

2 0.42 0.87 52020.00 4590.00 3583 $6.49 $42.03 

3 0.40 0.77 50490.00 12240.00 8444 $26.26 $41.84 

4 0.40 0.74 52020.00 12240.00 8169 $25.13 $21.85 

Total __ __ 206550.00 38250.00 24692 $68.06 __ 
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Figure 5.3 shows the graphical representation of the optimised results for cut-off 

grades, average grades and NPVs, obtained while solving the mathematical model for 4 years 

life of mining operation using exact approach for hypothetical ore-body model. 

The plan and section maps of the production sequences developed in  X, Y and Z 

plane using new MILP formulation, are given in Appendix 3. 

 

Figure 5.3: Graphical results of average grades, cut-off grades and NPV generated using new MILP for 4 years 

using a hypothetical block model 

In addition, with 2004 binary variables in the MILP model for life of operation equal to 4 

years, the corresponding solution time is 4 hours 35 minutes. This solution time may increase 

exponentially as the number of binary variables increase at relatively higher life of operation, 

however, this is sufficient for validation or performance evaluation of the hybrid-

metaheuristic (Lamghari and Dimitrakopoulos, 2012). 

5.1.3. Implementation of mathematical model using hybrid-metaheuristic 

 

Table 5.5 shows the solution of mathematical model using hybrid-metaheuristic, 

which generates the near optimal values for cut-off grades. Although, better dynamic cut-off 

grades are obtained over 4 years life of mining operation using hybrid-metaheuristic, but still 

there is gap in NPV in comparison to the exact approach. The reason inferred from the results 
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that using heuristic approach the value of 𝑄𝑐𝑡 and 𝑄𝑟𝑡 is somehow consistent but still does 

not achieve the target processing capacity which shows that half of the processing capacity is 

not utilized. As mentioned earlier, a higher or unlimited mining capacity will help meet the 

demand for the processing plant. 

 

Table 5.5: Optimisation results for cut-off grade and production scheduling optimisation for 4 years using 

hybrid-metaheuristics 

 

The  comparison between the material 𝑄𝑐𝑡 sent for processing using exact solution 

and the hybrid solution is evaluated against the processing capacity as mentioned in Figure 

5.4. 

 

Figure 5.4: Comparison in % age for 𝑄𝑐𝑡 (exact) ad 𝑄𝑐𝑡 (hybrid) and their difference with processing 

capacity over the life of mining operation 

Figure 5.5 presents 3D graphical view of the pit generated after simulating new MILP 

formulation for 4 years. The period-by-period production sequences are also developed using 

hybrid-metaheuristic. The time recorded at the end of the simulation is 4-5 minutes which is 

significantly less as compare to the exact solution. The plan and section maps of the 
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Year 
(𝒕) 

𝑪𝑶𝑮𝒕  
(% 𝑪𝒖 ) 

𝒈
𝒕
 

(% 𝑪𝒖 ) 
𝑸𝒎𝒕  

(tonnes/year) 
𝑸𝒄𝒕  

(tonnes/year) 
𝑸𝒓𝒕  

(tonnes/year) 
𝑷𝒕  

($ in millions) 
𝑵𝑷𝑽𝒕  

($ in millions) 
Gap% 

1 0.4 0.45 41310 10710 4588 13.56 $41 0.10  

2 0.57 0.76 53550 7650 5537 17.44 $33.8 0.25  

3 0.69 0.80 44370 7650 5844 18.70 $21 0.96  

4 0.45 0.67 29070 4590 2900 6.74 $5.9 2.73  

4 _ _ 168300 30600 18870 56.45 _   



79 
 

production sequences developed in  X, Y and Z plane using hybrid-metaheuristic, are given 

in Appendix 4. 

 

 

 

 

 

 

 

 

 

Figure 5.5: 3D-View of production scheduling for 4 years using hybrid-metaheuristics 

Figure 5.6 shows the graphical representation of the optimised results for cut-off 

grades, average gardes and NPVs, for 4 years life of mining operation using hybrid-

metaheuristic for hypothetical block model. 

 

Figure 5.6: Graphical results of average grades, cut-off grades and NPV generated using hybrid-metaheuristic 

for 4 years for hypothetical block model 
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Figure 5.7 shows the graphical representation of gap analysis between exact and the 

hybrid-metaheuristic approaches. It is deduced from the gap analysis that near optimum 

values are achieved in a significantly less time in the case of hybrid-metaheuristic, showing 

small initial variance in NPV as compare to exact approach which increases in later years.  It 

can be inferred from Figure 5.7, the gap between NPVs is very nominal for both the solutions 

(hybrid and exact solution), and at some stage, curves of NPVs are parallel, which shows that 

the NPVs obtained for hybrid-metaheuristic solution are comparable with the exact solution, 

and provides a roadmap in estimating the exact optimized values of cut-off grades. The 

increase in the gap shows that most of the material considered as waste while using hybrid- 

metaheuristic resulting in lower NPVs as compared to the exact approach. 

 

 

Figure 5.7: % Gap analysis between new MILP formulation and hybrid-metaheuristic 

 As discussed earlier, solving mathematical problem for larger datasets, is neither  

time efficient nor computational efficient especially in the case if MILP formulation solved 
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and processing speeds are recommended to find the solution.  
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 In contrary to the exact solution, hybrid-metaheuristic finds near optimal solutions 

for cut-off grades and production sequences for long and short term plans of the mining 

operation in a very reasonable time.  

Table 5.6:  Optimisation results for cut-off grade and production scheduling optimisation using hybrid 

metaheuristics for 10 years 

Thus, considering same hypothetical model, the simulation is run for 10 years life of 

mining operation using hybrid-metaheurictics, leads to the results shown in Table 5.6, where 

Figure 5.8 shows the 3D graphical presentation of the simulation results. The time recorded at 

the end of simulation after different runs is 7-8 minutes. 

 

 

 

 

 

 

 

Figure 5.8: 3D-View for near optimised results for 10 years using hybrid-metaheuristics for hypothetical model 

Year (𝒕) 
𝑪𝑶𝑮𝒕  
(% 𝑪𝒖 ) 

𝒈
𝒕
 

(% 𝑪𝒖 ) 
𝑸𝒎𝒕  

(tonnes/year) 
𝑸𝒄𝒕  

(tonnes/year) 
𝑸𝒓𝒕  

(tonnes/year) 
𝑷𝒕  

(millions) 
𝑵𝑷𝑽𝒕  

(millions) 

1 0.40 0.43 41310 7650 3145 $12.70 $95.83 

2 0.57 0.76 44370 7650 5538 $22.46 $93.50 

3 0.69 0.85 44370 7650 6195 $25.14 $89.67 

4 0.45 0.79 52020 4590 3424 $13.85 $77.98 

5 0.64 0.65 48960 4590 2824 $11.41 $75.83 

6 0.66 0.89 45900 7650 6492 $26.35 $75.79 

7 0.59 0.79 42840 7650 5758 $23.35 $60.81 

8 0.73 0.83 42840 6120 4852 $19.68 $46.58 

9 0.61 1.03 45900 7650 7514 $30.52 $33.89 

10 0.50 0.55 52020 4590 2413 $9.72 $8.45 

Total _ _ 460530 65790 48160 $195.16 _ 
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Figure 5.9 shows graphical results for average grades, dynamic cut-off grades and 

NPVs generated for each year, for 10 years life of mining operation.  

 

Figure 5.9: Graphical results of average grades, cut-off grades and NPV generated using hybrid_metaheuristic 

for 10 years for hypothetical block model 

5.1.4. Implementation of MILP based conventional production scheduling model using 

breakeven cut-off grade policy: 

 The hypothetical block model with 501 blocks is also used to develop production 

sequence using MILP based production scheduling (Newman et al., 2010). The block-by-

block economic block values are used in MILP based formulation for production scheduling, 

where it considers breakeven cut-off grade strategy. The gap analysis shows that production 

scheduling generates higher NPV in the initial years, whereas still the quantity of material 

processed 𝑄𝑐𝑡 does not justify processing. The time recorded after the end of simulation is 4 

hrs 23 minutes. However, this insignificant negative gap is owing to the quantity of ore 

processed at the processing plant during the life of mining operation. 

The results in Table 5.7 show that better NPVs are achieved in the case of 

conventional production scheduling as compared to the new MILP model for cut-off grade 
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optimisation, whereas the time of simulation is comparatively less than the time of simulation 

of new MILP formulation. 

 

Table 5.7: Results obtained after simulation of conventional production scheduling formulation 

Figure 5.10 shows graphical results for average grades, dynamic cut-off grades and 

NPVs generated for each year, for 10 years life of mining operation using conventional 

production scheduling.  

 

Figure 5.10: Graphical results of average grades, cut-off grades and NPV generated using conventional 

production scheduling for 4 years for hypothetical block model 

The gap analysis of production sequences using breakeven cut-off grade and new 

MILP cut-off grade formulation is shown in Table 5.7. It can be derived from the results that 

even though economic block values help in generating more reliable and efficient production 

sequences with higher NPVs value, but cut-off grade remains constant over the life of mining 
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Year (𝒕) 
𝒈

𝒕
 

(% 𝑪𝒖 ) 
𝑸𝒎𝒕  

(tonnes/year) 
𝑸𝒄𝒕  

(tonnes/year) 
𝑸𝒓𝒕  

(tonnes/year) 
𝑷𝒕  

(Millions) 
𝑵𝑷𝑽𝒕  

(Millions) 
Gap% 

1 0.85 48960 4590 4360.5 $16.87 $130.77 -$0.40 

2 0.76 39780 13770 13081.5 $52.38 $121.13 -$0.27 

3 0.73 41310 12240 11628 $46.46 $86.69 $0.06 

4 0.69 38990 14510 13784.5 $55.24 $48.03 $0.44 

Total   169040 45110 42854.5 $170.96 
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operation for its reliance on breakeven cut-off grade strategy. However, this higher NPV is 

owing to the satisfaction of targetted ore production during the life of mining operation. 

5.2. Realistic block model (copper deposit) – Case study 2 

 Case study 2 shows the solution of MILP formulation  using realistic ore-body model 

using hybrid-metaheuristic. 

5.2.1. Input parameters 

Geological inputs: 

 

 

 

 

 

 

Table 5.8:  Geological parameters for realistic block model 

A geological 3D block model comprising of 142296 blocks (Appendix 2) is 

considered in a realistic case study (2) using copper deposit (ore-body).The charateristics of 

the block model is given in Table 5.7.  

Economic inputs: 

Table 5.9 shows the economic parameters for the realistic block model (Appendix 2) 

 

 

 

 

Table 5.9: Economic parameters for realistic block model 

Operational inputs: 

Table 5.10 shows the operational capacities’ constraints: 

Characteristics Value Units 

Number of Blocks 142296  

Slope Angle  45 degrees 

Bench Height  20 meters 

Number of Benches 32  

Processing head grade 0.40 % Cu 

Parameters Value Units 

Discount Rate  𝒅 15 percent 

Simulation time  10 years 

Metal Price  𝒑 3747 $/tonne 

Refining cost  𝒓 881 $/tonne 

Milling Cost 𝒄 9 $/tonne 

Mining Cost  𝒎 1 $/tonne 

Fixed Cost  𝑭𝑪 25,000,000 $ 
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Table 5.10: Operational parameters for realistic block model 

5.2.2. Implementation of mathematical model using hybrid-metaheuristic: 

 

New MILP formulation for the realistic case study comprising of 142296 blocks for 

cut-off grade optimisation and long term production scheduling generates hundred thousands 

of variables to solve realistic problem, which is computationally not possible. Given the 

validity of hybrid-metaheuristic approach as shown through the gap analysis in Figure 5.7 for 

a small hypothetical problem, the mathematical model for realistic case study is solved using 

hybrid-metaheuristic.  

Firstly, a subset of block model is developed using new MILP formulation for cut-off 

grade optimisation and used as a benchmark for production sequences developed using 

hybrid-metaheuristic (Figure 5.11). 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: 3D-View for near optimised subset for 10 years using Hybrid metaheuristics for realistic block 

model 
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 The simulation using hybrid- metaheuristic generates near optimal solution for 10 

years life of mining operation for realistic case study and is shown in Table 5.11.  

Table 5.11: Optimisation results for cut-off grade and 10 year production scheduling using hybrid 

metaheuristics for a realistic block model 

 

Table 5.11 shows the solution of MILP formulation for a realistic copper deposit 

simulating for 10 years life of mining operation, which provides a near optimal solution, and 

defines a new cut-off grade with simultaneous generation of year-by-year production 

sequence. Secondly, the NPV estimated (Table 5.11) is depending on the cash flows 𝑃𝑡 which 

are derived from 𝑄𝑚𝑡, 𝑄𝑐𝑡 and 𝑄𝑟𝑡; where 𝑄𝑐𝑡 and 𝑄𝑟𝑡 do not achieve the target processing 

capacity of the ore and also varies with the size of the block model; where dynamic 𝐶𝑂𝐺𝑡 

values are obtained and 𝑔
𝑡
 values show that the grades of the ore sent for processing are 

above milling head. The production target can only be achieved by relaxing mining capacity 

but it directly affects the cost of production. On the other hand, in case the formulation is 

solved using exact solution, an exponential increase in variable size (10 × 142296) makes it 

more complex for realistic copper deposit, and it requires an extraordinary time and 

computational capacity for simulating the results.  

Figure 5.12 presents a 3D view of the pit shape for a realistic block model for 10 

years production scheduling. The COG over 10 years for a realistic model is based on the 

Year (𝒕) 
𝑪𝑶𝑮𝒕  
(% 𝑪𝒖 ) 

𝒈
𝒕
 

(% 𝑪𝒖 ) 

𝑸𝒎𝒕  
(tonnes/year) 

𝑸𝒄𝒕  
(tonnes/year) 

𝑸𝒓𝒕  
(tonnes/year) 

𝑷𝒕  
(millions) 

𝑵𝑷𝑽𝒕  
(millions) 

1 0.517 0.731 9450000 7171200 4980040 $13,949 $43,787.46 

2 0.518 0.71 8132400 4914000 3314493 $9,197 $36,406.58 

3 0.531 0.719 9331200 4860000 3319623 $9,211 $32,670.57 

4 0.531 0.709 10486800 4644000 3127966 $8,662 $28,360.16 

5 0.529 0.709 10411200 4255200 2866090 $7,916 $23,952.18 

6 0.525 0.705 10087200 3823200 2560588 $7,044 $19,629.01 

7 0.521 0.698 9601200 3175200 2105475 $5,746 $15,529.36 

8 0.522 0.698 9288000 3013200 1998053 $5,440 $12,112.76 

9 0.524 0.709 8715600 2916000 1964072 $5,344 $8,489.68 

10 0.527 0.724 8780400 2721600 1871916 $5,082 $4,419.13 

Total _ _ 94284000 41493600 28108316 77591 _ 
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heuristic approach which picks the blocks with maximum grades first and then eliminates the 

blocks (pheromone update) subject to the mining and processing capacity constraints and 

maximizing NPV, therefore the variations are not so eminent but still dynamic cut-of grades 

are  generated each year. 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: 3D-View for near optimised for 10 years production scheduling using hybrid metaheuristics for 

realistic block model 

Figure 5.13 shows graphical results for average grades, dynamic cut-off grades and 

NPVs generated for each year, for 10 years life of mining operation using realistic copper 

deposit.  

 

Figure 5.13: Graphical results of average grades, cut-off grades and NPV generated using hybrid-metaheuristic 

for 10 years for industrial ore-body block model 
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 It is inferred from the above discussion that new MILP based mathematical model 

defines cut-off grade optimisation policy uses realistic block model and disregards the fact of 

using grade-tonnage distribution for generating optimal cut-off grade policy. This model is 

solved using two different techniques, exact approach (using CPLEX concert technology) and 

hybrid-metaheuristic (combination of GA and ACO), and it generates dynamic cut-off grades 

with yearly production sequences. The exact solution although generates optimal solution but 

proves to be NP-hard and computational inefficient, for the large dataset (block model with 

hundred thousand of blocks). On the other hand, hybrid metaheuristic solves the 

mathematical model in a reasonable time and generates a near optimal solution. The gap 

analysis between these two methods shows that hybrid-metaheuristic generates a near optimal 

solution and derives a road map for future investments and returns on investments.  

It is also deduced from the above discussion that new cut-off grade policy generates 

optimum results without depending on breakeven cut-off grade strategy. On the other hand, 

the conventional production scheduling formulation which also uses realistic block model, 

relies on breakeven cut-off grades strategy and economic block values to generate production 

schedules. 
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Chapter 6: Conclusions and Recommendations 

 

6.1. Conclusions: 

 

This thesis shares a mixed integer linear programming (MILP) based mathematical 

model and its implementation for the development of optimal cut-off grade policy and a 

sequnce of production for open pit mining operations. The structure of the model helps 

overcome a number of shortcomings in the previous studies. Thus, this effort offers the 

following major contributions: 

1. The model accounts for economic and operational parameters apart from a block-

by-block ore-body model (mining block location, grade, and available quantity of 

material) as a geological input, and then as opposed to converting the ore-body 

model into a uniform grade-tonnage distcribution or an economic block model 

(mining block economic values) as practised in the existing mathematical models, 

it develops a schedule of cut-off grades and a sequence of production 

simultaneously. 

2. The model overcomes a compromise on considering breakeven cut-off grade as a 

basis for delineating ore and waste blocks within the economic block models, 

which in turn becomes input to the traditional production scheduling methods. 

3. It also overcomes a limitation on considering a uniformly distributed grade-

tonnage curve of the ore-body, rather, it considers the realistic location-dependent 

block-by-block information to develop a cut-off policy that aligns or synchronises 

the life-of-operation long-term plans with operational short-term plans, and 

consequently resolves an important grade control issue. 

4. The CPLEX Concert Technology coupled with Java based simple interface 

develops the MILP formulation, which is then solved to generate exact solution of 
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the problem in a small-scale hypothetical instance (@ number of variables = 

2004). However, the exponential increase in the number of binary variables in the 

formulation, owing to the the increase in the number of mining blocks in the ore-

body model, leads to excessive solution times. Therefore, this implementation 

confirms the computational complexity of the MILP model. 

5. A hybrid-metaheuristic that combines the application of GA and ACO algorithms 

is then developed to implement the MILP model in a simple Java based interface. 

This implementation helps address the computational complexity of the problem.  

6. A performance evaluation of the metaheuristic in a small-scale hypothetical 

instance validates the computational efficiency (saving in solution time = 

approximately 4 hours and 30 minutes) of this new hybrid algorithm through an 

acceptable (0.10%) gap between the exact (optimal @ NPV = $45.39M) and 

heuristic (near-optimal @ NPV = $41.13M) solutions. 

7. Consequently, an implementation of the MILP model through hybrid algorithm in 

a practical instance of a copper mining operation generates optimal solution to this 

large-scale problem within acceptable time (@ solution time = 7-8 minutes). 

6.2. Recommendations: 

 

The MILP based mathematical model does not account for creation and management 

of stockpiles. In addition, it considers deterministic inputs in the context of economic and 

geological parameters. Similarly, the implementation of the model through hybrid-

metaheuristic is restricted to GA and ACO algorithms. Therefore, the future research may 

incorporate the option to stockpile potential ore, consider the inherent uncertainty in 

economic and geological inputs, and given the characteristics individual algorithms, other 
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heuristics such as Tabu Search, Particle Swarm Optimisation, Nearest Neighbourhood 

algorithm may be explored. Moreover, a study into the structure of the proposed MILP 

model may help address the computational complexity and improve the implementation 

of the exact approach.   
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Appendix 1: User manual for software application (solving MILP model based cut-off 

grade optimisation policy using CPLEX concert technology) 

 

The methods to take input parameters and the design of graphical user interface (GUI) for both MILP 

and metaheuristic program is same, for the reason that same inputs are considered for both the 

programs; whereas the functionality and solution methodology developed in both the programs are 

different. Java programming language is used for developing code for MILP as well as metaheuristic 

using ECLIPSE editor. 

Input Text files:  

 Block Model File (blockmodel.txt): 

The block model file shown in Figure 1 is taken as input text file using hard coding in the 

program. So whatever file is used as an input for geological block model must be saved with 

the name blockmodel.txt comprising of X,Y, Z tonnage, grades, recovery and MCAF columns 

separated by tab as shown in Figure 1.  

 

Figure 1: Input text files (Geological block model-blockmodel.txt) 

 Precedence file (precedence.txt): 
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The generation of precedence file is based on a stand-alone program developed using C++ 

and saved as exe file (precedence.exe) as shown in Figure 2. This file is saved in the separate 

folder and processed separately to generate precedence.txt file. This file generates the 

predecessors for each block with the ratio 1:5, which means that for each block if mined, the 5 

predecessors (overlying blocks) in three dimensions must be mined as well, and this is one of 

the important constraints of the MILP model. 

 

Figure 2: Precedence file (generated using precedence.exe program) 

 Operational Parameters: 

Insert operational parameters (mining and processing capacities) are taken as inputs using 

GUI. 

 Economic Parameters File (economic_parameter.txt): 

There are two ways, how economic parameters are taken as inputs in the software. 

o Browsing input text files (Figure 3) with economic parameters are saved in the 

sequence of metal price; selling cost, milling cost and mining cost each separated by 
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tab, and then uploads the text file in the same directory where other text files are 

saved.  

 

                

Figure 3: Economic parameters file 

o Or, insert economic parameters using GUI as mentioned earlier. 

 

How MILP formulation works as Software: 

After taking inputs according to the methods given above, formulation is developed using 

CONCERT Technology in JAVA. ILO integer variables are used to defining binary variables, 

whereas and ILO expressions are used to define decision variables and constraints of MILP 

formulation. The following features are explained in detail. 

 

Figure 4: Graphical user interface (GUI) for taking economic and operational inputs for MILP formulation  

 Blockmodel.txt file is read using file input/output function and all columns separated by tab 

command saved in separate arrays for location (X, Y and Z coordinates), grades, tonnage and 

recovery.   
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 Precedence.txt file is read using file input/output function and saved in separate arrays for 

block number and their predecessors.  

 Eco-parameter.txt is either read using file input/output function or taking direct input using 

GUI and saved in separate variables for metal price, refining cost, processing cost and mining 

cost. 

 Variables 𝑥𝑣𝑎𝑙, 𝑦𝑣𝑎𝑙, 𝑧𝑣𝑎𝑙, 𝑔𝑟𝑎𝑑, 𝑐𝑜𝑔, 𝑎𝑣𝑔, 𝑝, 𝑐, 𝑟, 𝑚  are used to assign values for location 

(X, Y and Z coordinates), grade, cut-off grade, average grade, metal price, processing cost, 

refining cost and mining cost respectively. 

 Variable 𝑥 is used to define a binary variable and assigning it two values with the condition 

that if block is mined 𝑥 = 1 or if not then 𝑥 = 0.  

 Objective function is defined in terms of discounted cash flow  𝑃𝑡 . 

 Discounted 𝑃𝑡 is defined in terms of following cash flow statement 

𝑃𝑡 = (𝑝 − 𝑟)𝑄𝑟𝑡 − 𝑐𝑄𝑐𝑡 − 𝑚𝑄𝑚𝑡   

 The economic value of each single block in the block model is not considered in this 

formulation so need to define decision variables including quantity of material mined  𝑄𝑚𝑡, 

quantity of material processed  𝑄𝑐𝑡 , quantity of material refined  𝑄𝑟𝑡 and fixed annual cost 

 𝐹𝐶𝑡 are defined, and their ranges are also specified in the program. 

 Objective function is defined on the basis of discounted cash flow 

       𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑂𝑏𝑗 =  ∑
𝑃𝑡

(1+𝑑)𝑡
𝑇
𝑡=0     

 The CPLEX expressions are introduced to define the following constraints: 

o Cash flow constraint 

o Quantity of material mined and mining capacity constraint 

o Quantity of material processed and processing capacity constraint 

o Slope constraint  

o Reserve constraint 

o Cut-off grade constraints 
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Running MILP simulation and Outputs: 

Initially the simulation is run to generate the actual year by year production schedules and 

cut-off grade policy, the MILP simulation is run to generate the following two outputs.  

Output 1: 

An independent model file (filename.lp) is generated as an output of the program. This file can be 

run separately using CPLEX exe file using CPLEX commands as shown in Figure 5. 

o  

Figure 5: Graphical user interface (GUI) for taking economic and operational inputs for MILP formulation  
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Figure 6: CPLEX exe file (reading and running lp model file) 

The solution file (filename.sol) is also generated which shows the production scheduling 

(number of blocks mined as 1 and 0 for blocks not mined) and shown in Figure 7. 

 

Figure 7: Solution file generated after simulation of lp model file ( ) 
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Output 2: 

The CPLEX concert technology is used in the same MILP program which generates 

simulation results as been compiled separately in CPLEX exe file. The output of the software program 

is recorded in a text file format, showing simulation results in terms of columns separated by tab as 

shown in Figure 8. 

 

Figure 8: Tabular output of the simulated results using concert technology in MILP formulation 

The results of a text file are then imported to Excel spreadsheet, where the production 

schedules and data is compiled and analysed as shown in Figure 9. The spreadsheet results can be 

used in any mine planning software to develop 3D schedules.  
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Appendix 2: User manual for software application (cut-off grade optimisation policy 

using hybrid metaheuristic) 

 

How hybrid-metaheuristic works as Software: 

The mathematical model is also solved using hybrid-metaheuristic. The method of taking inputs using 

GUI and the input text files is same as mentioned in above in MILP formulation. Figure 1 shows the 

GUI for taking input parameters for hybrid-metaheuristic. The simulation generates near optimum 

results and gap analysis shows the difference. 

 

Figure 1: Graphical user interface (GUI) for taking economic and operational inputs for MILP formulation  

Running Simulation for hybrid-metaheuristic and Outputs: 

Step1: Search using Genetic Algorithm (GA) 

Initial search of blocks with highest possible grades which can generate maximum profit at lowest 

operational cost are searched using GA after several generations. The GA continues unless the best 

among the best possible solution is selected. 

 Condition and constraints: 

o Search blocks in vertical (top to bottom) and along horizontal. 

o Block grade must be greater than minimum required head grade 

o Blocks generating maximum profit with predecessors generating minimum cost 

o Blocks selected for processing must be less than or equal to processing capacity 

o All blocks selected for mining with their predecessors must be less than or equal to 

the mining capacity 
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o Search all the possibilities of ore blocks with potential grade horizontally 

 Crossover: 

o Using crossover technique checks the best solution of ore block by rearranging them 

with the condition of maximum profit with the conditions and constraints. 

 Mutation: 

o Using mutation process any missing ore block or predecessor is checked for the best 

among the fittest solutions, abiding by the given constraints. 

 

 Step 2: Applying Ant Colony Optimisation (ACO) 

The selection of possible set of mineable blocks in Step 1 is again validated by applying ACO 

algorithm.  

 ANTS: 

o The ants are defined as possible potential set of blocks (grade > 0) as part of ACO 

algorithm. 

 Pheromones  

o Pheromones are defined as ants (potential blocks with grade > 0) and their 

predecessors (generating best of solutions) fulfilling the given constraints mentioned. 

 Pheromone evaporation 

o Only best among the fittest solutions (pheromones) are selected and rest of the 

pheromones are evaporated (means not selected). The selection of the set of mineable 

blocks using GA also validated in the selection of ACO and best among them is 

selected. 

Program compilation and Outputs: 

The interface shown in the Figure 1 is similar to the one designed for MILP model. The 

program is designed in such a way that pheromones are generated giving schedule for each year. The 

schedules (ore blocks and predecessors) mined in the previous schedules are not considered in the 

next genetic search and considered as evaporated pheromones to generate upcoming schedules in ant 
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colony algorithm. The output of the simulation is recorded in a text file 

(hybrid_metaheuristic_results.txt) shown in Figure 11, and the path of the output files is made as 

default, which means they are saved in the same folder where other input files are saved. The option 

to change the path for saving the file is also given. 

Figure 11 shows the output text file after running hybrid metaheuristic program. This program 

generates results after several iterations of genetic algorithm and ant colony optimisation algorithm. 

The stopping condition achieves when optimum value or near optimum value is achieved. So, in this 

way the mathematical model is solved using the objective function which maximises NPV subject to 

all slope, reserve and operational capacity constraints. In addition, it generates dynamic cut-off grades 

and production sequences over the life of mining operations. The results are finally exported to 

spreadsheet for analysis and production scheduling.  

 

Figure 11: Output text file generated by running hybrid metaheuristic program 
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Appendix 3: Production scheduling using new MILP formulation (Generated using MS 

Excel) 

 

1. Plan view of production schedules developed at different Z location for 4 years life of 

mining operation where numbers inside the colour boxes are showing the years of 

production sequence:                                                     

170                                 

160                                 

150                                 

140             3                   

130         4 3 2 2                 

120       4 3 2 2 2 2     4 1       

110 
    4 3 2 2 2 2 2 2 4 1 1 1     

100     3 3 3 2 2 2 2 2 1 1 1 1 1   

90     4 3 3 3 2 2 2 4 1 1 1 1 1 1 

80       4 3 3 3 2 4     1 1 1 1 1 

70         4 3 3 4         1   1   

60             4                   

50                                 

40                                 

  20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

 

Figure 1: Plan map of production sequences at Z = 70 

 

170                                 

160                                 

150                                 

140                                 

130           4                     

120         4 3 2 2                 

110 
      4 3 2 2 2 2     4 1       

100       3 3 3 2 2 2 4 4 1 1 1     

90       4 3 3 3 2 4     1 1 1 1   

80         4 3 3 4         1   1   

70             4                   

60                                 

50                                 

40                                 

  20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

 

Figure 2: Plan map of production sequences at Z = 60 
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170                                 

160                                 

150                                 

140                                 

130               

 

                

120             4                   

110 
        4   2 2                 

100         3 3 3 2 4     4 1       

90         4 3 3           1       

80             4                   

70                                 

60                                 

50                                 

40                                 

  20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

 

Figure 3: Plan map of production sequences at Z = 50 

 

 

170                                 

160                                 

150                                 
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100           3 3 4                 

90             4                   

80                                 

70                                 

60                                 

50                                 

40                                 

  20  30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

 

Figure 4: Plan map of production sequences at Z = 40 

 

 

 

 

Y 

Y 

X 

X 



113 
 

 

 

150                                 

140                                 

130                                 

120                                 

110                                 

100 
            4                   

90                                 

80                                 

70                                 

60                                 

50                                 

40                                 

  20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

 

Figure 5: Plan map of production sequences at Z = 30 

 

2. Section view of production schedule developed at different Y locations for 4 years life 

of mining operation: 

 

 

 

 

 

Figure 6: Section map of production sequences at Y = 110 

 

70       3 3 3 2 2 2 2 2 1 1 1 1 1   

60         3 3 3 3 2 2 4 4 4 1 1     

50           3 3 3 2 4     4 1       

40             3 3 4                 

30               3                   

20                                   

10                                   

  10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

 

Figure 7: Section map of production sequences at Y = 100 

70       4 3 2 2 2 2 2 2 4 1 1 1     

60         4 3 2 2 2 2     4 1       

50           4 3 2 2                 

40               4                   

30                                   

20                                   

10                                   

  10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 
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Figure 8: Section map of production sequences at Y = 90 

 

70         4 3 3 3 2 4     1 1 1 1 1 

60           4 3 3 4         1 1 1   

50               4                   

40 
                                  

30                                   

20                                   

10                                   

  10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

 

Figure 9: Section map of production sequences at Y = 80 

 

3. Section view of production schedule developed at different X locations for 4 years life 

of mining operation: 

 

70             1 1 1 1 1 1   

60               1 1 1 1     

50                 1 1       

40 
                          

30                           

20                           

10                           

  10 20 30 40 50 60 70 80 90 100 110 120 130 

 

Figure 10: Section map of production sequences at X = 140 

 

 

70       4 3 3 3 2 2 2 4 1 1 1 1 1 1 

60         4 3 3 3 2 4     1 1 1 1   

50           4 3 3 4         1       

40               4                   

30                                   

20                                   

10                                   

  10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

Z 

X 

X 

Z 

Y 

Z 



115 
 

70                 1 1 4     

60                   4       

50                           

40                           

30                           

20                           

10                           

  10 20 30 40 50 60 70 80 90 100 110 120 130 

 

Figure 11: Section map of production sequences at X = 130 

 

70             4 2 2 2 2 2 2 

60               4 2 2 2 2   

50                 4 2 2     

40                   4       

30                           

20                           

10                           

  10 20 30 40 50 60 70 80 90 100 110 120 130 

 

Figure 12: Section map of production sequences at X = 90 

 

70           4 3 3 2 2 2 2 2 3 

60             4 3 3 2 2 2 4   

50               4 3 3 2 4     

40                 4 3 4       

30                   3         

20                             

10                             

  10 20 30 40 50 60 70 80 90 100 110 120 130 140 

 

Figure 13: Section map of production sequences at X = 80 

 

70             3 3 3 2 2 2 3   

60               3 3 3 2 3     

50                 3 3 3       

40 
                  3         

30                             

20                             

10                             

  10 20 30 40 50 60 70 80 90 100 110 120 130 140 

 

Figure 13: Section map of production sequences at X = 70 

 

Z 

Y 

Z 

Y 

Z 

Y 

Z 

Y 



116 
 

Appendix 4: Production scheduling using hybrid-metaheuristic 

1. Plan view of production schedules developed at different Z location for 4 years life of 

mining operation using hybrid-metaheuristic where numbers inside the colour boxes 

are showing the years of production sequence:                                                     

170                                   

160                                   

150                                   

140         4 4 5 5                   

130         4 4 5 5 5                 

120   4 4 4 4 4 4 5 5     3 4 4 4     

110 
4 4 4 3 4 4 5 5 3 5 3 3 3 4 4     

100   4 4 2 3 3 3 3 2 3 3 3  2 1 1 1 1 

90     2 2 2 2 2 2 2 2 3 1 1 1 1 1 1 

80       2 2 2 2 2 2   1 1 1 1 1 1 1 

70         2 2 2 2       1 1 1 1     

60                         1         

50                                   

40                                   

  20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180  

 

Figure 1: Plan map of production sequences at Z = 70 

170                                   

160                                   

150                                   

140                                   

130         10 10                       

120         4 4 5 5           9 10     

110 
    10 4 3 3 3 3   9   3 4 9 9 10   

100     8 3 2 2 2 2 3 8 3 3  4 4 10 8 10 

90     7 2 2 2 2 2 2 6 8 2 1 1 1 8 8 

80     5 5 2 2 2 2 6 6 6 1 1 1 1 7   

70       5 5 5 6 6 6 6     1 6 6 7 7 

60         5 6 6 6 6         6 7 7   

50                                   

40                                   

  20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 

 

 

Figure 2: Plan map of production sequences at Z = 60 
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170                                   

160                                   

150                                   

140                                   

130                                   

120         10 10                       

110 
      10 4 4 5 5 9 9       

 

10     

100       8 3 3 3 3 8 8   3 4 8 8 10   

90       7 2 2 2 2 6 8     2 6 7 8   

80       5 5 5 6 6 6 6     1 6 6 7   

70         5 6 6 6 6         6 7     

60                                   

50                                   

40                                   

  20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170  180 

 

Figure 3: Plan map of production sequences at Z = 50 

 

170                                   

160                                   

150                                   

140                                   

130                                   

120                                   

110 
        10 10                       

100         8 9 9 9 9           10     

90         7 7 7 7 8         8 8     

80         5 6 6 6 6         6 7     

70                                   

60                                   

50                                   

40                                   

  20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170  180 

 

Figure 4: Plan map of production sequences at Z = 40 

 

2. Section view of production schedule developed at different Y locations for 4 years life 

of mining operation using hybrid-metaheuristic: 
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70         4 4 4 5 5         

60           10 10             

50                           

40 
                          

30                           

20                           

10                           

  10 20 30 40 50 60 70 80 90 100 110 120 130 

 

Figure 5: Section map of production sequences at Y = 130 

 

70         4 4 4 4 5     10 3 

60           9 9 9           

50             10             

40 
                          

30                           

20                           

10                           

  10 20 30 40 50 60 70 80 90 100 110 120 130 

 

Figure 6: Section map of production sequences at Y = 120 

 

70   9 4 4 4 4 4 5 9 3 3 3 3 5 

60     9 4 4 4 5 9     4 4 5   
50       9 4 5 9         5     
40 

        9                   
30                             
20                             
10                             

  10 20 30 40 50 60 70 80 90 100 110 120 130 140 

 

Figure 7: Section map of production sequences at Y = 110 

 

70       3 3 3 3 3 3 2 3 3 3 2 1 1 

60         8 2 2 2 2 2   3 3 3 3 3 

50 
          8 3 3 3 8     3 3     

40             8 3 8               

30               9                 

20                                 

10                                 

  10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 

 

Figure 7: Section map of production sequences at Y = 100 
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3. Section view of production schedule developed at different X locations for 4 years life 

of mining operation using hybrid-metaheuristic: 

70     6 6 7 7 6 6 6 6         

60       7 7 7 8 10 7           
50           8   7 

 

          
40                             
30                             
20                             
10                             
  40 50 60 70 80 90 100 110 120 130 140 150 160 170 

 

Figure 8: Section map of production sequences at X = 170 

 

 

70       7 5 1 1 7 9           

60         6 5 7 8             
50         6 6 8   

 

          
40           8                 
30                             
20                             
10                             
  40 50 60 70 80 90 100 110 120 130 140 150 160 170 

 

Figure 9: Section map of production sequences at X = 160 
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