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ABSTRACT We used the animal model in S0 (F1) recurrent selection in a self-pollinating crop including, for the first
time, phenotypic and relationship records from self progeny, in addition to cross progeny, in the pedigree.We tested
the model in Pisum sativum, the autogamous annual species used by Mendel to demonstrate the particulate nature
of inheritance. Resistance to ascochyta blight (Didymella pinodes complex) in segregating S0 cross progeny was
assessed by best linear unbiased prediction over two cycles of selection. Genotypic concurrence across cycles was
provided by pure-line ancestors. From cycle 1, 102/959 S0 plants were selected, and their S1 self progeny were
intercrossed and selfed to produce 430 S0 and 575 S2 individuals that were evaluated in cycle 2. The analysis was
improved by including all genetic relationships (with crossing and selfing in the pedigree), additive and nonadditive
genetic covariances between cycles, fixed effects (cycles and spatial linear trends), and other random effects. Narrow-
sense heritability for ascochyta blight resistance was 0.305 and 0.352 in cycles 1 and 2, respectively, calculated from
variance components in the full model. The fitted correlation of predicted breeding values across cycles was 0.82.
Average accuracy of predicted breeding values was 0.851 for S2 progeny of S1 parent plants and 0.805 for S0
progeny tested in cycle 2, and 0.878 for S1 parent plants for which no records were available. The forecasted
response to selection was 11.2% in the next cycle with 20% S0 selection proportion. This is the first application of
the animal model to cyclic selection in heterozygous populations of selfing plants. The method can be used in
genomic selection, and for traits measured on S0-derived bulks such as grain yield.
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Rice, wheat, and other cereals, soybeans, and vegetable-derived oils
based on selfing crops account for more than 60% of the world’s food
calories for human consumption (Nelson et al. 2010). The traditional
method for breeding selfing crops may be described as “selfing before

crossing,” which delays crossing until after selection of pure lines. This
article explores a new method of breeding self-pollinating crops based
on application of the animal model to cyclic selection in heterozygous
populations, or “crossing before selfing.”

Selection for complex traits in annual autogamous plants normally
occurs during or after several generations of selfing, which is followed
by crossing among selected near-homozygous parents. Selfing improves
the effectiveness of selection by increasing the additive (heritable)
variance and decreasing the dominance variance (Wricke and Weber
1986), and selection schemes have been developed to achieve maximum
genetic benefit during the selfing phase in autogamous crops (Cornish
1990a,b). Selfing and selection of superior homozygous pure lines is the
ultimate goal of breeding in self-pollinating crops (Allard 1999; Wricke
and Weber 1986).

However, the delay in crossing until after selfing and selection of
superior pure lines imposes limits on breeding of self-pollinating crops.
Selection during the selfing process decreases additive genetic variance
in the breeding population that cannot be restored when selection is
removed, unlike in outcrossing species, and also reduces effective

Copyright © 2015 Cowling et al.
doi: 10.1534/g3.115.018838
Manuscript received February 24, 2015; accepted for publication May 1, 2015;
published Early Online May 5, 2015.
This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
Supporting information is available online at www.g3journal.org/lookup/suppl/
doi:10.1534/g3.115.018838/-/DC1
1Present address: CP222 Lichinga, Mozambique.
2Present address: Commonwealth Bank, 300 Murray St, Perth WA 6000,
Australia.

3Corresponding author: The UWA Institute of Agriculture M082, The University of
Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
E-mail: wallace.cowling@uwa.edu.au

Volume 5 | July 2015 | 1419

http://orcid.org/0000-0002-3101-7695
http://creativecommons.org/licenses/by/4.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.018838/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.018838/-/DC1
mailto:wallace.cowling@uwa.edu.au


recombination (Cornish 1990a,b). Self-pollinating crop breeding pro-
grams tend to have fewer parents in crossing, lower effective population
size, and longer generation intervals than animal breeding programs
(Cowling 2013). Inbreeding increases the probability that the parents
share alleles at pairs of linked loci because of their relatedness and the
inbreeding of common ancestors (Hill and Weir 2012). Actual or re-
alized relationship is used in breeding value prediction and is reduced
by inbreeding of a parent (Hill 2012; Hill and Weir 2012). Therefore,
care must be taken when applying quantitative genetics models, in-
cluding the animal and genomic selection models, to traditional self-
pollinating crop breeding programs.

The animal model exploits information from relatives to estimate
breeding values of each related individual in the pedigree (Lynch and
Walsh 1998). The pedigree includes individuals with records and their
ancestors back to the base population. The data should include records
for the selection cohort to avoid selection bias in the current cohort. The
pedigree may also include individuals without direct phenotype records
(Hill 2012). Breeding values can be estimated for these individuals pro-
vided they have measured relatives in the analysis (Walsh and Lynch
2014). In the animal model, selection is based on a selection index
known as the predicted breeding value, which combines all information
available on the individual and its relatives through a methodology
known as best linear unbiased prediction (BLUP) (Henderson 1973).

The annual rate of response to selection (R) is related to generation
interval (L), the accuracy of the selection index (r), and the additive
genetic standard deviation or standard deviation of breeding values
(sA) for a given selection intensity (i) by the breeders’ equation:

R ¼ i · r ·sA

L
[1]

The theory behind the breeders’ equation was developed by Lynch
and Walsh (1998). Accuracy of the selection index (that is, accuracy of
predicted breeding values in the animal model) can be increased by
adding more records from relatives in the analysis. Parents, progeny,
and full sibs add higher accuracy than collateral relatives (Simm 1998).
However, waiting for progeny records increases L, whereas including
collateral relatives—those from the same generation as the individual—
can increase r without increasing L. Repeated measures of an individual
and its relatives, which increase accuracy in the animal model (Simm
1998), are not normally available in segregating S0 progeny of annual
self-pollinating plants. In theory, self progeny can contribute to the
accuracy of the selection index (r), but obviously this is not feasible
in animal breeding.

For the first time in the animal model, we include records from self
as well as cross progeny to improve accuracy of S0 predicted breeding
values. We combine moderate selection pressure and short generation
intervals to accelerate genetic progress, increase effective recombination
rates, and minimize genetic drift through large effective population
size. Recombination among selected S0 plants retains more additive
genetic variance in the population, compared with crossing among
selected pure lines (Cornish 1990a,b).

Traditional self-pollinating crop breeding programs have long cycle
times, historically 6 to 10 yr (Kannenberg and Falk 1995), and this
limits the rate of genetic progress for grain yield and other complex
traits. Soybean yields of US cultivars released from 1920 to 2000 in
maturity groups 4–6 improved by 12.4 kg/ha/yr over 80 yr (approxi-
mately 0.5% per yr) (Rogers et al. 2015), with generation intervals
averaging 10–15 years from historical records (Bernard et al. 1988).
Yield of US hybrid corn cultivars released from 1920 to 2000 increased
by 77 kg/ha/yr from 1930 to 2000 (approximately 1.5% per year),

which was mostly based on genetic improvement in inbred parent
lines (Duvick et al. 2004).

In contrast, some animal breeding programs equal or exceed this
rate of annual genetic improvement for economic traits based on best
linear unbiased prediction (BLUP) selection (Avendaño et al. 2003),
underpinned by the animal model. The Meatlinc sheep meat breeding
program in the UK achieved genetic progress of 16.5 index units per
year (�15% per year) during the first decade after the introduction of
BLUP selection (Avendaño et al. 2003). This was achieved with higher
effective population size, lower rates of inbreeding, and shorter gener-
ation interval than canola (an annual autogamous crop species) in
Australia over a similar period (Cowling 2013). Other examples of
acceleration in genetic improvement following the introduction of
BLUP selection include dairy milk production (Van Doormaal and
Kistemaker 2003) and beef carcass value (Bouquet et al. 2010).

BLUP methods in autogamous crops are normally based on fixed
lines with phenotypic records restricted to the current generation
(Beeck et al. 2010; Cullis et al. 2010). Selection in the animal model
introduces bias, but BLUP analyses accommodate this if all data used
in previous selection decisions are included in the analysis (Piepho and
Möhring 2006), and the relationship matrix includes all ancestors back
to base individuals in the pedigree (Piepho et al. 2008). This is difficult
to achieve in self-pollinating crops based on traditional approaches to
breeding. Typically, generation intervals are 6 yr or longer (Cowling
2013), and records from previous generations are not available.

We propose a combined analysis across cycles for self-pollinating
crop plants, based on the animal model. For the first time, the com-
bined analysis includes relationship information from self progeny
in the analysis. Selfing of each S1 or S2 individual in the relationship
matrix is explicitly declared through identical male and female parents
(Figure 1, Supporting Information, Table S3). The combined analysis
is based on two cycles of S0 (F1) recurrent selection in field pea
(Pisum sativum L.) for resistance to ascochyta blight [major pathogen
Didymella pinodes (Berk. & Blox.) Petrak] (Khan et al. 2013). P. sativum
is the highly self-pollinating annual plant species used by Mendel to
demonstrate the particulate nature of inheritance.

The statistical model for the combined analysis across cycles is
based on the linear mixed model equation [2] of Beeck et al. (2010),
who analyzed yield and seed oil content in 19 canola (Brassica napus)
trials over 2 yr, incorporating pedigree information. Correlation of
additive, nonadditive, and total genetic affects across trials, as pre-
sented by Beeck et al. (2010) and Cullis et al. (2010), is equivalent
to correlation across selection cycles in our model.

In our experiments, S0 plants are selected for resistance to ascochyta
blight in the field and the next cycle begins by crossing S1 plants har-
vested from selected S0 individuals. Cross progeny (S0) and self progeny
(S2) are saved from each parent S1 plant. These S2 and S0 progeny are
augmented half-sibs related by a common S1 parent plant, and both
provide records to improve accuracy of S0 prediction (Figure 1). Pure-
breeding ancestors are used for replication within experiments (cycles)
and genotypic concurrency across experiments (cycles).

Resistance to ascochyta blight is a complex trait with low heritability
(Khan et al. 2013), but sources of partial resistance have been identified
(Wroth 1999; Beeck et al. 2006; Adhikari et al. 2014), and moderate
broad-sense heritability of 0.63 was reported on a single plant basis
(Beeck et al. 2008). Annual selection cycles can be achieved in P. sativum
if crossing among S1 parent plants occurs in the contra season. A com-
bined analysis across cycles should increase accuracy of selection and
accelerate response to selection through a major reduction in generation
interval compared with traditional methods of breeding complex traits in
self-pollinating crops.
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If successful, our model could be extended to traits measured on S0-
derived bulks, such as grain quality or yield, and genomic relationship
data may complement or replace pedigree relationship data to improve
the accuracy of the selection index, as reported in the animal model
(Hayes et al. 2009). The combined analysis of data across generations,
as proposed in our model, will increase the validity of genomic selection
models for self-pollinating crops, which have not yet included training
and selection candidates across generations (Jonas and De Koning
2013). The model is readily incorporated into traditional breeding
programs of self-pollinating crops, where it will supply preselected
S2-derived lines for further inbreeding and development of pure lines.

MATERIALS AND METHODS

Plant material and crossing
The field pea trial grown in 2010, cycle 1, included 959 segregating S0
individuals representing 115 crosses among 76 diverse parent geno-
types. The parent genotypes of P. sativum were derived from a recur-
rent selection program (Beeck et al. 2008) with founder lines including
progeny of wild · domestic crosses, landraces from Greece, and culti-
vars that varied significantly in resistance to ascochyta blight (Beeck
et al. 2006). Other plants grown in 2010 were F2 progeny of crosses
between pure-line Australian and European (labeled “NPZ-” and “G-”)
cultivars and Australian and Chinese (labeled “CCC-”) landraces.
Founder genotypes in the base population, Australian cultivars and
Chinese landraces were used as replicated controls. Parent plants used
in crossing to generate cycle 1 and cycle 2 were not pure lines but
segregating S0-derived S1 selections, which generated segregating S0
progeny. Prior to cycle 1, heterozygous parents (F2 genotypes) from
crosses of pure line parents were selected for crossing. Genotype names
and data for cycle 1 are shown in Table S1.

The plants grown in 2010 were assessed for ascochyta blight
resistance and 102 of the 959 cycle 1 S0 individuals were selected for
harvest of S1 seed in the field. The pedigree of the selected S0 individ-
uals from cycle 1 included 26 of the 115 cycle 1 crosses and 33 of the 76
cycle 1 parents. The cycle 2 crossing design was based on 53 pair-wise

combinations among the cycle 1 S0 selections, avoiding, when possible,
common grandparents. Up to three S1 plants were grown per S0 se-
lection, and up to five crosses were made among the S1 plants within
each pair-wise combination. A total of 430 viable S0 seeds were har-
vested from the 53 pair-wise combinations for sowing in cycle 2.
Crossing occurred in either direction according to bud maturity, be-
cause P. sativum is hermaphroditic and maternal effects were not
apparent for ascochyta blight resistance (Wroth 1999), and S1 plants
were occasionally used more than once. Genotype names and data for
cycle 2 are shown in Table S2, and the pedigree relationships of a cycle
2 S0 progeny (genotype 15 in Table S6) are fully described in Table S3
and Table S6. The pedigree and phenotypic records for genotype 15
from Table S6, showing crossing and selfing in the ancestry, and
records from a sample of relatives including full-sib, half-sib, aug-
mented half-sib, and S2 self progeny of S1 parent plants, are summa-
rized below following the style of Henderson (1973) in Table 1.

Design and management of field trials
The field trials for cycle 1 and cycle 2 were designed as partially
replicated (p-rep) trials (Cullis et al. 2006) using DiGGeR (Coombes
2009) with the default spatial model. Plots were single plants spaced
1 m apart in rows and columns, with 40 columns by 30 rows in cycle 1
grown in 2010, and 20 columns by 70 rows in cycle 2 grown in 2013. A
total of 1139 and 1077 early generation progeny plants were tested in
cycle 1 and cycle 2, respectively (Table 2). Replication and concurrency
of genotypes across experiments were provided by pure lines including
founder lines, Australian cultivars, and Chinese landraces (Table 2,
Table S1, Table S2).

Pea seeds were germinated in the glasshouse in early May (late
autumn) and transplanted into the field in late May 2010 (cycle 1) and
2013 (cycle 2) at The University of Western Australia field station,
Shenton Park, Western Australia. Helena, a field pea variety susceptible
to ascochyta blight, was sown along the edges of the trial, and
ascochyta blight-infected pea straw was spread across the field trials
1 wk after transplanting to encourage an epidemic of ascochyta blight.
The dry pea straw was collected at the end of the previous growing

Figure 1 A portion of a pedigree over two cycles of selection in the self-pollinating plant version of the animal model. Circles represent
hermaphroditic plants in an annual autogamous crop. Pedigree relationships typically found in the animal model are represented by red
relationship lines and circles. The plant model includes selfing between cycles (black relationship lines and circles). S0 plants are phenotyped in
each cycle and selected on the basis of predicted breeding value from a combined analysis across cycles based on a linear mixed model. Several
S1 parent plants are grown for crossing between family A and family B (only one cross shown here). S0 phenotypes may be measured directly on
the individual, such as ascochyta blight score in pea (this article), or indirectly on S0-derived bulks, such as seed oil content or grain yield. S2 plants
are available for further selfing and selection of pure lines, following traditional methods.
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season from susceptible varieties grown at Medina, Western Australia.
Each plot was labeled with range, row, and genotype name.

Field trials were managed according to standard recommendations
for field pea crops in Western Australia (White et al. 2005). Disease
developed under natural rainfall conditions and no supplemental irri-
gation was required. Dry seeds were harvested from senesced plants in
October or November.

Assessment of severity of ascochyta blight
Severity of ascochyta blight was assessed on each plant in mid July by
counting from the first leaf node upwards the number of nodal leaves
with more than 50% leaf infection, based on visual comparison with
guides used by James (1971) to assess leaf spot of red clover. This

count was defined as the ascochyta blight score (ABS), with low ABS
representing greater resistance, and high ABS representing greater
susceptibility.

Best linear unbiased prediction
All statistical models were fitted using statistical software ASReml-R
(v. 3.0) (Butler et al. 2009), which produces residual maximum likeli-
hood (REML) estimates of the variance parameters and BLUP of the
random effects.

Spatial variation in ABS across each trial was assessed following the
mixed model approach described by Gilmour et al. (1997) and Stefanova
et al. (2009). The modeling process began by fitting a first-order sepa-
rable autoregressive residual model (AR1 · AR1) to identify local trends
along rows and columns; the model was then revised to include signif-
icant linear trend and/or random range/row effects. The effects of local
and trend spatial variation were assessed using a plot of residuals, the
sample variogram, row and column faces of the empirical variogram,
and REML likelihood ratio tests. Possible outliers in ABS were assessed
and removed.

A pedigree file was prepared including all founders and ancestors of
genotypes tested in cycles 1 and 2, including those without records
(Table S3). The inbreeding of replicated ancestor lines or cultivars was
indicated as the number of generations of selfing in the “Fgen” field as
required by ASReml. Otherwise each selfed generation was explicitly
declared with identical female and male parents (Table S3). Both addi-
tive (predicted breeding values correlated according to the relationship
matrix) and nonadditive (uncorrelated) genetic effects were included in
the mixed model for ABS, with cycle-specific variance components.

Three genetic models were fitted. The base model ignored genetic
relationships and covariances between cycles. The second model
included genetic relationships but ignored covariances between cycles.
The full model included the additive and nonadditive genetic co-
variances between cycles. Variance components were estimated for
additive and nonadditive effects in each cycle and for the covariance
between cycles, and these were used to calculate the correlation of
predicted ABS breeding values across cycles. Narrow-sense heritability
for ABS was calculated from the full model as the ratio of the additive
variance component divided by the sum of additive, nonadditive, and
error variance components in each cycle.

ASReml-R scripts for the three models are provided in Table S4.

n Table 1 Pedigree and phenotypic records for genotype 15

Genotype Dam Sire
Disease Score

Cycle 1
Disease Score

Cycle 2

1 0 0 9.0
2 0 0 9.0 9.8
3 0 0 10.0 8.5
4 0 0 10.0 8.0
5 0 0 10.5 9.0
6 0 0 14.0
7 0 0 12.0 11.1
8 2 1
9 4 3

10 9 8
11 6 5 6
12 10 7 11
13 11 11
14 12 12
15 14 13 8
16 12 12
17 14 13 11
24 16 13 14
31 14 14 12
35 13 13 9

Pedigree and phenotypic records for genotype 15 from Table S6, defined as
progeny 13P020E.S0A4 in Figure 2, showing crossing and selfing in the ances-
try, and records from a sample of relatives including full-sib, half-sib, augmented
half-sib, and S2 self progeny of S1 parent plants, are summarized following the
style of Henderson (1973).

n Table 2 Number of genotypes, replicates, and plots of early generation progeny and control varieties contributing to cycle 1 (2010) and
cycle 2 (2013) field experiments

Cycle 1 Cycle 2

Genotypes Replicates Plots Genotypes Replicates Plots

Early generation progeny 1139 1077
S0 progeny 959 1 959 430 1 430
S2 selfs of parent plants 133 1 133 609 1 609
F2 progeny 47 1 47 38 1 38
Control varieties 30 15
Control varieties 2 reps 29 2 58
Control varieties 3 reps 1 3 3
Control varieties 11 reps 1 11 11
Control varieties 14 reps 1 14 14
Control varieties 22 reps 5 22 110
Control varieties 23 reps 4 23 92
Control varieties 24 reps 4 24 96
Total varieties tested 1169 1092
Total plots 1200 1400

Fourteen of the control varieties provided genotypic concurrence across cycles. S0 progeny have heterozygous parents; F2 progeny have fixed line parents.
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Accuracy of predicted breeding values
The accuracy of predicted breeding values (r) is the correlation between
the true and predicted breeding values and is sometimes reported as
reliability, the squared correlation (r2) (Mrode 2005). The accuracy ri of
the predicted breeding value for the i-th genotype was calculated
according to Gilmour et al. (2009) for the animal model, namely

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

s2i
ð1þ fiÞs2

A

s
[2]

where si2 is the prediction error variance for the i-th genotype, sA
2 is

the additive genetic variance, fi is the inbreeding coefficient for the
i-th genotype, and (1 + fi) is the diagonal element of the relationship
matrix A. ASReml-R script for accuracy is provided in Table S4.

RESULTS

Analysis of ABS across cycles and models
The three genetic models are compared in Table 3 based on the same
spatial model. Partitioning the genetic variance into additive and non-
additive (uncorrelated) components using the pedigree-based relation-
ship matrix significantly increased the log likelihood of the mixed
model for ABS from the base model to second model (Table 3). The
significant, albeit small, increase in REML likelihood from the second
model to the full model (Table 3) is almost all due to the covariance of
additive effects and indicates an advantage from analyzing the two
cycles together.

The overall level of disease was similar in the two experiments, with
ABS 11.2 and 10.2 leaves in cycle 1 and cycle 2, respectively. This is
reflected in the nonsignificant effect of site in the full model (Table 3).
There were significant linear row spatial effects in cycle 2, linear range
effects in both cycle 1 and cycle 2 trials, significant random row effects
in cycle 1, and random range effects in cycle 2 (Table 3). Hence, spatial
analysis and relationship information was very important to reduce
unexplained error and improve accuracy of estimation of genetic
effects in ABS in these field trials.

The full model showed significant additive components for ABS in
cycles 1 and 2, and significant nonadditive components in cycle 2, but
additive was always two-fold or three-fold larger than the nonadditive
component (Table 3). Narrow-sense heritability for ABS from the full
model was 0.305 in cycle 1 and 0.352 in cycle 2. The fitted genetic
correlation of breeding values (additive effects) across cycles was
0.82 6 0.11, and not significant for the nonadditive effects, but there
were only 14 genotypes in common plus the links induced by the 102
S0-derived genotypes from cycle 1 used as parents for cycle 2.

Partial replication within experiments, provided by pure lines,
many of which were ancestors or founders, permitted estimation of
additive effects for all genotypes from each experiment (cycle) and
nonadditive effects in cycles where they occurred. The improvement
from the second model to full model is small because most of the
information on the 102 S0-derived S1 genotypes used as parents in
cycle 2 comes from the cycle 2 data.

Accuracy of predicted breeding values and response
to selection
Average accuracy of prediction increased from the base, second to full
model (Table 3). In the full model, predicted breeding values for ABS on
430 S0 progeny in cycle 2 ranged from23.5 to +1.7 and the accuracy of
predicted breeding values from equation [2] ranged from 0.731 to 0.854
(average 0.805) (Table 4, Table S5). The average accuracy of predicted
breeding values of 160 S1 parent plants, for which no records were

available, was 0.878 (Table 4). High accuracy was also achieved on
575 S2 self progeny of parent plants (average 0.851) (Table 4).

The SD of additive effects (predicted ABS breeding values) for 430
S0 progeny in cycle 2 was 1.01. With a selection proportion of 20% of
S0 lines (selection intensity of 1.40) and average accuracy of predicted
breeding values 0.805, the response to selection based on equation [1]
in the next cycle is forecast to be 21.1 leaves or 211.2% of average
ABS in cycle 2 (10.2 leaves).

Predicted breeding values and their accuracy varied among S0 prog-
eny of one cross, 13P020E, evaluated in cycle 2 (Figure 2). The fourth
S0 progeny of cross 13P020E with predicted breeding value 21.6 was
selected for crossing when the selection proportion was 25%. Further
investigation revealed that the S1 parent plants of 13P020E had the
lowest predicted breeding values of all possible S1 parent plants in this
pair-wise combination. Parent plant 10P086 . S0A6-S1A2 had a pre-
dicted breeding value of 21.8 (Figure 2), but its sister parent plant
10P086 . S0A6-S1A1 was significantly more susceptible, with pre-
dicted breeding value of +0.3 (Table S5). As a result, no other S0
progeny of crosses 13P020A, 13P020B, 13P020C, or 13P020D were
within the 25% selection proportion.

DISCUSSION
Selection for resistance to ascochyta blight on single plants of P. sativum
was based on a simple measurement (ABS) that was accurately scored
by different assessors in 2010 and 2013. ABS was a quantitative trait
with low heritability in cycle 1 (0.305) and cycle 2 (0.352), but predicted
breeding value was expressed consistently over the years (corre-
lation of additive genetic effects across cycles 0.82) (Table 3). Fol-
lowing the logic of Falconer and Mackay (1996) with respect to
genotype by environment interaction, ABS measured in cycle 1 and
cycle 2 is not one character but two, and the power of the combined
multivariate analysis benefits is increased by the close correlation
between the two.

Selection for ABS in the recombination phase of breeding self-
pollinating crops will complement, not replace, selection on pure lines
in field plots (Adhikari et al. 2014). Low ABS counts are a measure of
resistance to this disease, but low counts could also reflect small plants,
so a future improvement may include counting the total number of leaf
nodes as a potentially useful covariate for ABS. Flowering date may
also have been a useful covariate as previous results indicated that
ascochyta blight disease severity was lower in later flowering types
(Beeck et al. 2008). The model can accommodate improvements such
as these in future cycles of selection.

A traditional analysis of these data are represented by our base
model, where each plant is evaluated solely from its own assessment.
Our results show large benefits from adding information from relatives
in the second model and further improvements by including additive
genetic covariances between cycles in the full model. This demonstrates
value in applying the animal model to S0 recurrent selection in
the self-pollinating annual crop, P. sativum, especially when self
progeny of S1 parent plants are included in the analysis. BLUP
analyses accommodate bias introduced by selection if all data used in
previous selection decisions are included in the analysis (Piepho and
Möhring 2006). Relationship and phenotypic records are available in
cycles 1 and 2 for selected and nonselected self and cross progeny
(Table S1, Table S2), so this plant model conforms to the require-
ments of the animal model, and unbiased BLUP selection may con-
tinue into the future by combining data with previous cycles of
selection. To the best of our knowledge, this is the first application of
the animal model to cyclic selection in heterozygous populations
of selfing plants.
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Frey and Holland (1999) reported significant increases in oil con-
tent over several cycles of S0 recurrent selection in oats, and Zhang
et al. (2015) for wider seedling leaves in wheat, but their methods did
not incorporate BLUP selection based on pedigree information. Our

experiments show that, with a relatively small investment in records
management and analysis, it is possible to derive great benefits from
BLUP-based S0 recurrent selection in self-pollinating crops. Benefits of
BLUP selection in animals include increased response to selection as

n Table 3 Analysis of two cycles of selection for resistance to ascochyta blight in Pisum sativum

Base Model Second Model Full Model

REML LogLikelihood 23458.5 23301.0 23296.6
Significance of change between models P , 0.001 P = 0.012
Fixed effects: Incremental Wald F statistic with 1 df
Site 33.3c 2.9 ns 0.4 ns
Linear row cycle 1 3.2 ns 3.5 ns 3.9a

Linear row cycle 2 102.4c 105.2c 105.4c

Linear range cycle 1 126.9c 41.8c 44.9c

Linear range cycle 2 10.9c 9.6b 9.4b

Variance components for random effects:
Residual components
Variance cycle 1 4.730 6 1.367 3.774 6 1.015 3.802 6 1.021
Range autocorrelation 20.053 6 0.047 20.063 6 0.050 20.062 6 0.049
Row autocorrelation 0.004 6 0.046 20.013 6 0.049 20.014 6 0.048
Variance cycle 2 3.715 6 0.301 3.603 6 0.279 3.533 6 0.267
Range autocorrelation 0.167 6 0.046 0.167 6 0.040 0.173 6 0.040
Row autocorrelation 0.061 6 0.044 0.062 6 0.038 0.064 6 0.039
Other spatial components
Row effects cycle 1 0.109 6 0.075 0.114 6 0.068 0.118 6 0.069
Range effects cycle 2 0.124 6 0.076 0.096 6 0.061 0.096 6 0.061
Blocks cycle 1 0.000 6 N/A 0.039 6 0.111 0.033 6 0.102
Blocks cycle 2 0.013 6 0.286 0.000 6 N/A 0.000 6 N/A
Total genetic effects
Variance cycle 1 1.802 6 1.367
Variance cycle 2 2.975 6 0.408
Additive genetic effects
Variance cycle 1 1.864 6 0.425 2.098 6 0.450
Variance cycle 2 2.336 6 0.408 2.286 6 0.392
Correlation 0.823 6 0.111
Nonadditive genetic effects
Variance cycle 1 1.046 6 1.014 0.970 6 1.019
Variance cycle 2 0.537 6 0.370 0.673 6 0.352
Correlation 0.673 6 0.924
Narrow-sense heritability
Cycle 1 0.305
Cycle 2 0.352
Average accuracy of predictions
Cycle 1 0.562 0.894 0.815
Cycle 2 0.696 0.807 0.834

Based on ascochyta blight score (ABS) on single-spaced plants in partially replicated field experiments in cycle 1 (2010) and cycle 2 (2013). Three genetic models were
fitted. The base model ignored genetic relationships and covariances between cycles. The second model included genetic relationships but ignored covariances
between cycles. The full model included the additive and nonadditive genetic covariances between cycles. The models included fixed effects (experiment, linear row,
and linear range effects) and random effects (additive and nonadditive genotype effects, genotype by environment effects, blocking structure, random row effects,
and range and row correlations from the AR1:AR1 spatial model). Narrow-sense heritability is estimated in cycles 1 and 2 from the full model, ignoring the fact that the
residuals are correlated, and average accuracy of predictions was calculated for genotypes present in each cycle for each model. ns, not significant; N/A, not available.
a

0.01 , P , 0.05.
b

0.001 , P , 0.01.
c

P , 0.001.

n Table 4 Mean and range of BLUP of predicted breeding values and accuracy of predictions for ascochyta blight scorea

BLUP Accuracy

No. Individuals Low Mean High Low Mean High

Cycle 2 S0 progeny 430 23.473 20.831 1.668 0.731 0.805 0.854
Cycle 2 S1 parent plants 160 23.929 20.838 2.431 0.729 0.878 0.916
Cycle 2 S2 selfs of parent plants 575 23.959 20.826 3.192 0.733 0.851 0.873
a

Data were generated from the full model for cycle 2. Phenotypic records were available for S0 progeny and S2 selfs of parent plants in cycle 2, but not for S1 parent
plants.
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a result of more accurate breeding values and shorter generation
intervals (Simm 1998; Avendaño et al. 2003; Van Doormaal and
Kistemaker 2003). In some cases, annual genetic progress in animals
under BLUP selection is faster and inbreeding rates are lower than in
typical self-pollinating crop breeding programs (Kannenberg and Falk
1995; Cowling 2013).

Narrow-sense heritability of resistance to ascochyta blight in
P. sativum reported in this study (0.30–0.35) is consistent with mod-
erate broad-sense heritability (0.63) on a single plant basis reported
previously (Beeck et al. 2008). With moderate selection pressure (20%),
the forecasted response to selection for resistance in the next cycle is
11.2% based on equation [1]. In P. sativum, annual cycles of S0 re-
current selection are possible by crossing S1 parent plants in the contra
season, so it is possible to achieve 11.2% improvement in the next 12
months. This predicted response to selection on an annual basis is
much higher than achieved previously in breeding for resistance this
disease (Khan et al. 2013).

It is not possible, in the case of ABS in annual P. sativum, to cross
with phenotyped S0 plants, because they naturally self-pollinate in the
field at the time the plants are being rated for ABS. Therefore, crossing
was performed in the glasshouse on the S1 self progeny of selected S0
plants (Figure 1), and no ABS records are available for S1 parent plants.
The animal model may include individuals in the pedigree without
records (Hill 2012), provided such individuals have measured relatives
in the analysis (Walsh and Lynch 2014). S1 parent plants, which were
intercrossed to start cycle 2, had high accuracy of predicted breeding
values (average 0.878) as a result of records from self (S2) and cross (S0)
progeny in cycle 2 (Figure 2, Table 4). Records from full-sibs, half-sibs,
parents, S0 individuals, and collateral relatives including S2 progeny of
parent plants were valuable to increase accuracy of the predicted breed-
ing values of S0 progeny in cycle 2 (average 0.805). This is the first time,

to our knowledge, that self progeny have contributed relationship and
phenotypic information in the animal model (Figure 1, Figure 2).

An opportunity exists to improve the efficiency of BLUP selection
in this model by replacing pedigree relationship information with the
realized relationship matrix from genome-wide markers (Hayes et al.
2009). Genomic information may be useful to select putative resistant
S1 plants based on markers trained in previous cycles of selection,
before they are used in crossing. Several S1 self progeny from selected
S0 plants were used in crossing, and segregation among these S1
genotypes resulted in some poor parents. For example, parent plant
10P086.S0A6-S1A2 had a predicted breeding value of 21.8 ABS
(Figure 2), but its sister parent plant 10P086.S0A6-S1A1 was sig-
nificantly more susceptible (+0.3 ABS) (Table S3), and this was not
known until the next cycle of selection based on self and cross
progeny records. This is inefficient compared with preselection of
S1 parent plants for high genomic predicted breeding value, based
on markers trained over previous cycles of selection as proposed by
Jonas and De Koning (2013).

The plant version of the animal model may be adapted to traits
measured on S0-derived seed bulks, such as grain quality or yield. At
least 1 yr would be added to the selection cycle to obtain yield records,
but the generation interval would be much shorter than traditional
breeding methods for yield in selfing crops. The plant model is a “low-
tech” improvement in traditional plant breeding with potentially large
benefits (Snape 2004), but it can readily incorporate new technologies
such as genomic selection in self-pollinating crops (Heffner et al. 2009,
2011; Nakaya and Isobe 2012; Heslot et al. 2015).

The application of genomic selection to inbreeding crops is in-
hibited by population structure and lack of polymorphisms (Desta
and Ortiz 2014). A “select-recombine-self” method was proposed for
early generation genomic selection within a biparental population of a

Figure 2 Predicted breeding values (upper half of circles) and accuracy (lower half of circles) for ascochyta blight score for one family of S0 and S2
sibs based on cycle 2 predictions. Relatives in the pedigree include S1 parent plants and S2 selfs of parent plants (black circles), replicated pure
lines, and founder varieties in the base population (blue circles). The fourth S0 progeny highlighted in yellow (13P020E.S0A4) is chosen for
crossing to start the next cycle when the selection proportion is 25%, and several resistant S2 progeny are available for further selection and
production of pure lines. The relationships of this genotype with its ancestors and some of its self and cross progeny are shown in Table S6
(genotype 15).
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self-pollinating crop by Bernado (2010), and this formed the basis of
a model for genomic selection for stem rust resistance in wheat (Rutkoski
et al. 2011). In traditional selfing methods, genomic selection may reduce
the number of generations of selfing without sacrificing selection gains
(McClosky et al. 2013). However, none of these models integrated train-
ing and selection candidates across generations as proposed by Jonas and
De Koning (2013). The design of the breeding scheme is vital for long-
term genetic gain and for exploiting the benefits of genomic information
in animal or plant breeding (Henryon et al. 2014). We have used the
animal model for successful prediction across generations of a self-
pollinating crop, and the model will readily accommodate genomic
data. This plant model should therefore access many of the theoret-
ical benefits of genomic selection in animals (Goddard and Hayes
2009), cross-pollinating forage crops (Resende et al. 2013) and tree
crops (Resende et al. 2012). Accuracy of selection is expected to
increase when genomic relationship information replaces pedigree
relationship information, as in the animal model (Hayes et al. 2009).

The plant model focuses on the recombination phase in breeding
of self-pollinating crops, and it is complementary to the traditional
selfing process (Cornish 1990a,b) during which superior lines are
identified for release as varieties, or for generating F1 hybrids. As
a bonus, the model delivers a supply of selected S2 lines for further
inbreeding and selection (Figure 1, Figure 2). The model reduces cycle
time and increases response to selection while avoiding the pitfalls of
crossing with inbred lines, such as slow cycles of selection, low effec-
tive population size (Cowling 2013), and the removal of additive
genetic variance from the breeding population (Cornish 1990a,b).

We evaluated the model over two cycles of selection, which
involved a single covariance per genetic component. The model could
be extended to more cycles, sites, or traits, in which case a factor
analytic model (Beeck et al. 2010; Cullis et al. 2010; Smith et al. 2001)
would be best for modeling the covariances and assessing the impact
of genotype by environment interaction. The model described here,
where trials are “cycles” and data are combined across cycles, faces the
same issues as BLUP analyses of multi-environment trial data (data
from one cycle, combined across sites), and both are subject to geno-
type by environment interaction (Beeck et al. 2010; Cullis et al. 2010).
This must be accounted for in future developments of the plant
model. In any case, the model needs to fit separate variances for each
source of variation in each trial.

Several improvements could be made to experimental methods,
selection, and crossing design in this model. Replication was very low
in cycle 1 (5%) and higher in cycle 2 (23%) (Table 2). The selection
proportion of S0 plants in cycle 1 was low, with only 102/959 S0 plants
promoted to cycle 2. This resulted in a major reduction in the number
of cycle 1 parents that survived in pedigrees of cycle 2 (33/76). The
crossing method of pair-wise crossing adopted in cycle 2 was a prac-
tical solution to include all 102 S0-derived lines in crossing, with
replicates of each pair-wise cross performed between several S1 prog-
eny. This may not be the optimum use of limited resources, and it
may be better to relax selection pressure and include more S0 selec-
tions with fewer S1 parent plants per selection in crossing designs
that minimize inbreeding and maximize potential genetic progress.
We also lost several plants that did not survive the transplanting
process and were included as missing values (Table S1, Table S2).
Despite these imperfections, the mixed model analysis with pedigree
relationship information provided a significant improvement over the
base model and was further improved by including the additive co-
variance between cycles in the full model (Table 3).

We have shown that a relatively minor change in the practice of
plant breeding (“crossing before selfing” rather than “selfing before

crossing”), combined with BLUP selection methods from the animal
model, has accelerated response to selection [1] in this selfing crop.
Accuracy of selection in cycle 2 S0 progeny was high (.0.8). Gener-
ation interval was reduced to potentially 1 yr if crossing was per-
formed in the contra-season. The method should help to retain
additive genetic variance in breeding populations, which is lost when
selection occurs during selfing and before crossing (Cornish 1990a,b).
With further research, the method could be applied to traits measured
on harvested seed of S0-derived lines (such as grain yield or grain
quality). The approach could help to counter the low effective pop-
ulation size and low genetic diversity in many selfing and F1 hybrid
crops (Kannenberg and Falk 1995; Duvick et al. 2004; Cowling 2013),
but only if necessary steps are taken to avoid increases in inbreeding as
a result of BLUP selection, such as optimal contribution selection
(Henryon et al. 2015).

Our method also provides a continuous supply of preselected S2-
derived lines for further selfing and selection (Figure 1, Figure 2). The
model may be applied to genomic selection during early generations
of selfing as proposed by Heslot et al. (2015), and it may be applied to
incorporate new genetic diversity into elite breeding pools from wild
and landrace types (Cowling et al. 2009; Falk 2010), as occurred in this
project with ancestors, including elite cultivars from Australia and
Europe, landraces from Greece and China, and wild-types (Beeck
et al. 2006; 2008).

High levels of selfing in P. sativum made it possible for Mendel to
discover the particulate nature of inheritance, and relationships de-
rived from selfing in P. sativum contributed to the high accuracy of
predicted breeding values of S0 progeny in this model for breeding
self-pollinating crop plants.
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