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A new method for directly determining the eigenmodes of finite flow-structure sys-
tems is presented using the classical problem of the interaction of a uniform incom-
pressible flow with a flexible panel, held at both ends, as an exemplar. The method
is a hybrid of theoretical analysis and computational modelling. This method is
contrasted with Galerkin and travelling-wave methoda that are most often used to
study the hydro-elasticity of such systems. The new method does not require an a

priori approximation of perturbations via a finite sum of modes. Instead, the cou-
pled equations for the wall-flow system are used to derive a single matrix equation
for the system that is a second-order differential equation for the panel-displacement
variable. This is achieved in this exemplar by applying a combination of boundary-
element and finite-element methods to the discretised system. Standard state-space
methods are then used to extract the eigenmodes of the system directly. We present
results for the stability of the case of an unsupported flexible plate, elucidating its
divergence and flutter characteristics, and the effect of energy dissipation in the
structure. We then present results for the case of a spring-backed flexible plate
showing that its motion is dominated by travelling waves. Finally, we illustrate the
versatility of the approach by extracting the stability diagrams and modes for a
panel with spatially varying properties and a panel with non-standard boundary
conditions. In doing so, we show how spatial inhomogeneity can modify the energy
exchanges between flow and structure, thereby introducing a single-mode flutter
instability at pre-divergence flow speeds.

Keywords: Flow-structure interaction, Panel instability, Eigen-analysis,

Hybrid computational-theoretical methods

1. Introduction

This paper re-visits the most fundamental problem in aero/hydro-elasticity, de-
picted in Figure 1, wherein a uniform incompressible flow interacts with a flexible
wall mounted over a rigid baffle. In the absence of a spring foundation and wall
damping, the wall comprises a simple elastic plate. At a sufficiently high ratio of
fluid-flow loading to plate stiffness, ΛF = ρU2

∞
L3/B, where ρ and U∞ are the fluid

density and speed and B and L are the panel’s flexural rigidity and length, motions
of the plate become linearly unstable through divergence instability. At higher flow
speeds the panel undergoes divergence recovery and soon thereafter a flutter insta-
bility sets in. Thus, this problem has commonly become known as that of ‘panel
flutter’.
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Figure 1. Schematic of the flow-structure system studied; the spring and dashpot
foundations are absent for an unsupported elastic plate

The standard Galerkin method applied to such problems (for example, see
Dugundji et al. 1963, Ishii 1965, Weaver & Unny 1971, Ellen 1973, Garrad & Car-
penter 1982, Lucey & Carpenter 1993) requires that the deformation of the flexible
panel is written as a sum of orthogonal functions, or eigenmodes, that satisfy the
boundary conditions at the panel’s ends. The functions most commonly used are
the in-vacuo modes of the panel. Thus, for a simple plate with hinged edges, the
(complex) deflection variable is written as

η = exp (st)

∞
∑

n=1

An sin
(nπx

L

)

, (1.1)

where the eigenvalue s is complex to capture both oscillatory motion and temporal
growth/decay and the coefficients An may also be complex. To make the problem
tractable, a finite set of R in-vacuo modes is selected. In the coupled flow-structure
system, the eigenmodes (and eigen-frequencies) can differ very markedly from the
in-vacuo set. It is then required that this same selected set of R in-vacuo modes can
be combined to represent accurately the disturbances in the coupled flow-structure
system; this can be achieved by increasing the number of modes included in the
computation. For fluid-structure systems with simple geometric and/or material
configurations this strategy is very effective as will be demonstrated in this paper.

The natural theoretical alternative to the Galerkin method for the problem
at hand is to represent the plate deformation, and system perturbations, by a
continuous spectrum of modes, hence the travelling-wave assumption that

η = A exp [i(kx− ωt)] , (1.2)

where k = 2π/λ is the wavenumber, λ is the wavelength and ω is the complex
frequency of system disturbances. This assumption is strictly only valid for a panel
of infinite length because no account is taken for the end conditions of the panel.
However, it yields predictions of divergence-onset flow speed that agree well with
the Galerkin approach for a critical mode with λ≪ L that is the case for more com-
plex flexible-wall structures such as a spring-backed flexible plate; see Carpenter &
Garrad (1986) and Lucey et al. (2003) wherein the assumption of localised hydro-
dynamic influence holds. This relationship between local and global hydroelastic
modes is explored for the related problem of a flexible fluid-filled pipe by Doaré
& de Langre (2002). The travelling-wave approach predicts that energy dissipation
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by the plate/wall is required to realize divergence instability. This is physically im-
plausible because exactly at onset the divergence wave is static; this inconsistency
has recently been explained by Peake (2004) and is shown to arise from the end
effects that are absent in the travelling-wave models.

The closely related proper, initial-value, boundary-value problem, wherein dis-
turbances develop from a localized source of excitation has been studied by Brazier-
Smith & Scott (1984), Crighton & Oswell (1991), Peake (1997) and Abrahams &
Wickham (2001) for infinitely long plates. Like the travelling-wave approach, this
entails the extraction of valid poles (or solutions) governed by the system dispersion
relation subject to the principle of causality. The numerical simulations of Lucey
(1998) for the equivalent finite system again highlighted a marked difference from
the predictions for infinite systems that do not incorporate plate end-conditions
and, thereby, a discretisation of the eigenmode spectrum.

Numerical simulations such as those of Lucey & Carpenter (1992) and Lucey
(1998) are ideal for capturing the transient behavior of finite flow-structure systems
in response to an initial, or continuing, applied excitation. However, they are less
suited to identifying the long-time solution in terms of system eigenmodes. This
limitation is overcome by the present work in which we fuse computational and
theoretical methods to provide a direct evaluation of the eigenmodes of the coupled
flow-structure system.

For flow-structure interactions, the approach presented in this paper should
be considered complementary to the Galerkin and travelling-wave approaches dis-
cussed above, but is clearly more closely related to the Galerkin in that it predicts
the global stability of a finite system. The accuracy of the method presented herein
is dependent upon the number of collocation points, N , used in the discretisation
of the system. Increasing N then gives a monotonically reducing rate of conver-
gence as the solution approaches being exact at the limit at N = ∞. The method
is particularly useful for the study of non-homogeneous flow-structure systems. Be-
low, we outline our new hybrid method as applied to the paradigmatic problem of
Figure 1, presenting a fairly comprehensive description of the linear dynamics of
the system. Thereafter we demonstrate its application to spatially inhomogeneous
panel configurations for which we show how and why these are susceptible to a weak
flutter-type instability in the pre-divergence range of flow speeds. In concluding, we
also note that this new approach is equally applicable to any flow-structure system
for which computational models can be used to reduce the coupled system to a
single differential equation for the motion of the fluid-solid interface.

2. System equations

The small-amplitude motion of a thin elastic plate, supported by a spring founda-
tion K, in the presence of a fluid flow is described by

ρmh
∂2η

∂t2
+ d

∂η

∂t
+B

∂4η

∂x4
+Kη = −∆p(x, 0, t) , (2.1)

where η(x, t), ρm, h and B are, respectively, the plate’s deflection, density, thick-
ness and flexural rigidity, while p(x, y, t) is the unsteady fluid pressure. We include
a dashpot-type damping term, with coefficient d, to model the effects of energy
dissipation in the wall structure. While this may be appropriate when K 6= 0, an
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unsupported flexible plate should have its damping modelled in the flexure term;
however, our intention in this paper is to show the effects of dissipation. In the
present problem we apply hinged-edge conditions at the leading and trailing edges
of the plate although there is no restriction on such boundary conditions in the
method that follows below.

Assuming the flow to be incompressible and irrotational, a velocity perturbation
potential φ(x, y, t) which satisfies Laplace’s equation,

∇2φ = 0 , (2.2)

is introduced. The unsteady fluid pressure can then be found from the linearised
Bernoulli relation

∆p = −ρ
∂φ

∂t
− ρU∞

∂φ

∂x
, (2.3)

where ρ and U∞ are, respectively, the fluid density and flow speed. The plate and
fluid motions are coupled through the kinematic boundary condition

∂φ

∂y
=
∂η

∂t
+ U∞

∂η

∂x
, (2.4)

which, in the linearised system, is enforced at y = 0.

3. Eigenvalue determination

(a) A single governing equation for the system

The objective here is to develop a partial solution of the system equations that
results in a single differential equation for the system with the interfacial position,
η(x, t), as the variable.

A suitable solution to Eqn. 2.2, is obtained as the sum of the mean flow plus the
effect of a distribution of singularities along the deforming interface that are funda-
mental solutions to the Laplace equation. In this non-lifting application we choose
to use source(-sinks) with strengths denoted σ(x). A boundary-element method is
then applied. The interface is discretised into a set of N panels, each having con-
stant σi (i : 1 → N). The vector of perturbation potential at each panel control
point is then given by

{φ} = [Φ]{σ} , (3.1)

where [Φ] is a (N ×N) matrix of influence coefficients with its entries solely deter-
mined by the geometry of the discretised interface. Linearisation based on small-
amplitude deformations, eliminates the dependence of this matrix on the actual
values of η(x, t). The no-flux kinematic condition, Eqn. 2.4, is then enforced at the
panel control points to yield the required source strengths. The linearised solution
is

{σ} = 2U∞[D1]{η} + 2[D+]{η̇} , (3.2)

where {η} is the vector of interfacial displacements at the N evaluation points, the
overdot denotes time-differentiation, [D1] is the first-order spatial differentiation
finite-difference matrix operator and [D+] is a matrix operator for the interfacial
vertical speed.
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To evaluate the pressure perturbation, the discretised form of Eqn. 2.3 is used,
evaluating the tangential velocity perturbation using Eqns. 3.1 and 3.2, together
with the direct substitution of the perturbation potential to give

−{∆p} =2ρU2
∞

[T ][D1]{η} + 2ρU∞[T ][D+]{η̇}

+2ρU∞[T ][Φ]{η̇} + 2ρ[Φ][D+]{η̈} , (3.3)

where [T ] is the matrix of tangential-velocity influence coefficients. The form of Eqn.
3.3 shows the pressure to comprise the hydrodynamic stiffness (curvature effects),
followed by two terms that yield the hydrodynamic damping (Coriolis’ effects) and
the final term that represents the hydrodynamic inertia (added-mass effects). The
foregoing solution method for the flow field is described in more detail in Lucey et

al. (1997) wherein expressions for the various influence coefficients are listed.
We now proceed to assemble the system equation. The wall equation is written

in finite-difference form using a set of N lumped-mass points that corresponds to
the boundary-element panel control points, hence

ρmh[I]{η̈} + d[I]{η̇} + (B[D4] +K[I]) {η} = −{∆p} , (3.4)

where [I] is the identity matrix and [D4] is the fourth-order spatial differentiation
(penta-diagonal) matrix operator. Finally, the pressure-perturbation vector of Eqn.
3.3 is substituted into Eqn. 3.4 and the result re-arranged to give

{η̈} = [E]{η̇} + [F ]{η} , (3.5)

where

[E] =
(

ρmh[I] − 2ρ[Φ][D+]
)

−1 (

2ρU∞[T ][D+] + 2ρU∞[T ][Φ] − d[I]
)

,

[F ] =
(

ρmh[I] + 2ρ[Φ][D+]
)

−1 (

2ρU2
∞

[T ][D1] −B[D4][Φ] −K[I]
)

.

(b) State-space solution

We now solve Eqn. 3.5 using a standard state-space method. The second order
N ×N system is transformed to the following first-order 2N × 2N system

{ẇ} = [H]{w} , (3.6)

where

[H]{w} =

[

0 I

−F E

]{

{η}

{η̇}

}

, (3.7)

for the new variable w. Assuming that all parts of the system move with the complex
frequency, s = sR + isI , we can write

w = W exp (st) , (3.8)

and substituting this into Eqn. 3.6, yields

(s[I] − [H]) {W} = 0 , (3.9)

and the solution of det (s[I] − [H]) = 0 then generates the eigenvalues. These have
been evaluated using the ARPACK solver through the EIGS command in the MAT-
LAB software. Having found the eigenvalues, these can then, in turn, be substituted
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back into Eqn. 3.9 to extract the complex eigenmode, {W}
T

for the N interfacial
points. In continuous space we can therefore write W (x) = WR(x) + iWI(x). Thus,
using Eqn. 3.8, the motion of the plate in each eigenmode can be written in the
form

ℜ[η(x, t)] = exp (sRt) (WR(x) cos(sIt) +WI(x) sin(sIt)) . (3.10)

This motion will be plotted in the results presented below.

(c) Galerkin solution

The formulation above can, alternatively, be used to construct a traditional
Galerkin solution for the flow-structure system. We present this here because in
generating the results discussed below we have conducted comparisons of the eigen-
modes determined by the direct state-space determination and those predicted by
the Galerkin method based upon a finite collection of in-vacuo orthogonal modes.

Using Eqn. 1.1, a trial solution based upon an assembly R in-vacuo orthogonal
modes is proposed, hence

{η} = [S]{A} exp (st) , (3.11)

where [S] is an N × R matrix that comprises the modal deflections at the N in-
terfacial points of each of the R modes (sin(nπx/L) for n : 1 → R in this study)
and [A] is a vector of length R containing the complex modal intensities. Upon
substitution of Eqn. 3.11 into Eqn. 3.5 and subsequent multiplication by [S]T , the
following R×R matrix equation is developed,

(

s2[S]T [S] − s[S]T [E][S] − [S]T [F ][S]
)

{A} = 0 . (3.12)

We remark that the generalised hydrodynamic integrals for inertia, damping and
stiffness that feature in the Galerkin method are effectively evaluated in the respec-
tive matrix products [S]T [S], [S]T [E][S] and [S]T [F ][S]. Equation 3.12 is solved
using conventional methods for the complex frequencies, s, and then the relative
modal intensities, {A}T are calculated. Finally, the form of the motion can be as-
sembled as the weighted sum of the R in-vacuo modes selected to represent the
panel dynamics.

4. Results

(a) Simple elastic plate

Prior to presenting results for a fluid-loaded flexible plate, we briefly provide
evidence of the integrity and accuracy of the numerical procedure using in vacuo

oscillations. The state-space method has been used with ρ = 0 to generate the
first four in-vacuo modes. Using N = 200 for the spatial discretisation, excellent
agreement with the theoretical eigenmodes, sin(nπx/L) for n = 1, 2, 3, 4, is found
with the frequencies lying within 0.5% of the theoretical values generated by

sI =
(nπ

L

)2

√

B

ρmh
. (4.1)
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In the results of this section, we use the non-dimensional scheme of Lucey et

al. (1997) that is appropriate to the finite system studied herein. Thus the non-
dimensional control parameter (or stiffness ratio), vertical displacement and time
are given by

ΛF =
ρU2

∞
L3

B
, η′ =

(

1

h

)

η , t′ =

{

√

B/ρmh

L

}

(

1

h

)

t . (4.2a, b, c)

The term in braces in Eqn. 4.2c above can be interpreted as the lower limit of
the free-wave phase speed for the finite wall structure; Eqn. 4.2c is also used to
non-dimensionalise the radian frequency in the results of this paper.

Figures 2a and 2b explore the dependence of the system eigenvalues upon the
numerical discretisation used in the present method while Figures 2c and 2d com-
pares the converged results of the present method with those obtained using a
Galerkin solution. Each figure shows the variation of eigenvalues with ΛF that can
be interpreted as a measure of flow speed for given plate properties; Figures 2a
and 2c depict the oscillatory, s′

I
, part of the eigenvalues while Figures 2b and 2d

show the corresponding growth/decay, s′
R
, parts of the eigenvalues. In order to dis-

cern the effects of discretisation we have restricted the range of the vertical axes
in each plot. In Figures 2a and 2b convergence of the present method is clearly
evident as the number of collocation points, N , is increased; note that the lines
for N = 100 and N = 200 are almost coincident. Figures 2c and 2d demonstrate
that the Galerkin method yields more rapid, spectral, convergence than the present
method. Comparing these and the N = 200 result of the present method indicates
agreement for the divergence-onset flow speed and the divergence branches as ΛF

is increased. Beyond this range of ΛF , where higher-order modes increasingly con-
tribute to the system eigenstate, there is a small but perceptible difference between
the predictions of the two methods although the solution morphology is the same
for both methods. However, the focus of this paper is upon linear-instability onset
and its mechanisms in the low-value range of ΛF where good agreement is found
between the results of the present method and those due to the Galerkin method.

In Figure 3 we re-plot the results of Figure 2a and 2b for the case N = 200
restricting the range of both axes so as to focus on the lowest two flow-structure
eigenmodes that are the first to be destabilised with increasing ΛF . Of course, all
of the higher-frequency modes are retained in the calculation and the neutral sta-
bility of these modes, throughout the flow-speed range presented, appears as the
solid line s′

I
= 0 in Figure 3b. Four zones of response are noted in Figure 3. At

low, pre-divergence, flow speeds neutrally-stable oscillatory motion prevails. There-
after, divergence sets in; Mode 1 bifurcates to give a pair of ±s′

R
non-oscillatory

solutions while Mode 2 continues to be neutrally stable. At higher ΛF , there is a
neutrally-stable region of divergence recovery wherein Mode 1 once again becomes
oscillatory. Finally, Modes 1 and 2 coalesce to give a pair of solutions, ±s′

R
+ is′

I
,

with non-zero oscillatory part; the unstable behavior associated with +s′
R

in this
region is commonly known as flutter. This sequence of broad changes is very well
known, corresponding plots having been presented by, for example, Weaver & Unny
(1971), Garrad & Carpenter (1982) and Lucey & Carpenter (1993) although these
predictions were based on very limited number of modes being included in the
calculation. While, the present, more precise, calculations confirm these general
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Figure 2. The effect of discretisation on the prediction of the variation of system eigenvalues
with flow-to-wall stiffness ratio (applied flow speed for a plate of given properties), (a) and
(c) depict the imaginary (oscillatory) part, and (b) and (d) depict the real (positive =
growth, negative = decay) part. Present direct-method predictions in (a) and (b), for: - -
- - -, N = 20; – · –, N = 50; · · · , N = 100; ——, N = 200. Galerkin-method predictions
in (c) and (d), for first: - - - - -, 5 modes; – · –, 10 modes; · · · , 20 modes; and where ——
is the direct result for N = 200.

predictions, below we investigate in rather more detail the system behaviour and
how it is affected by changes from the model of a standard homogeneous elastic
plate held at just its ends.

We first illustrate the motion of the standard plate in the four different zones
of response. In the low-speed pre-divergence zone, the neutrally-stable oscillatory
motion of the first three eigenmodes is shown in Figures 4a-c, at zero flow speed
(ΛF = 0), and Figures 4d-f, at ΛF = 17.6. In these, and following depictions of
eigenmodes, deformations, as determined by Eqn. 3.10, are normalised to the final
deflection arising from a sequence of time steps; this final deformation is indicated by
the use of a thick line. At zero flow speed only the added mass of the fluid is present
in the loading. Accordingly, the motion is symmetrical about the panel’s mid-point.
While Modes 1 and 2 are very close in shape to the first two in-vacuo sinusoidal
modes, the shape of Mode 3 has clearly been affected by the distribution of fluid
inertia. For a non-zero pre-divergence flow speed, close inspection of Figures 4d-f
reveals that each of the plate deflections, for all three modes, do not have mirror-
image symmetry about the line x/L = 0.5. Moreover, exact standing-wave nodes no
longer exist for Modes 2 and 3; these become quasi-nodes, the importance of which
is discussed in sub-section (e) below. Animations reveal that these features give the
visual effect of wave travel superimposed upon the oscillatory standing wave; as
the amplitude decreases through the cycle, upstream travel is perceived whilst as
it increases, downstream travel is seen.

In the divergence range of flow speeds the eigenvalue for Mode 1 is purely real,
comprising a ±s′

R
pair of solutions, the positive branch indicating instability. Fig-
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Figure 3. Elastic-plate. Variation of the two lowest eigenvalues with flow-to-wall stiffness
ratio (applied flow speed for a plate of given properties). (a) imaginary (oscillatory) part,
(b) real (positive = growth, negative = decay) part.
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Figure 4. Elastic plate: snapshots of the wall motion over one half-cycle of oscillation in
the pre-divergence range of flow speeds for ΛF = 0, (a) Mode 1, (b) Mode 2, and (c) Mode
3; and at ΛF = 17.6, (d) Mode 1, (e) Mode 2, and (f) Mode 3. The thick line indicates
the final wall position in the time-sequence of plots.

ures 5a-c show the unstable amplifying solution for a series of increasing flow speeds,
ΛF = 70.5, 138 and 228, all lying within the divergence zone while Figures 5d-f show
the companion decaying solutions for the same flow speeds. Clearly, it is the ampli-
fying mode that will dominate the wall deformation with the passage of time. The
shape of the unstable mode is strongly dependent upon the flow speed, being very
close to the fundamental mode exactly at the divergence-onset speed but increas-
ingly evolving towards a Mode-2 shape as ΛF is increased. The same is noted for
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Figure 5. Elastic plate. Snapshots of wall motion in the divergence range of flow speeds:
of Mode-1 amplifying for (a) ΛF = 70.5, (b) ΛF = 138, and (c) ΛF = 228; and Mode-1
attenuating for (d) ΛF = 70.5, (e) ΛF = 138, and (f) ΛF = 228, for the period t′ : 0 → 793
over 20 time steps each of duration ∆t′ = 39.6 The thick line indicates the final wall
position in the time-sequence of plots.

the decaying mode although its apparent distortion is in the opposite, upstream,
direction. We may then speculate that in an initial-value problem, the transient
motion of the panel, as a combination of many modes, would appear as a mixture
of downstream-directed amplifying motion and upstream-directed attenuating mo-
tion. Also present would be various higher-frequency neutrally-stable modes. This
combination of downstream distortion during amplification and upstream distor-
tion during attenuation resembles that seen in the non-linear study of panel flutter
of Lucey et al. (1997) wherein induced tension both restricted the amplification and
drove the attenuation in limit-cycle motions. What can be concluded here is that,
even in the linear regime of divergence, travelling-wave motions would be discerned
in a real situation.

The third type of behavior is found in the divergence-recovery zone wherein
Mode 1 comprises neutrally-stable low-frequency oscillatory motion as predicted
by Figure 3. Figure 6, at ΛF = 254, shows the shapes of both Mode 1 and Mode 2,
the key feature being their close similarity in the zone prior to their coalescence at
a higher flow speed. In the results of the next sub-section, we will find that this un-
usual zone of neutrally stable behavior between divergence and flutter instabilities
would not exist for a plate with any level of structural damping.

The final type of behavior arising from the eigenvalues of Figure 3 is that of
flutter caused by the coalescence of Modes 1 and 2. The unstable mode, at ΛF = 281
is plotted in Figure 7a having suppressed the amplification so as to highlight the
mode shape. This figure, together with animations, reveal that the visual perception
of this instability is that of a downstream-travelling amplifying wave. In contrast,
Figure 7b results from the attenuating branch at the same ΛF with the decay
suppressed. This mode clearly contains a strong component of the third mode that
becomes a significant part of the low-frequency system response at these higher
flow speeds.

Article submitted to Royal Society



EIGENMODES OF FLOW-STRUCTURE SYSTEMS 11

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1 (a)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x/L

(b)

Figure 6. Elastic plate. Snapshots of wall motion over one half-cycle of oscillation in the
divergence-recovery zone of flow speeds at ΛF = 254, in (a) Mode 1, and (b) Mode 2. The
thick line indicates the final wall position in the time-sequence of plots.
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Figure 7. Elastic plate. Mode shapes for ΛF = 281 lying in the modal-coalescence flut-
ter instability range of flow speeds, for one half-cycle of oscillation, (a) lowest-frequency
mode, and (b) second mode. Note that the growth/attenuation has been suppressed so
as to highlight the mode shapes. The thick line indicates the final wall position in the
time-sequence of plots.

(b) Flexible plate with structural damping

We now consider the effect of energy dissipation within the flexible plate. A
non-dimensional damping coefficient,

d′ =

(

L2

2
√

ρm(Bπ4 +KL4)

)

d , (4.3)
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Figure 8. Flexible plate with structural damping set at d′ = 6.13: variation of the two
lowest eigenvalues (five lowest for the real parts) with flow-to-wall stiffness ratio (applied
flow speed for given plate properties). (a) imaginary (oscillatory) part, (b) real (positive
= growth, negative = decay) part.

with a value of 6.13 is introduced herein (with K = 0) for illustrative purposes.
This relatively high value would yield a 50% amplitude reduction over one cycle of
oscillation for the fundamental in-vacuo mode of the flexible plate.

Figure 8 shows the variation of the system eigenvalues with ΛF and can be
compared with the results of Figure 3 for an undamped plate. Note that in Figure
8b, s′

R
is plotted for each of Modes 1-5 whereas only Modes 1 and 2 oscillatory

branches are within scale in Figure 8a. While there continues to be a low-speed zone
of oscillatory behavior, there is now a new zone of non-oscillatory damped behavior
of Mode 1 before the divergence-onset flow speed is reached. The actual divergence-
onset flow speed is unchanged by the addition of damping; this is because the
instability is static exactly at onset. The mode shapes in the new zone of behavior
are plotted in Figure 9. It is evident that transient motion in response to some form
of initial excitation could only feature oscillations of the second and higher modes.
Within the divergence zone of flow speeds, the plate behavior is qualitatively the
same as for the undamped plate except that the instability growth rate is reduced
by the structural damping.

A second key difference between damped and undamped plate dynamics occurs
in the post-divergence zone. Figure 8 shows that, with increasing ΛF , the divergence
instability merges into flutter instability. There is now neither a divergence-recovery
zone nor an explosive onset of flutter through exact modal coalescence. Results for
different values of damping reveal that the solution morphology seen in Figure 8 is
unchanged. Thus, even for an incremental level of damping, there is no divergence-
recovery zone and unstable behavior is found at all flow speeds above that at which
divergence first occurs. Thus, for any real panel, in which some level of structural
energy dissipation must be present, divergence and flutter would not be seen as a
distinct events.
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Figure 9. Elastic plate with structural damping: snapshots of the wall motion in the
pre-divergence range of flow speeds with ΛF = 20, (a) Mode 1 upper branch, (b) Mode
1 lower branch, for t′ : 0 → 793 over 20 time steps each of duration ∆t′ = 39.6 and (c)
Mode 2 (over one half-cycle of oscillation). The thick line indicates the final wall position
in the time-sequence of plots.

(c) Spring-backed Flexible plate

We now present illustrative results for a flexible panel that possesses two types of
structural force. The combination of flexural rigidity and foundation-spring stiffness
means that hydro-elastic instability is governed by higher-order modes. Accordingly,
travelling-wave, or local, theoretical methods, using Eqn. (1.2) as the deflection
form, are most often used in this type of system; however, these neglect the effect
of the panel’s end restraints.

For this sub-section, we use a non-dimensional flow-structure stiffness ratio de-
fined as

ΛI =
3πρU2

∞

(3BK3)
1

4

, (4.4)

based upon the length scale of the critical hydroelastic mode as opposed to the
length of the entire flexible wall, L; see Lucey et al. (1997). Again this parameter
may be considered as a measure of flow speed for given flexible-wall properties.

Figure 10 displays the variation of the first 40 system eigenmodes with ΛI for
a damped wall that has d′ = 0.56. It can be seen, from the plot of the real part
in Figure 10b, that the lowest ΛI at which an amplifying response occurs is at
approximately 128 where one branch of sR first crosses into the positive quadrant.
However, it can be seen this critical mode marks the edge of a response-envelope
that is dense with unstable modes. Thus, the flexible wall’s response throughout the
flow-speed range is characterised by fairly complex modes and combinations thereof.
Figures 11a-c show the three modes closest to the null eigenvalue at ΛI = 123 in
the pre-instability range of flow speed. Clearly, the motion of the flexible wall is
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Figure 10. Spring-backed flexible plate with structural damping (d′ = 0.56): variation of
the 40 eigenvalues closest to 0 + 0i with flow-to-wall stiffness ratio (applied flow speed
for given plate properties). (a) imaginary (oscillatory) part, (b) real (positive = growth,
negative = decay) part.
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Figure 11. Spring-backed flexible plate with structural damping (d′ = 0.56): snapshots of
wall motion at subcritical (pre-divergence) ΛI = 123 for (a)-(c) the three modes closest
to 0 + 0i in order of increasing frequency; and for the most unstable mode at post-critical
flow speeds, (d) ΛI = 130, (e) ΛI = 136, and (f) ΛI = 140. All for the period t′ : 0 → 4.17
over 20 time steps each of duration ∆t′ = 0.21. The thick line indicates the final wall
position in the time-sequence of plots.

dominated by upstream-travelling waves as opposed to oscillatory standing waves.
Figures 11d-f, respectively show the most unstable eigenmodes for each of ΛI =
130, 136 and 140. Downstream-travelling wave motion is seen to dominate most
locations of the flexible wall although standing-wave flutter is evident in the regions
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adjacent to the leading and trailing edge of the panel where wave travel is most
inhibited by the plate’s fixed-end conditions. Thus, for wall structures that are more
complex than a simple panel, there is no evidence of a global static standing-wave
type of divergence instability. The present results also indicate that a travelling-
wave type of analysis becomes an appropriate approximation for interior regions
of the flexible wall although it would fail to capture the spatial modulation of the
global response seen, for example, in Figures 11e and 11f.

(d) Inhomogeneous flexible plates and complex boundary conditions

We present here two examples of unsupported flexible elastic plates for which
the extraction of eigenmodes using the present method is particularly suited. In
the first, we apply the present method to a wall that has spatially varying flexural
rigidity of the form B(x) = B̄[1 + (2x/L− 1)λ] in Eqn. 2.1 and non-dimensionalise
the results using the mean value of flexural rigidity, B̄. This allows comparison with
our earlier results in Figure 3 for a plate of homogeneous properties. Figures 12a
and 12b display the variation of the eigenvalues with ΛF for λ = −0.95 (stiffest near
the leading edge) while Figures 12c and 12d display the corresponding results for
λ = 0.95 (stiffest near the trailing edge). The frequency ranges plotted in Figure 12
have again been chosen to highlight the behaviour of the two lowest modes although,
as before, all eigenmodes are evaluated. Clearly, the spatial variation of flexural
rigidity has a marked effect on system stability. In both cases the divergence-onset
value of ΛF is higher than that of a homogeneous plate. For λ = −0.95 all modes in
the pre-divergence range of ΛF are now damped. The unstable mode shapes in the
divergence loop remain similar to those seen in Figures 5a-c but a reduced growth
rate is evident and there is amplification bias towards the downstream half of the
plate that is less stiff. A further change occurs in the transition from divergence to
flutter as ΛF is increased. There is now clearly a range of ΛF for which s′

I
is negative

for all modes indicating damped behaviour of the flow-structure system. Thereafter,
the exact coupling of Modes 1 and 2 seen in Figure 3 does not occur and the severity
of the flutter instability is reduced. The overall effect on the system is very much
as if it were damped. In contrast, Figures 12c and d show that for λ = 0.95 the
reverse occurs and the system behaves as if it were negatively damped. Thus, of
particular importance is the existence of pre-divergence instability that is most
pronounced in a single-mode flutter amplification of Mode 1. While the inclusion of
some structural damping in the plate could eliminate this instability, its existence
is of interest and its causes are explored in sub-section (e) below.

Figure 13 shows eigenvalue and eigenmode results for a flexible plate with con-
stant B but with an additional interior boundary condition. At x/L = 0.3 we
stipulate that the plate is constrained by a hinge placed in the plane of the unde-
formed flexible plate; thus, the conditions of zero plate displacement and bending
moment are enforced at this point. The divergence behaviour is now dominated
by the longest extent of flexible plate between restraints. This is clearly seen by
comparing the divergence mode shapes in the region x/L : 0.3 → 1 in Figures
13c-e with those over the full expanse of the flexible wall for the standard case in
Figures 5a-c. The eigenvalue plots of Figures 13a and 13b indicate that the added
restraint has increased the divergence-onset value of ΛF . This is to be expected
because of the effective reduction in the length of the divergence-prone part of the
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Figure 12. Effect of material inhomogeneity on the variation of the two lowest eigenvalues
with flow-to-wall stiffness ratio (applied flow speed for a plate of given properties), (a)
and (c) depict the imaginary (oscillatory) part, and (b) and (d) depict the real (positive
= growth, negative = decay) part. Decreasing, (a) and (b), and increasing, (c) and (d),
flexural rigidity from plate leading edge, with a 95% variation about the value at x/L = 0.5
in each case.

flexible plate to the region x/L : 0.3 → 1. However, we also remark that if we
non-dimensionalise ΛF using 0.7L instead of L, the divergence-onset flow speed is
marginally higher than that of a simple wall of length 0.7L; this suggests that the
wall motions upstream of x/L = 0.3 in the present configuration have a stabilising
effect with respect to divergence-onset. However, these motions also exercise a more
subtle effect in that the s′

R
-divergence loop is distorted into the positive quadrant

thereby suggesting a more severe instability. Furthermore, a divergence-recovery
zone is now absent. Flutter evolves smoothly from divergence instability in much
the same way that was effected by structural damping as seen in Figure 8. We
therefore note that the introduction of a singular spatial homogeneity modifies the
phase relationships between structural and fluid forces and thereby alters the sta-
bility characteristics of the flexible plate. This assertion is borne out by one further
new feature of the eigenvalue plots. One of the neutrally stable branches at very low
speeds in the standard case of Figure 3 is now unstable, even to vanishingly small
values of ΛF . We find that this is single-mode flutter of Mode 3 that is similar in
shape to the third in-vacuo mode. The identity of this mode is perhaps unsurprising
because the added constraint is placed at x/L = 0.3. If we place the constraint at
x/L = 0.25 we then find that the third mode is stable whereas the fourth mode
succumbs to single-mode flutter. This type of flutter instability would be attenu-
ated, or even eliminated, by the action of structural damping in the plate. This
type of phenomenon has been found in related flow-structure systems; Päıdoussis
(1998) shows that the addition of an end restraint to a fluid-conveying cantilevered
flexible pipe can precipitate fluttering motions of the pipe. However, this is the

Article submitted to Royal Society



EIGENMODES OF FLOW-STRUCTURE SYSTEMS 17

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1 (c)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1 (d)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

x/L

(e)

0 50 100 150 200 250 300 350
0

0.002

0.004

0.006

0.008

0.01

0.012

s‘
I

(a)

0 50 100 150 200 250 300 350

−0.01

−0.005

0

0.005

0.01

s‘
R

ΛF

(b)

Figure 13. Elastic plate with a hinged boundary constraint at 30% chord. Variation of
the two lowest eigenvalues (five lowest for the real parts) with flow-to-wall stiffness ratio
(applied flow speed for a plate of given properties). (a) imaginary (oscillatory) part, (b) real
(positive = growth, negative = decay) part. Snapshots of wall motion in the divergence
range of flow speeds, Mode-1 amplifying, for t′ : 0 → 793 over 20 time steps each of
duration ∆t′ = 39.6 at: (c) ΛF = 70.5, (d) ΛF = 138, and (e) ΛF = 228. In (c)-(e) the
thick line indicates the final wall position in the time-sequence of plots.

first prediction of it occurring for the open flow over a flat flexible plate; below, we
identify the underpinning mechanism of this type of pre-divergence instability.

(e) Mechanism for single-mode flutter at pre-divergence flow speeds

We now show why the introduction of spatial inhomogeneity, either through
varying material properties or the introduction of an additional restraint, can lead
to a further type of instability, single-mode flutter, existing in the flow-structure
system. During the plate’s motion the spatial distribution of work done by the fluid
over one cycle of oscillation, W (x), is the time integral of (−∆p)η̇ over one period
of oscillation. Spatial integration of W (x) over the entire panel then yields the total
work done at the interface over one cycle. For an elastic plate, if this total is posi-
tive, then the plate’s motion amplifies, if zero it is neutrally stable and if negative
it is effectively damped. When structural damping is included it is the sign of the
difference between this energy transfer and dissipation that determines stability.
Without performing such integrations, it is clear that a phase-angle difference be-
tween pressure and plate velocity of nπ/2 gives W (x) = 0 when n is an odd integer
(orthogonal), a positive value when n/2 is zero or even (in-phase), and a negative
value when n/2 is odd (anti-phase). A departure, ±ψ, from any of these cases also
provides a mechanism for irreversible energy transfer between fluid and structure.

Figure 14 shows the effect of spatially varying flexural rigidity on the phase-
angle difference between pressure and plate velocity, or relative phase, for Mode
1 at the pre-divergence value ΛF = 25 for the two cases, λ = −0.95 and 0.95
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presented in Figure 12, and for λ = 0, the homogeneous-plate case of Figure 3.
In addition to plotting the relative phase for the total pressure that determines
the energy transfer, we also plot those of its constituent parts, the hydrodynamic
stiffness and damping identified in Eqn. 3.3, that contribute to energy flux at the
fluid-structure interface; see Crighton & Oswell (1991) and Lucey et al. (2003) for
a detailed discussion. Focusing first on the homogeneous case λ = 0 in Figure 14b,
for which the mode is neutrally stable, it is seen that exact orthogonality of the
total pressure is only found at x/L = 0.5. Departures, ±ψ, from this occur in both
upstream and downstream halves of the plate and thus localised energy transfer oc-
curs. However, these transfers must sum to zero because of the antisymmetry about
the point of exact orthogonality at x/L = 0.5 and thus the mode is neutrally stable.
While the corresponding results for λ = −0.95 and λ = 0.95 in Figures 14a and 14b
respectively also evidence the same antisymmetry, x/L = 0.5 is not a point of exact
orthogonality and thus a net energy transfer from(to) the plate occurs leading to
the stable(unstable) behaviour of the mode. Inhomogeneity therefore disrupts the
balance of energy transfers occurring within a mode and this can precipitate insta-
bility. For both of the plates with spatially varying flexural rigidity, an increase in
the divergence-onset value of ΛF was noted. Divergence onset occurs when the fluid
forces due to the hydrodynamic stiffness exactly balance the restorative structural
forces in the plate. The phase misalignment between the hydrodynamic-stiffness and
the plate-deflection signals caused by the material inhomogeneity then requires a
higher flow speed (for a given set of properties) to destablise the plate through
divergence.

We now apply a similar approach to understand the pre-divergence single-mode
flutter identified in Figure 13b when a further restraint was added to the system. We
recall that it was the third mode that became unstable. The third, neutrally-stable,
mode for the standard plate at ΛF = 25 is shown in Figure 15a. The associated
plot of Figure 15b shows that the signal of the total pressure is mainly orthogonal
to that of the velocity (the zero of the horizontal axis). Exact orthogonality of
−∆p throughout x/L would mean that zero energy transfer occurs at every point.
However, this is not the case; ±ψ is seen, especially in the regions adjacent to the
nodal points of the mode shape in Fig. 15a. In fact, these are not exact nodes at
non-zero flow speed; animations reveal that the modal motion contains a form of
constrained wave travel through its cycle. Thus, the phase departures mean that
spatially-dependent energy transfer - to and from the panel - occurs through the
cycle of oscillation,. However, the exact antisymmetry of relative phase of pressure
about x/L = 0.5, together with exact orthogonality at x/L = 0.5 means that the
localised energy transfers sum to zero over the entire panel to yield the global
neutral stability of this mode. Introducing a hinge constraint at the location of the
centre of upstream quasi-node of Figure 15a modifies the plate’s Mode-3 response as
demonstrated by Figures 15c and 15d, and noting that this mode is now unstable.
Comparing these with Figures 15a and 15b, we first note that the imposition of an
exact upstream node forces a modification to the mode shape in its vicinity while
the downstream quasi-node remains largely unaffected. Contrasting the relative
phase of pressure plots, a sharp change now occurs at the exact node as would be
expected; this confirms that it is wave-travel in the unrestrained case that creates
regions of non-orthogonal pressure loading. The key feature of Figure 15d is that
the relative phase of −∆p is not anti-symmetric about x/L = 0.5 and nor are each
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Figure 14. Variation along the plate of the phase of pressure loading relative to plate
vertical velocity for Mode 1 at the pre-divergence flow speed corresponding to ΛF = 25.
(a) decreasing (as in Figures 12a and 12b), (b) constant (as in Figures 3a and 3b), and (c)
increasing (as in Figures 12c and 12d), flexural rigidity from plate leading edge: ——, total
pressure; – – –, hydrodynamic-stiffness, and – · – hydrodynamic-damping components of
total pressure.

of its constituent hydrodynamic stiffness and damping terms. The breaking of anti-
symmetry occurs principally in the region x/L : 0.32 → 0.5. Thus, over one cycle,
the sum, over the whole plate, of local irreversible energy transfers is positive and
thus the mode is unstable.

Finally, the single-mode flutter that can result from spatial inhomogeneity in
the present system is analogous to that which destablises short cantilevered-free
flexible plates embedded in a unform flow; see, for example, Huang (1995), Guo
& Päıdoussis (2000), Tang & Päıdoussis (2007) and Howell et al. (2008). In that
system the divergence loop is stable because a plate with a free end cannot buckle
and the spatially inhomogeneity required for the single-mode flutter is effectively
provided by the very different boundary conditions at each end of the flexible plate.

5. Conclusions

A new method that fuses computational modelling and theoretical techniques for
the direct determination of the eigenmodes of finite flow-structure systems has been
developed. The method is readily adapted to take a Galerkin-type approach by rep-

Article submitted to Royal Society



20 M.W. Pitman & A.D. Lucey

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1 (a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−1(pi/2)

 0(pi/2)

 1(pi/2)

 2(pi/2)

 3(pi/2)

 4(pi/2)

 5(pi/2)

 6(pi/2)

 7(pi/2) (b)

x/L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1 (c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1(pi/2)

 0(pi/2)

 1(pi/2)

 2(pi/2)

 3(pi/2)

 4(pi/2)

 5(pi/2)

 6(pi/2)

 7(pi/2) (d)

x/L

Figure 15. Third mode of an elastic plate without, (a) and (b), and with, (c) and (d), a
hinged boundary constraint at x/L = 0.32 at the pre-divergence flow speed corresponding
to ΛF = 25: (a) and (c) depict the eigenmodes, while (b) and (d) show the variation along
the plate of the phase of pressure loading relative to plate vertical velocity where: ——,
total pressure; – – –, hydrodynamic-stiffness, and – · – hydrodynamic-damping components
of total pressure.

resenting deformations as a finite expansion of orthogonal in-vacuo modes of the
structure. However, its greatest strength lies in the analysis of inhomogeneous sys-
tems and those with complex or multiple boundary conditions for which obtaining
a suitable set of orthogonal functions would be problematical.

The method has been applied to the classical problem of a flexible panel, held
at both its ends with hinged connections, interacting with a uniform flow. The
eigenmodes extracted suggest that for realistic panels, modal-coalescence flutter is
a continuous extension of the divergence instability that precedes it a lower flow
speeds. For panels with structural damping, we show that there may exist a pre-
divergence range of flow speeds in which all modes are attenuated. Unstable behav-
ior would give the visual impression of sloshing waves, amplification accompanying
the downstream motion and attenuation the upstream-directed motion. The speed
of apparent travel of such motions increases as the applied flow speed is raised be-
yond the critical (divergence-onset) flow speed at which a static deformation exists.
The behavior of a flexible plate with a continuous spring-foundation is shown to
be far more complex in terms of participating modes although it is clearly shown
that, overall, wall-dynamics are dominated by upstream-travelling (attenuating)
and downstream-travelling (amplifying) motions.

In this paper, we have applied the direct method to perhaps the simplest flow-
structure problem that could be framed and one that we show is amenable to accu-
rate solution using a traditional Galerkin method. However, we have also demon-
strated its use to conduct a linear stability analysis of flexible panels with spatially
inhomogeneous wall properties and complex boundary conditions. In doing so we
have discovered that material inhomogeneity or an added panel constraint, while
postponing the divergence-onset flow speed, can introduce weakly unstable single-

Article submitted to Royal Society



EIGENMODES OF FLOW-STRUCTURE SYSTEMS 21

mode flutter behaviour into the system. This flutter is attributed to the disruption
of the zero-sum balance of irreversible energy transfers that occurs within a mode
in the pre-divergence range of flow speeds. While it would be attenuated, or even
eliminated, by the effect of structural damping (which causes an irreversible energy
flow out of the plate) it may still be of engineering significance for nearly elastic
flexible plates.

The crux of the present method lies in the reduction of the flow-structure system
to a single (matrix) equation for the interfacial variable. For a surface-based wall
model (see Carpenter 1991 for a classification of flexible wall models) this is readily
done for the structural side of the system. For ideal flow, the application of the
divergence theorem to the Laplace equation reduces the flow solution to being
surface based; i.e a reduction by one dimension that is a key advantage of the
boundary-element method. Accordingly, any flow structure system in which ideal
flow is assumed should be amenable to solution using the present method. This
includes three-dimensional inviscid perturbations to a uniform flow over a flexible
panel of finite width such as that studied by Lucey & Carpenter 1993 (fixed edges) or
Eloy et al. 2007 (cantilevered-free). Clearly, a system governed by one-dimensional
perturbations in both flow and structure, such as the Bourrièrres and Roth models
for a fluid-conveying flexible pipe (see Doaré & de Langre 2006), could also be
solved using the present methods. We also believe that our approach could be used
for flow-structure systems that include a spatially varying mean flow, i.e. a flexible
interface that is not uniformly aligned with the mean-flow direction, by extending
the boundary-element method to compute additionally the mean-flow. Such a case
could be considered as the fluid-side inhomogeneous problem having its structural
parallel in the material inhomogeneity studied in this paper. Volume-based wall
models (Carpenter 1991) are usually solved via a Helmholtz decomposition of the
Navier equations (Duncan et al. 1986) in a travelling-wave approach or the finite-
element method in a discretised model. For the interaction of such a wall with an
ideal flow, our approach is equally applicable, although computationally expensive
since the single governing equation would be framed in the displacement of all the
wall’s collocation points.

The present use of potential flow also serves as the platform for the direct
eigenvalue extraction of flow-structure systems with rotational and viscous effects
included in the flow modelling. Recently, Ehrenstein & Gallaire (2005) have used the
direct extraction of eigenmodes to study the hydrodynamic stability of a laminar
boundary layer over a rigid wall. The preliminary work of Pitman & Lucey (2007)
shows how a single system equation for the interfacial variable can be derived with
the effect of a viscous boundary layer included. The flow solution is constructed
using the present boundary-element method together with vortex elements governed
by the two-dimensional linearised Navier-Stokes equations in velocity-vorticty form
for the rotational part of the flow. Thereafter, both fluid-based and wall-based
system eigenmodes are extracted. Finally, we note that the present derivation of
a single homogenous differential equation for the coupled flow-structure system
readily admits extension to the study of the same system responding to a forcing
function that models a realistic initial-value problem.
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