
Faculty of Science and Engineering

Department of Mathematics and Statistics

Optimisation Techniques for Natural Gas Distribution
Networks

Efat Fakhar

This thesis is presented for the Degree of
Doctor of Philosophy

of
Curtin University

March 2018

Declaration

To the best of my knowledge and belief, this thesis contains no material pre-

viously published by any other person except where due acknowledgement has

been made.

This thesis contains no material which has been accepted for the award of any

other degree or diploma in any university.

..

Efat Fakhar

5/03/2018

i

Acknowledgements

I wish to express my sincere thanks to my supervisors, Professor Louis Caccetta

and Doctor Elham Mardaneh for their continuous support, guidance, and encour-

agement.

I would like to thank my beloved, Rahim my husband for his support, patience

and encouragement, and Armita my daughter for being understanding, encour-

aging, and cheering me up.

I would also like to indicate my thanks to Curtin University for providing me

with financial support (Curtin University Postgraduate Scholarship (CUPS)) and

making this journey possible.

ii

Abstract

The process of moving natural gas from the gas fields to consumers is complex

and requires the resolution of a number of problems from the extraction to the

processing and distribution of products. The methods of Operations Research

have been successfully applied to a number of problems arising in each of the four

main stages of the gas industry namely: natural gas production, transmission,

distribution, and marketing. Many researchers have worked on finding optimal

solutions in different areas of the natural gas industry to minimise the cost of

networks and to increase customer satisfaction. Some details of these is given in

Chapter 1.

There has been very little work on the natural gas distribution area in the

literature. In this thesis, we consider the network design and allocation problem

for natural gas distribution networks. A detailed literature review is presented

in Chapter 2. Our fundamental problem is, given a set of nodes and customer

requirements, determine the optimal network. This includes the network layout,

the diameter type for the connected links, the pressure at each node, and the

flow through each link. Our aim is to develop an effective mathematical model

for this fundamental problem. The objective is to meet demand and requirements

at minimum total cost. The requirements are related to the available pipeline di-

ameters, pressure limits, demands, physics gas laws and network structure which

in our case is a tree.

There are three cases of pipeline diameters to consider: single diameter; con-

tinuous diameter; and multi diameter. In the literature, the cases of single diam-

eter and continuous diameter have been considered by Rothfarb, Frank, Rosen-

baum, Steiglitz, and Kleitman (1970) and Andre, Auray, Brac, De Wolf, Maison-

nier, Ould-Sidi, and Simonnet (2013). There is no work in the literature that

iii

considers the case of multi diameter. The contributions of our research are in the

area of gas distribution network design and allocation that have unresolved issues.

More specifically we develop an effective Mixed Integer Non Linear Programming

(MINLP) model for the fundamental problem in the case of multi diameter. The

multi diameter case corresponds to where a link consists of different commer-

cially available diameters that are serially connected. The objective function is

a linear cost function of the pipe diameters. We consider a wide range of de-

sign parameters including the number of demand nodes, the set of pipe diameter

types, the length (distance) between nodes, and the pressure limits at each node.

We consider the constraints under steady-state conditions such as pressure limits

at each node, the flow balance through each link, the pressure drop equation for

two ends of each link. The decision variables are the selected links connecting

nodes, the flow through each link, the pressure at each node, and the length of

selected diameter for each link. Our model includes a linear objective function

and the nonlinear and nonconvex equality constraints. These constraints make

our MINLP model computationally difficult. We develop two different solution

methods for our model. One is an approximation method and the other a heuris-

tic method.

We are motivated to solve our MINLP model using a method that handles

the nonconvexities of the constraints. The algorithm that we use is the Outer

Approximation Algorithm with Equality Relaxation and Augmented Penalty

(OA/ER/AP) method given by Viswanathan and Grossmann (1990). Our moti-

vation to choose this OA/ER/AP method among the other MINLP algorithms,

is in its ability to handle the nonconvexity of the problem. This algorithm al-

ternates between two sub-problems including a Non Linear Programming (NLP)

sub-problem and the Master Mixed Integer Linear Programming (MILP) sub-

problem. In the NLP sub-problem, the integer variables are fixed and the con-

tinuous variables are determined. In the master MILP sub-problem, the effect

of nonconvexities are reduced by linearization of the nonlinear functions at the

set of linearization points. Our contribution is that we review this algorithm and

then examine its functionality and efficiency on our MINLP model. We consider

the effects of different parameters and stopping criteria in the NLP sub-problem

and the Master MILP sub-problem to find a near optimal solution. The main

outcome is a MINLP model that is effective for small sized networks. The details

iv

are given in Chapter 3.

The computational results for the OA/ER/AP algorithm are undertaken in

Chapter 4 considering different values of optimality gap for the Master MILP sub-

problem. We acknowledge the single starting point and the multi starting points

for the NLP sub-problems. Also, we discuss the comparative analysis between the

NLP-Single start and the NLP-Multi start strategies considering different values

of optimality gap for the Master MILP sub-problem. For some test cases, a de-

crease in the value of ROT(MILP) results in an increase in the computation time

and an improvement in the total cost. As expected the NLP-Multi start yields

an improved objective function value but requires more computational time than

the NLP-Single start.

We present a new heuristic algorithm to solve our MINLP model in Chapter

5. Our model is computationally difficult to solve using exact methods in partic-

ular for large sized test problems (50 customers). Our motivation is to develop a

heuristic algorithm to solve large size networks. We allow our heuristic 4 hours of

computation time so that it generates a good quality for the large networks in the

test cases. The developed algorithm includes two levels: in the outer level, a tree

network is generated. Then, in the inner level, we determine the multi diameters

for the given links as well as determining the pressure at each node and the flow

through each selected link by solving the remaining linear sub-problem to find

a cost-effective solution. The detailed algorithm is presented, and different size

numerical examples are used to test the efficiency of the algorithm. The quan-

titative analysis of the effects of different parameters of our heuristic algorithm

on optimal decisions is also investigated. Also, we compare the results in the

objective function value and the computation time between the OA/ER/AP al-

gorithm and our heuristic algorithm. The main outcome is a heuristic algorithm

that finds a good quality feasible solution for the large sized test problems within

4 hours.

In Chapter 6, we provide a summary of the earlier chapters and conclusions

obtained from the research. Also, we present possible future work in areas that

are open to further investigation and perhaps improvements.

v

Dedication

This thesis is dedicated to my family.

Contents

Declaration i

Acknowledgements ii

Abstract iii

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Overview of Natural Gas . 2

1.1.1 Composition of Natural Gas 2

1.1.2 The Formation of Natural Gas 2

1.1.3 Uses of Natural Gas . 3

1.2 Natural Gas Supply Chain . 4

1.3 Optimisation in Natural Gas Industry 6

1.3.1 Optimisation in Gas Production 6

1.3.2 Optimisation in Gas Transmission Networks 7

1.3.3 Optimisation in Gas Distribution Networks 12

1.3.4 Natural Gas Market Model 19

1.4 Review and Outline of Thesis . 20

2 Models 25

2.1 Background . 26

vii

2.2 Tree Structure . 34

2.2.1 Specified Network . 34

2.2.2 Unspecified Network . 41

2.3 Cycle (Loop) Structure . 46

2.3.1 Specified Network . 47

2.3.2 Unspecified Network . 50

2.4 The Research Gap and The Research Problem 51

2.5 The Contributions of This Thesis 52

3 Outer Approximation Algorithm 54

3.1 Mathematical Model . 55

3.1.1 Notation and Terminology 56

3.2 Outer Approximation (OA) Algorithm 60

3.2.1 The NLP Sub-problems 62

3.2.2 The MILP Cutting Plane 62

3.3 Variations of the OA Algorithm 66

3.3.1 In the Master MILP Sub-problem 67

3.3.2 In the NLP Sub-problems 70

3.4 Extended Algorithms of Outer Approximation Algorithm 75

3.5 The OA/ER/AP Implementation for the Gas Distribution Net-

work (Model 6) . 77

3.6 Effective Parameters and Stopping Criteria for the OA/ER/AP

Algorithm . 80

3.7 Conclusion . 81

4 Computational Results 83

4.1 Generating Test Data . 84

4.2 The NLP-Single Starting Point 88

4.2.1 Small Size Networks . 90

4.2.2 25 Node Networks . 91

4.2.3 50 Node Networks . 94

viii

4.3 The NLP-Multiple Starting Points 99

4.3.1 Small Size Networks . 100

4.3.2 25 Node Networks . 100

4.3.3 50 Node Networks . 103

4.4 Comparative Analysis . 107

4.4.1 Small Size Networks . 109

4.4.2 25 Node Networks . 109

4.4.3 50 Node Networks . 111

4.5 Conclusion . 113

5 The New Heuristic Algorithm 117

5.1 Model . 118

5.2 Solution Strategy . 120

5.2.1 Cross-Entropy Algorithm 121

5.3 Implementation . 122

5.3.1 Generate Tree Structure Using a Probability Distribution

Matrix P t . 123

5.3.2 Proposed Heuristic Algorithm 131

5.3.3 Interface Between JAVA programming language,

AIMMS package, and EXCEL package with functions . . . 137

5.3.4 Algorithm’s Drawbacks . 139

5.3.5 Proposed Alternatives for Drawbacks 140

5.4 Computational Results . 142

5.4.1 10 Node Networks . 143

5.4.2 25 Node Networks . 148

5.4.3 50 Node Networks . 151

5.5 Comparative Analysis (The NLP-Single Starting Point) 156

5.5.1 10 Node Networks . 157

5.5.2 25 Node Networks . 158

5.5.3 50 Node Networks . 160

5.6 Comparative Analysis (The NLP-Multi Starting Points) 162

ix

5.6.1 10 Node Networks . 163

5.6.2 25 Node Networks . 164

5.6.3 50 Node Networks . 166

5.7 Conclusion . 169

6 Conclusion 172

6.1 Future Works . 178

Appendix 180

Bibliography 207

x

List of Figures

1.1 Natural Gas Supply Chain . 5

1.2 Gas network transmission with two configurations of compressor

stations. 8

1.3 Linear Topology, a transmission network and the associate reduced

graph . 10

1.4 Cyclic Topology, a transmission network and the associate reduced

graph . 11

1.5 Gas distribution networks with different groups of consumers . . . 15

2.1 The classification for reviewing the literature according to the

problems of network design and allocation problem 29

3.1 The Outer Approximation Algorithm 65

5.1 An example to generate a tree network with excluding all genera-

tion nodes to avoid cycle . 125

5.2 Flowchart of Generating the Tree Network 128

5.3 Example for Generating of the Tree Network 131

5.4 Flowchart of Heuristic Algorithm 134

5.5 Flowchart of Heuristic Algorithm (Continuation of Figure 5.4) . . 135

5.6 Different areas around node j . 141

6.1 Permission for Figure 1.2 . 204

6.2 Permission for Figures 1.3 and 1.4 205

6.3 Permission for Figure 1.5 . 206

xi

List of Tables

1.1 Typical composition of natural gas (NatGas (2013)) 2

2.1 Mathematical models for the Allocation Problem in the given tree

gas distribution networks . 36

2.2 Mathematical model for design of the cycle gas distribution net-

work . 49

4.1 Pipe diameter type d and its per unit length cost 86

4.2 The test problem sizes for n = 5, 10, 15, 20, 25, and 50 88

4.3 Optimality gap values (25 and 50 nodes) 90

4.4 The computation times (small size networks) 90

4.5 Improvement/deterioration in the objective function value and the

computation time (25 nodes) . 92

4.6 Number of instances without/with a change in the cost (25 nodes) 93

4.7 The computation times (25 nodes) 93

4.8 Improvement/deterioration in the objective function value and the

computation time for 50-nodes network. Note that ‘NS’ means No

Solution obtained within the specified time limit. 95

4.9 Number of instances without/with a change in the cost (50 nodes) 96

4.10 The computation times (50 nodes) 96

4.11 Computational results with the NLP-Single start and different val-

ues of ROT(MILP) . 98

4.12 The computation times (Small size networks) 100

4.13 Multiple starting points for 25 node networks 101

xii

4.14 Improvement/deterioration in the objective function value and the

computation time for 25-nodes networks. Note that ‘NS’ means No

Solution obtained within the specified time limit. 102

4.15 Number of instances without/with a change in the cost 103

4.16 The computation times (25 nodes) 103

4.17 Multiple starting points for 50 node networks 104

4.18 Improvement/deterioration in the objective function value and the

computation time for 50-node networks. Note that ‘NS’ means No

Solution obtained within the specified time limited. 105

4.19 Number of instances without/with a change in the cost (50 nodes) 106

4.20 The computation times (50 nodes) 106

4.21 The computational results with the NLP-Multi start method and

different values of ROT(MILP) (small-sized networks) 108

4.22 The comparison of the computation time between the NLP-Single

start and the NLP-Multi start for n ≤ 20. 109

4.23 The comparison results between the NLP-Single start and the

NLP-Multi start for 25-node networks. Note that ‘NS’ means No

Solution obtained within the specified time limit. 110

4.24 Number of instances without/with a change in the cost (25 nodes) 111

4.25 The comparison results between the NLP-Single start and the

NLP-Multi start for 50-node networks. Note that ‘NS’ means No

Solution obtained within the specified time limit. 112

4.26 Number of instances without/with a change in the cost (50 nodes) 113

4.27 Number of instances without/with a change in the cost and com-

putation time (25 nodes) . 115

4.28 Number of instances without/with a change in the cost and com-

putation time (50 nodes) . 115

4.29 Number of instances without/with a change in the cost and com-

putation time (25 nodes) . 115

4.30 Number of instances without/with a change in the cost and com-

putation time (50 nodes) . 116

5.1 The computation times of our algorithm for networks with different

nodes . 138

xiii

5.2 The comparison results in the objective function value between our

heuristic algorithm and the NLP Single-start (25 nodes) 139

5.3 Sample sizes analysis (10 nodes) 144

5.4 Elite sample sizes analysis (10 nodes) 145

5.5 α analysis (10 nodes) . 145

5.6 Our modified heuristic algorithm results (10 nodes) 147

5.7 Sample sizes analysis (25 nodes) 148

5.8 Elite sample sizes analysis (25 nodes) 149

5.9 α analysis (25 nodes) . 150

5.10 Our new modified heuristic algorithm results (25 nodes) 151

5.11 Sample sizes analysis (50 nodes) 152

5.12 Elite sample sizes analysis (50 nodes) 153

5.13 α analysis (50 nodes) . 154

5.14 Our new modified heuristic algorithm results (50 nodes) 155

5.15 The computation times using our new modified heuristic algorithm

for networks with 10, 25, 50 nodes 156

5.16 Improvement of our modified heuristic algorithm compared with

NLP-Single start (10 nodes) . 157

5.17 Number of instances without/with a change in the cost by our

heuristic algorithm (10 nodes) . 158

5.18 The comparison results between our modified heuristic algorithm

and the NLP-Single start (25 nodes) 159

5.19 Number of instances without/with a change in the cost by our

heuristic algorithm (25 nodes) . 160

5.20 The comparison results between our new modified heuristic algo-

rithm and the NLP-Single start 50-node networks. Note that ‘NS’

means No Solution obtained within the specified time limit. . . . 161

5.21 Number of instances without/with a change in the cost by our

heuristic algorithm (50 nodes) . 162

5.22 The average improvement of our modified heuristic algorithm in

the cost compared with the NLP-Single starting point 162

5.23 The comparison results between our modified heuristic algorithm

and the NLP-Multi start (10 nodes) 163

xiv

5.24 Number of instances without/with a change in the cost by our

heuristic algorithm (small size network) 164

5.25 The comparison results between our modified heuristic algorithm

and the NLP-Multi start 25-node networks. Note that ‘NS’ means

No Solution obtained within the specified time limit. 165

5.26 Number of instances without/with a change in the cost by our

modified heuristic algorithm (25 nodes) 166

5.27 The comparison results between our modified heuristic algorithm

and the NLP-Multi start for 50-node networks. Note that ‘NS’

means No Solution obtained within the specified time limit. . . . 167

5.28 Number of instances without/with a change in the cost by our

heuristic algorithm (50 nodes) . 168

5.29 The average improvement of our heuristic algorithm in the mini-

mum cost . 168

5.30 The value of parameters and the average of computation times for

different size network using our heuristic algorithm 169

5.31 The improvement in the average cost computation times by our

heuristic algorithm compared with the NLP-Single start 171

5.32 The improvement in the average cost and computation times by

our heuristic algorithm compared with the NLP-Multi start 171

xv

Chapter 1

Introduction

Natural gas has significant environmental benefits over both coal and oil. It pro-

vides 65 to 70 percent less greenhouse gas and other emissions than fossil fuels.

Natural gas is used in large quantities by commercial and residential users as

well as the industrial and electrical sectors. Also, with the increasing concern of

climate change and the subsequent regulations such as using low carbon fuels,

gas consumptions will increase, especially for electricity generation. Besides, gas

can be used as an alternative fuel for transportation in the form of Compressed

Natural Gas (CNG) or Liquefied Natural Gas (LNG) (Roarty and Roarty (2008)).

Operations Research has played a significant role in the natural gas industry

to solve a number of essential and relevant problems in the areas of production,

transmission, distribution, and marketing. Indeed, during the past 45 years,

many issues in the gas industry have been tackled by operations research mod-

els and techniques. Many researchers have worked on finding optimal solutions

in different areas of the natural gas industry to minimise the cost of networks

and to increase customer satisfaction. However, very little of this research is in

the gas distribution area. In this chapter, we present an overview of natural gas

including the composition, the formation, and the uses of natural gas. Also, we

present an overview of the gas industry supply chain as well as the number of

problems arising in all four of the above-mentioned areas of the gas industry. We

focus on, in particular, Gas Distribution Networks.

This chapter is organised as follows: Section 1.1 gives an introduction to the

composition, the formation, and the uses of natural gas. The gas industry supply

1

chain, including all sections to move natural gas from the gas field to consumers, is

presented in Section 1.2. In Section 1.3, we present a number of problems arising

in each of the four main stages of the gas industry production, transmission,

distribution, and marketing. Section 1.4 provides a brief outline of this thesis.

1.1 Overview of Natural Gas

In this section, we provide the composition, the formation, and the uses of natural

gas in more detail.

1.1.1 Composition of Natural Gas

Natural gas is a combustible mixture of hydrocarbon gases. While natural gas is

formed primarily of methane, it can also include Ethane, Propane, Butane and

Pentane. The composition of natural gas can vary widely, but below is a chart

outlining the typical make up of natural gas before it is refined (NatGas (2013)).

Table 1.1: Typical composition of natural gas (NatGas (2013))

Gas name Symbol Value
Methane CH4 70-90%
Ethane C2H6 0-20%
Propane C3H8
Butane C4H10

Carbon Dioxide CO2 0-8%
Oxygen O2 0-0.2%
Nitrogen N2 0-5%

Hydrogen sulphide H2S 0-5%
Rare gases A, He, Ne, Xe trace

However, the delivered natural gas to consumer’s home is almost pure methane.

The distinctive “rotten egg” smell that we often associate with natural gas is an

Odourant called Mercaptan that is added to the gas before it is delivered to the

end user. Mercaptan aids in detecting any leaks (NatGas (2013)).

1.1.2 The Formation of Natural Gas

Natural gas is formed from the decomposed remains of plant and organic material.

The decomposition over millions of years creates gases that become trapped in

different rock formations, including sandstone, tight sandstone, shale, and coal

seams (NatGas (2013)). These rock formations are outlined in more detail below:

2

• Coal Seam Gas: Coal seam gas is trapped in coal formations. The coal is

a sedimentary rock created from the compressed remains of organic material

such as plants when the heat and pressure increased. The coal seams are

generally filled with water, and it is the pressure of the water that keeps

the gas as a thin film on the surface of the coal.

• Shale Gas: Shales are fine-grained sedimentary rocks, formed from the

compaction of silt and mud.

• Tight Gas: Tight rocks are typically limestone and sandstone. Both shale

and tight rocks have deficient levels of permeability and are found deep

underground.

As shown in Table 1.1, natural gas is an odourless, colourless mixture of gases

containing mainly of methane.

1.1.3 Uses of Natural Gas

Natural gas has a wide range of applications and can be used in some sectors as

detailed below (NatGas (2013)):

1. Residential: The best-known uses for natural gas around the home are

natural gas heating and cooking.

2. Commercial: The commercial sector includes public and private enter-

prises such as office buildings, schools, churches, hotels, restaurants, and

government buildings. The main uses of natural gas in this sector include

space heating, water heating, and cooling that are similar to residential uses.

3. Industrial: Industrial applications include those same uses of residential

and commercial such as heating, cooling, and cooking. Natural gas is also

utilised for waste treatment and incineration, metals preheating (particu-

larly for iron and steel), drying and dehumidification, glass melting, food

processing, and fuelling industrial boilers. The natural gas may also be

used as a feedstock for the manufacturing of a number of chemicals and

products. Gases such as butane, ethane, and propane may be extracted

from the natural gas to be employed as a feedstock for such products as

3

fertilisers and pharmaceutical products (NatGas (2013)).

4. Electricity generation: Natural gas can be used to generate electricity

in a variety of ways (NatGas (2013)).

• Steam generation units: The most basic natural gas-fired electricity

generation consists of a steam generation unit, where gas is burned in

a boiler to heat water and produce steam that then turns a turbine to

generate electricity.

• Centralised gas turbines: Gas turbines and combustion engines are

also used to generate electricity. In these types of units, instead of

heating steam to turn a turbine, hot gases from burning natural gas

are used to turn the turbine and generate electricity.

• Combined cycle units: These units use both a gas turbine and a steam

unit, with the waste heat from the gas-turbine process used to gener-

ate steam.

• Natural gas can also be used to power back-up generators and dis-

tribute generated energy.

5. Transportation: Natural gas is an available alternative fuel particularly

useful in the transportation sector. As natural gas is low emission, it makes

it easier for new vehicles to meet increasing environmental standards.

1.2 Natural Gas Supply Chain

The process of moving natural gas from the gas field to consumers is detailed

in Figure 1.1 and includes the following stages. We need to note that we have

permission from Stevens (2012) to use this figure in our thesis. Also, this image

has been downloaded from https://barryonenergy.wordpress.com.

1. Exploration: To identify the potential source of natural gas. Extensive

studies are undertaken to assess the viability of the gas reserves. Then, the

survey technologies such as seismic surveys are used to discover the amount

4

Figure 1.1: Natural Gas Supply Chain

of oil and gas deposits in the rocks. Also, the test wells are drilled in the

area of interest to test the quantity and quality of the gas resource.

2. Extraction: To drill usually multiple wells to access the gas reserves.

These wells are either vertically or horizontally drilled, depending on where

the gas reserves lie within the coal seam, shale or tight sandstone. The

Coal Seam Gas (CSG) reserves are easier to access, while shale and tight

gas reserves are deeper underground and therefore hard to access.

3. Production: The natural gas is transported from the well to the refinery

to be refined by the gathering line. This stage includes some processing

facilities, such as removing water, carbon dioxide or sulfur.

4. Transmission: The natural gas is transported over long distances through

the high-pressure pipeline from gathering, processing factory or storage fa-

cility to the distribution system.

5

5. Storage: This stage accounts for the storage of natural gas. It is one of the

new and critical steps of the natural gas network process that must respond

to the demands of different periods of the year and unexpected events, such

as natural disasters.

6. Distribution: In this part, natural gas is transported by the low-pressure

pipeline from gas pressure reduction station (City Gate Stations) to the end

users.

7. Marketing: This is the final stage and involves the buying and selling

activities in the market.

In the next section, some of the problems arising in the above stages are

outlined in more detail.

1.3 Optimisation in Natural Gas Industry

The process of moving natural gas from the gas fields to consumers is complicated

and requires the resolution of a number of problems from the extraction to the

processing and distribution of products. The methods of Operations Research

have been successfully applied to a number of problems arising in each of the four

main stages of the gas industry namely: the natural gas production, transmission,

distribution, and marketing. We discuss optimisation problems in the natural

gas industry in more detail with the focus on these four stages. New designs or

expansion in the capacity of the main components are required to increase natural

gas consumption as one of the cleanest fuels.

1.3.1 Optimisation in Gas Production

There are many different optimisation models in the natural gas recovery area.

According to Zheng et al. (2010), production scheduling, placement of the well-

head, gas recovery systems, and facilities design are some of the related problems

in the production stage of the natural gas industry. Also, Zheng et al. (2010)

described the two following optimisation problems in this area.

6

Production Scheduling Considering Well Placement

The gas reservoir is accessed by drilling multiple wells on the surface, the

pressure of the gas will reduce at all wells drilled on the same reservoir when the

gas is withdrawn from any of the wells. So, the withdrawal rate for every drilled

well will decrease at each period. The optimal production scheduling problem

is to find the optimal well location and withdrawal rate at every drilled well at

each period. For example, Murray III and Edgar (1978) investigated optimum

production scheduling including the determining the location of wells either with

the design of gas production scheduling or the design of gas wells and gathering

systems.

Total Gas Recovery Optimisation

Using water flooding is one option for withdrawing the natural gas from the

reservoir that leads to the following immediate problems: to find optimal water

injection places with respect to different objectives, such as the maximal ultimate

recovery, or the total revenues. Many optimal control models have been proposed

for this problem (Zheng et al. (2010)).

1.3.2 Optimisation in Gas Transmission Networks

The problems in the optimisation of gas transmission networks can be divided

into four groups: optimal design, optimal flow, optimal operation, and optimal

expansion. We briefly review the models and methods of optimisation work in

the area of gas transmission that is the starting point of our work. Before identi-

fying the related problems, we need to consider the connected components, model

characteristics, and network topologies in the gas transmission line. Figure 1.2

presents the physical components of a gas transmission network with a combina-

tion of parallel and series configurations for compressor stations. We need to note

that we have permission from Geißler et al. (2013) and Springer as the publisher

of this paper to use Figure 1.2.

7

Figure 1.2: Gas network transmission with two configurations of compressor sta-
tions.

Components of Natural Gas Transmission Networks

• Pipelines: The pipeline in the gas transmission network are known as

arcs. Some arcs include the compressors stations. Therefore, two sorts of

arcs have been considered: passive arcs correspond to pipelines, and active

arcs correspond to pipelines with compressors (De Wolf and Smeers (2000)).

The mainline transmission pipelines are usually large size, between 16 and

48 inches in diameter.

• Resistors: The gas networks contain further elements such as controllable

elements like measuring stations, filtration plants, gas-preheats and gas-

coolers which cause a loss of pressure. These elements come under the term

resistors. The resistors are located beside the pipe and are divided into the

set of resistors with variables, such as flow dependent pressure drop, and

the set of resistors causing a fixed loss of pressure (Geißler et al. (2013)).

• Compressor stations: Pressure is lost due to the friction between natu-

ral gas and the inner walls of the pipeline. Also, the natural gas volume is

reduced because of different temperatures between the pipeline and environ-

ment. Compressor stations are located along transmission lines that consist

of a parallel or series or a combination of both with several compressor units

8

to hold the pressure and increase the capacity of the gas transmission line

(Hamedi et al. (2011)). There are three types compressor stations: active

if the discharge pressure is greater than suction pressure, bypass, if the

discharge pressure is equal to suction pressure and closed, if there is no

flow rate (Cobos-Zaleta and Ŕıos-Mercado (2002)). The compressor station

usually works at a pressure of approximately 200 psi to 1400 psi.

• Valves: Valves are for stopping the gas flow in situations such as mainte-

nance or replacement for certain parts of the pipeline. Valves can either be

open or closed. An open valve causes no pressure drop, while a closed valve

restricts gas from passing.

• Control Valves: These are located at such transition points to reduce

pressure manually when gas is transported from a large conveyor pipeline

into a local sub-network. According to Geißler et al. (2013), the control

valve station has three base stages:

1. It might be active, which means the bypass valve is closed and the

inlet and outlet valves and the control valves are open.

2. It might be in bypass mode, which means the inlet and outlet valve

are closed and the bypass valve is open.

3. The station might be closed, which means all three valves are closed.

Model Characteristics

There are different assumptions related to each defined problem on a natural

gas network. Some of these assumptions are detailed below. The resulting con-

straints affect the problem’s complexity and formulation. Some of the most usual

attributes of the natural gas networks problems can be illustrated as follows.

• Steady State or Transient State

Two main categories of the state of the natural gas pipeline are steady state

and transient state. These show how the gas flow changes over the time. In the

steady state system, the gas flow is determined with some values that are inde-

pendent of the time constraints of the system, and nonlinear algebraic equations

describe the pipeline gas flow. In contrast, in the transient state, the system

9

variables, such as mass flow balance through the pipelines and gas pressure levels

at each node, are defined as the functions of the time (Hamedi et al. (2011)).

Transmission Network Topology

There are two different network types of topologies: (a) linear or gun-barrel,

and (b) cycle. To identify the natural gas transmission networks topologies, Wu

et al. (2000) explained the usual methodology as follows: In a given network, to

begin with, remove the compressor arcs. Then, unite the remaining connected

components into a big super-node. Finally, the compressor arcs are moved back

to normal. The new network is called an associated reduced network. We have

permission from Springer as the publisher of paper Ŕıos-Mercado et al. (2002) to

use Figures 1.3 and 1.4.

• Linear Topology: This occurs when the compressors are arranged in a

path, that is when the reduced network is a single path. Also, when the

compressors are arranged in branches in the network, the reduced network

is a tree. Figure 1.3 shows a network and the associated reduced network.

• Cyclic Topology: This occurs when the compressors are arranged in a

cycle design with other compressor stations. In other words, it refers to

a cyclic reduced network. Figure 1.4 shows a network and the associated

reduced network.

3

4 5

2

8

CS1

CS2

CS3

Sn 1

Sn 1

Sn 2

Sn 2

Sn 3

Sn 3

Sn 4

Sn 4

CS1
CS2

CS3

1

Compressor Station

Consumer

Supper-node

6 7

Figure 1.3: Linear Topology, a transmission network and the associate reduced
graph

10

3

4 5

2

6

7

89

CS1

CS2

CS3

CS4
Sn 1

Sn 1

Sn 2

Sn 2

Sn 3

Sn 3

Sn 4

Sn 4

CS1
CS2

CS3

CS4

1

10

Compressor Station

Consumer

Supper-node

Figure 1.4: Cyclic Topology, a transmission network and the associate reduced
graph

Transmission Network Design

The primary design variables of essential components of the natural gas trans-

mission networks include pipelines and compressor stations over a planning hori-

zon. The design characteristics of pipelines include pipeline diameter, pressure,

and flow rate. Moreover, the design variables of compressor stations are location,

suction pressure, pressure ratio, station throughput, fuel consumption and sta-

tion power consumption (Hamedi et al. (2011)). The objective function in the

network design is to minimise the investment cost.

Transmission Network Flow

Minimising the cost along with providing enough services to customers are

the principal objectives for network flow optimisation. Also, the volume of gas

flowing through the network elements is the decision variable for the network

flow problems, such as minimum cost flow problems, shortest path problems, and

maximum flow problems (Hamedi et al. (2011)).

Transmission Network Operation

Many factors can influence the operation costs for high pressure. These fac-

tors include operation costs (which consist of the fuel cost, cost of turning them

on and off, and maintenance cost for each compressor), penalty cost (which is

11

acquired if the compressor does not run for a specific period and avoids frequent

start/stop actions), and consumer demand (Uraikul et al. (2004)). Compressor

stations use 3% to 5% of the amount of natural gas as fuel from their lines.

Optimisation techniques can save up to 20% on the fuel costs that are used by

compressor stations (Hamedi et al. (2011)). Thus, the main problems regarding

the operation of gas transmission networks are fuel cost minimisation and the

minimising the fuel consumption of compressor station.

Transmission Network Expansion

The optimal expansion is another type of design optimisation problem while it

optimises an existing network. Timing, sizing and location decisions are some of

the considerations for future expansion for optimal expansion capacity (Tabkhi

et al. (2009)). The addition of compression capacity to a pipeline is the most

common form and most straightforward method for increasing capacity. This ca-

pacity is increased by adding new compressor units at an existing site, to provide

more compression and provide more reliability. Looping is another significant

alternative to additional compression where installing a parallel pipeline close to

the existing line to lower the flow resistance and then drop the pressure to in-

crease the throughput and increase the available line pack. The pipeline looping

is very flexible from a design point of view, as the length, the diameter and the

location of each loop section can present a safety threat to the existing pipeline.

Also, this has been used on systems where higher flow reliability is required than

that which can be expected from compression capacity increases (Tabkhi et al.

(2009)).

1.3.3 Optimisation in Gas Distribution Networks

Natural gas distribution lines are located next to a transmission line that trans-

ports natural gas over the pipelines from the gas pressure reduction stations to

the end users. The optimisation problems in the gas distribution networks arise

from the pipeline design and operation of the gas distribution systems. The op-

eration problems can also arise in the combination of natural gas system and

electricity system. Before we identify the related problems, we explain the con-

nected components and network structures in the gas distribution network.

12

Components of Natural Gas Distribution Network

The main components of this system are:

• Pipeline: Natural gas distribution systems include small to mid-size pipelines

(ranging from 2 to 20 inches in diameter) which are constructed out of cop-

per, plastic and cast iron. They are usually installed underground along

streets and roadways in the tree or acyclic structure designs. Due to se-

curity reasons, distribution pipelines typically operate below their capacity

and work at a pressure of approximately 0.5 psi up to 200 psi (Ŕıos-Mercado

and Borraz-Sánchez (2015)).

• Pressure Reduction Stations: The high gas pressure is delivered us-

ing transmission lines to the pressure reduction stations which reduce the

pressure to that required at the demand points. The pressure of the gas is

reduced three times as follows:

1. City Gate Stations (CGSs): The CGS is located at the border of

the transmission line and the distribution line for three purposes. First,

it reduces gas pressure from 1000 psi to 250 psi. Secondly, a distinct

sour odour associated with natural gas is added for the consumer to be

able to smell the balance of quantities of gas. Finally, they measure the

flow rate of the gas to determine the amount of receiving gas by public

servers (Australian Energy (2009)). According to Ranjbar (2011), the

different devices used in CGS are

– Insulation joint,

– Odorise,

– Scrubber,

– Filter separator,

– Dry gas filter,

– Isolating valves,

– Indirect water bath heater,

– Safety shut off valve,

– Pressure reducing and control valve (throttle valves),

– Metering system,

– Safety valve,

13

– Sound attenuator,

– Sensing line,

– Drain valves,

– Supports,

– Electrical systems.

With gas pressure reduction, the temperature drops (Joule-Thomson

effect). The dropped temperature may cause freezing of water vapour

in natural gas, which results in swelling and corrosion in the pipeline.

The solution is to preheat the natural gas before pressure reduction.

While the gas pressure decreases in the expansion valves, a significant

amount of energy will be wasted (Sanaye and Nasab (2012)). Com-

bined heat and power (CHP) system can be used to gain even more

electricity and savings. The CHP system generates electricity and heat

simultaneously using a single source of fuel (Sanaye and Nasab (2012)).

Therefore, in this way, a significant part of the consumed energy in the

compression station is recovered.

2. Town Board Station (TBSs): TBSs provide the second pressure

reduction station and reduce the pressure from 250 to 60 psi. The

devices used in the TBS are the same as those in CGS except filtering,

odorising, and heating. District Regulating Stations (DRSs) are a kind

of TBS which reduces pressure for not only commercial consumers but

also for high demand consumers such as universities and hospitals.

3. Regulating Stations: They adjust gas pressure in the network to

ensure gas is delivered at a suitable pressure for users. Regulator

service will reduce the pressure to less than 1/4 psi, which will be set

up in each consumer property.

• Consumers: There are three different types of consumers which have been

outlined in more detail in Section 1.1.3.

Consumer type A: Electricity generators,

Consumer type B: Industrial,

Consumer type C: Residential and commercial.

14

Consumer
Type A

Reduction Station
CGS

Reduction Station
TBS

Consumer
Type C

Compressor Station

Consumer
Type B

Compressor Station

Figure 1.5: Fragment of gas distribution networks with different groups of con-
sumers.

Figure 1.5 shows the process of gas distribution network from transmission

network to the consumers. We need to note that we have permission from Szo-

plik (2015) to use this figure in our thesis. Medium gas pressure is transported

by a pipeline from CGS to the consumer type A (generate electricity power) or

TBS. In the second stage, the low gas pressure moves from TBS to the regulator

station. Finally, the regulator reduces the pressure of gas according to demand

satisfaction, and moves the gas to the consumers as the last node in the natu-

ral gas distribution networks. We need to note that we have permission from

Springer as the publisher of paper Szoplik (2015) to use this figure.

Gas Distribution Network Structures

There are two basic structures for gas distribution networks normally the tree

and the loop network. We detail each below. Moreover, the advantages and

disadvantages of these two structures are presented below.

• Tree Structure: It can be defined as a series of pipes in which each node is

connected to the source by only one route. In this structure, each consumer

node is served by only one node. This serving node could be a source node

or another consumer.

The advantages: It is straightforward to find the flow through each pipeline

over a tree network through a system of linear equations. Also, the

15

other variables such as pressure at each node and pipeline diameter

of each link can be obtained from the physics gas equation. The tree

structure is mostly a cheaper choice of design of the network because

all nodes are connected with the minimum number of links.

The disadvantages: The failure of a single link will prevent a subset of

consumers from being served. In the tree structure, each consumer is

connected to the source with only one path.

• Cycle (Loop) Structure: It is an acyclic structure. They are designed

as a series of interconnected closed loops. We note that usually, the acyclic

structure is called a loop structure in the literature. This structure guar-

antees the delivery of gas to the users under single pipe failure conditions.

The advantages: There are at least two routes to serve consumers. In fully

looped systems, each demand node can be supplied from the source(s)

through at least two independent paths. Two supply paths are said to

be independent if they do not have a pipe in common. However, they

can have a node in common.

The disadvantages: Mostly, the loop structure design is more expensive

than the tree one, and the network analysis is complicated (flow and

pressure).

We can divide the problems arising from the gas distribution network into

three parts as design, operation, and expansion. The main objective of the prob-

lems arising from different parts of the gas distribution is to meet customer re-

quirements at minimum total cost.

Distribution Network Design

Pipeline systems in the natural gas network must be designed based on gas

flow rate, length of pipe, maximum gas pressure drop allowance and maximum

gas velocity. We identify more specific problems as follows:

• Fundamental Problem (Problem 1)

Network Design and Allocation Problem: Given a set of nodes and

customer requirements, determine the optimal network. This involves

determining the

16

– Network layout,

– Diameter of the connected links,

– Pressure at each node,

– Flow through each link.

The objective usually is to meet demand and requirements at mini-

mum total cost. The requirements are related to the available pipeline

diameters, pressure limits, demands, physics gas laws and network

structure which are tree and cycle (loop).

There are only a few papers on the fundamental problem, but most of

the literature on gas distribution networks has focused on the following

subproblem.

• Subproblem (Problem 2)

Allocation Problem: Given a set of nodes, network structure and cus-

tomers requirements, determine the optimal pipeline design of the net-

work. This involves determining the

– Pipeline diameter for each link,

– Pressure at each node,

– Flow through each link.

The objective usually is to meet demand and requirements at mini-

mum total cost. The requirements are related to the available pipeline

diameters, pressure limits, demands, physics gas laws and network

structure which are tree and cycle (loop).

According to Shiono and Suzuki (2016), there are three cases with respect to the

diameter of each link,

• The Single Diameter (SD), where each link consists of one commercially

available diameter.

• The Multi-Diameter (MD), where a link consists of different commercially

available diameter segments that are serially connected.

• The Continuous Diameter (CD), where a link consists of one diameter type

that should be determined between the given minimum and maximum val-

ues.

17

Distribution Network Expansion

The investment in the expansion of gas distribution networks involves capital

works to improve and expand the capacity of the existing networks into new

residential and commercial developments, regional centres and towns. Also, the

cost of distribution investment depends on a range of factors consisting of the

distance of new infrastructures from entry points on the gas transmission line or

distribution line, the density of housing, and the attendance of other industrial

and commercial customers in the area (Australian Energy (2009)). The following

objectives for the expansion of gas distribution networks can be outlined (Shiono

and Suzuki (2016)):

• Minimise the sum of reinforcement costs.

• Maximise the expected net present value (NPV) which comprises of gen-

erated revenue and various costs such as the cost of removing old infras-

tructure, operating cost to maintain and operate infrastructure and the

production costs on different fields.

Optimisation in the Combined Natural Gas System and Electricity

System

The electricity generators are one of the primary uses of gas. Combined-

cycle plants are a type of power plant with high efficiency with less damage to

the environment. It is directly linked to the medium pressure line. Hence, the

electricity and gas networks are connected. There are some related optimisation

applications regarding this relationship. For example, Rubio-Barros et al. (2008)

provided a complete survey of state of the art in the combined operational plan-

ning of natural gas and electric power systems.

Saldarriaga et al. (2013) presented a new distribution expansion model that

considers electricity distribution networks and natural gas distribution networks

as one system with a high penetration of distributed generation based on natural

gas. The objective function is the present value of the following six terms:

1. The cost of installing new elements of the electricity networks.

2. The cost of expanding the capacity of existing elements of the electricity

networks.

18

3. The investment cost of the new CGS station of the distribution networks.

4. The cost of expanding the capacity of existing city gates of gas distribution

networks.

5. The cost of installing and increasing the capacity of the natural gas dis-

tributed generation.

6. The operative cost of the electricity network.

1.3.4 Natural Gas Market Model

The optimisation of natural gas market models has been divided into two groups:

regulated and deregulated gas markets (Zheng et al. (2010)). The aim is to con-

sider how alternative environmental and energy policies, as well as infrastructure

investments, could affect public objectives such as consumer costs, overall mar-

ket efficiency, energy security, and environmental impacts Ruiz et al. (2014). We

detail more below:

Regulated Market

A variety of participants between the original producer and end user exists,

such as the gas producers, the gas pipeline companies, local gas distribution

companies and consumers. In a regulated market, gas prices in each transaction

between these participants are tightly regulated by government policy (Zheng

et al. (2010)). O’Neill et al. (1979) proposed a model for allocating gas to the

users with different priorities under the government regulations when a gas short-

age emergency arises. In their model, all users are divided into nine categories

with priorities 1 through 9 (from low to high order).

Deregulated Market

The deregulation of the gas market not only changes the roles of the former

participants but also helps to create more participants, such as gas marketing

companies. An example of a series deregulation policies is to change the tradi-

tional role of pipeline companies as owners of natural gas in which the buyers can

transport their gas through the pipeline system by paying some fees (Zheng et al.

(2010)). Gabriel et al. (2005) aimed to minimise the cost or maximise the profit

of each participant. They considered six types of participants: the pipeline op-

19

erators, the production operators, the marketers/shippers, the storage reservoir

operators, the peak operators and the consumers.

In section 1.4 we give a brief review and outline of the thesis.

1.4 Review and Outline of Thesis

In this thesis, we consider the network design and allocation problem for gas

distribution networks. The fundamental problem is:

• Given a set of nodes and customer requirements, determine the optimal

network. This involves determining the network layout, the diameter of the

connected links, the pressure at each node, and the flow through each link.

The objective usually is to meet demand and requirements at minimum total

cost. The requirements are related to the available pipeline diameters, pressure

limits, demands, physics gas laws and network structure which is tree. There

are three cases of pipeline diameters to consider: single diameter; continuous di-

ameter; and multi diameter. In the literature, the cases of single diameter and

continuous diameter have been considered by Rothfarb et al. (1970) and André

et al. (2013). There is no work in the literature that considers the case of multi

diameter. The contributions of our research are in the area of gas distribution

network design and allocation that have unresolved issues. More specifically we

develop an accurate Mixed Integer Non Linear Programming (MINLP) model for

the fundamental problem in the case of multi diameter. The multi diameter case

corresponds to where a link consists of different commercially available diameters

that are serially connected. Our MINLP model is computationally difficult to

solve, particularly for larger networks. Thus, we are motivated to develop two

different solution methods for our model. One is an approximation method and

the other a heuristic method.

This thesis is divided into six chapters that are organised as follows.

Chapter 1 starts with an overview of natural gas including composition, for-

mation, and uses of natural gas. Also, the gas supply chain that is the process of

moving natural gas from the gas field to consumers is presented. The problems

20

arising in the four stages: production; transmission; distribution; and marketing

of gas supply chain are discussed. In particular, we explain gas distribution line

including components, structures, problems in design and expansion of gas dis-

tribution networks.

Chapter 2 begins by providing the background of the problems for the design

of gas distribution networks. We consider two main problems in the area of gas

distribution network design: the fundamental problem which is network design

and allocation problem and the sub-problem which is the allocation problem. We

provide the mathematical models as well as the solution approaches related to

these two problems from the literature. We present the literature review for water

distribution networks as well. The design of the gas and the water distribution

networks are similar in terms of their mathematical modelling. Most of the lit-

erature on distribution networks has focused on the problem where the network

structure is given (the allocation sub-problem). In contrast, there are only a few

papers on the problem that involves the determination of the network structure

and its components (the fundamental problem). Our motivation in this thesis is

to address this problem.

In Chapter 3, we develop an effective MINLP model to design the gas distri-

bution network (tree structure) and to allocate the multi diameter types for each

link (Fundamental Problem). The objective function is a linear cost function of

the pipe diameters. We consider a wide range of design parameters including the

number of supply and demand nodes, the set of pipe diameter types, the length

(distance) between nodes, and the pressure limits at each node. We consider the

constraints under steady-state conditions such as pressure limits at each node,

the flow balance through each link, the pressure drop equation for two ends of

each link. The decision variables are the selected links connecting nodes, the flow

through each link, the pressure at each node, and the length of selected diameter

for each link. Our model includes a linear objective function and the nonlinear

and nonconvex equality constraints. These constraints make our MINLP model

computationally difficult. We develop two different solution methods for our

model. One is an approximation method and the other a heuristic method.

To solve our MINLP model using the approximation method, we need a

21

method that handles the nonconvexities of the constraints. The algorithm that

we use is Outer Approximation Algorithm with Equality Relaxation and Aug-

mented Penalty (OA/ER/AP) method given by Viswanathan and Grossmann

(1990). The advantage of the OA/ER/AP algorithm, among the other MINLP

algorithms, is in its ability to handle the nonconvexity of the problem. Our

contribution in this part is that we review this algorithm and then examine its

functionality and efficiency on our MINLP model. The following details are given

in Chapter 3.

• Our new MINLP model including the notation and terminology.

• The Outer Approximation algorithm and its variations.

• The OA/ER/AP method.

• The effective parameters and stopping criteria for the OA/ER/AP algo-

rithm that influence the feasibility and efficiency of the solution for our

model.

In Chapter 4, we test our model using the OA/ER/AP algorithm presented

in Chapter 3. We consider the effective choice of parameters and stopping crite-

ria for the OA/ER/AP algorithm that facilitates the finding of a cost-effective,

feasible solution in a reasonable amount of computation time (as our model is

computationally difficult to solve using the OA/ER/AP algorithm, we allow a

maximum 24 hours). The OA/ER/AP algorithm alternates between two sub-

problems including a NLP sub-problem and the Master MILP sub-problem. In

the NLP sub-problems, the integer variable of our model are fixed. In the master

MILP sub-problem, the effect of nonconvexities of our model will be reduced by

linearization of the nonlinear functions of our model at the set of linearization

points. The number of starting points in the NLP sub-problem and the value of

the optimality gap in the Master MILP sub-problem are the main inputs that in-

fluence the feasibility and efficiency of the solution for our model. A single start

implementation might be trapped in a local optimum, but the multiple starts

provide a better chance of finding a cost-effective feasible solution. We gener-

ate different sized networks (5, 10, 15, 25 and 50 nodes) to test our model (30

instances for each network size). In this chapter, the OA/ER/AP algorithm is

applied to our test cases and we give the following details:

• The computational results with the Single start for the NLP sub-problems.

22

For the medium and large sized problem, we also consider different values

of Relative Optimality Tolerance (ROT) for the Master MILP sub-problem.

• The computational results with the Multi start for NLP sub-problems. For

the medium and large sized problem, we also consider different values of

(ROT) for the Master MLIP sub-problem.

• Comparative analysis between the NLP-Single start and the NLP-Multi

start strategies.

From the computational results using the OA/ER/AP algorithm, it turns out that

the smaller sized networks are solved when the optimality gap is 10−13. We con-

sider a greater value than 10−13 for the optimality gap (the value of ROT(MILP))

for networks with 25 and 50 nodes. We test all 30 instances for specific values of

ROT(MILP) under the NLP-Single start and the NLP-Multi start conditions to

find a cost-effective feasible solution within 24 hours. As expected the NLP-Multi

start yields an improved objective function value but requires more computational

time than the NLP-Single start. Our main outcome is a MINLP model that is

effective for small networks.

In Chapter 5, we develop a new heuristic algorithm for solving the MNLP.

Our heuristic algorithm generates a good feasible solution for the gas distribution

network design and allocation problem (the Fundamental Problem). We aim to

determine the gas distribution network structure and its components. These

components are the different pipe diameter types (multi diameter) for each link,

the suitable pressure at each node, and the flow through each link under steady-

state conditions. Our heuristic algorithm solves the fundamental problem in a

reasonable amount of computation time. Our solution strategy is to reduce the

level of difficulty by converting the MINLP problem to a Linear Programming

problem generating the integer variables in the outer level separately. Thus,

our proposed algorithm includes two levels: in the outer level, a tree network

is generated, and in the inner level, we determine different diameters for the

given links as well as determining the pressure at each node and the flow through

each selected link. This method is implemented in JAVA as a programming

language, AIMMS as a commercial software package, and Excel as a computer

package with arithmetic operations and functions. The quantitative analysis of

the effects of different parameters and stopping criteria of our heuristic algorithm

on optimal decisions is also investigated. The effective parameters included the

23

values of the sample size, elite sample size and smoothing parameter and the

stopping criteria included the value of tolerance parameter and integer parameter.

This chapter includes computational results for our algorithm. We also present

a comparative analysis of the objective function value and computation time

between our heuristic algorithm and the AOA algorithm. Our main outcome

is a heuristic algorithm that finds a good quality feasible solution for the large

sized test problems (50 nodes) within 4 hours. The results obtained from the

comparative analysis of the objective function value are:

• Our heuristic algorithm improves the average objective function value for

small sized test problems, by 2% and 3.57% on the NLP-Single start and

the NLP-Multi start, respectively.

• Our heuristic algorithm improves the average objective function value for

medium-sized test problems, by 33% and 28% on the NLP-Single start and

the NLP-Multi start, respectively.

• Our heuristic algorithm improves the average objective function value for

large sized test problems, by 32% and 27% on the NLP-Single start and the

NLP-Multi start, respectively.

We also note that an average computation times (seconds) of our heuristic algo-

rithm for networks with 10, 25, and 50 nodes of 765.33, 4,351.46, and 10,162.53,

respectively. The following results are obtained from the comparative analysis in

the computation time for networks with 25 and 50 nodes:

• Our heuristic algorithm improves the average computation time for medium

sized test problems, by 135% and 143% on the NLP-Single start and the

NLP-Multi start, respectively (when the optimality gap is 0.01).

• Our heuristic algorithm improves the average computation time for large

sized test problems, by 232% and 188% on the NLP-Single start and the

NLP-Multi start, respectively (when the optimality gap is 0.1).

Finally, Chapter 6 highlights the major contributions of the study. We provide

a summary of the earlier chapters and conclusions obtained from the research.

We conclude the chapter with some suggestions for possible directions for future

research in the area.

24

Chapter 2

Models

In this chapter, the background of gas distribution network design is provided.

We first establish an overview of problems for both gas and water distribution

networks. Then, we detail the trend of the research in gas distribution network

design under steady state conditions. The mathematical models and solution

methods will be discussed. Moreover, for more clarification of the problems in

network design, we include the literature review for water distribution networks

as well. The design of gas and water distribution networks are similar in terms

of their mathematical modelling. Most of the literature on distribution networks

has focused on problems when the network structure is given (normally, as a tree

or a cycle (loop) network). In contrast, there are only a few papers on problems

that also involve the determination of the network structure. The contributions

of this thesis are identified based on the gaps in the literature. Our motivation

in this thesis is considering the network design and allocation problem for gas

distribution networks. Our main problem is:

• Given a set of nodes and customer requirements, determine the optimal

network (minimum cost). This involves determining the network layout,

the diameter of the connected pipeline, the pressure at each node, and flow

through each link.

The objective usually is to meet demand and requirements at minimum total

cost. The requirements are related to the available pipeline diameters, the pres-

sure limits, demands, physics gas laws and network structure which are tree and

cycle (loop).

25

This chapter is organised as follows: Section 2.1 presents the background of

the gas distribution network design including the main problems of gas network

design. In Sections 2.2, we present the literature on the design of gas and water

distribution networks when the structure is given as a tree or a cycle (loop)

network. In Section 2.3, we review the literature on the design of gas and water

distribution networks when the structure is not given. In Section 2.4, the research

gap and the research problem are provided. The contributions of this thesis are

provided in Section 2.5.

2.1 Background

In the last few decades, many problems in the gas industry have been tackled

by operations research models and techniques. As we have already discussed in

Chapter 1, these problems cover the area of production, transportation, distri-

bution, and marketing. Firstly, we direct the reader to several excellent survey

papers of optimisation techniques in the gas industry. Then, in particular, we

present some background of optimisation techniques in gas distribution networks.

Nikbakht et al. (2012) completed a literature review on natural gas supply

chain modelling and designed a multi-echelon supply chain for the natural gas

transmission system. Zheng et al. (2010) focused on three specific aspects of

the gas industry: production, transportation, and marketing. They considered

the mathematical modelling of six general problems including the production

scheduling problem, the maximal recovery problem, the network design problem,

the fuel cost minimisation, and the regulated and deregulated market problems.

Also, they provided a literature review of existing optimisation techniques as the

methods of finding the solutions to these six problems.

Hamedi et al. (2011) introduced some problems related to the design, flow,

operation and expansion of gas transmission networks. Ŕıos-Mercado and Borraz-

Sánchez (2015) presented a state of the art survey focusing on specific categories

that include short-term basis storage (line-packing problems), gas quality satis-

faction (pooling problems), and compressor station modelling (fuel cost minimi-

sation problems).

26

Recently, a survey of optimisation techniques in operation and design of nat-

ural gas pipelines has been provided by Demissie and Zhu (2015). This study

covers the literature on gas transmission and distribution networks from 2000

to 2014 (Demissie and Zhu (2015)). They also concluded that gas distribution

systems has received less attention from researchers than transmission systems.

In terms of optimisation techniques in gas distribution networks, there has

been very little work in the literature (Demissie and Zhu (2015)). For more clar-

ification of the problems and applications of optimisation techniques in the field

of network design, we have gone through the literature of the design of the water

distribution networks as well. As noted earlier there is a strong similarity in the

mathematical modelling of gas and water networks. Both have flows and both

have complex constraints. Gas networks have pressure requirements and water

networks have water height as a factor which plays a similar role (De Wolf and

Smeers (1996)).

Generally, in the literature, the network design for the gas or water has been

presented in terms of graph theory. The vertices (nodes) of the graph correspond

to the points such as stations and consumers to be linked. The arcs represent the

potential connection between nodes such as pipelines. In most applications, the

required network has a tree or cycle structure that is the underlying graph is a

tree or a cycle (loop). The structure is motivated by the cost consideration. In

general, network design is a very difficult problem due to the need to design re-

liable, resilient, and survivable networks when ensuring many design constraints

(André et al. (2013)).

The main problems in the gas or water networks are designing optimal struc-

tures. In particular, this requires determining the diameter of each pipe in the

network. We summarise these problems in more detail below:

• Fundamental Problem (Problem 1)

Network Design and Allocation Problem: Given a set of nodes and

customer requirements, determine the optimal network. This involves

determining the

– Network layout,

27

– Diameter of the connected links,

– Pressure at each node,

– Flow through each link.

The objective usually is to meet demand and requirements at mini-

mum total cost. The requirements are related to the available pipeline

diameters, pressure limits, demands, physics gas laws and network

structure which are tree and cycle (loop).

There are only a few papers on this fundamental problem. Most of the

literature on gas distribution networks has focused on the following sub-

problem.

• Sub-problem (Problem 2)

Allocation Problem: Given a set of nodes, network structure and cus-

tomers requirements, determine the optimal pipeline design of the net-

work. This involves determining the

– Pipeline diameter for each link,

– Pressure at each node,

– Flow through each link.

The objective usually is to meet demand and requirements at mini-

mum total cost. The requirements are related to the available pipeline

diameters, pressure limits, demands, physics gas laws and network

structure which are tree and cycle (loop).

There are three cases to consider with respect to the diameter of each link

(Shiono and Suzuki (2016)):

• The Single Diameter (SD), where a link consists of one commercially avail-

able diameter.

• The Multi Diameter (MD), where a link consists of different commercially

available diameter segments that are serially connected.

• The Continuous Diameter (CD), where a link consists of one diameter type

that should be determined between the given minimum and maximum val-

ues.

In this section we provide models and solution methods for the above prob-

lems. Briefly, we classify Problems 1, 2 as shown in Figure 2.1. We review the

28

MD

Specified Network

Tree Structure

Network Structure

Loop Structure

Unspecified Network Specified Network Unspecified Network

Network Design and
Allocation ProblemAllocation Problem

SD MD MD MDCD
CD

CDSD SD
MD

CD
SD

SD: Single Diameter MD: Multi Diameter CD: Continuous Diameter

Network Design and
Allocation ProblemAllocation Problem

Figure 2.1: The classification for reviewing the literature according to the prob-
lems of network design and allocation problem

literature based on the classification given in Figure 2.1.

We distinguish the specified and unspecified network cases in our mathemat-

ical modelling using following notations:

• When the network is specified, we define the n× n adjacency matrix A =

[aij]n×n as an input parameter,

aij =

1, if i is a serving node for j (i → j).

0, otherwise.

• When the network is not specified, we define zij as a decision variable,

zij =

1, if i is a serving node for j (i → j).

0, otherwise.

We use the following notation and terminology to present the mathematical

models in the literature.

29

Sets:

N = {1} ∪Nc : The set of supply and demand nodes.
N = {1, 2, 3, . . . , i, . . . , n− 1, n}

Nc: The set of demand nodes {2, 3, . . . , i, . . . , n− 1, n}.

D : The set of pipe diameter type, {d1, d2, . . . , d|D|}.

O : The set of loops in the network.

Input data:

s1 : The amount of supply at source node 1.

si : The amount of demand at node i.

C(d) : The cost of per unit length of pipe diameter type d ∈ D.

Lij : The length between node i and node j.

πLi , πUi : Lower and Upper square pressure limits at node i.

Dmin, Dmax : The minimum and maximum value of diameter

when we consider continuous diameter of each link.

Variables:

pri : The gas pressure at node i.

πi : The square of gas pressure at node i.

fij : The flow rate through the pipeline from node i to node j.

dij : The pipe diameter type for the link from node i to node j,

ldij: The pipe length with diameter d from node i to node j.

δdij: The proportion of the length from node i to node j

that has a diameter type d ∈ D.

30

We define dij ∈ D, when we consider single diameter for each link (the first

case) and dij ∈ [Dmin, Dmax], when we consider the continuous diameter for each

link (the third case). We note that we consider designing of the gas networks

under steady state conditions. Our motivation is the fact that the steady state

conditions can be applied widely in gas transportation, in particular for low-

pressure gas distribution lines (Osiadacs and Pienkosz (1988)). A network is in

the steady state conditions when the flow of gas in the system is independent of

time. The problem of gas networks in steady state conditions is usually that of

computing the values of node pressures and the values of flows in the individual

pipelines for known values of lower and upper pressure limits and of gas supply

and consumption at the nodes (Osiadacs and Pienkosz (1988)). Similarly, the

steady state conditions can also be defined for water networks (Djebedjian et al.

(2005)). We define the known objective functions of the allocation problem in the

literature for cases of single diameter, multi diameter, and continuous diameter.

The Objective Functions

The objective function is to minimise the design cost of the network. The main

cost of design is related to the cost of the pipeline in which the cost is increased

when the pipeline diameter is increased. The known objective functions in the

literature for the different scenarios are as follows:

• The single diameter case corresponds to where a link consists of one com-

mercially available diameter (dij ∈ D). In this case, the objective function

(Function (2.1)) is a discrete cost function of the pipe diameters.∑
(i,j)∈A

C(dij)Lij (2.1)

• The multi diameter case corresponds to where a link consists of different

commercially available diameters (d ∈ D) that are serially connected. In

this case, the objective function (Function (2.2)) is a linear cost function of

the pipe diameters. ∑
(i,j)∈A

∑
d∈D

C(d)ldij (2.2)

• The continuous diameter case corresponds to where a pipe diameter is con-

31

tinuous (Dmin < dij < Dmax). Parker (2004) used regression analysis to

estimate the relation between the total cost and pipeline diameter. He

found that the per unit cost of the pipeline is calculated as a quadratic

cost equation containing three terms of a1, a2, and a3 (André (2010)). The

objective function for this case is:∑
(i,j)∈A

(a0 + a1dij + a2d
2
ij)Lij. (2.3)

In particular, De Wolf and Smeers (1996) considered the values of the coef-

ficients of the quadratic function (2.3) as a0 = 7.7476, a1 = 7.4782 × 10−3,

and a2 = 2.5180×10−5. They estimated these values based on the quadratic

regression curve obtained from the real data (The relation between the total

cost and pipeline diameter).

The Constraints

We first present the main known constraints that should be considered in any

mathematical model for the design of gas and water networks. Then, we present

the mathematical models for each case of diameter types in Table 2.1.

The following constraints are considered for the mathematical model of the

design of the gas and water networks when the network structure is given under

steady state conditions:

(1) Mass flow balance equation at each node.∑
j∈A+

fij −
∑
j′∈A−

fj′i = si, ∀i ∈ N (2.4)

where, A+ = {j|(i, j) ∈ A}, A− = {j′|(j′, i) ∈ A}

(2) Pressure limits constraints at each node.

πi
L < πi < πi

U , ∀i ∈ N (2.5)

(3) Pressure drop equation through each pipeline.

πi − πj = βLijd
−5
ij f

2
ij, ∀(i, j) ∈ A (2.6)

32

According to André et al. (2013), when we consider a fluid is flowing in a

pipeline, the difference of pressure between two ends of pipeline finds its origin

in the friction of the fluid on the internal wall of the pipeline. These energy

losses, called head losses, depend on physical properties of the fluid (density and

velocity) and the geometry of the pipeline (diameter, length and roughness). In

the literature, there are several formulae of the head losses that differ according

to the required degree of accuracy. The Weymouth equation (equation (2.6)) is

the head losses formula that has been used in the literature for gas distribution

system (Wu et al. (2007)). The Weymouth equation is referred to the pressure

drop equation or the physics gas law in the literature. The Weymouth equation is

a nonlinear and nonconvex equation that explains the relationship between flow,

pressure and diameter of each pipeline (André et al. (2013)). The coefficient β

in Equation (2.6) is a constant that can be computed by the following equations

(Wu et al. (2007)):

β = K × λ,

K = (1.3305× 105)× CF × SG× T

where,

CF : The dimensionless compressibility factor,

T : The gas temperature,

SG : The gas specific gravity, and

λ : The frictional factor.

The equation (2.6) explains the capacity of each pipeline when fij, πi, and dij

are variables. Therefore, for the design of the gas network, we have to include

the nonlinear equation as a constraint that explains the capacity of each pipeline.

Also, the same equation can be defined for the water pipeline. The square of gas

pressure is replaced by the water height at each node, the gas flow by the water

flow and the value of coefficient β by different constant value. In the next section,

we present the literature on the gas or water distribution networks design when

the network is a tree structure.

33

2.2 Tree Structure

The tree and also the cycle (loop) networks are related to the different levels of

reliability (level 1, level 2) for the demand nodes in the network. The reliability

is the number of independent paths from the source node to the demand node

(Afshar (2007)). The reliability of Level 1 means there is one independent path

from the source node to each demand node. The reliability of Level 2 means there

are two independent paths from the source node to each demand node.

In this section, we first present the literature on the Allocation Problem (Prob-

lem 2) in the given (specified) tree network. Then, we present the literature on

the Network Design and Allocation Problem (Problem 1) when the structure of

the network is not given (unspecified).

2.2.1 Specified Network

Much of the research in gas and water network design has centred on the deter-

mining pipeline diameter (Allocation problem) for specified tree network. In this

case, as the network layout is defined, then the matrix of arcs is given as input

data in the form of an adjacency matrix A = [aij]n×n.

The earliest known examples of the allocation problem have been mostly con-

sidered for given tree networks (the gas or the water). We note that whenever we

have a tree network and if the direction of flow is given, the flow through the ele-

ment of the network can be easily determined by solving the system of equations

(2.4). Using the flow obtained from the system of equations (2.4), we determine

the variables πi and dij in the equation (2.6). Table 2.1 presents the mathemat-

ical models of the allocation problem (Problem 2) when we consider three cases

for the diameter of the pipeline. The models 1 and 3 that are presented in Table

2.1 are Non Linear Programming (NLP) problems due to the nonlinear equation

(2.6). Model 2 is a linear model when Lij =
∑

d∈D l
d
ij. We need to note that

the variables are πi and ldij. By replacing Lijd
5
ij with

∑
d∈D l

d
ijd
−5, the nonlinear

equation (2.6) converts to a linear equation (2.7).

34

πi − πj = β(
∑
d∈D

ldijd
−5)f 2

ij, ∀(i, j) ∈ A. (2.7)

We also need to add the constraints
∑

d∈D l
d
ij = Lij, ∀(i, j) ∈ A and ldij ≥ 0

in Model 2 that shows the summation of the length of pipelines with different

diameters must be equal to the distance between nodes (i, j). We need to note

that if ldij = 0, then there is no diameter type d for link (i, j).

Single Diameter (SD)

In this case, the diameters of the pipe are collected from a finite discrete set of

diameters for the tree network. Therefore, the mathematical model includes the

integer variables that makes the problem computationally difficult. The earliest

work for the case of single pipeline diameter was done by Bhaskaran and Salzborn

(1979). They presented an Integer Programming (IP) mathematical model to de-

termine the pipeline diameter of each link from the wells to the factory.

Bhaskaran and Salzborn (1979) also assumed that the pressure at the wells and

the plants are given and the only variables are the discrete variable of diameters

of each link (the MINLP Model 1 in Table 2.1 converts into an IP problem).

To deal with the difficulty of integer variables in the model, they defined a new

variable δdij as a portion of the length of each link that has a diameter type from

the set of diameters. The variable δdij is aimed to consider the cases of single

diameter. The objective function (2.1) turns into the following equation.∑
(i,j)∈A

∑
d∈D

C(d)δdijLij

Moreover, they added the new constraints for each link (i, j) to the model con-

sidering the following case:
∑

d∈D δ
d
ij = 1, the sum of fractions is 1

δdij = {0, 1}, for the case of single diameter.

35

T
ab

le
2.

1:
M

at
h
em

at
ic

al
m

o
d
el

s
fo

r
th

e
A

ll
o
ca

ti
on

P
ro

b
le

m
in

th
e

gi
ve

n
tr

ee
ga

s
d
is

tr
ib

u
ti

on
n
et

w
or

k
s

O
b

je
ct

iv
e

F
u
n
ct

io
n

C
on

st
ra

in
ts

M
o
d
el

1
S
in

gl
e

D
ia

m
et

er
(S

D
)

(2
.1

)
(2
.4

)
−

(2
.6

)

d
ij
∈
D
,

∀(
i,
j)
∈
A
.

M
o
d
el

2
M

u
lt

i
D

ia
m

et
er

(M
D

)
(2
.2

)
(2
.4

)
−

(2
.5

),
(2
.7

),
an

d
∑ d

∈D
ld i
j

=
L
ij
,

∀(
i,
j)
∈
A
.

M
o
d
el

3
C

on
ti

n
u
ou

s
D

ia
m

et
er

(C
D

)
(2
.3

)
(2
.4

)
−

(2
.6

),

d
ij
∈

[D
m
in
,D

m
a
x
],
∀(
i,
j)
∈
A
.

36

When we consider constraint δdij = {0, 1},∀(i, j) ∈ A, the IP model converts

into a 0 − 1 model. The model is implemented in APEX and tested with data

from the Moomba gas field in South Cooper Basin in Australia.

In a recent paper, Shiono and Suzuki (2016) aimed to minimise the cost of a

tree network determining the single diameter for each arc (i,j) (Allocation Prob-

lem). They considered the specified tree network with one single source. They

eliminated πi, πj as variables in their model. The idea of elimination of the pres-

sure as a variable is to consider the pressure drop through each path of the tree

shape network that starts from the source node (node 1). The reason is that the

supplied pressure πU at the source node gradually decreases along the path, which

means that the pressure at the last node in each path is greater than or equal to

πL. As a result, they replaced the equation (2.6) by the following equation that

presents the pressure drop through each leaf starting from the source node that

does not exceed πU − πL.

∑
(i,j)∈Path(1−v)

βLijd
−5
ij f

2
ij ≤ π ∀v ∈ V, dij ∈ D (2.8)

where V ⊂ N is the set of leaves in the tree network, Path(1−v) is the 1−v−path

from source node 1 to v ∈ V and π = πU − πL. The variables fij through

the element of the network can be easily obtained from the tree structure using

equation (2.4). Therefore, the only variable in the constraint (2.8) is the diameter

of each link. As a result, the constraint (2.8) is the linear constraint for the model.

The mathematical model is IP where the diameters dij ∈ D. Their solution

technique is to relax the discrete variables of dij as continuous variables (dij > 0)

which turns the IP model into the LP model. In this regard, they defined the

weight for each arc (weight is the function of length and flow for each arc) in

the network and converted the problem with the continuous variable dij into

a problem with the continuous variable πij. Shiono and Suzuki (2016) showed

that their solution methods do not require mathematical programming software.

Also, the authors found the optimal continuous diameter without computing

Lagrange multipliers. Shiono and Suzuki (2016) considered an iterative procedure

that converts the original tree into a single equivalent arc (including two nodes:

source node and a demand node), thereby helping in the computation of the cost

37

minimisation. The procedure to convert each path from root node 1 into a single

equivalent arc (contraction procedure) is as follows:

Step 1: Find the parent of the deepest node (depth-first search) of the path from

root node 1.

Step 2: Combine the children as a new node with new weight of arc.

Step 3: Remove the parent of the deepest child and connect the child to the

grandparent with the new weight of arc.

Step 4: Continue Steps 1-3 until the parent is the root node 1 (the contracted

tree includes two nodes: root node 1 and a child).

Step 5: Compute the minimum cost of the contracted tree.

Then, Shiono and Suzuki (2016) considered an iterative procedure to expand the

contracted tree to the original tree to compute the optimal diameters as a continu-

ous variable. Also, these authors provided an algorithm to convert the continuous

diameter to the single diameter for each arc. Shiono and Suzuki (2016) demon-

strated the efficiency of their algorithm (high accuracy in a short computational

time) by testing of two sample networks. The first sample network consists of

19 arcs and 20 nodes (a supply node, 13 demand nodes and 6 junction nodes).

The second sample network consists of 45 arcs and 46 nodes (a supply node, 22

demand nods and 23 junction nodes).

Mohajeri et al. (2012) presented a Mixed Integer Programming (MIP) model

to minimise the total cost of the gas distribution network. The cost includes

the establishing cost for Town Board Station (TBS) and the cost of gas trans-

portation from TBS to consumers and among consumers. Mohajeri et al. (2012)

assumed that the pressure at each node is not a variable and would not exceed

from 30 psi. The variables, here, are the flow through each link and the diameter

type for each link. However, these authors did not use the nonlinear equation

(2.6) to find the variables of flows and diameters for each link. As Mohajeri et al.

(2012) considered the tree structure, the flow through the element of the net-

work can be easily determined by solving the equation (2.4) as explained earlier.

Then, the diameter of links as the only variable has been chosen for the gas flow

rate. For example, gas can flow through the pipe diameter of 63 mm when fij ∈

38

[0,44] (m3/h). Mohajeri et al. (2012) used an Ant Colony Optimisation (ACO)

heuristic algorithm coded in MATLAB for solving the problem. The aim was

to compare the performance of the exact method and heuristic method for this

problem. Then, these authors provided different test problems using the ACO

algorithm and the Branch and Bound (B & B) method as an exact method in

CPLEX. Mohajeri et al. (2012) compared the results between the ACO algorithm

and the B & B algorithm. The authors showed that the AOC method obtained

a solution close to the B & B solution (exact optimal solution) with much less

computation time. In addition, Mohajeri et al. (2012) tested the real case of

the natural gas network in Mazandaran Gas Company in Iran using the ACO

algorithm. Mohajeri et al. (2012) reported about 50 percent improvement of the

AOC algorithm in the cost compared to the cost that has been estimated by

Mazandaran Gas Company’s experts.

de Mélo Duarte et al. (2006) developed the MINLP model to find the least

cost combination of diameters from a discrete set of commercially available di-

ameters for the pipes of a given gas network. de Mélo Duarte et al. (2006) used

a Tabu search heuristic algorithm for the problem and then compared the results

of their proposed algorithm with the result of a Genetic Algorithm (GA) method.

de Mélo Duarte et al. (2006) tested both algorithms for 44 instances including 34

instances for small (up to 264 nodes) and medium (less than 1000 nodes) sized

and 10 instances of large sized (more than 1000 nodes) problem. The performance

of the GA algorithm was worse in most instances, in particular for the large size

instances, it was not able to find a solution. As a result, de Mélo Duarte et al.

(2006) showed that the Tabu search method is very promising for both quality of

solution and computational time for all instances compared to the GA algorithm

(de Mélo Duarte et al. (2006)).

Multi Diameter (MD)

In this case, a pipe contains different commercially available diameter seg-

ments that are serially connected. The multi diameters are suitable for long

distances and provide a cheaper design compared with single diameter. The ben-

efit of MD diameter over SD diameter, also, is that there are no integer variables

in the mathematical model regarding the diameter type that leads to simplifying

39

the problem.

As noted earlier in SD section, apart from SD cases, Bhaskaran and Salzborn

(1979) have also considered the variable δdij for MD of each link by adding the

new constraints for each link (i, j) to the model as follows:
∑

d∈D δ
d
ij = 1, the sum of fractions is 1

δdij ≥ 0, for the case of multi diameter

The constraint δdij ≥ 0,∀(i, j) ∈ A is used for the multi diameter. The Integer

Programming model converts into the Linear Programming model. The model is

implemented in APEX and tested with data from the Moomba gas field in South

Cooper Basin in Australia.

Wu et al. (2007) presented an NLP model (Model 2 in Table 2.1) to minimise

the cost of design of gas distribution network under steady state conditions. In

particular, the decision variables are the length of pipes’ diameter, the pressure at

each node, and the flow through each link and its direction through the pipeline.

The problem is a nonconvex and nonsmooth NLP problem due to the nonlinear,

nonconvex and nonsmooth pressure drop constraints. Wu et al. (2007) presented

a global approach based on Global Optimisation (GOP) primal-relaxed dual de-

composition algorithm as a solution method. This method partitions the variables

of the model into two groups. The iterative procedure of the GOP method solves

each group of variables separately using primal problem and relaxed dual prob-

lem. The lower and upper bound of the optimal solution is provided by the primal

part and the relaxed dual part respectively. The GOP method guarantees con-

vergence to the global optimal for a kind of specific structure program in which

the objective function and constraints must satisfy specific conditions. Wu et al.

(2007) assumed that the direction of the flow through each link is not given. They

defined f 2
ij = fij|fij| in the equation (2.7). The absolute value definition gives

the variables of f+
ij = max{0, fij} and f−ij = max{0,−fij} and the equations

fij = f+
ij − f−ij , f+

ij × f−ij = 0, and |fij| = f+
ij + f−ij . This leads to the definition

of f 2
ij = (f+

ij)2 − (f−ij)2 in the equation (2.7) in Model 2. Thus, Wu et al. (2007)

converted Model 2 to the nonconvex quadratic model replacing new variables of

f+
ij and f−ij for the flow and adding the new constraint of f+

ij × f−ij = 0 to Model

2. These authors partitioned the variables of the converted model and developed

40

the GOP approach (Wu et al. (2007)). Also, Wu et al. (2007) tested their ap-

proach for two small size networks to show the performance of their algorithm.

In an example of a network with 6 nodes, while the distances between nodes are

10 miles, the GOP algorithm presented a single pipeline diameter type for each

link. However, for the network with 14 nodes while the distances between nodes

are more 20 and less than 180 miles, the GOP algorithm presented two different

diameters for two links and one type diameter for other links. There is no further

details about their computational result.

Continuous Diameter (CD)

In the case of CD diameter, the pipe diameter is considered as continuous that

should be obtained from an interval [Dmin, Dmax]. In the real world, there are the

standard sizes of pipeline diameter provided by companies for the gas network

design. Therefore, the design model with continuous diameter is reasonable if

there is no standard size for the diameter. However, some researchers used the

continuous diameter to overcome the difficulty of handling discrete variables of

diameters as well as to convert the MINLP problem into the NLP problem.

De Wolf and Smeers (1996) presented, the NLP problem for the design and

operation of gas transmission network while considering the nonlinear constraints

of the gas law (equation (2.6)). De Wolf and Smeers (1996) are the earliest authors

that provided a realistic model considering the nonsmooth, nonconvex equation

(2.6) as the constraints in their proposed mathematical model. The problem was

solved by a combination of Generalised Reduced Gradient and penalty methods.

De Wolf and Smeers (1996) applied the methodology to a real-world situation of

Belgian gas network with known structure from Norway to France. Considering

this methodology, these authors showed the saving of 0.263 milion Belgian French

per day. In the next section, we discuss the literature on designing of unknown

tree network structure.

2.2.2 Unspecified Network

In this problem, the optimisation of network layout is coupled with pipe sizing

analysis (Network design and Allocation problem). Therefore, all design vari-

ables fij, πi, dij, and zij are considered which makes the problem difficult. Also,

41

the reliability of the demand nodes should be considered which is the number of

independent paths from the source node to the demand nodes (level 1).

Some researchers have addressed the layout geometry optimisation of the pipe

networks, neglecting the influence of the pipe sizing on layout determination. For

example, there are some methods for designing the layout of a tree network with-

out considering equation (2.6) such as spanning tree (Mohajeri et al. (2012)), and

the shortest path (Tingzhe and Changgui (2005)).

To the best of our knowledge, there are no explicit developed mathematical

models in the literature to optimise network layout and to determine the diame-

ter type for each connected link (Network design and Allocation problem). In a

given tree network, we presented Models 1, 2, and 3 in Table 2.1 when we consider

three cases to determine the diameter of each link. For designing a tree network,

by adding the connection links as the variables into the models shown in Table

2.1, the models will become difficult to solve. In this section, we consider the

papers that proposed a method to improve the layout design for the models in

Table 2.1. The researchers considered an initial design for the network structure

and considered the allocation models in Table 2.1 to evaluate the objective func-

tion. Mostly, the researchers developed a two-stage iterative method. In the first

stage, the optimal diameters for a tree network are determined using a nonlinear

programming method. In the second stage, iteratively, the researchers remove a

link from the network, then search to add a new link to the network aiming to

find the minimum cost.

Single Diameter (SD)

The earliest work of this case was provided by Rothfarb et al. (1970). They

presented a heuristic method to design the offshore natural gas for the given gas

field and plant locations. In the first stage, an initial tree is generated based on

experience. The diameter of the individual pipes is then computed using Model

1. In the second stage, local transformations called ∆-changes are applied as

follows: a cycle is formed by adding an arc connecting a node to the closest non-

adjacent one. Then another arc from this single cycle is deleted in turn and the

corresponding flows, diameters, pressures, and costs computed. If an improved

42

feasible solution is found, one moves to it and iterates the procedure until no fur-

ther improvements in the cost can be made by ∆-changes (Brimberg et al. (2003)).

Continuous Diameter (CD)

Recently, André et al. (2013) considered the problem of optimal design of a

hydrogen transmission network. Since the authors considered designing of a hy-

drogen network for future use (particularly in France), there is no specific known

diameters for hydrogen pipes. As the result, André et al. (2013) considered con-

tinuous diameter for their work (Dmin < dij < Dmax).

André et al. (2013) did not develop an explicit mathematical model to design

the network layout and to determine the diameter type for each connected link

(Network design and Allocation problem). They presented a heuristic method to

improve the given tree network. It includes a two-stage method of optimal design

and sizing of the hydrogen network. The outer level is to improve the tree network

using ∆-change method that is similar to the proposed method by Rothfarb et al.

(1970). The initial minimal length spanning tree has been generated based on the

distances between nodes. Moreover, on the inner level, the NLP model (Model

3 in Table 2.1) for the specified tree network has been solved using the SNOPT

solver (André et al. (2013)). The SNOPT is a software package for solving large-

scale non-linear optimisation problems developed by Stanford University (Gill

et al. (2005)). The proposed heuristic method by André et al. (2013) is described

as follows:

43

Algorithm 1: ∆-change heuristic algorithm

Step 1: Determine the minimum length spanning tree as the initial topology.

Step 2: Determine the diameter for each link of the tree network (Model 3 in

Table 2.1) using SNOPT solver.

Step 3: Sort the nodes for exploration either on a distance-to-source criterion or

randomly. Select a subset of nodes or the entire set of nodes.

Step 4: For each selected exploration node i of the tree:

(a) Select the closest nodes j (in the Euclidean distance) not connected

with an arc from the tree to i.

(b) Add the arc aij and determine the cycle so created.

(c) Remove one of the other arcs on the cycle in turn and evaluate the

cost.

(d) As soon as the cost is improved (in Model 3), the new network

replaces the previous best network.

Step 5: Repeat the previous steps until no further improvements of the cost are

reached.

André et al. (2013) evaluated the quality of the solution of their ∆-change

heuristic method according to the following strategies:

• For the small networks (7 nodes), they compared the ∆-change heuristic

solution with the solution of the spanning tree algorithm. Also, André

et al. (2013) compared the ∆-change heuristic solution with the solution

of the Tabu search algorithm. From the numerical results, the following

conclusions for two small networks can be presented:

– Both the ∆-change and the Tabu search algorithms reduced the total

cost of network compared to MST algorithm while the total length of

the proposed network increased by more than 5 kilometres compared

to the MST’s length.

– For both tests, the proposed network by the ∆-change algorithm re-

duced the cost significantly compared to the Tabu search’s ones that

are approximately 7% for test 1 and 18% for test 2.

• For the large networks (81 nodes), André et al. (2013) compared the ∆-

change heuristic solution with the solution of the Tabu search algorithm

44

proposed by Brimberg et al. (2003). Also, the Tabu search proposed by

Brimberg et al. (2003) was started with an initial minimum spanning tree

network and using SNOPT solver for determining the diameter sizing.

André et al. (2013) provided the tables to show the comparison between

these two algorithms in terms of cost and computation time. As a result,

these authors demonstrated that the Tabu search best solution was more

expensive than ∆-change one.

André et al. (2013) also conducted the application of their ∆-change method

to the case of development of the future hydrogen pipeline network in France.

Multi Diameter (MD)

To the best of our knowledge, there is no work for both developing a mathe-

matical model or solution method for this part in any of the gas or water distri-

bution networks. We will present our developed mathematical model considering

the case of (MD) in the first section of the next chapter (Chapter 3). Our work

falls into the following category that has been extracted from Figure 2.1.

Tree network→ Unspecified network→
Network Design and Allocation Problem→Multi diameter(MD)

In the literature, the cases of single diameter and continuous diameter have

been considered by Rothfarb et al. (1970) and André et al. (2013). There is no

work in the literature that considers the case of multi diameter. Since different

cases of diameter have different models, we will not be able to compare our work

(the case of multi diameter) with the methods of the literature for the case of

single diameter and continuous diameter for the Network design and Allocation

Problem. For future work, providing that we change our multi diameter into a

single or continuous diameter model, this will allow us to compare the perfor-

mance of the three models for a specific data set.

In the next section, we present the literature on the gas and water distribution

networks design for the cycle (loop) structure.

45

2.3 Cycle (Loop) Structure

The loop structure is a network when the gas is served from at least two directions

to the users (level 2 reliability). Throughout these two directions, there is no arc

in common. The main difficulty, here, is to analyse the flow through each link of

the cycle due to the nonlinear equation (2.6). In order to solve the cycle network

problem, it is prevalent to employ the two Kirchhoff’s laws (Raoni et al. (2017)).

The first (continuity equation) and second (energy conservation equation) laws

were originally developed to solve electrical circuit problems. Raoni et al. (2017)

presented these laws as follows:

The first Kirchhoff’s law: This is a linear algebraic equation stating that

the sum of the flows at the entrance to the node equals the sum of flows at the

exit of nodes.

The second Kirchhoff’s law: This is a nonlinear algebraic equation stating

that the sum of the electrical potential differences around any closed circuit is

zero.

In gas network, the first law is known as mass flow balance through the pipe

that is equation (2.4), whilst the second law is known as the sum of pressure

losses in any closed piping network loop (which equals zero and is expressed as

equation (2.9) below). We consider O, a set of loops in the network with the

elements of {o1, o2, o3, ..., o|O|} (|O| is the number of loops). According to Nasr

and Connor (2014), the loop constraint is:∑
(i,j)∈o

(πi − πj) = 0, ∀o ∈ O (2.9)

In the next sections, we first present the literature on the Allocation Problem

(Problem 2) in the given (specified) cycle (loop) network. Then, we present the

literature on the Network Design and Allocation Problem (Problem 1) when the

structure of the network is not given, but is required to be a loop.

46

2.3.1 Specified Network

There are two different approaches for the analysis of loop structure. The first

approach is to analyse the equation systems of the cycle structure either for the

gas or the water network. The second approach is to present mathematical mod-

elling of the gas distribution network when the structure is cycle to minimise the

design cost as well as determining the flow, the pressure and the diameter for

each link. We explain in more detail below.

Analysis of the equation system of the cycle structure

The equations (2.4), (2.6), and (2.9) are considered as the equation system for

the analysis of the cycle network (Krope et al. (2011)). We note that the network

structure and the diameter of the pipeline are given, and the variables are just

pressure and flow.

Many researchers worked on the analysis of the equation system of the cycle

(loop) network to determine the pressure at each node of the loop as well as the

flow through each link. The first relevant method to solve the nonlinear system of

equation for the loop network (water or gas) proposed by Cross (1936) is primarily

a relaxation method. In particular, the applied methods for this approach, are

divided into three groups as detailed below, depending on which law should be

first satisfied in the modelling (Raoni et al. (2017)).

• Method of Balancing Flow: In this method, the equation (2.4) would be

satisfied. The Hard-Cross procedure proposed by Cross (1936) is a method

to solve a nonlinear system of equations for the loop network with given

pressures at any node of the network. The procedure includes the following

steps:

Step 1: Determine the flow through each link by solving equations (2.6)

and (2.9).

Step 2: Check if the flow satisfies equation (2.4), then stop, otherwise, go

to Step 3.

Step 3: Find of the pressure at the node and do Steps 1-2 until flow balance

for each link is satisfied.

47

The correction of the node pressure in Step 3 above is needed to present

new methods such as Simulated Annealing (Raoni et al. (2017)); Newton-

Raphson (Sarbu (2014); Spiliotis and Tsakiris (2013)).

• Method of Balancing Pressure: In this method, the equation (2.6) is to

be satisfied. The Newton-Raphson method is a method to solve problems

when the inlet and outlet flow rates of the cycle network are known (Sarbu

(2014); Spiliotis and Tsakiris (2013)). By satisfying the flow through each

link of the loop, the pressure at each node is determined using equations

(2.6) and (2.9).

• The Hybrid Method: This method does not need first to satisfy any

Kirchhoff’s laws, which leads to a cycle network problem characterised by

both node mass balance and energy conservation equations (Agency (2014)).

Notably, the EPANET software has been developed for simulation of the

pipeline for the cycle water network (Agency (2014)).

The necessary input data for these methods are presenting the exact position

of loops that means which links belong into which cycles. Today, the Hardy-Cross

method (Cross (1936)) is very often used for analysis of cycle gas distribution net-

works. This method is powerful for the calculation of the cycle gas distribution

network without limiting factors such as the number of nodes, the number of

cycles, and the number of links as the input data (Brkić (2009)). We note the

considerable number of commercial software packages developed in the market

for the calculation of a cycle network in water distribution systems compared to

gas networks (Raoni et al. (2017)).

Design of the cycle (loop) Distribution Networks

In this approach, the mathematical model nature of the design of the cycle

(loop) gas and water distribution network is a MINLP problem in which the

equation (2.9) for each cycle has been considered as a constraint.

Much attention has been given to the loop water distribution network rather

than gas, as the later has been shown to be more complicated in practice. This

can be a motivation for future work in the area of gas networks.

48

Table 2.2: Mathematical model for design of the cycle gas distribution network

Objective function Constraints

Model 4 Single Diameter(SD) (2.1) (2.4)− (2.6), (2.9)

Single Diameter (SD)

The early work for the design of the cycle (loop) water distribution network

was by Alperovits and Shamir (1977) and Goulter (1992). The Water Distribu-

tion Network Design (WDND) mathematical model (similar to Model 4 in Table

2.2) is a NLP model to find the size of pipeline diameters from a discrete set,

the pressure at each node and flows through each pipeline for a given loop water

network structure that yields the least cost network and satisfied the constraints

(2.4)-(2.9). The set of cycles (loops) O in Model 4 should be considered as an

input data (Suribabu (2012)). De Corte and Sörensen (2013) presented a survey

including the methods to solve the WDND problem (Model 4) and compared

some of these methods providing the computational comparison results between

them.

In addition, many researchers presented different methodologies for the NLP

problem of Model 4 given in Table 2.2 (Allocation Problem), for the large prob-

lems. The techniques relevant to this problem includes: Genetic Algorithm

(Haghighi et al. (2011)); Shuffled Frog Leap algorithm (Eusuff and Lansey (2003));

Honey-bee Mating optimisation (Suribabu (2012)). For large problems, Zheng

et al. (2013) provided a novel optimisation approach namely a graph theory al-

gorithm to identify the sub-networks for the original water network. The sub-

networks, rather than the original water network, are individually optimised by

a Differential Evolution (DE) method in a predetermined sequence. Zheng et al.

(2013) tested their algorithm for five case studies to verify its effectiveness. The

computational results also were compared to the results of standard DE (SDE)

algorithm and Genetic Algorithm (GA). The results showed that their proposed

method could find the same lowest cost solution for the small size problem while

finding better feasible solutions for the larger size than the SDE and the GA

methods.

49

2.3.2 Unspecified Network

In this section, the optimisation of the network layout is coupled with pipe sizing

analysis. Therefore, all design variables fij, πi, dij, and zij are considered which

make the problem even more complicated. Also, the reliability of the demand

nodes should be considered that is the two or more independent paths from the

source node to each demand node (Afshar (2007)).

Some researchers, in this case, have addressed the layout geometry optimisa-

tion of the pipe networks, neglecting the influence of the pipe sizing on layout

determination. Ting-zhe (2006) presented a mathematical model for the design

of a loop network considering the supplying of each demand node from two direc-

tions. Ting-zhe (2006) did not consider the pipe sizing for the network; therefore,

the equation (2.6) in their model was neglected. In contrast, these authors as-

sumed the specific diameters according to the land-forms (a nature feature of the

earth’s surface) that lead to simplifying the model by considering only one type

of variable (connection links).

To the best of our knowledge, there is no developed mathematical model in

the literature to optimise the network layout and to determine the diameter for

each connected link (Network design and Allocation problem). In Model 4, we

define the allocation problem in the given loop networks. However, considering

the connection links as the variables in Model 4 to design loop networks, make the

problem even more difficult. As explained in Section 2.3.1, all proposed methods

are presented to solve Model 4 (Allocation Problem). In Model 4, the network

structure is given which is a cycle (loop) network. In this section, we consider

the papers that proposed a method to improve the layout design as well as deter-

mining the diameters for each link in the given loop networks. In the literature,

an initial design for the network is considered and Model 4 is used to evaluate

the objective function. The standard approach is a two-stage iterative method.

In the first stage, the optimal diameters for a cycle (loop) network (Model 4) are

determined using a nonlinear programming method. In the second stage, an iter-

ative pipe removal and the additional search process are carried out to reduce the

cost (Afshar et al. (2005)). The second stage may lead to an infeasible solution

due to undermining the node connectivity constraints or generating an infeasible

network (Saleh and Tanyimboh (2013)).

50

Afshar et al. (2005) proposed for the second stage, a Floating method that

has a significant effect on the optimality of the final solution. Possible removal

of the pipes is decided upon by the optimisation algorithm assuming a zero value

for the pipe diameter. By using this method, assuming a non-zero value for pipe

diameter, it is highly possible for a removed pipe in a previous iteration to return

into the network; provided its inclusion leads to a cheaper network in the current

iteration. The methods for the second stage that have been proposed with an

emphasis on presenting a feasible solution include the Min-Max Ant algorithm

(Afshar et al. (2005)); a Genetic Algorithm using three modified roulette wheel

selection schemes (Afshar (2007)); and the Conventional Roulette Wheel (Afshar

(2007)).

In recent decades, the layout optimisation has focused, particularly on water

distribution networks considering only single diameter for each link. However,

more work needs to be done to optimise the network layout. In particular, this

requires determining the diameter of each pipe in the case of multi diameter and

continuous diameter for the gas or the water distribution networks.

2.4 The Research Gap and The Research Prob-

lem

To the best of our knowledge, there is no work for both developing a mathemati-

cal model or solution method for the case of multi diameter when the network is

not given. Our work falls in the following category that has been extracted from

Figure 2.1.

Tree network→ Unspecified network→
Network Design and Allocation Problem→Multi diameter (MD)

The problem is:

• Given a set of nodes and customer requirements, determine the optimal

network. This involves determining the network layout, the multi diameter

of the connected pipeline, the pressure at each node, and the flow through

51

each link.

The objective is to meet demand and requirements at minimum total cost.

The requirements are related to the available pipeline diameters, pressure limits,

demands, physics gas laws and network structure which is a tree.

2.5 The Contributions of This Thesis

Our research provides a contribution to the areas of gas distribution network

design and allocation. More specifically we contribute the following:

First contribution: Developed an effective mathematical model to design the

tree network structure and to determine its components. These components

includes the multi diameters for each link, the pressure at each node, and

the flow through each link (Network Design and Allocation Problem). The

objective is to meet demand and requirements at minimum total cost. The

requirements are related to the available pipeline diameters, pressure limits,

demands, physics gas laws and network structure which in our case is a tree.

There are a few works for the fundamental problem in cases of Single and

Continuous diameters. There is no work in the literature that considers the

case of multi diameter.

Second contribution: Solved our MINLP model using an approximation method

that handles the nonconvexities of the constraints. The algorithm that

we use is the Outer Approximation Algorithm with Equality Relaxation

and Augmented Penalty (OA/ER/AP) method given by Viswanathan and

Grossmann (1990). Our motivation to choose the OA/ER-/AP method

among the other MINLP algorithms, is in its ability to handle the noncon-

vexity of the problem. This algorithm alternates between two sub-problems

including the Non Linear Programming (NLP) sub-problem and the Mas-

ter Mixed Integer Linear Programming (MILP) sub-problem. In the NLP

sub-problem, the integer variables are fixed and the continuous variables

are determined. In the master MILP sub-problem, the effect of noncon-

vexities is reduced by linearization of the nonlinear functions at the set

of linearization points. This algorithm has not been used before to solve

the MINLP problem in gas network area. Our contribution is that we re-

view this algorithm and then examine its functionality and efficiency on our

52

MINLP model. We consider the effects of different parameters and stop-

ping criteria in the levels of the NLP sub-problem and the Master MILP

sub-problem to find a near optimal solution. Also, we presented the compu-

tational results for the OA/ER/AP algorithm considering different values of

optimality gap for the Master MILP sub-problem. We acknowledge the sin-

gle starting point and the multi starting points for the NLP sub-problems.

Also, we discuss the comparative analysis between the NLP-Single start and

the NLP-Multi start strategies considering different values of optimality gap

for the Master MILP sub-problem. For some test cases, a decrease in the

value of ROT(MILP), results in an increase in the computation time and

an improvement in the total cost. As expected the NLP-Multi start yields

an improved objective function value but requires more computational time

than the NLP-Single start. The main outcome is a MINLP model that is

effective for small sized networks.

Third contribution: Developed, implemented and tested a new heuristic al-

gorithm to solve our model. We design the near optimal tree layout and

determined its components (the multi diameter for each link, the pressure

at each node, and the flow through each link). Our motivation is to develop

a heuristic algorithm to solve large size networks within 4 hours. We also

investigate the quantitative analysis of the effects of different parameters of

our heuristic algorithm on optimal decisions. We compare the results in the

objective function value and the computation time between the OA/ER/AP

algorithm and our heuristic algorithm. The main outcome is a heuristic al-

gorithm that finds a good quality feasible solution for the large sized test

problems within 4 hours.

53

Chapter 3

Outer Approximation Algorithm

In this chapter, we develop an effective Mixed Integer Non-Linear Programming

(MINLP) model for gas distribution network design and allocation (Fundamental

Problem). The problem is to design the tree network structure and determine

its components. These components includes determining the multi diameters for

each link, the pressure at each node, and the flow through each link (Network

Design and Allocation Problem). The objective is to meet demands at the mini-

mum cost.

In our model, we also consider a wide range of design parameters including

the number of demand nodes, the set of pipe diameter types as well as the length

(distance) between nodes, and the pressure limits at each node. We also consider

the constraints under steady state conditions such as pressure limits at each node,

the flow balance through each link, the pressure drop equation for two ends of

each link. The decision variables are the selected links connecting nodes, the flow

through each link, the pressure at each node, and the selected multi diameters

and their length for each link.

Our MINLP model has nonlinear and nonconvex constraints that makes our

problem computationally difficult. We need a method to solve this MINLP

model. The algorithm that we use is the Outer Approximation Algorithm with

Equality Relaxation and Augmented Penalty (OA/ER/AP) method developed

by Viswanathan and Grossmann (1990). The advantage of the OA/ER/AP algo-

rithm, over other MINLP algorithms, is its ability in handling the nonconvexity

of the problem. In this chapter, we will present:

54

• Our new MINLP model including the notation and terminology.

• The Outer Approximation algorithm and its variations.

• The OA/ER/AP algorithm.

We also explain the effective choice of parameters and stopping criteria for

the OA/ER/AP algorithm that facilitates the finding of a cost-effective, feasible

solution in a reasonable amount of computation time (We allow a maximum 24

hours).

This chapter is organised as follows. We present our mathematical model to

design the tree gas distribution networks in Section 3.1. The basic Outer Approx-

imation (OA) algorithm is presented in Section 3.2 followed by a discussion of the

variations of the OA algorithm in Section 3.3. The OA/ER and the OA/ER/AP

algorithms that are extended from the OA algorithm are described in Section 3.4.

In Section 3.5, we apply the OA/ER/AP method to our model through partition-

ing the variables and presenting the Master MILP sub-problem. The stopping

criteria for the OA/ER/AP algorithm are explained in Section 3.6. We end this

chapter with some concluding remarks in Section 3.7.

3.1 Mathematical Model

In this section, we develop a Mixed Integer Non Linear Programming (MINLP)

model to design the layout of gas distribution networks and to determine the

diameter for each link (Network Design and Allocation Problem). The network

is modelled in terms of graph theory and consists of a set of nodes representing

source supply and customer demand and arcs representing pipelines. In our

problem, the required network has a tree structure which means the underlying

graph is a tree. The structure is motivated by the cost consideration. We aim

to determine the multi diameter types for each link (The case of Multi diameter

(MD)). Our problem is:

• Given a set of nodes and customer requirements, determine the optimal

network. This involves determining the network layout, the multi diameter

of the connected pipeline, the pressure at each node, and the flow through

each link.

55

The objective is to meet demand and requirements at minimum total cost. The

requirements are related to the available pipeline diameters, pressure limits, de-

mands, gas pressure drop laws and network structure which is a tree (Fundamen-

tal Problem).

We consider some important features of the design of gas distribution systems

based on the literature (Wu et al. (2007)) including:

• The pipeline diameter configuration must follow a descending order.

• There are no compressors and no nozzles in the network.

• All pipes in the network are of the same type of material.

3.1.1 Notation and Terminology

We consider a supply source node with multiple customers. The following nota-

tion and terminology is used in our mathematical model.

Sets:

N = {1} ∪Nc : The set of supply and demand nodes.

N = {1, 2, 3, . . . , i, . . . , n− 1, n}.

Nc: The set of demand nodes {2, 3, . . . , i, . . . , n− 1, n};
obviously, |N | = n = |Nc|+ 1.

D : The set of available pipe diameter types {d1, d2, . . . , d|D|}.

56

Parameters:

s1 : The supply at source node 1.

si : The demand at consumer node i.

C(d) : The cost per unit length of pipe diameter type d.

Lij : The length between node i and node j.

πi
L, πi

U : The lower and upper square pressure limits at node i.

M : A large number.

Variables:

πi : The square of gas pressure at node i.

fij : The flow rate from node i to node j.

zij : The binary variable indicating whether or not node i is serving node j;

zij =

1, if i is a serving node for j (i → j).

0, otherwise.

ldij : The length of pipe diameter type d from node i to node j.

We consider if ldij = 0, then there is no pipe diameter type d for link (i, j).

We assume without loss of generality that the sum of demands should be equal

to the supply of the source node.

s1 =
∑
i∈Nc

si (3.1)

We present our developed mathematical model below. Since our model struc-

ture is not given, we need to add the variables zij into the known constraints

57

(2.4), (2.5) and (2.7) that are used in any mathematical model for the design of

gas distribution networks with the given structure. The resulting model is given

below.

Mathematical Models

The problem can be mathematically formulated as follows:

Model 5

Minimise
∑
i∈N

∑
j∈N

∑
d∈D

C(d)ldij (3.2)

Subject to:
∑
j∈N

zijfij −
∑
j′∈N

zj′ifj′i = si, ∀i ∈ N (3.3)∑
i∈N

zij = 1, ∀j ∈ Nc (3.4)

zij(πi − πj) = β
∑
d∈D

ldijd
−5f 2

ij, ∀i ∈ N,∀j ∈ N (3.5)∑
d∈D

ldij = zijLij, ∀i ∈ N,∀j ∈ N (3.6)

πi
L < πi < πi

U , ∀i ∈ N (3.7)

fij ≥ 0, ldij ≥ 0, ∀i ∈ N, ∀j ∈ N,∀d ∈ D (3.8)

zij ∈ {0, 1}, ∀i ∈ N,∀j ∈ N. (3.9)

The objective function in (3.2) is to minimise the total cost corresponding to

pipeline costs. Constraints (3.3) represent the flow balance through each node.

The determination of the tree topology is expressed in constraint (3.4) which

stipulates that each demand node has exactly one input connection link. The

relationships between the mass flow rate through a pipe and its pressure value at

endpoints are expressed by equation (3.5). Constraints (3.6) specify that when-

ever there is a link between two nodes (zij = 1), then, the summation of the

length of pipelines with different diameters must be equal to the distance be-

tween two end nodes. Constraints (3.7) sets the lower and upper limits of the

pressure square value at every node. The non-negativity (when zij = 1) of the

variables is represented by constraint (3.8). The constraints (3.9) represent the

binary variables of connection link between two nodes.

58

The constraint (3.3) is nonlinear because it is the product of two variables

zij and fij. This constraint shows if there is a link between node i and j (when

zij = 1) then the gas may flow through the link and the flow balance through the

link should be considered. This formulation is computationally difficult to solve

and so we now look towards simplification. We replace the nonlinear constraint

with two linear constraints (3.10) and (3.11) below. The first linear constraint

(Constraint (3.10)) expresses that if there is (is not) connection between node i

and node j, then the gas can (cannot) flow through the link (i, j). The second

linear constraint (Constraint (3.11)) gives the flow balance through each node.

fij ≤Mzij, ∀i ∈ N,∀j ∈ N (3.10)∑
j∈N

fij −
∑
j′∈N

fj′i = si, ∀i ∈ N. (3.11)

The transformed mathematical model (Model 5) is as follows:

Model 6

Minimise
∑
i∈N

∑
j∈N

∑
d∈D

C(d)ldij (3.12)

Subject to:
∑
j∈N

fij −
∑
j′∈N

fj′i = si, ∀i ∈ N (3.13)

fij ≤Mzij, ∀i ∈ N,∀j ∈ N (3.14)∑
j∈N

zij = 1, ∀i ∈ Nc (3.15)

zij(πi − πj) = β
∑
d∈D

ldijd
−5f 2

ij, ∀i ∈ N,∀j ∈ N (3.16)∑
d∈D

ldij = zijLij, ∀i ∈ N,∀j ∈ N (3.17)

πi
L < πi < πi

U , ∀i ∈ N (3.18)

fij ≥ 0, ldij ≥ 0, ∀i ∈ N,∀j ∈ N, ∀d ∈ D (3.19)

zij ∈ {0, 1}, ∀i ∈ N,∀j ∈ N. (3.20)

This problem is a MINLP problem due to the nonconvex and nonlinear con-

straints (3.16) and the binary variables of connection link between two nodes.

In this thesis, we develop new Model 5 and modify this to Model 6. Hereafter,

59

we consider Model 6 as our developed mathematical model. The model can be

solved by an approximation algorithm which we detail in the next section.

3.2 Outer Approximation (OA) Algorithm

In this section, we first detail the basic form of a MINLP problem including initial

conditions for variables and functions. Then, we provide the NLP subproblems

and the Master MILP subproblem as the main components of the Outer Approx-

imation (OA) algorithm Duran and Grossmann (1986). The OA algorithm and

its variations are also presented.

Many optimisation problems are modelled as Mixed Integer Nonlinear Pro-

gramming (MINLPs). Biegler and Grossmann (2004) provided a general classi-

fication of mathematical optimisation problems as well as a review of solution

methods. They considered the major types of optimisation problems for contin-

uous and discrete variable optimisation, particularly the NLP and the MINLP

problems. Many algorithms have been proposed to solve convex MINLP prob-

lems. The main idea used in solution approaches of the existing algorithms for the

MINLP problem, are linear approximations of the nonlinear functions (Geoffrion

(1972); Duran and Grossmann (1986); Quesada and Grossmann (1992); Fletcher

and Leyffer (1994); Grossmann and Kravanja (1995)). We first show the most

basic form (algebraic form) of a MINLP problem below presented by Melo et al.

(2014):

(P1)

Minimise: f(x, y) (3.21)

Subject to: gj(x, y) ≤ 0, j ∈ J (3.22)

x ∈ X, y ∈ Y ∩ Zny . (3.23)

where,

• f : Rnx+ny → R and g : Rnx+ny → Rm are convex and differentiable

functions.

• J is the index set of inequalities.

60

• x and y are the continuous and discrete variables, respectively.

• The set X is commonly assumed to be a convex compact set, e.g. X =

{x|x ∈ Rn, Dx ≤ d, xL ≤ x ≤ xU}.

• The discrete set Y corresponds to a polyhedral set of integer points, Y =

{y|y ∈ Zm, Ay ≤ a} which in many applications is restricted to 0-1 values,

y ∈ {0, 1}m.

Mostly, the objective and constraint functions f, g have been considered linear

in y. For example, Duran and Grossmann (1986) and Viswanathan and Gross-

mann (1990) considered these functions as follow:

f(x, y) = cTy + r(x)

g(x, y) = By + q(x)

In terms of solution techniques for the MINLP problems, linear approxima-

tion algorithms have been presented by Biegler and Grossmann (2004). The basic

element of linear approximation algorithms is a sequence of Mixed Integer Linear

Programming (MILP) problem and NLP sub-problems. Each MILP problem is a

relaxation of the MINLP problem and generates valid lower bounds on the opti-

mal solution value of the original minimisation problem (Biegler and Grossmann

(2004)).

The most successful algorithm (approximation algorithm) in the class of MINLP

programming is the Outer Approximation (OA) algorithm that alternates be-

tween solving a MILP sub-problem and one or two NLP sub-problems. The main

idea is to approximate problem (P1) by a MILP problem which is built with

linearization of the objective, and the constraint functions of the problem (P1)

at the set of linearization points T = {(x0, y0), (x1, y1), . . . , (xt, yt)} at each iter-

ation. The components of the OA algorithm are the following sub-problems that

provide upper and lower bounds along with updating points of the set T at each

iteration.

61

3.2.1 The NLP Sub-problems

There are two NLP sub-problems as the main components of the OA algorithm

for such a problem (P1).

NLP Sub-problem for Fixed yt

(NLP(yt))


Minimise f(x, yt)

Subject to: gj(x, y
t) 6 0, j ∈ J

x ∈ X.

The NLP sub-problem is built on the problem (P1) by fixing y at iteration

t (yt). We suppose the solution of the NLP(yt) sub-problem is feasible with

an optimal solution given by xt. As the point (xt, yt) is a feasible solution

of the problem (P1), it provides an upper bound, and this point is added

to the set T. If the NLP(yt) sub-problem is infeasible, then the following

feasibility problem (NLPF(yt)) is solved.

Feasibility Sub-problem for Fixed yt

(NLPF(yt))



Minimise u

Subject to: gj(x, y
t) 6 u, j ∈ J

u ≥ 0,

x ∈ X, u ∈ Rm.

The NLPF(yt) sub-problem for the given yt determines a continuous point

that satisfies the equations and minimise the violation of the inequalities. We

assume that (u, xt) is an optimal solution of the NLPF(yt) problem. The point

(xt, yt) is added to the set T as the solution at iteration t. Therefore, the set T is

updated with (xt, yt) from solving either the NLP(yt) problem or the NLPF(yt)

problem.

3.2.2 The MILP Cutting Plane

The Master MILP sub-problem in the OA algorithm is the following M-MILP

problem, which is built with linearization of the objective function and the con-

62

straint functions of the problem (P1) at the set of linearization points T =

{(x1, y1), (x2, y2), . . . , (xt, yt)}.

(M-MILP)



Minimise α

Subject to :

f(xt, yt) +∇f(xt, yt)

x− xt
y − yt

 ≤ α, ∀(xt, yt) ∈ T

gj(x
t, yt) +∇gj(xt, yt)

x− xt
y − yt

 ≤ 0, j ∈ J,∀(xt, yt) ∈ T

x ∈ X, y ∈ Y ∩ Zny , α ∈ R1.

where, T = {(xi, yi)|i 6 t} and xt is an optimal solution of the below problems.NLP(yt), if the NLP(yt) subproblem is feasible.

NLPF(yt), if the NLP(yt) subproblem is infeasible.

We assume that (α, xt+1, yt+1) is obtained from the M-MILP problem. When

only a subset of linearization is included, these commonly correspond to the vi-

olated constraints of the problem (P1). Alternatively, it is possible to include

all linearization in the M-MILP problem. The solution of the M-MILP problem

yields a valid Lower Bound (LB = α) to the problem (P1). This bound is non

decreasing with the number of linearization points T . We note that as the func-

tions f(x, y) and g(x, y) are convex, the linearization in the M-MILP problem is

the nonlinear feasible region in the problem (P1) (Biegler and Grossmann (2004)).

We present the basic OA algorithm that has been proposed by Duran and

Grossmann (1986). Also, more details of this algorithm have been presented by

Fletcher and Leyffer (1994); Melo et al. (2014). The algorithm starts using ini-

tialisation of Lower and Upper Bound (LB,UB), empty set T and fixed integer

value of y1. The first element of the set of T is {(x1, y1)} where, x1 is an optimal

solution of the following sub-problems.NLP(y1), if the NLP(y1) is feasible.

NLPF(y1), if the NLP(y1) is infeasible.

63

To summarise the OA algorithm, we can state that the NLP sub-problems

(NLP, NLPF) and the Master MILP (M-MILP) problem are solved successively

in a cycle of iterations to generate the points (xt, yt). It terminates whenever the

lower value exceeds the upper value, or the problem (M-MILP) is infeasible. The

OA algorithm for such a problem (P1) is described as follows:

Algorithm 2: Outer Approximation (OA) Algorithm (Melo et al. (2014)).

Step 1: Set LB = −∞, UB =∞, T = ∅, ε : convergence tolerance. Select an

integer y1 ∈ Zny and set t= 1.

Step 2: Solve the NLP(yt) sub-problem. One of the following cases must occur:

(a) Problem NLP(yt) has a finite optimal solution (xt, yt) and objective

value f(xt, yt).

• Update the current upper bound estimate

UB = min{UB, f(xt, yt)}

• If UB = f(xt, yt), then (x∗, y∗) = (xt, yt). ((x∗, y∗) is the optimal

solution).

• Set T = T ∪ (xt, yt) and go to Step 3.

(b) Problem NLP(yt) is infeasible then

• Solve problem NLPF(yt) and obtain (xt, yt).

• Set T = T ∪ (xt, yt) and go to Step 3.

Step 3: Solve the current relaxation the Master integer M-MILP problem. If the

M-MILP problem is feasible, then obtain (α, xt+1, yt+1) and set LB = α.

One of the following cases must occur:

(a) If UB − LB < ε or the M-MILP sub-problem is infeasible then Stop

and report (x∗, y∗).

(b) If UB − LB > ε then set t = t+ 1 and go to Step 2 to test the

algorithm for a new integer yt+1 as the solution obtained from the

M-MILP sub-problem.

Figure 3.1 gives a flowchart of the OA algorithm for more clarification.

64

Figure 3.1: The Outer Approximation Algorithm

65

3.3 Variations of the OA Algorithm

In this section, we provide an overview of the main variations for the original OA

algorithm that were proposed by Kocis and Grossmann (1987); Viswanathan and

Grossmann (1990); Biegler and Grossmann (2004).

There are many MINLP problems which are not exactly in the form of the

problem (P1). They may include linear and nonlinear equalities of the form

h(x, y) = 0 or the convexity conditions may not hold for functions f, g and h. A

good example that represents these additional conditions for a MINLP problem is

our model (Model 6) given by equations (3.12)-(3.20) that includes the nonlinear

and nonconvex equation (3.16). To explain the variations, we need to define the

problem (P2) given by Kocis and Grossmann (1987) that is an extension of the

problem (P1) and is as follows:

(P2)

Minimise: f(x, y) (3.24)

Subject to: gj(x, y) 6 0, j ∈ J (3.25)

hl(x, y) = 0, l ∈ L (3.26)

x ∈ X, y ∈ Y ∩ Zny . (3.27)

where L is the index set of equalities and J is the index set of inequalities. The

variables x are continuous and the variables y are discrete. The functions f, g, and

h are defined over appropriate domains and have continuous partial derivatives.

Also, the functions f, g, and h might be nonconvex in the problem (P2). We

cannot solve the problem (P2) using the OA algorithm as the OA algorithm

is not able to handle the equality constraints as well as the non-convexity of

the problem in the Master MILP sub-problem. Therefore, we need to consider

effective methods in the Master MILP sub-problem to overcome these difficulties

(nonconvexity and equality constraints). The following methods are considered

for the Master MILP problem to overcome the nonconvex and equality constraints

h in the problem (P2).

• Addition of integer cuts when y ∈ {0, 1},
• Handling of nonlinear equalities,

66

• Handling of nonconvexities.

We also consider an NLP sub-problem that is the Relaxed MINLP problem

(P2). We provide the initial point (x1, y1) solving the Relaxed MINLP problem.

The following methods can be applied for the NLP sub-problems of the OA

algorithm.

• Initialise variable y1 using the Relaxed MINLP problem,

• Multiple starting points for the NLP sub-problems.

We explain variations of the OA algorithm, first, at the level of Master MILP

sub-problem and then, at the level of the NLP sub-problems.

3.3.1 In the Master MILP Sub-problem

In this section, we present the variations of the OA algorithm that we can use at

the level of Master MILP sub-problem. The methods are presented below.

Integer Cut When y ∈ {0, 1}

One way to avoid solving the feasibility problem (NLPF) in the OA algorithm

when the discrete variables in the problem (P1) and (P2) are 0−1, is to introduce

an integer cut. The aim is to make infeasible the choice of the previous 0 − 1

values generated at all t ∈ T previous iterations. This cut is defined as follows

and given by Biegler and Grossmann (2004):∑
i∈Bt

yi −
∑
i∈Nt

yi ≤ |Bt| − 1

where Bt = {i|yti = 1}, N t = {i|yti = 0}, t ∈ T.

This cut becomes very weak as the dimensionality of the 0 − 1 variables

increases. However, it is useful feature in ensuring that new 0− 1 values are gen-

erated at each iteration (Duran and Grossmann (1986); Biegler and Grossmann

(2004)).

67

Handling of Nonlinear Equalities

The OA algorithm (Algorithm 2) can solve the MINLP problem (P1) when it is

limited to the only linear equality and linear (or nonlinear) inequality constraints.

The OA algorithm is not able to handle the nonlinear equality constraints in the

model. Some MINLP mathematical models contain nonlinear equality constraints

like our model (Model 6).

For the case when linear equalities of the form h(x, y) = 0 are added to

the problem (P1), there is no major difficulty since these are invariant to the

linearization points (Biegler and Grossmann (2004)). If the equations are non-

linear, however, there are two difficulties. First, it is not possible to enforce the

linearised equalities at all points of T. Second; the nonlinear equations may in-

troduce nonconvexities unless they can be relaxed as convex inequalities (Biegler

and Grossmann (2004)).

Kocis and Grossmann (1987) presented a new variant to the OA algorithm

that can explicitly handle nonlinear equality constraints. They proposed an equal-

ity relaxation strategy in which the nonlinear equalities are replaced by the in-

equalities as follows:

∇hl(xt, yt)

x− xt
y − yt

 ≤ 0, if λtl > 0

−∇hl(xt, yt)

x− xt
y − yt

 ≤ 0, if λtl < 0

(3.28)

where (xt, yt) ∈ T, l ∈ L and λil is the Lagrange Multiplier associated with the

equation hl(x, y) = 0.

Handling of Nonconvexities

We consider the problem (P2) when the functions f(x, y) and g(x, y) are non-

convex or when we have nonlinear equalities h(x, y) = 0. The two difficulties

arise. First, the NLP sub-problems (NLP) and (NLPF) may have multiple local

68

optimum solutions. Second, the Master problem (M-MILP) does not guarantee a

valid lower bound LB or a valid bounding representation with which the global

optimum may be cut off.

One general solution approach for handling nonconvexities, according to Biegler

and Grossmann (2004), is to develop rigorous global optimisation algorithms, that

assume specific forms of the nonlinearities (e.g. bilinear, linear fractional, and

concave separable). The other option for handling nonconvexities is to apply a

heuristic strategy to try to reduce as much as possible the effect of nonconvexities.

While not being rigorous, this requires much less computational effort (Biegler

and Grossmann (2004)). Viswanathan and Grossmann (1990) described the ap-

proach of reducing the impact of nonconvexities at the level of the Master MILP

problem for the OA algorithm. They proposed a new Master MILP problem that

incorporates an augmented penalty function for the violation of linearization of

the nonlinear functions. The Master MILP problem reduces the likelihood of

cutting-off feasible solutions (Viswanathan and Grossmann (1990)). This Master

problem “Equality Relaxation/Augmented Penalty” (ER/AP) has the following

form:

(M-ER/AP)



Minimise α +
∑

t∈T [ωtρρ
t + ωtσσ

t]

Subject to:

f(xt, yt) +∇f(xt, yt)

x− xt
y − yt

 ≤ α,

∇hl(xt, yt)T
x− xt
y − yt

 ≤ ρt, l ∈ L

−∇hl(xt, yt)T
x− xt
y − yt

 ≤ ρt, l ∈ L

gj(x
t, yt) +∇gj(xt, yt)

x− xt
y − yt

 6 σt, j ∈ J, (xt, yt) ∈ T

∑
i∈Bt yi −

∑
i∈Nt yi ≤ |Bt| − 1, t ∈ T

x ∈ X, y ∈ Y ∩ Zny , α ∈ R1, ρt, σt > 0.

where ωtρ, ω
t
σ are weights that are chosen with sufficiently large values (e.g.

1000 times magnitude of Lagrange multiplier associated to the equations hl and

69

gj, respectively). We note that if the functions are convex, then all the slacks

are set to zero on this Master MILP problem (M-ER/AP) that predicts rigorous

lower bounds (Biegler and Grossmann (2004)).

3.3.2 In the NLP Sub-problems

In this section, we present the variations of the OA algorithm to find a good fea-

sible solution at the level of the NLP sub-problem. The methods are presented

below.

Initialise Variable y1 Using the Relaxed MINLP Problem

As shown in the OA algorithm, the value of y1 should be initialised by the

user. This may not be a good choice. The method to estimate the initial value

y1 is to relax integer variables y of MINLP problem as continuous variables. The

reason is the linear approximation to the MINLP problem at this point often

leads to the good results (Viswanathan and Grossmann (1990)).

(RMINLP)

Minimise: f(x, y) (3.29)

Subject to: gj(x, y) 6 0, j ∈ J (3.30)

hl(x, y) = 0, l ∈ L (3.31)

x ∈ X, y ∈ YR. (3.32)

where YR is the continuous relaxation of the set Y. The set T is initialised with

the solution of the problem (RMINLP).

We note that when we try to overcome the effect of nonconvexities through

the algorithm, it can fail to find the global optimum mainly for the two following

reasons. Firstly, if the NLP sub-problem has multiple local solutions, then pre-

cisely the algorithm can converge to a sub-optimal point. Secondly, if the NLP

sub-problem for fixed binary values has different local optima, the algorithm may

be trapped into a local solution. In the next section, we explain that through

70

considering multiple start points, it may provide a better chance of finding a

cost-effective feasible solution.

Multiple Starting Points for the NLP Sub-problems

As the NLP sub-problem has multiple local solutions, the algorithm is not

guaranteed to find the global optimum. Practical experience has shown that it is

sometimes difficult to get a feasible or better solution to the NLP sub-problems,

in particular, for the initial point (x1, y1) (Kan and Timmer (1987)). Therefore,

if we consider the widely spaced starting points for the NLP problem, then there

may be a much better chance of finding a good feasible solution. We first present

the Multi start algorithm for Unconstrained Programming that was proposed

by Kan and Timmer (1987); Ugray et al. (2007). Then, we present the Multi

start algorithm for constraint programming that was presented by Bisschop and

Roelofs (2006).

• Multiple Starting Points for Unconstrained Programming

The earlier work focused on unconstrained problems where there are no dis-

crete variables (Kan and Timmer (1987)):

(UCP)

Minimise: f(x) (3.33)

Subject to: x ∈ X. (3.34)

where f : X ⊂ Rn −→ R, and all global minima of f assumed to occur in the

interior of X. The multi start algorithm is a stochastic method that attempts to

find the global solution. Most stochastic methods include two phases (Kan et al.

(1985)):

• Global phase: In this phase, the points are sampled randomly from a

uniform distribution over X.

• Local search: In this phase, the sample points are controlled by doing of

local searches to yield a candidate global minimum.

The most basic multi start algorithm presented by Ugray et al. (2007), is as

follows:

71

1. A uniformly distributed sample of Ns points in X is generated,

2. The objective f is evaluated at each point. The points are sorted according

to their f values, and the γNs best points are retained, where γ is an

algorithm parameter between 0 and 1.

3. L is started from each point of this reduced sample, except if there is another

sample points within a certain critical distance that has a lower f value. L

is also not started from sample points that are too near the boundary of X,

or too close to a previously discovered local minimum.

4. Ns additional uniformly distributed points are generated, and the procedure

is applied to the union of these points and those retained from previous

iterations. The critical distance referred to above decreases each time a

new set of sample points is added.

This also makes choosing the sample size Ns important, since too small sample

leads to many revised decisions, while too large sample will cause L to be started

many times (Ugray et al. (2007)).

• Handling of Constraints for Constrained Programming

Most classical search and optimisation methods handle constraints of the NLP

problems by using a penalty function, where infeasible solutions are penalised de-

pending on the amount of constraint violation (Deb and Agrawal (1999)). The

following simple procedure is presented for the handling of constraints in the NLP

sub-problems using penalty function. Here, we apply this procedure, in particu-

lar, for the Relaxed NLP sub-problem.

(CP)

Minimise: P (x, y, w, r) = f(x, y) +
∑
j∈J

wj(max(0, gj(x)))2 +
∑
l∈L

rl[hl(x, y)]2

(3.35)

Subject to: x ∈ X, y ∈ YR. (3.36)

where the function max(0, gj(x)) is the absolute amount by which the jth con-

straint is violated at the point (x,y). The wj is a non-negative penalty weight of

the jth inequality constraint. The rl is the penalty parameter of the lth equality

72

constraint (Deb and Agrawal (1999)).

The penalised function P (x, y, w, r) makes the constraints of the NLP sub-

problem into an unconstrained minimisation problem. In addition, the optimal

solution of the NLP sub-problem also is optimal for its (CP) problem. Further-

more, an optimal solution of the (CP) problem will provide an upper bound on

the optimum for the NLP sub-problem, and this bound, in general, is tighter than

that obtained by simply optimising the NLP problem (Smith and Coit (1997)).

As all NLP sub-problems of the OA algorithm are constraint programming, the

reduced sample is evaluated base on the penalised objective values.

Many local searches of the basic multi start algorithm for unconstrained pro-

gramming, may converge to the same local minimum. To reduce computational

time, Bisschop and Roelofs (2006) presented a multi start algorithm using clus-

tering method (Clustering is a process of partitioning a set of data into a set of

groups). These clusters are updated (and become larger) whenever a starting

point is found that leads to a local solution that has already been found before.

We present this algorithm below and call it the Multi-start algorithm (Algorithm

3). The inputs for Algorithm 3 are the values of (Ns) and (γNs):

• Number of Sample Points (Ns): This is the number of randomly generated points

in each iteration from the uniform distribution. The sample point is randomly

generated by using the intervals defined by the lower and upper bounds of the

variables. If a variable has no upper bound then the upper bound used for gen-

erating sample points will be equal to the value of this parameter. If a variable

has no lower bound, then the value of this parameter multiplied by −1 will be

used as a lower bound (Bisschop and Roelofs (2006)).

• Number of Selected Sample Points (γNs): This is the number of points that

are selected from the set of randomly generated points in each iteration, where

the γ is a number between 0 and 1 (Bisschop and Roelofs (2006)). It is clear

that γNs 6 Ns. As explained earlier, our NLPs sub-problems are the NLP

constraint programming. Therefore, the selected points are the points with the

best penalised objective value. In particular, if Ns = γNs then all sample points

are automatically selected (Bisschop and Roelofs (2006)).

In the computational results, we experiment with these two numbers with differ-

ent sized test problems to find a good feasible solution.

73

Algorithm 3: Multi Start Algorithm for the NLP problem (Bisschop and
Roelofs (2006))

Step 0: Set iteration counter equal to 1.

Step 1: Generate Ns sample points from a uniform distribution. then, group them into
clusters. Calculate the penalised objective for all sample points and select the
best γNs sample points.

Step 2: For all the best sample points (γNs) do:

• For all clusters, calculate the distance between the sample point and the
centre of the cluster. If the distance is smaller than the radius of the
cluster (i.e., the sample point belongs to the cluster) then delete the
sample point.

Step 3: For all (remaining) sample points do:

• Solve the NLP problem by using the sample point as its starting point to
obtain a candidate local solution.

• For all clusters do:

– Calculate the distance between the candidate local solution and the
local solution belonging to the cluster.

– If the distance equals 0 (which implies that the candidate local
solution is the same as the local solution belonging to the cluster)
then update the centre and radius of the cluster by using the sample
point.

– Else, construct a new cluster by using the mean of the sample point
and the candidate local solution as its centre with the radius equal to
half the distance between these two points. Assign the candidate
local solution as the local solution belonging to the cluster.

– For all remaining sample points, calculate the distance between the
sample point and the centre of the updated or the new cluster. If the
distance is smaller than the radius of the cluster, then delete the
sample point.

Step 4: Increment iteration count. If the number of iterations exceeds the iteration
limit, then go to step (5). Else go to Step 1.

Step 5: Order the local solutions and store the number of best solutions in the solution
repository.

74

3.4 Extended Algorithms of Outer Approxima-

tion Algorithm

The first extension algorithm of the OA algorithm is Outer Approximation/E-

quality Relaxation (OA/ER) that has been proposed by (Kocis and Grossmann

(1987)), where convex MINLP problem (P1) is considered with additional equal-

ity constraints. The Outer Approximation algorithm with Equality Relaxation

and Augmented Penalty (OA/ER/AP) method is an extension of both algo-

rithms the OA algorithm and the OA/ER algorithm that has been proposed by

Viswanathan and Grossmann (1990). The (OA/ER/AP) algorithm solves the

nonconvex MINLP problem such as the problem (P2).

Outer Approximation/Equality Relaxation (OA/ER) Algorithm

Kocis and Grossmann (1987) proposed a method to solve such a MINLP prob-

lem (P2) under the assumption of convexity of the functions f, g and the quasi-

convexity of non linear equality constraints. The proposed (OA/ER) method is

the earliest work for the MINLP problem with particular attention given to the

handling of nonlinear equality constraints.

The (AP/ER) algorithm are different to the OA algorithm (Algorithm 2) in

some steps. In the OA/ER algorithm, a new Master MILP problem is defined in

a way that nonlinear equations in the MINLP formulation can be handled explic-

itly. Thus, compared with the OA algorithm, two different steps are presented as

follows:

Step 1: The initial value for the set T as starting point is obtained from Relaxed

MINLP problem.

Step 3: The Master MILP is generated using equality relaxation strategy of equa-

tion (3.28) which has been presented in the earlier sections.

75

Outer Approximation Algorithm/Equality Relaxation/Augmented-

Penalty (OA/ER/AP) Algorithm

Viswanathan and Grossmann (1990) improved the OA algorithm with Equal-

ity Relaxation and Augmented Penalty (OA/ER/AP) method to solve a MINLP

problem (P2) where there are equality constraints h and the convexity condi-

tions may not hold for functions f, g, and h. The method of OA/ER/AP for

handling the nonlinear equality is based on equality relaxation strategy which is

proposed in the OA/ER algorithm. Then, the proposed Master MILP problem

(M-ER/AP) uses a linear approximation to an exact penalty function that al-

lows violations in the linearization of the nonlinear functions (Viswanathan and

Grossmann (1990)). As shown in the earlier sections (Section 3.3), the Master

(M-ER/AP) problem can overcome the nonconvexity of constraints (Equation

(3.26)) of the problem (P2).

The proposed algorithm by Viswanathan and Grossmann (1990) involves the

same steps as the OA algorithm, but the set T is initialised by solving the Relaxed

MINLP problem. If an integer solution is not found, a sequence of iterations

consisting of the NLP sub-problems and the Master MILP problem (M-ER/AP)

are solved. The search proceeds until no improvement are found in the NLP

sub-problems (Viswanathan and Grossmann (1990)). The following OA/ER/AP

algorithm has been presented by Bisschop and Roelofs (2006).

76

Algorithm 4: Outer Approximation/Equality Relaxation/Augmented
Penalty (OA/ER/AP) algorithm (Bisschop and Roelofs (2006)).

Step 1: First, all the integer variables are relaxed as continuous variables between
their bounds for the model. The nonlinear sub-problem (RMINLP) is
solved using any nonlinear solver.

Step 2: Then a linearization is carried out around the optimal solution, and the
resulting constraints are added to the linear model already presented.
This new linear model is referred to as the Master MILP model.

Step 3: The Master MILP model is solved using any MILP solver.

Step 4: The integer part of the resulting optimal solution is then temporarily
fixed, and the original MINLP model with fixed integer variables is solved
as a nonlinear sub-model using the NLP solvers.

Step 5: Again, a linearization around the optimal solution is constructed, and the
new linear constraints are added to the Master MILP model. To prevent
cycling, one or more constraints are added to cut off the previously found
integer solution of the Master model.

Step 6: Steps 3-5 are repeated until one of the termination criteria (will be
discussed further in Section 3.6) is satisfied.

3.5 The OA/ER/AP Implementation for the

Gas Distribution Network (Model 6)

In this section, we represent the implementation of the OA/ER/AP algorithm for

our MINLP model developed for the gas distribution network problem (Model 6)

given by equations (3.12)-(3.20). We partition the variables into two subsets: con-

tinuous and binary variables. The continuous variables consist of fij, πi, and ldij,

and binary variables are zij. We define the following set of continuous variables

X and set of binary variables Y for our problem (Model 6).

x ≡ {ldij, fij, πi}, X = {x|πLi ≤ πi ≤ πUi , l
d
ij, fij ≥ 0, ∀i, j ∈ N}

y ≡ {zij} ∈ Rn, Y = {y|zij ∈ {0, 1}, ∀i, j ∈ N}

We also need to initialise the value of LB = −∞, UB =∞, T = ∅. We define

ε, as the convergence tolerance.

Step 1: We relax the binary variables y where YR = {y|0 6 zij 6 1} for

77

our model (Model 6) and replace the Constraint (3.20) by the Constraint

0 6 zij 6 1. The relaxed MINLP problem can be solved using any nonlinear

solver and the results are (x1, y1) and T = {(x1, y1)}. If the relaxed MINLP

problem is infeasible, then we solve the feasibility sub-problem (mentioned

earlier in Section 3.2.1) for 0 6 zij 6 1.

Step 2: In this step, the nonlinear part of our model is linearized. The lineariza-

tion is defined as a linear approximation of the nonlinear equation that is

valid in a small region around an operating point. In this algorithm, the

linearization is implemented around the points of set T which include the

optimal solution point that is obtained from all previous steps. The aim is

to build the Master MILP model for our MINLP model. We note that, in

our mathematical model, the equation (3.16) is the only nonlinear equation.

This equation is also nonconvex. Therefore, for the definition of the Master

MILP problem, we need to transform the equation (3.16) to an inequality

like function (3.28). We consider the following equation,

h(i,j) = zij(πi − πj)− β(
∑
d∈D

ldijd
−5)f 2

ij , ∀i ∈ N, j ∈ N

We define the equation (3.37) by:

∇h(i,j)(xt, yt)

[
x− xt

y − yt

]
≤ 0 (3.37)

where,

∇h(i,j)(xt, yt)

[
x− xt

y − yt

]
= ztij((πi − πj)− (πti − πtj)) + (πti − πtj)(zij − ztij)−

β
∑
d∈D

(ldij − (ldij)
t)d−5(f tij)

2 − 2β(fij)
t
∑
d∈D

(ldij)
td−5(fij − f tij) = ztij(πi − πj)+

(πti − πtj)(zij − 2ztij)− βf tij[
∑
d∈D

ldijd
−5 +

∑
d∈D

(ldij)
td−5(f tij − 2fij)],

∀i ∈ N, j ∈ N ∀t ∈ T.
(3.38)

As explained in earlier Section 3.3, the equalities and nonconvexities of

the constraints are handled in the level of the Master MILP (M-ER/AP)

problem. The Master MILP problem for our model (Model 6), then, is built

78

as follows for all (xt, yt) ∈ T including equations (3.38). The Master MILP

sub-problem for our model is satisfied the OA/ER/AP algorithm.

M-Model 6

Minimise:

α =
∑
i∈N

∑
j∈N

∑
d∈D

C(d)ldij +
∑
t∈T

ωtρρ
t (3.39)

Subject to:∑
j∈N

fij −
∑
j′∈N

fj′i − si ≤ 0, ∀i ∈ N (3.40)

−
∑
j∈N

fij +
∑
j′∈N

fj′i + si ≤ 0, ∀i ∈ N (3.41)

fij −Mzij ≤ 0, ∀i ∈ N,∀j ∈ N (3.42)∑
i∈N

zij − 1 ≤ 0, ∀j ∈ Nc (3.43)

−
∑
i∈N

zij + 1 ≤ 0, ∀j ∈ Nc (3.44)

ztij(πi − πj) + (πti − πtj)(zij − 2ztij)

− βf tij[
∑
d∈D

d−5ldij +
∑
k∈D

d−5(ldij)
t(f tij − 2fij)] ≤ ρt,

∀i ∈ N,∀j ∈ N, ∀t ∈ T

(3.45)

− [ztij(πi − πj) + (πti − πtj)(zij − 2ztij)

− βf tij[
∑
d∈D

d−5ldij +
∑
d∈D

d−5(ldij)
t(f tij − 2fij)]] ≤ ρt,

∀i ∈ N, ∀j ∈ N,∀t ∈ T

(3.46)

∑
d∈D

ldij − zijLij ≤ 0, ∀i ∈ N,∀j ∈ N (3.47)

−
∑
d∈D

ldij + zijLij ≤ 0, ∀i ∈ N, ∀j ∈ N (3.48)∑
(i,j)∈Bt

zij −
∑

(i,j)∈Nt

zij ≤ |Bt| − 1, ∀t ∈ T (3.49)

πi < πi < π̄i, ∀i ∈ N (3.50)

fij ≥ 0, ldij ≥ 0, ρ ≥ 0, ∀i ∈ N,∀j ∈ N (3.51)

zij ∈ {0, 1}, ∀i ∈ N,∀j ∈ N. (3.52)

where, ωtρ > |λt(i,j)| is the weight on the slack variables ρ with λtij being

79

the Lagrange multiplier of equation (3.16) for each i ∈ N, j ∈ N and

Bt = {(i, j)|ztij = 1}, N t = {(i, j)|ztij = 0}.

The MILP problem (M-Model 6) is solved using any MILP solver. xt =

{πt, f tij, (ldij)t}, yt = At. Also, the results are α = LB,

xt+1 = {πt+1, f t+1
ij , (ldij)

t+1}, yt+1 = At+1.

Step 3: In this step, our MINLP problem (Model 6) is transformed to the NLP

problem where the integer variables yt+1 = At+1 are fixed. The integer

variables are the solution of the (M-Model 6) problem as is explained in

Step 2. It provides the Upper Bound UB as well as the variables of xt+1. If

the NLP(yt+1) problem is infeasible, then the NLPF(yt+1) problem will be

solved. We set T t+1 = {(x1, y1), (x2, y2), (x3, y3), . . . , (xt+1, yt+1)}, t ∈ T .

Step 4: The relation between the Master MILP (M-Model 6) problem and the

NLP problems will continue until the Master MILP problem becomes in-

feasible or UB − LB < ε.

3.6 Effective Parameters and Stopping Criteria

for the OA/ER/AP Algorithm

The following stopping criteria can be considered for the OA/ER/AP algorithm.

• Iteration limit: Limit the number of iterations the OA/ER/AP algorithm

is allowed to perform which is normally 20 iterations. There are two reasons

for using an iteration (Bisschop and Roelofs (2006)):

– A good solution is usually found during the first few iterations.

– The size of the underlying the Master MILP model tends to grow

significantly each time linearization constraints are added, causing an

increase in computation time.

• Objective value worsening: A second criterion is the worsening of the

objective function value (f(xt, yt)) of two feasible nonlinear sub-models of

the NLP(yt), the NLP(yt+1). The underlying reason is that the Master

MIP model will not always select binary solutions that lead to successively

80

improving NLPs. This criterion seems appropriate when the worsening is

persistent over several iterations (Bisschop and Roelofs (2006)).

• Small Optimality Gap: A third termination criterion is an insufficient

improvement in the objective function value of the Master MIP model (LB)

about the objective function value of the previously solved the NLP(yt)

sub-problem (UB). The difference between these two values represents the

optimality gap since the Master MILP model represents a relaxation of the

original MINLP model.

In particular, there is a stopping criterion for the Master MILP (M-Model 6)

problem. The iteration procedure for solving the MILP problem is to relax the

integer variables and then solve the resulting linear problem. The relaxation of

our Master MILP (M-Model 6) problem provides the lower bound (RLB) for our

Master MILP problem. The upper bound here is the objective function value of

the previously solved the NLP sub-problem. We define the Relative Optimality

Tolerance to guarantee that the value of RLB lies within a certain percentage

of the value of UB. Sometimes the Master MILP problem finds a good integer

solution early but must examine many additional nodes to prove the solution is

optimal. We can speed up the process changing the optimality tolerance (Bisschop

and Roelofs (2006)). Therefore, we can experiment with the values of following

stopping criterion for solving the Master MILP problem.

• MILP Relative Optimality Tolerance ROT(MILP): The solution

procedure stops if the solver can guarantee that the current best solu-

tion is within 100 × ROT(MILP) of the global optimum (UB-RLB< 100×
ROT(MILP)).

3.7 Conclusion

We developed a Mixed Integer Non Linear Programming (MINLP) model to de-

sign of the tree gas distribution networks. We considered a wide range of design

parameters including the number of supply and demand nodes, the set of pipe

diameter types, the length (distance) between nodes, and the pressure limits at

each node. We consider the constraints under steady-state conditions such as

pressure limits at each node, the flow balance through each link, the pressure

drop equation for two ends of each link. The decision variables are the selected

81

links connecting nodes, the flow through each link, the pressure at each node,

and the length of selected diameter for each link.

Our model is a MINLP problem with nonconvex constraints. We aimed to

solve our model using the Outer Approximation algorithm with Equality Relax-

ation and Augmented Penalty (OA/ER/AP) method given by Viswanathan and

Grossmann (1990). The advantage of the OA/ER/AP algorithm, among other

MINLP algorithms, is its ability in handling the nonconvexity of the problem.

The OA/ER/AP method is an extension of the OA algorithm. We presented

an overview of the OA algorithm and its variations. The OA/ER/AP algorithm

alternates between two sub-problems; the NLP sub-problems; and the Master

MILP sub-problem. The detailed algorithm is presented, and the effects of dif-

ferent parameters and stopping criteria in the levels of the NLP sub-problems

and the Master MILP sub-problem on optimal decisions are also discussed. To

implement this algorithm to solve our MINLP model, we partitioned the variables

into two subsets of variables: the continuous and the binary variables. Also, we

developed the Master MILP sub-problem for our model. We detailed how the

equalities and nonconvexities of the constraints are handled in the level of the

Master MILP (M-ER/AP) problem.

82

Chapter 4

Computational Results

In this chapter, we test our MINLP model (Model 6) given by equations (3.12)-

(3.20) using the Outer Approximation Algorithm with Equality Relaxation and

Augmented Penalty (OA/ER/AP) method (Algorithm 4 detailed in Chapter 3).

This algorithm alternates between two sub-problems including the NLP sub-

problems and the Master MILP sub-problem. In the NLP sub-problems, the

integer variables of our model are fixed (zij) and the continuous variables are

determined. In the master MILP sub-problem, the effect of nonconvexities of

our model are reduced by linearization of the nonlinear functions of the model at

the set of linearization points at each iteration. We presented the master MILP

model (M-Model 6) given by equations (3.39)-(3.51) for our model (Model 6) in

Chapter 3. The NLP sub-problems and MILP provide upper and lower bounds

along with updating the set of linearization points at each iteration.

The aim of the computational results is to validate the model and demonstrate

that a cost-effective feasible solution can be generated in a reasonable amount of

computational time (24 hours) for various test cases. We note that, for the the

OA/ER/AP algorithm, we allow up to 24 hours of computation time for each

instance. We generate different network sizes (5 to 50 nodes) to test our model

with 30 instances for each size. The computational results are undertaken con-

sidering different values of ROT(MILP) for the Master MILP sub-problem and

under the conditions of Single start and Multi start for the NLP sub-problems.

This Chapter is organised as follows. In Section 4.1, we detailed how we

generate the test data for our model. We present numerical results of different

83

test cases with a Single start for the NLP sub-problems and different optimality

gap values of the Master MILP sub-problem (ROT(MILP)) in Sections 4.2. In

Section 4.3, we provide the numerical results of different test cases with Multi

start for the NLP sub-problems and different optimality gap values of the Master

MILP sub-problem (ROT(MILP)). The comparative analysis between the NLP-

Single start and the NLP-Multi start strategies are discussed in Section 4.4. We

finish this chapter with some concluding remarks in Section 4.5.

4.1 Generating Test Data

We presented the input parameters for our mathematical model in Section 3.1.1.

We detail below how we generate the test data for our model. There is very

little test data in the literature for our problem. In the literature, there are a

few papers on the Allocation problem which provide test data for small sized

networks. Whilst our data is not extracted from the literature, we adopted some

ideas from Mohajeri et al. (2012) and Wu et al. (2007) on how to generate the test

data. More details of generating the test data are given below. We also need to

note that, we may not be able to compare our work to Mohajeri et al. (2012) and

Wu et al. (2007) as they worked on the sub-problem (Allocation Problem) and

our work is focused on the fundamental problem (Network Design and Allocation

Problem).

• si (The demand at node i): We generate randomly three different types

of demand values for consumers as Low, Medium and High demands for

the network with 49 demand nodes. These different demand numbers are

evaluated as follows:

– Low demand: si ∈ [200, 450]

– Medium demand: si ∈ (450, 1000]

– High demand: si ∈ [800, 1500]

{s2, s3, s4, s5, s6, . . . , si, . . . , s49, s50}

The amount of supply at, s1, the source node is set as the sum of demands,

in other words s1 =
∑50

i=2 si.

84

Our test data is for n = 5, 10, 15, 20, 25, and 50. The demand data for

values of n ≤ 25 is obtained from the n = 50 data by taking the elements

{s2, s3, s4, s5, s6, . . . , sn}. For example, for the category of 5 nodes, we select

the four first of values from the network with 49 nodes as shown below.

{{s2, s3, s4, s5 }, s6, . . . , si, . . . s49, s50}

So, the set {s1, s2, s3, s4, s5} is the amount of supply and demand for

the network with 5 nodes with s1 =
∑5

i=2 si.

• Lij (The length between node i and node j): The distances between nodes

in a network are represented as a symmetric matrix. We generate 10 differ-

ent symmetric matrices L, with the dimension of 50× 50. The elements of

this matrix represent the distances between node i and node j (Lij) that are

generated randomly from uniform distribution of the interval of [50, 3000].

L = [Lij]50×50 =



0 L1,2 L1,3 L1,4 L1,5 . . . L1,j . . . L1,50

L2,1 0 L2,3 L2,4 L2,5 . . . L2,j . . . L2,50

L3,1 L3,2 0 L3,4 L3,5 . . . L3,j . . . L3,50

L4,1 L4,2 L4,3 0 L4,5 . . . L4,j . . . L4,50

L5,1 L5,2 L5,3 L5,4 0 . . . L5,j . . . L5,50

...
...

...
...

...
...

...
...

...

Li,1 Li,2 Li,3 Li,4 0 . . . Li,j . . . Li,50
...

...
...

...
...

...
...

...
...

L50,1 L50,2 L50,3 L50,4 L50,5 . . . L50,j . . . 0


50×50

Our test data is for n = 5, 10, 15, 20, 25, and 50. The distance’s matrices

for values of n ≤ 25 is obtained from the n = 50 data by taking the elements

of:

L = [Lij]n×n =



0 L1,2 L1,3 . . . L1,n

L2,1 0 L2,3 . . . L2,n

L3,1 L3,2 0 . . . L3,n

...
...

... 0
...

Ln,1 Ln,2 Ln,3 . . . 0


n×n

For example, for the distance matrix of 5 nodes, we select the first five

85

elements of the rows and columns of the matrix L with the dimension of

50× 50 that is:

L = [Lij]5×5 =


0 L1,2 L1,3 L1,4 L1,5

L2,1 0 L2,3 L,24 L2,5

L3,1 L3,2 0 L3,4 L3,5

L4,1 L4,2 L4,3 0 L4,5

L5,1 L5,2 L5,3 L5,4 0


5×5

• d, C(d) (Pipe diameter type d and its per unit length dollar cost): These

values are obtained from Mohajeri et al. (2012) that are 11 different pipe

diameter types with their per unit length cost. Table 4.1 presents the pipe

diameter type d and its per unit length cost.

.

Table 4.1: Pipe diameter type d and its per unit length cost
Pipe Diameter Type Diameter(mm) Per unit length (m) cost ($)

1 63 11.6

2 90 14.2

3 110 18.5

4 125 22

5 160 28

6 178 38

7 203 53

8 254 80

9 305 125

10 400 150

11 500 180

• πLi , πUi (Lower and Upper square pressure at node i): These values are

160000 and 360000 (Pa2), respectively that are obtained from Wu et al.

(2007).

• M (A large number): This is a value that is considered greater than the

amount of supply node (s1).

Consequently, for each size network, we generate 10 different symmetric ma-

trices L as length matrices with three demands scenarios. We test our model for

30 instances, (10× 3), of each size network.

86

Different Scenarios for the OA/ER/AP Algorithm to Test Our Math-

ematical Model

We build our MINLP mathematical model (Model 6) in AIMMS commercial

software. AIMMS was introduced as a mathematical modelling tool in 1993.

AIMMS has proven to be one of the world’s most advanced development environ-

ments for building optimisation based decision support applications and advanced

planning systems (Bisschop and Roelofs (2006)).

The OA/ER/AP algorithm is commercially available through AIMMS called

AIMMS Outer Approximation (AOA) algorithm. The AOA algorithm is imple-

mented using interplay between two solvers, the CPLEX solver for solving the

Mixed Integer Linear programming and the CONOPT solver for solving the NLP

programmings. The algorithm terminates if the objective of the Master MILP

problem becomes larger than the objective of the NLP problem (in a case of

minimisation) or the Master MILP problem is infeasible within the specified time

limit.

In this algorithm, we consider the effective parameters in the NLP sub-

problems and the stopping criteria in the Master MILP subproblem. The dif-

ferent scenarios that are used to solve our MINLP model (Model 6) are outlined

below.

• We consider Single start and Multi start modules for the nonlinear solver

(CONOPT). As the NLP sub-problem has multiple local solutions, the al-

gorithm is not guaranteed to find the global optimum. Practical experience

has shown that it is sometimes difficult to get a feasible or better solution to

the NLP sub-problems (Kan and Timmer (1987)). Therefore, if we consider

a number of starting points for the NLP problem, then there may be a much

better chance of finding a good feasible solution. More detailed definitions

of starting points for the NLP problem has been given in Section (3.3.2).

• We set different values of the MILP Relative Optimality Tolerance ROT

(MILP) as the stopping criteria tolerance value for the Master MILP solver

(CPLEX). The iteration procedure for solving the MILP problem is to relax

the integer variables and then solve the linear problem model. The relaxed

LP of our Master MILP (M-Model 6) problem provides the lower bound

87

(RLB) for our Master MILP problem. The upper bound here is the ob-

jective function value of the previously solved the NLP sub-problem. We

define the Relative Optimality Tolerance to guarantee that the value of RLB

lies within a certain percentage of the value of UB. Sometimes the Master

MILP problem finds a good integer solution early but must examine many

additional nodes to prove the solution is optimal and this leads to taking

more time without any improvement in the (RLB). We can speed up the

process changing the optimality tolerance (Bisschop and Roelofs (2006)).

In Section (3.6), a more detail description is given.

Table 4.2 indicates the size of the problem for each category.

Table 4.2: The test problem sizes for n = 5, 10, 15, 20, 25, and 50

n Constraints Variables Non Zero Values
5 13 53 152
10 20 93 263
15 30 143 408
20 40 193 553
25 50 291 842
50 100 689 2011

The non zero values relate to the coefficients in the formulations of our model.

Table 4.2 shows that increasing the number of consumers results in a significant

increase in the size of the problem. Obviously, we need to consider specific pa-

rameters and stopping criteria for each sized test problem to find a good feasible

solution.

4.2 The NLP-Single Starting Point

In this section, we present the computational results for solving our model with

different test cases using the OA/ER/AP algorithm through AIMMS (AOA). We

test our model with 30 instances for each network with 5, 10, 15, 20 (small net-

work size), 25, and 50 nodes. Each network includes one source node and n − 1

demand nodes. In terms of the NLP sub-problems that has been discussed in

Section (3.3.2), we consider the Single start module for testing our model with

different network sizes. Also, we consider different optimality gap, the value of

ROT(MILP), for each test network sizes to find a cost-effective feasible solution

88

in a reasonable computation time.

Relative Optimality Tolerance for the Master MILP sub-problem

In terms of setting the value of the MILP relative optimality tolerance ROT(MIP),

we need to consider the size of the network. The computational results, here, are

aimed to determine the value of ROT(MIP) for different test network sizes to

find a cost-effective feasible solution. We clarify the purpose of our computa-

tional analysis below:

1. We test all instances for different sized test networks when the value of

ROT(MILP) is the default value of 10−13. The aim here is to find the

maximum size test networks that the AOA algorithm can solve all instances

in a reasonable time. We show that the AOA algorithm is able to solve all

instances of test networks with n ≤ 20 nodes with ROT(MILP)= 10−13

within 24 hours.

2. For n > 20 we consider networks with 25 and 50 nodes. We observe

that the AOA algorithm cannot solve any test case of these sizes with

ROT(MILP)=10−13 in a reasonable time. Therefore, the aim is to find the

bounding values U and L for the ROT(MILP) for networks with 25 and 50

nodes that give:

• The U value that is the smallest value so that all test instances are

solved in less than 24 hours using the AOA algorithm. Obviously, all

test instances are solved when the value of ROT(MILP) is greater than

value U (ROT(MILP)) > U .

• The L value that is the greatest value so that some test instances are

solved in less than 24 hours. The AOA algorithm cannot solve any

test instances when the value of ROT(MILP) is less than the value L

(ROT(MILP) < L) in a reasonable time.

We explain the values of ROT(MILP) for networks with 25 and 50 nodes in

more detail in Sections 4.2.2 and 4.2.3. Moreover, we show the Lower and Upper

bounding values for ROT(MILP) based on tested instances for specific values of

ROT(MILP) are as follows:

89

Table 4.3: Optimality gap values (25 and 50 nodes)

n L U

25 0.01 0.05

50 0.1 0.2

Applying the AOA method, the output results for each instance are the values

for the variables zij, fij, πi, and ldij. In the next sections, we report the compu-

tational results of our test problem including the objective function values and

their computation times.

In the next section, we present the computational results for test networks

with 5, 10, 15, and 20 nodes (small sizes).

4.2.1 Small Size Networks

Table 4.4 presents the Minimum, Average, and Maximum of the computation

times of all 30 instances for each network size. The computational results are

obtained under the Single start condition and the default value of 10−13 for the

ROT(MILP). Table 4.4 shows that the AOA algorithm works well for the small

size test networks in determining the local optimum in a reasonable computa-

tion time. The AOA algorithm solves all 30 test cases with the default value

ROT(MILP)= 10−13 in a reasonable time. In the next section, we provide the

computational results for test networks with 25 nodes.

Table 4.4: The computation times (small size networks)

n Time (sec)

Minimum Average Maximum

5 0.79 1.07 1.72

10 1.24 12.63 29.97

15 1.93 31.54 157.56

20 28.58 691.36 3028.58

90

4.2.2 25 Node Networks

For n ≥ 25, the AOA algorithm cannot solve our model with ROT(MILP)=10−13

in a reasonable time. We test our model with 30 instances of networks with 25

nodes when the value of ROT(MILP) is 0.05. We demonstrate that all instances

are solved by the AOA algorithm when the values of ROT(MILP) are greater than

0.05. Then, the model is tested for each instance with ROT(MILP)= 0.03 and

0.01. We select the instances that have a better chance to be solved (the ones that

are solved in less computational time than other instances with ROT(MILP)=

0.03 and 0.01). We test these selected instances with ROT(MILP) less than 0.01

such as 0.009 and 0.008. The AOA does not solve any of these instances in a rea-

sonable computational time. As shown in Table 4.5, we present the improvement

of the objective function value (minimum cost) and of the computation time by

percentage between the results with ROT(MILP) = {0.03 and 0.01} and with

ROT(MILP) = {0.05}. The comparative analysis is based on:

Improvement={
Results with ROT(MILP)=0.05}-

{
Results with ROT(MILP)= 0.03, 0.01}

Best value
×100%

The best value is the minimum values of the results with ROT(MILP) = 0.05 and

ROT(MILP) = 0.03, and 0.01. Also, the positive and negative values show im-

provement and deterioration respectively based on the results with ROT(MILP)

= 0.05. In Table 4.5, we show the computational results considering the NLP-

Single start for networks with 25 nodes when we consider different values for the

ROT(MILP).

91

Table 4.5: Improvement/deterioration in the objective function value and the
computation time (25 nodes)

Improvement

ROT(MILP)=0.03 ROT(MILP)=0.01

Instance Min Cost% Time (sec)% Min Cost% Time (sec)%

1 4.12 -304.25 4.12 -608.09

2 -14.89 6.03 -20.10 -18.86

3 0.28 -259.20 -17.68 -89.80

4 1.44 16.03 1.36 -85.10

5 0.00 -7.09 -12.89 -808.84

6 0.00 -376.39 -0.20 -935.81

7 0.00 -175.75 0.00 -799.07

8 0.00 -85.71 0.00 -92.50

9 -30.73 -324.02 -33.16 -602.29

10 0.00 -0.25 0.00 -138.42

11 0.00 -32.16 0.00 -524.58

12 0.00 -208.10 0.00 -681.88

13 -8.65 -36.78 -2.89 -92.68

14 -18.08 -967.23 5.69 -861.14

15 0.00 -215.08 73.16 -685.33

16 -7.90 -34.79 -7.47 -49.65

17 -2.35 59.37 -2.35 0.02

18 0.00 0.00 0.96 5.32

19 -1.99 26.94 -1.99 -0.70

20 0.00 19.01 0.00 -84.33

21 0.00 -98.19 0.00 -208.85

22 1.20 -75.68 22.72 -22.81

23 0.00 -59.09 0.00 -194.46

24 0.00 -273.59 0.00 -294.36

25 0.00 -1.04 0.00 -49.11

26 0.00 -10.65 0.00 15.54

27 34.68 -942.35 34.68 -1457.36

28 9.71 -8.83 8.06 -193.72

29 0.00 -43.83 0.00 -125.45

30 0.00 -152.86 0.00 -251.50

Table 4.5 indicates that for all test cases, the computation times increase

when the value of ROT(MILP) is decreased. In terms of the objective function

value, there are improvements in some test cases when the value of ROT(MILP)

is decreased to 0.03 or 0.01.

We note that all 30 instances out of 30 test cases will be solved when the

value of ROT(MILP) is greater than 0.05 (ROT(MILP) > 0.05). Also, based

on our experiments, we need more than 24 hours to find a feasible solution

for all test problem instances when the value of ROT(MILP) is less than 0.01

(ROT(MILP) < 0.01).

92

Moreover, Table 4.6 shows the number of instances out of 30 that there is no

change, deterioration and improvement in the cost with ROT(MILP)=0.01 and

0.03.

Table 4.6: Number of instances without/with a change in the cost (25 nodes)

Different ROT(MILP) No Change Deterioration Improvement

0.03 17 7 6

0.01 13 9 8

As Table 4.6 shows, about half of 30 instances are not changed in the objective

function value with ROT(MILP) = 0.05 compared with the ROT(MILP) = 0.01

and 0.03. There is the only improvement in the cost for 6 and 8 out of the 30

instances with ROT(MILP) = 0.03 and 0.01, respectively. In contrast, there is

no improvement in the cost for 7 and 9 out of 30 instances with ROT(MILP) =

0.03 and 0.01, respectively.

Table 4.7 shows the Minimum, Average, and Maximum of the computation

times of all 30 instances when we consider different values for the ROT(MILP).

Table 4.7: The computation times (25 nodes)

Time (sec) ROT(MILP)=0.05 ROT(MILP)=0.03 ROT(MILP)=0.01

Minimum 376.38 417.97 713.47

Average 3,459.74 7,551.38 11,324.43

Maximum 14,915.26 31,234.07 42,341.74

Table 4.7 shows as we are expecting the computation time increases when

the value of ROT(MILP) is declines. The average computation time with the

ROT(MILP) = 0.05 is about one hour and this increases to 2 and 3 hours with

ROT(MILP) = 0.03 and 0.01, respectively.

In the next section, we present the computational results for networks with

50 nodes considering the NLP-Single start and different values of ROT(MILP).

93

4.2.3 50 Node Networks

This data size is considerable for our model as we have one supply node in our

network. We first test our model for all 30 instances with ROT(MILP)=0.2.

Then, we test the instances for the values of ROT(MILP) less than 0.2 again to

generate a cost-effective feasible solution. We select the instances that are solved

with ROT(MILP)= 0.1. We test these selected instances with ROT(MILP) less

than 0.1 such as 0.09 and 0.08. The AOA does not solve any of these instances in

a reasonable computational time. We detail below the performance of the AOA

algorithm when we consider the different values of ROT(MILP).

• When ROT(MILP) = 0.2, then all 30 instances are solved.

• When ROT(MILP) = 0.15, then 17 out of 30 instances are solved.

• When ROT(MILP) = 0.1, then 11 out of 30 instances are solved.

• When ROT(MILP) < 0.1, then none of the 30 instances are solved.

Note that we select the instances that have already been solved with ROT(MILP)=

0.1 and test them with ROT(MILP) less than 0.1 such as 0.09. The AOA does

not solve these instances in a reasonable computational time.

Table 4.8 details the improvement by percentages in the objective function

value and its computation time for all instances in the different values of ROT(MILP)

compared to the results with ROT(MILP)=0.2. Moreover, ‘NS’ (No Solution) in

Table 4.8 shows the instances that are not solved in a reasonable time (less than

24 hours). The comparative analysis is based on:

Improvement ={
Results with ROT(MILP)=0.2}-

{
Results with ROT(MILP) = 0.15, 0.1}

Best value
×100%

The best value is the minimum values of the results with ROT(MILP) = 0.2 and

with ROT(MILP) = 0.15, and 0.1. Also, the positive and negative value shows im-

provement and deterioration respectively based on the results with ROT(MILP)

= 0.2. Table (4.8) shows the computational results with the NLP-Single start for

networks with 50 nodes when we consider different values of ROT(MILP).

94

Table 4.8: Improvement/deterioration in the objective function value and the
computation time for 50-nodes network. Note that ‘NS’ means No Solution ob-
tained within the specified time limit.

Improvement

ROT(MILP)=0.15 ROT(MILP)=0.1

Instance Minimum Cost% Time (sec)% Minimum Cost% Time (sec)%

1 294.63 -43.33 90.11 -2750.65

2 -6.40 -27.24 -12.39 -2390.50

3 0.00 -128.63 NS NS

4 -4.97 -35.25 -5.54 -1500.99

5 0.00 -78.96 3.19 -5682.42

6 0.00 -173.07 NS NS

7 -5.36 -52.61 4.91 -2388.99

8 5.01 -129.05 NS NS

9 -3.28 -522.54 NS NS

10 0.00 -165.58 0.00 -863.17

11 0.00 -162.20 3.62 -5386.85

12 0.00 -87.98 0.00 -2420.67

13 -4.33 -238.93 -5.82 -8464.18

14 0.00 -577.09 NS NS

15 0.00 -185.86 0.00 -7891.01

16 0.00 -249.51 0.00 -1278.80

17 0.00 -916.95 NS NS

18 0.00 -2967.20 NS NS

19 -4.43 -474.64 NS NS

20 0.00 -1080.17 NS NS

21 NS NS NS NS

22 -5.44 -37.61 NS NS

23 0.00 -845.98 NS NS

24 NS NS NS NS

25 0.00 -469.19 NS NS

26 NS NS NS NS

27 NS NS NS NS

28 0.00 -1067.53 NS NS

28 NS NS NS NS

29 NS NS NS NS

30 NS NS NS NS

Table 4.8 indicates that, when the value of ROT(MILP) is decreased, some

test cases are not solved within the 24 hours time limit. Based on tested instances

for specific values of ROT(MILP), the bounding values U and L for the networks

with 50 nodes are 0.2 and 0.1, respectively, such that:

• The value of ROT(MILP) = 0.2 is the smallest value for which all test

instances are solved within 24 hours.

• The value ROT(MILP) = 0.01 is the greatest value for which at least one

test instance is solved within 24 hours.

We note that all test instances will be solved when the value of ROT(MILP)

is greater than 0.2 (ROT(MILP) > 0.2). Also, when the value of ROT(MILP) is

95

less than 0.1 (ROT(MILP) < 0.01), no instance is solved within 24 hours.

Moreover, Table 4.9 shows the number of instances out of 30 such that there

is no change, deterioration, and improvement in the objective function value with

ROT(MILP)=0.15 and 0.1.

Table 4.9: Number of instances without/with a change in the cost (50 nodes)

Different ROT(MILP) Not solved No change Deterioration Improvement

ROT(MILP)=0.15 7 14 7 2

ROT(MILP)=0.1 19 4 3 4

Table 4.9 shows that decreasing the value of ROT(MILP) from 0.2 to 0.15

and then to 0.1 results in no change in the objective function value in the number

of 14 and 4 test cases out of 30 instances. The only improvements in the total

cost are for 2 and 4 out of the 30 instances when the values of ROT(MILP) are

0.15 and 0.1, respectively. In contrast, there are deterioration in the cost for 7

and 3 out of the 30 instances when the values of ROT(MILP) are 0.15 and 0.1,

respectively.

Table 4.10 indicates the Minimum, Average, and Maximum of the computa-

tion times of all 30 instances when we consider different values of ROT(MILP).

Table 4.10: The computation times (50 nodes)

Time (sec) ROT(MILP)=0.2 ROT(MILP)=0.15 ROT(MILP)=0.1

Minimum 669.32 905.27 7,295.22

Average 4,348.42 12,112.13 34,642.52

Maximum 40,362.54 69,233.20 73,991.10

Table 4.10 shows the computation time increases when the value of the ROT(MILP)

declines. The average computation time among all solved test cases with the

ROT(MILP) = 0.2 is about 1.2 hours and then increases to 3.3 and 9.6 hours

with the ROT(MILP) = 0.15 and 0.1, respectively.

96

Conclusion

We present some concluding remarks in the computational results under the

conditions of the single start for the NLP sub-problem and the different values of

ROT(MILP). For the network with the size n ≤ 20, the AOA algorithm solves all

test instances in a reasonable computation time with the default value of 10−13.

When the value of ROT(MILP) is 10−13, the AOA does not solve any network

greater than 20 nodes within 24 hours. Therefore, we consider a larger value than

the default value for ROT(MILP) to test all test instances with 25 and 50 nodes.

For each size network, we examined all test cases with three different values of

ROT(MILP) with the aim of generating a cost-effective feasible solution for each

case.

Based on earlier provided details in Section 4.2.2 for the test networks with

25 nodes, the AOA algorithm needs more than 24 hours to find a feasible solution

for our test cases when the value of ROT(MILP) is less than 0.01. In contrast,

for the value of ROT(MILP) greater than 0.05, all test instances are solved.

Moreover, for the networks of 50 nodes, if the value of ROT(MILP) is greater

than 0.2, then all test instances are solved within 24 hours. When the value of

ROT(MILP) is 0.15 and 0.1, some instances are not solved within 24 hours.

Table 4.11 summarises the performance of the OA/ER/AP algorithm (AOA)

using different values of ROT(MILP) for different test network sizes. We note

that:

• For 10−13 6 ROT(MILP), all test networks with less than and equal 20

nodes are solved.

• For 0.01 6 ROT(MILP), all test networks with 25 nodes are solved.

• For 0.2 6 ROT(MILP), all test networks with 50 nodes are solved.

97

T
ab

le
4.

11
:

C
om

p
u
ta

ti
on

al
re

su
lt

s
w

it
h

th
e

N
L

P
-S

in
gl

e
st

ar
t

an
d

d
iff

er
en

t
va

lu
es

of
R

O
T

(M
IL

P
)

n
5

10
1
5

2
0

2
5

5
0

R
O

T
(M

IL
P

)
va

lu
e

10
−
1
3

10
−
1
3

1
0
−
1
3

1
0
−
1
3

0
.0

1
0
.0

3
0
.0

5
0
.1

0
.1

5
0
.2

N
u

m
b

er
of

so
lv

ed
in

st
an

ce
s

30
30

3
0

3
0

3
0

3
0

3
0

1
1

1
7

3
0

M
in

im
u

m
ti

m
e

(s
ec

)
0.

79
1.

24
1
.9

3
2
8.

5
8

7
1
3
.4

7
4
1
7
.9

7
3
7
6
.3

8
7
,2

9
5
.2

2
9
0
5
.2

7
6
6
9
.3

2

A
ve

ra
ge

ti
m

e
(s

ec
)

1.
07

12
.6

3
3
1
.5

4
6
9
1
.3

6
1
1
,3

2
4
.4

3
7,

5
5
1
.3

8
3
,4

5
9
.7

4
3
4
,6

4
2.

5
2

1
2
,1

1
2
.1

3
4
,3

4
8
.4

2

M
ax

im
u

m
ti

m
e

(s
ec

)
1.

72
29

.9
7

1
5
7
.5

6
3
,0

2
8
.5

8
4
2
,3

4
1
.7

4
3
1
,2

3
4
.0

7
1
4
,9

1
5
.2

6
7
3
,9

9
1.

1
0

6
9
,2

3
3
.2

0
4
0
,3

6
2
.5

4

98

4.3 The NLP-Multiple Starting Points

As explained in Section 3.3.2, we can use the Multi start option for our MINLP

model to increase the chance of success in finding a cost effective feasible solution.

Based on the Multi start algorithm (Algorithm 2) detailed in Chapter 3, the NLP

problem is solved with different initial points in parallel and we choose the best

solution from these points. The initial points are the best points in terms of

penalised objective value selected from the generated sample points. The input

data for this algorithm are the number of sample points (Ns) and the number

of selected sample points (γNs). The default value for Ns is 10 and γNs is 5.

We find pair values of Ns and γNs to generate a cost-effective (best among the

others) feasible solution for all sized test problems.

For the small size networks with at most 20 nodes, we consider the default

value for the Ns and for the γNs as 10 and 5, respectively. The default value of

Ns and γNs should be greater for the larger size problem (for n= 25 and 50).

These values are determined as follows:

1. Consider different values of the Ns and fix the value of γNs. In our work,

we consider the values Ns ∈ {10, 15, 20, 25, 30, 50} when γNs ∈ {5, 10, 15}
is fixed for n = 25. Also, we consider the values Ns ∈ {10, 20, 50, 100, 150}
when γNs ∈ {5, 10} is fixed for n = 50.

2. Pick five instances from the uniform distribution of [1, 30], among the 30

test cases for n = 25 and n = 50.

3. Test these five instances using different values of the Ns and γNs with the

NLP-Multi start method.

4. Determine the average minimum cost and the average computation time

using the results of the given five instances. The reason we consider the

average is that the minimum cost and computation time almost falls at the

same value of Ns and γNs for all five instances.

We will show further in this chapter that for a network with 25 nodes, the

best comparison value for Ns is 20 and for γNs is 15. Also for a network with 50

nodes, the best comparison value for Ns is 150 and for γNs is 5. We test all 30

instances based on the values of Ns and γNs that are determined based on the

above steps.

99

4.3.1 Small Size Networks

Table 4.12 presents the Minimum, Average, and Maximum of computation time

of all 30 instances for small sizes. All instances are tested when we consider the

default value of Ns = 10 and γNs = 5 for the NLP-Multi start and the default

value of 10−13 for ROT(MILP).

Table 4.12: The computation times (Small size networks)

Time (sec)

n Minimum Average Maximum

5 0.24 0.57 1.33

10 1.97 13.89 40.17

15 5.04 258.82 2,047.00

20 52.02 12,316.96 62,745.77

The results in Table 4.12 show that the AOA algorithm works well for the

small size networks in terms of finding a feasible solution for minimising the

objective function (total cost) within 24 hours. In the next section, we present

the computational results for the network with 25 nodes.

4.3.2 25 Node Networks

We first need to pick five instances from the uniform distribution of [1, 30]. Then

we test the model for the different values of Ns and γNs. We test these five

instances with ROT(MILP) = 0.05 as we know all test instances are solved with

this optimality gap value.

Table 4.13 shows the average results for five test instances of 25 nodes with

different values of Ns and γNs under situations of the NLP-Multi start and

ROT(MILP) = 0.05. Table 4.13 indicates that with different number of sam-

ple points (Ns) and fixed selected sample points (γNs), the cost increase with a

significant decrease in the computation time. Also, Table 4.13 shows that the case

of Ns = 20 and γNs = 15 gives the minimum objective function value. In this

case the computation time is 1137.84 (sec). Therefore, we test all 30 instances of

networks with 25 nodes with Ns = 20 and γNs = 15.

100

Table 4.13: Multiple starting points for 25 node networks

γNs

5 10 15

Ns Minimum Cost Time (sec) Minimum Cost Time (sec) Minimum Cost Time (sec)

10 87611.23 2400.60 89482.35 1027.58 - -

15 96199.61 1600.33 94148.88 1824.37 97841.42 1963.41

20 95585.17 1404.36 92088.42 1014.68 87531.58 1137.84

30 89030.93 2579.15 93753.09 1090.30 87668.29 1633.39

50 93208.27 1978.72 90528.02 2739.69 93883.44 1547.45

We note that we test our instances when γNs 6 Ns. In Table 4.13, we have

the situation that Ns 6 γNs (10 < 15) and we cannot test our five instances.

In Table 4.14, we show the computational results for the network with 25 nodes

with the NLP-Multi start and different values of ROT(MILP).

Table 4.14 details the improvement by percentages in the minimum cost and

its computation time for all instances with different values of ROT(MILP) com-

pared to the results with ROT(MILP)=0.05. Moreover, ‘NS’ (No Solution) in

Table 4.14 shows the instances that are not solved within the 24 hours time limit.

The comparative analysis is based on:

Improvement ={
Results with ROT(MILP)=0.05}-

{
Results with ROT(MILP)= 0.03, 0.01}

Best value
×100%

The best value is the minimum values of the results with ROT(MILP) = 0.05

and with ROT(MILP) = 0.03, and 0.01. Also, the positive and negative value

shows improvement and deterioration value in both cost and computation time,

respectively based on the results with ROT(MILP) = 0.05.

101

Table 4.14: Improvement/deterioration in the objective function value and the
computation time for 25-nodes networks. Note that ‘NS’ means No Solution
obtained within the specified time limit.

Improvement

ROT(MILP)=0.03 ROT(MILP)=0.01

Instance Minimum Cost% Time(sec)% Minimum Cost% Time(sec)%

1 10.71 -118.44 5.68 -188.88

2 -12.23 -709.22 -20.90 -207.38

3 -7.14 -278.88 -20.39 -77.54

4 -1.51 -79.55 -1.47 -113.50

5 0.00 -24.45 -8.57 -786.01

6 -17.18 -11.20 -17.18 -142.76

7 -0.12 -138.09 -0.12 -554.42

8 0.00 -32.90 0.00 -77.39

9 0.91 -99.01 NS NS

10 0.00 -223.08 0.00 -135.90

11 0.00 -89.51 0.00 -296.96

12 0.00 -69.99 0.00 -120.04

13 16.73 -85.74 11.66 -327.54

14 -0.00 -293.73 36.79 -302.04

15 -2.82 31.37 -2.82 -136.50

16 2.77 9.48 13.48 -48.23

17 -4.56 -26.15 -1.95 -35.99

18 0.00 25.93 0.96 -135.99

19 -1.16 -2305.60 3.21 -2386.47

20 0.00 -83.05 0.00 -153.64

21 0.00 23.60 0.00 -1.20

22 0.00 -36.04 0.44 -441.79

23 0.00 -116.56 0.00 -263.66

24 0.00 -45.27 0.00 -513.37

25 0.00 69.15 0.00 -67.25

26 0.00 -239.97 0.00 -301.92

27 0.00 19.83 0.00 -46.15

28 12.49 -111.37 12.49 -231.33

29 0.00 -374.12 0.00 -263.88

30 0.00 123.55 0.00 -126.75

Tables 4.14 shows when the value of ROT(MILP) is decreased from 0.05 to

0.03 and then to 0.01, the computation time increases. In addition, all 30 in-

stances are solved when ROT(MILP)≥ 0.03. Among all test cases, there is only

one case that is not solved within 24 hours (instance 9) with ROT(MILP) = 0.01.

102

Table 4.15: Number of instances without/with a change in the cost

Different ROT(MILP) Not Solved No change Deterioration Improvement

ROT(MILP)=0.03 0 18 8 4

ROT(MILP)=0.01 1 13 8 8

As Table 4.15 shows when the value of ROT(MILP) is decreased from 0.05 to

0.03 and then 0.01, about half of the instances of 30 are not changed in the cost.

Also, 4 instances are improved in the cost when ROT(MILP) = 0.03. Although,

this number is increased to 8 when the ROT(MILP) is 0.01 or 0.03. Table 4.16

presents the Minimum, Average, and Maximum of computation times.

Table 4.16: The computation times (25 nodes)

Time (sec) ROT(MILP)=0.05 ROT(MILP)=0.03 ROT(MILP)=0.01

Minimum 46.41 526.67 528.91

Average 3,459.74 7,551.38 11,813.09

Maximum 13,252.97 23,697.07 72,924.10

Table 4.16 shows when the value of ROT(MILP) is decreased from 0.05 to 0.03

and then 0.01, then the average computation time increases from one hour to 2

and 3.2 hours, respectively. In the next section, we present the computational

results for a network with 50 nodes.

4.3.3 50 Node Networks

We first need to pick five instances from the uniform distribution of [1, 30]. Then,

using these selected instances, we test our model with different values of Ns and

γNs. We test all test instances with ROT(MILP)=0.2 as we know all test in-

stances are solved in this optimality gap value.

Table 4.17 shows the average results for five test instances of 50 nodes with

different values of Ns and γNs under situations of the NLP-Multi start and

ROT(MILP)=0.2. Also, Table 4.17 shows, the case of Ns = 150 and γNs = 5

gives minimum objective function value. In this case, the computation time is

1, 225.928. Therefore, we test all 30 instances of networks with 50 nodes when

Ns = 150 and γNs = 5.

103

Table 4.17: Multiple starting points for 50 node networks

γNs

5 10

Ns Minimum Cost Time (sec) Minimum Cost Time (sec)

10 210,820.96 1,983.97 212,534.09 2,221.73

20 217,081.98 1,266.60 215,414.42 1,764.75

50 213,805.92 1,151.84 214,909.89 1,743.59

100 216,555.13 1,194.58 215,544.47 1,681.40

150 206,013.19 1,225.92 210,075.33 2,312.39

Table 4.18 details the improvement by percentages in the minimum cost and

its computation time for all instances with different values of ROT(MILP) com-

pared to the results with ROT(MILP)=0.2. Moreover, ‘NS’ (No Solution) in

Table 4.18 shows the instances that are not solved within the 24 hours time limit.

The comparative analysis is based on:

Improvement ={
Results with ROT(MILP)=0.2}-

{
Results with ROT(MILP)= 0.15, 0.1}

Best value
×100%

The best value is the minimum values of the results with ROT(MILP) = 0.2

and with ROT(MILP) = 0.15, and 0.1. Also, the positive and negative value

shows improvement and deterioration value in both cost and computation time,

respectively based on the results with ROT(MILP) = 0.2.

104

Table 4.18: Improvement/deterioration in the objective function value and the
computation time for 50-node networks. Note that ‘NS’ means No Solution ob-
tained within the specified time limited.

Improvement

n ROT(MILP)=0.15 ROT(MILP)=0.1

Instance Min Cost% Time(sec)% Min Cost% Time(sec)%

1 -12.50 -25.90 -12.50 -1781.60

2 -4.66 -110.55 9.29 -3613.06

3 0.00 -37.85 0.00 -2153.15

4 0.26 -39.81 -16.34 -638.18

5 0.00 -72.89 1.60 -3132.06

6 -1.93 -134.96 NS NS

7 -0.52 -104.13 -3.75 -268.72

8 -1.42 -280.79 NS NS

9 6.03 -88.75 NS NS

10 -7.12 -79.30 -7.12 -88.79

11 0.00 -45.41 0.00 -36026.41

12 0.00 -91.65 0.00 -1302.70

13 2.91 -26.26 -11.41 -3644.14

14 -7.57 -472.72 NS NS

15 0.00 -118.85 NS NS

16 0.00 -46.62 0.00 -1763.44

17 NS NS NS NS

18 NS NS NS NS

19 0.00 -70.20 NS NS

20 NS NS NS NS

21 NS NS NS NS

22 52.66 -61.90 NS NS

23 NS NS NS NS

24 NS NS NS NS

25 NS NS NS NS

26 NS NS NS NS

27 NS NS NS NS

28 NS NS NS NS

29 NS NS NS NS

30 NS NS NS NS

We note from Table 4.18 that as the value of ROT(MILP) is decreased from

0.2 to 0.15 and then to 0.1, the computation time increases. In addition, all

instances are solved with ROT(MILP) = 0.2 and some instances are not solved

within the 24 hours time limit with ROT(MILP) = 0.015 and 0.01. Moreover,

Table 4.19 shows the number of instances (out of 30) without/with a change in

the cost for network with 50 nodes with different values of ROT(MILP).

105

Table 4.19: Number of instances without/with a change in the cost (50 nodes)

Different ROT(MILP) Not Solved No change Deterioration Improvement

0.15 12 7 7 4

0.1 19 4 5 2

Table 4.19 illustrates that decreasing the value of ROT(MILP) results in de-

creasing the number of solved instances (out of 30) by the AOA algorithm. We

also show that only a few number of instances are improved in the objective

function value (4 and 2 respectively with ROT(MILP) = 0.15 and 0.1). The

Minimum, Average and Maximum computation time among all solved test in-

stances with different values of ROT(MILP) are presented in the table below.

Table 4.20: The computation times (50 nodes)

Time (sec) ROT(MILP)=0.2 ROT(MILP)=0.15 ROT(MILP)=0.1

Minimum 1,122.83 1,449.11 4,243.66

Average 4,575.70 3,942.46 29,733.58

Maximum 34,349.24 16,617.43 51,112.12

We present the following conclusion results for all sized test networks with

the NLP-Multi start and different values of ROT(MILP) .

Conclusion

We present some concluding remarks in the computational result under the

multi start condition for the NLP sub-problem and the different values of ROT(MILP).

For the network with n ≤ 20 nodes, the AOA algorithm solves all test in-

stances in a reasonable computation time with the default value of 10−13. When

the value of ROT(MILP) is 10−13, the AOA does not solve any network with

n > 20 (n = 25 and 50) within 24 hours. So, we consider a larger value than the

default value for ROT(MILP) to test all test instances with 25 and 50 nodes. For

each network, we tested all test cases with three different values of ROT(MILP)

with the aim of generating a cost-effective feasible solution for each case.

Based on earlier provided details in Section 4.3.2, for the test networks with

106

25 nodes, the AOA algorithm does not find a feasible solution for our test cases

when the value of ROT(MILP) is less than 0.01 within 24 hours. In contrast, for

the value of ROT(MILP) greater than 0.03, all test instances are solved. More-

over, for the networks of 50 nodes, if the value of ROT(MILP) is greater than

0.2, then all test instances are solved within 24 hours. Also, with the value of

ROT(MILP) = 0.15 and 0.1, some instances are not solved within 24 hours.

Table 4.21 summarises the performance of the AOA algorithm with different

values of ROT(MILP) for different test network sizes. We note that:

• For 10−13 6 ROT(MILP), all test networks with less than and equal 20

nodes are solved.

• For 0.015 6 ROT(MILP), all test networks with 25 nodes are solved.

• For 0.2 6 ROT(MILP), all test networks with 50 nodes are solved.

4.4 Comparative Analysis

In this section, we compare the results between the NLP-Single start and the

NLP-Multi start. The comparative analysis is based on the improvement of the

cost and time using:

Improvement =
{The NLP-Single Start} − {The NLP-Multi Start}

Best value
× 100%

(4.1)

The best value is the minimum value of the results between the NLP-Single start

and the NLP-Multi start. Also, the positive and negative value shows improve-

ment and deterioration value in both cost and computation time, respectively

based on the results with the NLP-Single start.

107

T
ab

le
4.

21
:

T
h
e

co
m

p
u
ta

ti
on

al
re

su
lt

s
w

it
h

th
e

N
L

P
-M

u
lt

i
st

ar
t

m
et

h
o
d

an
d

d
iff

er
en

t
va

lu
es

of
R

O
T

(M
IL

P
)

(s
m

al
l-

si
ze

d
n
et

w
or

k
s)

n
5

10
15

20
25

50

R
O

T
(M

IL
P

)
va

lu
e

10
−
1
3

10
−
1
3

10
−
1
3

10
−
1
3

0.
01

0.
03

0.
05

0.
1

0.
15

0.
2

N
u

m
b

er
of

so
lv

ed
in

st
an

ce
s

30
30

30
30

29
30

30
11

18
30

M
in

im
u

m
ti

m
e

(s
ec

)
0.

24
1.

97
5.

04
52

.0
2

52
8.

91
52

6.
67

46
.4

1
42

43
.6

6
1,

44
9.

11
1,

12
2.

83

A
ve

ra
ge

ti
m

e
(s

ec
)

0.
57

13
.8

9
25

8.
82

12
,3

16
.9

6
11

,8
13

.0
9

6,
67

4.
81

3,
96

6.
85

29
,7

33
.5

8
39

42
.4

6
4,

57
5.

70

M
ax

im
u

m
ti

m
e

(s
ec

)
1.

33
40

.1
7

2,
04

7.
00

62
,7

45
.7

7
72

,9
24

.1
0

23
,6

97
.0

7
13

,2
52

.9
7

51
,1

12
.1

2
16

,6
17

.4
3

34
,3

49
.2

4

108

4.4.1 Small Size Networks

Table 4.22 shows the comparison in terms of computation time between the

NLP-Single start and the NLP-Multi start for the small-sized test problem with

ROT(MILP) = 10−13.

Table 4.22: The comparison of the computation time between the NLP-Single
start and the NLP-Multi start for n ≤ 20.

n 5 10 15 20

Minimum time (sec)% 229.17 -58.87 -161.14 -82.02

Average time (sec)% 87.72 -9.98 -720.61 -1681.56

Maximum time (sec)% 29.32 -34.03 -1,199.19 -1971.79

From Table 4.22, it turns out that the NLP-Multi start gives an improved

computation time value for the networks with 5 nodes. We note that the average

improved time is 87.72%. Also, the NLP-Multi start gives changes in the average

computation time of −9.98%, −720.61% and −1681.56% for the sized network

with 10, 15, and 20 nodes, respectively. The computation time increases with the

NLP-Multi start compared to the NLP-Single start.

4.4.2 25 Node Networks

In this part, we compare the results of objective function value and computation

time from Sections 4.2 and 4.3 using the equation (4.1) to provide the improve-

ment in the cost and computation time for the NLP-Multi start.

Table 4.23 details the improvement in the cost and computation time for the

NLP-Multi start compared with the NLP-Single start for all 30 instances with

25 nodes considering the different values of ROT(MILP). Table 4.23 shows using

the NLP-Multi start, 14, 14, and 13 test cases are improved in the time with

ROT(MILP) = 0.05, 0.03, and 0.01, respectively. Also, 4, 4, and 5 test cases are

improved in the cost and computation time with ROT(MILP) = 0.05, 0.03, and

0.01, respectively.

109

Table 4.23: The comparison results between the NLP-Single start and the NLP-
Multi start for 25-node networks. Note that ‘NS’ means No Solution obtained
within the specified time limit.

Improvement

ROT(MILP)=0.05 ROT(MILP)=0.03 ROT(MILP)=0.01

Instance Min Cost% Time(sec)% Min Cost% Time(sec)% Min Cost% Time(sec)%

1 -1.49 -150.54 4.76 -35.38 0.00 -2.21

2 1.08 316.38 3.49 -106.81 0.41 61.01

3 10.88 -70.29 3.20 -79.62 8.39 29.35

4 2.85 113.72 -0.13 2.59 0.00 85.30

5 0.00 7.62 0.00 -7.99 3.98 10.40

6 7.80 -73.12 -8.70 147.45 -8.48 146.46

7 0.12 -62.95 0.00 -40.70 0.00 -18.61

8 0.00 -5.77 0.00 31.67 0.00 2.26

9 -28.27 51.65 2.85 223.12 NS NS

10 0.00 -21.62 0.00 -291.93 0.00 -20.34

11 0.00 -16.43 0.00 -66.95 0.00 35.13

12 0.00 -255.34 0.00 -96.06 0.00 0.00

13 -4.64 54.07 21.21 13.46 9.80 -44.02

14 -29.48 -187.06 -9.65 -5.90 -0.04 -20.07

15 2.82 -173.30 0.00 67.99 -73.16 21.50

16 -1.08 7.14 9.70 59.54 20.64 8.17

17 2.74 83.48 0.56 -17.62 3.14 34.89

18 0.00 14.46 0.00 44.14 0.00 -117.14

19 -0.82 2248.59 0.00 -30.02 4.41 -5.13

20 0.00 -18.76 0.00 -158.72 0.00 -63.41

21 0.00 3.45 0.00 153.40 0.00 215.71

22 22.72 211.72 21.26 302.54 0.44 -41.53

23 0.00 37.11 0.00 0.72 0.00 11.02

24 0.00 -42.20 0.00 80.85 0.00 -121.18

25 0.00 -85.97 0.00 -8.81 0.00 -108.59

26 0.00 131.99 0.00 -32.45 0.00 -100.17

27 34.68 -573.38 0.00 85.49 0.00 58.24

28 -4.10 1.95 -1.52 -90.51 0.00 -10.65

29 0.00 -21.98 0.00 -302.10 0.00 -96.88

30 0.00 -106.12 0.00 174.26 0.00 -32.96

Table 4.24 shows the number of instances out of 30, such that, there are Not

Solved, No change, Deterioration, Improvement in the objective function value

based on the NLP-Single start compared with the NLP-Multi start. The results

in Table 4.24 are obtained from Table 4.23.

110

Table 4.24: Number of instances without/with a change in the cost (25 nodes)

Different ROT(MILP) Not Solved No change Deterioration Improvement

0.05 0 14 7 8

0.03 0 18 4 8

0.01 1 18 3 8

The results from this table demonstrate that the cost is changed for about

the half of 30 instances compared with the NLP-Single start results. We also

note that in Table 4.23, mostly, if an instance is not changed in the cost with

ROT(MILP)=0.05, they are not changed in the cost too when the value of

ROT(MILP) is 0.03 or 0.01. However, there are 8 out of 30 instances that are

improved in the cost when we solve our model using the NLP-Multi start. In ad-

dition, all 30 instances are solved using the NLP-Single start for different values

of ROT(MILP). In contrast, the NLP-Multi start does not solve one instance out

of 30 with ROT(MILP) = 0.01 within 24 hours.

4.4.3 50 Node Networks

In this part, we compare the results of cost and computation time from Sections

4.2.3 and 4.3.3 using the equation (4.1). We define ‘NS’ for the test cases that are

not solved within 24 hours either for the NLP-Single start or the NLP-Multi start.

Table 4.25 details the improvement in the cost and computation time with

the NLP-Multi start compared with the NLP-Single start for all 30 instances of

50 nodes with different values of ROT(MILP). Table 4.25 shows that using NLP-

Multi start, 9, 5, and 6 test cases (among the cases that are solved) are improved

in the time with ROT(MILP) = 0.2, 0.15, and 0.1, respectively. Also, 6, 1, and

1 test cases are improved in the cost and computation time with ROT(MILP) =

0.2, 0.15, and 0.1, respectively.

111

Table 4.25: The comparison results between the NLP-Single start and the NLP-
Multi start for 50-node networks. Note that ‘NS’ means No Solution obtained
within the specified time limit.

Improvement

N ROT(MILP)=0.2 ROT(MILP)=0.15 ROT(MILP)=0.1

Instance Min Cost% Time(sec)% Min Cost% Time(sec)% Min Cost% Time(sec)%

1 309.84 -50.31 -8.33 -32.03 91.62 0.80

2 -3.48 -20.18 -98.85 -1.79 18.69 -79.17

3 0.00 -102.02 0.00 -21.81 NS NS

4 10.23 -73.79 16.00 -79.65 0.00 24.79

5 6.56 -27.20 6.56 -22.89 4.91 40.66

6 1.93 5.06 0.00 22.10 NS NS

7 0.00 -21.38 4.82 -62.36 -8.84 456.13

8 10.23 -19.80 3.49 -99.16 NS NS

9 2.68 19.28 12.44 -19.75 NS NS

10 7.12 -48.24 0.00 -0.09 0.00 -37.24

11 0.00 -39.10 0.00 22.86 -3.62 -815.85

12 0.00 -50.49 0.00 -53.43 0.00 19.41

13 -2.04 -49.03 5.22 80.12 -7.43 34.84

14 7.07 -56.90 -0.47 -32.71 NS NS

15 0.00 -43.64 0.00 -9.97 NS NS

16 0.00 -102.78 0.00 17.56 0.00 -174.05

17 0.00 -37.68 NS NS NS NS

18 0.00 -1421.76 NS NS NS NS

19 -4.43 4.16 0.00 78.37 NS NS

20 0.00 -42.22 NS NS NS NS

21 0.00 143.11 NS NS NS NS

22 -54.36 -22.42 4.60 -44.03 NS NS

23 3.77 2.85 NS NS NS NS

24 0.00 4.36 NS NS NS NS

25 -8.22 -99.07 NS NS NS NS

26 0.00 -34.83 NS NS NS NS

27 0.00 -1.70 NS NS NS NS

28 17.15 21.28 NS NS NS NS

29 12.66 21.41 NS NS NS NS

30 2.57 427.31 NS NS NS NS

Table 4.26 shows the number of instances out of 30 that are Not Solved, there

is No change, there is Deterioration, and there is Improvement in the objective

function value based on the NLP-Single start compared with the NLP-Multi start.

The results from this table demonstrate that about the half of 30 instances are

not changed in the cost in the NLP-Multi start results compared with the NLP-

Single start results when ROT(MILP) = 0.2. However, the test cases without

change are decreased when the value of ROT(MILP) is decreased. Moreover, us-

ing the NLP-Multi start, the 12 out of 30 instances are improved in the cost when

112

ROT(MILP) = 0.2 . Also, the cost improvement for test cases are decreased to

7 and 3 with ROT(MILP) = 0.15 and 0.1, respectively.

Table 4.26: Number of instances without/with a change in the cost (50 nodes)

Different ROT(MILP) Not Solved No change Deterioration Improvement

0.2 0 13 5 12

0.15 5 8 3 7

0.1 0 4 3 3

Table 4.26 also demonstrates that the NLP-single start has a better perfor-

mance for only a few numbers of 30 test cases (column of deterioration). In

addition, the number of not solved instances with the NLP-Multi start when

ROT(MILP) = 0.15 increase to 5 test cases. Based on Tables 4.8 and 4.18, we

note that if an instance is not solved using the NLP-Single start, the NLP-Multi

start also would not solve it within 24 hours. We present the following conclusion

of comparative analysis for all sized test networks between the NLP-Single start

and the NLP-Multi start with different values of ROT(MILP).

Conclusion

In Sections 4.4.2 and 4.4.3, we showed the comparative analysis in the cost and

computation time among all solved test cases out 30, between the NLP-Single

start and the NLP-Multi start with different values of ROT(MILP). The compar-

ison Tables 4.24 for 25 nodes showed 8 test cases are improved in the cost with

different values of MIT(ROT). For a network with 50 nodes, Table 4.26 shows

the NLP-Multi start gives an improved cost in 12 out of 30, 7 out of 18 and 3 out

of 10 solved test cases with ROT(MILP) = 0.2, 0.15 and 0.1, respectively.

4.5 Conclusion

In this chapter, we aimed to test our MINLP model (Model 6) given by equa-

tions (3.12)-(3.20) using an approximation method. The algorithm that we used

is Outer Approximation Algorithm with Equality Relaxation and Augmented

Penalty (OA/ER/AP) method developed by Viswanathan and Grossmann (1990)

that alternates between solving a MILP subproblem and one or two NLP sub-

problems. This algorithm can handle the nonconvexity of the problem at the level

113

of Master MILP subproblem. To demonstrate the feasibility and effectiveness of

the solution for our mathematical model, we consider the multi starting points

in the level of the NLP sub-problems and different values of the MILP Relative

Optimality Tolerance ROT(MILP) as the stopping criteria tolerance value for the

Master MILP problem within the specified time limit.

The starting point for the NLP problem has an important role in providing a

cost-effective feasible solution. A single start implementation might be trapped in

a local optimum, but the multiple calls provide a better chance of finding a good

feasible solution. Computational results aim to validate the model and to find a

cost-effective feasible solution in a reasonable computation time (within 24 hours)

for all test cases. In this section, the computational results were undertaken con-

sidering different values of ROT(MILP) for the Master MILP sub-problem and

under the conditions of Single start and Multi start for the NLP sub-problems.

We detailed how we generated the test data for our model. We provided com-

putational results using the OA/ER/AP method. It turns out that the smaller

sized networks are solved when the optimality gap is 10−13. We consider a greater

value than 10−13 for the optimality gap (the value of ROT(MILP)) for networks

with 25 and 50 nodes. We test all 30 instances for specific values of ROT(MILP)

under the NLP-Single start and the NLP-Multi start conditions to find a cost-

effective feasible solution within 24 hours. As expected the NLP-Multi start yields

an improved objective function value but requires more computational time than

the NLP-Single start. Our main outcome is an effective computational model for

small networks.

The following tables show the number of instances without/with a change in

the cost and computation time for networks with 25 and 50 nodes based on the

values of ROT(MILP) = 0.05 and 0.2, respectively when we consider the NLP-

Single start and the NLP-Multi start. The following results have been extracted

from Tables 4.5 and 4.14 for 25 nodes and Tables 4.8 and 4.18 for 50 nodes.

Tables 4.27 and 4.28 show that under the NLP-Single start and the NLP-Multi

start conditions, decreasing the value of ROT(MILP) results in an increase in the

computation time.

114

Table 4.27: Number of instances without/with a change in the cost and compu-
tation time (25 nodes)

The NLP-Single start The NLP-Multi start

Number of instances that has been : ROT(MILP)=0.03 ROT(MILP)=0.01 ROT(MILP)=0.03 ROT(MILP)=0.01

Solved 30 30 30 29

Improved in the computation time 5 0 7 0

Improved in the cost 6 8 4 8

Deteriorated in the cost 7 9 8 8

Not changed in the cost 17 13 18 13

Table 4.28: Number of instances without/with a change in the cost and compu-
tation time (50 nodes)

The NLP-Single start The NLP-Multi start

Number of instances that has been : ROT(MILP)=0.15 ROT(MILP)=0.1 ROT(MILP)=0.15 ROT(MILP)=0.1

Solved 23 11 18 11

Improved in the computation time 0 0 0 0

Improved in the cost 2 4 4 2

Deteriorated in the cost 7 3 7 5

Not changed in the cost 7 3 7 5

The following tables show the number of instances with/without change in

the cost and computation time based on the NLP-Single start compared with the

NLP-Multi start with different values of ROT(MILP) for networks of 25 and 50

nodes.

Table 4.29: Number of instances without/with a change in the cost and compu-
tation time (25 nodes)

Number of instances that has been : ROT(MILP)=0.05 ROT(MILP)=0.03 ROT(MILP)=0.01

Solved 30 30 29

Improved in the computation time 14 14 13

Improved in the cost 8 8 8

Deteriorated in the cost 7 4 3

Not changed in the cost 14 18 18

115

Table 4.30: Number of instances without/with a change in the cost and compu-
tation time (50 nodes)

Number of instances that has been : ROT(MILP)=0.2 ROT(MILP)=0.15 ROT(MILP)=0.1

Solved 30 18 11

Improved in the computation time 9 5 6

Improved in the cost 12 7 3

Deteriorated in the cost 5 3 3

Not changed in the cost 13 8 4

116

Chapter 5

The New Heuristic Algorithm

In this chapter, we develop a new heuristic algorithm to solve our Mixed Integer

Non Linear Programming (Model 6) given by equations (3.12)-(3.20). Our fun-

damental problem is, given a set of nodes and customer requirements, determine

the optimal network. This includes the network layout, the multi diameter type

for the connected link, the pressure at each node, and the flow through each link.

The objective is to meet demand and requirements at minimum total cost. The

requirements are related to the available pipeline diameters, pressure limits, de-

mands, physics gas laws and network structure which in our case is a tree.

Our solution strategy is to reduce the level of difficulty by converting the

MINLP problem to the Linear Programming (LP) problem through a bi-level

heuristic algorithm in which the integer variables are generated in the outer level,

and the remaining LP sub-problem is solved in the inner level.

Our proposed algorithm includes two levels. At the outer level, a tree net-

work is generated, and at the inner level, we determine the diameters for the

given links. Also we determine the pressure at each node and the flow through

each selected link by solving the remaining linear problem.

This chapter is organised as follows: In Section 5.1, we present the problem

features followed by our mathematical model (Model 6). Section 5.2 explains the

solution strategy for the developed model. The detailed algorithm along with the

implementation is presented in Sections 5.3 and 5.4. We test our methodology

on a series of numerical examples. In Sections 5.5 and 5.6, the improvement of

117

our heuristic algorithm compared with the NLP-Single start and the NLP-Multi

start are presented.

5.1 Model

We start this section by recalling our mathematical model (Model 6) detailed in

Chapter 3. We first recall the following features of the problem, which were listed

in Chapter 3.

• The pipe diameter configuration must follow a descending order.

• There are no compressor and no nozzles in the network.

• The network is in a steady state, the flow may vary from point to point,

but do not vary with time.

• All pipes in a network are of the same type of material, such as all pipes

are made of steel or ductile iron.

• Without loss of generality, the sum of demand of consumer nodes and the

source node is zero.

The notation and terminology is as follows:

Sets:

N = {1} ∪Nc : The set of supply and demand nodes.

N = {1, 2, 3, . . . , i, . . . , n− 1, n}.

Nc: The set of demand nodes {2, 3, . . . , i, . . . , n− 1, n};

obviously, |N | = n = |Nc|+ 1.

D : The set of pipe diameter types {d1, d2, . . . , d|D|}.
Parameters:

s1 : The amount of supply at source node 1.

si : The demand at consumer node i.

C(d) : The cost per unit length of pipe diameter type d.

Lij : The length between node i and node j.

πi
L, πi

U : The lower and upper square pressure limits at node i.

M : A large number.

118

Variables:

πi : The square of gas pressure at node i.

fij : The flow rate from node i to node j.

zij : The binary variable indicating whether or not node i is serving node j;

zij =

1, if i is serving (linked to) j (i → j).

0, otherwise.

ldij : The length of pipe diameter type d from node i to node j.

We need to note that if ldij = 0, then there is not the pipe diameter type d

for link (i, j). We recall the MINLP mathematical problem (Model 6) given by

equations (3.12)-(3.20) in below:

Model 6

Minimise
∑
i∈N

∑
j∈N

∑
d∈D

C(d)ldij (5.1)

Subject to:
∑
j∈N

fij −
∑
j′∈N

fj′i = si, ∀i ∈ N (5.2)

fij ≤Mzij, ∀j ∈ N,∀j ∈ N (5.3)∑
i∈N

zij = 1, ∀j ∈ Nc (5.4)

zij(πi − πj) = β
∑
d∈D

ldijd
−5f 2

ij, ∀i ∈ N,∀j ∈ N (5.5)∑
d∈D

ldij = zijLij, ∀i ∈ N,∀j ∈ N (5.6)

πi
L < πi < πi

U , ∀i ∈ N (5.7)

fij ≥ 0, ∀i ∈ N,∀j ∈ N,∀d ∈ D (5.8)

ldij ≥ 0, ∀i ∈ N,∀j ∈ N, ∀d ∈ D (5.9)

zij ∈ {0, 1}, ∀i ∈ N,∀j ∈ N. (5.10)

We note that β is a constant number that was explained in Chapter 2, Equa-

tion (2.6).

119

5.2 Solution Strategy

The Model 6 is a MINLP model which is difficult to solve with exact or even

approximate methods. It is, first of all, an integer problem due to the binary

choice of opening the arcs. Secondly, this problem is nonlinear because of the

nonconvex and nonlinear constraint (5.5). We develop a heuristic algorithm based

on a Cross-Entropy algorithm as a solution approach. Our solution strategy has

two stages:

• The outer level: In this level, we define a procedure to generate the link

connection variables zij (Network Design Problem). It leads to presenting

a matrix of binary values of aij (adjacency matrix A = [aij]). We detail

this further in Section 5.3.1.

• The inner level: In this level, the MINLP model (Model 6) is converted

into a model where the binary variables are fixed (connection links). The

binary variables are obtained from the outer level. Then, this converted

model that is the Allocation Problem is solved. The output results are the

flows, the pressures, and the length of pipeline diameter types. We present

more detail below.

The network structure is a tree; then the inner model is an LP problem. The

flow variables, fij, are obtained through a system of equations (Equations 5.2,

5.3, and 5.8). In the outer level of our solution strategy, we generate tree networks

(adjacency matrix A) based on a probability matrix. In the inner level, we use

the LP solver in AIMMS to solve the inner minimisation that the results are fij,

πi, and ldij. The inner level is implemented in AIMMS that includes a procedure

and a linear mathematical model.

The procedure: Using the adjacency matrix A obtained in the outer level, the

variables fij are determined separately from the system of linear equations

including the constraints (5.2), (5.3), and (5.8).

Procedure 1: Solve the system:
∑

(i,j)∈A fij −
∑

(j′,i)∈A fj′i = si, ∀i ∈ N

fij ≤Maij, ∀(i, j) ∈ A

fij ≥ 0, ∀(i, j) ∈ A.

120

We solve the above system of linear equations to obtain the flow (fij) for

each link of tree network. Then, we use the obtained flow as an input for

the following LP model.

Linear Programming Model (Model 7): In this model, we solve our math-

ematical model using the values of fij and aij as the input data. The links

aij are obtained from the outer level, and the flows fij have been obtained

from solving the system of linear equations (Procedure 1). Therefore, we

solve the mathematical model (Model 7) to minimise the total cost using the

constraints (5.5), (5.6), (5.7), and (5.9). The mathematical model (Model

7) is presented below.

(Model 7)



Minimise
∑

i∈N
∑

j∈N
∑

d∈D C(d)ldij

Subject to:

aij(πi − πj) = β
∑

d∈D l
d
ijd
−5f 2

ij, ∀(i, j) ∈ A∑
d∈D l

d
ij = aijLij, ∀(i, j) ∈ A

πi < πi < π̄i, ∀i ∈ N

ldij ≥ 0, ∀(i, j) ∈ A,∀d ∈ D.

The model is a linear problem due to the linearity of all constraints. The

results of solving this model are in the variables of πi and ldij and also

presenting the minimal cost. We note that, the nonlinear equation (5.5),

with fixing the variables of zij (to parameters aij) and fij, is converted to

a linear equation with the only variables of πi and ldij.

We use the linear solver (CPLEX) in AIMMS to solve linear mathematical

model (Model 7). In the following section, we explain the basic of Cross-Entropy

Algorithm.

5.2.1 Cross-Entropy Algorithm

The Cross-Entropy method was proposed by Rubinstein (1997) to estimate the

probability of rare events in complex stochastic networks. It was soon realised

that the Cross-Entropy could be adapted not only for estimating probabilities of

rare events but also for solving difficult optimisation problem by implementing a

simple modification. This modification is done by transforming the deterministic

121

optimisation problem into a related stochastic optimisation problem and then

using rare event simulation techniques proposed by Rubinstein (1997).

Several recent applications demonstrate the power of the Cross-Entropy method

as a generic and practical tool for solving NP-hard problems (Eshragh et al.,

2011). The cross-entropy method is an iterative procedure that involves the fol-

lowing two steps.

• Generation of a sample of random data (trajectories, vectors, etc.) accord-

ing to some random mechanism.

• Updating the parameters of the random mechanism, on the basics of the

data collected, to produce a better sample in the next iteration.

The main idea of cross-entropy in the optimisation problem is initialising

the probability distribution function over a feasible region (commonly, a uniform

distribution). At each iteration, the probability distribution is adapted based on

the random sample collected in the previous iteration. The algorithm procedure

ideally is to converge to a discrete uniform distribution for the probability matrix

that leads to a global optimal solution (Eshragh et al., 2011). Although the

cross-entropy method is still evolving, its performance has been promising in

many applications (Eshragh et al., 2011; Mardaneh et al., 2015). In addition,

Rubinstein and Kroese (2013) proposed a literature review on the application of

cross-entropy.

5.3 Implementation

We develop a new Heuristic Algorithm based on Cross-Entropy algorithm as a

solution approach for our MINLP problem. We divide the solution strategy into

two stages as follows:

The outer stage: We define a procedure for our proposed heuristic algorithm to

generate adjacency matrix for variables zij randomly based on a probability

matrix. The selected tree matrix is known as A = [aij]n×n.

The inner stage: For a given network, it can be performed using any linear

programming solver and the output results are πi, fij, and ldij.

In our implementation we code the heuristic algorithm in JAVA. We connect

a programming language (JAVA), a commercial package (AIMMS) and a package

122

with functions (EXCEL) (see codes in Appendix). The implementation process

is as follows:

• Linking between AIMMS package to JAVA programming language is re-

quired to implement the iterative procedures between the outer and inner

stages of the proposed solution. The AIMMS package receives the matrix of

binary variables (tree network) as input from JAVA programming language

to solve the inner minimisation and then reports the results (flow, pressure,

and pipeline diameters) to JAVA programming language.

• Linking JAVA programming language to EXCEL package with functions is

required as JAVA programming language receives input data from EXCEL

package with functions and reports the output to EXCEL package with

functions.

In terms of the implementation of the outer level of our heuristic algorithm, we

define the following:

• A probability distribution function (pdf).

• A procedure that generates tree network based on a probability matrix.

The following section explains generating the tree structure using a probability

matrix in more detail.

5.3.1 Generate Tree Structure Using a Probability Distri-

bution Matrix P t

We introduce the following notation:

A : The adjacency matrix of the tree network with the elements of aij.

aij =

1, if i is a serving node for demand node j

0, otherwise.

P t =[ptij]n×n, where ptij is the probability of serving node j by node i

in iteration t.

P t
j : The jth column of matrix P t.

We need to initialise the probability distribution matrix P 0. Each column of

matrix P 0 is specified for each node j that can be served via any of its candidate

123

connected nodes with equal likelihood. In other words, p0ij in matrix P 0 repre-

sents the probability of serving node j by node i, Thus, the elements p0ij for each

column j of matrix P 0 (P 0
j), is defined as follows:

p0ij =

1/(n-1), if j is a consumer node (j ∈ Nc) ∀i ∈ N

0, if j = 1 or if i = j.

Consequently, the initial probability matrix P 0 for a number of n nodes is

presented below. The n nodes include one source node (node 1) and n − 1 con-

sumer nodes (nodes 2, 3,..., n)

P 0 = [p0ij]n×n =



0 1/(n− 1) 1/(n− 1) 1/(n− 1) . . . 1/(n− 1)

0 0 1/(n− 1) 1/(n− 1) . . . 1/(n− 1)

0 1/(n− 1) 0 1/(n− 1) . . . 1/(n− 1)

0 1/(n− 1) 1/(n− 1) 0 . . . 1/(n− 1)

...
...

...
...

...
...

0 1/(n− 1) 1/(n− 1) 1/(n− 1) . . . 0


n×n

All candidate serving nodes for each node j (possible nodes to be serving of

node j) are defined on each column of P 0 (P 0
j). Moreover, the first column is zero

because node 1 is a source node. The sum of all elements of each column in the

matrix P 0 (except the first column) equals one because only one serving node

must be defined for each node j ∈ Nc.

n∑
i=1

p0ij = 1, ∀j ∈ Nc = {2, 3, . . . , n− 1, n} (5.11)

124

7

j

5

2

4

6

8

9

3

1

The links that connect serving nodes to the selected nodes.

The links that connect subtree nodes to the node j.

Nodes

Figure 5.1: An example to generate a tree network with excluding all generation
nodes to avoid cycle

where the column probability matrix P 0 for node j is defined as follows:

P t
j =



pt1j

pt2j

...

0

...

ptnj


=



1/(n− 1)

1/(n− 1)

...

0

...

1/(n− 1)


We note that the probabilities in P 0 are updated whenever a new value for

aij is selected. This is to ensure that our developed algorithm will create a tree

network starting at node 1 (source node).

125

For example, if Consumer 4 is served via Consumer 2, then the probability

that Consumer 2 itself is served via Consumer 4 is updated to zero. Moreover,

when selecting the value of zij (looking for the serving node for node j), we need

to exclude any node in the sub-tree with root node j to avoid cycles. Figure 5.1

presents an example for generating a tree network that nodes {2, 3, 4, 5, 6} have

been already served (the black lines). In this example, node j is a node to be

served via one of candidate the nodes of the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. We must

exclude the nodes from this set which make a cycle with node j. As Fig 5.1 shows,

node j is a root for sub-tree including nodes ST = {2, 3, 4, 5, 6}. The red lines

present that if node j is served via any nodes of set ST , a cycle is made, which is

unwanted.

As shown in Figure 5.1 for generating tree network, we need to exclude all

generation nodes for such a node j from all candidate serving nodes of the node

j. The algorithm for generating a tree network using P t, in the procedure t, is

described below.

Algorithm 5: Generate tree structure using the distribution matrix P t

(Procedure (t))

Input : n, P t, A = [0]n×n.

Step 1 : Set 2 −→ j.

Step 2 : Determine the set of Gj where

Gj = {i| i is a node in the sub-tree with root node j}.
Step 3 : 0 −→ ptij for all i ∈ Gj .
Step 4 : Normalise column j of P t:

P tj∑n
i=1 p

t
ij

−→ P tj

Step 5 : Find Cumulative Distribution Function (CDF) of column j of P t.

Step 6 : Generate a random number between [0, 1] to find an interval from CDF in step

5.

Step 7 : Determine parent of node j based on the found interval in Step 6.

Step 8 : Set 1 −→ a(parentj)j .

Step 9 : If j < n then j + 1 −→ j and go to Step 2, otherwise return A as the adjacency

matrix.

Output : The tree adjacency matrix A.

126

The explanation of some individual steps of the algorithm are presented below

in more detail.

Step 1 : We exclude the supplier node 1 that is the root of the tree network.

Therefore, Step 1 is started from node 2 as the first demand node.

Steps 2-3 : We need to exclude any node in the sub-tree with root node j to

avoid cycles. Therefore, first of all, we determine all sub-trees of node j (set

Gj) to exclude them from serving node (parent) j. Then, we set probability

zero to all these nodes that lead to preventing these nodes to be the parent

of node j and to avoid cycles.

Step 4 : As some of non zero elements of column P t
j are set to 0 in Step 3, then,

according to equation (5.11), this column should be normalised.

Steps 5-6-7 : In these steps, we determine the CDF of column j of P t from

its pdf. Then, a random number from the uniform distribution of [0, 1] is

generated. This random number belongs to an interval of values from the

CDF that determines the node to be the parent of node j.

Step 8 : From the previous steps, the parent (serving node) for node j is deter-

mined. This means that there is a connection link from the parent node to

the node j. Then a(parentj)j = 1.

Steps 9 : This procedure will continue until a parent is selected for all demand

nodes. Then it terminates and presents the adjacency matrix A that shows

a connected tree network.

A flowchart of the algorithm is displayed in Figure 5.2. Also, we present an

example for more clarification along with some shapes in Figure 5.3.

127

j = 2

No Is j< n ?

Return adjacency
matrix A

End

Normalize column j of P
t

Find CDF of column j of P
t

Generate a random number
between (0,1)

Determine the parent of node j

a [parent j] [j] = 1

j = j+1

p
t

ij = 0 i Gj

Gj = {i | i is a node in the sub-tree with root node j}

Yes

START

Figure 5.2: Flowchart of Generating the Tree Network

128

Example for Procedure (t), Generating a tree network

We present an example to generate a tree network with five nodes using Pro-

cedure (t). Let P 0 be the initial probability matrix.

P 0 = [p0ij]5×5 =



0 0.25 0.25 0.25 0.25

0 0 0.25 0.25 0.25

0 0.25 0 0.25 0.25

0 0.25 0.25 0 0.25

0 0.25 0.25 0.25 0


5×5

Iteration 1: (j = 2)

1. j = 2.

2. Sub-tree of node 2, G2 = ∅
3. There is no child for node 2.

4. P 0
2 = [0.25, 0, 0.25, 0.25, 0.25], the column of node 2 of P 0.

5. CDF(P2) = [0.25, 0.25, 0.5, 0.75, 1].

6. Random between [0, 1] = 0.4.

7. 0.25 < 0.4 < 0.5 then parent[2] = 3, (3 −→ 2).

8. a32 = 1.

9. 2 < 5 then j = 3 then go to Step 2.

Iteration 2: (j = 3)

2. Sub-tree of node 3, G3 = {2}.
3. p023 = 0.

4. P 0
3 = [0.25, 0, 0, 0.25, 0.25], the column of node 3 of P 0 then the normalisa-

tion is P 0
3 = [0.33, 0, 0, 0.33, 0.33].

5. CDF(P2) = [0.33, 0.33, 0.33, 0.66, 1].

6. Random between [0, 1] = 0.9.

129

7. 0.66 < 0.9 < 1, then parent[3] = 5, (5 −→ 3 −→ 2).

8. a53 = 1.

9. 3 < 5 then j = 4 then go to Step 2.

Iteration 3: (j = 4)

2. Sub-tree of node 4, G4 = ∅.
3. There is no child for node 4.

4. P 0
4 = [0.25, 0.25, 0.25, 0, 0.25], the column of node 2 of P 0.

5. CDF(P 0
2) = [0.25, 0.5, 0.75, 0.75, 1].

6. Random between [0, 1] = 0.15.

7. 0 < 0.15 < 0.25, then parent[4] = 1, (5 −→ 3 −→ 2, 1 −→ 4).

8. a14 = 1.

9. 4 < 5 then j = 5 then go to Step 2.

Iteration 4: (j= 5)

2. Sub-tree of node 5, G5 = {2, 3}.
3. p25 = 0, p35 = 0.

4. P 0
5 = [0.25, 0, 0, 0.25, 0], the column of node 4 of P 0 then the normalisation

is P 0
5 = [0.5, 0, 0, 0, 0.5].

5. CDF(P 0
5) = [0.5, 0.5, 0.5, 1, 0].

6. Random between [0, 1] = 0.45.

7. 0 < 0.6 < 0.5, then parent[5] = 1, (1 −→ 5 −→ 3 −→ 2, 1 −→ 4).

8. a15 = 1.

9. 5 < 5 then go to Step 10.

10.

A = [aij]5×5 =



0 0 0 1 1

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0


5×5

130

1

1/4

1/4

1/4

1

1/3

1/3

1/3

1/4

1/4

1/4 1/4

1/4

1
1

1/2

1/2

1

Start Iteration 1 Iteration 2

Iteration 4 EndIteration 3

4

2 3

5 4

2 3

5 4

2 3

5

4

2 3

5 4

2 3

5 4

2 3

5

1

Figure 5.3: Example for Generating of the Tree Network

Figure 5.3 gives an example of Procedure t (Algorithm 5). The output of Proce-

dure t (Algorithm 5) is a set of values aij, i = 1, ..., n, j = 1, ..., n, that define the

tree network topology (adjacency matrix A).

5.3.2 Proposed Heuristic Algorithm

The first procedure for our heuristic algorithm is to generate random tree net-

works. In the second procedure, the cost corresponding to each network is com-

puted by solving the inner stage by AIMMS, the LP solver, and then this infor-

mation is used to update the probability matrix P t, with the aim of producing a

better tree network in the next iteration. Ideally, P t, should converge to a certain

matrix in which each column has exactly one element equal to 1 except column

one (supply node) and all other elements equal to 0. Since 0 ≤ ptij ≤ 1, we have

(ptij)
2 ≤ ptij

Hence,

n∑
i=1

(ptij)
2 ≤

n∑
i=1

ptij = 1, for all j = 2, . . . , n (j ∈ Nc)

131

This implies that the Euclidean norm of the probability matrix P t satisfies

‖ P t ‖=

√√√√ n∑
i=1

n∑
j=2

(ptij)
2 ≤
√
n− 1

.

Any n × n certain matrix has the maximum Euclidean norm of
√
n− 1 (the

first column elements, supply node, equal to zero). Hence, we use the following

convergence criterion:

∣∣‖ P ‖ −√n− 1
∣∣ < ε

−ε <‖ P ‖ −
√
n− 1 < ε

Where ε > 0 is a given tolerance parameter. Our heuristic algorithm breaks

up when this inequality is satisfied, or when the best upper bound for the optimal

cost does not change over r iterations. The details of our heuristic algorithm are

described below along with the flowchart in Figures (5.4) and (5.5). The input

parameters are initialised by giving:

• M : Sample size

• M elite : Elite sample size,

• α ∈ [0, 1] : Smoothing parameter

• ε : Tolerance parameter

• r : An integer parameter

• U0 : The upper bound for the optimal cost

132

Algorithm 6: New Heuristic Algorithm

Input : M,M elite, n, α, ε, r, U t, P 0, Al = [0]n×n

Step 1 : Set ∞ −→ U0 and 0 −→ t.

Step 2 : Generate initial sample of binary matrix A1, A2, . . . , AM using Procedure (t)

with P t as the initial distribution matrix. Note that each Al; l = 1, . . . ,M is a

matrix of aij ; i = 1, . . . , n; j = 1, . . . , n.

Step 3 : For each sample adjacency matrix Al; l = 1, . . . ,M , determine the inner level

optimisation problem by solving the resulting linear programming problem in

AIMMS. If the tree is infeasible (does not solve), recheck and remove this tree

from the sample list and make a new binary matrix. Repeat this cycle to

generate a feasible tree. Let C1, . . . , CM denote the optimal costs obtained.

Step 4 : Sort Al’s in ascending order with respect to values of Cl. This creates a

sequence of order statistics C(1), . . . , C(M) with the property:

Pr(C(1) ≤ C(2) ≤ · · · ≤ C(M)) = 1

Now we have this A(1), A(2), . . . , A(M) sorted in ascending order with respect to

values of C(j). Then consider the best M elite generated solution from

A(1), A(2), . . . , A(M), named the elite sample.

Step 5 : If C(1) < U t then U t+1 = C(1) and A∗ = A(1), where A∗ presents the current

best adjacency matrix of aij variables; otherwise U (t+1) = U (t).

Step 6 : If t ≥ r and U (t+1) = U (t) = U (t−1) = · · · = U (t−r) then STOP and claim that

A∗ is a near optimal adjacency matrix of zij variables, otherwise, go to Step 7.

Step 7 : If
∣∣‖ P ‖ −√n− 1

∣∣ < ε then STOP and claim that A∗ is an optimal adjacency

matrix of aij variables, otherwise, go to Step 8.

Step 8 : Use the elite sample to update the probability distribution matrix by applying

the following equations:

p̃t+1
ij =

vij
M elite

,

pt+1
ij = (1− α) ptij + α p̃t+1

ij ,

where, vij is the number of times among elite sample such that the variable aij

take the value of 1.

Step 9 : Normalise each column of P t+1, and, then generate a new sample using the

updated probability matrix P t+1, set t = t+ 1 and go to Step 2.

Output : Minimum Cost, fij , πi, l
d
ij

133

START

l = 1

Is the tree infeasible

solution?

Initialise

M, Melite, n, α, r, ɛ, Ut, P0

A*=[0]nxn

 U
0
= ∞

t=0

P
t

Al = [0]nxn

Is l ≤ M

Yes

Generate a tree

Using Algorithm 4

Is tree

repeated?

Yes

Reject the tree from sample list

(to make a new tree)

No

Calculate the inner level

optimisation using AIMMS

Save C1 and A1

l = l+1

Yes

Yes

Figure 5.4: Flowchart of Heuristic Algorithm

134

Sort Al’s as ascending order
With respect to value of Cl

Is C(1) <Ut ? YESNo

Ut+1 = C(1)
A* = A(1)

Ut+1 = Ut

Is t >= r and
U t+1 = U t =U t-1 =…=U t-r ?

YES

A* is an optimal
adjacency matrix

ENDYESIs | ||Pt|| - √(n-1) | < ɛ ?

Form the elite sample

Determine vij, the number of times among elite sample
such that aij = 1

 p~
ij

t+1 = vij /M elite

pij
t+1 = (1-α) pij

t + α p~
ij

t+1

pt+1 = [pij
t+1]

Normalize each column of pt+1

t = t+1

NO

NO

Figure 5.5: Flowchart of Heuristic Algorithm (Continuation of Figure 5.4)

135

The explanation of some individual steps of the algorithm is presented below

in more detail.

Step 2 : We use the initial probability matrix as suggested by Rubinstein and

Kroese (2013) to generate samples. We use Algorithm 5 to generate a tree

network using probability matrix. This algorithm updates the probability

of each node j to exclude any node in the unique path starting at node j to

avoid cycles.

Step 3 : The mixed integer nonlinear programming model is simplified to a non-

linear programming model when we fix zij variables. Generating a tree

structure, the result is a linear programming model. The flow variables are

obtained iteratively using the system of equations (Procedure 1) in AIMMS,

and other variables also obtained from the linear sub-problem (Model 7) us-

ing AIMMS-Linear programming solver (CPLEX). If the tree is infeasible

(does not solve), recheck and remove this tree from the sample list and

make a new binary matrix. Repeat this cycle to generate a feasible tree.

Step 4 : As the objective function is minimised, we sort the performance of each

sample by the value found for the linear programming objective function.

We select the best elite sample to drive for the current iteration.

Steps 5-7 : The stopping criterion is checked on these steps. If the value of the

best performing objective function is better than the current upper bound,

the upper bound will be updated, otherwise, it remains the same. Then, the

upper bound is compared to some previous iteration’s upper bound, if any

improvement has been made, more investigation is needed, so the algorithm

proceeds to Step 7. If upper bound has not changed for the last r iteration,

then stop and report that A∗ is a near optimal adjacency matrix.

Step 8 : In this step, the probability matrix is updated based on the elite sample.

For each zij variable, a secondary pdf P̃ is determined by evaluating this
vij

M elite
where, vij is the number of times among elite sample such that

the variable aij take the value of 1. Then, the main probability matrix

is obtained by using a smoothing parameter to incorporate the historical

matrices into play. One desirable consequence of using smoothing parameter

is to reduce the probability that some components of the probability matrix

P t+1 will be zero or one in the early iteration.

136

Step 9 : In this step, we normalise each column of P t+1, and, then set t = t+ 1

and go to Step 2.

5.3.3 Interface Between JAVA programming language,

AIMMS package, and EXCEL package with func-

tions

We code the heuristic algorithm in JAVA programming language and then con-

nect JAVA, AIMMS package, and EXCEL package with functions together to

implement the algorithm (See Java code in Appendix). The implementation pro-

cess is as follows:

• Linking between AIMMS package and JAVA programming language is re-

quired to implement the iterative procedures between the inner level and

outer level of our heuristic algorithm (Algorithm 6). AIMMS package re-

ceives each sample of the matrix Al (a tree network that is generated with

Procedure t (Algorithm 5)) as input to solve the inner minimisation and

then reports the output results (the flow, the pressure, and the pipeline

diameters) to JAVA programming language.

• Linking JAVA programming language and EXCEL package with functions

is required. JAVA programming language receives input data from EXCEL

package with functions and reports the output to EXCEL package with

functions.

We have tested our algorithm on the test cases data given in Section 4.1. Our

test data is for n = 5, 10, 15, 20, and 25. The results show that the algorithm

works well. Some instances are terminated with the stopping criteria in Step 5

and other ones with the one in Step 7. Table 5.1 shows the minimum, the average,

and the maximum computation time for n = 10, 15, 20, and 25.

Table 5.1 illustrates that the computation time is increased significantly, while

the network size is increased. We need to consider that the average computation

time for networks with 25 nodes is an enormous value. So we need to improve

our algorithm.

137

Table 5.1: The computation times of our algorithm for networks with different
nodes

Time (sec)

n Minimum Average Maximum

10 467.00 765.33 1,018.00

15 3,670.00 6,624.63 10,665.00

20 5,860.00 10,143.80 14,679.00

25 10,553.00 14,891.23 22,439.00

The comparison of objective function values between our heuristic algorithm

and the results of the AOA algorithm for larger size data, 25 nodes, have not

been satisfactory. The reason is that our algorithm did not compare well to the

NLP-Single start method. We present Table 5.2 for the network with 25 nodes to

show the comparison results between our heuristic algorithm and the NLP-Single

start algorithm with ROT(MILP)=0.05.

Improvement =
{The NLP-Single Start} − {Our heuristic algorithm}

Best value
× 100%

(5.12)

The best value is the minimum value of the results between our heuristic algo-

rithm and the NLP-Single start. Also, the positive and negative value shows

improvement and deterioration value in both cost and computation time, respec-

tively for our heuristic algorithm based on the results with the NLP Single-start.

Table 5.2 shows that our algorithm does not present the cheaper cost for all

test cases. There is no improvement in the cost for 10 cases out of 30. We also

note the results for n = 10, 15, and 20 shows that there are some test cases that

have not improved in the cost.

138

Table 5.2: The comparison results in the objective function value between our
heuristic algorithm and the NLP Single-start (25 nodes)

Instance Minimum cost%

1 16.34

2 27.30

3 56.50

4 2.69

5 7.62

6 16.36

7 3.17

8 10.01

9 31.22

10 -15.01

11 -2.16

12 7.19

13 9.73

14 24.45

15 67.33

16 -10.49

17 160.09

18 8.25

19 -28.46

20 -2.05

21 2.83

22 6.80

23 6.57

24 7.12

25 -46.81

26 -53.78

27 -6.27

28 -27.22

29 7.82

30 -3.35

We discuss our heuristic’s drawbacks in Section 5.3.4. Then, we present some

improvements.

5.3.4 Algorithm’s Drawbacks

We outline the drawbacks of our heuristic below resulted due to our choices of

initial probability matrix, the number of M samples and the ε value.

Drawback 1 : The initial probability matrix P 0 has an important role in guiding

the algorithm to choose better samples. Starting with the same probability

139

for nodes to be the parent of a node, may not generate a good design.

Drawback 2 : We generate all samples of tree networks. To do this, we consider

a big sample size number M . Therefore, it takes time to generate the

number of M samples for each iteration.

Drawback 3 : Considering the small value (10−4) for ε increases the computa-

tion time. As the value of ε is small, mostly, the algorithm should stop with

the first criteria. As a result, the algorithm terminates with two or more

repeated iterations without any specific improvement in the result.

5.3.5 Proposed Alternatives for Drawbacks

We investigate to improve our heuristic algorithm to find a cost and time effective

feasible objective function value.

Alternative 1 : Consider the column probability matrix P 0 for node j,

P t
j =



pt1j

pt2j
...

0
...

ptnj


=



1/(n− 1)

1/(n− 1)
...

0
...

1/(n− 1)


There is the same probability for each node to be the parent of node j.

Although each node is placed in different distances of the node j, they have

the same probability of being the node j’s parent.

It is reasonable to consider for each node j that closer nodes are better

candidates to be the parent of that node. The objective function (5.1) is

the total cost that is the cost of pipeline diameter multiplied by pipeline’s

length. Therefore, the cost of design decreases with the shorter network’s

arcs. We note that that the Minimum Spanning Tree (MST) design, is not

the cheapest design for the gas distribution network (André et al. (2013)).

Therefore, we consider three categories of candidate nodes to stand as the

parent of each node j based on the distance values. These groups are

outlined below and are shown in Figure 5.6.

140

Group C

Group B

j

Group A

Figure 5.6: Different areas around node j

Group A : This includes the number of nodes that are close to the node

j.

Group B : This includes the number of nodes that are neither near nor

far to the node j.

Group C : This includes the number of nodes that are far from the node

j.

We update the initial probability matrix P 0 with the new definition of

elements of pij based on these three groups. We define below pij. The

probability of nodes to stand as the parent of node j is:

p0ij =



n− 1

n
, for all i ∈ A

1

10n
, for all i ∈ B

0, for all i ∈ C

0, if j = 1 and if i = j.

This leads to an increase of chance of generating better tree networks in

our samples. It is reasonable to consider zero probability value for nodes

141

in group C. This leads to exclude costly tree networks in our samples. We

update and normalise each column of the initial probability matrix P 0.

Alternative 2 : We consider a large number sample size M1 for the first itera-

tion to generate and, a small sample size M2 for other iterations. We save

the time regarding the generating sample size problem.

Alternative 3 : We consider a greater value for parameter ε than 10−4 for ex-

ample 10−2.

We test our heuristic algorithm for all 30 instances for categories of 10, 25, 50

nodes again as the small size, the medium size, and the large size, respectively

for our model. Our heuristic algorithm finds a cost-effective objective value in a

reasonable computation time. The reasonable computation time for our heuristic

algorithm is 4 hours. The computational results are reported in the next section.

5.4 Computational Results

In this section, we test three network sizes of the problem including 10 nodes

(small size); 25 nodes (medium size); and 50 nodes (large size). Each network

includes the 30 instances which have been tested using the AOA algorithm in

Chapter 4. Some parameters are to be initialised for our heuristic algorithm for

each category. These are outlined below.

• M1 : Sample size of the first iteration.

• M2 : Sample size of the other iteration (M2 is 10 percent of M1).

• M1elite : Elite sample size of the first iteration.

• M2elite : Elite sample size of the other iteration (M2elite is 10 percent of

M1elite).

• α ∈ [0, 1] : Smoothing parameter.

• ε : Tolerance parameter (ε = 10−2).

• r : An integer parameter (r = 5).

• n : Number of nodes (|N | = n).

• U0 : Initial upper bound for the cost (U0 =∞).

142

The value of sample sizes and elite sample sizes and α depend on the number of

nodes. For each network size, we determine these values considering the following

steps:

• Pick three instances from the uniform distribution of [1, 30].

• Test the algorithm for different values of parameters M,M elite, α. To find a

good configuration of these parameters M,M elite and α, we follow the same

analysis used by Eshragh et al. (2011); Mardaneh and Caccetta (2016). For

each of these parameters, our algorithm is tested based on the following:

– Consider different values for one parameter and fix the value for other

parameters. For example, we consider the different values of M while

M elite and α are fixed.

• Compare the results of minimum cost and computation time and the num-

ber of iterations on the basis of provided improvement functions (will be

detailed further in this Chapter).

• Determine values for the parameters of sample size and elite sample size

and α that have a cost-effective solution value with less computation time

and less number of iteration compared with the other parameters.

• Test all instances based on these values of sample size and elite sample sizes

and α.

5.4.1 10 Node Networks

We start with networks of 10 nodes. We explain the internalising values of the

sample size, elite sample size and α in detail as follows:

• We consider different values of sample sizes as 150, 250, and 500, and fix the

value of the parameters M elite = 50 and α = 0.9. We calculate the average

results of 3 instances. In Table 5.3, we show the comparative analysis based

on:

Improvement =

{The results of M1 = 500} − {The results of M1 = 150, 250}
Best value

× 100%

The best value is the minimum value of the results between the results

of M1 = 500 and the results of M1 = 150, and 250. Also, the positive

143

and negative value shows improvement and deterioration in the cost, the

computation time, and the number of iteration value based on the result of

M1 = 500.

Table 5.3: Sample sizes analysis (10 nodes)

Improvement

Different M1 Minimum Cost% Time (sec)% Iteration%

500 0.00 0.00 0.00

250 -2.35 37.50 -244.44

150 0.74 -40.91 0.00

As shown in Table 5.3, there is a small change in the total cost for other

values of parameter M1 compared with the results of M1 = 500. Although,

there is a significant difference in the computation time and the number of

iterations. Decreasing the value of M1 from 500 to 250 results in deterio-

rations in the minimum cost, number of iteration and improvement in the

computation time. In contrast, decreasing the value of M1 from 500 to 150,

leads to an improvement in the minimum cost and significant deterioration

in the computation time. Accordingly, we test all test cases with 10 nodes

considering the value 500 for the parameter M1.

• We consider different values of the elite sample sizes as 20, 40, and 50,and

fix the value of the parameters M1 = 500 and α = 0.9. The comparative

analysis is based on:

Improvement =

{The results of M1elite = 50} − {The results of M1elite = 20, 40}
Best value

× 100%

The best value is the minimum value of the results between the results of

M elite = 50 and the results of M1elite = 20, 40. Also, the positive and

negative value shows improvement and deterioration in the cost, the com-

putation time, and the number of iteration value based on the result of

M1elite = 50.

144

Table 5.4: Elite sample sizes analysis (10 nodes)

Improvement

Different M1elite Minimum Cost% Time (sec)% Iteration%

50 0.00 0.00 0.00

40 -0.01 -81.82 -750.00

20 0.74 -36.36 -122.22

Table 5.4 depicts, decreasing the value of parameter elite sample size, the

number of iteration and the computation time increase. Decreasing the

value of M1elite from 50 to 40, results in deteriorations in the minimum

cost, computation time and number of iteration. Also, decreasing the value

of M1elite from 50 to 200 leads to an improvement in the minimum cost and

significant deterioration in the computation time and number of iteration.

Accordingly, we test all test cases with 10 nodes considering the value 50

for the parameter M1elite.

• We consider different values of parameter α as 0.9, 0.5, 0.1, and fixM1 = 500

and M1elite = 50. The comparative analysis is based on:

Improvement =

{The results of α = 0.9} − {The results of α = 0.5, 0.1}
Best value

× 100%

The best value is the minimum value of the results between the results of

α = 0.9 and the results of α = 0.5, 0.1. Also, the positive and negative

value shows improvement and deterioration in the cost, the computation

time, and the number of iteration value based on the result of α = 0.9.

Table 5.5: α analysis (10 nodes)

Improvement

Different α Minimum Cost% Time (sec)% Iteration%

0.9 0.00 0.00 0.00

0.5 0.74 -63.64 -350.00

0.1 0.74 -186.36 -233.33

Table 5.5 presents, decreasing the value of parameter α, results in the com-

putation time and the number of iterations increase. Decreasing the value of

α from 0.9 to 0.5 and then to 0.1, leads to an improvement in the minimum

145

cost and significant deterioration in the computation time and number of

iterations. Accordingly, we test all test cases with 10 nodes considering the

value 0.9 for the parameter α.

Based on the results from Tables 5.3, 5.4, and 5.5, we test our all instances of

network with 10 nodes using the following value of parameters:

First sample size M1 = 500,

Second sample size M2 = 50,

First elite sample size M1elite = 50,

Second elite sample size M2elite = 5,

α = 0.9,

ε = 0.01.

In Table 5.6, we present the results of our heuristic algorithm.

146

Table 5.6: Our modified heuristic algorithm results (10 nodes)

Instance Minimum cost Time (sec)

1 31,381.21 660.00

2 36,806.16 767.00

3 46,357.88 640.00

4 42,134.17 699.00

5 49,651.17 830.00

6 64,588.00 728.00

7 41,269.26 746.00

8 52,546.30 791.00

9 66,836.52 784.00

10 61,234.47 719.00

11 72,272.65 824.00

12 91,846.64 722.00

13 127,957.58 704.00

14 152,860.46 617.00

15 187,938.60 726.00

16 52,012.31 892.00

17 63,133.17 1,018.00

18 76,519.98 998.00

19 39,623.24 718.00

20 45,010.38 801.00

21 58,548.08 726.00

22 41,106.94 467.00

23 50,563.19 778.00

24 76,312.96 874.00

25 71,588.19 714.00

26 83,856.53 1,004.00

27 116,949.00 1,004.00

28 48,042.21 633.00

29 55,876.63 625.00

30 66,663.86 751.00

The results demonstrate that the modified heuristic algorithm requires less

computation time than our new heuristic algorithm. The average computation

time of the modified heuristic algorithm is 765.33 compared to 2400 seconds.

This represent an improve within the time of about 213.59%. Also, the objective

function value is improved with our new algorithm.

147

5.4.2 25 Node Networks

We consider different values of parameters M1,M1elite, and α. We test three test

instances using our algorithm. We determine the value of each these parameters to

find a good feasible solution in a reasonable time and a few number of iterations.

The computational results in the average of minimum cost, computation time,

and the number of iterations are presented below.

• We consider different values of parameter M as 400, 1000, 1500, and 2000,

and fix the value of other parameters M1elite = 100 and α = 0.9. The

comparative analysis is based on:

Improvement =

{The results of M1 = 1000} − {The results of M1 = 400, 1500, 2000}
Best value

×100%

The best value is the minimum value of the results between the results of

M1 = 1000 and M1 = 400, 1500, 2000. Also, the positive and negative

value show an improvement and deterioration in the cost, the computation

time, and the number of iteration value based on the result of M1 = 1000.

Table 5.7: Sample sizes analysis (25 nodes)

Improvement

Different M1 Minimum Cost% Time (sec)% Iteration%

400 -11.68 171.11 57.14

1000 0.00 0.00 0.00

1500 -0.45 -50.00 10.00

2000 -0.01 -46.72 22.22

We compare the parameter M1 with the value of 1000 to other values of

400, 1500 and 2000, in Table 5.7. Considering the value of 400 for the

sample size, which is less than 1000 results in an unsatisfactory objective

value and a decrease in the computation time and the number of iterations.

Also, considering a larger value of sample size than 1000 leads to an increase

in the computation time and no significant improvement in the objective

value and the number of iterations. Accordingly, to test all test cases with

25 nodes, the reasonable sample size is M1 = 1000.

148

• We consider different values of parameter elite sample size as 100, 200,

and 400, and fix the value of parameters M1 = 1000 and α = 0.9. The

comparative analysis is based on:

Improvement =

{The results of M1elite = 100} − {The results of M1elite = 200, 400}
Best value

×100%

The best value is the minimum value of the results between the results

of M elite = 100 and the results of M1elite = 200, 400. Also, the positive

and negative value shows improvement and deterioration in the cost, the

computation time, and the number of iteration value based on the result of

M1elite = 100.

Table 5.8: Elite sample sizes analysis (25 nodes)

Improvement

Different M1elite Minimum Cost% Time (sec)% Iteration%

100 0.00 0.00 0.00

200 -0.12 -11.48 -27.27

400 -7.80 -40.16 -90.91

We compare the results of different values of elite sample sizes with the

result of M1elite = 100 that is 10% of the fixed sample size. Table 5.8 shows,

increasing the value of parameter elite sample size, results in an increase

in the computation time and the number of iterations and no significant

improvement in the minimum cost.

• We consider different value of parameter α as 0.9, 0.5, and 0.1, and fix the

value of parameters M1 = 1100,M1elite = 100. The comparative analysis

is based on:

Improvement =

{The results of α = 0.9} − {The results of α = 0.5, 0.1}
Best value

× 100%

The best value is the minimum value of the results between the results of

α = 0.9 and α = 0.5, 0.1. Also, the positive and negative value shows an

improvement and deterioration in the cost, the computation time, and the

149

number of iteration value based on the result of α = 0.9.

Table 5.9: α analysis (25 nodes)

Improvement

Different α Minimum Cost% Time (sec)% Iteration%

0.9 0.00 0.00 0.00

0.5 2.27 -65.75 -72.73

0.1 -30.47 -43.09 -54.55

Table 5.9 presents the comparison of results of different values of α based on

α = 0.9. Considering the smaller value of α than 0.9, results in a significant

increase in the computation time and the number of iterations and the

deterioration in the minimum cost. Accordingly, to test all test cases with

25 nodes, we consider the value of parameter as α = 0.9.

Based on the results in Tables 5.7, 5.8, and 5.9, we test all instances of a network

with 25 nodes using the following value of parameters:

First sample size M1 = 1000,

Second sample size M2 = 100,

First elite sample size M1elite = 100,

Second elite sample size M2elite = 10,

α = 0.9,

ε = 0.01.

Table 5.10 presents the computation results of the minimum cost and the com-

putation time for 30 test networks with 25 nodes.

150

Table 5.10: Our new modified heuristic algorithm results (25 nodes)

Instance Minimum cost Time (sec)

1 59,662.29 4,970.00

2 77,859.,12 4,953.00

3 97,102.35 4,659.00

4 81,613.71 5,109.00

5 109,601.78 5,250.00

6 139,932.48 5,131.00

7 72,762.47 5,581.00

8 98,642.77 6,352.00

9 121,036.68 3,386.00

10 108,955.45 3,473.00

11 159,024.36 2,767.00

12 200,426.82 3,101.00

13 211,874.96 5,341.00

14 301,281.16 5,003.00

15 381,399.90 5,287.00

16 68,180.06 4,194.00

17 83,289.63 4,538.00

18 99,049.08 4,715.00

19 55,350.13 4,471.00

20 67,711.79 3,735.00

21 76,657.30 4,080.00

22 92,027.63 3,695.00

23 120,952.12 3,505.00

24 140,258.61 3,488.00

25 97,579.76 6,039.00

26 128,860.30 3,239.00

27 153,369.06 3,382.00

28 83,704.61 3,319.00

29 106,300.73 4,138.00

30 133,378.06 3,643.00

In the next section, we present the computational results for all test cases of

networks with 50 nodes.

5.4.3 50 Node Networks

We consider different values of parameters M1,M1elite, and α. We test three test

instances using our algorithm. We determine the value of these parameters to find

a cost-effective feasible solution in a reasonable time and a few number of itera-

tions. The computational results in the average of minimum cost, computation

151

time, and the number of iterations are presented below.

• We consider different value of the parameter sample sizes as 500, 1000, 1500,

and 2000, and fix the value of parameters M1elite = 100 and α = 0.9. The

comparative analysis is based on:

Improvement =

{The results of M1 = 1000} − {The results of M1 = 500, 1500, 2000}
Best value

×100%

The best value is the minimum value of the results between the results

of M1 = 1000 and M1 = 500, 1500, 2000. Also, the positive and negative

value shows an improvement and deterioration in the cost, the computation

time, and the number of iteration value based on the result of M1 = 1000.

Table 5.11: Sample sizes analysis (50 nodes)

Improvement

Different M1 Minimum Cost% Time (sec)% Iteration%

500 -27.22 88.56 6.67

1000 0.00 0.00 0.00

1500 -13.80 -13.26 0.00

2000 -10.38 -56.74 23.08

Table 5.11 compares the parameter M1 with the value of 1000 to other

values of 500, 1500 and 2000. Consider the value of 500 for the sample

size, which is less than 1000, results in a decrease in the computation time

and the number of iterations and a worse objective function value. Also,

consider a larger value of sample size than 1000, there is an increase in the

computation time and no significant improvement in the objective function

and the number of iterations. Accordingly, we test our test cases considering

the sample size of M1 = 1000.

• We consider different values of parameter elite sample size as 100, 200, and

400, and fix the value of parameters M1 = 1000 and α = 0.9. The compar-

ative analysis is based on:

152

Improvement =

{The results of M1elite = 100} − {The results of M1elite = 200, 400}
Best value

×100%

The best value is the minimum value of the results between the results of

M elite = 100 and the results of M1elite = 200, and 400. Also, the positive

and negative value shows an improvement and deterioration in the cost, the

computation time, and the number of iteration value based on the result of

M1elite = 100.

Table 5.12: Elite sample sizes analysis (50 nodes)

Improvement

Different M1elite Minimum cost% Time (sec)% Iteration%

100 0.00 0.00 0.00

200 -6.54 -17.75 -33.33

400 -9.52 -70.34 -100.00

We compare the results of different values of elite sample sizes with the re-

sult of M1elite = 100 that is 10% of the fixed sample size. Table 5.12 shows,

increasing the value of parameter elite sample size, results in an increase

in the computation time and the number of iterations and no significant

improvement of the solution. Accordingly, we test all test cases with 50

nodes considering the value parameter M1elite = 100.

• We consider different value of parameter α as 0.9, 0.5, and 0.1, and fix

the value of parameters M1 = 1100, and M1elite = 100. The comparative

analysis is based on:

Improvement =

{The results of α=0.9} − {The results of α=0.5, 0.1}
Best value

× 100%

The best value is the minimum value of the results between the results of

α = 0.9 and α = 0.5, 0.1. Also, the positive and negative value shows an

improvement and deterioration in the cost, the computation time, and the

number of iteration value based on the result of α = 0.9.

153

Table 5.13: α analysis (50 nodes)

Improvement

Different α Minimum Cost% Time (sec)% Iteration%

0.9 0.00 0.00 0.00

0.5 -7.64 -44.95 -106.25

0.1 -105.29 52.57 100.00

Table 5.13 shows deterioration in the objective value for the values of α=0.1

and 0.5 compared to α=0.9. For the network with 50 nodes, the cost and

time-effective feasible value for α is 0.9.

Based on the results in Tables 5.11, 5.12, and 5.13, we test all instances of net-

work with 25 nodes using the following value of parameters:

First sample size M1 = 1000,

Second sample size M2 = 100,

First elite sample size M1elite = 100,

Second elite sample size M2elite = 10,

α = 0.9,

ε = 0.01.

The computational results in the minimum cost and computation time for all

30 test cases of network with 50 nodes are reported in Table 5.14.

Table 5.14 shows that the networks with 50 nodes are terminated around

10,000 seconds, and there are no significant changes in time between all 30 in-

stances. Table 5.15 presents the Minimum, Average and Maximum of the time

of 30 instances considering three network sizes with 10, 25, and 50 nodes.

154

Table 5.14: Our new modified heuristic algorithm results (50 nodes)

Instance Minimum cost Time (sec)

1 193,491.54 9,377.00

2 131,954.91 10,400.00

3 175,870.17 10,514.00

4 156,144.05 9,761.00

5 211,589.03 9,526.00

6 281,024.12 9,526.00

7 127,408.91 8,771.00

8 180,771.59 8,539.00

9 240,103.60 11,364.00

10 200,469.79 12,371.00

11 290,636.50 8,606.00

12 388,548.28 8,417.00

13 399,770.73 13,411.00

14 552,459.86 11,788.00

15 758,492.83 10,148.00

16 115,537.92 10,562.00

17 127,550.05 11,399.00

18 146,205.80 11,179.00

19 113,364.32 10,195.00

20 148,180.79 9,785.00

21 170,551.30 11,351.00

22 126,824.01 10,240.00

23 162,630.91 8,721.00

24 203,197.49 10,360.00

25 142,085.41 10,948.00

26 194,635.45 9,489.00

27 224,305.68 9,914.00

28 146,889.79 9,495.00

29 196,517.76 9,330.00

30 237,069.79 9,389.00

155

Table 5.15: The computation times using our new modified heuristic algorithm
for networks with 10, 25, 50 nodes

Time (sec)

n Minimum Average Maximum

10 467.00 765.33 1,018.00

25 2,767.00 4,351.46 6,352.00

50 8,417.00 10,162.53 13,411.00

Table 5.15 shows that increasing the network size to the double size (from 25

to 50), leads to a progressive increase in the average of computation time. In the

next section, we compare the objective value and computation time between the

OA/ER/AP algorithm (AOA) and our new modified heuristic algorithm.

5.5 Comparative Analysis (The NLP-Single Start-

ing Point)

In this section, we provide the tables to show the improvement of our new modified

heuristic algorithm by percentage, in terms of the minimum cost and computation

time based on the results of the AOA algorithm. We determine the improvement

based on the following equation:

Improvement =

{The NLP-Single start results} - {Our modified heuristic results}
Best value

× 100%

The best value is the minimum values between the values of the NLP-Single start

and our modified heuristic algorithm. Compared with the results of the NLP-

Single start algorithm, the positive and negative value show an improvement and

deterioration in cost and time for our heuristics algorithm respectively.

We compare our heuristic results with the NLP-Single start condition. We

demonstrate that our heuristic algorithm works well in terms of objective function

value compared with the NLP-Single start.

156

5.5.1 10 Node Networks

Table 5.16 compares the minimum cost and the computation time for all 30 test

instances between the AOA algorithm with the NLP-Single starting point and

our modified heuristic algorithm. The results show that our algorithm works well

mostly in terms of the minimum cost. However, in terms of the computation

time, the AOA performs quicker.

Table 5.16: Improvement of our modified heuristic algorithm compared with
NLP-Single start (10 nodes)

Instance Min cost% Time (sec)%

1 2.00 -8,747.00

2 3.00 -2,7490.00

3 1.00 -3,274.00

4 -5.00 -5,6271.00

5 7.00 -3,931.00

6 4.00 -6,641.00

7 -5.00 -1,3150.00

8 -5.00 -3,329.00

9 5.00 -2,516.00

10 -2.00 -1,4166.00

11 7.00 -4,251.00

12 9.00 -2,364.00

13 2.00 -3,955.00

14 0.00 -5,265.00

15 23.00 -2,634.00

16 1.00 -2,4205.00

17 1.00 -7,986.00

18 0.00 -6,474.00

19 0.00 -1,9464.00

20 7.00 -2,2851.00

21 -3.00 -5,807.00

22 0.00 -1,0735.00

23 0.00 -7,790.00

24 0.00 -3,363.00

25 5.00 -1,7230.00

26 5.00 -1,2545.00

27 9.00 -6,348.00

28 0.00 -1,8518.00

29 0.00 -9,173.00

30 0.00 -3,370.00

157

Table 5.17 shows the number of test instances (out of 30) for a network with

10 nodes without/with a change in the cost by our heuristic algorithm.

Table 5.17: Number of instances without/with a change in the cost by our heuris-
tic algorithm (10 nodes)

Deterioration No Change Improvement

5 9 16

Table 5.17 illustrates that both algorithms have the same cost for 9 instances

out of 30. Compared with the NLP-Single start, results of our heuristic algorithm

show a better computation time and an improvement in the cost for half of 30

instances.

5.5.2 25 Node Networks

Table 4.5 compares our modified heuristic algorithm results with the NLP-Single

start considering different values of ROT(MILP).

Table 5.18 shows that our heuristic algorithm improves the objective function

value for all 30 test instances compared with the NLP-Single start with different

values of ROT(MILP). Also, our algorithm gives an improvement in the compu-

tation time with ROT(MILP) = 0.01. In contrast, the NLP-Single start shows

better performance in the computation time with ROT(MILP) = 0.03, and 0.05.

158

Table 5.18: The comparison results between our modified heuristic algorithm and
the NLP-Single start (25 nodes)

ROT(MILP)=0.05 ROT(MILP)=0.03 ROT(MILP)=0.01

Instance Minimum Cost% Time (sec)% Minimum Cost% Time (sec)% Minimum Cost% Time (sec)%

1 12.35 -552.76 7.90 -61.47 7.90 8.48

2 43.49 1.47 64.86 -4.87 72.33 20.60

3 60.74 -76.45 60.28 103.57 89.15 455.89

4 5.91 -699.59 4.41 -827.73 4.49 -331.97

5 21.51 -670.31 21.51 -619.35 37.18 17.98

6 31.55 -527.65 31.55 -31.75 31.81 65.03

7 7.99 -1382.81 7.99 -437.74 7.99 -64.93

8 23.64 -253.09 23.64 -90.13 23.64 -83.42

9 40.52 27.78 83.71 441.82 87.12 797.40

10 8.94 -733.03 8.94 -730.92 8.94 -249.40

11 15.53 -470.79 15.53 331.88 15.53 9.42

12 13.27 54.46 13.27 99.48 13.27 406.22

13 25.30 -185.74 36.14 -108.91 28.93 -48.30

14 34.78 -138.62 59.15 347.25 27.53 302.79

15 74.45 -106.04 74.45 52.92 0.74 281.15

16 11.27 -87.35 20.07 -39.00 19.58 -25.19

17 172.01 -535.89 178.41 -913.42 178.41 -536.05

18 48.78 216.34 48.78 -68.39 47.35 200.36

19 13.66 -310.19 15.92 -420.70 15.92 -307.33

20 17.93 7.97 17.93 -10.23 17.93 99.01

21 31.87 236.02 31.87 565.95 31.87 937.79

22 38.10 -11.16 36.46 58.05 12.53 10.48

23 20.45 160.83 20.45 314.97 20.45 668.05

24 33.90 139.69 33.90 795.47 33.90 845.25

25 6.78 -216.54 6.78 -213.27 6.78 -112.28

26 7.03 181.32 7.03 211.27 7.03 143.49

27 53.30 -164.31 13.83 294.36 13.83 489.21

28 12.49 -241.03 2.54 -213.37 4.10 -16.11

29 43.10 -44.40 43.10 0.40 43.10 56.13

30 43.69 -0.67 43.69 151.18 43.69 249.16

Table 5.19 presents the number of instances without/with a change in total

cost by our heuristic algorithm compared with the NLP-Single start. Table 5.19

shows that our heuristic algorithm improves the objective function value for all

30 test instances with different values of ROT(MILP). However, the improvement

of computation time with our heuristic algorithm is increased, when the value of

ROT(MILP) decreases. The results demonstrated that about a third, half and

two-thirds of 30 instances are improved in the computation time when the value

of ROT(MILP) are 0.05, 0.03, and 0.01, respectively.

159

Table 5.19: Number of instances without/with a change in the cost by our heuris-
tic algorithm (25 nodes)

Different ROT(MILP) ROT(MILP) = 0.05 ROT(MILP) = 0.03 ROT(MILP) = 0.01

Number of instances 30 30 30

solved by the AOA

Objective function value Minimum Cost Time (sec) Minimum Cost Time (sec) Minimum Cost Time (sec)

and computation time

Number of instances 30 9 30 14 30 20

improved by Heuristic

5.5.3 50 Node Networks

In this section, we compare the results of the heuristic algorithm and the NLP-

Single start. We need to note that, this comparison is for instances that have

been solved by the NLP-Single start. We consider the results of the NLP-Single

start from Tables 5.14 and 4.5 with different values of ROT(MILP). Also, we

write ‘NS’ in Table 5.20, since the AOA does not solve some instances with the

NLP-Single starting point.

Table 5.20 indicates that our heuristic algorithm always improves the objec-

tive function value. We note that our algorithm finds a cost-effective feasible

solution for all 30 test instances of the network with 50 nodes compared with the

AOA algorithm. Also, the improvement of computation time with our heuristic

algorithm is increased, when the value of ROT(MILP) is decreased. In Table 5.21,

we present the number of improved instances in the cost and computation time

by our modified heuristic algorithm compared with a number of solved instances

by the NLP-Single start.

160

Table 5.20: The comparison results between our new modified heuristic algorithm
and the NLP-Single start 50-node networks. Note that ‘NS’ means No Solution
obtained within the specified time limit.

ROT(MILP)=0.2 ROT(MILP)=0.15 ROT(MILP)=0.1

Instance Minimum Cost% Time(sec)% Minimum Cost% Time (sec)% Minimum Cost% Time(sec)%

1 343.64 -1124.55 12.42 -754.37 133.36 132.79

2 19.74 -807.94 27.40 -613.54 34.57 174.30

3 24.05 -1035.07 24.05 -396.47 NS NS

4 15.66 -1358.35 21.40 -978.24 22.07 9.78

5 40.63 -739.47 40.63 -369.09 36.28 588.82

6 40.58 -523.27 40.58 -128.25 NS NS

7 10.66 -825.03 16.59 -506.13 5.19 62.84

8 35.98 -655.64 29.49 -229.90 NS NS

9 44.84 -409.82 49.59 22.11 NS NS

10 22.00 -1533.00 22.00 -515.00 18.00 -70.00

11 28.00 -810.00 28.00 -247.00 24.00 503.00

12 29.00 -872.00 29.00 -417.00 29.00 159.00

13 23.00 -1452.00 29.00 -358.00 30.00 452.00

14 43.00 -1167.00 43.00 -87.00 NS NS

15 32.00 -1142.00 32.00 -334.00 32.00 544.00

16 -20.00 -1295.00 -20.00 -75.00 -20.00 -1.00

17 -1.00 -467.00 -1.00 79.00 NS NS

18 11.00 -395.00 11.00 519.00 NS NS

19 9.00 -398.00 14.00 15.00 NS NS

20 22.00 -286.00 22.00 206.00 NS NS

21 44.00 21.00 NS NS NS NS

22 12.00 -346.00 19.00 -224.00 NS NS

23 40.00 -202.00 40.00 214.00 NS NS

24 37.00 -236.00 NS NS NS NS

25 28.00 28.00 -88.00 203.00 NS NS

26 56.00 13.00 NS NS NS NS

27 65.00 38.00 NS NS NS NS

28 53.00 -143.00 53.00 381.00 NS NS

29 61.00 -48.00 NS NS NS NS

30 42.00 -330.00 NS NS NS NS

Table 5.21 is summarised as follows: In terms of the objective function value,

there is, always, improvement by our heuristic algorithm for all 30 test instances

with different values of ROT(MILP). In terms of computation time, our modified

heuristic algorithm improves about 4 of 30 instances considering ROT(MILP) =

0.05. This number is increased to 7 out of 24 and 9 out of 12 instances while the

value of ROT(MILP) is 0.03 and 0.01, respectively.

161

Table 5.21: Number of instances without/with a change in the cost by our heuris-
tic algorithm (50 nodes)

Different ROT(MILP) ROT(MILP) = 0.2 ROT(MILP) = 0.15 ROT(MILP) = 0.1

Number of instances 30 24 12

solved by AOA

Objective function value Minimum Cost Time (sec) Minimum cost Time (sec) Minimum Cost Time (sec)

and computation time

Number of instances 28 4 21 7 11 9

improved by Heuristic

Conclusion

In conclusion, Table 5.22 presents that increasing the problem sizes, results in

a significant improvement in cost for our modified heuristic algorithm compared

with the AOA algorithm with the NLP-Single start.

Table 5.22: The average improvement of our modified heuristic algorithm in the
cost compared with the NLP-Single starting point

n 10 25 50

ROT(MILP) value 10−13 0.01 0.03 0.05 0.1 0.15 0.2

Number of instances that 30 20 30 30 12 24 30

are solved by the NLP-Single start

Minimum cost% 2.00 32.00 34.00 32.00 20.00 25.00 40.00

5.6 Comparative Analysis (The NLP-Multi Start-

ing Points)

In this section, we present the comparison results in the total cost and compu-

tation time between the AOA algorithm with NLP-Multi start and our heuristic

algorithm. We detemine the improvement based on the following equation:

Improvement =

{The NLP-Multi start results} - {Our modofied heuristic results}
Best value

× 100%

162

The best value is the minimum values between the values of the NLP-Multi start

and our modified heuristic algorithm. Also, compared with the results of the NLP-

Multi start algorithm, the positive and negative value show an improvement and

deterioration value of our heuristics algorithm in the cost and time respectively.

5.6.1 10 Node Networks

We demonstrate that our modified heuristic algorithm works well, since there is

the same cost for some instances compared with the AOA algorithm with NLP-

Multi start.

Table 5.23: The comparison results between our modified heuristic algorithm and
the NLP-Multi start (10 nodes)

Instance Min cost% Time(sec)%

1 0.00 -17547.06

2 6.55 -38834.01

3 5.35 -1759.92

4 -2.59 -22893.42

5 2.63 -27202.63

6 3.77 -4060.00

7 -4.16 -9780.79

8 -4.74 -17208.53

9 5.92 -1981.23

10 -1.83 -9970.03

11 7.18 -3104.98

12 8.69 -95.01

13 2.49 -4935.77

14 0.33 -4712.79

15 21.17 -1828.80

16 1.22 -21762.75

17 1.05 -8900.88

18 0.00 -6898.60

19 0.05 -23993.96

20 8.32 -8606.52

21 -2.56 -5797.64

22 19.66 -1141.69

23 0.00 -6179.26

24 -0.21 -17846.61

25 -1.62 -22142.99

26 5.13 -32182.96

27 25.16 -2399.38

28 0.00 -19619.63

29 0.00 -14401.16

30 0.06 -99.09

Table 5.23 presents the number of instances without/with a change in the cost

163

between the two algorithms.

Table 5.24: Number of instances without/with a change in the cost by our heuris-
tic algorithm (small size network)

Deterioration No Change Improvement

7 5 18

As shown in Table 5.24, using our algorithm, more than half of instances out

of 30 have shown improvements in the cost. The NLP-Multi starting point has

not performed better than the NLP-Single starting point in the objective function

value. As a result, our algorithm find the cheaper design for a network in more

computation time.

5.6.2 25 Node Networks

In this part, we present the improvement of our heuristic algorithm in the cost and

computation time with NLP-Multi start algorithm’s results. Also, we consider

different values of the ROT(MILP) for the AOA algorithm with the NLP-Multi

starting point.

Table 5.25 presents the number of instances without/with a change in the cost

by our heuristic algorithm out of number of solved instances by the NLP-Multi

starting points.

164

Table 5.25: The comparison results between our modified heuristic algorithm
and the NLP-Multi start 25-node networks. Note that ‘NS’ means No Solution
obtained within the specified time limit.

ROT(MILP)=0.05 ROT(MILP)=0.03 ROT(MILP)=0.01

Instance Minimum Cost% Time(sec)% Minimum Cost% Time(sec)% Minimum Cost% Time(sec)%

1 14 -161 3 -19 8 11

2 42 -76 59 97 72 -25

3 45 -4 55 266 75 330

4 3 -1609 5 -852 4 -700

5 22 -729 22 -566 32 7

6 22 -263 43 -226 43 -33

7 8 -810 8 -282 8 -39

8 24 -233 24 -150 24 -88

9 80 -16 79 68 NS NS

10 9 -585 9 -112 9 -190

11 16 -390 16 159 16 -19

12 13 -57 13 291 13 406

13 31 -340 12 -137 17 -3

14 75 17 75 374 28 384

15 70 33 74 -9 74 214

16 12 -101 9 -122 -1 -35

17 165 -1067 177 -762 170 -758

18 49 176 49 -54 47 552

19 15 -9534 16 -300 11 -287

20 18 28 18 57 18 225

21 32 225 32 163 32 229

22 13 -246 13 -61 12 56

23 20 90 20 312 20 592

24 34 241 34 395 34 1991

25 7 -70 7 -188 7 -2

26 7 21 7 312 7 387

27 14 155 14 113 14 272

28 17 -248 4 -64 4 -5

29 43 -18 43 -301 43 207

30 44 105 44 -9 44 364

165

Table 5.26: Number of instances without/with a change in the cost by our mod-
ified heuristic algorithm (25 nodes)

Different ROT(MILP) ROT(MILP) = 0.05 ROT(MILP) = 0.03 ROT(MILP) = 0.01

Number of instances 30 30 29

solved by the AOA

Objective function value Minimum Cost Time (sec) Minimum Cost Time (sec) Minimum Cost Time (sec)

and computation time

Number of instances 30 10 30 12 28 16

improved by our heuristic

Table 5.26 presents that our heuristic algorithm works well in the objective

function value compared with the NLP-Multi start and with different values of

ROT(MILP) for all 30 test instances. The improvement of our modified heuristic

algorithm in the computation time is one-third of 30 instances with ROT(MILP)

= 0.05. This number is increased to 12 and 16 when the value of ROT(MILP) is

0.03 and 0.01, respectively.

5.6.3 50 Node Networks

In this part, we compare the total cost and the computation time for 30 test in-

stances of networks with 50 nodes between the NLP-Multi start and our modified

heuristic algorithms. The ‘NS’ shows that some instances are not solved using

the NLP-Multi start within 24 hours time limit.

166

Table 5.27: The comparison results between our modified heuristic algorithm and
the NLP-Multi start for 50-node networks. Note that ‘NS’ means No Solution
obtained within the specified time limit.

ROT(MILP)=0.2 ROT(MILP)=0.15 ROT(MILP)=0.1

Instance Minimum Cost% Time (sec)% Minimum Cost% Time (sec)% Minimum Cost% Time (sec)%

1 8 -715 22 -547 22 131

2 24 -656 30 -259 13 391

3 24 -462 24 -308 24 301

4 5 -739 5 -500 22 -12

5 32 -560 32 -282 30 390

6 38 -555 41 -179 NS NS

7 11 -662 11 -273 15 -107

8 23 -531 25 -66 NS NS

9 41 -508 33 46 NS NS

10 14 -1002 22 -514 22 -24

11 28 -554 28 -350 28 452

12 29 -546 29 -237 29 117

13 26 -942 22 -725 40 259

14 33 -707 44 -41 NS NS

15 32 -765 32 -295 NS NS

16 -20 -588 -20 -79 -20 171

17 -1 -312 NS NS NS NS

18 11 67 NS NS NS NS

19 14 -419 14 -35 NS NS

20 22 -171 NS NS NS NS

21 44 -50 NS NS NS NS

22 74 -264 14 -125 NS NS

23 35 -210 NS NS NS NS

24 37 -251 NS NS NS NS

25 39 6 NS NS NS NS

26 56 52 NS NS NS NS

27 65 39 NS NS NS NS

28 30 -208 NS NS NS NS

29 43 -79 NS NS NS NS

30 38 23 NS NS NS NS

Table 5.28 presents the number of instances without/with a change in the cost

by our modified heuristic algorithm out of the number of solved instances by the

NLP-Multi starting points.

167

Table 5.28: Number of instances without/with a change in the cost by our heuris-
tic algorithm (50 nodes)

Different ROT(MILP) ROT(MILP) = 0.2 ROT(MILP) = 0.15 ROT(MILP) = 0.1

Number of instances 30 18 10

solved by the AOA

Objective function value Minimum cost Time (sec) Minimum cost Time (sec) Minimum cost Time (sec)

and computation time

Number of instances 30 5 17 1 9 7

improved by Heuristic algorithm

Table 5.28 shows that increasing the value of ROT(MILP), results in a de-

crease in the number of solved instances out of 30 by the NLP Multi start. How-

ever, our algorithm performs well in terms of minimum cost for all test instances.

This improvement can be outlined as 30 out of 30, 17 out of 18, and 9 out of 10

with ROT(MILP) = 0.02, 0.15, and 0.1 respectively. The AOA algorithm with

the NLP-Multi start performs well, mostly, in terms of the computation time

with ROT(MILP) = 0.2. In contrast, the computation time is improved by 7 out

of 10 with ROT(MILP) = 0.1 by our modified heuristic algorithm.

Conclusion

Table 5.29 shows that increasing the problem sizes, leads to a significant

improvement in cost by our heuristic algorithm. We consider the average cost

improvement of instances out of solved instances by the AOA algorithm with the

NLP-Multi start. Accordingly, our algorithm illustrates better performance in

the objective function value than the AOA algorithm with the NLP-Multi start,

in particular, for the large sized problems.

Table 5.29: The average improvement of our heuristic algorithm in the minimum
cost

n 10 25 50

ROT(MILP) value 10−13 0.01 0.03 0.05 0.1 0.15 0.2

Number of instances that 30 20 30 29 10 18 30

are solved by the NLP-Multi start

Minimum cost % 3.57 30 33 32 29 23 29

168

5.7 Conclusion

In this section, we developed, implemented and tested our new heuristic algorithm

to solve our mathematical model (Model 6) given by equations (3.12)-(3.20). The

quantitative analysis of the effects of different parameters and stopping criteria

of our heuristic algorithm on optimal decisions was investigated. The computa-

tional results are undertaken considering the effective parameters of sample size,

elite sample size and α and the value of ε and r for stopping criteria. Table 5.30

shows the value of parameters, stopping criteria and the average of computation

time for each network sizes.

Table 5.30: The value of parameters and the average of computation times for
different size network using our heuristic algorithm

n M1 M2 M1elite M2elite α ε r Average time (sec)

10 500 50 50 5 0.9 0.01 5 765.33

25 1000 100 100 10 0.9 0.01 5 4,351.46

50 1000 100 100 10 0.9 0.01 5 10,162.53

Table 5.30 shows that increasing the network size also increases the compu-

tation time. For each network size, we considered the same value for α, ε and r.

As above table shown, for a network with 25 and 50 nodes, the number of sample

size is increased into 1000.

Solving our model (Model 6) with two different methods (approximation and

heuristic method), we compared the performances of our heuristic algorithm and

the AOA algorithm in terms of objective values and computation times for all

test cases.

We restate two Tables 5.31 and 5.32 again that represent the average im-

provement in the cost and computation time of our heuristic algorithm than the

approximation method among all solved test cases for n = 10, 25, and 50. These

two tables show that our heuristic algorithm performs well in the objective value

with different sizes of the network compared with the AOA algorithm considering

different values of ROT(MILP) under the NLP-Single start and the NLP-Multi

start modules.

169

Furthermore, the following results can be seen from Tables 5.31 and 5.32.

• Our heuristic algorithm improves the objective function value for small size

test problems, 2% and 3.57% on the NLP-Single start and NLP-Multi start,

respectively.

• Our heuristic algorithm improves the average objective function value for

medium size test problems, 33% and 28% on the NLP-Single start and the

NLP-Multi start, respectively.

• Our heuristic algorithm improves the average objective function value for

large size test problems, 32% and 27% on the NLP-Single start and the

NLP-Multi start, respectively.

Table 5.30 shows an average computation time (seconds) with our heuristic algo-

rithm for n = 10, 25, and 50 of 765.33, 4,351.46, and 10,162.53 seconds, respec-

tively. Tables 5.31 and 5.32 show the comparative analysis in the computation

time for the 10 nodes test problem in which the OA/ER/AP algorithm finds a

feasible solution in a computation time less than our heuristic algorithm. Also,

for n = 25, and 50, our heuristic algorithm improves the cost. The following

results are obtained from the comparative analysis in the computation time for

n = 25, and 50 considering ROT(MILP) = 0.01 and 0.1.

• Our heuristic algorithm improves the computation time for medium sized

test problems, by 135% and 143% on the NLP-Single start and the NLP-

Multi start, respectively (where the optimality gap is 0.01).

• Our heuristic algorithm improves the computation time for large sized test

problems, by 232% and 188% on the NLP-Single start and the NLP-Multi

start, respectively (where the optimality gap is 0.1).

170

T
ab

le
5.

31
:

T
h
e

im
p
ro

ve
m

en
t

in
th

e
av

er
ag

e
co

st
co

m
p
u
ta

ti
on

ti
m

es
b
y

ou
r

h
eu

ri
st

ic
al

go
ri

th
m

co
m

p
ar

ed
w

it
h

th
e

N
L

P
-S

in
gl

e
st

ar
t

n
1
0

25
5
0

R
O

T
(M

IL
P

)
va

lu
e

1
0−

1
3

0
.0

1
0
.0

3
0
.0

5
0.

1
0
.1

5
0.

2

N
u
m

b
er

o
f

in
st

a
n
ce

s
th

a
t

3
0

2
0

3
0

3
0

1
2

2
4

3
0

ar
e

so
lv

ed
b
y

th
e

N
L

P
-S

in
g
le

st
a
rt

M
in

im
u
m

co
st

%
2

3
2

3
4

3
2

2
0

2
5

4
0

C
o
m

p
u
ta

ti
o
n

ti
m

es
%

-1
1
1
2
8

14
2
.9

6
-3

4.
09

-2
1
2

23
2

-1
91

-6
2
1

T
ab

le
5.

32
:

T
h
e

im
p
ro

ve
m

en
t

in
th

e
av

er
ag

e
co

st
an

d
co

m
p
u
ta

ti
on

ti
m

es
b
y

ou
r

h
eu

ri
st

ic
al

go
ri

th
m

co
m

p
ar

ed
w

it
h

th
e

N
L

P
-M

u
lt

i
st

ar
t

n
10

25
5
0

R
O

T
(M

IL
P

)
va

lu
e

10
−
1
3

0.
01

0.
03

0
.0

5
0.

1
0.

15
0.

2

N
u
m

b
er

of
in

st
an

ce
s

th
at

30
2
0

30
29

1
0

1
8

30

ar
e

so
lv

ed
b
y

th
e

N
L

P
-M

u
lt

i
st

a
rt

M
in

im
u
m

co
st

%
3.

5
7

3
0

33
32

2
9

2
3

29

C
om

p
u
ta

ti
on

ti
m

es
%

-1
19

2
9.

60
13

5
-5

4
-5

15
18

8
-2

65
-3

56

171

Chapter 6

Conclusion

In this thesis, we made several contributions to the literature of gas distribu-

tion network design. The research project aims to develop effective mathematical

models for the design of gas distribution networks and to present solution strate-

gies. Considering the underlying graph, there are two different design structures

for gas distribution networks normally a tree or a cycle (loop). The structure

is motivated by the cost consideration. The tree structure is mostly a cheaper

choice of design of the network because all nodes are connected with fewer links

than the cycle structure. Therefore, we considered the case of a tree structure.

More specifically we contribute the following:

• The First Contribution: We developed an effective MINLP model to

design the tree network structure and determine its components. These

components includes the multi diameters for each link, the pressure at each

node, and the flow through each link (Network design and Allocation prob-

lem). The objective is to meet demand and requirements at minimum total

cost. We consider a wide range of design parameters including the num-

ber of demand nodes, the set of pipe diameter types, the length (distance)

between nodes, and the pressure limits at each node. We consider the con-

straints under steady-state conditions such as pressure limits at each node,

the flow balance through each link, the pressure drop equation for two ends

of each link. The decision variables are the selected links connecting nodes,

the flow through each link, the pressure at each node, and the length of

selected diameter for each link.

• The Second Contribution: We solved our MINLP model using an ap-

172

proximation method. We chose the Outer Approximation Algorithm with

Equality Relaxation and Augmented Penalty (OA/ER/AP) method. The

advantage of the OA/ER/AP algorithm over other MINLP algorithms is

its ability in handling the nonconvexity of the problem. This algorithm

alternates between two sub-problems including a Non Linear Programming

(NLP) sub-problem and the Master Mixed Integer Linear Programming

(MILP) sub-problem. In the NLP sub-problem, the integer variables are

fixed and the continuous variables are determined. In the master MILP

sub-problem, the effect of nonconvexities are reduced by linearization of

the nonlinear functions at the set of linearization points. Our contribu-

tion is that we review this algorithm and then examine its functionality

and efficiency on our MINLP model. We consider the effects of different

parameters and stopping criteria in the NLP sub-problem and the Master

MILP sub-problem to find a near optimal solution. The main outcome is a

MINLP model that is effective for small networks.

• The Third Contribution: We developed, implemented and tested a new

heuristic algorithm to solve our model. We designed the near optimal tree

layout and determined its components (multi diameter for each link, the

pressure at each node, and flow through each link). Our motivation is to

develop a heuristic algorithm to solve larger size problems within 4 hours.

We also investigated the quantitative analysis of the effects of different pa-

rameters on optimal decisions. We compared the results in the objective

function value and the computation time between the OA/ER/AP algo-

rithm and our heuristic algorithm. The main outcome is a heuristic algo-

rithm that finds a cost-effective quality feasible solution for the large sized

test problems within 4 hours.

In Chapter 1, we presented an overview of the natural gas including the com-

position, the formation, and the uses of natural gas as well as the gas supply

chain. The gas supply chain is the process of moving the natural gas from the

gas field to the consumers. The problems arising in four stages namely produc-

tion, transmission, distribution, and marketing of gas supply chain have been

discussed. In particular, we focused on the gas distribution networks.

In Chapter 2, we presented the literature review for both gas and water dis-

173

tribution networks. The main problems in gas or water networks are designing

optimal structures. In particular, this requires determining the diameter of each

pipe in the network. We summarise these problems in more detail below:

• Fundamental Problem (Problem 1)

Network Design and Allocation Problem: Given a set of nodes and

customer requirements, determine the optimal pipeline design of the

network. This involves determining the

– Network layout,

– Diameter of the connected links,

– Pressure at each node,

– Flow through each link.

The objective usually is to meet demand and requirements at mini-

mum total cost. The requirements are related to the available pipeline

diameters, pressure limits, demands, physics gas laws and network

structure which are tree and cycle (loop).

There are only a few papers on this fundamental problem. Most of the

literature on gas distribution networks has focused on the following sub-

problem.

• Sub-problem (Problem 2)

Allocation Problem: Given a set of nodes, set of arcs, network structure

and customers requirements, determine the optimal pipeline design of

the network. This involves determining the

– Pipeline diameter for each link,

– Pressure at each node,

– Flow through each link.

The objective usually is to meet demand and requirements at minimum

total cost. The requirements are related to the available pipeline diameters,

pressure limits, demands, physics gas laws and network structure which is

a tree or a cycle (loop).

There are three cases of pipeline diameters to consider (Shiono and Suzuki

(2016)):

174

• The Single Diameter (SD), where a link consists of one commercially avail-

able diameter.

• The Multi Diameter (MD), where a link consists of different commercially

available diameter segments that are serially connected.

• The Continuous Diameter (CD), where a link consists of one diameter type

that should be determined between the given minimum and maximum val-

ues.

There are few papers in the literature that consider the fundamental problem

in cases of single and continuous diameters. There is no work that considers the

case of multi diameter. In Chapter 3, we presented an effective MINLP model for

Network Design and Allocation Problem in the case of multi diameter. The ob-

jective is to meet demand and requirements at minimum cost. The requirements

are related to the available pipeline diameters, pressure limits, demands, physics

gas laws and network structure which in our case is a tree.

We are motivated to solve our MINLP model using a method that handles the

nonconvexities of constraints. The algorithm that we use is the Outer Approxima-

tion Algorithm with Equality Relaxation and Augmented Penalty (OA/ER/AP)

method given by Viswanathan and Grossmann (1990). Our motivation to choose

this OA/ER/AP method among the other MINLP algorithms, is in its ability

to handle the nonconvexity of the problem. Our contribution is that we review

this algorithm and then examine its functionality and efficiency on our MINLP

model. We consider the effects of different parameters and stopping criteria in

the levels of the NLP sub-problem and the Master MILP sub-problem to find a

near optimal solution. To implement this algorithm to our MINLP model, we

partitioned the variables into two subsets of variables: the continuous and the bi-

nary variables. Also, we developed the Master MILP sub-problem for our model.

We detailed how the equalities and nonconvexities of the constraints are handled

in the level of the Master MILP (M-ER/AP) problem. The algorithm terminates

if the objective of the Master MILP problem becomes larger than the objective of

the NLP problem (in a case of minimisation) or the Master MILP sub-problem is

infeasible within the 24 hours time limit. Our main outcome is a MINLP model

that is effective for small networks. The details are given in Chapter 3.

In Chapter 4, we test our model using the OA/ER/AP algorithm presented

175

in Chapter 3. We considered the effective choice of parameters and stopping cri-

teria for the OA/ER/AP algorithm that facilitates the finding of a cost-effective,

feasible solution within 24 hours. The number of starting points in the NLP sub-

problem and the value of the optimality gap in the Master MILP sub-problem are

the main inputs that facilitates the feasibility and efficiency of the solution for

our model. A single start implementation might be trapped in a local optimum,

but the multiple starts provide a better chance of finding a cost-effective feasible

solution. We built our model in commercial software package AIMMS since this

algorithm has been implemented in the commercial optimisation package AIMMS

named AIMMS Outer Approximation (AOA) algorithm. We generate different

sized networks (5, 10, 15, 25 and 50 nodes) to test our model (30 instances for

each network size). In this chapter, the OA/ER/AP algorithm is applied to our

test cases and we give the following details:

• The computational results with the Single start for the NLP sub-problems.

For the medium and large sized problems, we also considered different values

of Relative Optimality Tolerance (ROT) for the Master MILP sub-problem.

• The computational results with the Multi start for NLP sub-problems. For

the medium and large sized problem, we also considered different values of

(ROT) for the Master MLIP sub-problem.

• Comparative analysis between the NLP-Single start and the NLP-Multi

start strategies.

From the computational results using the OA/ER/AP algorithm, it turns out

that the smaller sized networks are solved when the optimality gap is 10−13.

We consider a greater value than 10−13 for the optimality gap (the value of

ROT(MILP)) for networks with 25 and 50 nodes. We test all 30 instances for

specific values of ROT(MILP) under the NLP-Single start and the NLP-Multi

start conditions to find a cost-effective feasible solution within 24 hours. As

expected the NLP-Multi start yields an improved objective function value but

requires more computational time than the NLP-Single start. Our main outcome

is a MINLP model that is effective for small networks.

In Chapter 5, we developed a new heuristic algorithm for solving our MINLP

model. Our model is computationally difficult to be solved using exact methods

in particular for large sized test problems (50 customers). Our motivation is to

176

develop a heuristic algorithm to solve these large sizes within 4 hours. Our solu-

tion strategy is to reduce the level of difficulty by converting the MINLP problem

to a Linear Programming problem generating the integer variables in the outer

level separately. The developed algorithm includes two levels: in the outer level,

a tree network was generated, and in the inner level, we determined the multi

diameters for the given links as well as determining the pressure at each node and

the flow through each selected link. This method was implemented in JAVA as

a programming language, AIMMS as a commercial software package, and Excel

as a computer package with functions. The quantitative analysis of the effects of

different parameters and stopping criteria of our heuristic algorithm on optimal

decisions was also investigated. This chapter included computational results for

our algorithm. We also presented a comparative analysis of the objective func-

tion value and the computation time between our heuristic algorithm and the

OA/ER/AP algorithm. Our main outcome is a heuristic algorithm that finds

a cost-effective quality feasible solution for the large sized test problems within

4 hours. The results obtained from the comparative analysis of the objective

function value are:

• Our heuristic algorithm improves the objective function value for small size

test problems, by 2% and 3.57% on the NLP-Single start and NLP-Multi

start, respectively.

• Our heuristic algorithm improves the average objective function value for

medium size test problems, by 33% and 28% on the NLP-Single start and

NLP-Multi start, respectively.

• Our heuristic algorithm improves the average objective function value for

large size test problems, by 32% and 27% on the NLP-Single start and

NLP-Multi start, respectively.

We also note that an average computation time (sec) with our heuristic algorithm

for networks with 10, 25, and 50 nodes of 765.33, 4,351.46, and 10,162.53, respec-

tively. The comparative analysis in the computation time for the small-sized test

problems showed that the OA/ER/AP algorithm finds a feasible solution in a

shorter computation time than our heuristic algorithm. Also, for networks with

25 and 50 nodes, our heuristic algorithm improves the cost. The following results

are obtained from the comparative analysis in the computation time for networks

with 25 and 50 nodes:

177

• Our heuristic algorithm improves the computation time for medium sized

test problems, by 135% and 143% on the NLP-Single start and the NLP-

Multi start, respectively (when the optimality gap is 0.01).

• Our heuristic algorithm improves the computation time for large sized test

problems, by 232% and 188% on the NLP-Single start and the NLP-Multi

start, respectively (when the optimality gap is 0.1).

The outcome of the research provided in this thesis given us an effective mathe-

matical model in the area of gas distribution network design and allocation that

have unresolved issues. We developed two different solution methods for our

model. One is an approximation method and the other a heuristic method. How-

ever, there are possible future work in areas that are open to further investigations

and perhaps improvements.

6.1 Future Works

Our main goal of this thesis was to consider the network design and allocation

problem for natural gas distribution networks. The given set of nodes in our

model includes a single source node and demand nodes. Further exploration

will be considering more than one source nodes and test our model for networks

greater than 50 nodes. Another investigation is to find the impact of demand

uncertainty on the model.

There are three cases of pipeline diameters to consider: single diameter; con-

tinuous diameter; and multi diameter. In the literature, the ∆-change algorithm

has been presented to solve the network design and allocation problem in the

cases of single diameter and continuous diameter. In this thesis, we developed an

effective Mixed Integer Non Linear Programming (MINLP) model for the funda-

mental problem in the case of multi diameter. The first investigation is to develop

mathematical models for the fundamental problem in the case of single diameter

and continuous diameter. This will allow us to compare the performance of the

three models for a specific data set. The second investigation is to test these

models using our heuristic algorithm. Further exploration will be presenting the

comparative analysis between our heuristic algorithm and the ∆-change algo-

178

rithm.

Another investigation is to speed up our heuristic algorithm. Also, our heuris-

tic algorithm may be utilized to other networks such as water, and electricity

networks.

A further different investigation is to develop mathematical models and solu-

tion methods for the fundamental problem in the case of cycle structure consid-

ering three cases of pipeline diameters.

179

Appendix

JAVA Code Experts and Permission Statements

1 import com . aimms . aimmssdk .AIMMS;

2 import com . aimms . aimmssdk . IConf ig ;

3 import com . aimms . aimmssdk . I I t e r a t o r ;

4 import com . aimms . aimmssdk . IMultiDimData ;

5 import com . aimms . aimmssdk . IProcedure ;

6 import com . aimms . aimmssdk . ISca larData ;

7 import com . aimms . aimmssdk . I S e s s i o n ;

8 import com . aimms . aimmssdk . ISetData ;

9 import com . aimms . aimmssdk . Tuple ;

10 import java . i o . F i l e ;

11 import java . i o . IOException ;

12 import java . u t i l . ArrayList ;

13 import java . u t i l . Arrays ;

14 import java . u t i l . C o l l e c t i o n s ;

15 import java . u t i l . Random ;

16 import j x l . Ce l l ;

17 import j x l . Sheet ;

18 import j x l . Workbook ;

19 import j x l . wr i t e . Label ;

20 import j x l . wr i t e . WritableSheet ;

21 import j x l . wr i t e . WritableWorkbook ;

22

23

24 pub l i c c l a s s Main {
25

26 /∗∗
27 ∗ @param args the command l i n e arguments

28 ∗/
29

30 s t a t i c i n t [] [] Aopt ;

31 s t a t i c f l o a t [] [] P ;

32 s t a t i c f l o a t [] [] R ;

180

33 s t a t i c double [] [] C;

34 s t a t i c ArrayList<i n t [] [] > t r e e s ;

35 s t a t i c ArrayList<double [] [] > d i s t anc e ;

36 s t a t i c ArrayList<Result> U;

37 s t a t i c ArrayList<Result> r e s u l t s ;

38 s t a t i c I S e s s i o n s e s s i o n ;

39 s t a t i c double [] [] Min ;

40 s t a t i c double [] [] Max ;

41

42 /∗∗
43 ∗ We have to i n i t i a l i s e the se a t t r i b u t e s

44 ∗/
45 s t a t i c i n t M = ;

46 s t a t i c i n t M2 = ;

47 s t a t i c i n t Me2 =;

48 s t a t i c i n t Me =;

49 s t a t i c i n t n = ;

50 s t a t i c i n t D = ;

51 s t a t i c i n t l a r g e = ;

52 s t a t i c i n t smal l = ;

53 s t a t i c i n t SupplyConnection = ;

54 s t a t i c f l o a t alpha = 0 .9 f ;

55 s t a t i c f l o a t e p s i l o n = 0.01 f ;

56 s t a t i c i n t diameterCount = 14 ;

57 s t a t i c i n t r = 5 ;

58 s t a t i c i n t capitalM = 50000;

59 s t a t i c S t r ing aimmsDirectory = ”C: \ \ ;

60 s t a t i c S t r ing aimmsProjectDirectory = ”C: \ \ ;

61

62

63

64 pub l i c s t a t i c void main (St r ing [] a rgs) {
65

66 myMain () ;

67

68 }
69

70 pub l i c s t a t i c void myMain () {
71

72 U = new ArrayList<>() ;

73 Result r = new Result () ;

74 r . minCost = Double .MAX VALUE;

75 U. add (r) ;

181

76 R = new f l o a t [n] [n] ;

77 C = new double [n] [n] ;

78 i n t t =0;

79 i n t [] [] A;

80

81 t r e e s = new ArrayList<>() ;

82

83 /∗ Reading data from Excel f i l e ∗/
84 St r ing f i l e P a t h = ” input . x l s ” ;

85 St r ing [] nodeSets = new St r ing [n] ;

86 i n t [] supply = new i n t [n] ;

87 double [] [] d i s t anc e = new double [n] [n] ;

88 St r ing [] diameterTypes = new St r ing [diameterCount] ;

89 i n t [] d iameters = new i n t [diameterCount] ;

90 i n t [] d iameterCosts = new i n t [diameterCount] ;

91

92 readExce l (f i l ePa th , nodeSets , supply , d i s tance , diameterTypes ,

diameters , d iameterCosts) ;

93 f o r (S t r ing s : nodeSets) {
94 System . out . p r i n t l n (s) ;

95 }
96 f o r (i n t i : supply) {
97 System . out . p r i n t l n (i) ;

98 }
99 f o r (i n t i =0; i<n ; i++){

100 f o r (i n t j =0; j<n ; j++){
101 System . out . p r i n t (d i s t ance [i] [j]+” ”) ;

102 }
103 System . out . p r i n t l n () ;

104 }
105

106 f o r (S t r ing s : diameterTypes) {
107 System . out . p r i n t l n (s) ;

108 }
109 f o r (i n t i : d iameters) {
110 System . out . p r i n t l n (i) ;

111 }
112 f o r (i n t i : d iameterCosts) {
113 System . out . p r i n t l n (i) ;

114 }
115 /∗ ∗/
116

117 copyMatrix1 (C, d i s t anc e) ;

182

118 i n i t i a l i z e P r o b a b i l i t y M a r t i x (n ,C, la rge , smal l) ;

119 normalizeP (P , n) ;

120 System . out . p r i n t l n (” d i s t anc e i s : ”) ;

121 f o r (i n t i =0; i<n ; i++){
122 f o r (i n t j =0; j<n ; j++){
123 System . out . p r i n t (d i s t ance [i] [j]+” ”) ;

124 }
125 System . out . p r i n t l n () ;

126 }
127

128

129 whi le (t rue) {
130 Result r e s u l t =n u l l ;

131 r e s u l t s = new ArrayList<>() ;

132

133 f o r (i n t l =1; l <= M; l++){
134

135 copyMatrix (R, P) ;

136 System . out . p r i n t l n (”ProbMatrix i s : ”) ;

137 f o r (i n t i =0; i<n ; i++){
138 f o r (i n t j =0; j<n ; j++){
139 System . out . p r i n t (R[i] [j]+” ”) ;

140 }
141 System . out . p r i n t l n () ;

142 }
143

144 // Here we must s p e c i f y the number o f nodes that we want to c r e a t e .

145

146 ArrayList<Node> nodes = makeNodes (n) ;

147 A= bui ldTree (R, n , nodes) ;

148

149 boolean repeat = f a l s e ;

150

151 do{
152 repeat = isTreeRepeated (A) ;

153 i f (r epeat) {
154 cont inue ;

155 }
156 double x = callAimms1 (nodeSets , supply , d i s tance , diameterTypes ,

diameters , diameterCosts , A) ;

157 i f (x == 0) {
158 repeat = true ;

159 l−=1;

183

160 break ;

161 }
162 e l s e {
163 repeat= f a l s e ;

164 r e s u l t = new Result () ;

165 r e s u l t .A = A;

166 r e s u l t . minCost = x ;

167

168 System . out . p r i n t l n (” r e s u l t f o r t=”+t+” and l=”+l+” i s : ” + r e s u l t

. minCost) ;

169 System . out . p r i n t l n (”With t r e e : ”) ;

170 f o r (i n t i =0; i<n ; i++){
171 f o r (i n t j=0 ; j<n ; j++){
172 System . out . p r i n t (r e s u l t .A[i] [j] + ” ”) ;

173 }
174 System . out . p r i n t l n () ;

175 }
176

177 }
178 }
179 whi le (repeat) ;

180

181 r e s u l t s . add (r e s u l t) ;

182 t r e e s . add (A) ;

183

184 }
185

186 s o r t R e s u l t s (r e s u l t s) ;

187 Result c1 = r e s u l t s . get (0) ;

188 System . out . p r i n t l n (” best r e s u l t f o r t h i s i t e r a t i o n i s : ”+c1 .

minCost) ;

189 i f (c1 . minCost < U. get (t) . minCost) {
190 U. add (c1) ;

191

192 } e l s e {
193 U. add (U. get (t)) ;

194 }
195 boolean stop = f a l s e ;

196

197 i f (checkStopCr i t e r i a1 (t)) {
198 System . out . p r i n t l n (”Stop C r i t e r i a 1 happend”) ;

199 stop = true ;

200 }

184

201 i f (checkStopCr i t e r i a2 (P)) {
202 System . out . p r i n t l n (”Stop C r i t e r i a 2 happend”) ;

203 stop = true ;

204

205 }
206 i f (stop) {
207 break ;

208 }
209 f l o a t [] [] V = f indRepet i t i onMatr ix (r e s u l t s) ;

210 P = matrixSum (matr ixMult ip ly ((1− alpha) , P, n) , matr ixMult ip ly (alpha

, V, n) , n) ;

211

212 f o r (i n t k=1 ; k<n ; k++){
213 normal ize (P, n , k) ;

214 }
215 t++;

216

217 i f (t>0){
218 M = M2;

219 Me = Me2 ;

220

221 }
222 }
223

224 System . out . p r i n t l n (” Fina l bes t r e s u l t i s : ” + U. get (t+1) . minCost) ;

225 System . out . p r i n t l n (”For t r e e : ”) ;

226 f o r (i n t i =0; i<n ; i++){
227 f o r (i n t j=0 ; j<n ; j++){
228 System . out . p r i n t (U. get (t +1) .A[i] [j] + ” ”) ;

229 }
230 System . out . p r i n t l n () ;

231 }
232

233 callAimms2 (nodeSets , supply , d i s tance , diameterTypes , diameters ,

diameterCosts , U. get (t +1) .A) ;

234 wri teExce l2 (t , M, Me, alpha , e p s i l o n) ;

235 }
236

237 /∗∗
238 ∗ A method to i n i t i a l i s e o f nodes .

239 ∗ @return

240 ∗/
241 p r i v a t e s t a t i c ArrayList<Node> makeNodes (i n t numberOfNodes) {

185

242 ArrayList<Node> nodes = new ArrayList<>() ;

243 Node node ;

244 f o r (i n t i=0 ; i<n ; i++){
245 node = new Node (i) ;

246 nodes . add (node) ;

247 }
248 re turn nodes ;

249 }
250

251 /∗∗
252 ∗ This methods b u i l d s a t r e e .

253 ∗ @param R

254 ∗ @param n

255 ∗ @param nodes

256 ∗ @return

257 ∗/
258

259 pub l i c s t a t i c i n t [] [] bu i ldTree (f l o a t [] [] R, i n t n , ArrayList<Node>

nodes) {
260 i n t [] [] A = new i n t [n] [n] ;

261 f o r (i n t j =1; j < n ; j++){
262 ArrayList<Node> a l l C h i l d s = nodes . get (j) . g e tA l lCh i l d s () ;

263 f o r (Node node : a l l C h i l d s) {
264 R[node . id] [j] = 0 f ;

265 }
266 normal ize (R, n , j) ;

267 CDF(R, n , j) ;

268 double random = Math . random () ;

269 i f (random<R [0] [j]) {
270 A[0] [j]=1;

271 nodes . get (0) . addChild (nodes . get (j)) ;

272 } e l s e {
273 f o r (i n t i=1 ; i<n ; i++){
274 i f (random>R[i −1] [j] && random <= R[i] [j]) {
275 A[i] [j]=1;

276 nodes . get (i) . addChild (nodes . get (j)) ;

277 break ;

278 }
279 }
280 }
281 }
282

283 re turn A;

186

284

285 }
286

287 /∗∗
288 ∗ A method to normal ize column j o f matrix .

289 ∗ @param R

290 ∗ @param n

291 ∗ @param j

292 ∗/
293

294 p r i v a t e s t a t i c void normal ize (f l o a t [] [] R , i n t n , i n t j) {
295 f l o a t sum = 0 f ;

296 f o r (i n t i=0 ; i<n ; i++){
297 sum += R[i] [j] ;

298 }
299 f o r (i n t i=0 ; i<n ; i++){
300 R[i] [j] = R[i] [j] / sum ;

301 }
302 }
303

304 /∗∗
305 ∗
306 ∗ A method to c a l c u l a t e CDF of a column j o f matrix .

307 ∗
308 ∗ @param R

309 ∗ @param n

310 ∗ @param j

311 ∗/
312 p r i v a t e s t a t i c void CDF(f l o a t [] [] R, i n t n , i n t j) {
313 f o r (i n t i=1 ; i<n ; i++){
314 R[i] [j] = R[i] [j] + R[i −1] [j] ;

315 }
316 }
317

318 /∗∗
319 ∗ This i s a method to i n i t i a l i z e P matrix f o r the f i r s t time .

320 ∗ @param n

321 ∗/
322 p r i v a t e s t a t i c void i n i t i a l i z e P r o b a b i l i t y M a r t i x (i n t n , double [] [] C,

i n t la rge , i n t smal l) {
323 P = new f l o a t [n] [n] ;

324 f o r (i n t j =0; j<n ; j++){
325 f o r (i n t i =0; i<n ; i++){

187

326 i f (i==j | | j==0){
327 P[i] [j]=0;

328 } e l s e {
329 P[i] [j] = (f l o a t) (1 f /(10∗n)) ;

330 }
331 }
332 }
333

334 i n t t = 0 ;

335 i n t z = 0 ;

336 i n t w = 0 ;

337 double max1 = 0 ;

338 double min = 5000 ;

339 double min1 = 5000 ;

340

341 f o r (i n t j =1; j<n ; j++){
342

343 min = 5000 ;

344 f o r (i n t k =1; k<smal l ; k++){
345 f o r (i n t i =0; i<n ; i++){
346 i f (min> C[i] [j]&& i != j&& C[i] [j] !=0) {
347 min =C[i] [j] ;

348 z= i ;

349 }
350 }
351

352 i f (k==1){ P[z] [j] = (f l o a t) (49 f / ((n))) ;

353 }
354 e l s e {P[z] [j] = (f l o a t) (49 f / ((n))) ;

355

356 }
357 C[z] [j]=0;

358 min = 5000 ;

359 }
360 }
361

362

363 f o r (i n t j =1; j<n ; j++){
364 max1=0;

365 f o r (i n t k =1; k<l a r g e ; k++){
366 f o r (i n t i =1; i<n ; i++){
367 i f (max1< C[i] [j]&& i != j) {
368 max1 = C[i] [j] ;

188

369 t= i ;

370

371 }
372 }
373 C[t] [j]=0;

374 P[t] [j] = 0 f ;

375 max1=0;

376 }
377 }
378 }
379

380 p r i v a t e s t a t i c void normalizeP (f l o a t [] [] P , i n t n) {
381

382 f o r (i n t j=1 ; j<n ; j++){
383 f l o a t sum = 0 f ;

384 f o r (i n t i=0 ; i<n ; i++){
385 sum += P[i] [j] ;

386 }
387 f o r (i n t i=0 ; i<n ; i++){
388 P[i] [j] = P[i] [j] / sum ;

389 }
390 }
391 }
392

393 /∗∗
394 ∗ This i s a s imple method to copy one matrix in to another .

395 ∗ @param to

396 ∗ @param from

397 ∗/
398 p r i v a t e s t a t i c void copyMatrix (f l o a t [] [] to , f l o a t [] [] from) {
399 f o r (i n t i =0; i<n ; i++){
400 f o r (i n t j =0; j<n ; j++){
401 to [i] [j] = from [i] [j] ;

402 }
403 }
404 }
405

406 p r i v a t e s t a t i c void copyMatrix1 (double [] [] to , double [] [] from) {
407 f o r (i n t i =0; i<n ; i++){
408 f o r (i n t j =0; j<n ; j++){
409 to [i] [j] = from [i] [j] ;

410 }
411 }

189

412 }
413

414 /∗∗
415 ∗ This method takes array o f t r e e s and a t r e e and checks i f t h i s

t r e e e x i s t s in that

416 ∗ array .

417 ∗
418 ∗ @param A1

419 ∗ @return

420 ∗/
421 p r i v a t e s t a t i c boolean isTreeRepeated (i n t [] [] A1) {
422 boolean r e s u l t = f a l s e ;

423 f o r (i n t [] [] A2 : t r e e s) {
424 i f (i sMatr ixEqual (A1 , A2)) {
425 r e s u l t = true ;

426 break ;

427 }
428 }
429 re turn f a l s e ;

430 }
431

432 /∗∗
433 ∗ Simple method to check i f two matr ixes are equal .

434 ∗ @param A1

435 ∗ @param A2

436 ∗ @return

437 ∗/
438 p r i v a t e s t a t i c boolean isMatr ixEqual (i n t [] [] A1 , i n t [] [] A2) {
439 f o r (i n t i =0; i<n ; i++){
440 f o r (i n t j =0; j<n ; j++){
441 i f (A1 [i] [j] != A2 [i] [j]) {
442 re turn f a l s e ;

443 }
444 }
445 }
446 re turn true ;

447 }
448

449 p r i v a t e s t a t i c void openAIMMSSession () {
450 s e s s i o n = AIMMS. openSess ion (aimmsDirectory , a immsProjectDirectory) ;

451 }
452

453 p r i v a t e s t a t i c void closeAIMMSSession () {

190

454 s e s s i o n . c l o s e () ;

455 }
456

457

458 /∗∗
459 ∗
460 ∗ This method ge t s some ar rays that we have gotten from e x c e l and R

array

461 ∗ This method c a l l AIMMS to get r e s u l t .

462 ∗
463 ∗ @param nodeSets

464 ∗ @param supply

465 ∗ @param nodeDistance

466 ∗ @param diameterTypes

467 ∗ @param diameters

468 ∗ @param diameterCosts

469 ∗ @param A

470 ∗/
471 p r i v a t e s t a t i c double callAimms1 (St r ing [] nodeSets , i n t [] supply ,

double [] [] nodeDistance , S t r ing [] diameterTypes , i n t []

d iameters , i n t [] diameterCosts , i n t [] [] A) {
472

473

474 openAIMMSSession () ;

475 ISca larData parameterM = s e s s i o n . openSca lar (”M”) ;

476 parameterM . setValue (capitalM) ;

477 parameterM . c l o s e () ;

478

479

480 IMultiDimData parameterSupply = s e s s i o n . openMultiDim (”Supply”) ;

481 f o r (i n t i =0; i<supply . l ength ; i++){
482 parameterSupply . i n s e r t (new Tuple (nodeSets [i]) , supply [i]) ;

483 }
484 parameterSupply . c l o s e () ;

485

486 IMultiDimData parameterDiameter = s e s s i o n . openMultiDim (”Diameter”) ;

487 f o r (i n t i=0 ; i<diameterTypes . l ength ; i++){
488 parameterDiameter . i n s e r t (new Tuple (diameterTypes [i]) , d iameters [i])

;

489 }
490 parameterDiameter . c l o s e () ;

491

191

492 IMultiDimData parameterDiameterCost = s e s s i o n . openMultiDim (”

PipeDiameterCost ”) ;

493 f o r (i n t i=0 ; i< diameterTypes . l ength ; i++){
494 parameterDiameterCost . i n s e r t (new Tuple (diameterTypes [i]) ,

d iameterCosts [i]) ;

495 }
496

497 parameterDiameterCost . c l o s e () ;

498 IMultiDimData parameterDistance = s e s s i o n . openMultiDim (” Distance ”) ;

499 f o r (i n t i=0 ; i<n ; i++){
500 f o r (i n t j=0 ; j<n ; j++){
501 i f (nodeDistance [i] [j] != 0) {
502 parameterDistance . setValue (new Tuple (nodeSets [i] , nodeSets [j]) ,

nodeDistance [i] [j]) ;

503 }
504 }
505 }
506 parameterDistance . c l o s e () ;

507

508 IMultiDimData parameterArcMap = s e s s i o n . openMultiDim (”ArcMap”) ;

509 f o r (i n t i=0 ; i<n ; i++){
510 f o r (i n t j=0 ; j<n ; j++){
511 i f (A[i] [j] == 1) {
512 parameterArcMap . setValue (new Tuple (nodeSets [i] , nodeSets [j]) ,A[

i] [j]) ;

513 }
514 }
515 }
516 parameterDistance . c l o s e () ;

517

518 IProcedure procedure = s e s s i o n . openProcedure (”MainExecution”) ;

519 procedure . run () ;

520 procedure . c l o s e () ;

521

522 ISca larData var iab l eTota lCos t = s e s s i o n . openSca lar (” t o t a l c o s t ”) ;

523 double to ta lCos t = var iab l eTota lCos t . asDouble () ;

524 var i ab l eTota lCos t . c l o s e () ;

525 closeAIMMSSession () ;

526 re turn to ta lCos t ;

527

528 }
529

192

530 p r i v a t e s t a t i c void callAimms2 (St r ing [] nodeSets , i n t [] supply ,

double [] [] nodeDistance , S t r ing [] diameterTypes , i n t []

d iameters , i n t [] diameterCosts , i n t [] [] A) {
531

532 openAIMMSSession () ;

533 ISca larData parameterM = s e s s i o n . openSca lar (”M”) ;

534 parameterM . setValue (capitalM) ;

535 parameterM . c l o s e () ;

536

537 IMultiDimData parameterSupply = s e s s i o n . openMultiDim (”Supply”) ;

538 f o r (i n t i =0; i<supply . l ength ; i++){
539 parameterSupply . i n s e r t (new Tuple (nodeSets [i]) , supply [i]) ;

540 }
541 parameterSupply . c l o s e () ;

542

543 IMultiDimData parameterDiameter = s e s s i o n . openMultiDim (”Diameter”) ;

544 f o r (i n t i=0 ; i<diameterTypes . l ength ; i++){
545 parameterDiameter . i n s e r t (new Tuple (diameterTypes [i]) , d iameters [i])

;

546 }
547 parameterDiameter . c l o s e () ;

548

549 IMultiDimData parameterDiameterCost = s e s s i o n . openMultiDim (”

PipeDiameterCost ”) ;

550 f o r (i n t i=0 ; i< diameterTypes . l ength ; i++){
551 parameterDiameterCost . i n s e r t (new Tuple (diameterTypes [i]) ,

d iameterCosts [i]) ;

552 }
553 parameterDiameterCost . c l o s e () ;

554

555 IMultiDimData parameterDistance = s e s s i o n . openMultiDim (” Distance ”) ;

556 f o r (i n t i=0 ; i<n ; i++){
557 f o r (i n t j=0 ; j<n ; j++){
558 parameterDistance . setValue (new Tuple (nodeSets [i] , nodeSets [j]) ,

nodeDistance [i] [j]) ;

559 }
560 }
561 parameterDistance . c l o s e () ;

562

563 IMultiDimData parameterArcMap = s e s s i o n . openMultiDim (”ArcMap”) ;

564 f o r (i n t i=0 ; i<n ; i++){
565 f o r (i n t j=0 ; j<n ; j++){
566 i f (A[i] [j] == 1) {

193

567 parameterArcMap . setValue (new Tuple (nodeSets [i] , nodeSets [j]) ,A[i] [j

]) ;

568 }
569 }
570 }
571 parameterDistance . c l o s e () ;

572

573 IProcedure procedure = s e s s i o n . openProcedure (”MainExecution”) ;

574 procedure . run () ;

575 procedure . c l o s e () ;

576

577 ISca larData var iab l eTota lCos t = s e s s i o n . openSca lar (” t o t a l c o s t ”) ;

578 double to ta lCos t = var iab l eTota lCos t . asDouble () ;

579 System . out . p r i n t l n () ;

580 System . out . p r i n t l n () ;

581 System . out . p r i n t l n (” Total Cost : ”+to ta lCos t) ;

582 IMultiDimData var i ab l ePre suure = s e s s i o n . openMultiDim (” Pressure ”) ;

583 I I t e r a t o r i t = var i ab l ePre suure . c r e a t e I t e r a t o r () ;

584 double [] p r e s su r e = new double [n] ;

585 i n t pre s sure Index =0;

586 whi le (i t . next ()) {
587 pre s su r e [pre s sure Index] = i t . asDouble () ;

588 pres sure Index++;

589

590 }
591 i t . c l o s e () ;

592 //System . out . p r i n t l n (” Flow : ”) ;

593 IMultiDimData var iab leFlow = s e s s i o n . openMultiDim (”Flow1”) ;

594 I I t e r a t o r i t 3 = var iab leFlow . c r e a t e I t e r a t o r () ;

595 double [] [] f l ow = new double [n] [n] ;

596 f o r (i n t i=0 ; i<n ; i++){
597 f o r (i n t j=0 ; j<n ; j++){
598 f l ow [i] [j] = 0 ;

599 }
600 }
601

602 whi le (i t 3 . next ()) {
603 St r ing f i r s t E l e m e n t = i t 3 . tup l e () . getElement (0) . t oS t r i ng () ;

604 St r ing secondElement = i t 3 . tup l e () . getElement (1) . t oS t r i ng () ;

605 Double doubleNumber = i t 3 . asDouble () ;

606 i n t column=0;

607 i n t row=0;

608 f o r (i n t i =0; i<n ; i++){

194

609 i f (nodeSets [i] . equa l s (f i r s t E l e m e n t . r e p l a c e A l l (” ’ ” , ””))) {
610 row =i ;

611 break ;

612 }
613 }
614 f o r (i n t j =0; j<n ; j++){
615 i f (nodeSets [j] . equa l s (secondElement . r e p l a c e A l l (” ’ ” , ””))) {
616 column =j ;

617 break ;

618 }
619 }
620 f l ow [row] [column] = doubleNumber ;

621 }
622

623 f o r (i n t i=0 ; i<n ; i++){
624 f o r (i n t j=0 ; j<n ; j++){
625 }
626 }
627 i t 3 . c l o s e () ;

628

629

630 IMultiDimData variablePipeDiameterType = s e s s i o n . openMultiDim (”

piped iametertype ”) ;

631 I I t e r a t o r i t 2 = variablePipeDiameterType . c r e a t e I t e r a t o r () ;

632

633 wr i teExce l (f low , pres sure , i t2 , tota lCost , nodeSets) ;

634

635 var i ab l eTota lCos t . c l o s e () ;

636

637 closeAIMMSSession () ;

638 }
639

640 p r i v a t e s t a t i c boolean i s F e a s i b l e S o l u t i o n (double h) {
641 boolean f e a s i b l e ;

642 i f (h == 0) {
643 f e a s i b l e = f a l s e ;}
644 e l s e {
645 f e a s i b l e = true ;

646 }
647 re turn f e a s i b l e ;

648 }
649 /∗∗
650 ∗

195

651 ∗ This method s o r t s an array o f Result ob j e c t .

652 ∗
653 ∗ @param r e s u l t s

654 ∗/
655 p r i v a t e s t a t i c void s o r t R e s u l t s (ArrayList<Result> r e s u l t s) {
656 C o l l e c t i o n s . s o r t (r e s u l t s) ;

657 }
658

659 p r i v a t e s t a t i c boolean checkStopCr i t e r i a3 (i n t D) {
660 boolean i sEqua l ;

661 i sEqua l= true ;

662 f o r (i n t i =0; i<D ; i++){
663 i f (r e s u l t s . get (i) . minCost != r e s u l t s . get (i +1) . minCost) {
664 i sEqua l = f a l s e ;

665 }
666 }
667

668 i f (i sEqua l) {
669 re turn true ;

670 } e l s e {
671 re turn f a l s e ;

672 }
673 }
674

675 /∗∗
676 ∗
677 ∗ This method checks f o r f i r s t stop c r i t e r i a

678 ∗
679 ∗ @param t

680 ∗ @return

681 ∗/
682

683 p r i v a t e s t a t i c boolean checkStopCr i t e r i a1 (i n t t) {
684 boolean i sEqua l ;

685 i f (t>=r) {
686 i sEqua l= true ;

687 f o r (i n t i=t ; i>t−r ; i−−){
688 i f (U. get (i) . minCost != U. get (i −1) . minCost) {
689 i sEqua l = f a l s e ;

690 }
691 }
692 } e l s e {
693 i sEqua l = f a l s e ;

196

694 }
695 i f (t >= r && isEqua l) {
696 re turn true ;

697 } e l s e {
698 re turn f a l s e ;

699 }
700 }
701

702 p r i v a t e s t a t i c boolean checkStopCr i t e r i a2 (f l o a t [] [] P) {
703 i f (Math . abs (computeNorm (P)−Math . s q r t (n−1)) < e p s i l o n) {
704 re turn true ;

705 } e l s e {
706 re turn f a l s e ;

707 }
708 }
709

710 /∗∗
711 ∗ This method c a l c u l a t e s V matrix . V[i] [j] i s the t o t a l number o f 1 ’

s in row j and column j o f a l l Me answers .

712 ∗ @param r e s u l t s

713 ∗ @return

714 ∗/
715

716 p r i v a t e s t a t i c f l o a t [] [] f i ndRepet i t i onMatr ix (ArrayList<Result>

r e s u l t s) {
717 f l o a t [] [] V = new f l o a t [n] [n] ;

718 f o r (i n t i=0 ; i<n ; i++){
719 f o r (i n t j=0 ; j<n ; j++){
720 f l o a t sum = 0 ;

721 f o r (i n t k=0;k<Me ; k++){
722 i f (r e s u l t s . get (k) .A[i] [j] == 1) {
723 sum++;

724 }
725 }
726 sum =(f l o a t) sum / Me;

727 V[i] [j] = sum ;

728 }
729 }
730 re turn V;

731 }
732

733 /∗∗
734 ∗ Simple method to mult ip ly an i n t e g e r i n to a matrix .

197

735 ∗ @param x

736 ∗ @param matrix

737 ∗ @param s i z e

738 ∗ @return

739 ∗/
740 p r i v a t e s t a t i c f l o a t [] [] matr ixMult ip ly (f l o a t x , f l o a t [] [] matrix , i n t

s i z e) {
741 f o r (i n t i=0 ; i<s i z e ; i++){
742 f o r (i n t j=0 ; j<s i z e ; j++){
743 matrix [i] [j] = x∗matrix [i] [j] ;

744 }
745 }
746 re turn matrix ;

747 }
748

749 /∗∗
750 ∗
751 ∗ Simple method to summerize two matr ixes

752 ∗
753 ∗ @param matrix1

754 ∗ @param matrix2

755 ∗ @param s i z e

756 ∗ @return

757 ∗/
758

759 p r i v a t e s t a t i c f l o a t [] [] matrixSum (f l o a t [] [] matrix1 , f l o a t [] []

matrix2 , i n t s i z e) {
760 f o r (i n t i=0 ; i<s i z e ; i++){
761 f o r (i n t j=0 ; j<s i z e ; j++){
762 matrix1 [i] [j] = matrix1 [i] [j] + matrix2 [i] [j] ;

763 }
764 }
765 re turn matrix1 ;

766 }
767

768 /∗∗
769 ∗
770 ∗ This method takes some ar rays as input and read form e x c e l i n to

them .

771 ∗ Note that we have to change startX and startY v a r i a b l e s in t h i s

method manually .

772 ∗
773 ∗ @param f i l e P a t h

198

774 ∗ @param nodeSets

775 ∗ @param supply

776 ∗ @param nodeDistance

777 ∗ @param diameterTypes

778 ∗ @param diameters

779 ∗ @param diameterCosts

780 ∗/
781

782 p r i v a t e s t a t i c void readExce l (S t r ing f i l ePa th , S t r ing [] nodeSets ,

i n t [] supply , double [] [] nodeDistance , S t r ing [] diameterTypes ,

i n t [] d iameters , i n t [] d iameterCosts) {
783 t ry {
784 Workbook workbook = Workbook . getWorkbook (new F i l e (f i l e P a t h)) ;

785 Sheet shee t = workbook . getSheet (0) ;

786

787 i n t startX =2;

788 i n t startY =0;

789

790 f o r (i n t i =0; i<n ; i++){
791 f o r (i n t j=0 ; j<n+2 ; j++){
792 System . out . p r i n t l n (” i=”+i+” j=”+j) ;

793 Ce l l c e l l = shee t . g e t C e l l (startY+j , startX+i) ;

794 i f (j ==0){
795 nodeSets [i] = c e l l . getContents () ;

796 } e l s e i f (j==1){
797 supply [i] = I n t e g e r . pa r s e In t (c e l l . getContents ()) ;

798 } e l s e {
799 nodeDistance [i] [j −2] = Double . parseDouble (c e l l . getContents ()) ;

800 }
801 }
802 }
803

804 startX =105;

805 startY =2;

806

807 f o r (i n t i =0; i<diameterCount ; i++){
808 f o r (i n t j=0 ; j<3 ; j++){
809 Ce l l c e l l = shee t . g e t C e l l (startY+j , startX+i) ;

810 i f (j ==0){
811 diameterTypes [i] = c e l l . getContents () ;

812 } e l s e i f (j==1){
813 diameters [i] = I n t e g e r . pa r s e In t (c e l l . getContents ()) ;

814 } e l s e i f (j==2){

199

815 diameterCosts [i] = I n t e g e r . pa r s e In t (c e l l . getContents ()) ;

816 }
817 }
818 }
819

820 workbook . c l o s e () ;

821 } catch (Exception e) {
822 e . pr intStackTrace () ;

823 }
824 }
825

826 p r i v a t e s t a t i c void wr i t eExce l (double [] [] f low , double [] pres sure ,

I I t e r a t o r pipeDiameterTypeIt , double tota lCost , S t r ing []

nodeSets) {
827 t ry {
828 WritableWorkbook workbook = Workbook . createWorkbook (new F i l e (”

output . x l s ”)) ;

829 WritableSheet shee t = workbook . c r ea t eShee t (” F i r s t Sheet ” , 0) ;

830 i n t startX =0;

831 i n t startY =0;

832

833 f o r (i n t i =0; i<n+1; i++){
834 f o r (i n t j=0 ; j<n+2; j++){
835 i f (i==0 && j ==0){
836 shee t . addCel l (new Label (j+startY , i+startX , ”Flow”)) ;

837 } e l s e i f (j==0 && i !=0){
838 shee t . addCel l (new Label (j+startY , i+startX , nodeSets [i −1])) ;

839 } e l s e i f (i==0 && j !=0 && j !=n+1){
840 shee t . addCel l (new Label (j+startY , i+startX , nodeSets [j −1])) ;

841 } e l s e i f (j==n+1 && i ==0){
842 shee t . addCel l (new Label (j+startY , i+startX , ” Pressure ”)) ;

843 } e l s e i f (j==n+1 && i !=0){
844 shee t . addCel l (new Label (j+startY , i+startX , p r e s su r e [i−1]+””)) ;

845 } e l s e {
846 shee t . addCel l (new Label (j+startY , i+startX , f low [i −1] [j−1]+””))

;

847 }
848 }
849

850 }
851 startX += n+5;

852 whi le (pipeDiameterTypeIt . next ()) {

200

853 shee t . addCel l (new Label (startY , startX , pipeDiameterTypeIt . tup l e () .

t oS t r i ng ())) ;

854 shee t . addCel l (new Label (startY +1, startX , pipeDiameterTypeIt .

asDouble ()+””)) ;

855 startX++;

856 }
857 startX += 2 ;

858 shee t . addCel l (new Label (startY , startX , ” to ta lCos t ”)) ;

859 shee t . addCel l (new Label (startY +1, startX , to ta lCos t+””)) ;

860 workbook . wr i t e () ;

861 workbook . c l o s e () ;

862 } catch (Exception e) {
863 e . pr intStackTrace () ;

864 }
865 pipeDiameterTypeIt . c l o s e () ;

866

867 }
868

869 p r i v a t e s t a t i c void wr i t eExce l2 (i n t t , i n t M, i n t Me, f l o a t alpha ,

870 f l o a t e p s i l o n) {
871 t ry {
872 WritableWorkbook workbook1 = Workbook . createWorkbook (new F i l e (”

output2 . x l s ”)) ;

873 WritableSheet sheet1 = workbook1 . c r ea t eShee t (” F i r s t Sheet ” , 0) ;

874 i n t startX =0;

875 i n t startY =0;

876 sheet1 . addCel l (new Label (startY , startX , ” t = ”)) ;

877 sheet1 . addCel l (new Label (startY +1, startX , t+””)) ;

878 startX =1;

879 startY =0;

880 sheet1 . addCel l (new Label (startY , startX , ”M = ”)) ;

881 sheet1 . addCel l (new Label (startY +1, startX ,M+””)) ;

882 startX =2;

883 startY =0;

884 sheet1 . addCel l (new Label (startY , startX , ”Me = ”)) ;

885 sheet1 . addCel l (new Label (startY +1, startX ,Me+””)) ;

886

887 startX =3;

888 startY =0;

889 sheet1 . addCel l (new Label (startY , startX , ” alpha = ”)) ;

890 sheet1 . addCel l (new Label (startY +1, startX , alpha+””)) ;

891 startX =4;

892 startY =0;

201

893 sheet1 . addCel l (new Label (startY , startX , ” e p s i l o n = ”)) ;

894 sheet1 . addCel l (new Label (startY +1, startX , e p s i l o n+””)) ;

895 startX =5;

896 startY =0;

897 sheet1 . addCel l (new Label (startY , startX , ” r = ”)) ;

898

899 startX =6;

900 startY =0;

901 sheet1 . addCel l (new Label (startY , startX , ”Stop C r i t e r i a Number = ”))

;

902 workbook1 . wr i t e () ;

903 workbook1 . c l o s e () ;

904 } catch (Exception e) {
905 e . pr intStackTrace () ;

906 }
907 }
908 p r i v a t e s t a t i c double computeNorm (f l o a t [] [] P) {
909 double sum =0;

910 f o r (i n t i=0 ; i<n ; i++){
911 f o r (i n t j=0 ; j<n ; j++){
912 sum += Math . pow(P[i] [j] , 2) ;

913 }
914 }
915 System . out . p r i n t l n (”Sum of prob matrix i s ”+sum) ;

916 System . out . p r i n t l n (”Norm i s ”+Math . s q r t (sum)) ;

917 re turn Math . s q r t (sum) ;

918 }
919 }
920

921

922 \\ Here , we pre sent node c l a s s .

923

924 import java . u t i l . ArrayList ;

925

926 pub l i c c l a s s Node {
927

928 Node parent ;

929 i n t id ;

930 ArrayList<Node> c h i l d s ;

931

932 pub l i c Node (i n t id) {
933 c h i l d s = new ArrayList<>() ;

934 t h i s . id = id ;

202

935 }
936

937 pub l i c void addChild (Node node) {
938 c h i l d s . remove (node) ;

939 c h i l d s . add (node) ;

940 }
941

942 pub l i c ArrayList<Node> getCh i ld s () {
943 re turn c h i l d s ;

944 }
945

946 p r i v a t e ArrayList<Node> a l l C h i l d s = new ArrayList<>() ;

947 p r i v a t e void t rave r s eTree (Node root) {
948 a l l C h i l d s . addAll (root . c h i l d s) ;

949 f o r (Node node : root . c h i l d s) {
950 t rave r s eTree (node) ;

951 }
952 }
953 pub l i c ArrayList<Node> ge tA l lCh i l d s () {
954 t rave r s eTree (t h i s) ;

955 re turn a l l C h i l d s ;

956 }
957 }
958

959

960 \\Here we pre sent Result c l a s s .

961

962 pub l i c c l a s s Result implements Comparable<Result>{
963

964 f l o a t [] [] arcMap ;

965 f l o a t [] [] f l ow ;

966 double minCost ;

967 i n t [] [] A;

968

969 @Override

970 pub l i c i n t compareTo (Result o) {
971 re turn Double . compare (minCost , o . minCost) ;

972 }
973 }

203

12/7/2017 RightsLink Printable License

.

SPRINGER LICENSE
TERMS AND CONDITIONS

Dec 07, 2017

This Agreement between Curtin University -- Efat Fakhar ("You") and Springer ("Springer")
consists of your license details and the terms and conditions provided by Springer and
Copyright Clearance Center.

License Number 4235600960362

License date Nov 24, 2017

Licensed Content Publisher Springer

Licensed Content Publication Springer eBook

Licensed Content Title A New Algorithm for MINLP Applied to Gas Transport Energy Cost
Minimization

Licensed Content Author Björn Geißler, Antonio Morsi, Lars Schewe

Licensed Content Date Jan 1, 2013

Type of Use Thesis/Dissertation

Portion Figures/tables/illustrations

Number of
figures/tables/illustrations

2

Author of this Springer article No

Order reference number

Original figure numbers Fig. 2 A & Fig. 3 A

Title of your thesis /
dissertation

Optimisation Techniques for Natural gas Distribution Networks

Expected completion date Feb 2018

Estimated size(pages) 209

Requestor Location Curtin University
Attn: Curtin University

Billing Type Invoice

Billing Address Curtin University
Attn: Curtin University

Total 0.00 AUD

Figure 6.1: Permission for Figure 1.2

204

12/7/2017 RightsLink Printable License

.

SPRINGER LICENSE
TERMS AND CONDITIONS

Dec 07, 2017

This Agreement between Curtin University ­­ Efat Fakhar ("You") and Springer ("Springer")
consists of your license details and the terms and conditions provided by Springer and
Copyright Clearance Center.

License Number 4235611164082

License date Nov 24, 2017

Licensed Content Publisher Springer

Licensed Content Publication Annals of Operations Research

Licensed Content Title A Reduction Technique for Natural Gas Transmission Network
Optimization Problems

Licensed Content Author Roger Z. Ríos­Mercado, Suming Wu, L. Ridgway Scott et al

Licensed Content Date Jan 1, 2002

Licensed Content Volume 117

Licensed Content Issue 1

Type of Use Thesis/Dissertation

Portion Figures/tables/illustrations

Number of
figures/tables/illustrations

2

Author of this Springer article No

Order reference number

Original figure numbers Figur 1 and Figure 2

Title of your thesis /
dissertation

Optimisation Techniques for Natural gas Distribution Networks

Expected completion date Feb 2018

Estimated size(pages) 209

Requestor Location Curtin University
Australia
Attn: Curtin University

Billing Type Invoice

Billing Address Curtin University
Attn: Curtin University

Total 0.00 USD

Figure 6.2: Permission for Figures 1.3 and 1.4

205

12/7/2017 RightsLink Printable License

.

ELSEVIER LICENSE
TERMS AND CONDITIONS

Dec 07, 2017

This Agreement between Curtin University ­­ Efat Fakhar ("You") and Elsevier ("Elsevier")
consists of your license details and the terms and conditions provided by Elsevier and
Copyright Clearance Center.

License Number 4235610298509

License date Nov 24, 2017

Licensed Content Publisher Elsevier

Licensed Content Publication Energy

Licensed Content Title Forecasting of natural gas consumption with artificial neural networks

Licensed Content Author Jolanta Szoplik

Licensed Content Date Jun 1, 2015

Licensed Content Volume 85

Licensed Content Issue n/a

Licensed Content Pages 13

Start Page 208

End Page 220

Type of Use reuse in a thesis/dissertation

Intended publisher of new
work

other

Portion figures/tables/illustrations

Number of
figures/tables/illustrations

1

Format both print and electronic

Are you the author of this
Elsevier article?

No

Will you be translating? No

Original figure numbers Fig. 1

Title of your
thesis/dissertation

Optimisation Techniques for Natural gas Distribution Networks

Expected completion date Feb 2018

Estimated size (number of
pages)

209

Requestor Location Curtin University
Australia
Attn: Curtin University

Total 0.00 AUD

Figure 6.3: Permission for Figure 1.5

206

Bibliography

Afshar, M. H. (2007). Evaluation of selection algorithms for simultaneous layout

and pipe size optimization of water distribution networks. Scientia Iranica,

14(1):23–32.

Afshar, M. H., Akbari, M., and Mariño, M. A. (2005). Simultaneous layout

and size optimization of water distribution networks: engineering approach.

Journal of Infrastructure Systems, 11(4):221–230.

Agency, U. S. E. P. (2014). Water research @online. Avaiable at

https://www.epa.gov/water-research/epanet.

Alperovits, E. and Shamir, U. (1977). Design of optimal water distribution sys-

tems. Water resources research, 13(6):885–900.

André, J. (2010). Optimization of investments in gas networks. Université du Lit-

toral Côte d’Opale. Avaiable at https://tel.archives-ouvertes.fr/tel-00539689.

André, J., Auray, S., Brac, J., De Wolf, D., Maisonnier, G., Ould-Sidi, M.-M.,

and Simonnet, A. (2013). Design and dimensioning of hydrogen transmission

pipeline networks. European Journal of Operational Research, 229(1):239–251.

Australian Energy, R. (2009). Chapter 10: Gas distribution @online. Available

at http://www.aer.gov.au/node/6313.

Bhaskaran, S. and Salzborn, F. J. (1979). Optimal design of gas pipeline networks.

Journal of the Operational Research Society, pages 1047–1060.

Biegler, L. T. and Grossmann, I. E. (2004). Retrospective on optimization. Com-

puters & Chemical Engineering, 28(8):1169–1192.

Bisschop, J. and Roelofs, M. (2006). AIMMS language reference. Lulu. com.

Available at https://aimms.com.

207

Brimberg, J., Hansen, P., Lin, K.-W., Mladenovic, N., and Breton, M. (2003).

An oil pipeline design problem. Operations Research, 51(2):228–239.

Brkić, D. (2009). An improvement of hardy cross method applied on looped

spatial natural gas distribution networks. Applied energy, 86(7):1290–1300.

Cobos-Zaleta, D. and Rı́os-Mercado, R. Z. (2002). A minlp model for minimizing

fuel consumption on natural gas pipeline networks. In XI Latin-Ibero-American

conference on operations research, pages 27–31.

Cross, H. (1936). Analysis of flow in networks of conduits or conductors. Uni-

versity of Illinois. Engineering Experiment Station. Bulletin; no. 286.

De Corte, A. and Sörensen, K. (2013). Optimisation of gravity-fed water dis-

tribution network design: A critical review. European Journal of Operational

Research, 228(1):1–10.

de Mélo Duarte, H., Goldbarg, E. F. G., and Goldbarg, M. C. (2006). A

tabu search algorithm for optimization of gas distribution networks. In Euro-

pean Conference on Evolutionary Computation in Combinatorial Optimization,

pages 37–48. Springer.

De Wolf, D. and Smeers, Y. (1996). Optimal dimensioning of pipe networks with

application to gas transmission networks. Operations Research, 44(4):596–608.

De Wolf, D. and Smeers, Y. (2000). The gas transmission problem solved by an

extension of the simplex algorithm. Management Science, 46(11):1454–1465.

Deb, K. and Agrawal, S. (1999). A niched-penalty approach for constraint han-

dling in genetic algorithms. In Artificial Neural Nets and Genetic Algorithms,

pages 235–243. Springer.

Demissie, A. and Zhu, W. (2015). A survey on gas pipelines operation and design

optimization. In IIE Annual Conference. Proceedings, page 734. Institute of

Industrial Engineers-Publisher.

Djebedjian, B., Mohamed, M. S., Mondy, A.-G., and Rayan, M. A. (2005). Net-

work optimization for steady flow and water hammer using genetic algorithms.

In Ninth International Water Technology Conference, IWTC 2005, pages 1101–

1115.

208

Duran, M. A. and Grossmann, I. E. (1986). An outer-approximation algorithm

for a class of mixed-integer nonlinear programs. Mathematical programming,

36(3):307–339.

Eshragh, A., Filar, J., and Nazar, A. (2011). A projection-adapted cross entropy

(pace) method for transmission network planning. Energy Systems, 2(2):189–

208.

Eusuff, M. M. and Lansey, K. E. (2003). Optimization of water distribution

network design using the shuffled frog leaping algorithm. Journal of Water

Resources Planning and Management, 129(3):210–225.

Fletcher, R. and Leyffer, S. (1994). Solving mixed integer nonlinear programs by

outer approximation. Mathematical programming, 66(1-3):327–349.

Gabriel, S. A., Kiet, S., and Zhuang, J. (2005). A mixed complementarity-based

equilibrium model of natural gas markets. Operations Research, 53(5):799–818.

Geißler, B., Morsi, A., and Schewe, L. (2013). A new algorithm for minlp ap-

plied to gas transport energy cost minimization. In Facets of Combinatorial

Optimization, pages 321–353. Springer.

Geoffrion, A. M. (1972). Generalized benders decomposition. Journal of opti-

mization theory and applications, 10(4):237–260.

Gill, P. E., Murray, W., and Saunders, M. A. (2005). Snopt: An sqp algorithm

for large-scale constrained optimization. SIAM review, 47(1):99–131.

Goulter, I. C. (1992). Systems analysis in water-distribution network design:

From theory to practice. Journal of Water Resources Planning and Manage-

ment, 118(3):238–248.

Grossmann, I. E. and Kravanja, Z. (1995). Mixed-integer nonlinear programming

techniques for process systems engineering. Computers & Chemical Engineer-

ing, 19:189–204.

Haghighi, A., Samani, H. M., and Samani, Z. M. (2011). Ga-ilp method for

optimization of water distribution networks. Water Resources Management,

25(7):1791–1808.

209

Hamedi, M., Farahani, Z., and Esmaeilian, G. (2011). Optimization in natural

gas network planning. Logistics operations and management, 1st edn. Elsevier,

London, pages 393–420.

Kan, A. H. R., Boender, C. G. E., and Timmer, G. T. (1985). A stochastic

approach to global optimization. In Computational mathematical programming,

pages 281–308. Springer.

Kan, A. H. R. and Timmer, G. T. (1987). Stochastic global optimization methods

part ii: Multi level methods. Mathematical Programming, 39(1):57–78.

Kocis, G. R. and Grossmann, I. E. (1987). Relaxation strategy for the struc-

tural optimization of process flow sheets. Industrial & engineering chemistry

research, 26(9):1869–1880.

Krope, J., Trop, P., and Goricanec, D. (2011). Flow-pressure analysis of loop

gas networks. International journal of systems applications, engineering &

development, 5(4):477–484.

Mardaneh, E. and Caccetta, L. (2016). Adapted cross entropy method to inves-

tigate costly price-changes in pricing and production planning. Pacific Journal

of Optimization, 12(2):399–414.

Mardaneh, E., Lin, Q., and Loxton, R. (2015). A heuristic algorithm for optimal

fleet composition with vehicle routing considerations. Optimization Methods

and Software, pages 1–18.

Melo, W., Fampa, M., and Raupp, F. (2014). Integrating nonlinear branch-and-

bound and outer approximation for convex mixed integer nonlinear program-

ming. Journal of Global Optimization, 60(2):373–389.

Mohajeri, A., Mahdavi, I., and Mahdavi-Amiri, N. (2012). Optimal pipe diameter

sizing in a tree–structured gas network: a case study. International Journal of

Industrial and Systems Engineering, 12(3):346–368.

Murray III, J. E. and Edgar, T. F. (1978). Optimal scheduling of production and

compression in gas fields. Journal of Petroleum Technology, 30(01):109–116.

Nasr, G. G. and Connor, N. E. (2014). Natural gas engineering and safety chal-

lenges. Available at http://www.springer.com.

210

NatGas (2013). Overview of natural gas @online. Available at

http://naturalgas.org/.

Nikbakht, M., Zulkifli, N., Ismail, N., Sulaiman, S., Sadrnia, A., and Suleiman,

M. (2012). Multi-echelon supply chain design in natural gas industry. World

Applied Sciences Journal, 20(1):54–63.

O’Neill, R. P., Williard, M., Wilkins, B., and Pike, R. (1979). A mathemat-

ical programming model for allocation of natural gas. Operations Research,

27(5):857–873.

Osiadacs, A. J. and Pienkosz, K. (1988). Methods of steady-state simulation for

gas networks. International Journal of Systems Science, 19(7):1311–1321.

Parker, N. (2004). Using natural gas transmission pipeline

costs to estimate hydrogen pipeline costs. Available at

https://EconPapers.repec.org/RePEc:cdl:itsdav:qt9m40m75r.

Quesada, I. and Grossmann, I. E. (1992). An lp/nlp based branch and bound

algorithm for convex minlp optimization problems. Computers & chemical

engineering, 16(10-11):937–947.

Ranjbar, B. (2011). Gas station @online. Available at http://search.4shared.com.

Raoni, R., Secchi, A. R., and Biscaia, E. C. (2017). Novel method for looped

pipeline network resolution. Computers & Chemical Engineering, 96:169–182.

Ŕıos-Mercado, R. Z. and Borraz-Sánchez, C. (2015). Optimization problems in

natural gas transportation systems: A state-of-the-art review. Applied Energy,

147:536–555.

Ŕıos-Mercado, R. Z., Wu, S., Scott, L. R., and Boyd, E. A. (2002). A reduction

technique for natural gas transmission network optimization problems. Annals

of Operations Research, 117(1):217–234.

Roarty, M. J. and Roarty, M. (2008). Australia’s natural gas: issues and trends.

Australia. Department of Parliamentary Services. Parliamentary Library.

Rothfarb, B., Frank, H., Rosenbaum, D. M., Steiglitz, K., and Kleitman, D. J.

(1970). Optimal design of offshore natural-gas pipeline systems. Operations

research, 18(6):992–1020.

211

Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare

events. European Journal of Operational Research, 99(1):89–112.

Rubinstein, R. Y. and Kroese, D. P. (2013). The cross-entropy method: a unified

approach to combinatorial optimization, Monte-Carlo simulation and machine

learning. Springer Science & Business Media.

Rubio-Barros, R., Ojeda-Esteybar, D. M., Ano, O., and Vargas, A. (2008). Inte-

grated natural gas and electricity market: A survey of the state of the art in

operation planning and market issues. In Transmission and Distribution Con-

ference and Exposition: Latin America, 2008 IEEE/PES, pages 1–8. IEEE.

Ruiz, C., Conejo, A. J., Fuller, J. D., Gabriel, S. A., and Hobbs, B. F. (2014).

A tutorial review of complementarity models for decision-making in energy

markets. EURO Journal on Decision Processes, 2(1-2):91–120.

Saldarriaga, C. A., Hincapié, R. A., and Salazar, H. (2013). A holistic approach

for planning natural gas and electricity distribution networks. IEEE transac-

tions on power systems, 28(4):4052–4063.

Saleh, S. H. and Tanyimboh, T. T. (2013). Coupled topology and pipe size

optimization of water distribution systems. Water resources management,

27(14):4795–4814.

Sanaye, S. and Nasab, A. M. (2012). Modeling and optimizing a chp system for

natural gas pressure reduction plant. Energy, 40(1):358–369.

Sarbu, I. (2014). Nodal analysis of urban water distribution networks. Water

resources management, 28(10):3143–3159.

Shiono, N. and Suzuki, H. (2016). Optimal pipe-sizing problem of tree-shaped gas

distribution networks. European Journal of Operational Research, 252(2):550–

560.

Smith, A. E. and Coit, D. W. (1997). Penalty functions. Handbook on Evolution-

ary Computation, pages C, 5:1–6.

Spiliotis, M. and Tsakiris, G. (2013). Closure to “water distribution system

analysis: Newton-raphson method revisited” by m. spiliotis and g. tsakiris.

Journal of Hydraulic Engineering, 139(8):918–919.

212

Stevens, B. (2012). Barry on energy @online. Available at

https://barryonenergy.wordpress.com.

Suribabu, C. (2012). Heuristic-based pipe dimensioning model for water dis-

tribution networks. Journal of Pipeline Systems Engineering and Practice,

3(4):115–124.

Szoplik, J. (2015). Forecasting of natural gas consumption with artificial neural

networks. Energy, 85:208–220.

Tabkhi, F., Pibouleau, L., Azzaro-Pantel, C., and Domenech, S. (2009). Total

cost minimization of a high-pressure natural gas network. Journal of Energy

Resources Technology, 131(4):043002.

Ting-zhe, N. (2006). Optimal lay-out of natural gas pipeline network. In 23rd

World Gas Conference, Amsterdam.

Tingzhe, N. and Changgui, D. (2005). Layout optimization of gas transmission

system by hopfield neural network. NATUR. GAS IND, 2:155–157.

Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., and Mart́ı, R. (2007).

Scatter search and local nlp solvers: A multistart framework for global opti-

mization. INFORMS Journal on Computing, 19(3):328–340.

Uraikul, V., Chan, C., and Tontiwachwuthikul, P. (2004). A mixed-integer opti-

mization model for compressor selection in natural gas pipeline network system

operations. Journal of Environmental Informatics, 3(1):33–41.

Viswanathan, J. and Grossmann, I. E. (1990). A combined penalty function and

outer-approximation method for minlp optimization. Computers & Chemical

Engineering, 14(7):769–782.

Wu, S., Scott, L. R., Rıos-Mercado, R. Z., and Boyd, E. A. (2000). A network

reduction technique for natural gas pipeline networks. Proceedings of the X

CLAIO A, 281.

Wu, Y., Lai, K. K., and Liu, Y. (2007). Deterministic global optimization ap-

proach to steady-state distribution gas pipeline networks. Optimization and

Engineering, 8(3):259–275.

213

Zheng, F., Simpson, A. R., Zecchin, A. C., and Deuerlein, J. W. (2013). A

graph decomposition-based approach for water distribution network optimiza-

tion. Water Resources Research, 49(4):2093–2109.

Zheng, Q. P., Rebennack, S., Iliadis, N. A., and Pardalos, P. M. (2010). Opti-

mization models in the natural gas industry. In Handbook of Power Systems I,

pages 121–148. Springer.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copy right owner who has been

omitted or incorrectly acknowledged.

214

