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Abstract  

Devolatilisation of serpentinites at depth in subduction zones contributes significant 

quantities of sulfur and other redox sensitive elements to the sub-arc mantle. However, the 

fate of sulfur in subducted serpentinites is poorly constrained. Textures of sulfur-bearing 

phases in subducted serpentinites are rarely studied, yet provide important information on the 

changes to sulfur distribution throughout the subduction cycle and as a result of fluid 

infiltration. δ
34

S values of sulfides provide constraints on sulfur sources, the redox state of 

sulfur in the host mineral, and on processes that have occurred subsequent to sulfide 

crystallisation, including interaction with oxidised or reduced fluids. Therefore, it is possible 

to use δ
34

S values in subducted serpentinites to constrain the redox state of sulfur in sulfides 

and subduction zone fluids. Furthermore, the proximity of serpentinites to ocean crust and 

metasediments may influence enrichment or depletion of 
34

S during subduction relative to 

serpentinites distal to such lithologies.  

This study investigates the redox state, the likelihood of sulfur addition to the sub-arc mantle 

from serpentinite dehydration, and the distribution of sulfur within subducted serpentinites 

and ‘hybrid’ mafic/ultramafic rocks from Alpine Corsica. The techniques utilised include 

petrographic analysis, in-situ sulfur isotopic analysis and trace element analysis of sulfides 

hosted in these rocks. All sulfides investigated have high δ
34

S values of 1.9–15.5‰, which 

suggests that mantle-derived sulfur (δ
34

S ~ 0.1‰), was not the sole source of sulfur. The 

highest δ
34

S values are recorded in pyrites of a hybrid mafic/ultramafic sample. High δ
34

S 

values are preserved in sulfides attributed to prograde metamorphism, and is most consistent 

with the retention of sulfur derived from hydrothermal sulfate reduction on the seafloor. 

However, a shift towards higher δ
34

S values in sulfides associated with the advanced stages 

of exhumation suggests that late stage exhumation enables enhanced access to slab-derived 

fluids bearing oxidised sulfur (SO4
2-

 or SO2). Such fluids may have been derived from the 

devolatilisation of serpentinite at greater depth, or from other lithologies.  

 

1. Introduction 1 

Sulfur is subducted in variable oxidation states from sulfate (+6) to sulfide (-2) within 2 

altered ocean crust, hydrated mantle lithosphere and ocean floor sediments, to contribute a 3 

significant flux of redox budget to subduction zones (Evans, 2006; Evans, 2012). Sulfur input 4 
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to subduction zones is an order of magnitude higher than the flux of sulfur released (Evans, 5 

2012; Evans et al., 2014). However, changes to the oxidation state of sulfur, the processes 6 

that sulfur undergoes during subduction and the quantity of sulfur transferred to the sub-arc 7 

mantle and deep mantle are poorly constrained (e.g., Evans et al., 2014). The redox state and 8 

the concentration of sulfur in the sub-arc mantle are of particular importance because genetic 9 

models for arc-related ore deposits currently require an oxidised sub-arc mantle (e.g., 10 

Mungall et al., 2002).   11 

The combined approach of sulfide mineral paragenesis and in-situ measurement of 12 

sulfur isotopes (δ
34

S) in sulfur-bearing mineral phases within rocks that have undergone 13 

subduction and, at a later stage, exhumation, can be used to constrain the source, redox state 14 

and processes that sulfur has undergone throughout the subduction cycle. Such processes 15 

include bacterial sulfate reduction, fluid infiltration or devolatilisation. 
34

S partitions 16 

preferentially into oxidised species relative to 
32

S; for example, present day seawater sulfate 17 

has a δ
34

S value of ~20–21‰ (Rees, 1978; Paytan et al., 1998, 2004; Tostevin et al. 2014), 18 

whereas mantle sulfur is 0.1±0.5‰ (Sakai et al., 1984; Shanks et al., 1995; Alt and Shanks, 19 

1998). The observation that porphyry arc-related ore deposits have δ
34

S values up to ~13‰ 20 

higher than the mantle (Alt et al., 1993; Ishihara & Sasaki, 1989), requires a source of 
34

S, 21 

which is proposed to have originated via sulfate transfer from the slab (Richards, 2015). Pre-22 

subduction fixation of sulfate in serpentinised mantle lithosphere, oceanic crust and 23 

sediments is considered to account for sulfate enrichment in the slab (Ishihara and Sasaki, 24 

1989; Shanks et al., 1981; Wallace & Edmonds, 2011; Alt et al., 2012a; Debret et al., 2014; 25 

Evans et al., 2014). However, sulfur release and retention within the slab during subduction, 26 

and the mechanisms that control the distribution of sulfur are not well understood.  27 

Attempts have been made to constrain subduction-related fluxes of sulfur from the 28 

oceanic crust (Evans et al., 2014; Marschall & Shimizu, 2012; Aulbach et al., 2012), but 29 

fluxes from the hydrated mantle lithosphere during subduction are rarely investigated, with 30 

some exceptions (e.g., Alt et al., 2012a; Alt et al., 2012b; Shimizu et al., 2013). The hydrated 31 

mantle lithosphere component of the slab is of particular interest because its dehydration at 32 

depth within the subduction channel has the potential to release a significant volume of 33 

fluids, which could migrate to the sub-arc mantle. Various processes can affect the sulfur 34 

isotope composition of peridotite exhumed on the seafloor at spreading centres, including 35 

microbial sulfate reduction (Alt and Shanks, 1998; Alt et al., 2007; Schwarzenbach et al., 36 

2012; Ono et al., 2012) and hydrothermal sulfate reduction (Alt and Shanks, 2003; Bach et 37 
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al., 2004, Alt et al., 2007, Delacour et al., 2008; Peters et al., 2010, Ono et al., 2012). 38 

Temperature governs the process that prevails on the seafloor (e.g., Schwarzenbach et al., 39 

2018). A contribution from seawater-derived sulfate in modern day can result in 
34

S-enriched 40 

serpentinites with δ
34

S values of up to ~20‰ compared to the Earth’s mantle (Delacour et al., 41 

2008; Alt & Shanks, 2003; Alt et al., 2012a, Tostevin et al., 2014). Therefore, upon 42 

subduction, serpentinites may carry oxidised sulfur to the sub-arc mantle or deep mantle. In 43 

contrast, microbial sulfate reduction on the seafloor at low temperature results in a 
34

S 44 

depleted reservoir of reduced sulfur, and resultant δ
34

S values as low as -34‰ (Alt and 45 

Shanks, 1998; Schwarzenbach et al. 2012). Therefore, the oxidation state of sulfur input into 46 

subduction zones is strongly dependent on temperature, whether the system is open or closed 47 

with respect to sulfur, and whether microbial or hydrothermal processes govern sulfate 48 

reduction.  49 

Δ
33

S is used to describe the extent of mass independent fractionation (MIF); the 50 

degree to which variations in isotope abundance are not dependent on mass. Δ
33

S values 51 

provide additional information compared to the measurement of δ
34

S values alone (Ono et al., 52 

2012; Schwarzenbach et al., 2018), and allows distinction between open and closed system 53 

sulfate reduction, and between bacterial sulfate reduction and hydrothermal sulfate reduction 54 

that can be traced through subduction. Non-zero MIF values for sulfur indicate that the 55 

analysed sulfur deviates from the terrestrial line defined by the slope of a fractionation line 56 

between δ
34

S and δ
33

S for the Earth-Moon system, where the slope is 0.515 (Seal, 2006 and 57 

references therein).  Modern day seawater sulfate has a Δ
33

S value of 0.050±0.0003‰ (Ono 58 

et al., 2012), whereas mid ocean ridge basalts (MORB) from the East Pacific Rise have Δ
33

S 59 

values within error of zero at ~0.001±0.017‰ (Ono et al., 2012). A study of samples from 60 

the Iberian Margin basement revealed that serpentinised peridotites have higher Δ
33

S values 61 

than basaltic samples with values ranging from 0.00 to 0.16 in peridotites (Ono et al., 2012; 62 

Schwarzenbach et al., 2018), compared to -0.06 to 0.04 in the basalts (Ono et al., 2012). 63 

Lower Δ
33

S values (-0.06 to 0.02) have been reported for Northern Appenine serpentinites 64 

(Schwarzenbach et al., 2018), and similarly low Δ
33

S values (-0.01 to 0.01) are reported for 65 

basalts from the Pacific-Antarctic ridge, however, these values are indistinguishable from the 66 

Canyon Diablo Troilite international standard (Labidi et al., 2014).  67 

The proximity of serpentinites to ocean crust and metasediments in the subduction 68 

channel may influence the redox state and concentration of sulfur in both serpentinites and 69 

other lithologies, and therefore the sulfur isotope compositions, either through the loss of 70 
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oxidised or reduced fluids from serpentinites, or the infiltration of fluids from other 71 

lithologies. For example, seafloor serpentinites associated with gabbroic intrusions have been 72 

shown to have higher δ
34

S values than serpentinites elsewhere (Alt and Shanks, 2003). 73 

Mixing of sediments/oceanic crust and mantle along the slab/sub-arc mantle interface at high-74 

pressure produces ‘hybrid’ rocks, which are physical or chemical mixtures of two or more 75 

end member rock types, such as sediment, peridotite (mantle), gabbro and basalt (Spandler 76 

and Pirard, 2013; Marschall and Schumacher, 2012), and have chemical and isotopic 77 

compositions that reflect this mixing. Hybrid rocks have been recognised as important 78 

carriers of volatile elements to even greater depths than the serpentinised mantle (e.g., 79 

Spandler et al. 2008), and could play an essential role in the transfer of sulfur to the sub-arc 80 

mantle.  81 

Although whole rock δ
34

S data are available for subducted ultramafic rocks (Alt et al., 82 

2012a; b), subducted ultramafic rocks undergo several stages of alteration starting at the 83 

seafloor, followed by subduction and exhumation, such that whole rock sulfur isotope 84 

analysis provides a record of superimposed processes. In-situ δ
34

S measurements of sulfides 85 

with well-constrained parageneses provide an opportunity to sample the evolution of sulfur 86 

throughout the metamorphic evolution of the samples. To the authors’ best knowledge the 87 

only other published in-situ δ
34

S values for subducted ultramafic rocks are reported in  two 88 

conference abstracts, Santiago-Ramos et al. (2012) and Shimizu et al. (2013) who measured 89 

δ
34

S values of pentlandite and heazlewoodite grains within Erro Tobbio serpentinites. These 90 

studies report relatively low δ
34

S values for sulfide grains within low temperature 91 

serpentinites (-3.2 to 5.9‰), and variable δ
34

S values from -1.1 to 18.3‰ for sulfide grains 92 

within subducted serpentinites.  93 

In this study, redox conditions, the likelihood of sulfur transfer to the sub-arc mantle 94 

from serpentinite dehydration, and the distribution of sulfur within subducted serpentinites 95 

and hybrid mafic/ultramafic rocks are investigated through a combination of petrographic 96 

analysis, in-situ sulfur isotope and trace element analyses of sulfides hosted in these rocks.  97 

2. Geological Background 98 

Thirty samples were collected from the Schistes Lustrés complex at the two localities 99 

Serra di Pigno and Capu Corvoli, Cap Corse (Fig. 1). Serra di Pigno lies approximately 10 100 

km west of Bastia, on Cap Corse (Fig. 1a). The sample collection includes metagabbros, 101 

metasediments, serpentinites and hybrid rocks from the Schistes Lustrés complex. 102 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 

 

Serpentinite samples from Serra di Pigno were collected adjacent to metasediments, 103 

metagabbros and metabasalts, and distal to these lithologies (Fig. 1b, c). Hybrid samples from 104 

Capu Corvoli were collected from slivers next to metagabbro and <0.5 km from calcareous 105 

schist (Fig. 1d, e). These localities were chosen because they allow the assessment of 106 

lithological controls on the isotopic composition of sulfur. 107 

During the Middle to Late Jurassic, the ophiolites and associated sediments were 108 

considered to have been part of an ocean-continent transition (OCT) zone (e.g., Vitale 109 

Brovarone and Herwartz, 2013; Vitale Brovarone et al., 2013; Magott et al., 2016). At this 110 

time, seawater sulfate had δ
34

S values of ~ 17‰ (Kampschulte and Strauss, 2004). Field 111 

observations consistent with an OCT setting of the ophiolites prior to subduction include the 112 

juxtaposition of continental slices and ultramafic rocks, ultramafic clasts within carbonaceous 113 

sediments, the presence of ophicalcites, and variable interlayering of sediments with mafic 114 

and ultramafic lithologies at Serra di Pigno (Meresse et al., 2012) and other localities within 115 

Alpine Corsica (Vitale Brovarone et al., 2011).  116 

The samples from the Serra di Pigno region record blueschist to eclogite facies 117 

metamorphism and underwent high-pressure metamorphism from ~55 to 34 Ma (Ravna et al., 118 

2010; Vitale Brovarone et al. 2011, Vitale Brovarone and Herwartz, 2013). The minimum 119 

pressure recorded during subduction is estimated to be ~1.3–2.6 GPa (Lahondère and 120 

Guerrot, 1997; Vitale Brovarone et al., 2013), and on the basis of Raman spectroscopy of 121 

carbonaceous material (Vitale Brovarone et al., 2013), the peak metamorphic temperature is 122 

constrained to ~414–471ºC. 123 

The chlorite schist and talc schist hybrid mafic/ultramafic samples were collected at 124 

Capu Corvoli, Cap Corse. The samples are from a shear zone with a top-to-the-west to 125 

northwest sense of shear, parallel to a series of proximal WNW to NW shallowly dipping 126 

thrust faults, which were previously interpreted to divide the lawsonite-blueschist Upper 127 

Castagniccia metasediments and lawsonite-eclogite ophiolites (Lahondère, 1992). The sense 128 

of shear is uniform with deformation associated with prograde metamorphism (Mattauer et 129 

al., 1977; 1981; Faure and Malavielle, 1981; Harris, 1985; Warburton, 1986; Magott et al., 130 

2016). Within the shear zone, slivers of the hybrid lithologies are juxtaposed with 131 

metagabbro. Recent P-T estimates suggest that the Upper Castagniccia metasediments record 132 

eclogite facies metamorphism (Vitale Brovarone et al., 2013 & references therein). Thus, the 133 

Capu Corvoli samples record similar or higher P-T conditions than the Serra di Pigno 134 
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samples at ~490–550 °C and 1.9–2.6 GPa (Ravna et al., 2010; Vitale Brovarone et al., 2011; 135 

2013).  136 

In this study, existing estimates of P-T conditions (e.g., Agard and Vitale-Brovarone, 137 

2013), detailed sample petrography and mineral chemistry are used to distinguish between 138 

sulfides associated with mantle, seafloor, prograde, peak and retrograde stages. In the 139 

seafloor environment, sulfur is present as mantle sulfides, or as sulfides derived from 140 

seawater sulfate and precipitated during hydrothermal alteration. Such sulfides could be 141 

preserved during prograde metamorphism, or these sulfides may recrystallize at this stage. 142 

The onset of exhumation is marked by a decrease in pressure (Agard and Vitale-Brovarone, 143 

2013). At this stage, maximum temperatures are recorded, such that heating via continued 144 

thermal equilibration is still occurring at the onset of exhumation.  Additionally, it is likely 145 

that the rocks remain partially hydrated even after they have undergone prograde 146 

metamorphism, therefore, therefore fluids are also released at the onset of exhumation (e.g., 147 

Miller and Cartwright, 2006). Hence, the rocks may have access to both prograde and 148 

exhumation-related fluids during this stage. Retrogressed sulfides associated with such fluids 149 

provide insight into the composition of fluids released from the slab. 150 

3. Petrography 151 

Different sulfide generations are attributed to stages of metamorphism on the basis of 152 

their textural association with silicate minerals, where silicate mineral stability has been well 153 

constrained at a range of temperatures and pressures. Primary sulfides are typically 154 

polyhedral blebs with concave inward boundaries (Seyler et al., 2007; Schwarzenbach et al., 155 

2012), a textural characteristic that is not observed in any of the samples. In this section, the 156 

numbering 1-3 is used to assign sulfides to stability during (1) prograde metamorphism (2) 157 

the onset of exhumation, and (3) advanced stages of exhumation. 158 

3.1 Serra di Pigno 159 

3.1.1 Serpentinite CO13-40 160 

CO13-40 is a serpentinite sample distal to other lithologies (grid reference: WGS 84, 161 

zone 32T, 0533122 mE 4728302 mN, Fig. 1 a, b). Pentlandite1 (pn1) consist of grains up to 162 

~50 µm in diameter associated with magnetite. Both magnetite and pn1 overprint the foliation 163 

defined by fine-grained antigorite (atg1), and contain inclusions of atg1 (Fig. 2a). Orientated 164 

and foliated antigorite (atg1) has a fine and interlocking texture consistent with prograde 165 
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growth (e.g., Li et al., 2004), and defines the dominant foliation.  Given the inclusion of atg1 166 

in pn1, it is inferred that pn1 maintained stability during prograde to peak metamorphism. A 167 

late generation of antigorite (atg2) cuts pn1 (Fig. 2a) and therefore further constrains pn1 168 

growth to a stage prior to retrogression.  169 

3.1.2 Serpentinite CO13-33 170 

CO13-33 is a serpentinite sample collected from an outcrop proximal to metagabbro 171 

and metaquartzite (grid reference: WGS 84, zone 32T 0533514 mE 4729532 mN, Fig. 1a, b). 172 

Early pentlandite (pn1; Fig. 2b) occurs as elongate grains (~5 µm) associated with 173 

heazlewoodite, magnetite1, kamacite (~5 µm), fine matrix antigorite and fine balangeroite 174 

veins (<5 µm across). Balangeroite growth has previously been ascribed to prograde 175 

metamorphism within the antigorite stability field in both the Piemonte zone in the Alps 176 

(Groppo and Compagnoni, 2007), and Sasaguri, Japan (Evans and Kuehner, 2011). The 177 

association of pn1 with fine-grained antigorite (atg1) and balangeroite implies that pn1 was 178 

stable during prograde metamorphism. Chlorite growth is associated with antigorite 179 

dehydration (e.g., Padrón-Navarta et al., 2013; Scambelluri et al., 2014; Evans and Powell, 180 

2015), overprinting atg1. Pentlandite2 partially replaces chlorite (pn2; Fig 2c) and contains 181 

inclusions of atg1. Therefore, pn2 postdates prograde–peak metamorphism and is considered 182 

to have grown at the onset of exhumation, overprinted by a later generation of magnetite at 183 

the rim. A late phase of pentlandite, pn3, occurs as euhedral to subhedral grains that overprint 184 

a late generation of antigorite veins, and is synchronous with or includes late magnetite (Fig. 185 

2d), thus pn3 is related to advanced stages of exhumation.  186 

3.1.3 Serpentinite CO13-55 187 

CO13-55 is a serpentinite sample proximal to metagabbro and calcareous schist (grid 188 

reference: WGS 84, zone 32T, 0533398 mE 4729368 mN, Fig. 1a, b). Primary phases are 189 

absent; all spinel grains are ‘porous’, Al-poor, Cr-Fe spinel with mt1 rims, which are 190 

compositionally and texturally consistent with alteration of primary spinel during seafloor 191 

and/or prograde metamorphism (Evans and Frost, 1975; Bliss and MacLean, 1975; Wylie et 192 

al., 1987; Kimball, 1990; Frost, 1991; Barnes, 2000; Mellini et al., 2005; Merlini et al., 2009; 193 

Mukherjee et al., 2010; Grieco and Merlini, 2012; Gervilla et al., 2012; Colás et al., 2014).  194 

Phases stable during prograde to peak metamorphism include fine-grained antigorite (atg1), 195 

which comprises the matrix (<1 to 5 µm), chlorite, pentlandite1 (pn1), pyrite and 196 

chalcopyrite. Altered porous spinels contain inclusions of fine-grained antigorite (atg1) and 197 
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pentlandite (pn1), consistent with the interpretation of recrystallisation of antigorite from 198 

precursor lizardite and retention of pn1 during prograde metamorphism. Pentlandite1 also 199 

consists of larger grains (10–30 µm), which contain small Cr-Fe spinel grains (2–3 µm) and 200 

overprints or is in equilibrium with mt1 but is itself cut by atg2 veins (Fig. 2e). Phases 201 

associated with the onset of exhumation include pentlandite2 (pn2) and mt2. Pentlandite2 and 202 

mt2 are associated with diopside, although some grains of diopside are observed overprinting 203 

these phases. Diopside growth is constrained to the onset of exhumation, or after, because it 204 

overprints prograde antigorite and peak chlorite. Additionally, diopside is comprised of 205 

randomly orientated idioblastic prims (Fig. 2f, g) consistent with retrograde textures 206 

previously described elsewhere (Groppo and Compagnoni, 2007). Pentlandite3 is 207 

synchronous with or occurs as rims on late antigorite cross-cutting veins (Fig. 2h) and 208 

therefore pn3 postdates the veins (Fig. 2h), where antigorite veins cut prograde to peak 209 

phases (pyrite, chalcopyrite, pn1 and mt1) (Fig. 2e), and phases associated with the onset of 210 

exhumation (pn2 and mt2). 211 

3.2 Capu Corvoli 212 

3.2.1 Chlorite schist CO14-03 213 

CO14-03 is a chlorite schist in contact with metagabbro that lies structurally above the 214 

sample (grid reference: WGS 84, zone 32T, 0529140 mE 4753069 mN; Fig. 1d, e). There is 215 

little evidence for the retention of primary or seafloor phases. The earliest phases associated 216 

with prograde to peak metamorphism are thin (<5 µm), orientated laths of foliated chlorite 217 

and antigorite, which together comprise the matrix. Magnetite is constrained to the onset of 218 

exhumation because it cuts the prograde to peak antigorite-chlorite defined foliation. 219 

Magnetite has undergone brittle deformation and is cut by second generation of chlorite 220 

(chl2) veins, and overprinted by titanite, a low-pressure Ti-rich phase (e.g., Laird & Albee, 221 

1981; Spear, 1981; Ernst & Liu, 1998). Thus, magnetite growth is constrained to the earliest 222 

stages of exhumation. Pyrite occurs as euhedral aggregates isolated in the matrix, as rims on 223 

magnetite or within fractures connected to the matrix in magnetite (Fig. 2i, j). Pyrite is 224 

enclosed by titanite, although some grains contain inclusions of titanite towards the rim 225 

implying synchronous pyrite and titanite growth for some time. Pyrite is therefore attributed 226 

to lower pressures associated with an advanced stage of exhumation, and is thus referred to as 227 

py3.   228 
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3.2.2 Talc schist CO14-04 229 

CO14-04 is a talc schist sample in contact with metagabbro associated with CO14-03 230 

structurally below the sample (grid reference: WGS 84, zone 32T, 0529107 mE 4753071 mN, 231 

Fig. 1d, e). Primary or seafloor phases consist of an early generation of pyrrhotite (po0 <5 232 

μm), Cr-rich spinel cores to magnetite, and Pt-rich alloys (rare, ~2 μm). Cr-Al spinels are 233 

proposed to be primary based on their Al-rich composition (e.g. Barnes and Roeder, 2001), 234 

although the grains could have undergone alteration during seafloor alteration from more Mg-235 

rich primary compositions. The association of spinel with pyrrhotite0 and Pt-rich alloys 236 

attributes these phases to primary growth and possible alteration during seafloor processes.  237 

Prograde phases include pyrite (py1), an early generation of talc (talc1), magnetite, a later 238 

generation of pyrrhotite (po1) and chlorite. Talc1 growth is attributed to metasomatism 239 

during subduction (e.g., Spandler et al., 2008). Pyrite1 contains inclusions of pyrrhotite0, Cr-240 

Al spinel and a Pt-rich alloy. Given the inclusion of Cr-spinel in py1, and magnetite rims on 241 

Cr-rich spinel, py1 and magnetite growth are synchronous. Chlorite, which is attributed to 242 

peak metamorphism, cross-cuts magnetite, thus the growth of magnetite and py1 predate peak 243 

metamorphism. Pyrrhotite1 is texturally later than py1, given its inclusion in rims on py1, 244 

though possible incorporation from the matrix cannot be excluded. A second generation of 245 

pyrite (py2) cuts the prograde talc1 matrix and peak metamorphic chlorite, and has coarse 246 

talc2 rims (Fig. 2i). Talc stability is restricted to pressures below 1.5 GPa (Evans & Powell, 247 

2015), therefore the talc rim records decompression associated with advanced stages of 248 

exhumation (e.g., Crossley et al., 2017). Pyrite2 is therefore constrained to growth during the 249 

onset of exhumation. 250 

4. Methods 251 

The samples selected for this study contain sulfides of suitable size for secondary ion 252 

mass spectrometry (SIMS) analysis, using a large geometry (LG) SIMS, a Cameca IMS 1280, 253 

and NanoSIMS. Prior to in-situ analysis, detailed petrographic analysis was undertaken using 254 

transmitted and reflected light microscopy, and scanning electron microscopy (SEM) and 255 

energy dispersive spectrometry (EDS). Electron probe microanalysis (EPMA) was performed 256 

prior to SIMS analysis to determine compositions of sulfides. In addition, EPMA and 257 

NanoSIMS mapping were employed to search for any discrete zoning in sulfide minerals. 258 
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4.1 Sample Preparation 259 

Prior to SIMS and NanoSIMS analysis, representative areas were selected from thin 260 

section billets, where billets were cut perpendicular to sample foliation, and drilled from each 261 

sample using a hollow cylindrical diamond coated drill bit that produces 7 mm pucks. The 262 

pucks were mounted in 25 mm diameter epoxy disks, polished and coated with ~30 nm of Au 263 

to provide electrical conductivity at high voltage and thus prevent sample charging. Using a 264 

precision saw, the mounts were trimmed by approximately one third to allow a reusable 265 

standard piece that contains Sierra pyrite and VMSO pentlandite standards to be mounted 266 

alongside the unknown samples in the ion probe.   267 

4.2 EPMA Mapping 268 

Trace element mapping was carried out on sulfide grains selected for SIMS analysis 269 

using the JEOL 8530F Hyperprobe at the Centre for Microscopy, Characterisation and 270 

Analysis (CMCA) at the University of Western Australia (UWA). The carbon coating was 25 271 

nm in thickness. Wavelength dispersive spectrometry (WDS) operating conditions included a 272 

20 kV accelerating voltage, a 20 nA beam current, and a 40s dwell time. Mean atomic 273 

number (MAN) background corrections were used with a total on-peak counting time of 20 s 274 

per element. The standards used for calibration include Ni, Co, Pyrite (S) and ASP200 275 

(arsenopyrite; As). WDS was conducted using the crystals PETJ for S Kα, TAP for As Lα, 276 

and LiF for Fe Kα. The use of two crystals, LiFH and LiF, enabled optimum detection of Co 277 

Kα and Ni Kα. Data reduction was performed using the Probe for EPMA software (Donovan 278 

et al., 2012), and quantitative element maps were generated from WDS X-ray intensity maps 279 

using the CalcImage and Surfer 10.2 software. A matrix correction was conducted at each 280 

pixel and a script file was output for each element. Element concentrations were calculated 281 

using the mean atomic number (MAN) background method, where after background 282 

correction, X-ray intensity was multiplied by the matrix effect correction factors Z (atomic 283 

number correction; Duncumb and Reed, 1968), A (absorption correction; Philibert, 1963; 284 

Duncumb & Shields; 1966; Heinrich, 1969; Bearden, 1964; Heinrich, 1986) and F 285 

(characteristic fluorescence correction; Reed, 1965), relative to standards. The script files 286 

generated by CalcImage were input into Surfer 10.2 to plot maps for each element. 287 

Point analyses were carried out under the same operating conditions but additional 288 

standards were used for calibration including wollastonite (Si), San Carlos Olivine (Mg), 289 

Crocoite (Pb), ZnO, Cu, Mn, Cr2O3, Bi2Se3, Ag, GaAs (As), and Sb. In addition, WDS was 290 
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conducted using the crystals LiF for Ni Kα and Co Kα, TAP for Si Kα, Mg Kα and Se Lα, 291 

PETJ (Pb mα), LiFH (Zn Kα, Cu Kα, Mn Kα, Cr Kα), PETJ (Ag Lα and Bi Mα) and LiF (Sb 292 

Lα). 293 

4.3 Secondary Ion Mass Spectrometry 294 

4.3.1 NanoSIMS 295 

Mapping of small pentlandite grains in sample CO13-40 was performed on the 296 

CAMECA NanoSIMS N50 at the CMCA, UWA, prior to LG-SIMS analysis. Secondary ion 297 

images were acquired using a focused Cs
+
 primary ion beam, with a nominal beam diameter 298 

of ~100 nm. Electron multipliers at the five detector sites were positioned to detect the 299 

secondary ions FeS
-
, CoS

-
, NiS

-
, CuS

-
, AsS

-
, Te

-
 and Au

-
 on masses 88, 91, 92, 97, 107, 130 300 

and 197, respectively. The mass spectrometer was tuned using a 30 μm entrance slit, and 301 

peak positions were calibrated using sulfide minerals and metallic Au. Areas of 60 × 60 μm 302 

and 30 × 30 μm were imaged at a pixel resolution of 512 × 512, with a primary beam current 303 

of approximately 2.8 pA, and a dwell time of 25 ms/pixel. Smaller areas of 15 × 15 μm were 304 

imaged at a pixel resolution of 256 × 256, with a primary beam current of approximately 1.2 305 

pA and a dwell time of 45 ms/pixel. All areas were pre-sputtered to 10
17

 Cs ions/cm
2
 prior to 306 

imaging. All images were corrected for 44 ns detector deadtime and processed using the 307 

NRIMS plugin for ImageJ (http://nrims.harvard.edu/software). 308 

4.3.2 LG-SIMS: Cameca IMS 1280 309 

4.3.2.1 Standards 310 

Sierra pyrite (fragments from the same pyrite block have been previously reported as 311 

Sonora-3) is from a 9 kg cube of pyrite from a Cretaceous porphyry copper mine in Sonora, 312 

Mexico, described in Wacey et al. (2011), Farquhar et al. (2013) and Evans et al. (2014). 313 

VMSO pentlandite is sourced from a massive sulfide lens from the Ni-Cu-PGE Long-Victor 314 

mine, Kambalda, Western Australia metamorphosed to amphibolite facies (Barnes et al., 315 

2013, and references therein). All δ
34

S values in this study are relative to Vienna Canyon 316 

Diablo Troilite (VCDT), the value of which is assumed to be 0.0450045 (Ault and Jensen, 317 

1963). The details of bulk δ
34

S measurement by laser fluorination, heterogeneity, precision 318 

and reproducibility of the Sierra pyrite and VMSO pentlandite standards are discussed in 319 

detail in LaFlamme et al. (2016). Both Sierra and VMSO are of similar major element (Fe, 320 

Ni, Co and S) compositions to the pyrites and pentlandites studied here (section 5.1).  321 
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4.3.2.2 Method  322 

Ion microprobe analysis was carried out on the CAMECA IMS 1280 at the CMCA, 323 

UWA, to measure in-situ sulfur isotope compositions (
33

S/
32

S and 
34

S/
32

S). A ca. 2–3 nA 324 

focused Cs
+
 primary beam was operated at 10 kV and the secondary ion beam was extracted 325 

at -10 kV. The analysis area was presputtered using a 25 × 25 μm (or 20 × 20 μm for 326 

pentlandite) raster for 30 seconds (or 10 sec for pentlandite; see below) followed by 327 

automated secondary centering in the field aperture (FA; 4000 μm) and entrance slit (ES; 60 328 

μm). The analysis used a 15 × 15 μm (or 10 × 10 μm for pentlandite) raster employing 329 

dynamic transfer at a 133 × field magnification for 45 × 4 second integrations. Three sulfur 330 

isotopes were measured simultaneously using three Faraday Cup detectors with amplifiers of 331 

10
10

 Ω resistor for 
32

S and 10
11

 Ω for 
33

S and 
34

S. An exit slit of 500 μm was used on each of 332 

the multicollector detectors, providing a nominal mass resolving power (MRP) of ca. 2500. 333 

As this MRP does not allow for complete resolution of the 
32

S 
1
H and 

33
S peaks, the detector 334 

collecting 
33

S was offset to the low mass side, sufficient to exclude tailing of the 
32

S 
1
H signal 335 

(e.g., LaFlamme et al., 2016). The magnetic field was regulated using nuclear magnetic 336 

resonance (NMR). To avoid any problems related to non-conducting inclusions and/or to the 337 

very small pentlandite grains in the silicate matrix, a normal incidence electron gun was used 338 

for charge compensation in all analyses. Although 
36

S was not analysed, an electron 339 

multiplier detector was also setup to locate pentlandite grains <20 μm using the 
36

S ion 340 

image. For these pentlandite analyses, the areas were pre-burnt to see their ion images so the 341 

presputter time was reduced to 10 seconds. Measurements of an appropriate standard after 342 

each block of four to five analyses allowed the assessment of instrumental drift. The method 343 

for data reduction is described in Appendix A.  344 

Incorporation of minute antigorite inclusions in the analysis volume (<2 μm) may 345 

have affected S isotope ratios via the changes to matrix fractionation effects, however the 346 

inclusions would not contain sufficient sulfur to alter δ
34

S values. Sulfide grains were 347 

checked carefully for such inclusions using SEM and nominally inclusion-free areas were 348 

analysed. After the measurements were finished, the analysed spots were checked again using 349 

SEM. 350 
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5. Results 351 

5.1 Sulfide mineral compositions 352 

Average major element concentrations for sulfides are provided in Table 1. The full 353 

dataset is provided in Appendix B. Formulae of sulfide minerals were calculated using charge 354 

balance and stoichiometric constraints. Different generations of sulfides are indistinguishable 355 

on the basis of mineral composition. The average mineral formulae for pentlandite in CO13-356 

33 and CO13-55 is Fe3.5–3.9Ni4.8–5.2Co0.3S8 (n = 36 and 30, respectively). Pentlandite in CO13-357 

40 has higher concentrations of Fe and contains lower concentrations of Ni and slightly lower 358 

Co concentrations with the average formula Fe4–4.2Ni4.6–4.8Co0.2–0.3S8. Pyrites in CO14-03 and 359 

CO14-04 are stoichiometric (FeS2) with minor (up to 0.01 cations) Co and Ni replacing Fe 360 

per formula unit in each sample.  361 

5.2 Sulfur isotope compositions and trace element mapping 362 

Here the results are presented as δ
34

S values, non-zero Δ
33

S values, and EPMA trace 363 

element maps. The complete sulfur isotope data set including the δ
33

S values and measured 364 

standard sulfur isotope compositions are provided in Appendix C. All uncertainties reported 365 

in the text, figures and tables are 2σ, unless otherwise noted. 366 

5.2.1 Serra di Pigno 367 

5.2.1.1 Distal Serpentinite CO13-40  368 

δ
34

S values in CO13-40 pentlandite range from 4.3 to 10.4‰ (n=30) (Fig. 3a, Fig. 4a–369 

e, Table 2, Appendix C). Three analyses have non-zero Δ
33

S values of 0.52±0.30‰ (a3_s12-370 

3), 0.67±0.50‰ (a3_s1-2) and 0.38±0.24 ‰ (a3_s3) (Table 3). Trace element NanoSIMS 371 

maps reveal zonation in Cu, Co, As and Ni. Co, As and Ni zoning is decoupled from the Cu 372 

zoning (Fig. 4f). Due to the small size of the grains (up to 50 μm), it was not possible to 373 

determine the relationship of the zonation to the δ
34

S ratios, therefore homogeneous areas 374 

were chosen for analysis. 375 

5.2.1.2 Serpentinite proximal to metaquartzite and metagabbro CO13-33 376 

δ
34

S values in pentlandite in CO13-33 range from 1.8 to 9.2 ‰ (n = 18) (Table 2, 377 

Appendix C; Fig. 3b; Fig. 5a–e). The sulfides analysed include pn1 (n=9; Fig. 5a, b), pn2 378 

(n=9; Fig. 5b, c) and pn3 (n=5; Fig. 5d–e). The histograms display a unimodal distribution 379 

(Fig 3b) and Mann-Whitney U tests (Appendix D) do not reveal significant variation in δ
34

S 380 

between the different generations of pentlandite from early to late grains. Pn1 grains have 381 
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similar δ
34

S values to pn2 grains with values of 6.5 to 8.8‰ in pn1 grains, compared to 5.5 to 382 

8.3‰ in pn2 grains (      ), where p indicates the probability that the pn1 and pn2 383 

analyses are from the same distribution. δ
34

S values of pn3 grains vary from 1.8–8.4‰, and 384 

are not significantly different from pn1 and pn2 (      ). EPMA mapping reveals 385 

homogenous Co concentrations in the interior of pn2, but higher Co concentrations towards 386 

pn2 rims, (Fig. 5f).   387 

5.2.1.3 Serpentinite proximal to calcareous-schist and metagabbro (CO13-55) 388 

δ
34

S values in pentlandite within CO13-55 range from 1.9 to 8.0‰ (n=19; Table 2, 389 

Appendix C, Fig. 3c); pn1 from 1.9 to 5.7‰ (n=10; Fig. 6a–c), pn2 δ
34

S from 3.1–6.9‰ 390 

(n=5; Fig. 6d) and pn3 from 5.5–8.0‰ (n=5; Fig. 6e–f). The Mann Whitney U test revealed a 391 

significant difference between pn1 and pn3 at a level of significance of 1% (p = 0.0078), but 392 

not between pn2 and pn3 (p = 0.05). Four analyses have non-zero Δ
33

S values of 0.33±0.23‰ 393 

(area2_s1-1, pn1), 0.37±0.28‰ (area2_s3-1; pn2), 0.38±0.23‰ (area3_s2-1, pn3) and 394 

0.49±0.31‰ (Table 3, pn1). Zonation in Co is not evident in CO13-55 pentlandites (Fig. 6b).  395 

5.2.2 Capu Corvoli 396 

5.2.2.1 Chlorite Schist CO14-03 397 

Relative to other samples in this study, CO14-03 pyrite δ
34

S values are very 398 

heterogeneous, within individual pyrite grains and between different pyrite grains, with 399 

values ranging from 5.9 to 15.5 ‰ (n=32; Table 2, Appendix C, Fig. 3d). The majority of 400 

grains have δ
34

S values from 6–9‰ (n = 21), with higher δ
34

S values from 10.8–15.5 ‰ (n = 401 

11). Some pyrites appear to form clusters, while others are isolated in the matrix. Although 402 

no differences in relative timing are inferred from textural analysis, isolated pyrites (Fig. 7 a–403 

c, n=17) were compared to pyrites in clusters (Fig. 7d–e, n=15). Significantly higher δ
34

S 404 

values were recorded in pyrite that formed clusters (p = 0.0057). EMPA mapping reveals fine 405 

scaled zonation of Co from 0.1 to 1.2 wt%, and of Ni from 0.1 to 0.4 wt% (Fig. 8a–c). The 406 

Co and Ni zonation does not show a significant correlation with δ
34

S (R
2
 = 0.3 and 0.23, 407 

respectively, Fig. 8d). 408 

5.2.2.2 Talc Schist CO14-04 409 

CO14-04 pyrites appear to be relatively homogeneous with δ
34

S values of 3.6–5.4‰ 410 

(n=49). Py1 has slightly higher values (4.1–5.4‰, n=12; Fig. 9a–d), compared to py2 which 411 

has a larger range from 3.1–5.0‰ (n=37; Fig. 9e–f), where there is a low probability of both 412 

pyrite generations sampling the same isotopic population (p=0.0065). Additionally, three 413 
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Δ
33

S values are significantly different to zero, s1 in area 1 (0.11±0.10‰), s1 analysis 9 in 414 

area 2 (-0.16±0.12‰) and S1 in area 3 (-0.17±0.15‰).  415 

EPMA maps show Co and Ni zonation at a finer scale than the interaction volume of 416 

SIMS analysis (Fig. 8d–f). Mann-Whitney U test calculations (Appendix D) revealed that the 417 

correlation between Co and δ
34

S is significant at a 5% level of significance (P=0.048, 418 

R
2
=0.49; Fig. 8g) but Ni is decoupled from δ

34
S (R

2
=0.12, Fig. 8h). 419 

6. Discussion 420 

Primary, seafloor and prograde sulfides provide an insight on the inputs of sulfur to 421 

subduction zones, while sulfides associated with the onset of exhumation, provide a record of 422 

fluid composition released from the slab. Primary sulfide grains occur as polyhedral blebs 423 

with concave inward boundaries (Seyler et al., 2007; Schwarzenbach et al., 2012), a textural 424 

characteristic not observed in the samples presented here. In addition, none of the sulfides 425 

analysed in this study have δ
34

S values of ~0 ‰, and therefore sulfur is not solely mantle 426 

derived (e.g., Alt and Shanks, 1998; Sakai et al., 1984; Shanks et al., 1995). Instead, the 427 

samples from Serra di Pigno and Capu Corvoli record a wide range of sulfur isotopic 428 

concentrations from 1.7–15.5 ‰. On the basis of textural observations and non-zero δ
34

S 429 

values, it is concluded that primary sulfides are not preserved in the studied samples.  430 

Serra di Pigno samples proximal to metasediments and metagabbros (CO13-33 and 431 

CO13-55) display different trends in changes to δ
34

S values throughout the subduction cycle. 432 

The sample in close proximity to metagabbro and calcareous schist (CO13-55, section 4.2.3) 433 

shows a significantly different composition for the late sulfides (5.5–8.0‰) compared to 434 

earlier sulfides (1.9 to 6.5‰, Fig. 3c). However, there is no significant difference between 435 

prograde and retrograde sulfide grains in CO13-33 (Fig. 3b). The δ
34

S values of sulfides in 436 

CO13-55 are also significantly lower than the sample distal to other lithologies (p=1.81x10
-

437 

5
), with values of 1.9–8.0‰ and 4.3 to 10.4‰, respectively (Fig. 3a and c). Capu Corvoli 438 

chlorite schist and talc schist samples, that are proximal to metagabbro and only metres apart 439 

from each other, show very different δ
34

S values; CO14-03 has heterogeneous sulfur isotope 440 

compositions ranging from 5.9 to 15.5‰, whereas CO14-04 has lower and more 441 

homogeneous δ
34

S values of 3.6 to 5.4‰ (Fig. 3d and e).  442 

The isotopic compositions of the sulfides are assessed in the context of trace element 443 

composition, bacterial sulfate reduction, hydrothermal sulfate reduction, sulfur speciation in 444 
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the fluid, rock buffering versus fluid buffering of the samples, the effects temperature during 445 

prograde metamorphism, and the effect of lithological mixing.  446 

6.1. Trace element relationships with δ
34

S 447 

Trace element mapping was carried out to determine the relationship between δ
34

S 448 

and trace elements, which provide insights into fluid pathways and potential composition 449 

(e.g., Evans et al., 2014; Giacommetti et al., 2014). Whereas no significant correlation was 450 

observed between Co or Ni and δ
34

S in CO14-03 (R
2
 = 0.30 and 0.12, respectively) or Ni in 451 

CO14-04 (R
2
=0.23), the correlation between Co and δ

34
S in CO14-04 was found to be 452 

statistically significant at a 95% confidence level (P=0.048). Therefore, in general δ
34

S is 453 

inferred to be decoupled from Ni and Co, with the exception of Co in CO14-04. The limited 454 

data available here, therefore, suggests that trace elements are not controlled by the same 455 

processes that determine the S isotope compositions in the pyrite grains. With the exception 456 

of Co in CO14-04, the lack of correlation between trace element zoning and δ
34

S values is in 457 

agreement with previous studies on subducted sulfides (Giacommetti et al., 2014), although 458 

some correlation between Co and δ
34

S was reported for pyrites in mafic and sedimentary 459 

rocks (Evans et al., 2014; Giacommetti et al., 2014). However, due to the restrictions of the 460 

beam size for analysis, it was not possible to assess the δ
34

S zonation on the <5 µm scale of 461 

the Co and Ni zoning, so small length scale variations in S isotope compositions would have 462 

been obscured by the relatively large beam size (10 µm).  463 

Similarly, it was not possible to determine relationships between trace element 464 

concentrations and sulfur isotope compositions in pentlandite grains due to the small size of 465 

the grains analysed, so areas selected for analysis were considered to be homogeneous in Co, 466 

Ni and As.  467 

6.2. The effect of seafloor processes on sulfur geochemistry 468 

The infiltration of sulfate-bearing seawater into mantle peridotite and consequent 469 

serpentinisation results in the addition of seawater-derived sulfur to the rock (Alt and Shanks, 470 

1998; Delacour et al., 2008). In the case of Alpine Corsica, it is considered that primary 471 

mantle rocks were exposed on the seafloor and juxtaposed with the continental basement 472 

during Tethyan rifting in the Middle to Late Jurassic (Bathonian to Oxfordian) in an ultra-473 

slow spreading centre or an ocean-continent transition setting (e.g., Vitale Brovarone et al., 474 

2011; 2013). During this time, seawater sulfate had δ
34

S values of ~ 17‰ (Kampschulte and 475 

Strauss, 2004). Hydrothermal alteration may also occur during initial subduction associated 476 
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with slab bending (Ranero and Sallares, 2004). The heterogeneity of δ
34

S values in both the 477 

Serra di Pigno samples (with an overall range from 3.1 to 8.9‰) and the Capu Corvoli 478 

samples (3.6 to 15.5‰) implies that seawater sulfate was likely incorporated into the sulfides, 479 

and subsequent processes, including bacterial or hydrothermal sulfate reduction on the 480 

seafloor, and further fluid:rock interaction during subduction and exhumation, led to a loss of 481 

34
S relative to 

32
S 482 

6.2.1 Bacterial sulfate reduction  483 

Hydrogen and CH4 released during seafloor serpentinisation, provides an energy source 484 

for sulfate reducing micro-organisms (e.g., Alt and Shanks, 1998; Schrenk et al., 2004; 485 

Kelley et al., 2005; Brazelton et al., 2006; Schwarzenbach et al., 2012, Schrenk et al., 2013 486 

and references therein). Bacterial sulfate reduction (BSR) enriches the light isotope in the 487 

mineral products, therefore if BSR occurred during serpentinisation in an open system, 488 

negative δ
34

S are expected (e.g., Schwarzenbach et al., 2012). Such a signal is not observed in 489 

the sulfides measured here. However, in a closed system, where there is limited fluid 490 

circulation, such as in deep sections of magma poor rifted margins (i.e., an ocean-continent 491 

transition zone, the proposed pre-subduction geodynamic setting of Alpine Corsica), BSR 492 

could enrich 
34

S over precursor mantle values if the conversion of seawater sulfate to sulfide 493 

were close to completion. Nevertheless, if sulfides produced by microbial sulfate reduction 494 

were preserved, at least a few negative isotopic values would be expected as most sulfides 495 

would have grown in an open system, but this is not the case, therefore BSR is not thought to 496 

have played a significant role in the production of the sulfur isotope compositions of the 497 

samples described here.  498 

6.2.2 Hydrothermal sulfate reduction 499 

Recent studies have shown that Δ
33

S in addition to δ
34

S values can be used to 500 

distinguish between open or closed system sulfate reduction, and hydrothermal versus 501 

bacterial sulfate reduction (Ono et al., 2012; Schwarzenbach et al., 2018). Δ
33

S values in the 502 

samples analysed here indicate a small but significant mass-independent fractionation (MIF) 503 

in three pentlandite grains from CO13-40, four pentlandite grains from CO13-55 and three 504 

pyrite grains in CO14-04. The data were carefully checked for any variations caused by a 505 

drop in S counts or beam centring, and the effects of crystallographic orientation on Δ
33

S 506 

values is considered to be negligible (LaFlamme et al., 2016). Therefore, the Δ
33

S values are 507 

concluded to result from MIF, whereby variation in isotope abundance is not dependent on 508 
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mass and thus records other processes. Insignificant Δ
33

S values in most grains is probably a 509 

matter of precision. The maximum recorded Δ
33

S values for peridotite from the Iberian 510 

Margin are 0.14–0.16‰ (Ono et al., 2012; Schwarzenbach et al. 2018), whereas in this study 511 

Δ
33

S values in pentlandite grains are 0.33–0.67‰ and pyrite grains record Δ
33

S values of 512 

between -0.17 and +0.11‰. Therefore, the pyrite and pentlandite measurements are less 513 

precise but within error of the measurements in Ono et al. (2012) and Schwarzenbach et al. 514 

(2018).  Lower Δ
33

S values in pyrite may be consistent with HSR in an open system, which 515 

typically produce more negative Δ
33

S values. More precise measurements of Δ
33

S are 516 

possible using bulk powders and mineral separates (Ono et al., 2012), but not with the in-situ 517 

SIMS technique used in this study, required for analysis of the small grains in the samples 518 

presented here.  519 

With the exception of one grain (CO13-55 a2 s1-1), pentlandite grains with 520 

significant Δ
33

S values are associated with prograde metamorphism and thus hydrothermal 521 

sulfate reduction occurred either during seafloor alteration or prograde metamorphism. In 522 

contrast, non-zero pyrite Δ
33

S values are found in both early and late pyrite. It has been 523 

proposed that a MIF-derived signal could result from the breakdown or formation of S
3–

, 524 

which could be present in fluids at depth in subduction zones in supercritical fluids 525 

(Pokrovski and Dubessy, 2015). Pokrovski and Dubessy (2015) proposed that the S
3– 

effect 526 

on MIF could result from its radical properties and resemblance to ozone (O3). It is possible 527 

that the MIF signal reflects either HSR or mineral S
3- 

fractionation or a combination. For 528 

example, sulfate could have been hydrothermally reduced on the seafloor, and S
3–

 further 529 

could contribute to the MIF signal during subduction. At present, the lack of fractionation 530 

factors for the S
3-

 ion prevents a more detailed interpretation of the data. 531 

6.3. The effects of temperature increase associated with prograde metamorphism 532 

Temperature influences isotopic re-equilibration, fractionation factors and rates of 533 

diffusion during metamorphism (e.g., Bachinski, 1969; Ohmoto and Rye, 1979; Ohmoto and 534 

Lasaga, 1982). The effect of temperature on δ
34

S depends on the speciation of sulfur. Sulfur 535 

is generally considered to be present as mineral-hosted S
-
, S

2-
, S

0
 and sulfate (S

6+
) in 536 

serpentinites (e.g., Alt et al., 2013; Debret et al., 2017; Merkulova et al., 2017). The effect of 537 

temperature on 
34

S fractionation between fluid and sulfide minerals is greater for oxidised 538 

sulfur (SO2 and SO4
2–

) than reduced sulfur (H2S and HS
–
). The speciation of aqueous sulfur 539 

in ultramafic rocks under prograde conditions is poorly constrained, though H2S (e.g., Peretti 540 
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et al., 1992), SO2 or SO4
2-

 (e.g., Debret et al., 2016) are the most likely species. As discussed 541 

above, the S
3-

 ion has also been proposed to be present in high-pressure fluids such as those 542 

attributed to subduction zones (Pokrovski and Dubessy, 2015, Section 6.2.2).  543 

The oxide and sulfide assemblages in the Serra di Pigno serpentinites and the 544 

prograde assemblage of CO14-04 from Capu Corvoli are low variance and are therefore 545 

inferred to be rock buffered with respect to sulfur, with low fluid:rock interaction and hence 546 

only local fluid flow. Activity-activity diagrams of oxide and sulfide stability as a function of 547 

aO2 and aS2 at high pressure (2 GPa, 555ºC) are presented in Evans et al. (2017). The 548 

prograde mineral assemblage in the serpentinites analysed (CO13-33, CO13-40 and CO13-549 

55) is serpentine + pentlandite + magnetite ± pyrite, serpentine + pentlandite + magnetite ± 550 

heazlewoodite and in the hybrid sample, CO14-04, is talc + chlorite + magnetite + pyrite + 551 

pyrrhotite. According to calculated O2 and S2 activities associated with subduction (Evans et 552 

al., 2017), the oxide and sulfide assemblages present in the rock samples in this study are 553 

consistent with relatively low aO2 and aS2, therefore, reduced species such as H2S or HS
–
 are 554 

inferred to be in solution.  555 

Calculations were undertaken to assess the possible effect of isotope fractionation 556 

between sulfur hosted in the minerals and sulfur hosted in the fluids as an effect of prograde 557 

metamorphism. A minimum temperature of 250ºC was chosen to maximise the calculated 558 

effect of fractionation. Fractionation was calculated for isotope equilibrium between 559 

pyrrhotite of mantle sulfur isotope composition and fluid, pyrite with a nominal hydrothermal 560 

isotope composition and fluid, and recrystallized pentlandite and fluid (Δpyrrhotite-H2S, Δpyrite-561 

H2S and Δpentlandite-H2S, respectively) in closed and open (Rayleigh) systems. A starting 562 

composition of 0‰ was chosen for mantle pyrrhotite (Sakai et al., 1984; Shanks et al., 1995; 563 

Alt et al., 1998). Pyrrhotite was included in calculations because it is present in the hybrid 564 

samples (see section 3.2). 8‰ was chosen as the starting composition for hydrothermal 565 

pyrite, the average of pyrite isotopic analyses here. The value of 6.7‰ for the recrystallised 566 

pentlandite was taken from the average analyses of the pentlandite grains in the Serra di 567 

Pigno samples. There are currently no fluid-mineral isotope fractionation factors available for 568 

pentlandite, so it is assumed that fractionation factors would be similar to either violarite 569 

(Fe
2+

Ni2S4; Li and Liu, 2006) or pyrrhotite (Ohmoto and Rye, 1979), or somewhere in 570 

between these two end members. Fractionation at 250 ºC is minor for both violarite (-1.2‰, 571 

Li and Liu, 2006) and pyrrhotite (0.1‰, Ohmoto and Rye, 1979). Therefore, Δpentlandite-H2S 572 
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would be minimal at temperatures of 250ºC and above, in both the closed and open system 573 

calculations (Fig. 10a, b). Likewise, Δpyrite-H2S would also be minor at 250ºC, at 1.5‰ 574 

(Ohmoto and Rye, 1979). Therefore, fractionation between reduced sulfide species in 575 

solution and sulfide minerals would not be a first order control on the sulfur isotope 576 

compositions, hence sulfur isotope ratios reflect those in the fluid or sulfide minerals that 577 

have undergone seafloor alteration. 578 

6.4. Retention of seafloor δ
34

S in prograde sulfides 579 

Sulfides texturally related to prograde to peak metamorphism include pentlandite in 580 

CO13-40, pn1 in CO13-33, in CO13-55 and py1 and po1 in CO14-04. δ
34

S values in CO13-581 

40 and CO13-33 are similar and range from 4.3 to 10.4‰ in CO13-40 and 6.5 to 8.8‰ in 582 

CO13-33. Pentlandite2 in CO13-55 has lower values (1.9 to 5.7‰). The positive δ
34

S values 583 

suggest that sulfur isotope compositions were not significantly affected by seafloor BSR. In 584 

addition, the heterogeneous δ
34

S values suggest that diffusion rates were too slow to affect 585 

sulfur isotope compositions. Peak metamorphic temperatures were ~414 to 470 ºC and high-586 

pressure metamorphism is estimated to have occurred from ~55 to 34 Ma (Ravna et al., 2010, 587 

Vitale Brovarone et al., 2011, 2013). At such temperatures and time scale, diffusion of sulfur 588 

is predicted to be on the scale of >100 µm (Watson et al., 2009), inconsistent with the 589 

observed heterogeneous δ
34

S values in the studied sulfides except pyrites in the talc schist 590 

sample, CO14-04, which have homogeneous S isotope compositions. However, sharp 591 

gradients in Co and Ni concentrations recorded in pyrite grains (Fig. 8b–f), and the 592 

metasomatic nature of this sample, suggest that fluid flow and mass transport and re-593 

equilibration via dissolution-precipitation reactions are likely to prevail and solid state 594 

diffusion is inferred to be limited (e.g. Putnis, 2002; Putnis and Austrheim 2009). Therefore, 595 

the process of HSR during seafloor alteration is the preferred control on sulfur isotope ratios 596 

in prograde sulfides.  597 

The preservation of sulfur isotope compositions derived from seafloor sulfate reduction is 598 

consistent with the conclusions of Alt et al. (2012a) who compared high-pressure 599 

serpentinites from the Voltri Massif and seafloor serpentinite considered unaffected by 600 

metamorphism from Val Graveglia, and found no difference in content or isotopic 601 

composition of sulfur during subduction on a sample scale. Bulk δ
34

S values recorded by 602 

high-pressure serpentinites from 6.0 to 14.3‰ were suggested to reflect the retention of 603 
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sulfur from seafloor serpentinisation, where seafloor sulfur isotope compositions range from 604 

–4 to 9.8‰.   605 

6.5. Sulfides associated with exhumation 606 

The similar range of heterogeneous δ
34

S values of prograde sulfides and sulfides 607 

associated with the onset of exhumation in serpentinites CO13-33 and CO13-55 is consistent 608 

with the interpretation of early HSR as the dominant control on sulfur isotope compositions, 609 

and the formation of exhumation-related sulfides from this sulfur reservoir. However, the 610 

homogeneity of δ
34

S values in talc schist sample CO14-04, and higher δ
34

S values of up to 611 

8.0‰ and 15.5‰ in sulfides associated with advanced stages of exhumation in the 612 

serpentinite sample CO13-55 and chlorite schist CO14-03, respectively, suggest that 613 

subduction related fluids may have influenced the sulfur isotope composition of these late 614 

sulfides.  615 

Late sulfide and oxide mineral asssemblages associated with exhumation in the Capu 616 

Corvoli samples, CO14-03 and CO14-04 are high variance, and are therefore fluid buffered 617 

with respect to sulfur. The presence of the mineral assemblage magnetite + pyrite is attributed 618 

to increased aS2 and aO2 (Evans et al., 2017),  relative to the Serra di Pigno samples, reflecting 619 

more oxidising conditions in the hybrid environment. Δpyrite-SO2 and Δpyrite-SO4
2-

 fractionation 620 

was calculated for the open and closed system models (Fig. 10c–f) using fractionation values 621 

from Ohmoto and Rye (1979). It is evident that there is greater fractionation between pyrite 622 

and SO4, at ~23‰ (Fig. 10e, f), compared to pyrite and H2S.  Given the relatively texturally 623 

late setting of pyrite grains in the hybrid samples (section 3.2), with the exception of the early 624 

assemblage in CO14-04 (see 6.1.1), it is inferred that the hybrid samples record fluid 625 

buffering during exhumation and that during this time fluid:rock isotope fractionation could 626 

have been significant at a minimum temperature of 250 ºC, the temperature at which 627 

fractionation was calculated.  628 

6.5.1. The source of heterogeneous δ
34

S values in the chlorite schist.   629 

The sulfur isotope composition of pyrites in CO14-03, with δ
34

S values of up to 15.5‰, 630 

are higher than serpentinite δ
34

S values, and are consistent with those of pyrites in Zermatt-631 

Saas mafic eclogite samples associated with retrogression to blueschist facies (10.0–16.5‰, 632 

Evans et al., 2014, Fig. 11). The heterogeneity of the pyrites in CO14-03 likely reflects the 633 

mixing of fluids from different sources, as expected for a hybridised ultramafic/mafic rock. 634 
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Metasomatism and hybridisation of the rock either during seafloor alteration and/or prograde 635 

metamorphism, could have contributed sulfur with high δ
34

S values to the rock (e.g. Alt and 636 

Shanks, 2003). Fluid mixing is possibly facilitated during deformation via fluid migration to 637 

low pressure zones (e.g., Evans et al., 2014). The similarity of some pyrite sulfur isotope 638 

compositions to those of retrogressed pyrites from mafic samples from the Zermatt-Saas 639 

provides additional evidence that metasomatic alteration and mixing with the metagabbro 640 

contributed oxidised sulfur-bearing fluids.   641 

Fluid transport of sulfur on a sample scale or greater in CO14-03 is consistent with the 642 

observed high variance mineral assemblage, where the only late opaque minerals observed 643 

are large magnetite grains and pyrite, which replace prograde matrix minerals such as 644 

chlorite. The shift from magnetite to pyrite growth during late retrogression associated with 645 

exhumation records an increase in sulfur activity during this stage. The increase in sulfur 646 

activity probably occurred on relatively short time scales, given the aggregate nature of the 647 

pyrites in CO14-03, where such a texture suggests rapid growth and inadequate time to form 648 

well-defined crystal faces. Large clusters of aggregate pyrites record the highest δ
34

S values, 649 

some of which surround magnetite grains (Fig. 2j). Rapid pyrite growth is likely consistent 650 

with a sudden influx of a sulfur-rich and, given the high δ
34

S values, oxidised fluid at the 651 

onset of exhumation. We speculate that sulfate in solution was reduced to H2S via interaction 652 

of sulfate bearing fluids with a pre-existing Fe
2+

-bearing silicate, whereby Fe
2+

 was the 653 

electron donor for sulfate reduction. Fe
2+

-bearing chlorite, a phase attributed to stability prior 654 

to fluid infiltration at the onset of exhumation, is a plausible candidate. The resultant 655 

oxidation from Fe
2+

 to Fe
3+

 within chlorite is consistent with the growth of magnetite at this 656 

stage. The reaction of H2S with Fe
3+ 

from magnetite, where ferric iron is considered to react 657 

faster than ferrous iron with H2S (Canfield et al., 1992; Ono et al., 2012), may have triggered 658 

the rapid growth of pyrite, hence the observed clusters around magnetite.  659 

6.5.2. The source of homogeneous δ
34

S values in the talc schist.   660 

CO14-04 pyrites record relatively low (4–5‰) and homogeneous δ
34

S values. The 661 

transition from prograde metamorphism to exhumation is associated with a small but 662 

significant shift to lower δ
34

S values in the pyrites. The shift from low to high variance 663 

sulfide mineral assemblages associated with this transition records a switch from a rock 664 

buffered or closed system to fluid buffered or open system with respect to sulfur. The low 665 

variance assemblage associated with prograde metamorphism is consistent with rock 666 
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buffering with H2S or HS
-
 in solution. Therefore, in the talc schist sample, it is possible that 667 

the infiltration of external fluids homogenised pre-existing heterogeneous δ
34

S values that 668 

were associated with pre-exhumation stages of metamorphism.  669 

6.6. Implications for sulfur cycling 670 

The in-situ δ
34

S data presented here is consistent with the range of whole rock δ
34

S 671 

values presented in Alt et al. (2012a) from the Voltri Massif in the Ligurian Alps, where the 672 

pre-subduction setting is similar to that of the samples studied here (Fig. 11). Alt et al. (2012) 673 

proposed that the sulfur isotope compositions of serpentinites remained unaltered during 674 

subduction. The in-situ technique, however, allows the evolution of δ
34

S values to be 675 

assessed as a function of the stage of sulfide growth, and provides an insight into fluid:rock 676 

interaction. The observation that all sulfides record δ
34

S values in between those of the 677 

mantle and Jurassic seawater-derived sulfate, suggests that sulfides record mixing between 678 

these two end members (Fig. 11). The textural preservation of sulfides with inclusions of 679 

antigorite, a high-pressure serpentine polymorph, and the overprinting of late antigorite 680 

generations by retrograde sulfides suggest sulfur redistribution on a millimetre scale during 681 

subduction. Spatially heterogeneous sulfur isotope compositions, similar chemical 682 

compositions of sulfides between early and late sulfides (section 5.1), and low variance 683 

mineral assemblages, is consistent with a closed system, and only local scale redistribution of 684 

sulfur with low fluid:rock ratios.  685 

Sulfides associated with advanced stages of exhumation in serpentinite proximal to 686 

metagabbro and calcareous schist (CO13-55), record a significant shift towards higher δ
34

S 687 

values, and record the presence of fluids with the ability to carry oxidised sulfur (SO2 or 688 

SO4
2-

) at depth within subduction zones. Fluids bearing oxidised sulfur were most likely 689 

devolatilised from lithologies other than serpentinites during subduction, because the sulfide 690 

mineral assemblages in the Serra di Pigno serpentinites are consistent with reduced sulfur in 691 

solution.  692 

The hybrid samples are fluid buffered on at least the scale of the pyrites (0.1 to 1cm) 693 

and the homogeneity of the early and late S isotope compositions of pyrite in CO14-04 694 

suggests that fluids and therefore sulfur may have been sourced externally, consistent with 695 

the metasomatic alteration of this sample. The high variance mineral assemblage of CO14-03 696 

is associated with heterogeneous δ
34

S values, unlike the homogeneous values in CO14-04. 697 
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One possibility is that sulfur in this rock derived from both mafic and ultramafic sources, 698 

consistent with the hybrid nature of this sample.  699 

The composition of fluids released during dehydration of serpentinites are poorly 700 

constrained, however a fluid inclusion study in high-pressure serpentinites from Cima di 701 

Gagnone, Swiss Alps, suggests the release of Cl-bearing fluids during the dehydration 702 

reactions of chrysotile, and antigorite + brucite (Scambelluri et al., 2004a; Scambelluri et al., 703 

2004b; Kodolányi and Pettke, 2011; Scambelluri et al., 2015). On the basis of the presence of 704 

sulfides in the fluid inclusions, sulfur in such fluids is proposed to be hosted by a reduced 705 

species (Scambelluri et al., 2015).  On the other hand, the low ferric iron contents and high Fe 706 

isotopic values of serpentinites have been suggested to record the devolatilisation of sulfate-707 

bearing fluids during subduction (Debret et al., 2016), consistent with the presence of sulfate 708 

in seafloor serpentine minerals (Debret et al., 2017). In this study, on the basis of mineral 709 

assemblages in the Serra di Pigno serpentinites, the reduced species H2S or HS
–
 are inferred 710 

to be in solution during subduction.  711 

7. Conclusions 712 

In-situ sulfur isotope data, in combination with textural and trace element 713 

compositions provides insights into the processes, evolution of the redox state and source of 714 

sulfur in serpentinites and hybrid mafic/ultramafic rocks through the subduction cycle. High 715 

δ
34

S values were recorded in all sulfides (1.9–15.5‰), where the simplest explanation for this 716 

observation is the early fixation and retention of oxidised sulfur from seafloor alteration in 717 

the serpentinites. This explanation is consistent with heterogeneous values, low variance 718 

mineral assemblage and low degrees of fluid:rock interaction in most serpentinite samples, 719 

with the exception of a serpentinite sample proximal to metagabbro and calcareous schist, 720 

where there is a marked shift towards higher δ
34

S values in pentlandite grains associated with 721 

late exhumation.  Therefore, in the studied serpentinites, sulfur is redistributed only on a local 722 

mm to cm scale throughout the subduction cycle, consistent with the conclusions of previous 723 

sulfur isotope studies (e.g., Alt et al., 2012a). Infiltration of slab derived fluids during 724 

exhumation affected the sulfur mineral assemblages and sulfur isotope compositions in 725 

hybrid samples. Hybridisation of mafic/ultramafic rocks appears to be dominated by fluid-726 

buffered assemblages with high sulfur activities, suggesting mobilisation of oxidised sulfur 727 

during ‘mixing’ of these lithologies on a scale greater than a thin-section sized sample.  728 
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Figure Captions 

 

Figure 1: (a) map showing the locations and P-T conditions of the field areas Serra di Pigno 

and Capu Corvoli on Cap Corse, Corsica (redrawn from Brovarone et al., 2011, 2013). 

Abbreviations correspond to the name of the units; Mm: Monte Maggiore peridotite unit, Ce: 

Centuri continental slice, Ma: Macinaggio flysch, Fa: Farinole continental slice, Ne: Nebbio 

unit; Te: Tenda unit. (b) map of Serra di Pigno sample localities. (c) map of Capu Corvoli 

sample localities (adapted from Lahondère, 1992). MB = metabasalt, CS = calcareous schist, 

H = hybrid, MG = metagabbro. (d) Field photo showing the juxtaposition of lithologies at 

Serra di Pigno. (e) Field photo of the contact between metagabbro and chlorite schist at Capu 

Corvoli. 

 

Figure 2: microphotographs illustrating key textures, bse = backscattered electron, rfl = 

reflected light and xpl = cross-polarised light image.  Serra di Pigno serpentinite samples: 

(a) rfl: pentlandite grain in CO13-40 with early antigorite inclusions (atg1) replacement by 

atg2. (b) rfl: pentlandite (pn1) in CO13-33 aligned with atg1 foliation. (c) rfl: pn2 overprints 

early Cr- rich spinel grains in CO13-33. (d) rfl: pn3 grains in CO13-33 cross-cut late 

antigorite and associated with magnetite (mt2) (e) bse: pn1 cross-cut by atg3 in CO13-55 (f) 

xpl: pn2 associated with atg2 in CO13-55 (f) rfl: pn2 associated with atg2 in CO13-55 (h) 

xpl: euhedral grain of pn3 associated with late atg3 veins in CO13-55. Capu Corvoli hybrid 

samples: (i) rfl: pyrite grains within matrix in chlorite schist CO14-03. (j) pyrite rims on 

magnetite, and pyrite connected to the matrix by fractures in magnetite in chlorite schist 

CO14-03. (k) rfl: py1 grains in talc schist CO14-04 with inclusions of chromite and an iron 

hydroxide rim, which contains inclusions of po. (l) xpl: py2 grains with a talc2 rim in talc 

schist CO14-04 (xpl). 

Figure 3: Histograms of δ
34

S values in sulfides for (a) CO13-40, (b) CO13-33, (c) CO13-55, 

(d) CO14-03 and (e) CO14-04. Red/no lines= sulfide grains related to prograde and peak 

metamorphism. Blue/horizontal lines = sulfide grains related to early exhumation. 

Green/diagonal lines = sulfide grains related to late exhumation.  

Figure 4: CO13-40. Reflected light images of pentlandite grains (a) s1 in area 3, (b) s8 in 

area 3, (c) s2 in area 1, (d) s9 + repeated analysis (r) in area 3 and (e) s3 in area 3. (f) 

NanoSIMS map of grain s3 in area 3, circle indicates point of SIMS analysis. All values are 

Figure Captions



δ
34

S (‰) unless otherwise indicated. Figure 1: CO13-33. Reflected light images of 

pentlandite grains (a) Pn1 grain s14 in area 3, (b) Pn2 grain s4 in area 2, (c) Pn2 grain s3 in 

area 2, (d) Pn3 grain s10 in area 2 and (e) Pn3 grain s10 in area 3. (f) Co map (wt%) of a pn2 

grain. All values are δ
34

S (‰). 

Figure 5: CO13-33. Reflected light images of pentlandite grains (a) Pn1 grain s14 in area 3, 

(b) Pn2 grain s4 in area 2, (c) Pn2 grain s3 in area 2, (d) Pn3 grain s10 in area 2 and (e) Pn3 

grain s10 in area 3. (f) Co map (wt%) of a pn2 grain. All values are δ
34

S. 

Figure 6: CO13-55 pentlandite. (a) bse image of Pn2 grain s2 in area 3. (b) Co map (wt%) of 

Pn2 grain s1in area 3. (c) bse image of Pn2 grain s1 in area 2. (d) bse image of Pn3 grain s2 

in area 3. (e) bse image of Pn4 grain s3 in area 1. (f) bse image of Pn4 grain s1 in area 1. All 

values are δ
34

S (‰). 

Figure 7: CO14-03. Reflected light images of gold coated (a) matrix grain within 1mm of 

magnetite, area 1 analyses 1-8. (b) matrix grain area 2 analyses 9-13 (c) matrix grain area 3 

within 1mm of magnetite analyses 9–11. (d) large cluster of pyrite aggregates in matrix area 2 

1–8. (e) large cluster of pyrite grains on rim of large magnetite, area 3 analyses 1–11.  All 

values are δ
34

S (‰). 

Figure 8: (a) reflected light image of matrix pyrite grain in CO14-03, area 1 analyses 1-8 for 

matrix pyrite, the same grain is shown in images b-c; (b) EPMA derived trace element map of 

Co in pyrite grain in CO14-03; (c) EPMA derived trace element map of Ni; (d) reflected light 

image of py2 grain s1 in area 1 in CO14-04; the same grain is shown in images e–f; (e) 

EPMA derived trace element map of Co in pyrite grain in CO14-04 (f) EPMA derived trace 

element map of Ni in pyrite grain in CO14-04;  (g) Ni (wt%) plotted against δ
34

S in CO14-03 

and CO14-04; (h)  Co (wt%) plotted against δ
34

S in CO14-04. The values in b–c and e–f are 

δ
34

S (‰). Sample CO14-03 = orange circles and sample CO14-04 = yellow diamonds in g–h.  

Figure 9: CO14-04. Reflected light images of gold coated py1 grains (a) s2 in area 2, (b) s3 

in area 2, (c) s1 in area 3, (d) s2 in area 3 and py2 grains in (e) s1 in area 1 and (f) s1 in area 

2. All values are δ
34

S (‰). 

Figure 10: Fractionation calculation plots of δ
34

S and progression of the reactions mantle (m) 

pyrrhotite-H2S, mantle pentlandite-H2S, hydrothermally altered and recrystallized (r) 

pyrrhotite-H2S, hydrothermally altered and recystallised (r) pentlandite-H2S, and 

hydrothermal pyrite-H2S for (a) a closed system and (b) open system (Rayleigh) 

fractionation, between δ
34

S and progression of the reactions mantle (m) pyrrhotite-SO2, 



mantle pentlandite-SO2 and hydrothermal pyrite-SO2 for (c) a closed system and (d) an open 

system (Rayleigh), and between δ
34

S and progression of the reactions mantle (m) pyrrhotite-

SO4
2-

, mantle pentlandite-SO4
2-

 and hydrothermal pyrite-SO4
2-

 for (c) a closed system and (d) 

an open system (Rayleigh), and between δ
34

S and progression of the reactions mantle (m) 

pyrrhotite-SO4
2-

, mantle pentlandite-SO4
2-

 and hydrothermal pyrite-SO4
2-

 for (e) a closed 

system and (f) an open system (Rayleigh). 

Figure 11: Comparison of δ
34

S values from this study to those from other whole rock and in-

situ studies.  
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Table 1: EPMA data for sulfides. Number in brackets is two standard deviations. b.d.l indicates the concentration is below detection 

 

                      

Sample CO13-40 CO13-33 CO13-33 CO13-33 CO13-55 CO13-55 CO13-55 CO14-03 CO14-04 CO14-04 

Phase 
Pn1 
(n=10) Pn1 (n=6) Pn2(n=14) Pn3(n=10) Pn1(n=9) Pn2(n=8) Pn3(n=13) Py3(n=38) Py1(n=21) Py2(n=31) 

wt%                      

  Si  n.d. 0.02(1) 0.04(3) 0.03(1) 0.05(3) 0.1(1) 0.04(4) b.d.l b.d.l b.d.l 

  Mg  n.d. 0.09(9) 0.10(9) 0.05(4) 0.08(7) 0.07(4) 0.06(3) b.d.l b.d.l b.d.l 

  Ni  34(2) 37.2(4) 37.1(3) 37.2(5) 37.5(8) 36(2) 37(1) b.d.l 0.2(2) 0.2(2) 

  Fe  28.4(7) 25.3(4) 26.6(3) 26.1(5) 25.5(9) 26(1) 26(2) 45.3(5) 46.8(2) 46.8(4) 

  Co  1.8(2) 2.40(6) 2.32(5) 2.37(8) 2.3(2) 2.2(2) 2.3(2) 1.0(4) 0.1(3) 0.1(3) 

   S  35(2) 33.1(5) 33.3(3) 33.2(4) 33.4(2) 33.2(5) 33.3(2) 53.3(2) 53.9(3) 53.9(3) 

  Cu  n.d. 0.01(1) 0.1(2) 0.01(1) 0.01(1) 0.010(3) 0.01(1) b.d.l b.d.l b.d.l 

  Se  n.d. 0.15(1) 0.01(1) 0.14(2) 0.16(1) 0.16(1) 0.15(2) n.d. n.d. n.d. 

  Bi  n.d. 0.12(1) 0.13(1) 0.13(1) 0.13(1) 0.120(4) 0.13(1) n.d. n.d. n.d. 

  As  n.d. 0.24(1) 0.22(2) 0.23(1) 0.27(4) 0.27(2) 0.25(3) b.d.l b.d.l b.d.l 

  Sb  n.d. 0.02(1) 0.01(1) 0.01(1) 0.02(1) 0.02(2) 0.02(1) 0.02(1) 0.02(1) 0.01(1) 

   TOTAL 98.9(7) 99(1) 99.2(5) 99.7(5) 99.5(7) 98.6(7) 98.7(5) 100.4(3) 101.1(3) 101.1(3) 

   
 

   
   

 mol% 

  
 

   
   

 Ni 26.9(8) 29.27(7) 29.1(2) 29.1(3) 29.3(6) 28(1) 29(1) - 0.1(1) 0.1(1) 

Fe 23.3(6) 21.0(2) 21.1(2) 21.4(5) 20.9(7) 22(1) 21(1) 32.5(3) 33.2(1) 33.2(3) 

Co 1.3 1.88(5) 1.81(4) 1.85(6) 1.8(1) 1.7(1) 1.8(2) 0.7(3) 0.1(2) 0.1(1) 

S 49(1) 47.8(2) 47.9(2) 47.5(3) 47.8(2) 47.9(3) 47.9(2) 66.79(9) 66.6(2) 66.6(2) 

   
 

   
 

   S/Fe+Ni+Co 0.94(5) 0.92(1) 0.92(1) 0.91(1) 0.92(1) 0.92(1) 0.92(1) 2.011(8) 2.2(2) 2.2(3) 
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Table 1: Average δ
34

S sulfur isotope analyses of individual pentlandite (pn) and pyrite (py) 

grains. ‘Stage’ corresponds to the metamorphic stage of the sulphide grain growth; P = 

prograde to peak metamorphism, EE = Early Exhumation, LE = Late Exhumation. The full 

analytical results are reported in Appendix B. N.a. = not applicable for single analyses of 

grains.  

Grain  Sulfide  Average δ
34

SVCDT (‰) 
External 
2σ (‰) # Analyses 

Av 2σ on single 
grain (‰) 

Stage 

CO13-40 
     

 
CO13-40-a1-s1 Pn1 7.23 1.22 3 0.98 P 
CO13-40-a1-s2 Pn1 9.33 2.33 2 1.03 P 
CO13-40-a1-s3 Pn1 8.80 n.a. 1 0.93 P 
CO13-40-a1-s4 Pn1 4.27 n.a. 1 1.10 P 
CO13-40-a2-s1 Pn1 7.57 n.a. 1 0.31 P 
CO13-40-a2-s2 Pn1 5.39 n.a. 1 0.37 P 
CO13-40-a2-s3 Pn1 6.32 0.35 2 0.46 P 
CO13-40-a3-s1 Pn1 6.72 1.04 3 0.36 P 
CO13-40-a3-s2 Pn1 5.93 0.99 2 0.46 P 
CO13-40-a3-s3 Pn1 8.85 n.a. 1 0.32 P 
CO13-40-a3-s4 Pn1 10.43 n.a. 1 0.90 P 
CO13-40-a3-s5 Pn1 6.77 n.a. 1 1.14 P 
CO13-40-a3-s6 Pn1 6.21 n.a. 1 1.09 P 
CO13-40-a3-s8 Pn1 8.73 2.15 3 0.96 P 
CO13-40-a3-s9 Pn1 8.81 0.04 2 0.81 P 
CO13-40-a3-s10 Pn1 9.36 n.a. 1 0.86 P 
CO13-40-a3-13 Pn1 8.83 n.a. 1 0.78 P 
CO13-40-a3-14 Pn1 5.03 n.a. 1 0.79 P 
CO13-40-a3-15 Pn1 4.39 n.a. 1 0.94 P 
CO13-40-a3-16 Pn1 8.03 n.a. 1 0.82 P 
CO13-33 

     
 

CO13-33-a2-s2 Pn2 5.50 n.a. 1 0.76 EE 
CO13-33-a2-s3 Pn2 7.88 n.a. 1 0.74 EE 
CO13-33-a2-s4 Pn2 9.19 0.81 2 0.81 EE 
CO13-33-a2-s5 Pn3 3.89 n.a. 1 0.90 LE 
CO13-33-a2-s6 Pn3 7.27 n.a. 1 0.75 LE 
CO13-33-a2-s7 Pn3 8.42 n.a. 1 0.72 LE 
CO13-33-a2-s8 Pn3 8.20 n.a. 1 0.82 LE 
CO13-33-a2-s9 Pn2 7.91 n.a. 1 0.76 EE 
CO13-33-a3-s1 Pn1 5.47 n.a. 1 0.78 P 
CO13-33-a3-s2 Pn1 8.82 n.a. 1 0.79 P 
CO13-33-a3-s4 Pn2 6.54 n.a. 1 0.73 EE 
CO13-33-a3-s6 Pn2 7.54 n.a. 1 0.83 EE 
CO13-33-a3-s7 Pn2 7.56 n.a. 1 0.74 EE 
CO13-33-a3-s10 Pn3 1.75 n.a. 1 0.74 LE 
CO13-33-a3-s13 Pn1 6.53 n.a. 1 0.74 P 
CO13-33-a3-s14 Pn1 8.40 n.a. 1 0.75 P 
CO13-33-a3-s15 Pn2 7.78 n.a. 1 0.76 EE 
CO13-55 

     
 

CO13-55-a1-s1 Pn3 6.02 0.75 2 0.35 LE 
CO13-55-a1-s2 Pn1 5.18 1.66 2 0.36 P 
CO13-55-a1-s3 Pn3 5.91 n.a. 1 0.42 LE 
CO13-55-a2-s1 Pn1 4.97 0.83 4 0.41 P 
CO13-55-a2-s2 Pn2 3.25 0.20 2 0.38 EE 
CO13-55-a2-s3 Pn2 5.90 0.82 2 0.39 EE 
CO13-55-a3-s1 Pn3 7.44 0.36 2 0.36 LE 
CO13-55-a3-s2 Pn1 3.13 0.22 3 0.41 P 
CO13-55-a3-s2b Pn1 2.95 n.a. 1 0.50 P 
CO14-03 

     
 

CO14-03-a1-1-8 Py3 6.85 0.58 9 0.21 LE 
CO14-03-a2-1-4 Py3 12.70 1.99 4 0.21 LE 
CO14-03-a2-5 Py3 15.08 n.a. 1 0.21 LE 
CO14-03-a2-7-8 Py3 10.30 3.93 2 0.21 LE 
CO14-03-a2-9-13 Py3 8.13 1.75 5 0.21 LE 
CO14-03-a3-1-2 Py3 7.79 0.29 2 0.21 LE 
CO14-03-a3-3-4 Py3 11.16 3.14 2 0.21 LE 
CO14-03-a3-5-6 Py3 10.54 4.20 2 0.21 LE 
CO14-03-a3-7-8 Py3 7.32 0.37 2 0.21 LE 
CO14-03-a3-9-11 Py3 10.17 3.26 3 0.22 LE 
CO14-04 

     
 

Table 2
Click here to download Table: Table 2.docx

http://ees.elsevier.com/chemge/download.aspx?id=552123&guid=9b29f1a3-c3c7-48e8-b64f-e281cf05d9c4&scheme=1


 

CO14-04-a1-s1 Py2 3.96 0.20 17 0.15 EE 
CO14-04-a2-s1, 1-
9, 22-32 Py2 4.48 0.22 20 0.11 

 
EE 

CO14-04-a2-s2,  
11-14, 21-23 Py1 4.31 0.16 7 0.11 

 
P 

CO14-04-a2-s3 Py1 5.06 0.10 1 0.10 P 
CO14-04-a3-s1 Py1 5.06 0.40 3 0.10 P 
CO14-04-a3-s2 Py1 5.02 n.a. 1 0.10 P 



Table 1: non zero Δ
33

S sulfur isotope analyses in pentlandite (pn) and pyrite (py) grains. 

Grain  Sulfide  Δ
33

SVCDT (‰) 2σ abs (‰) 

CO13-40 
   CO13-40 a3 s1-2 Pn1 0.52 0.30 

CO13-40 a3 s3 Pn1 0.38 0.24 

CO13-40 a3 s12-3 Pn1 0.67 0.50 

CO13-55 
   CO13-55 a2 s1-1 Pn1 0.33 0.23 

CO13-55 a2 s3-1 Pn2 0.37 0.28 

CO13-55 a3 s2-1 Pn1 0.38 0.23 

CO13-55 a3 s2-4 Pn1 0.49 0.31 

CO14-04 
   CO14-04 s1 a1 Py1 0.11 0.10 

CO14-04 s1 a2 Py2 -0.16 0.12 

CO14-04 s1 a3 Py1 -0.17 0.15 
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