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Abstract

Urbanization facilitates synanthropic species such as rodents, which benefit the diets of many preda-

tors in cities. We investigated how urbanization affects the feeding ecology of dugites Pseudonaja affi-

nis, a common elapid snake in south-west Western Australia. We predicted that urban snakes: 1) more

frequently contain prey and eat larger meals, 2) eat proportionally more non-native prey, 3) eat a lower

diversity of prey species, and 4) are relatively heavier, than non-urban dugites. We analyzed the diet of

453 specimens obtained from the Western Australian Museum and opportunistic road-kill collections.

Correcting for size, sex, season, and temporal biases, we tested whether location influenced diet for

our 4 predictions. Body size was a strong predictor of diet (larger snakes had larger prey present, a

greater number of prey items, and a greater diversity of prey). We identified potential collection biases:

urban dugites were relatively smaller (snout-vent length) than non-urban specimens, and females were

relatively lighter than males. Accounting for these effects, urban snakes were less likely to have prey

present in their stomachs and were relatively lighter than non-urban snakes. Other urban-adapted car-

nivores appear to benefit from urbanization through increased food supplementation, but we found the

opposite of this: urban dugites were less likely to contain a meal, and their meals were smaller, indicat-

ing they did not make greater use of synanthropic species than was evident for non-urban snakes. In

contrast to other carnivores, snakes do not appear to fit a consistent directional pattern for size differ-

ences between urban and non-urban populations.
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Urbanization is generally perceived as a negative influence on bio-

diversity (McKinney 2006). Urbanization can be a strong driver of

landscape change, and the disturbance associated with cities may

cause local flora and fauna extinctions, where isolation of refugia

and discrete habitat boundaries lead to mortality of sensitive species

(e.g., Fahrig 2001; Williams et al. 2005; Cushman 2006; Garden

et al. 2007). A decline of sensitive native species in urban areas can,

therefore, lead to biotic homogenization and the dominance of few

usually invasive species, such as synanthropic rodents and birds

(Blair 1996; McKinney 2008). Coupled with anthropogenic

food sources and domestic animals, these invasive species can in-

crease prey availability for predators. Many predators, native or

introduced, therefore appear to thrive in and around cities (Roth and

Lima 2003; Chace and Walsh 2006; Bateman and Fleming 2012).

Many snake species have persisted in or invaded urban areas.

For example black-necked spitting cobras Naja nigricollis in Africa

(Luiselli and Angelici 2000; Akani et al. 2002), carpet pythons

Morelia spilota mcdowelli (Fearn et al. 2001) and tiger snakes

Notechis scutatus (Butler et al. 2005; Hamer 2011) in Australia, as

well as rock pythons Python sebae (Reed and Krysko 2013), corn

snakes Elaphe guttata and DeKay’s snakes Storeria dekayi wrighto-

rum in the USA (Neill 1950). Despite their prevalence, there have

been few descriptions of urban snake behavior and feeding ecology.

Differences in prey diversity and food availability can influence

snake body size in urban areas. For example, invasive brown tree

snakes Boiga irregularis on Guam feed on different prey in urban

and non-urban areas, with urban snakes growing larger due to a

greater range of available prey compared with non-urban sites,
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where there have been local prey extinctions recorded as a result of

predation pressure (Savidge 1988). By contrast, P. sebae in suburban

areas in Nigeria supplement their diet with synanthropic rats and

domesticated poultry, but are significantly smaller than conspecifics

from non-urban environments: the authors did not suggest any rea-

son for this difference (Luiselli et al. 2001). In the present study, we

investigate the effect of urbanization on the feeding ecology of the

dugite Pseudonaja affinis, Elapidae (Günther 1872). This species is

one of the most common snakes of south-west Western Australia,

thriving in woodlands, heaths, and urban environments (Chapman

and Dell 1985), possibly via supplementation from the spread of the

invasive house mouse Mus musculus (Shine 1989). Although the

house mouse is a small species, it is larger than the majority of urban

lizards in Western Australia (How and Dell 2000), and its commu-

nal nesting and prolific breeding (e.g., Gomez et al. 2008; Vadell

et al. 2010) appears to provide dugites with frequent opportunities

to eat multiple individuals (and therefore larger meals). Dugites are

regarded as one of the best urban-adapted large-bodied reptiles in

Australia (How and Dell 1993), which makes them ideal model ani-

mals for urban/non-urban comparisons. Assuming dugites bene-

fit from the presence of synanthropic rodents, then we make the

following predictions for comparisons between urban and non-

urban dugite specimens:

1. Urban dugites will more frequently contain prey than non-urban

dugites, and have eaten larger meals.

2. Urban dugites will eat proportionally more introduced prey than

non-urban dugites.

3. Urban dugites will eat a less diverse range of prey species than

non-urban dugites.

4. Urban dugites will be relatively larger than non–urban dugites.

Materials and Methods

Study species
The dugite is a highly venomous elapid distributed across the south-

ern part of Western Australia and parts of South Australia

(Figure 1a). Dugites are diurnal, active-foraging predators that grow

up to 2 m in total length and can travel at least 1.5 km/day (A.K.W.,

unpublished data). The diet of dugites was explored and compared

with congeners by Shine (1989) who examined 179 museum speci-

mens, although he did not consider differences across space or time.

Figure 1. Collection locations of dugite P. affinis specimens used for this study: a) urban specimens (around the Perth metropolitan area where human population

density exceeded 500 persons�km2 at the time of the nearest Australian Bureau of Statistics census) are indicated by black dots, non-urban specimens are shown

with grey squares; distribution of dugites containing prey in gut contents for b) urban and c) non-urban specimens. Legend: cross—non-native rodents; dia-

mond—native rodents; plus—reptiles. Study location with reference to the wider Australian continent is shown in center right.
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Unfortunately, because the specimens attributed to that study were

disposed of we were unable to revisit that dataset.

Dissections
We dissected 568 dugites, of which 548 were from the Western

Australian Museum (WAM) (specimens collected between 1910 and

2015 from across the entire known Western Australian range of the

species) and 20 were opportunistically collected as road-kill (col-

lected 2014–2015). Of the 568 dissected dugites, we were able to

obtain complete data (location, snout-vent length [SVL], wet mass

of the preserved snake after draining excess preservative liquid [Mb],

and collection date) for 453 specimens, of which 112 dugites con-

tained prey. The number of individuals included in each analysis

therefore varies accordingly.

Prior to dissections, we recorded SVL, Mb, and sex (for all speci-

mens>40 cm SVL; juveniles, n¼226, could not be sexed with confi-

dence even upon dissection) (Table 1). Each specimen was opened via

a ventral incision at the subcaudal third, the stomach located and

removed. Whole stomachs (from the end of the esophagus to the be-

ginning of the small intestine) were extracted, weighed complete, cut

open lengthwise, and examined for any prey contents, and then re-

weighed empty. Prey items were classified to the lowest possible taxo-

nomic group; prey items were identifiable to species (66%), genus

(6%), and family (28%), which were used for statistical analyses. We

identified 20 native prey species (129 prey items) and 3 introduced

species (82 prey items) (see Table 2 for classification). As many of the

prey items were partially digested, we counted the total number of

prey items and recorded total wet mass of all preserved prey items

(after draining excess preservative) (Mprey) contained within each

stomach. Items such as sand, rocks, and leaves were considered inci-

dental gut contents and excluded from prey mass calculations. The

raw data for this study is provided in Supplementary Appendix 1.

Classification of urban and non-urban sites
Collection dates and GPS coordinates for each snake were available

for all road-killed specimens and 89% of museum specimens

(n¼509) (Figure 1a). To account for urban growth over time, we

categorized these GPS coordinates as either “urban” or “non-

urban” sites using data for the closest census date (Australian

Bureau of Statistics census dates: 1911; 1933; 1947; 1955; 1962;

1969; 1974; 1982; 1988; 1993; 1997; 2001; and 2011) (see

Supplementary Appendix 2 for references) to calculate the number

of people per square kilometer, classed by local government areas.

All locations that had>500 persons�km�2 were considered urban

(only sites within the Perth metropolitan region reached this popula-

tion density), and all other coordinates were considered non-urban

(Figure 1a). To determine if there was a skew in collection dates

between urban and non-urban sites, we performed a 2-way chi-s-

quared analysis comparing collection locations across each decade

(n¼10) for all specimens with complete records (n¼453).

Analyses
Over half of the museum specimens we dissected had information

about the collector (338 unique collectors: general public¼37 speci-

mens, scientist¼205 specimens, undetermined¼211 specimens).

To test for collection bias in the specimens included in this analysis

(n¼453 specimens with complete data records), we used a multiple

regression to compare body size (log-SVL) as the dependent variable

with location (urban¼0, non-urban¼1) and collector (general pub-

lic¼0, undetermined¼0.5, scientist¼1). Relatively larger (SVL)

snakes were collected from non-urban areas (F2,450¼23.25;

P<0.001) (Table 1), and by scientists (t450¼5.51; P<0.001). As it

is not possible to distinguish between differences in population

demographics or collection bias, we were unable to determine if

there were any real differences in body size between locations.

Because body size is known to influence diet in snakes (e.g., Shine

1989; King 2002; Bryant et al. 2012; Miranda et al. 2017), body

size was, therefore, accounted for by including log-SVL as a covari-

ate in all analyses. There were also sex differences in body size (of

453 specimens with complete data: female¼119, male¼105, un-

determined sex¼229) (Table 1), with females being smaller than

males (Mb: F1,492¼106.5; P<0.001; SVL: F1,492¼107.4;

P<0.001). Therefore, the sex of specimens (female¼0, undeter-

mined¼0.5, male¼1) was included in analyses to account for this

sex bias that could influence diet. We predicted that animals would

be more active and therefore have a greater mass of food in their

stomachs for warmer months; therefore season (winter¼0, autumn/

spring¼0.5, summer¼1) was included as an independent factor in

analyses. Furthermore, we predicted there would be a decrease in

prey diversity or availability over time due to homogenization of the

landscape due to anthropogenic influences, and therefore included

collection date (year) as an independent factor in analyses.

Prediction 1: Urban dugites will more frequently contain

prey than non-urban dugites, and have eaten larger meals.
To determine if there was an effect of urbanization on the propor-

tion of specimens (n¼453) containing prey items, we performed a

logistical multiple regression with stomach contents (empty¼0,

containing prey¼1) as dependent variable, and location, sex, body

size (log-SVL), season, and collection date as independent variables.

To determine if there was an effect of urbanization on the total

mass of prey eaten (n¼112 dugites containing prey), we performed

a multiple regression with log-Mprey as the dependent variable, and

location, sex, body size, season, and collection date as independent

variables.

Prediction 2: Urban dugites will eat proportionally more

introduced prey than non-urban dugites.
To determine whether there was an effect of location on diet com-

position for n¼112 dugites containing prey, we performed a 2-way

Table 1. Length and body mass measurements for dugites by location and sex for dugite specimens with complete data

Sex (n urban, non-urban) urban non-urban urban non-urban

mean SVL 6 SE (range), cm mean body mass 6 SE (range), g

Females (44, 75) 90.8 6 28.0 (42.4–132.0) 98.0 6 25.5 (41.5–156.0) 252.2 6 191.0 (16.6–604.9) 287.7 6 200.9 (19.6–1170.0)

Males (35, 70) 93.0 6 28.7 (44.3–167.8) 104.3 6 24.5 (40.0–168.5) 296.1 6 335.6 (16.1–1940.0) 336.1 6 312.3 (18.0–1800.0)

Undetermined sex* (116, 113) 27.4 6 4.7 (19.6–61.0) 28.1 6 11.3 (16.1–136.0) 7.3 6 8.0 (2.9–89.0) 15.1 6 75.1 (2.3–800.0)

*Of the 229 specimens for which we were unable to determine sex, 226 were juveniles, SVL<40cm.
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non-parametric MANOVA (PERMANOVA) using a Euclidean

similarity index and 9,999 permutations, with log-(Mpreyþ1) as de-

pendent factors (mass calculated separately for all agamids, geckos,

pygopodids, rodents, skinks, and snakes), location and sex as inde-

pendent grouping factors, and body size, season, and collection date

as covariates. We then repeated this PERMANOVA analysis using

the total log-(Mpreyþ1) for all native or all introduced prey species.

Prediction 3: Urban dugites will eat a less diverse range

of prey species than non-urban dugites.
To determine if there was an effect of location on the number of

prey items for n¼112 dugites containing prey, we performed a mul-

tiple regression with the total number of prey items per individual as

dependent variable, and location, sex, body size, season, and collec-

tion date as independent variables. We carried out a similar analysis

with prey species richness as the dependent variable. The effect of lo-

cation on prey diversity was tested by comparing a Shannon diver-

sity index between locations via a diversity t-test.

Prediction 4: Urban dugites will be relatively larger than

non-urban dugites.
To determine if there was an effect of urbanization on snake body

condition (i.e., mass relative to body size), we performed a multiple

logistic regression for n¼453 specimens with log-Mb as the depend-

ent variable, and location, sex, body size, season, and collection date

as independent variables.

Values are presented as x 6 1 Standard Deviation, range: min–

max. Parametric analyses were conducted using STATISTICA 7.1

(StatSoft Inc. 2006). Non–parametric and diversity analyses (predic-

tions 2 and 3) were conducted using PAST 3.1 (Hammer et al. 2001).

Results

A total of 195 (43%) of the 453 specimens with complete data were

collected in urban areas. The majority of collections occurred in

1960–1989 (Figure 2). There was a significant difference in location

of collection over time (v2
8¼22.9; P¼0.003), with a relatively

greater proportion of urban animals collected over more recent dec-

ades (Figure 2). We found prey items in the stomach for

112 (24.7%) of the 453 specimens with complete data; 44 specimens

contained more than 1 prey item, and 21 specimens contained more

than 1 prey species. In total we identified 224 prey items of at least

23 species. Overall observed dugite diet was made up of 38.4%

mammals and 61.6% reptiles (Figure 1b, c). A total of 55 (24.6%)

prey items were autotomized lizard tails (i.e., no evidence of the liz-

ard bodies), which we classified as belonging to geckos and skinks.

Prediction 1: Urban dugites will more frequently contain

prey than non-urban dugites, and have eaten larger

meals.
Fewer urban snakes contained prey items than non-urban snakes

(Logistic multiple regression testing whether snakes had prey in their

stomachs or not: t447 ¼2.8; b¼0.1; P¼0.0046; Table 3). There

was also an effect of snake body size, with larger snakes (log-SVL)

more likely to have prey present (Table 3). There was no significant

effect of sex, season, or year of collection on the presence of prey.

Urban snakes contained a similar total mass of prey

(x¼3.6 6 7.2, 0.001–27.7 g) as non-urban snakes (x¼6.0 6 10.1,

0.001–54.5 g) (t106¼–1.0; P¼0.31; Table 3). Larger snakes (log-

SVL) had a greater mass of prey present, but there was no significant

effect of sex, season, or year of collection on prey mass (Table 3).

Prediction 2: Urban dugites will eat proportionally more

introduced prey than non-urban dugites.
There was no significant effect of location on diet composition (2-

way PERMANOVA: F1,106¼2.6; P¼0.062) or effect of sex

(F2,106¼1.7; P¼0.091). Similarly, there was no location effect on

diet composition in terms of whether prey was native or introduced

(urban introduced Mprey: x¼2.1 6 6.7, 0–27.1 g, native:

x¼1.2 6 2.4, 0–11.7 g; non–urban introduced x¼4.2 6 9.4,

0–52.5 g, native x¼2.3 6 5.0, 0–25.7 g) (F1,106¼2.6; P¼0.062).

There was also no sex effect on diet composition in terms of whether

prey was native or introduced (F2,106¼1.7; P¼0.093).

Table 2. Diet of dugites collected from urban and non-urban

locations

Taxon Native (N) or

introduced (I)

Urban Non-urban

Mammals, Rodents (n¼ 4 taxa)

Mus musculus I 9 71

Notomys mitchelli N – 2

Rattus norvegicus I 1 1

Rattus rattus I 2 –

Reptiles (n¼ 28)

Geckos (n¼ 6 taxa)

Christinus marmoratus N 3 13

Diplodactylus granariensis N – 2

Diplodactylus pulcher N – 1

Strophurus assimilis N – 2

Strophurus spinigerus N 1 –

Unidentified N – 4

Pygopods (n¼ 2 taxa)

Lialis burtonis N – 1

Pygopus lepidopodus N – 1

Agamids (n¼ 3 taxa)

Ctenophorus sp. N – 1

Pogona minor N 2 1

Unidentified N – 2

Skinks (n¼ 10 taxa)

Acritoscincus trilineatus N 3 7

Ctenotus catenifer N – 1

Ctenotus fallens N – 1

Ctenotus labillardieri N – 9

Ctenotus sp. N 1 10

Hemiergis peronii N – 1

Hemiergis quadrilineata N 10 –

Lerista distinguenda N – 2

Tiliqua rugosa N 1 3

Unidentified N 15 37

Snakes (n¼ 2 taxa)

Pseudonaja affinis N – 2

Unidentified N – 1

Number of prey items 48 176

Number of taxa 11 24

Evenness 0.63 0.33

Simpson dominance 0.81 0.78

Shannon H’ 1.94 2.08

Urban snakes ate a similar diversity of prey. Collective number of species and

groups identified to the finest possible scale are represented by n for each class

and family.
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Prediction 3: Urban dugites will eat a less diverse range

of prey species than non-urban dugites.
Urban dugites ate a similar number of prey items as non-urban du-

gites (t106¼ –0.06; P¼0.95; Table 3). Larger snakes (log-SVL)

had more prey items, but there was no effect of sex, season, or

year of collection on number of prey items (Table 3). Similarly,

larger snakes ate a greater diversity of prey (number of species),

but there was no effect of location, sex, season, or year of collec-

tion (Table 3). This analysis was supported by a diversity t-test,

which indicated that urban dugites had a similar diversity of prey

present as non-urban dugites (Shannon t111.94¼ –0.86; P¼0.39;

Table 2).

Prediction 4: Urban dugites will be relatively larger than

non-urban dugites.
Urban dugites were relatively lighter than non-urban dugites

(t447¼2.1; b¼0.023; P¼0.034; Figure 3a; Table 3) once correl-

ation with body length (log-SVL) was accounted for. Females were

relatively lighter than all other specimens (Figure 3b), but there was

no significant effect of year or season of collection on relative body

mass (Table 3).

Discussion

Many mammalian urban adapters have access to increased food

supplementation, providing larger and/or more frequent meals (see

Bateman and Fleming 2012). This is also indicated in reptiles for

B. irregularis (Savidge 1988) and P. sebae (Luiselli et al. 2001),

which take larger prey in urban areas, possibly due to prey availabil-

ity. We had, therefore, predicted that the presence of synanthropic

prey in urban areas would provide greater opportunity for dugites.

However, our predictions were not supported by this dataset of 453

dugite specimens. Once the effects of body size and potential biases

(sex, season, year of collection) were accounted for, urban snakes

were less likely to have prey present in their stomachs and were rela-

tively lighter than non-urban snakes. Location did not affect the

number of prey items, the diversity of prey, or the relative propor-

tions of native or non-native prey.

As has been reported across many snake diet studies (e.g., Shine

1989; King 2002; Bryant et al. 2012; Miranda et al. 2017), body

size (log-SVL) was a strong predictor of dugite diet. Larger snakes

more frequently contained meals, and those meals were of a greater

mass. Larger snakes also contained a greater number and greater di-

versity of prey items than smaller snakes. Body size was also
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Figure 2. Comparison of urban and non-urban specimens collected over time. Only 3 snakes were collected prior to the 1950s: 2 urban snakes in the 1920s and

1 non-urban snake collected from the 1930s. Data represented as Decade (n).

Table 3. Summary of multiple regression analyses testing dependent factors addressing the 4 predictions of this study

Prediction Dependent factors Independent factors

Location Sex Body size

(log-SVL)

Season Year

1a Prey present (yes/no) t447 ¼ 2.8; b¼ 0.12;

P ¼ 0.0046

0.33; P ¼ 0.74 4.6; b¼ 0.32;

P < 0.0001

0.61; P ¼ 0.54 1.0; P ¼ 0.30

1b Mass of prey (g) t106 ¼ �1.0; P ¼ 0.31 0.39; P ¼ 0.69 8.9; b¼ 3.1;

P < 0.0001

–1.8; P ¼ 0.062 0.31; P ¼ 0.75

3a Number of prey

items (count)

t106 ¼ �0.061; P ¼ 0.95 0.32; P ¼ 0.75 3.2; b¼ 2.5;

P ¼ 0.0016

0.022; P ¼ 0.98 –0.55; P ¼ 0.59

3b Number of prey

species (count)

t106 ¼ 0.93; P ¼ 0.35 0.72; P ¼ 0.47 2.3; b¼ 0.53;

P ¼ 0.024

0.097; P ¼ 0.92 0.38; P ¼ 0.71

4 Dugite body mass t447 ¼ 2.1; b¼ 0.023;

P ¼ 0.034

2.1; b¼ 0.032;

P ¼ 0.035

151.3; b¼ 2.8;

P < 0.0001

1.1; P ¼ 0.27 –1.9; P ¼ 0.059

Once the effects of body size and potential biases (sex, season, year of collection) were accounted for, urban snakes were less likely to have prey present in their

stomachs and were relatively lighter than non-urban snakes. Beta (b) values are provided for significant findings. 0< b represents a trend toward: 1) non-urban

snakes for location, 2) males for sex, and 3) larger snakes for log-SVL.
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significantly different between the sexes. Despite dugites, along with

other Australian brown snakes, being considered to not have

marked sexual size dimorphism (Shine 1989), we found that females

were relatively lighter than males.

Although we predicted urban snakes would be relatively heavier

than non-urban snakes, our finding to the contrary is not unsurpris-

ing, as living in high-disturbance areas may better suit smaller snake

individuals (i.e., younger snakes) and smaller-bodied species. For ex-

ample, road mortality from vehicle–wildlife collisions is biased to-

wards larger-bodied species or individuals (e.g., Shine and Koenig

2001; Gibbs and Shriver 2002; Steen et al. 2006). Smaller snakes

may also be better able to find cover in high-disturbance areas.

Smaller garter snakes Thamnophis ordinoides flee to cover quicker

than larger conspecifics (Bell 2010), and smaller grass snakes Natrix

natrix are more likely to be found under cover than in the open than

larger individuals (Gregory 2016).

Our observed dugite diet of mostly mammals (38.4%) and rep-

tiles (61.6%) did not vary between urban and non-urban snakes.

This diet composition is similar to that recorded by Shine (1989),

who also used WAM specimens (n¼179), but found different pro-

portions of prey representation to us; his specimens contained birds

and more mammals (grouped together, 51%) than reptiles (47%) as

prey, and also included frogs (2%). These differences are likely due

to different snake size ranges of the specimens dissected between the

two studies (SVL¼108.8 6 2.6 cm for females and 108.5 6 2.7 cm

for males, no significant difference (n.s.), Shine 1989;

SVL¼90.8 6 2.8 cm for females and 104.3 6 4.5 cm for males, with

significant effects of sex and location, this study). Dugites tend to eat

more endothermic prey with increasing SVL (Shine 1989), which

may explain why we found more reptiles and fewer mammals in our,

on average, smaller specimens.

There was no difference in the relative proportions of native or

non-native prey for urban or non-urban dugites, which reflects that

urban snakes make extensive use of native species, despite living in

the urban matrix. All reptiles identified were native (Cogger 2014),

and many reptile prey species identified are considered common in

urban bush remnants across Perth (How and Dell 2000; Davis and

Doherty 2015). The most common prey species found exclusively in

urban areas was a native reptile, the 2-toed earless skink Hermiergis

quadrilineata. This skink species occurs within some of the dugite’s

non-urban range along the south-western coastline, but it is

recognized as one of the most abundant lizards within the Perth

metropolitan area (Davis and Doherty 2015), and is most commonly

found near urban environments (Cogger 2014). Another prolific

urban species, Buchanan’s snake-eyed skink Cryptoblepharus

buchananii (Bush et al. 2010), was not identified as a prey item for

any snake; however, of the 56 autotomized tails found present in du-

gite stomachs, we expect that some of these may have belonged to

the snake-eyed skinks, as dugites have been observed eating these in

the wild (A.K.W., personal observations). Therefore, dugites do not

face a lack of native reptile prey in urban areas.

The only introduced mammalian prey were rodents: M. muscu-

lus, Rattus norvegicus (brown rat), and Rattus rattus (black rat); all

are synanthropic species. Urban dugites did not appear to make

greater use of synanthropic species than was evident for non-urban

specimens. While both specimens of R. rattus were found in urban

snakes, M. musculus and R. norvegicus were found in the stomachs

of both urban and non-urban dugites. The prevalence of rodents in

landscapes associated with grain farmland is not a particularly sur-

prising result, and Western Australia’s farming ‘wheatbelt’ com-

prises 154,862 km2, or approximately 30% of the distribution

range of dugites in Western Australia (Wheatbelt Development

Commission 2015). Many non-urban specimens found containing

rodents were outside of the wheatbelt region; the spread of rodents

across the southern half of the dugite range may be exacerbated by

the scattering of towns across southern Western Australia. The ex-

tensive spread of introduced rodents across southern Western

Australia appears to supplement all dugites, not just those in urban

areas, as we had originally predicted.

Sampling bias
There was a significant sampling bias of collection location on body

size: relatively larger snakes were collected from non-urban areas.

Snakes, in particular, are stigmatized for their potential to have a

venomous bite (whether they are venomous or not), and large indi-

viduals are often relocated away from urban areas for safety con-

cerns (Shine and Koenig 2001; Department of Parks and Wildlife

2013), possibly reducing the average size of animals persisting in

urban sites. Additionally, although killing any wildlife, including

snakes, is illegal in Western Australia, we have observed dugites

dead in backyards and on roads in ways that could only be deliber-

ate (A.K.W., personal observations). Human predation on snakes,

therefore, must also play a role in shaping the demographics of

urban snake populations. Urban development encroachment, intro-

duced predators (e.g., cats, dogs, foxes) and pressures (e.g., modified

land use), or low behavioral plasticity and adaptation to change

may also potentially contribute to the observed size differences

Figure 3. Residual body mass (compared with SVL) for a) urban and non-urban dugites and b) specimens of each sex. Residuals were calculated using a linear re-

gression of log-SVL against log-body mass.
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between urban and non-urban locations. Alternatively, urban snakes

may exhibit increased secretive behaviors to minimize interactions

with people, inevitably reducing foraging activity and feeding

opportunities.

We found that relatively larger dugites were also collected more

frequently by scientists (as identified by collectors’ names). This pre-

sents an interesting point for future studies of museum specimens, as

significant biases may result due to the method of capture of speci-

mens. For example, members of the public most likely donated du-

gites to the museum that were found dead or were killed on their

property for fear of a venomous bite, while scientists embark on

trapping exercises or encounter specimens of high quality and do-

nate those exceptional specimens to the museum. We found no evi-

dence of similar studies accounting for such biases, but we

recommend incorporating this information into future comparative

analyses, wherever possible.

Although size difference comparisons between urban and non-

urban snakes in the literature are limited, a consistent directional pat-

tern does not currently appear to exist: B. irregularis are larger in

urban areas (Savidge 1988), while urban individuals of P. sebae are

relatively smaller (Luiselli et al. 2001). In human-disturbed sites in

New Hampshire, USA, snakes found within smaller patches were rela-

tively larger than those found in larger patches (Kjoss and Litvaitis

2001). In Japan, mamushi snakes Gloydius blomhoffii were relatively

smaller in areas where they are hunted than conspecifics in non-

hunting grounds, an example of rapid evolutionary responses to preda-

tion pressure (Sasaki et al. 2008). By contrast, the size of massasauga

rattlesnakes Sistrurus catenatus catenatus in Canada, was unaffected

by disturbance from humans (Parent and Weatherhead 2000).

Application of urban ecology theory to snakes
Degrees of adaptation to urbanization have been described as 3 lev-

els: avoidance, adaptation, and exploitation (Blair 1996; McKinney

2006). Due to sensitivity to anthropogenic changes, “urban

avoiders” remain in their highest densities in unmodified natural en-

vironments. “Urban adapters” prefer areas of intermediate disturb-

ance (i.e., suburbia) due to an ability to use novel resources such as

garden plants. Finally, “urban exploiters” appear to show prefer-

ence for highly modified areas (i.e., inner metropolitan areas) due to

an ability to exploit the availability of anthropogenic resources such

as buildings (shelter) and refuse (food). This classification method

has been useful for describing responses to urbanization for birds

(Blair 1996), mammals (Randa and Yunger 2006), and insects

(McIntyre 2000). Building on this, a set of 5 rules for urban ex-

ploiters was developed by Kark et al. (2007) using birds as a model;

urban exploiters most commonly are: 1) omnivorous or diet general-

ists (with some specialization seen in urban adapters); 2) social; 3)

sedentary and maintain territories; 4) nest in man-made structures

(though adapters use vegetation); and 5) have relatively larger

brains, greater behavioral flexibility, and use novel food items. For

mammalian carnivores, body size is also likely to influence the abil-

ity of mammals to exploit the urban landscape, with medium-sized

(1–20 kg) generalist predator species identified as the best urban

adapters: larger species are more likely to attract human attention

and smaller species more likely to be sensitive to habitat fragmenta-

tion (see Bateman and Fleming 2012).

Applying the descriptions of urban adaptation developed by

Blair (1996) and Kark et al. (2007), based on persistence in urban

areas, we consider dugites as urban adapters (“suburban adapt-

able”). The apparent lack of feeding innovations for urban dugites

and complete diet overlap between urban and non-urban dugites

suggests that dugites living within the Perth metropolitan area are

not using any available extra dietary resources, or using dietary re-

sources differently. Perhaps urban dugites lack feeding innovations

because native food is abundant for urban dugites, while there is

also an abundance of synanthropic species associated with farming

in non-urban locations. Some Australasian reptile species such as the

blue-tongue lizard Tiliqua scincoides (Koenig et al. 2001) and the

common skink Oligosoma nigriplantare polychroma (van Heezik

and Ludwig 2012) use household gardens for food, water, and

avoidance of predators, and most of the urban dugite prey species

we identified are both common in gardens/urban remnants and less

urbanized parts of Western Australia. Perhaps the definitions of

urban adaptation are not suited for ectothermic vertebrates, or du-

gites fit into another category: “urban oblivious”, usually a

term used for cryptic generalists, usually ignored by humans (Grant

et al. 2011).

Unlike other taxa that experience food supplementation by

urban areas, dugites do not appear to derive any particular dietary

benefit from living in cities. However, there is more to urban adap-

tation than diet alone, and the other factors, such as increased tem-

peratures (Brazel et al. 2000; Ackley et al. 2015), and available

cover (e.g., tin sheeting, brick piles, garden beds) (Brown and

Sleeman 2002; Purkayastha et al. 2011) may provide an anthropo-

genic niche for these snakes that is worth exploiting despite

increased predation from domestic pets (Shine and Koenig 2001)

and restricted movement due to habitat fragmentation (How and

Dell 2000). Finally, a major setback for snakes in urban areas, espe-

cially for venomous species, is their direct conflict with humans

(Whitaker and Shine 2000; Clemann et al. 2004). Snakes play an im-

portant role in controlling rodents and stabilizing food webs, and

the persistence of these important predators, therefore, requires that

we know more about their habitat and diet requirements. Despite all

of the potential challenges for snakes in urban areas, dugites, which

do not appear to conform to standard urban-adaptation conven-

tions, remain one of the best urban-adapted vertebrates in Perth.
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