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Joint Transceiver Optimization for Wireless Information and Energy Transfer in
Non-Regenerative MIMO Relay Systems

Bin Li, Senior Member, IEEE and Yue Rong, Senior Member, IEEE

Abstract—In this paper, a two-hop non-regenerative multiple-
input multiple-output (MIMO) relay system is investigated, where
the relay node relies on harvesting the radio frequency energy
transferred from the source node to forward information from
source to destination. We consider the time switching (TS)
protocol between wireless information and energy transfer. In
particular, we propose a more general energy consumption
constraint at the source node during the information and energy
transfer, which includes the constant power constraints used in
existing works as special cases. We study the joint optimization of
the source precoding matrices, the relay amplifying matrix, and
the TS factor to maximize the source-destination mutual informa-
tion (MI). The optimal structure of the source and relay matrices
is derived, which reduces the original transceiver optimization
problem to a simpler power allocation problem. We propose a
primal decomposition based algorithm and an upper bound based
approach to efficiently solve the power allocation problem. The
first algorithm achieves the global optimum, whereas the latter
one has a lower computational complexity. Numerical simulations
show that both proposed algorithms yield much higher system
MI and better rate-energy tradeoff than existing approaches.

Index Terms—Simultaneous wireless information and energy
transfer (SWIET), energy harvesting, time switching receiver,
MIMO relay, non-regenerative relay.

I. INTRODUCTION

A. Background

There have been many successful applications of wireless
sensor networks (WSNs) in intelligent transportation and
environmental monitoring [1]. However, WSNs are energy-
constrained networks which are normally powered by batteries
that have a limited life time. Although replacing batteries
is an option that can prolong the life time of a WSN, a
high cost is usually associated. Moreover, in many cases,
replacing batteries cannot be easily carried out due to physical
or economic constraints. For example, sometimes the sensors
may be embedded in building structures or even inside human
bodies [2].

Therefore, energy harvesting (EH) is attractive for WSNs,
where energy is harvested from the external environment.
Conventional EH techniques, which mainly rely on natural
resources (such as solar and wind), have their limitations in
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that these energy is difficult to be controlled. Hence, these
techniques are not easy to be implemented in real world
applications.

To overcome the limitations of conventional EH techniques,
a new technology called simultaneous wireless information
and energy transfer (SWIET) has been proposed [3]. With
SWIET, radio frequency (RF) signals are used not only for
delivering information but also for transferring energy, which
provides great convenience to WSNs and mobile users [4].
Compared with conventional EH techniques relying on nature
resources, SWIET is a more promising and reliable alternative.

B. Literature Review
An ideal receiver capable of performing information de-

coding (ID) and EH simultaneously has been proposed in
[3]. The trade-off between the achievable information rate
and the harvested energy is also characterized by a capacity-
energy function in [3]. However, there are two challenges from
practical considerations [4]. Firstly, in practice, the circuits
for harvesting energy cannot decode the carried information.
To coordinate wireless information transfer (WIT) and wire-
less energy transfer (WET) at the receiver, a time switching
(TS) protocol and a power splitting (PS) protocol have been
proposed in [5]. Secondly, since WIT and WET operate with
different sensitivity (-10dBm for energy receivers and -60dBm
for information receivers), the architecture of traditional ID
receiver may not be optimal for SWIET. To solve this problem,
a separated architecture receiver and an integrated architecture
receive have been developed in [4] for a more general protocol
called dynamic power splitting which includes the TS protocol
and the PS protocol as special cases. Waveform design for
wireless power transfer has been studied in [6] and [7].

It is well-known that multiple-input multiple-output
(MIMO) technique can improve the system energy and spectral
efficiencies [8]-[10]. By equipping multiple antennas at the
data fusion center of WSNs, RF energy can be focused on
sensors so that they can be charged more efficiently compared
with using a single antenna. Hence, the life time of energy
constrained WSNs is prolonged. There are some recent works
on applying MIMO to SWIET. In [5], a MIMO broadcast
channel with a separated architecture ID and EH receiver
has been investigated, where the energy-rate regions have
been derived for the TS protocol and the PS protocol. In
[11], a multiple-input single-output (MISO) downlink system
has been considered with SWIET, where the total transmis-
sion power is minimized by jointly optimizing the transmit
beamforming vector and the PS ratio under a given signal-to-
interference-plus-noise ratio (SINR).

Relay technology has been widely used to increase the
coverage of wireless communications [13], [14]. Under the

Citation
Li, B. and Rong, Y. 2018. Joint Transceiver Optimization for Wireless Information and Energy Transfer in Non-Regenerative 
MIMO Relay Systems. IEEE Transactions on Vehicular Technology. 67 (9): pp. 8348-8362.
http://doi.org/10.1109/TVT.2018.2846556

http://doi.org/10.1109/TVT.2018.2846556


2

SWIET framework, a relay node is able to harvest RF energy
and receive information from the source node and then for-
wards the received information to the destination node using
the harvested energy. The application of relays in SWIET has
been addressed by some recent works [15]-[22]. In [15], TS
and PS based relay protocols have been proposed for a non-
regenerative relay network. A wireless cooperative network
has been considered in [16] where multiple source-destination
pairs communicate with each other via an EH relay node.
The distribution of the harvested energy among multiple users
and its impact on the system performance have been studied
in [16]. SWIET with randomly located decode-and-forward
relays has been studied in [17], and it has been shown that
the use of EH relays can achieve the same diversity gain
as conventional self-powered relays. In [18], a distributed
PS framework based on game theory has been developed
for SWIET in interference relay channels. SWIET in an
orthogonal frequency-division multiplexing relay system has
been studied in [19]. Wireless information and power transfer
with full duplex relaying has been investigated recently in
[20]-[22].

The application of SWIET in MIMO relay systems has
been studied in [1], [2], [23]-[29]. In [1], performance trade-
offs of several receiver architectures have been discussed by
applying SWIET in MIMO relay systems. Future research
challenges in this area have also been outlined in [1]. A TS
protocol and a PS protocol have been developed in [2] for a
non-regenerative MIMO relay system, where the achievable
rate is maximized for each protocol by jointly optimizing
the source and relay precoding matrices. In [23] and [24], a
non-regenerative orthogonal space-time block code (OSTBC)
based MIMO relay system with a multi-antenna EH receiver
has been investigated, where the source and relay precoding
matrices are jointly optimized to achieve various tradeoffs
between the energy transfer capability and the information
rate. SWIET for wireless cooperative networks with the PS
protocol has been studied in [25], where the optimal PS ratio
and power allocation are obtained. SWIET in massive MIMO
relay networks has been investigated in [26]. Joint wireless
information and power transfer in amplify-and-forward (AF)
MIMO relay systems with wireless powered relay node has
been considered in [27]-[29].

C. Contributions

In this paper, we consider a two-hop non-regenerative
MIMO relay system, where an EH receiver is equipped at the
relay node to facilitate the information and energy transfer.
One example of practical applications of the system and
algorithms proposed in this paper is a heterogeneous network
consisting of devices with different capabilities, where inactive
devices with MIMO capabilities can be exploited as relays to
assist the active users in the network [1]. Moreover, through
harvesting the radio frequency energy transferred from the
source node, the relay node does not need to spend its own
energy to forward information from source to destination. This
helps to provide motivation for a selfish node to participate
in the relay scheme. We adopt the TS protocol during the

source phase, where the source node transfers energy and
information signals to the relay node during the first and
second time intervals, respectively. Then, during the relay
phase, the relay node uses the harvested energy to forward
the received information to the destination node.

In [2], a constant power is assumed at the source node
for both energy transferring and information transmission.
Here, we propose an energy consumption constraint at the
source node during the information and energy transfer. For
the fairness of comparison, our energy consumption constraint
is formulated under the same nominal power as that in [2].
However, compared with the formulation in [2], the source
transmission power for energy and information transferring
might be different. Therefore, the proposed energy constraint
is more general and includes the constant power constraints
in [2] as special cases, and hence, a better performance can
be expected. Note that compared with the constant power
constraint, the energy consumption constraint greatly increases
the technical difficulty of solving the optimization problem.

We study the joint optimization of the source precoding
matrices, the relay amplifying matrix, and the TS factor to
maximize the source-destination mutual information (MI),
subjecting to the harvested energy constraint at the relay node
and the proposed source energy constraint at the source node.
Moreover, the circuit power consumption at the relay node
is considered in the transceiver optimization. The optimal
structure of the source and relay matrices is derived, which re-
duces the matrix variables to vector power allocation variables.
Based on the observation that the system MI is a unimodal
function of the TS factor, we develop a two-loop method to
jointly optimize the TS factor and the power allocation vectors.

In particular, we show that the optimal TS factor can be
efficiently found by a golden section search [30]. In each step
of the search for the optimal TS factor, the power allocation
vectors are optimized through solving a power allocation
problem in a two-hop non-regenerative MIMO relay system
with sum power constraint across the source and relay nodes.
We propose a primal decomposition technique [31] to solve
this power allocation problem. In particular, we derive the
closed-form analytical solution to each of the decomposed sub-
problems. Moreover, as the traditional water-filling algorithm
does not work for the master problem, we develop a novel
algorithm by exploring the structure of the master problem.
The optimality of the primal decomposition based algorithm
is proven rigorously. To the best of our knowledge, the globally
optimal solution to such power allocation problem is obtained
for the first time in this paper.

To reduce the computational complexity of the primal de-
composition based algorithm, we propose a second algorithm
by exploiting a tight upper bound of the objective function.
We show that the upper bound based problem has a closed-
form solution and a similar performance as that of the primal
decomposition based approach. Interestingly, we prove that at
a large power level, the upper bound based system MI is a
strictly convex function of the TS factor.

The contributions of this paper are summarized as follows:
(1) For the first time, a more general energy constraint at the
source node is proposed compared with that in [2]; (2) The
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optimal structure of the source and relay precoding matrices is
proven for the new problem; (3) For the first time, the global
optimum solution is obtained for the power allocation problem
in a two-hop non-regenerative MIMO relay system with sum
power constraint; (4) Practical peak power constraints at the
source and relay nodes are considered during both the energy
transfer and the information transfer phases; (5) The circuit
power consumption at the relay node is considered in the
transceiver optimization. (6) The proposed algorithms are
shown to be superior to that in [2] in terms of the system
MI and energy-rate trade-off, particularly in the high nominal
power range, at no extra computational complexity.

D. Structure

The rest of the paper is organized as follows. The model
of a two-hop non-regenerative MIMO relay system with an
energy-harvesting relay node is presented in Section II. The
transceiver optimization problem is also formulated in Sec-
tion II. The proposed algorithms are developed in Section III.
Numerical examples are presented in Section IV to demon-
strate the performance of the proposed algorithms. Finally, we
conclude our paper in Section V.

II. SYSTEM MODEL

We consider a three-node two-hop MIMO communication
system where the source node S transmits information to the
destination node D with the aid of one relay node R as shown
in Fig. 1. The source, relay, and destination nodes are equipped
with Ns, Nr, and Nd antennas, respectively. We assume that
the source node has its own power supply, while the relay node
is powered by harvesting the RF energy sent from the source
node. In particular, there are two phases in one communication
cycle. In the source phase, energy-carrying and information-
bearing signals are transmitted from the source node to the
relay node. Then, in the relay phase, the information signals
received at the relay node are linearly precoded and trans-
mitted to the destination node [2]. Among various relaying
protocols, the AF scheme is chosen at the relay node due
to its implementation simplicity and shorter processing delay.
Moreover, compared with other relaying protocols, the AF
scheme does not need to decode and re-encode the signals at
the relay node, which is energy-saving, making it suitable for
wireless-powered communication. Similar to [2], [23], [24],
the direct link between the source and destination nodes is not
considered, as we assume that the effects of path attenuation
and shadowing are more severe on the direct link compared
with the link via the relay node.

We adopt the time switching protocol [5] for the energy
harvesting and information transmission at the source phase.
In this protocol, the total time T of one communication cycle
is divided into three intervals. In the first time interval, energy
is transferred from the source node to the relay node with a
duration of αT , where 0 < α < 1 denotes the time switching
factor. In the second time interval, information signals are
transmitted from the source node to the relay node with a
duration of (1−α)T/2. The last time interval of (1−α)T/2
is used for relaying the information signals from the relay node
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Fig. 1. A two-hop MIMO relay communication system with an energy-
harvesting relay node.

to the destination node. For the simplicity of presentation, we
set T = 1 hereafter.

During the first interval, the N1 × 1 energy-carrying signal
vector s1 is precoded by an Ns ×N1 matrix B1 at the source
node and transmitted to the relay node. The optimal value of
N1 will be determined later. We assume that E{s1sH1 } = IN1 ,
where E{·} stands for the statistical expectation, In is an n×n
identity matrix, and (·)H denotes the Hermitian transpose. The
received signal vector at the relay node is given by

yr,1 = HB1s1 + vr,1 (1)

where H is an Nr × Ns MIMO channel matrix between
the source and relay nodes, yr,1 and vr,1 are the received
signal and the additive Gaussian noise vectors at the relay
node during the first interval, respectively. Based on [5], the
RF energy harvested at the relay node is proportional to the
baseband received signal in (1) without the noise component,
and is given by

Er = η1αtr(HB1B
H
1 HH) (2)

where tr(·) denotes the matrix trace and 0 < η1 ≤ 1 is the
energy conversion efficiency.

During the second interval, an N2 × 1 information-bearing
signal vector s2 with E{s2sH2 } = IN2 is precoded by an
Ns × N2 matrix B2 at the source node and transmitted to
the relay node. The received signal vector at the relay node
can be written as

yr,2 = HB2s2 + vr,2 (3)

where vr,2 is the additive white Gaussian noise (AWGN)
vector at the relay node during the second interval with zero-
mean and E{vr,2v

H
r,2} = σ2

rINr .
Finally, during the third interval, the relay node linearly

precodes yr,2 with an Nr × Nr matrix F and transmits the
precoded signal vector

xr = Fyr,2 (4)

to the destination node. From (3) and (4), the received signal
vector at the destination node can be written as

yd =Gxr + vd

=GFHB2s2 +GFvr,2 + vd (5)



4

where G is an Nd × Nr MIMO channel matrix between
the relay and destination nodes, yd and vd are the received
signal vector and the AWGN vector at the destination node,
respectively, with E{vdv

H
d } = σ2

dINd
. From (5), the mutual

information between source and destination is given as [12]

MI(α,B2,F) =
1− α

2
log |IN2 +BH

2 HHFHGH

×(σ2
rGFFHGH+σ2

dINd
)−1GFHB2|(6)

where | · | and (·)−1 denote the matrix determinant and matrix
inversion, respectively.

We assume that H and G are quasi-static and known at
the relay node. We also assume that without wasting the
transmission power at the source and relay nodes, N2 ≤
min(rank(H), rank(G)) and rank(F) = rank(B2) = N2,
where rank(·) stands for the rank of a matrix.

Note that the energy used to transmit s1 and s2 from the
source node is αtr(B1B

H
1 ) and 1−α

2 tr(B2B
H
2 ), respectively.

Therefore, the constraint on the energy consumed by the
source node can be written as

αtr(B1B
H
1 ) +

1− α

2
tr(B2B

H
2 ) ≤ 1 + α

2
Ps (7)

where Ps is the nominal (average) power available at the
source node. It is worth noting that in [2], a constant power is
assumed at the source node for both energy transferring and
information transmission as

tr(B1B
H
1 ) ≤ Ps, tr(B2B

H
2 ) ≤ Ps. (8)

It can be seen that under the same α, both (7) and (8) lead to
the same amount of energy consumption at the source node.
However, (8) is a special case of (7) and the feasible region
defined by (7) is larger than that of (8). In fact, in (7) the source
precoding matrices B1 and B2 are linked through one energy
constraint. This enables the source node to operate at different
power levels adapted to the purpose of energy transferring at
the first interval and information transmission at the second
interval, which is more flexible than (8). Hence, transceivers
designed under (7) are expected to have a better performance
than that with (8) as in [2].

From (3) and (4), the energy consumed by the relay node
to transmit xr to the destination node is given by

1−α

2
tr(E{xrx

H
r })= 1−α

2
tr(F(HB2B

H
2 HH+ σ2

rINr )F
H).

(9)
Following [32], we consider that the circuit energy consump-
tion at the relay node contains two parts: A static part which
is used to maintain the basic circuit operations and a dynamic
part which depends on the amount of information processing.
Considering multiple antennas at the relay node [33], we
model the static part as 1−α

2 NrPc, where Pc is the per-antenna
static power consumption. The dynamic part1 of the circuit

1We assume that all the energy harvested at the relay node Er is consumed
for the purpose of relaying signals from the source node to the destination
node. In [32], the dynamic part of the circuit power consumption is modeled
as ξR, where R is the data rate and ξ is a constant representing the dynamic
power consumption per unit data rate. Note that adopting this model will
make the resulting problem (11) intractable as the objective function (11a)
will appear in the constraint (11c).

energy consumption is modeled as η2Er, where 0 < η2 < 1.
It will be shown later that the achievable data rate increases
with Er. Thus, η2Er increases with the amount of information
processing and it is sensible to adopt η2Er as the dynamic part
of the circuit energy consumption. Based on (2) and (9), we
obtain the following energy constraint at the relay node

1− α

2
(tr(F(HB2B

H
2 HH + σ2

rINr )F
H) +NrPc)

≤ (1− η2)Er = αηtr(HB1B
H
1 HH) (10)

where η = η1(1− η2).
From (6), (7), (10), the transceiver optimization problem

for two-hop non-regenerative wireless information and energy
transfer MIMO relay systems can be written as

max
0<α<1,B1,B2,F

MI(α,B2,F) (11a)

s.t. αtr(B1B
H
1 ) +

1− α

2
tr(B2B

H
2 ) ≤ 1 + α

2
Ps (11b)

tr(F(HB2B
H
2 HH+σ2

rINr )F
H) +NrPc

≤ 2αη

1−α
tr(HB1B

H
1 HH). (11c)

As will be shown in the next section, the energy consumption
constraint greatly increases the technical difficulty of solving
the problem (11) compared with the constant power constraint
in [2].

III. PROPOSED ALGORITHMS

The problem (11) is non-convex with matrix variables and
is challenging to solve. In this section, we develop two
algorithms to solve the problem (11). First, we derive the
optimal structure of B1, B2, and F, under which the problem
(11) can be simplified to a power allocation problem. Let us
introduce

H = UhΛ
1
2

hV
H
h , G = UgΛ

1
2
g V

H
g (12)

as the singular value decompositions (SVDs) of H and G,
respectively, with the diagonal elements of Λh and Λg sorted
in decreasing order.

THEOREM 1: The optimal B1, B2, and F as the solution
to the problem (11) has the following structure

B∗
1 = λ

1
2

b vh,1, B∗
2 = Vh,1Λ

1
2
2 , F∗ = Vg,1Λ

1
2

f U
H
h,1 (13)

where (·)∗ stands for the optimal value, λb is a positive scalar,
vh,1 is the first column of Vh, Λ2 and Λf are N2 × N2

diagonal matrices, Vg,1, Uh,1, and Vh,1 contain the leftmost
N2 columns from Vg , Uh, and Vh, respectively.

PROOF: See Appendix A. �
It is interesting to see from (13) that the optimal B1 is a

vector (i.e., N1 = 1) matching vh,1. This indicates that in
order to maximize the energy harvested by the relay node, all
transmission power at the source node should be allocated to
the channel corresponding to the largest singular value of H
during the first interval. As a result, we only need to optimize
λb in B1, and the transmission power of the source during
the first interval is tr(B1B

H
1 ) = λb. It can also be seen from

(13) that the optimal structure of B2 and F is similar to that
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in two-hop MIMO relay systems where the relay node has
self-power supply [13].

By substituting (13) back into (11), the transceiver opti-
mization problem (11) with matrix variables is simplified to
the following power allocation problem with scalar variables

max
α,λb,λ2,λf

1− α

2

N2∑
i=1

log

(
1 +

λ2,iλh,iλf,iλg,i

1 + λf,iλg,i

)
(14a)

s.t. αλb +
1− α

2

N2∑
i=1

λ2,i ≤
1 + α

2
Ps (14b)

N2∑
i=1

λf,i(λh,iλ2,i+1) ≤ 2αη

1− α
λ̃h,1λb−NrPc(14c)

0<α<1, λf,i ≥ 0, λ2,i ≥ 0, i = 1, · · · , N2 (14d)

where λ2 = [λ2,1, · · · , λ2,N2 ]
T , λf = [λf,1, · · · , λf,N2 ]

T ,
λh,i = λ̃h,i/σ

2
r , λg,i = λ̃g,i/σ

2
d, λf,i = λ̃f,iσ

2
r , λ2,i, λ̃f,i,

λ̃h,i, λ̃g,i denote the ith diagonal element of Λ2, Λf , Λh and
Λg , respectively. Note that the feasibility of the problem (14)
can be guaranteed by a proper choice of Ps as shown later.
By introducing zi = λf,i(λh,iλ2,i + 1), i = 1, · · · , N2, the
problem (14) becomes

max
α,λb,λ2,z

1− α

2

N2∑
i=1

log

(
1 +

λ2,iλh,iziλg,i

1 + λ2,iλh,i + ziλg,i

)
(15a)

s.t. αλb +
1− α

2

N2∑
i=1

λ2,i ≤
1 + α

2
Ps (15b)

N2∑
i=1

zi ≤
2αη

1− α
λ̃h,1λb −NrPc (15c)

0<α<1, λ2,i ≥ 0, zi ≥ 0, i = 1, · · · , N2 (15d)

where z = [z1, · · · , zN2 ]
T .

As for any λb, the optimal z maximizing (15a) must satisfy
equality in (15c), i.e.,

N2∑
i=1

zi =
2αη

1− α
λ̃h,1λb −NrPc. (16)

Using (16), the problem (15) can be equivalently rewritten as

max
α,λ2,z

1− α

2

N2∑
i=1

log

(
1 +

λ2,iλh,iziλg,i

1 + λ2,iλh,i + ziλg,i

)
(17a)

s.t.
1−α

2ηλ̃h,1

(
N2∑
i=1

zi+NrPc

)
+
1−α

2

N2∑
i=1

λ2,i≤
1+α

2
Ps(17b)

0<α<1, λ2,i ≥ 0, zi ≥ 0, i = 1, · · · , N2. (17c)

By introducing ai = λh,i, bi = ησ2
rλg,iλh,1, xi = λ2,i, yi =

zi/(ηλ̃h,1), i = 1, · · · , N2, the problem (17) becomes

min
α,x,y

1− α

2

N2∑
i=1

log
1 + aixi + biyi

(1 + aixi)(1 + biyi)
(18a)

s.t.

N2∑
i=1

xi +

N2∑
i=1

yi ≤ Ps
1 + α

1− α
− P0 (18b)

0<α<1, xi ≥ 0, yi ≥ 0, i = 1, · · · , N2 (18c)

where x = [x1, · · · , xN2 ]
T , y = [y1, · · · , yN2 ]

T , and P0 =
NrPc

ηλ̃h,1
. We assume that the static part of the circuit power

consumption NrPc < ηλ̃h,1Ps such that Ps
1+α
1−α −P0 > 0 for

0 < α < 1. This can be satisfied by adjusting Ps. Interestingly,
although the problem (18) is still a non-convex optimization
problem, it has a nice symmetric structure with respect to x
and y in both the objective function (18a) and the constraint
(18b).

Let M(α) be the optimal value of the problem (19) with a
given α written as

min
x,y

N2∑
i=1

log
1 + aixi + biyi

(1 + aixi)(1 + biyi)
(19a)

s.t.

N2∑
i=1

xi +

N2∑
i=1

yi ≤ Pα (19b)

xi ≥ 0, yi ≥ 0, i = 1, · · · , N2 (19c)

where
Pα = Ps

1 + α

1− α
− P0. (20)

Then the objective function (18a) can be written as F (α) =
1−α
2 M(α). From (20), we know that Pα monotonically in-

creases with α. Thus, it can be seen from (19b) that the
feasible region of the problem (19) expands as α increases.
Therefore, M(α) monotonically decreases as α increases. On
the other hand, 1− α monotonically decreases as α increases.
Considering the effects of α on M(α) and 1 − α, and the
fact that M(α) < 0, we can expect that F (α) is a unimodal
function of α.

The unimodality of F (α) is difficult to prove rigorously2 for
N2 > 1, and it will be illustrated graphically in Section III-A.
Based on this observation, the problem (18) can be efficiently
solved by a two-loop algorithm, where for a given α we
optimize x and y by solving the problem (19). And then a
simple one dimensional search (such as the golden section
search method [30]) can be applied to obtain the optimal
α. The procedure of the proposed two-loop algorithm is
summarized in Algorithm 1, where ε is a positive constant
close to 0, and δ > 0 is the reduction factor3. It is shown in
[30] that the optimal δ = 1.618, also known as the golden
ratio. Finally, the optimal precoding matrices are obtained as
Step 12 in Algorithm 1.

Interestingly, the problem (19) can be viewed as a power al-
location problem for a two-hop non-regenerative MIMO relay
system with sum power constraint across the source and relay
nodes. In the next subsections, we propose two algorithms to
solve the problem (19). The first algorithm is based on the
primal decomposition technique [31], and provides a globally
optimal solution to the problem (19). This is an important
novel contribution of our work. To the best of our knowledge,
the globally optimal solution to the problem (19) is obtained

2The difficulty is that for N2 > 1, α changes the value of M(α) through
varying the feasible region of x and y of the optimization problem (19), and
the objective function (19a) is a complicated function of x and y. As a result,
the closed-form expression of F (α) is difficult to obtain.

3Algorithm 1 can be viewed as an iterative algorithm where the problem
(18) is solved by alternatingly updating α and (x,y).
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Algorithm 1 Applying the Golden Section Search to Find the
Optimal α and the Precoding Matrices.
Input: Ps, ai, bi, i = 1, · · · , N2.
Output: α∗, B∗

1, B∗
2, and F∗.

Initialization: αl = 0 and αu = 1.
1: while |αu − αl| > ε do
2: Define c1 = (δ − 1)αl + (2 − δ)αu and c2 = (2 − δ)αl +

(δ − 1)αu.
3: Solve the problem (19) for α = c1 by optimizing x and

y through the primal decomposition based algorithm (Algo-
rithm 2) in Sections III-A and III-B or the upper bound based
algorithm (Algorithm 4) in Section III-C, and return M(c1);
Compute F (c1) =

1−c1
2

M(c1).
4: Repeat Step 3 for α = c2.
5: if F (c1) < F (c2) then
6: Assign αu = c2.
7: else
8: Assign αl = c1.
9: end if

10: end while
11: α∗ = (αu + αl)/2.
12: Calculate the optimal B∗

1, B∗
2, and F∗ based on (13) where

λ∗
b =

1−α∗

2α∗

(
N2∑
i=1

y∗
i + P0

)
, λ∗

2,i = x∗
i , λ̃

∗
f,i =

y∗
i λ̃h,1η

(λh,ix∗
i + 1)σ2

r

.

for the first time in this work. The second algorithm exploits a
tight upper bound of (19a), which yields a slightly worse per-
formance but has a much lower computational complexity than
the primal decomposition based algorithm. Such performance-
complexity tradeoff is very useful in practical MIMO relay
systems with an energy-harvesting relay node.

A. Primal Decomposition Based Algorithm

We observe that in (19a) and (19b), each pair of xi and
yi are decoupled from the other pairs. This indicates that the
problem (19) can be efficiently solved by a primal decomposi-
tion method [31], where each pair of xi and yi, i = 1, · · · , N2,
are optimized through solving the subproblem of

min
xi,yi

log
1 + aixi + biyi

(1 + aixi)(1 + biyi)
(21a)

s.t. xi + yi = pi, xi ≥ 0, yi ≥ 0. (21b)

Here the N2 subproblems of (21) are linked through nonneg-
ative pi by the constraint of

∑N2

i=1 pi ≤ Pα. By substituting
yi = pi − xi back into (21a), we have

gi(xi) = log
1 + aixi + bi(pi − xi)

(1 + aixi)(1 + bi(pi − xi))
.

Based on the first-order optimality condition of ∂gi/∂xi = 0
and xi ≥ 0, we obtain a closed-form solution of xi to the
problem (21) as

x∗
i =

√
bipi + 1

ai − bi
(
√

aipi + 1−
√

bipi + 1). (22)

From yi = pi − xi, the optimal yi is given by

y∗i =

√
aipi + 1

ai − bi
(
√

aipi + 1−
√

bipi + 1). (23)

Interestingly, from (22) and (23), we find that y∗i /x
∗
i =√

aipi + 1/
√
bipi + 1.

Let us introduce

fi(pi) = log
1 + aix

∗
i + biy

∗
i

(1 + aix∗
i )(1 + biy∗i )

(24)

= 2 log
ai − bi

ai
√
bipi + 1− bi

√
aipi + 1

(25)

where (25) is obtained by substituting x∗
i in (22) and y∗i in

(23) into (24). The master problem of optimizing x and y in
(19) can be written as the following power allocation problem

min
p

N2∑
i=1

fi(pi) (26a)

s.t.

N2∑
i=1

pi ≤ Pα, pi ≥ 0, i = 1, · · · , N2 (26b)

where p = [p1, · · · , pN2 ]
T .

The master problem (26) can be solved by the Lagrange
multiplier method. The Lagrangian function is given by
L(p, µ) =

∑N2

i fi(pi) + µ
(∑N2

i=1 pi − Pα

)
, where µ ≥ 0 is

the Lagrange multiplier. From the Karush-Kuhn-Tucker (KKT)
optimality conditions [34], we have

∂L

∂pi
= −µ2(pi, ai, bi)

µ1(pi, ai, bi)
+ µ = 0, i = 1, · · · , N2 (27)

µ

(
N2∑
i=1

pi − Pα

)
= 0 (28)

where

µ1(pi, ai, bi) =
√

(aipi + 1)(bipi + 1) (29)

µ2(pi, ai, bi) =
aibi(

√
aipi + 1−

√
bipi + 1)

ai
√
bipi + 1− bi

√
aipi + 1

. (30)

By solving the nonlinear equation (27), we obtain pi as a
function of µ denoted as pi(µ). Moreover, it can be seen
from (27) and (30) that as ai ̸= bi, there is µ ̸= 0. Thus,
from (28), we can obtain µ and hence the optimal p∗i of the
master problem (26a)-(26b) by solving the following nonlinear
equation

N2∑
i=1

pi(µ)− Pα = 0. (31)

The procedure of using the proposed primal decomposition
based algorithm to solve the problem (19) is summarized in
Algorithm 2.

Algorithm 2 Solving the Problem (19) Using the Proposed
Primal Decomposition Based Algorithm.
Input: Pα, ai, bi, i = 1, · · · , N2.
Output: x∗

i , y∗
i , i = 1, · · · , N2.

1: Solve (27) and (31) using the approach in Algorithm 3 to obtain
the optimal p∗i , i = 1, · · · , N2.

2: Compute the optimal x∗ and y∗ as (22) and (23) with p∗i , i =
1, · · · , N2.

Using the primal decomposition based algorithm, we have
M(α) =

∑N2

i=1 fi(p
∗
i ) and thus F (α) = 1−α

2

∑N2

i=1 fi(p
∗
i ),
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where p∗i , i = 1, · · · , N2, is the optimal solution to the
problem (26). To verify the unimodality of F (α), we first
study the special case of N2 = 1. In this case, we do not
need to solve the master power allocation problem (26) and a
closed-form expression of F (α) can be obtained from (25) as

F (α) =
1− α

2
f1(Pα)

= (1− α) log
a1 − b1

a1
√
b1Pα + 1− b1

√
a1Pα + 1

. (32)

The first-order derivative of F (α) is given by

F ′(α) =− log
a1 − b1

a1
√
b1Pα + 1− b1

√
a1Pα + 1

−
a1b1Ps

1−α

(
1√

b1Pα+1
− 1√

a1Pα+1

)
a1
√
b1Pα + 1− b1

√
a1Pα + 1

. (33)

Fig. 2 shows the value of (32) and (33) versus α with Ps =
5dBm and Ns = Nr = Nd = N2 = 1. It can be clearly
seen that as F ′(α) crosses zero only once, F (α) in (32) is a
unimodal function of α.

For the general case of N2 > 1, a closed-form expression of
F (α) is not available. Nevertheless, we can solve the problem
(26) through (27) and (31) to calculate F (α) numerically.
The ‘Energy Constraint Only’ curve in Fig. 3 shows F (α)
versus α at Ps = 0dBm with Ns = Nr = Nd = N2 = 3
calculated using the primal decomposition based algorithm
described above. It can be observed that F (α) is a unimodal
function of α.
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Fig. 4. Unimodality of µ(pi) with Ns = Nr = Nd = N2 = 3.

We would like to note that it is non-trivial to solve (27) and
(31). This is because it is difficult to express pi explicitly as
a function of µ from (27). Moreover, µ is not a monotonic
function of pi in (27). In the next subsection, we develop an
efficient algorithm to solve (27) and (31) and thus obtain the
global optimum pi, i = 1, · · · , N2, by exploring the structure
of (27) and the principle of water-filling.

B. Solving Nonlinear Equations (27) and (31)
LEMMA 1: For each i in (27)

µ(pi, ai, bi) =
µ2(pi, ai, bi)

µ1(pi, ai, bi)
(34)

is a unimodal function of pi ≥ 0, and monotonically increases
with ai ≥ 0 and bi ≥ 0.

PROOF: See Appendix B. �
We plot µ(pi, ai, bi) in Fig. 4 versus p where Ns =

Nr = Nd = N2 = 3, and for subchannels 1-3, there are
(a1, b1) = (3.396, 14.843), (a2, b2) = (2.748, 6.463), and
(a3, b3) = (0.928, 2.647). It can be clearly seen from Fig. 4
that for all subchannels, µ is a unimodal function of pi. It can
be easily shown from (34) that µ(pi = 0) = µ(pi = ∞) = 0.
We can also observe from Fig. 4 that for any p, the value of
µ decreases with the subchannel index i (i = 1 corresponds
to the strongest spatial subchannel having the largest (ai, bi),
whereas i = 3 is the weakest one with the smallest (ai, bi)).
This supports the statement in Lemma 1 that µ is a monoton-
ically increasing function of ai and bi.

We would like to note that the difficulties in solving the
power allocation problem (27) and (31) are two-folds. First,
there is no closed-form solution to (27). Second, it can be
seen from Fig. 4 that for the ith subchannel, there are two
roots with a given µ for µ < µmax,i (i.e., the peak point).

By taking a closer look at (27) and (31), we find that they
can be solved by resorting to the principle of water-filling.
In particular, µ can be viewed as the ‘water level’ which
should be properly chosen to satisfy the power constraint (31).
Moreover, for a given µ, considering that fi(pi) decreases
with pi, the larger root between the two roots (the root on the
right) should be chosen in order to minimize (26a), as shown
in Fig. 4.

Since µ is a monotonically increasing function of ai and
bi, for each µ, the value of the solution p∗i to the ith problem
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in (27) decreases with i, i.e. p∗1(µ1) > p∗2(µ1) > p∗3(µ1) and
p∗1(µ2) > p∗2(µ2) as illustrated in Fig. 4. This agrees with the
well-known water-filling principle, where more power should
be allocated to stronger subchannels (with a larger (ai, bi)), in
order to maximize the system MI.

We can also observe from Fig. 4 that if Pα in (31) is large
enough, then all three subchannels have non-zero power. An
example of this case corresponds to the water level µ1 where
p∗1(µ1)+p∗2(µ1)+p∗3(µ1) = Pα. Once the power Pα available
is not enough for all three subchannels, following the principle
of water-filling, the weakest subchannels do not get any power
allocation. This situation is illustrated by water level µ2 where
subchannel 3 has zero power and p∗1(µ2)+p∗2(µ2) = Pα. If the
power Pα is very small such that Pα ≤ pmin,1, where pmin,1

is the power associated with the peak point of the strongest
subchannel shown on Fig. 4, then following the water-filling
principle, we have p∗1 = Pα and p∗i = 0, i = 2, · · · , N2.

Based on the discussions above, we develop an efficient
algorithm to solve (27) and (31) as summarized in Algo-
rithm 3. This algorithm has two stages if Pα > pmin,1. At
the initialization stage, we determine the set of subchannels
I = [1, · · · , L] (L ≤ N2) that have non-zero power allocation.
Whereas at the main stage, we obtain the optimal µ and
pi, i = 1, · · · , L, that satisfy (27) and (31) through a two-
loop bisection search, based on the fact that pi monotonically
decreases with µ for pi ≥ pmin,i, where pmin,i is the pi
associated with the maximal µ for the ith subchannel as shown
in Fig. 4. It can be seen from Algorithm 2 and Algorithm 3 that
the complexity of the primal decomposition based algorithm
can be estimated as O((c0+c1c2)N2), where c0 is the number
of iterations required to determine I at the initialization stage,
c1 and c2 stand for the number of iterations in the outer and
inner bi-section loops, respectively, at the main stage to obtain
the optimal pi.

THEOREM 2: The primal decomposition based algorithm
obtains the globally optimal solution of the problem (19).

PROOF: Firstly, as x∗
i in (22) is the only xi ≥ 0 that satisfies

the first-order optimality condition of ∂gi/∂xi = 0, (22) and
(23) are the globally optimal solution to the subproblem (21).

Secondly, as constraints in (26b) are linear constraints, from
the linearity constraint qualification [35], the optimal primal
variables pi, i = 1, · · · , N2 and the optimal dual variable µ
of the master problem (26) must satisfy the KKT conditions
(27) and (28). By exploiting the property of µ(pi, ai, bi) in
Lemma 1 and using the water-filling principle, we choose the
proper root of pi in (27). Therefore, among any possible so-
lutions to (27) and (31), the solution obtained by Algorithm 3
is globally optimal to the master problem (26).

In summary, since the globally optimal pi, i = 1, · · · , N2

are obtained from the solution of the master problem (26),
and for each pi, the globally optimal xi and yi are found,
the primal decomposition based algorithm obtains the globally
optimal solution of the problem (19).

C. Upper Bound Based Algorithm

The primal decomposition based algorithm requires a two-
loop bisection search, which may have a high computational

Algorithm 3 Solving the Equations (27) and (31).
Input: Pα, ai, bi, i = 1, · · · , N2.
Output: p∗i , i = 1, · · · , N2.

1: if Pα ≤ pmin,1 then
2: Set p∗1 = Pα and p∗i = 0, i = 2, · · · , N2.
3: else
4: Initialization stage:
5: Identify the maximal point (pmin,i, µmax,i) of µ(pi) for each

i ∈ I, where I = {1, · · · , N2}.
6: if pmin,i ≥ Pα, i = 2, · · · , N2 then
7: Remove i from I.
8: end if
9: Set µmax = mini∈I {µmax,i}. Solve pi for each i ∈ I in (27)

with µ = µmax through a bisection search over the interval of
[pmin,i, pmax,i], where pmax,i is a sufficiently large number.

10: if
∑

i∈I pi ≤ Pα then
11: Goto Step 15.
12: else
13: Remove i that corresponds to the smallest (ai, bi) from I

and go back to Step 9.
14: end if

Main stage:
15: Set µmin = 0.
16: while µmax − µmin > ε do
17: Let µ = (µmax + µmin)/2. Find p∗i in (27) for each

i ∈ I through a bisection search over the interval of
[pmin,i, pmax,i].

18: if
∑

i∈I p∗i ≤ Pα then
19: Set µmax = µ.
20: else
21: Set µmin = µ.
22: end if
23: end while
24: end if

complexity. In this subsection, we propose an algorithm to
solve the problem (19) based on a tight upper bound of (19a),
which has a lower computational complexity than the primal
decomposition based algorithm. The idea of this algorithm is
to introduce the following upper bound

1 + aixi + biyi
(1 + aixi)(1 + biyi)

<
1 + aixi + biyi + 1

(1 + aixi)(1 + biyi)

=
1

1 + aixi
+

1

1 + biyi
. (35)

Using (35), the problem of optimizing x and y with a given
α can be written as

min
x,y

N2∑
i=1

log

(
1

1 + aixi
+

1

1 + biyi

)
(36a)

s.t.

N2∑
i=1

xi +

N2∑
i=1

yi ≤ Pα (36b)

xi ≥ 0, yi ≥ 0, i = 1, · · · , N2. (36c)

The problem (36) is convex and can be efficiently solved by
the Lagrange multiplier method. The Lagrangian function of
(36) is

L(x,y, ν) =

N2∑
i=1

log

(
1

1 + aixi
+

1

1 + biyi

)

+ν

(
N2∑
i=1

xi +

N2∑
i=1

yi − Pα

)
(37)
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where ν ≥ 0 is the Lagrange multiplier.
Considering the KKT conditions, we have from (37) that

for i = 1, · · · , N2

∂L

∂xi
= −

(
1

1 + aixi
+

1

1 + biyi

)−1
ai

(1 + aixi)
2 + ν = 0 (38)

∂L

∂yi
= −

(
1

1 + aixi
+

1

1 + biyi

)−1
bi

(1 + biyi)
2 + ν = 0. (39)

From (38) and (39), we obtain the following equation
ai

(1 + aixi)
2 =

bi

(1 + biyi)
2 , i = 1, · · · , N2. (40)

By substituting (40) back into (38) and (39) and considering
that xi ≥ 0 and yi ≥ 0, the optimal x∗

i and y∗i can be obtained
as

x∗
i =

[ √
bi(√

ai +
√
bi
)
ν
− 1

ai

]†
, i = 1, · · · , N2 (41)

y∗i =

[ √
ai(√

ai +
√
bi
)
ν
− 1

bi

]†
, i = 1, · · · , N2 (42)

where for a real-valued number x, [x]† = max(x, 0).
The Lagrange multiplier ν can be computed by solving the

following nonlinear equation
N2∑
i=1

(x∗
i + y∗i ) = Pα (43)

where x∗
i and y∗i are given in (41) and (42), respectively. As

the left hand side of (43) is monotonically decreasing with
respect to ν, (43) can be efficiently solved by the bisection
method [34]. Interestingly, when Pα is sufficiently large, for
i = 1, · · · , N2, there is

x∗
i =

√
bi(√

ai +
√
bi
)
ν
− 1

ai
, y∗i =

√
ai(√

ai +
√
bi
)
ν
− 1

bi
.

(44)
Substituting (44) back into (43), we obtain ν as

ν = N2/Qα (45)

where Qα = Pα+
∑N2

i=1(
1
ai

+ 1
bi
). Substituting (45) back into

(44), we obtain for i = 1, · · · , N2

x∗
i =

√
biQα

(
√
ai +

√
bi)N2

− 1

ai
, y∗i =

√
aiQα

(
√
ai +

√
bi)N2

− 1

bi
.

(46)
THEOREM 3: The upper bound based objective function

F1(α) =
1− α

2

N2∑
i=1

log

(
1

1 + aix∗
i

+
1

1 + biy∗i

)
(47)

with x∗
i and y∗i given by (46), is a strictly convex function of

0 < α < 1.
PROOF: Substituting (46) back into (36a) we have

M1(α) =

N2∑
i=1

log

(
1

1 + aix∗
i

+
1

1 + biy∗i

)
= χ−N2 log

(
Ps

1 + α

1− α
+ τ

)
(48)

where

τ =

N2∑
i=1

(
1

ai
+

1

bi

)
− P0, χ =

N2∑
i=1

log
(
√
ai +

√
bi)

2N2

aibi
.

From (48), we have the first-order and second-order derivatives
of M1(α) as

M ′
1(α) =

2PsN2

(α− 1)[(Ps + τ) + (Ps − τ)α]
(49)

M ′′
1 (α) =− 4PsN2[αPs + (1− α)τ ]

(α− 1)2[(Ps + τ) + (Ps − τ)α]2
. (50)

We obtain from (47)-(50) that F1(α) = 1−α
2 M1(α) and the

second-order derivative of F1(α) as

F ′′
1 (α) =

1

2
[(1− α)M ′′

1 (α)− 2M ′
1(α)]

=
2P 2

sN2

(1− α)[(Ps + τ) + (Ps − τ)α]2
. (51)

Obviously, (51) indicates that F ′′
1 (α) > 0 for 0 < α < 1.

Thus, F1(α) is a strictly convex function of 0 < α < 1. �
The procedure of using the proposed upper bound based

algorithm to solve the problem (19) is summarized in Al-
gorithm 4. As only a one-loop bisection search is needed,
the upper bound based algorithm has a complexity order of
O(c3N2), where c3 is the number of bisection search used.
We observed during simulations that c3 is much smaller than
c0 + c1c2. Therefore, the upper bound based algorithm has
a lower computational complexity than the primal decompo-
sition based approach. It will be shown in Section IV that
compared with the primal decomposition based algorithm, the
upper bound based approach has a negligible performance loss.

As the complexity of calculating the SVD of H and G
is O(N2

sNr + N3
r ) and O(N2

rNd + N3
d ), respectively, the

overall computational complexity of solving the problem (11)
can be estimated as O(N2

sNr +N3
r +N2

rNd +N3
d + k1(c0 +

c1c2)N2) using the primal decomposition based algorithm, and
O(N2

sNr + N3
r + N2

rNd + N3
d + k2c3N2) with the upper

bound based algorithm, where k1 and k2 are the number
of bisection searches needed to obtain the optimal α. The
computational complexity of the algorithm in [2] is given by
O(N2

sNr+N3
r +N2

rNd+N3
d +k3c4N2), where k3 and c4 are

the number iterations required for optimizing α and (x,y),
respectively. Thus, the proposed algorithms have a similar
computational complexity order to the approach in [2].

D. Peak Power Constraint

With only the energy constraints (7) and (10) in the problem
(11), the transmission power at the source and relay nodes may
increase to a large value when α approaches 0 or 1. To impose
a constraint on the peak transmission power at the source node
during the energy transfer phase, we introduce λb ≤ Pm,s,
where Pm,s is the peak power at the source node. Based on
(16), this is equivalent to

N2∑
i=1

yi ≤
2αPm,s

1− α
− P0, α > α0 (52)
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Algorithm 4 Solving the Problem (19) Using the Proposed
Upper Bound Based Algorithm.
Input: Pα, ai, bi, i = 1, · · · , N2.
Output: x∗

i , y∗
i , i = 1, · · · , N2.

Initialization: The lower bound νl and the upper bound νu of ν;
Set x∗

i = y∗
i = 0, i = 1, · · · , N2.

1: while |
∑N2

i=1(x
∗
i + y∗

i )− Pα| > ϵ do
2: Set ν = (νl + νu)/2.
3: Update x∗ as (41) and y∗ as (42).
4: if

∑N2
i=1(x

∗
i + y∗

i )− Pα > ϵ then
5: Set νl = ν.
6: else
7: Set νu = ν.
8: end if
9: end while

where α0 = P0

2Pm,s+P0
. Considering constraints on the peak

transmission power at the source and relay nodes during the
information transfer phase, we have

N2∑
i=1

xi ≤ Pm,s (53)

N2∑
i=1

λf,i(λh,iλ2,i + 1) = ηλ̃h,1

N2∑
i=1

yi ≤ Pm,r (54)

where Pm,r is the peak power at the relay node. Both Pm,s and
Pm,r depend on factors such as the system hardware and elec-
tromagnetic interference requirements. By adding constraints
(52)-(54) into the problem (18), we have the following power
allocation problem with peak power constraints

min
α,x,y

1− α

2

N2∑
i=1

log
1 + aixi + biyi

(1 + aixi)(1 + biyi)
(55a)

s.t.

N2∑
i=1

xi +

N2∑
i=1

yi ≤ Ps
1 + α

1− α
− P0 (55b)

N2∑
i=1

xi ≤ Pm,s (55c)

N2∑
i=1

yi ≤ min

(
2αPm,s

1− α
− P0,

Pm,r

ηλ̃h,1

)
(55d)

α0<α<1, xi ≥ 0, yi ≥ 0, i = 1, · · · , N2. (55e)

For a given α, the problem (55) can be viewed as a power
allocation problem in a two-hop MIMO relay system with both
sum power constraint across the source and the relay nodes
(55b) and individual power constraints at the source node
(55c) and the relay node (55d). This makes the problem (55)
even harder to solve than the problem (18). Interestingly, by
studying which constraints in (55) are tight, the problem (55)
can be divided into the sum power constraint case which can
be solved by Algorithm 1, and the individual power constraint
case which can be solved by existing works such as [2].

An exact analysis on the value of (55a) is very difficult even
without the constraints (55c) and (55d), as it is mentioned
before, the analysis of the value of (18a) subjecting to (18b)
is hard. With the individual power constraints (55c) and (55d),
the feasible region of the problem (55) is smaller compared

with that of the problem (18). Therefore, the optimum of (55a)
subjecting to (55b)-(55e) might be larger than the optimum of
(18a) under (18b)-(18c). The following lemma summarizes the
impact of (55c) and (55d) on the value of (55a).

LEMMA 2: The constraint (55c) affects the value of (55a)
for α ∈ [αx, 1), and (55d) changes the value of (55a) for
α ∈ (α0, αy] and α ∈ [αz, 1), where α0 < αx, αy, αz < 1 are
threshold parameters. In particular, as Pm,s and Pm,r decrease,
αx and αz decrease, while αy increases.

PROOF: Firstly, we compare the two constraints (55b) and
(55c). As Ps

1+α
1−α − P0 increases with α, the feasible region

specified by (55b) expands when α increases. Thus, there
exists an αx ∈ (α0, 1) such that for α0 < α < αx, (55c) is less
strict than (55b), while (55c) becomes active for αx ≤ α < 1.
Obviously, as the feasible region defined by (55c) shrinks
when Pm,s decreases, this indicates that (55c) becomes active
for a smaller αx when Pm,s decreases.

Secondly, we compare the two constraints (55b) and (55d).
Let us rewrite (55d) as

N2∑
i=1

yi ≤
2αPm,s

1− α
− P0, α ≤ α1 (56)

N2∑
i=1

yi ≤
Pm,r

ηλ̃h,1

, α1 ≤ α < 1 (57)

where α1 = ϖ
2Pm,s+ϖ and ϖ =

Pm,r

ηλ̃h,1
+ P0. As 2αPm,s

1−α − P0

increases with α, there exists an αy ∈ (α0, α1] such that for
α0 < α ≤ αy , constraint (56) is stricter than (55b). As α
increases, there also exists an αz ∈ [α1, 1) such that (57) is
stricter than (55b) for αz ≤ α < 1. Moreover, the feasible
region specified by (55d) shrinks when Pm,r and/or Pm,s

decrease. This implies that (55d) is active for a larger αy and
a smaller αz when Pm,s and Pm,r decrease, respectively. �

The three ‘Peak Power Constraints’ curves in Fig. 3 show
the optimum of (55a) (i.e., F (α)) subjecting to (55b)-(55e)
where Pm,s = Pm,r = κPs, with κ = 1, κ = 2, and κ = 10,
respectively. It can be seen that the peak power constraints
(55c) and (55d) indeed change the value of F (α) particularly
for smaller κ where the feasible region defined by (55c) and
(55d) is small. Interestingly, for κ = 10, (55c) and (55d) only
increase the value of F (α) when α approaches 0 or 1, and they
do not affect F (α) in the middle range of α. When κ = 2,
F (α) is affected by (55c) and (55d) for a wider range of α.
For κ = 1, the peak power constraints greatly change F (α)
for the whole range of 0 < α < 1. These observations verify
Lemma 2. Moreover, in the example of Fig. 3, the minimum of
F (α) remains unchanged for κ = 2 and κ = 10, but increases
under κ = 1. Interestingly, for all three κ, F (α) is still a
unimodal function of α as shown in Fig. 3.

IV. SIMULATIONS

In this section, we study the performance of two proposed
algorithms through numerical simulations. We consider a
scenario where the three nodes are located in a line as shown
in Fig. 5. Without specifically mentioned, the distance between
the source node and the destination node is Dsd = 20
meters, and the source-relay and relay-destination distances are
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Source Relay Destination

Dsr Drd
Dsd=Dsr+Drd

Fig. 5. Source, relay, and destination placement.

Dsr = 10d meters and Drd = 10(2−d) meters, respectively4,
where the value of 0 < d < 2 is normalized over a distance
of 10 meters. The reason of such normalization is to make it
easy to identify whether the relay node is located closer to
the source node (0 < d < 1) or closer to the destination node
(1 < d < 2). Similar to [27], [28], [37], the channel matrices
are modeled as H = D

−ζ/2
sr H̄ and G = D

−ζ/2
rd Ḡ, where

D−ζ
sr and D−ζ

rd are the large-scale path loss and H̄ and Ḡ
denote the small-scale Rayleigh fading. Here ζ is the path loss
exponent. Considering the suburban propagation environment,
we choose ζ = 3 [37]. H̄ and Ḡ have independent and
identically distributed (i.i.d.) complex Gaussian entries with
zero-mean and variances of 1/Ns and 1/Nr, respectively. In
the simulations, we choose 0.1 < d < 1.9 such that Dsr > 1
and Drd > 1. The noise power at the relay and the destination
nodes is fixed as σ2

r = σ2
d = −50dBm. For all simulation

examples, we fix Ns = Nr = Nd = N2 = N . The per-
antenna static power consumption at the relay node is set to
Pc = 1µW. We compare the performance of the proposed
primal decomposition based algorithm (Algorithms 1, 2, and
3) and the upper bound based approach (Algorithms 1 and 4)
with the algorithm in [2], which is denoted as the constant
power based algorithm as the constraints (8) are employed
in [2]. All the numerical simulation results are averaged over
1000 independent channel realizations.

A. Example 1: MI versus the Nominal Source Node Power

In the first example, we set d = 1. The MI of three
algorithms versus the nominal power Ps is shown in Fig. 6
with N = 5 for η = 0.8. As a benchmark, the system MI by
using the Matlab fmincon tool to solve the problem (18) is also
shown in Fig. 6. We observe from Fig. 6 that the two proposed
algorithms perform better than the Matlab fmincon algorithm
and the constant power based algorithm in [2] throughout
the whole range of Ps. Moreover, the MI gap between both
proposed algorithms and that of the fmincon algorithm and the
constant power based algorithm increases with Ps. In fact, at
Ps = 20dBm, the proposed algorithms achieve a 40% increase
of the MI of the constant power based algorithm.

Fig. 7 shows the MI of three algorithms versus the nominal
power Ps with N = 3 for η = 0.8 and η = 0.5. It can
be seen from Fig. 7 that the system achieves a lower rate at
η = 0.5 compared with that at η = 0.8. In the following,
we choose η = 0.8 in the simulations. Interestingly, we can
observe from Figs. 6 and 7 that the performance of the two
proposed algorithms is almost the same. The reason is that
for the upper bound based algorithm, the bound error 1/((1+
aixi)(1 + biyi)) is small as aixi and biyi are much larger
than 1 under practical wireless powered relay communication
scenarios. Therefore, both proposed algorithms converge to the

4This is among the typical distance of RF-based wireless power transfer
reported in [36].
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Fig. 6. Example 1: MI versus Ps with energy constraint only, N = 5,
d = 1.
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Fig. 7. Example 1: MI versus Ps with energy constraint only, N = 3,
d = 1.

same optimal performance. By comparing Fig. 6 with Fig. 7,
we can see that the achievable rate increases with the number
of antennas.

Fig. 8 shows the system MI versus Ps with N = 3 consid-
ering the peak power constraints. We set Pm,r = Pm,s = κPs

with κ = 1, κ = 2, and κ = 10. It can be seen that the
achievable MI increases with κ. Interestingly, the system MI
with κ = 1 is similar to that of the constant power based
algorithm. This indicates that the proposed framework includes
the algorithm in [2] as a special case.

B. Example 2: Time Switching Factor versus the Nominal
Source Node Power

In the second example, we set N = 3 and d = 1. The time
switching factors α calculated as optimal by three algorithms
versus the nominal power Ps are shown in Fig. 9. It can be
seen from Fig. 9 that for all three algorithms, the optimal α
monotonically decreases as the nominal power Ps increases.
The reason is that as Ps increases, a smaller α is sufficient for
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Fig. 8. Example 1: MI versus Ps with peak power constraints, N = 3,
d = 1.
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Fig. 9. Example 2: Optimal α versus Ps, N = 3, d = 1.

the relay node to harvest the energy required for forwarding
the information signals.

Moreover, we observe from Fig. 9 that the optimal α of
the two proposed algorithms are very close to each other,
and the optimal α for the system with peak power constraints
where Pm,r = Pm,s = 2Ps is similar to that of the constant
power based algorithm. Interestingly, the variation of α in
the two proposed algorithms throughout the range of Ps is
larger than that of the fixed power algorithm. In fact, for both
proposed algorithms, the optimal α becomes very small when
Ps is at 20dBm. The reason is that when Ps is large enough,
λb (the power level at the source node at the first interval)
obtained by the proposed algorithms increases. Thus, even
though α is small, the energy αηλ̃h,1λb harvested by the relay
node is sufficient for forwarding the signal to the destination
node. Therefore, for both proposed algorithms, more time is
allocated for information transmission so that a higher data
rate can be achieved at large Ps.

C. Example 3: MI and Energy Consumption Trade-off Com-
parison

We observe from Fig. 9 that the optimal α obtained by the
two proposed algorithms is smaller than that in [2]. Since the
power-carrying signals are transmitted at the same nominal
power Ps from the source node to the relay node, we can
expect that the energy consumed by the proposed algorithms
is less than that by [2]. This is confirmed by Fig. 10 where the
total system energy consumption of three algorithms 1+α

2 Ps

(measured in Joule per time T ) is plotted versus Ps for N = 3
and d = 1. It can also be seen from Fig. 10 that the two
proposed algorithms consume a similar amount of power.

Interestingly, from Figs. 6 and 10, we can see that for a
given Ps, the two proposed algorithms achieve a higher MI
while consuming less energy. Hence, the proposed algorithms
have a better rate-energy trade-off than the constant power
based algorithm. This fact is further illustrated by Fig. 11
where we plot the MI versus energy of three algorithms for
N = 3 and d = 1. It can be clearly seen from Fig. 11 that the
energy efficiency of the proposed algorithms is much higher
than that of the constant power based algorithm. In fact, with
the energy of 0.05 J/T , the MI achieved by the proposed
algorithm is 70% more than that of the constant power based
algorithm.

Fig. 12 shows the system MI versus the energy harvested
at the relay node Er in (2) for N = 5 and d = 1. It can
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Fig. 10. Example 3: Total system energy consumption versus Ps, N = 3,
d = 1.
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Fig. 11. Example 3: MI versus total system energy consumption, N = 3,
d = 1.

be clearly seen that the system achievable data rate increases
with Er. Thus, η2Er increases with the amount of information
processing and it is sensible to adopt η2Er as the dynamic part
of the circuit energy consumption in Section II.

D. Example 4: Achievable MI at Various Distances

In the last example, we study the impact of source-relay
distance on the achievable MI. First we set N = 3 and study
the achievable MI at various d. Fig. 13 shows the MI of the
upper bound based algorithm versus Ps at various d. The
performance of the primal decomposition based algorithm is
not shown in Fig. 13 as it has a similar MI as the upper
bound based algorithm. Fig. 14 shows the MI of all three
algorithms versus d with N = 3 and Ps = 15dBm. It can be
seen from Figs. 13 and 14 that for the three algorithms tested,
the achievable MI first decreases when d increases and then
increases again with the growth of d. The reason is that when
the relay node is closer to the source node, it can harvest more
energy and consequently, the MI is higher. When the relay
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Fig. 12. Example 3: MI versus energy harvested at the relay node, N = 5,
d = 1.
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Fig. 13. Example 4: MI of the upper bound based algorithm versus Ps at
various d, N = 3.
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Fig. 14. Example 4: MI versus d, Ps = 15dBm, N = 3.

node is very close to the destination node, although the amount
of harvested energy is smaller, the shorter relay-destination
distance and thus a better second-hop channel improves the
system MI. Moreover, it can be observed from Fig. 14 that
the proposed algorithms have an MI gain of 0.5-1.5 bits/s/Hz
over the constant power based algorithm over the whole range
of d.

Finally, we investigate the impact of the source-destination
distance. Here we set the source-relay and relay-destination
distances as Dsr = 5D meters and Drd = 10D meters, re-
spectively. Thus, the source-destination distance is Dsd = 15D
meters. It can be seen from Fig. 15 that compared with a
three-antenna system, having five antennas can improve the
source-destination distance.

V. CONCLUSIONS

We have investigated the transceiver optimization for TS-
based wireless information and energy transfer in two-hop
non-regenerative MIMO relay systems. Compared with the
fixed power constraint at the source node used in existing
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Fig. 15. Example 4: MI versus D, Ps = 15dBm.

works, a more general energy constraint at the source node
has been proposed. The optimal structure of the source and
relay precoding matrices has been derived and a two-loop
method has been developed to solve the transceiver optimiza-
tion problem. Numerical simulations show that both proposed
algorithms yield much higher system MI and better rate-energy
tradeoff than the constant power based method. We have found
that the value of the optimal time switching factor decreases
as the nominal power of the source node increases, and the
system MI increases with the energy harvested at the relay
node. Interestingly, we have observed that with a fixed source-
destination distance, the achievable MI is higher as the relay
node gets closer to the source node or the destination node,
and other factors such as the accessibility should be considered
when determine the position of the relay node.

APPENDIX A
PROOF OF THEOREM 1

The following result from [38] is needed to prove Theo-
rem 1.

LEMMA 3 [38, H.1.g]: For two n× n positive semidefinite
matrices U and V, there is tr(UV) =

∑n
i=1 λi(UV) ≤∑n

i=1 λi(U)λi(V), where λi(A) denotes the ith eigenvalue
of matrix A, λi(U) and λi(V), i = 1, · · · , n, are sorted in
the same order.

Now we start to prove Theorem 1. First we prove the
optimal structure of B1. It can be seen from the problem (11)
that B1 does not appear explicitly in the objective function
(11a), and it affects (11a) through changing the feasible region
of the problem specified by the constraints (11b) and (11c).
Therefore, in order to maximize the feasible region, for any
tr(B1B

H
1 ), we should maximize tr(HB1B

H
1 HH), which can

be written as the following optimization problem

max
B1

tr(HB1B
H
1 HH) (58a)

s.t. tr(B1B
H
1 ) = λb (58b)

where λb is a positive scalar.
Let us introduce the eigenvalue decomposition of B1B

H
1 =

U1Λ1U
H
1 , where the diagonal elements of Λ1 are sorted in

decreasing order (same as Λh in (12)). From Lemma 3, we
have tr(HB1B

H
1 HH) ≤

∑Ns

i=1 λ̃h,iλ1,i, where λ̃h,i and λ1,i

denote the ith diagonal element of Λh and Λ1, respectively,
and the equality is achieved if and only if U1 = VhΦ. Here
Φ is an Ns × Ns diagonal matrix with unit norm diagonal
elements, i.e., |ϕi,i| = 1, i = 1, · · · , Ns. Without affecting
the values of (58a) and (58b), we choose Φ = INs , and thus
U1 = Vh. Hence, the problem (58) becomes

max
λ1

Ns∑
i=1

λ̃h,iλ1,i s.t.

Ns∑
i=1

λ1,i = λb (59)

where λ1 = [λ1,1, · · · , λ1,Ns ]
T . Obviously, the solution of the

problem (59) is λ1,1 = λb and λ1,i = 0, i = 2, · · · , Ns. Thus,
we have B1B

H
1 = λbvh,1v

H
h,1. Therefore, we prove

B∗
1 = λ

1
2

b vh,1. (60)
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By substituting (60) back into the problem (11), we have
the problem of

max
0<α<1,λb,B2,F

MI(α,B2,F) (61a)

s.t. tr(B2B
H
2 ) ≤ 2

1− α

(
1 + α

2
Ps − αλb

)
(61b)

tr(F(HB2B
H
2 HH + σ2

rINr )F
H)

≤ 2αη

1− α
λbλ̃h,1 −NrPc. (61c)

It can be seen that for any given α and λb, the problem (61) is
in the same form as the problem (13)-(15) in [13]. Therefore,
B∗

2 and F∗ in (13) are proven based on Theorem 1 in [13]. �

APPENDIX B
PROOF OF LEMMA 1

For the simplicity of notations, in the proof we write
µ(pi, ai, bi) as µ(pi) when we prove the unimodality of µ
with respect to pi, and write µ(pi, ai, bi) as µ(ai) and µ(bi),
respectively, when we prove µ monotonically increases with ai
and bi. From (29) and (30), we have the first-order derivatives
of µ1(pi) and µ2(pi) as

µ′
1(pi)=

2aibipi + ai + bi

2
√
(aipi + 1)(bipi + 1)

(62)

µ′
2(pi)=

aibi(ai − bi)
2

2(ai
√
bipi+1−bi

√
aipi+1)2

√
(aipi+1)(bipi+1)

.(63)

Using (62) and (63), we have

µ′(pi)=
µ′
2(pi)µ1(pi)− µ′

1(pi)µ2(pi)

µ2
1(pi)

=
aibi(µ3(pi)− µ4(pi))

2(ai
√
bipi+1−bi

√
aipi+1)2

√
(aipi+1)3(bipi+1)3

(64)

where

µ3(pi) = (2aibipi + ai + bi)
2 (65)

µ4(pi) = 2aibi
√

(aipi+1)(bipi+1)(aipi+bipi+2). (66)

In the following, we show that µ′(pi) = 0 has only one root
for pi ≥ 0.

From (64)-(66), we know that the root of µ′(pi) = 0 is
equal to the root of the following equation

J1(pi) = µ2
3(pi)−µ2

4(pi) = −4a2i b
2
i (ai−bi)

2J(pi) = 0 (67)

where

J(pi) = aibip
4
i + (ai + bi)p

3
i − p2i −

(
2

ai
+

2

bi

)
pi

−a2i + b2i + 6aibi
4a2i b

2
i

. (68)

From (68) we have

J ′(pi) = 4aibip
3
i + 3(ai + bi)p

2
i − 2pi −

(
2

ai
+

2

bi

)
(69)

J ′′(pi) = 12aibip
2
i + 6(ai + bi)pi − 2 (70)

where J ′(pi) and J ′′(pi) are the first-order and second-order
derivatives of J(pi), respectively. It can be clearly seen from

(68)-(70) that J(0) < 0, J ′(0) < 0, J ′′(pi) < 0 for 0 ≤ pi <
pi,0 and J ′′(pi) > 0 for pi > pi,0, where pi,0 is the positive
root of J ′′(pi) = 0 give by

pi,0 =
−3(ai + bi) +

√
9a2i + 42aibi + 9b2i

12aibi
.

Therefore, J(pi) can cross zero only once for pi ≥ 0. Thus,
we know from (67) that µ′(pi) = 0 has only one root for
pi ≥ 0. As a result, µ(pi) is a unimodal function of pi.

Now we start to prove that µ(ai) is a monotonically
increasing function of ai. We have from (29), (30), and (34)
that

µ(ai) = µ̄1(ai)µ̄2(ai) (71)

where

µ̄1(ai) =

√
aibi

(aipi + 1)(bipi + 1)
(72)

µ̄2(ai) =

√
aibi(

√
aipi + 1−

√
bipi + 1)

ai
√
bipi + 1− bi

√
aipi + 1

. (73)

Obviously, µ̄1(ai) monotonically increases with ai. After
several steps, we find that the first-order derivative of µ̄2(ai)
with respect to ai can be written as

µ̄′
2(ai)=

(ai − bi)(
√
aipi + 1−

√
bipi + 1)

2
√
a3i bi(aipi+1)

(√
ai

bi
(bipi+1)−

√
bi
ai
(aipi+1)

)2
(74)

where we can see µ̄′
2(ai) ≥ 0. From (71) we have

µ′(ai) = µ̄1(ai)µ̄
′
2(ai) + µ̄′

1(ai)µ̄2(ai). (75)

Since µ̄1(ai) ≥ 0, µ̄2(ai) ≥ 0, µ̄′
1(ai) ≥ 0, and µ̄′

2(ai) ≥ 0,
we know from (75) that µ′(ai) ≥ 0, which indicates that µ(ai)
is a monotonically increasing function of ai. As (72) and (73)
have a symmetric structure with respect to ai and bi, we can
prove that µ(bi) is a monotonically increasing function of bi
similar to (71)-(75). �
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