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Abstract

The objective of this paper is to investigate the influence of the rake angle on

the magnitude of the intrinsic specific energy and the inclination of the force

acting on the cutting face of a Polycrystalline Diamond Compact (PDC) sharp

cutter while tracing a groove on the surface of a rock sample. An extensive

and comprehensive set of cutting experiments are performed on a wide range of

quarry rock samples using a state of the art rock cutting equipment (Wombat).

The results conform with the previous studies by other researchers; the intrinsic

specific energy is in good agreement with the uni-axial compressive strength of

the rock samples when the cutter is positioned at back rake angles between 5◦

and 20◦. New results on a few rock samples were also obtained by performing

novel experimental tests at very large rake angles (θ > 70◦) as well as negative

rake angles, showing that the intrinsic specific energy increases dramatically

once the back rake angle exceeds 75◦. Results also indicate that the decrease of

the apparent interfacial friction angle with increasing back rake angle seems to

follow a “universal trend” weakly dependent on the rock sample.
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1. Introduction

Polycrystalline Diamond Compact (PDC) bits have been used in the petroleum

drilling industry since 1973. Unlike tricone bits, which indent the rock with a

crushing force, PDC bit cutters machine out the rock surface and cause rock

failure by a shearing action. Rock cutting is one of the most important processes5

involved in the mechanical excavation and drilling of rock, which have both been

research topics of particular interest in the areas of civil, mining and petroleum

engineering over the past decades. A drill bit is a collection of cutting elements

(cutters) whose rake angles can vary from cutter to cutter [1–4].

It is generally accepted in the literature [5–10] that the force acting on a10

single cutter is governed by the coexistence of two independent processes: (i)

a “frictional contact” process mobilised across the wear flat, and (ii) a “pure

cutting” action in front of the cutting face. This study focuses on the pure

cutting process where the term “pure” means that all the energy is devoted to

remove the rock material and no energy is dissipated by the frictional contact15

process.

Rock cutting can be characterized by two main failure modes (depending on

the depth of cut) that take place ahead of the cutting face:(i) a ductile regime

(with depth of cut typically less than 1 mm [11]) which is characterized by the

de-cohesion of the constitutive matrix and grains of the rock with grains and20

powder accumulating progressively ahead of the cutter and (ii) a brittle regime

(at larger depth of cut) which is associated with the propagation of macroscopic

cracks at the tip of the cutting tool [11–15]. In the case of ductile regime, work

performed by the cutter is proportional to the volume of rock being removed,

which leads to a linear relationship between the cutting force and the cross-25

sectional area of the groove traced by the cutter [7, 12]. The two cutting force

components Fcn and Fcs, normal (subscript n) and parallel (subscript s) to the

velocity vector v (see Fig. 1), respectively, can be written as:

2



Figure 1: Schematic of force components acting on a sharp cutter.

 Fcn = ζεAc

Fcs = εAc

(1)

Here, ε is the intrinsic specific energy (defined as the minimum energy to

remove a unit volume of the rock with the unit of stress MPa [16]) which30

increases with increasing back rake angle (θ) but correlates very well with the

uni-axial compressive strength (q) of the rocks for rectangular cutter (for ω '

10− 20 mm where ω is the width of cutter) when the back rake angle (θ) is in

the range of 10◦ to 20◦ [11, 12, 17–21]. The back rake angle or θ is defined as

the angle between the normal to the cutting surface (k) and the velocity vector35

and Ac is the cross-sectional area of the groove traced by the cutter (Ac = ω×d

for a rectangular shaped cutter where d is the depth of cut). The number ζ is

given by:

ζ = tan (θ + ψ) (2)

where ψ is the interfacial friction angle which is found independent of the depth

of cut for a given back rake angle. However, experimental observations [12, 22]40

suggest that the interfacial friction angle is predominantly affected by the back
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rake angle; an increase in the back rake angle leads to a decrease of interfacial

friction angle. Results suggest that the failed materials mostly flow upward

at small rake angle but as the back rake angle increases, backward flow of

material increases at the expense of the upward flow due to the presence of a45

zone of dead material (or build-up edge BUE) at the cutting edge, leading to an

overall rotation of the resulting cutting force with respect to the normal to the

cutter. Although research efforts [21–24] have been devoted to study the cutting

response of sharp and blunt cutters, to the best knowledge of authors, no work

has been dedicated to capture the evolution of the cutting response of a sharp50

cutter at negative back rake angles and as the back rake angles approaches 90◦.

In the present paper, we present, analyze and discuss the results of tests

carried out with a sharp cutter at different back rake angles but also on a wide

range of sedimentary rock samples with the intention of exploring the effect of

rock material on the relation between the interfacial friction angle and the back55

rake angle. Furthermore, on a few rock samples, the back rake angle was varied

from a negative value (cutter inclined backward with respect to the direction of

cutting) to the highest possible forward inclination allowed by the equipment, up

to nearly 85◦, with the intention of capturing the transition from a cutting (un-

contained failure) to a contact (contained failure) process as the cutter forward60

inclination increases. For this purpose, an extensive series of laboratory cutting

experiments were conducted on thirteen different rock samples (clastics and

carbonates) on a state of the art rock cutting laboratory equipment using a

tailored designed cutter holder with adjustable rake angle.

2. Experimental setup65

2.1. Scratching device (The Wombat)

The “Wombat” machine developed by EPSLOG Engineering SA, shown in Fig.

2, is designed to scratch rock samples under constant depth of cut (d). The

cutter moves at a constant horizontal velocity (v = 4 mm/s) while the appara-
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tus records separately the magnitudes of the normal (Fn) and tangential (Fs)70

components of the total force acting on the cutter with a precision of 1 N over

a range of 0 to ±4000 N.

Cutter Holder

Figure 2: Wombat parts and cutter holder.

A ball screw via a stepper motor gear box configuration drives the horizontal

travelling block which supports a frame hosting a vertical slide on which a load

sensor is mounted. A rotating wheel is used to travel the vertical slide and the75

sensor, up and down to precisely adjust the depth of cut. A digital micrometer

displays readout of the position of the travelling mechanism. Locking screws

are used to lock the slide in position once the depth of cut is set. A Windows-
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based-software (GUI) written in Matlab allows the user to select the cutting

velocity and the test length.80

A cutter holder was used to impose the back rake angle (see Fig. 2). An

image processing software (ImageJ) was used to highlight the edges of the cutter

and then imported into the AutoCad 2015 to measure the back rake angle

precisely. The step by step procedure is detailed in Ref. [25].

The slant of the cutter or the back rake angle (θ), is the inclination of the85

cutter in reference system of axes (n-s) where the vector s is co-linear to the

velocity vector (v), see Fig. 1. The back rake angle is defined as the angle

between the velocity vector (v) and the normal k to the cutting face of the

cutter.

2.2. Cutters90

This study is concerned with PDC sharp cutters which are made of thin layer

of polycrystalline diamond laid down on a carbide tungsten base. The work

is restricted to rectangular shaped cutters of width ω = 10 mm. Apart from

tests carried out at negative rake angles, cutting tests were performed with the

standard PDC sharp cutter. In the case of negative angles, a PDC sharp cutter95

was machined so its relief surface would not drag against the rock. These cutters

are nominally sharp cutters and the cutting edge of each cutter is regularly

monitored using a high resolution optical microscope (model AxioScope Imager

A1). The drawings and pictures of the cutters used for the current study are

presented in Appendix A.100

2.3. Rock materials

The tests were conducted on thirteen different quarry rocks, three limestones

(Tuffeau, Savonnieres and Indiana) and ten sandstones (Mountain Gold, Castle-

gate, Bentheimer, Boise, Berea I and Berea II, Berea Sister Gray, Buff Berea,

Berea Upper Gray and Carbon Tan) with different porosities, apparent densities105

and uni-axial compressive strengths. Table 1 lists some of the mechanical and
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petro-physical properties of the rock materials.

Table 1: Mechanical and petro-physical properties of rock materials used
for cutting tests [25].

Rock

type

Rock

name

q

(MPa)

ΦDry

(%)

ρDry

(kg/m3)

K

(mD)

E

(GPa)

ν

L
im

e
st

o
n

e Tuffeau 8.51 41.49 1360 39.07 1.70 0.24

Indiana 30.20 16 2290 4 16.10 0.10

Savonnieres 19.58 32.23 1880 25.15 12.23 0.21

S
a
n

d
st

o
n

e

Castlegate 15.03 26 1970 750 3.73 0.63

Mountain Gold 34 15.70 2220 2.09 8.10 0.20

Bentheimer 49.13 24 2320 2.30 12.82 0.26

Boise 23.73 28 1830 1.70 8.60 0.31

Berea I 38.95 21 2090 496.39 11.80 0.25

Berea II 47.10 23 2320 260.51 13.04 0.43

Buff Berea 35.54 22 2008 150 9.32 0.23

Berea

(Sister Gray)

50.40 21 2140 80 11.90 0.20

Berea

(Upper Gray)

44.80 19.46 2170 115 13.20 0.40

Carbon Tan 56.2 15 2220 11 10.2 0.38

q: Uni-axial compressive strength, ΦDry : Dry porosity, ρDry : Dry density, K: permeability,

E: Young’s modulus, ν: Poisson’s ratio

A compression test machine (manufactured by Wykeham Farrance) was used

to measure the uni-axial compressive strength (q), Young’s modulus (E) and

Poisson’s ratio (ν) of the rock samples used in this research. This machine is a110

displacement controlled machine which comprises of the main mechanical parts:

a load frame, a load cell, two strain gauges for radial strain (εr) which have

been manufactured by CSIRO, two compression platens, a control system, a

gear box and two LVDTs (Linear variable displacement transducers) for axial

strain (εa). The rock samples were cut into cylindrical shapes with length115
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over diameter ratio of approximately 2.2. The rock sample was set up in the

compression test machine with transducers in place to measure sample axial

and radial deformations and axial load. Each core plug was tested unsaturated.

Each sample was axially loaded under a constant average axial strain rate 0.5%

giving a loading rate of 0.259 mm/min for both Bentheimer and Boise and 0.014120

mm/min for all other rocks until the samples failed. The Young’s modulus (E)

and Poisson’s ratio (ν) were determined from the tangential slope of the curve

of deviatoric stress versus average axial strain and the tangential slope of the

curve of average radial strain versus average axial strain between 40% and 60%

of the maximum deviatoric stress, respectively.125

To measure the grain (or particle) size of the rock samples, these rock sam-

ples were crushed very gently in a mortar with a plastic pestle. An Ultrasonic

Bath Cleaner was also used to ensure the grains were completely separated from

each other. A Mastersizer 3000 laser diffraction particle size analyzer was used

to measure the grain (particle) sizes. This machine can be used for both wet and130

dry particles by measuring the intensity of the light scattered as a laser beam

passes through a dispersed particulate sample. The grain diameters correspond-

ing to 10%, 50%, and 90% finer (from the cumulative grain-size distributions)

are listed in Table 2.
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Table 2: Grain size distribution diameters.

Rock type Rock name D10(µm) D50(µm) D90(µm)

Limestone
Tuffeau 24 181 533

Indiana 9 515 1070

Savonnieres 3 95 466

Sandstone

Castlegate 8 13 345

Mountain Gold 8 401 792

Bentheimer 3 94 447

Boise 70 460 750

Berea I 93 197 346

Berea II 6 168 323

Buff Berea 8 214 380

Berea sister Gray 27 162 313

Berea Upper Gray 31 155 312

Carbon Tan 102 186 325

D10 is the diameter at which 10% of a sample’s mass is comprised of smaller particles.

D50 is the diameter at which 50% of a sample’s mass is comprised of smaller particles.

D90 is the diameter at which 90% of a sample’s mass is comprised of smaller particles.

2.4. Experimental procedure135

The first step consists of a visual evaluation of the sample to assess its level

of inhomogeneity. It involves identifying the level of fracturing or layering of

the rock specimen to isolate weak joints which can result in splitting of the

specimen especially if cut is conducted orthogonal to the direction of fracturing.

The second step involves the clamping of the specimen on the machine. One or140

several primary cuts are required prior to any test series in order to flatten the

rock surface and to provide a horizontal groove surface of width equal to the

cutter width over the length of test that is envisaged. The first depth of cut

is roughly estimated (typically around 0.15 mm) by positioning the cutter tip

at a given location below the highest point of the sample surface. Subsequent145

depths of cut are adjusted relative to the previous groove level. From one test
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to another, the depth of cut is adjusted relative to the prior groove. Practically,

the micrometer is reset to zero after the depth of cut has been adjusted and

before the test is run. Note that after carrying out a test, both the rock and

cutter surfaces are cleaned with a brush. All the cutting tests in this research150

were carried out in the ductile regime of failure mode.

3. Experimental results and discussion

For a given back rake angle (θ), successive tests were carried out in the same

groove with increasing depth of cut. As the back rake angle increases, the range

of depth of cut decreases due to practical limitations. The depth of cut (d)155

is simply limited by the projected height of the cutter (d < h cos θ), see Fig.

3. Another limitation comes from the groove cumulative depth; past a critical

groove depth, the edge of the holder touches the edge of the groove affecting

the recording. Table 3 summarizes the range of depths of cut covered for each

back rake angle.160

Figure 3: Maximum possible depth of cut as function of cutter back rake
angle.
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Table 3: Practical range of depth of cut for given back rake angle.

Back rake angle θ Ranges of depth of cut

-10◦ 0.10 mm-0.40 mm
15◦ 0.10 mm-0.70 mm
30◦ 0.10 mm-0.70 mm
45◦ 0.10 mm-0.50 mm
60◦ 0.10 mm-0.50 mm

70.50◦ 0.10 mm-0.48 mm
82.50◦ 0.09 mm-0.30 mm

The intrinsic specific energy is readily derived from best linear fit carried

out on the pairs Fcs − Ac. The number ζ is also obtained from best linear fit

conducted on the set of data points (Fcn − Fcs).

3.1. Cutting responses at 0◦ ≤ θ ≤ 70◦

Results of the tests are shown in Fig. 4 to Fig. 7 and confirm results obtained by165

Richard [12] and Richard & Coudyzer [22], but extend the results over a larger

selection of rock materials and a larger range of back rake angles. The evolution

of the intrinsic specific energy scaled by the uni-axial compressive strength ( ε
q )

shown in Fig. 4 clearly shows that the intrinsic specific energy (ε) is very close

to the uni-axial strength of the rock (q) when the back rake angle ranges from 5◦170

to 20◦, see Table 4. This result confirms previous findings by other researchers

[11, 20], see Fig. 5.
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Figure 4: Scaled intrinsic specific energy ( ε
q
) at different back rake angles

(θ). Tests performed with PDC sharp cutter.

Table 4: Correlation between the intrinsic specific energy (ε) from cutting
test carried out at a 15 degree back rake angle and the uni-axial compressive
strength (q).

Rock name ψ15◦ ε15◦ (MPa) q (MPa)

Tuffeau 13.83◦ 8.42 8.51

Indiana 27.92◦ 32.35 30.20

Savonnieres 12.63◦ 20.10 19.58

Castlegate 15.11◦ 15.85 15.03

Mountain Gold 13.26◦ 30.64 34

Bentheimer 15.75◦ 46.42 49.13

Boise 15.73◦ 28.12 23.73

Berea I 15.54◦ 43.63 38.95

Berea II 14.68◦ 41.79 47.10

Buff Berea 12.10◦ 29.72 35.54

Berea Sister Gray 14.24◦ 42.36 50.40

Berea Upper Gray 16.79◦ 44.73 44.80

Carbon Tan 14.40◦ 50.52 56.20
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Figure 5: Correlation between the intrinsic specific energy (ε) and the
uni-axial compressive strength (q). Current study against the literature.

Although there is some dispersion in the data, in particular at small angles,

the evolution of interfacial friction angle (ψ) with the back rake angle follows a

relatively “universal trend” only weakly dependent on the rock material (Fig.175

6). These results indicate that ψ is not controlled by a uniform frictional process

between the failed rock and the cutting face. The interpretation proposed by

Richard [12] invokes the presence of a build-up edge (BUE) formed at the bottom

of the cutting face, which results in a division of the flow of failed rock into an

upward and a backward flow, as schematically shown in Fig .8. Increase of180

the back rake angle is accompanied by an increase of the backward flow at the

expense of the upward flow, resulting in a decrease of the apparent interfacial

friction angle, ψ.
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Figure 6: Evolution of interfacial friction angle (ψ) with the back rake angle
(θ).
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Figure 7: Variation of total cutting force inclination angle (ψ+θ) with back
rake angle (θ).
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The observed dispersion in the interfacial friction angle at small angles is

associated to materials characterized by a fine grain structure and therefore185

could be attributed to some of the fine crushed particles being trapped within

the asperities (roughness) of the cutter edge, acting as a small wear flat surface

at the cutter edge. Since experiments at shallow back rake angle have been

carried out over a limited range of depth of cut, it is likely that the presence of

this apparent contact surface at the edge affected the estimate of the interfacial190

friction angle [26] and possibly the estimate of the intrinsic specific energy which

could explain some of the dispersion observed in Fig. 9 for 5◦ < θ < 15◦.

Figure 8: Flow of the crushed material (cuttings) at different back rake
angles.

3.2. Cutting response at θ < 0◦ and θ > 70◦

In comparison to earlier work [12, 22], the present results cover a wider range

of back rake angle and in particular cover negative back rake angles but also195

angles beyond 70◦. The intrinsic specific energies at negative back rake is found

smaller than (nearly half) the ones measured at shallow positive angles (5◦ to

20◦), see Fig. 9. Experimental evidence (occurrence of small fragments or chips,
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sound, force signal) indicates that susceptibility to brittle failure increases as

the back rake is lowered, which in turn lowers the estimated intrinsic specific200

energy [27].
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Figure 9: Scaled intrinsic specific energy ( ε
q
) versus back rake angle (θ) for

−10◦ ≤ θ ≤ 15◦.

At large back rake angles (beyond 70 degrees), the intrinsic specific en-

ergy (ε) increases dramatically while the interfacial friction angle (ψ) decreases

monotonously, see Fig. 6 and Fig. 10. The results are shown in Fig. 11 in

terms of average tangential force component as a function of the depth of cut.205

Tests carried out at back rake greater than 80◦ are accompanied by clear visual

evidence of damage on the rock surface (Fig. 12a and Fig. 12b); this damage

affects the effective strength of the material at the bottom of the groove and

therefore the results (force measurement) of the subsequent test (carried in the

same groove), leading to the strength of the rock being underestimated. As suc-210

cessive tests are carried out with increasing depth of cut, such behavior results

in the linear fit run on the representative points in a force-depth of cut diagram
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to be characterized by a lower slope and a larger intercept. Consequently, data

were interpreted using only the results of tests performed at very shallow depth

of cut and imposing a zero intercept (as linear fits run on points pertaining to215

tests carried out at smaller rake angles yield a near zero intercept).
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Figure 10: Scaled intrinsic specific energy ( ε
q
) against back rake angle (θ).

Tests performed with PDC sharp cutter on Tuffeau and Savonnieres lime-
stones.
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Figure 11: Evolution of tangential component of the cutting force in terms
of depth of cut for various back rake angles. Tests conducted on Tuffeau
limestone.
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(a)

(b)

Figure 12: Evidence of damage taking place at the bottom of the groove
during a cutting test at large back rage angle. Tuffeau limestone, sharp
cutter at θ = 79.16◦ (a) during the cutting test, and (b) after the cuttings
were brushed away from the surface.

Cutting tests on Tuffeau limestone were carried out with a blunt cutter at

three different inclination angles of the wear flat β (the angle between the wear

flat surface and the direction of cutting tool velocity vector v) corresponding to

effective back rake angle (θ = θ1 = 75.5◦, 79.16◦ and 82.5◦). Cutting tests with220

the blunt cutter were conducted at small enough depth of cut (d = 0.09 mm <

` sinβ, with ` = 1 mm ) so that only the wear flat surface was in contact with

the rock sample, see Fig .13. The procedure followed to set the wear flat back

rake angle and run the tests is detailed in Ref. [25].
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The results shown in Fig. 14 indicate that the forces acting on the blunt225

tool are found much smaller than the ones recorded on the sharp tool. One

possible explanation is that the cutting face of the blunt tool being less inclined

offers more relief for the flow of failed material, leading to a less contained flow

and thus lower force (Fig. 13). These results strongly suggest that the cutting

action of a wear flat surface on a cutter cannot be simply modelled as a cutting230

face inclined with a pronounced back rake angle.

Figure 13: Schematic of a sharp and a blunt cutter for cutting test at very
large back rake angles.
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Figure 14: Cutting force components as a function of the back rake angle
for tests carried out with a sharp and a blunt cutter at d=0.09 mm in
Tuffeau limestone.

4. Conclusion

A series of cutting experiments were conducted with a sharp cutter (with a

width of 10 mm) at various back rake angles (θ) varying from -10◦ to 85◦, in the

ductile regime of failure. The current results confirm previous results [22]: (i)235

the intrinsic specific energy (ε) increases steadily with the back rake angle, (ii) ε

is found to be very well correlated with the rock uni-axial compressive strength

(q) for back rake angles between 5◦ and 20◦ (results obtained for thirteen sedi-

mentary rock materials), (iii) the inclination ψ of the cutting force with respect

to the normal to the cutter face decreases steadily with increasing back rake240

angle (results obtained for five quarry sedimentary rocks) confirming that ψ is

not controlled by a uniform frictional process along the cutting face. Beyond

extending previous results to a wider range of rock materials, the current work
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has shown that tests carried out with a back rake angle larger than 75 degrees

(θ > 75◦) lead to very pronounced damage of the rock surface for a depth of245

cut larger than 0.20 mm. Finally, results show that the cutting response of

a wear flat surface on a blunt cutting tool cannot be simply modelled as the

limit case of the cutting response of a sharp tool at very large back rake angle.

This has important consequence for modelling the response of chamfered cutters

commonly used on PDC bits.250
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Appendix A. Drawings of the sharp cutters

(a)

(b)

Figure A.1: Drawings and pictures of (a) a standard sharp cutter and (b)
a sharp cutter used for zero and negative back rake angles.
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